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1. Introduction

Though traditional nonparametric kernel methods presume that underlying data types

are continuous in nature, it is common to encounter a mix of continuous and categorical

data types in applied data analysis. Such encounters have spawned a growing literature

on semiparametric and nonparametric kernel estimation in the presence of mixed data

types, beginning with the seminal work of Aitchison and Aitken (1976) on through work

by Hall (1981), Grund and Hall (1993), Scott (1992), Simonoff (1996), and Li and Racine

(2003), to mention only a few.

The ‘test of significance’ is probably the most frequently used test in applied regression

analysis, and is often used to confirm or refute theories. Sound parametric inference hinges

on the correct functional specification of the underlying data generating process (DGP);

however, the likelihood of misspecification in a parametric framework cannot be ignored,

particularly in light of the fact that applied researchers tend to choose parametric models

on the basis of parsimony and tractability. Significance testing in a nonparametric kernel

framework would therefore have obvious appeal given that nonparametric techniques are

consistent under much less restrictive assumptions than those required for a parametric

approach. Fan and Li (1996), Racine (1997), and Chen and Fan (1999) have considered

nonparametric tests of significance of continuous variables in nonparametric regression

models. While it is possible to extend these tests to the case of testing the significance of

a categorical variable using the conventional nonparametric frequency estimation method,

such a test is likely to suffer finite-sample power loss because this conventional frequency

approach splits the sample into a number of ‘discrete cells’ or subsamples, and only

uses those observations within each cell to generate a nonparametric estimate. This

efficiency loss is unfortunate because, under the null hypothesis, some discrete variables

are irrelevant regressors and should therefore be removed from the regression model,

i.e., the corresponding discrete cells should be ‘smoothed out’ or ‘pooled’ as opposed to
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splitting the sample into different cells. The sample splitting method also suffers the

unfortunate drawback that, when the number of discrete cells is large relative to the

sample size, the conventional frequency approach may even become infeasible.

In this paper we smooth both the discrete and continuous variables, and we propose a

test for the significance of categorical variables in nonparametric regression models. The

test employs cross-validated smoothing parameter selection, while the null distribution of

the test is obtained via bootstrapping methods (Efron (1983), Hall (1992), Beran (1988),

Efron and Tibshirani (1993)). This approach results in a nonparametric test that is robust

to functional specification issues, while the sampling distribution of the statistic under

the null is also obtained in a nonparametric fashion, that is, there are neither unknown

parameters nor functional forms that need to be set by the applied researcher. The paper

proceeds as follows: Section 2 presents the proposed test statistic, Section 3 outlines a

resampling approach for generating the test’s null distribution, Section 4 examines the

finite-sample performance of the statistic, Section 5 presents an application of the method

to the question of whether or not ‘convergence clubs’ exist, an issue which arises in the

economics of growth literature, while Section 6 concludes.

2. The Test Statistic

We consider a nonparametric regression model with mixed categorical and continuous

regressors, and we are interested in testing whether some of the categorical regressors are

‘irrelevant.’ Let z denote the categorical variables that might be redundant, let x be the

remaining explanatory variables in the regression model, and let y denote the dependent

variable. Then the null hypothesis can be written as

(1) H0 : E(y|x, z) = E(y|x) almost everywhere (a.e.).
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The alternative hypothesis is the negation of H0. H1: E(y|x, z) 6= E(y|x) on a set

with positive measure. We allow x to contain both categorical (discrete) and continuous

variables. Let xc and xd denote the continuous and discrete components of x, respectively.

We assume that xc ∈ Rq and xd is of dimension k × 1. We will first focus on the case

where z is a univariate categorical variable. We discuss the multivariate z variable case

at the end of this section.

It is well known that bandwidth selection is of crucial importance for nonparametric es-

timation. The test statistic proposed in this paper depends on data-driven cross-validated

smoothing parameter selection for both the discrete variable z and the mixed variables x.

Given its importance, we briefly discuss the cross-validation method used herein.

Let g(x) = E(y|x) and m(x, z) = E(y|x, z). The null hypothesis is m(x, z) = g(x) a.e.

Suppose that the univariate z takes c different values: {0, 1, 2, . . . , c − 1}. If c = 2 then

z is a 0-1 dummy variable, which is probably the most commonly encountered case in

practice.

We assume that some of the discrete variables are ordinal (having a natural ordering),

examples of which would include preference orderings (like, indifference, dislike), health

conditions (excellent, good, poor) and so forth. Let x̃di denote a k1 × 1 vector (say, the

first k1 components of xdi , 0 ≤ k1 ≤ k) of discrete regressors that have a natural ordering,

and let x̄di denote the remaining k2 = k− k1 discrete regressors that are only nominal (no

natural ordering). We use xdi,t to denote the tth component of xdi (t = 1, . . . , k). It should

be mentioned that Ahmad and Cerrito (1994) and Bierens (1983, 1987) also consider the

case of estimating a regression function with mixed categorical and continuous variables,

but they did not study the theoretical properties of the resulting estimator when using

data-driven methods such as cross-validation to select smoothing parameters.
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For an ordered categorical variable, we use the following kernel function:

(2) l̃(x̃di,t, x̃
d
j,t, λ) =







1, if x̃di,t = x̃dj,t,

λ|x̃
d
i,t−x̃

d
j,t|, if x̃di,t 6= x̃dj,t,

where λ is a smoothing parameter. Note that (i) when λ = 0, l(x̃di,t, x̃
d
j,t, λ = 0) becomes

an indicator function, and (ii) when λ = 1, l(x̃di,t, x̃
d
j,t, λ = 1) = 1 is a uniform weight

function. These two properties are of utmost importance when smoothing discrete vari-

ables. Property (i) is indispensable because otherwise the smoothing method may lead to

inconsistent nonparametric estimation, and (ii) is indispensable as it results in a kernel

estimator having the ability to smooth out (remove) an irrelevant discrete variable.

All of the existing (discrete variable) kernel functions satisfy (i), but many of them

do not satisfy (ii). For example, when x̃t ∈ {0, 1, . . . , ct−1}, Aitchison and Aitken (1976)

suggested the weighting function: l(x̃di,t, x̃
d
j,t, λ) =

(

ct
m

)

(1 − λ)ct−mλm if |x̃di,t − x̃dj,t| = m

(0 ≤ m ≤ ct). This kernel satisfies (i), but, it is easy to see that it cannot give a uniform

weight function for any choice of λ when ct ≥ 3. Thus, it lacks the ability to smooth out

an irrelevant discrete variable.

For an unordered categorical variable, we use a variation on Aitchison and Aitken’s

(1976) kernel function defined by

(3) l̄(x̄di,t, x̄
d
j,t) =







1, if x̄di,t = x̄dj,t,

λ, otherwise.

Again λ = 0 leads to an indicator function, and λ = 1 gives a uniform weight function.

Let 1(A) denote an indicator function that assumes the value 1 if the event A occurs

and 0 otherwise. Combining (2) and (3), we obtain the product kernel function given by

(4) L(xdi , x
d
j , λ) =

[

k1
∏

t=1

λ|x̃
d
i,t−x̃

d
j,t|

][

k
∏

t=k1+1

λ1−1(x̄d
i,t=x̄

d
j,t)

]

= λd̃xi,xj
+d̄xi,xj = λdxi,xj ,
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where d̃xi,xj
=

∑k1

t=1 |x̃
d
i,t − x̃dj,t| is the distance between x̃di and x̃dj , d̄xi,xj

= k2 −
∑k

t=k1+1 1(x̄dt,i = x̄dj,t) is the number of disagreement components between x̄di and x̄dj ,

and dxi,xj
= d̃xi,xj

+ d̄xi,xj
.

It is fairly straightforward to generalize the above result to the case of a k-dimensional

vector of smoothing parameters λ. As noted earlier, for simplicity of presentation, only

the scalar λ case is treated here. Of course in practice one needs to allow each different

discrete variable (each component of zi) to have a different smoothing parameter just as

in the continuous variable case. For the simulations and application conducted herein we

allow λ to differ across variables.

Since we have assumed that z is a univariate categorical variable, the kernel function

for z is the same as (2). If z is an ordinal categorical variable, i.e.,

(5) l(zi, zj, λz) =







1, if zi = zj,

λ
|zi−zj |
z , if zi 6= zj,

where λz is the smoothing parameter. If z is nominal, then

(6) l(zi, zj, λz) =







1, if zi = zj,

λz, otherwise.

We use a different notation λz for the smoothing parameter for the z variable because

under H0, the statistical behavior of λz is quite different from λ, the smoothing parameter

associated with xd.

We use W (·) to denote the kernel function for a continuous variable and h to denote

the smoothing parameter for a continuous variable. We will use the shorthand notations
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Wh,ij = h−qW ((xci − xcj)/h), Lλ,ij = L(xdi , x
d
j , λ), and lλz ,ij = l(zi, zj, λz). Then a leave-

one-out kernel estimator of m(xi, zi) ≡ m(xci , x
d
i , zi) is given by

(7) m̂−i(xi, zi) =

∑

j 6=i yjWh,ijLλ,ijlλz ,ij
∑

j 6=iWh,ijLλ,ijlλz ,ij

.

We point out that Ahmad and Cerrito (1994) consider using more general discrete

kernel functions, which include the kernel function used in (7) as a special case.

We choose (h, λ, λz) to minimize the following objective function:

(8) CV (h, λ) =
1

n

n
∑

i=1

[yi − m̂−i(xi, zi)]
2,

where m̂−i(xi, zi) is defined in (7).

We use (ĥ, λ̂, λ̂z) to denote the cross-validation choices of (h, λ, λz) that minimize (8).

WhenH1 is true (i.e.,H0 is false), Racine and Li (2003) have shown that ĥ = Op(n
−1/(4+q)),

λ̂ = Op(n
−2/(4+q)), and λ̂z = Op(n

−2/(4+q)). All the smoothing parameters converge to 0

under H1. Intuitively this is easy to understand as the nonparametric estimation bias is

of the order of O(h2 + λ+ λz). Consistency of the nonparametric estimator requires that

h, λ, and λz should all converge to 0 as n → ∞. However, when H0 is true, it can be

shown that ĥ and λ̂ tend to zero in probability as n→∞, but λ̂z has a high probability of

being near its upper bound of 1, a fact confirmed by our simulations.1 This is also easy to

understand since, under H0, the regression function is not related to z and therefore it is

more efficient to estimate the regression function using λz = 1 rather than values of λz < 1.

In such cases, the cross-validation method correctly selects large values of λz with high

probability. Thus, our estimation method is much more efficient than the conventional

sample splitting method, especially under the null hypothesis, because our method tends

1Hart and Wehrly (1992) observe a similar phenomenon with a cross-validation-based test for linearity
with a univariate continuous variable. In their case h tends to take a large positive value when the null
of linearity is true. For a sample size of n = 100, they observe that 60 percent of the time the smoothing
parameter assumes values larger than 1, 000.
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to smooth out the irrelevant discrete regressors while the conventional frequency method

splits the sample into a number of subsets even when the discrete variable is irrelevant.

We now discuss the test statistic that we use for testing the null hypothesis.

Note that the null hypothesis H0 is equivalent to: m(x, z = l) = m(x, z = 0) almost

everywhere for l = 1, . . . , c− 1. Our test statistic is an estimator of

(9) I =
c−1
∑

l=1

E
{

[m(x, z = l)−m(x, z = 0)]2
}

.

Obviously I ≥ 0 and I = 0 if and only if H0 is true. Therefore, I serves as a proper

measure for testing H0. A feasible test statistic is given by

(10) În =
1

n

n
∑

i=1

c−1
∑

l=1

[m̂(xi, zi = l)− m̂(xi, zi = 0)]2 ,

where

(11) m̂(xi, zi = l) =

∑n
j=1 yjWĥ,ijLλ̂,ijlzj ,z=l,λ̂z

∑2
j=1Wĥ,ijLλ̂,ijlzj ,z=l,λ̂z

.

It is easy to show that În is a consistent estimator of I. Therefore, În → 0 in probability

under H0 and În → I > 0 in probability under H1. In practice one should reject H0 if În

takes ‘too large’ a value.

It is straightforward to generalize the test statistic (10) to handle the case where z is a

multivariate categorical variable. Suppose z is of dimension r. Let zl and zl,i denote the

lth components of z and zi, respectively, and assume that zl takes cl different values in

{0, 1, . . . , cl − 1} (l = 1, . . . , r). For multivariate z the test statistic În becomes

(12) În =
1

n

n
∑

i=1

∑

z

[m̂(xi, z)− m̂(xi, z1 = 0, . . . , zr = 0)]2 ,

where
∑

z denotes summation over all possible values of z ∈
∏r

l=1{0, 1, . . . , cl − 1}.

The definition of m̂(xi, z) is similar to (11) except that the univariate kernel l̄(zi, zj, λ̂z)
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should be replaced by the product kernel
∏r

s=1 l(zs,i, zs,j , λ̂z,s), and the λ̂z,s’s are the cross-

validated values of λz,s, the smoothing parameters associated with zs (s = 1, . . . , r). We

now turn our attention to using bootstrap methods to approximate the finite-sample null

distribution of the test statistic.

3. A Bootstrap Procedure

A conventional approach for determining when În assumes ‘too large’ a value involves

obtaining its asymptotic distribution under H0 and then using this to approximate the

finite-sample null distribution. However, in a nonparametric setting this approach is

known to be unsatisfactory. To see why, note first that for smoothing-based tests in which

the bandwidth tends to 0 as n → ∞, the limiting distribution of the statistic is usually

completely free of the bandwidth. However, in finite-sized samples, the distribution does

depend on the bandwidth of the smoother. Indeed, a number of authors have noted that

the distribution is quite sensitive to bandwidth choice. For example, Robinson (1991)

states that, for a kernel smoother-based test, “substantial variability in the [test statistic]

across bandwidths was recorded.”

In contrast to the case just discussed, the data-driven bandwidth λ̂z converges in dis-

tribution to a nondegenerate random variable under H0. This means that λ̂z has a first

order effect on the limiting distribution of În. Determining this effect precisely is a

daunting theoretical problem. But even if it were straightforward to derive this limiting

distribution, one would still be skeptical of its accuracy as a small-sample approximation.

Therefore, we will forgo asymptotics altogether and instead use the bootstrap in order to

approximate critical values for our test.

Resampling, or bootstrap, methods (Efron (1983)) have been successfully used for ap-

proximating the finite-sample null distributions of test statistics in a range of settings, both

parametric and nonparametric. These methods have been shown to account remarkably
8



well for the effect of bandwidth on the null distribution of test statistics (Racine (1997)).

Note that in our testing problem one should not simply resample from {yi, xi, zi}
n
i=1 since

doing so does not impose H0. We therefore propose two bootstrap procedures, both of

which approximate the null distribution of În.

3.1. Bootstrap Method I.

(1) Randomly select z∗i from {zj}
n
j=1 with replacement, and call {yi, xi, z

∗
i }

n
i=1 the

bootstrap sample.

(2) Use the bootstrap sample to compute the bootstrap statistic Î∗n, where Î
∗
n is the

same as În except that zi is replaced by z∗i (using the same cross-validated smooth-

ing parameters of ĥ, λ̂ and λ̂z obtained earlier).

(3) Repeat steps 1 and 2 a large number of times, say B times. Let {Î∗n,j}
B
j=1 be the

ordered (in an ascending order) statistic of the B bootstrap statistics, and let Î∗n,(α)

denote the αth percentile of {Î∗n,j}
B
j=1. We reject H0 if În > Î∗n,(α) at the level α.

The advantage of ‘Bootstrap Method I’ above is that it is computationally simple. This

follows simply because one does not re-compute the cross-validated smoothing parameters

for each bootstrap sample. The second method outlined below, ‘Bootstrap Method II,’ is

computationally more intensive than Bootstrap Method I outlined above.

3.2. Bootstrap Method II.

(1) Randomly select z∗i from {zj}
n
j=1 with replacement, and call {yi, xi, z

∗
i }

n
i=1 the

bootstrap sample.

(2) Use the bootstrap sample to find the least squares cross-validation smoothing

parameter λ̂∗z, i.e., choose λ̂
∗
z to minimize

(13) CV (λz) =
n
∑

i=1

[yi − ĝ−i(xi, z
∗
i )]

2,
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where ĝ−i(xi, z
∗
i ) =

∑

j 6=i yjKĥx,λ̂x
L(z∗i , z

∗
j , λz)/

∑

j 6=iKĥx,λ̂x
L(z∗i , z

∗
j , λz). Compute

the bootstrap statistic Ĩ∗n in the same way as În except that zi and λ̂z are replaced

by z∗i and λ̂∗, respectively.

Note that, in the above cross-validation procedure, only λz varies since ĥx and

λ̂x are obtained at the initial estimation stage.

(3) Repeat steps (i) and (ii) a large number of times, say B times. Let {Ĩ∗n,j}
B
j=1 be

the ordered (in an ascending order) statistic of the B bootstrap statistics, and let

Ĩ∗n,(α) denote the αth percentile of {Ĩ∗n,j}
B
j=1. We reject H0 if În > Ĩ∗n,(α) at the level

α.

Bootstrap Method I is computationally more attractive than Bootstrap Method II

because the latter uses the cross-validation method to select λ∗
z at each bootstrap resample.

Results of Hall and Kang (2001) seem to suggest that there would be little (if any) benefit

to using the more computationally burdensome Bootstrap Method II. Their results show

that Edgeworth expansions of the distributions of kernel density estimators f̂(x|h0) and

f̂(x|ĥ) have the same first terms, where h0 and ĥ are optimal and (consistent) data-

driven bandwidths, respectively. An implication of this result is that computing ĥ∗ on

each bootstrap sample has no impact on first-order accuracy of the bootstrap. However,

in contrast to the setting of Hall and Kang (2001), λ̂z has a nondegenerate asymptotic

distribution, and we thus anticipate a marked improvement (at least asymptotically) from

using Bootstrap Method II. Simulations using both methods will be conducted in the next

section.

Finally, we note that the above two bootstrap procedures are not (asymptotically) piv-

otal. However, the simulation results presented below show that both testing procedures

work well even for small to moderate sample sizes. We have also computed a standardized
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version of our test statistic as follows:

(14) t̂n =
În

s(În)
,

where s(În) is the estimated standard error of În, which is itself obtained via nested

bootstrap resampling (e.g., Efron and Tibshirani (1993, page 162)). We discuss the finite

sample performance of t̂n in comparison to În in the next section.

4. Monte Carlo Simulations

For all simulations that follow, we consider sample sizes of n = 50 and 100, while

1,000 Monte Carlo replications are conducted throughout. When bootstrapping the null

distribution of the test statistic, we employ 299 bootstrap replications. As noted, cross-

validation is used to obtain all smoothing parameters, while 2 restarts of the search

algorithm for different admissible random values of (h, λ, λz) are used throughout, with

those yielding the lowest value of the cross-validation function being retained. A second-

order Epanechnikov kernel was used for the continuous variable. Code was written in

ANSI C and simulations were run on a 24-node Athlon-based Beowulf cluster (see Racine

(2002) for further details).

4.1. Size and Power of the Proposed Tests. In this section we report on a Monte

Carlo experiment designed to examine the finite-sample size and power of the proposed

test. The data generating process (DGP) we consider is a nonlinear function having

interaction between a discrete and continuous variable and is given by

(15) yi = β0 + β1zi1(1 + x2i ) + β2zi2 + β3xi + εi, i = 1, 2, . . . , n,

where Z1 and Z2 are both discrete binomial 0/1 random variables having Pr[Zj = 1] = 0.5,

j = 1, 2, X ∼ N(0, σ2
x) with σx = 1.0, ε ∼ N(0, σ2

ε ) with σε = 0.1, and (β0, β1, β2, β3) =

(1, β1, 1, 1).
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We consider testing the significance of Z1. Under the null (β1 = 0) that Z1 is an

irrelevant regressor, the DGP is yi = β0 + β2zi2 + β3xi + εi. We assess the finite-sample

size and power of the test by varying β1, so that when β1 = 0 we can examine the test’s

size while when β1 6= 0 we can assess the test’s power.

We consider the performance of the proposed test using both bootstrap methods out-

lined above. We vary β1 in increments of 0.05 (0.0, 0.05, 0.10, . . . ) and compute the empir-

ical rejection frequency at nominal levels α = (0.01, 0.05, 0.10). We then construct smooth

power curves. Power curves are plotted in Figures 1 and 2, while rejection frequencies for

n = 50 can be found in Tables 1 and 2.

We note from Figures 1 and 2 that the sizes of the test based on Bootstrap Method I

are a bit high for n = 50, while those of Bootstrap Method II are closer to their nominal

values. In fact, the empirical rejection rate for Bootstrap Method I is significantly higher

than nominal size for each α and sample size (using a one-sided binomial test with level

0.05).2 It is also worth noting that the empirical levels for Bootstrap Method II improve

when n increases from 50 to 100, while those for Bootstrap Method I barely change.

The estimated powers for Bootstrap Method I and Bootstrap Method II are somewhat

close to each other. The slightly better power of Bootstrap Method I is likely due to

its being somewhat oversized in comparison with Bootstrap Method II. As expected, the

power increases as either β1 or n increases (β1 6= 0).

Based on the limited simulation results reported above, it appears that Bootstrap

Method II has somewhat better level properties than Bootstrap Method I, while the

power properties of the two are somewhat similar. When computational burdens are not

an issue, we thus suggest use of Bootstrap Method II for moderate sample sizes. On the

other hand, the excess size of Bootstrap Method I is not substantial for sample sizes of 100

2Letting α̂ denote the empirical rejection frequency associated with nominal level α, we tested the null
H0: α̂ = α for Bootstrap Method I for n = 50, and obtained P -values of 0.04, 0.00, and 0.00 for α = 0.01,
0.05, and 0.10 respectively, while for Bootstrap Method II, we obtained P -values of 0.14, 0.29, and 0.18
for α = 0.01, 0.05, and 0.10 respectively.
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Figure 1. Empirical size and power of Bootstrap Method I, n = 50 (left)
and n = 100 (right).
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Figure 2. Empirical size and power of Bootstrap Method II, n = 50 (left)
and n = 100 (right).

or more, and hence it is a reasonable method when it is important to reduce computation

time.
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Table 1. Empirical size (β1 = 0) and power (β1 6= 0) of Bootstrap Method
I, n = 50.

β1 α = 0.01 α = 0.05 α = 0.10
0.000 0.017 0.078 0.140
0.100 0.023 0.098 0.173
0.200 0.049 0.166 0.271
0.300 0.117 0.296 0.425
0.400 0.235 0.481 0.608
0.500 0.367 0.653 0.766

Table 2. Empirical size (β1 = 0) and power (β1 6= 0) of Bootstrap Method
II, n = 50.

β1 α = 0.01 α = 0.05 α = 0.10
0.000 0.014 0.054 0.109
0.100 0.019 0.074 0.140
0.200 0.040 0.141 0.234
0.300 0.095 0.267 0.391
0.400 0.196 0.447 0.586
0.500 0.327 0.607 0.737

4.2. Size and Power of Our Tests Relative to the Conventional Nonparametric

‘Frequency’ Estimator. We now consider the same DGP given in (15) above, but in

this section our goal is to assess the finite-sample performance of the proposed ‘smoothing’

test relative to the conventional ‘non-smoothing’ (‘frequency’) test. This is accomplished

simply by setting λ = 0 for all categorical variables in the model. Empirical size and

power for both bootstrap methods are tabulated in Tables 1, 2, and 3 for the case of

n = 50.3

It can be seen from Tables 1, 2, and 3 that the proposed method is substantially more

powerful than the non-smoothed (frequency) approach, the loss in power increasing as

β1 increases for the range considered herein. It would appear therefore that optimal

smoothing leads to finite-sample power gains for the proposed test relative to the non-

smoothed version of the test.

3Qualitatively similar results were obtained for n = 100, thus we do not those tables for the sake of
brevity.
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Table 3. Empirical size (β1 = 0) and power (β1 6= 0) of the non-smoothed
test with λ = 0, n = 50.

β1 α = 0.01 α = 0.05 α = 0.10
0.000 0.013 0.054 0.110
0.100 0.018 0.071 0.136
0.200 0.035 0.127 0.216
0.300 0.072 0.235 0.349
0.400 0.139 0.390 0.522
0.500 0.243 0.541 0.690

4.3. The Standardized Test. In addition to the experiments reported above, we also

implemented a standardized version of our test, the t̂n test, as described at the end of

Section 3. Compared with the non-standardized test În using Bootstrap Method I, the use

of t̂n in this case yields small improvements in nominal size as expected and also appears

to lead to a small reduction in power.4 Recall that the În test based on Bootstrap Method

I is slightly oversized. Thus, this power reduction may reflect the difference in estimated

sizes. Indeed simulations (not reported here) show that the size-adjusted powers of the În

and the t̂n tests are virtually identical. The use of t̂n based on nested bootstrap procedure

increases the computational burden of the proposed approach by an order of magnitude;

hence, we conclude that standardizing the test does not appear to be necessary to achieve

reasonable size and power in this setting.

5. Application - ‘Growth Convergence Clubs’

Quah (1997) and others have examined the issue of whether there exist ‘convergence

clubs,’ that is, whether growth rates differ for members of clubs such as the Organization

for Economic Cooperation and Development (OECD) among others. We do not attempt

to review this vast literature here; rather, we refer the interested reader to Mankiw et

al. (1992), Liu and Stengos (1999), Durlauf and Quah (1999) and the references therein.

4These simulation results are not reported here to save space. The results are available from the authors
upon request.
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We apply the proposed test to determine whether OECD countries and non-OECD

countries follow the same growth model. This is done by testing whether OECD member-

ship (a binary categorical variable) is a relevant regressor in a nonparametric framework.

The null hypothesis is that the OECD membership is an irrelevant regressor; thus, under

the null, OECD and non-OECD countries’ growth rates are all determined by the same

growth model. The alternative hypothesis is the negation of the null hypothesis. That is,

OECD and non-OECD countries have different growth rate (regression) models.

When using parametric methods, if the regression functional form is misspecified one

may obtain misleading conclusions. By using methods that are robust to functional

specification issues we hope to avoid criticism that findings are driven by a particular

functional form presumed.

Following Liu and Stengos (1999), we employ panel data for 88 countries over seven

(five-year average) periods (1960-1964, 1965-1969, 1970-1974, 1975-1979, 1980-1984, 1985-

1989 and 1990-1994) yielding a total of 88× 7 = 616 observations in the panel. We then

construct our test based on the following model:

(16)

growthit = m(OECDit,DTt, ln(invit), ln(popgroit), ln(initgdpit), ln(humancapit))+εit,

where growthit refers to the growth rate of income per capita during each period, DTt the

seven period dummies, invit the ratio of investment to Gross Domestic Product (GDP),

popgroit growth of the labor force, initgdpit per capita income at the beginning of each

period, and humancapit human capital. Initial income estimates are from the Summers-

Heston (1988) data base, as are the estimates of the average investment/GDP ratio for

five-year periods. The average growth rate of per capita GDP and the average annual

population growth rate for each period are from the World Bank. Finally, human capital
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(average years of schooling in the population above 15 years of age) is obtained from Barro

and Lee (2000).

Before we report results for our smoothing-based nonparametric test, we first consider

some popular parametric methods for approaching this problem. A common parametric

approach is to employ a linear regression model, with the OECD dummy variable being

one possible regressor, and then to test whether the coefficient on this dummy variable is

significant. We consider a parametric specification suggested by Liu and Stengos (1999),

which contains dummy variables for OECD status and is nonlinear in the initial GDP

and human capital variables.5

(17)

growthit = β0OECDit +
7
∑

s=1

βsDTs + β8 ln(invit) + β9 ln(popgroit)

+
4
∑

s=1

αs[ln(initgdpit)]
s +

3
∑

s=1

γs[ln(humancap)it)]
s + εit.

Estimation results for model (17) are given in Table 4, while the t-statistic for the

OECD dummy is -0.973 having a P -value of 0.33.6 Thus, the parametric test fails to

reject the null.

Next, we follow the conventional frequency approach and implement the nonparametric

test, i.e., our estimation is based on model (16) with sample splitting on the OECD and

the DT dummies. Using 999 bootstrap resamples we obtain a P -value of 0.113, and once

again we fail to reject the null at the conventional 1 percent, 5 percent, and 10 percent

levels.

We now report the results for our proposed smoothing-based nonparametric test. For

each bootstrap test we employed 999 bootstrap resamples, while for cross-validation we

5We are grateful to Thanasis Stengos for providing data and for suggesting this parametric specification
based upon his work in this area.
6R code and data needed for the replication of these parametric results are available from the authors
upon request.
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Table 4. Parametric Model Summary

Estimate Std. Error t value Pr(>|t|)
OECD −0.0043 0.0044 −0.97 0.3311
d1965 6.5101 3.8180 1.71 0.0887
d1970 6.5102 3.8182 1.71 0.0887
d1975 6.5129 3.8183 1.71 0.0886
d1980 6.5028 3.8184 1.70 0.0891
d1985 6.4863 3.8183 1.70 0.0899
d1990 6.4965 3.8182 1.70 0.0894
d1995 6.4913 3.8180 1.70 0.0896
initgdp −3.3940 2.0025 −1.69 0.0906
I(initgdp2) 0.6572 0.3908 1.68 0.0931
I(initgdp3) −0.0558 0.0336 −1.66 0.0975
I(initgdp4) 0.0018 0.0011 1.63 0.1043
popgro −0.0172 0.0105 −1.63 0.1035
inv 0.0185 0.0023 7.93 0.0000
humancap 0.0007 0.0032 0.21 0.8366
I(humancap2) 0.0011 0.0021 0.51 0.6084
I(humancap3) 0.0005 0.0011 0.45 0.6512
Residual standard error: 0.026 on 599 degrees of freedom
Multiple R-Squared: 0.5077, Adjusted R-squared: 0.4937
F-statistic: 36.34 on 17 and 599 DF, p-value: < 2.2e-16

employed five restarts of the numerical search algorithm and retained those smoothing

parameters that yielded the lowest value of the cross-validation function. The P -value

generated from inverting the empirical CDF at În is 0.006 for Bootstrap Method I and

0.003 for Bootstrap Method II, which constitutes strong evidence against the validity of

the null.

The inconsistency of the parametric test and our proposed nonparametric test also

suggests that the parametric model is misspecified. We therefore applied a consistent

nonparametric test for correct specification of the parametric model (see Hsiao, Li, and

Racine (2003)). The P -value from this test was 0.0008 and we therefore reject the null of

correct parametric specification.

The reason why the conventional frequency based nonparametric test also fails to reject

the null is that it splits the sample into 2 × 7 = 14 parts (the number of discrete cells
18



from the discrete variables OECD and DT) when estimating the nonparametric regression

functions; thus, the much smaller (sub) sample sizes lead to substantial finite sample power

loss for a test based on the conventional frequency approach.

We conclude that there is robust nonparametric evidence in favor of the existence of

‘convergence clubs,’ a feature that may remain undetected when using both common

parametric specifications and conventional nonparametric approaches. That is, growth

rates for OECD countries appear to be different from those for non-OECD countries.

6. Conclusion

In this paper we propose a test for the significance of categorical variables for non-

parametric regression. The test is fully data-driven and uses resampling procedures for

obtaining the null distribution of the test statistic. Monte Carlo simulations suggest that

the test is well-behaved in finite samples, having correct size and power that increases

with the degree of departure from the null and with the sample size. Two resampling

methods for generating the test statistic’s null distribution are proposed, and both per-

form admirably. The test is more powerful (in finite-sample applications) than a conven-

tional non-smoothing version of the test, indicating that optimal smoothing of categorical

variables is desirable not only for estimation but also for inference. An application demon-

strates how one can test economic hypotheses concerning categorical variables in a fully

nonparametric and robust framework, thereby parrying the thrusts of critics who might

argue that the outcome was driven by the choice of a parametric specification.
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