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Abstract

This paper proposes a new discrete-time model of returns in which jumps
capture persistence in the conditional variance. Jump arrival is governed by a
heterogeneous Poisson process. The intensity is directed by a latent stochastic
autoregressive process, while the jump-size distribution allows for conditional het-
eroskedasticity. Model evaluation focuses on the dynamics of the conditional dis-
tribution of returns. For example, using Bayesian simulation methods, this paper
estimates predictive densities which provide a period-by-period comparison of the
performance of this new specification relative to a conventional stochastic volatil-
ity model. Further, in contrast to previous studies on the importance of jumps,
we utilize realized volatility to assess out-of-sample variance forecasts.
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1 Introduction

Measuring and forecasting the distribution of returns is important for many problems in
finance. Pricing of financial securities, risk management decisions, and portfolio alloca-
tions all depend on the distributional features of returns. Possibly the most important
feature of financial returns is the structure in the variance. As a result, a vast literature
has sprung from the ARCH model of Engle (1982) and the stochastic volatility (SV)
approach of Taylor (1986).

Current research has documented the importance of jump dynamics in combination
with autoregressive stochastic volatility for modeling returns. Examples of this work
include Andersen, Benzoni, and Lund (2002), Bates (2000), Chernov, Gallant, Ghysels,
and Tauchen (2003), Chib, Nardari, and Shephard (2002), Eraker, Johannes, and Polson
(2003), Jorion (1988), and Maheu and McCurdy (2004) among others. Jumps provide a
useful addition to SV models by explaining occasional, large abrupt moves in financial
markets, but they are generally not used to capture volatility clustering. As a result,
jumps account for neglected structure, usually tail dynamics, that autoregressive SV
cannot capture.1

All financial data are measured in discrete time which suggests that jumps provide
a natural framework to model price moves. Nevertheless, surprisingly few applications
focus on the potential performance of a pure jump model. Recent research, including
Das (2002), Johannes, Kumar, and Polson (1999), and Oomen (2002), suggests that
jumps alone could provide a good specification for financial returns. Those applications
all feature some form of dependence in the arrival rate of jumps. For example, Johannes,
Kumar, and Polson (1999) allow jump arrival to depend on past jumps and the absolute
value of returns. Indeed, the success of pure jump models will depend on whether
the specification can explain dynamics of the conditional distribution, in particular,
volatility clustering. However, the performance of existing models in this regard is
unclear. For example, can models with only jumps produce good volatility forecasts?
Are they competitive with standard volatility models? The purpose of this paper is to
investigate these questions.

This paper proposes a new discrete-time model of returns in which jumps capture per-
sistence in the conditional variance. The jump intensity is directed by a latent stochastic
autoregressive process. Therefore, jump arrivals can cluster. We also allow the jump-
size distribution to be conditionally heteroskedastic. Larger jumps occur during volatile
periods and smaller ones during quiet periods.

We propose a Markov chain Monte Carlo (MCMC) approach to model estimation.
We follow Johannes, Kumar, and Polson (1999) in treating unobserved state variables
such as jump times and jump sizes as parameters. A byproduct of MCMC output is
estimates of these quantities which incorporate parameter uncertainty.

1Additional SV factors is another possible solution. For example, Chernov, Gallant, Ghysels, and
Tauchen (2003) find that a multifactor loglinear SV specification is equivalent to an affine class of SV
with jumps for equity data.

2



Model evaluation focuses on the dynamics of the conditional distribution of returns,
as we compare this new specification to a conventional stochastic volatility model. Using
Bayesian simulation methods, we estimate predictive likelihoods for models as suggested
by Geweke (1995). This allows for a period-by-period comparison of the jump model and
the SV model, and is particularly useful in identifying influential observations. From
these calculations we report the cumulative model probability as a function of time.
This provides insight into the performance of volatility forecasts.

In addition to conditional density evaluation, forecasts of volatility are compared.
Andersen and Bollerslev (1998) show that accurate measures of ex post volatility can
be constructed from high frequency intraday data. The sum of squared intraday returns
is an efficient measure of daily volatility. Following Andersen, Bollerslev, Diebold, and
Labys (2001), this estimator is often called realized volatility and is calculated based
on 5-minute price data from the foreign exchange market for JPY-USD and DEM-USD
rates. Our out-of-sample forecasts of volatility are assessed using these realized volatility
measures.

Results — To be completed
This paper is organized as follows. The next section presents a heterogeneous jump

model for foreign exchange returns, while Section 3 briefly discusses a benchmark SV
model used for comparison purposes. Section 4 considers Bayesian estimation of the
jump model. The use, and estimation of predictive densities for model comparison is
reviewed in Section 5, while model forecasts are explained in Section 6. Data sources
are found in Section 7, results in Section 8 and conclusions in Section 9. An Appendix
contains detailed calculations for the estimation algorithms.

2 Heterogeneous Jump Parameterization

This section proposes a new discrete-time model which can capture the autoregressive
pattern in the conditional variance of returns by allowing jumps to arrive according to
a heterogeneous Poisson process. Our parameterization includes a latent autoregressive
structure for the jump intensity, as well as a conditionally heteroskedastic variance for
the jump-size distribution. The mean of the jump-size distribution can be significantly
different from zero, allowing the specification to capture a skewed distribution of returns.
Johannes, Kumar, and Polson (1999) consider a reversal effect through the jump-size
mean for equity data, however, this is likely to be less important for FX rates.
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The parameterization of the heterogeneous jump model is as follows:

rt = µ + σzt + Jtξt, zt ∼ N(0, 1) (2.1)

ξt ∼ N(µJ , σ2
J,t), Jt ∈ {0, 1} (2.2)

P (Jt = 1|wt) = λt and P (Jt = 0|wt) = 1− λt (2.3)

λt =
exp(wt)

1 + exp(wt)
(2.4)

wt = γ0 + γ1wt−1 + ut, ut ∼ NID(0, 1), |γ1| < 1 (2.5)

σ2
J,t = η0 + η1Xt−1, (2.6)

where rt denotes returns, t = 1, . . . , T , µ is the mean of the returns, conditional on no
jump, and ξt is the jump size and follows a normal distribution. Jt is an indicator that
identifies when jumps occur. In particular, the set {Jt = 1}T

t=1 denotes jump times.
λt is the time-varying jump intensity or arrival process which is directed by the latent
autoregressive process ωt. The logistic function ensures that ωt is mapped into a (0, 1)
interval for λt.

Besides capturing occasional large moves in returns, this specification can account
for volatility clustering through persistence in ωt. One interpretation of ωt is that it
represents the unobserved news flows into the market that causes trading activity. The
variance of the jump-size distribution, σ2

J,t, is allowed to be a function of weakly ex-
ogenous regressors Xt−1. In this paper we consider Xt−1 = |rt−1|. This permits the
jump-size variance to be sensitive to recent market conditions. For example, if η1 > 0
jumps will tend to be larger (smaller) in volatile (quiet) markets.

Imposing the restrictions λt = λ, ∀t and η1 = 0 obtains a simple jump model with an
iid arrival of jumps and a homogeneous jump size distribution. Although not considered
in this paper, it is straightforward to allow additional dynamics like a different jump-size
distribution or time dependence in µJ .

3 SV model

In this paper we consider a standard log-linear stochastic volatility (SV) model as a
benchmark for comparison purposes. A large literature discusses estimation methods
for this model.2 Surveys of the SV literature are provided by Ghysels, Harvey, and
Renault (1996), Shephard (1996) and Taylor (1994).

The SV model is parameterized as,

rt = µ + exp(ht/2)zt, zt ∼ N(0, 1) (3.1)

ht = ρ0 + ρ1ht−1 + σvvt, vt ∼ N(0, 1). (3.2)

2Important contributions to the theory of estimation include: Melino and Turnbull (1990) Jacquier,
Polson, and Rossi (1994), Andersen and Sorensen (1996), Kim, Shephard, and Chib (1998), Danielsson
and Richard (1993), Gourieroux, Monfort, and Renault (1993), Gallant, Hsieh, and Tauchen (1997),
and Alizadeh, Brandt, and Diebold (2002).
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Given ht, the conditional variance of returns is exp(ht).
Compared to GARCH models, estimation is more difficult due to the latent volatility

which must be integrated out of the likelihood. Bayesian methods rely on Markov Chain
Monte Carlo (MCMC) sampling to estimate SV models. The properties of the estimator
compare favorably with other approaches. It is straightforward to obtain smoothed
estimates of volatility from MCMC output. In addition, these estimates of volatility
take parameter uncertainty into account.

4 Posterior Inference

Johannes and Polson (2003) provide a good introduction to Bayesian methods for fi-
nancial models including a simple jump model. Eraker, Johannes, and Polson (2003)
and Johannes, Kumar, and Polson (1999) discuss a data augmentation approach to deal
with jump times and jump sizes.

From a Bayesian perspective, inference regarding parameters takes place through
the posterior which incorporates both the prior and likelihood function. Let the history
of data be denoted as Φt = {r1, ..., rt}. In the case of the Jump model we augment
the parameters θ = {µ, σ2, µJ , η, γ} where η = {η0, η1}, and γ = {γ0, γ1}, with the
unobserved state vectors ω = {ω1, ..., ωT}, jump times J = {J1, ..., JT}, and jump sizes
ξ = {ξ1, ..., ξT} and treat these as parameters. For the Jump model, Bayes rule gives us

p(θ, ω, J, ξ|ΦT ) ∝ p(r|θ, ω, J, ξ, ΦT )p(ω, J, ξ|θ)p(θ) (4.1)

where r = {r1, ..., rT}. p(r|θ, ω, J, ξ) is the joint density of returns conditional on the
state variables ω, J, ξ, p(ω, J, ξ|θ) is the density of the state variables and p(θ) is the
prior. In practice, analytical results are not available and we use MCMC methods
to draw samples from the posterior. Recent surveys of MCMC methods include Chib
(2001), Geweke (1997) and Robert and Casella (1999).

MCMC theory allows valid draws from the posterior to be obtained by sampling
from a series of conditional distributions. It is often much easier to work with the
conditional distributions. In the limit, draws converge to samples from the posterior.
A consistent estimate of any function of the parameter vector can be constructed from
sample averages. For instance, if we have {µ(i)}N

i=1 draws of µ from the posterior, and
assuming the integral of g(µ) with respect to the marginal posterior exists, we can
estimate E[g(µ)] as 1

N

∑N
i=1 g(µ(i)).3 Further assumptions on the integrability of g(µ)2

permit consistent estimation of the asymptotic standard error of the estimate, based on
conventional time series methods.4

In the following we denote the vector θ excluding the kth element θk, as θ−θk
, the

subvector {ωt, ..., ωτ} as ω(t,τ) and ω excluding ω(t,τ) as ω−(t,τ). Sampling is based on

3For example, to compute Eµ, set g(µ) = µ, to compute Eµ2 and the variance, set g(µ) = µ2, etc.
See Tierney (1994) for technical details.

4For instance, see Geweke (1992).
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Gibbs and Metropolis-Hasting (MH) routines. Draws from the posterior ψ = {θ, ω, J, ξ}
are obtained by cycling over the following steps.

1. sample µ|θ−µ, ω, J, ξ, r

2. sample σ2|θ−σ2 , ω, J, ξ, r

3. sample µJ |θ−µJ
, ω, J, ξ, r

4. sample η|θ−η, ω, J, ξ, r

5. sample blocks ω(t,τ)|θ, ω−(t,τ), J, ξ, r, t = 1, ..., T .

6. sample γ|θ−γ, ω, J, ξ, r

7. sample ξ|θ, ω, J, r

8. sample J |θ, ω, ξ, r

9. goto 1

A pass through 1 - 8 provides a draw from the posterior. We repeat this several thousand
times and collect these draws after an initial burn-in period. There does not appear to
be an agreed upon method to establish convergence of the MCMC samples. It is often
useful to view time series plots of the parameter draws versus iterations, for multiple
starts of the chain, in order to assess convergence. Note that the parameters η, γ, J ,
ξ, and ω are sampled as blocks which may contribute to better mixing of the MCMC
output. Detailed steps of the algorithm are collected in the Appendix.

5 Model Comparison

The key ingredient in Bayesian model comparison is the marginal likelihood which can
be used to form Bayes factors or model probabilities. However, a drawback of any
statistical approach that summarizes a model’s performance with a single number is
understanding why and when a model performs well or poorly. Geweke (1995) suggests
the use of a predictive density decomposition of the marginal likelihood. Estimating
the predictive density allows us to compare models on an observation by observation
basis. This may be useful in identifying influential observations, or periods that make
a large contribution to Bayes factors. Applications of this idea include Gordon (1997),
and Min and Zellner (1993). In addition, the calculation of the predictive density for
model comparison is also useful if we are interested in other features of the predictive
density such as variance forecasts.

Consider a model with parameter vector Θ. The predictive density for observation
yt+t based on the information set Φt is,

p(yt+1|Φt) =

∫
p(yt+1|Φt, Θ)p(Θ|Φt)dΘ (5.1)
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where p(Θ|Φt) is the posterior, and p(yt+1|Φt, Θ) is the conditional distribution. When
it is clear we suppress conditioning on a model for notational convenience. Evaluating
(5.1) at the realized ỹt+1 gives the predictive likelihood,

p̂t+1
t = p(ỹt+1|Φt) =

∫
p(ỹt+1|Φt, Θ)p(Θ|Φt)dΘ (5.2)

which can be estimated from MCMC output. Models that have a larger predictive
likelihood are preferred to ones with a smaller value, as they are more likely to have
generated the data. The predictive likelihood for observations ỹu, ..., ỹv, u < v is

p̂v
u−1 = p(ỹu, ..., ỹv|Φu−1) =

∫
p(ỹu, ..., ỹv|Φu−1, Θ)p(Θ|Φu−1)dΘ =

v−1∏
i=u−1

p̂i+1
i , (5.3)

see Geweke (1995) for details. If u = 1 and v = T then (5.3) provides a full decomposition
of the marginal likelihood. In practice we will use a training sample that we condition
on for all models. This initial sample of observations 1, 2, ..., u − 1, combined with the
likelihood and prior, forms a new prior, p(Θ|Φu−1), on which all calculations are based.
If u is large then p(Θ|Φu−1) will be dominated by the likelihood function and the original
prior p(Θ) will have a minimal contribution to model comparison exercises. Note that
conditional on this training sample, the log predictive Bayes factor in favor of model j
versus k for the data ỹu, ..., ỹv is

log Bv
j,k,u−1 =

v−1∑
i=u−1

log
p̂i+1

j,i

p̂i+1
k,i

(5.4)

where the predictive likelihood is now indexed by the model j and model k. Model
probabilities associated with the predictive likelihood are calculated as,

p(Mi|ỹu, ..., ỹv, Φu−1) =
p(ỹu, ..., ỹv|M i, Φu−1)p(M i|Φu−1)∑K

k=1 p(ỹu, ..., ỹv|Mk, Φu−1)p(Mk|Φu−1)
, i = 1, ..., K (5.5)

where there are K models, and Mk denotes model k. In all calculations equal prior
model probabilities are used. Models with a high predictive likelihood will be assigned a
high model probability. Calculating (5.5) for each v = u+1, ..., T , provides a cumulative
assessment of the evidence for model i as more observations are used.
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5.1 Calculations

5.1.1 Jump Model

The predictive likelihood can be estimated from the MCMC output. For the Jump
model, with yt+1 = rt+1, and Θ = (θ, ω) the predictive likelihood is,

p̂t+1
t =

∫
p(rt+1|θ, ωt, Φt)p(θ, ωt|Φt)dθdωt (5.6)

=

∫
p(rt+1|θ, ωt+1, Φt)p(ωt+1|ωt, θ)p(θ, ωt|Φt)dθdωtdωt+1 (5.7)

≈ 1

N

N∑
i=1

1

R

R∑
j=1

p(rt+1|θ(i), ω
(j)
t+1, ω

(i)
t , Φt) (5.8)

where i denotes the ith draw from the posterior p(θ, ω|Φt), i = 1, ..., N , j indexes simu-
lated values of wt+1, and

p(rt+1|θ(i), ω
(j)
t+1, ω

(i)
t , Φt) = λ

(j)
t+1φ(rt+1|µ(i) + µ

(i)
J , σ2(i) + σ

2(i)
J,t+1) (5.9)

+(1− λ
(j)
t+1)φ(rt+1|µ(i), σ2(i)) (5.10)

λ
(j)
t+1 =

exp(w
(j)
t+1)

1 + exp(w
(j)
t+1)

(5.11)

w
(j)
t+1 = γ

(i)
0 + γ

(i)
1 w

(i)
t + εt+1, εt+1 ∼ NID(0, 1). (5.12)

φ(x|µ, σ2) denotes the normal density function evaluated at x with mean µ and variance
σ2. The following steps summarize the estimation of p̂t+1

t .

1. Set model parameters to the ith draw from the posterior {θ(i), ω(i)}.

2. Generate j = 1, ..., R, values of w
(j)
t+1 according to (5.12) and calculate the average

of p(rt+1|θ(i), ω
(j)
t+1, ω

(i)
t , Φt) for these values. Save the result.

3. If i < N then set i = i + 1 and goto 1

4. Calculate the average of the N values obtained in step 2.

Standard errors for this estimate can be calculated as usual from MCMC output (for
example Geweke (1992)).
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5.1.2 SV Model

Very similar calculations are used for the SV model.

p̂t+1
t =

∫
p(rt+1|θ, ht, Φt)p(θ, ht|Φt)dθdht (5.13)

=

∫
p(rt+1|θ, ht+1, Φt)p(ht+1|ωt, θ)p(θ, ht|Φt)dθdhtdht+1 (5.14)

≈ 1

N

N∑
i=1

1

R

R∑
j=1

p(rt+1|θ(i), h
(j)
t+1, h

(i)
t , Φt). (5.15)

To summarize,

1. Set model parameters to the ith draw from the posterior {θ(i), h(i)}.

2. Generate j = 1, ..., R, values of h
(j)
t+1 according to

h
(j)
t+1 = ρ

(i)
0 + ρ

(i)
1 h

(i)
t + σ(i)

ν νt+1, νt+1 ∼ NID(0, 1) (5.16)

and calculate the average of p(rt+1|θi, h
(j)
t+1, h

(i)
t , Φt) = φ(rt+1|µ(i), exp(h

(j)
t+1)) for

these values. Save the result.

3. If i < N then set i = i + 1 and goto 1

4. Calculate the average of the N values obtained in step 2.

6 Volatility Forecasts

Consider a generic model with parameter vector Θ. Moments of yt+1 (assuming they
exist), based on time t information, can be calculated as

E[ys
t+1|Φt] =

∫
ys

t+1p(yt+1|Φt)dyt+1 (6.1)

=

∫
ys

t+1

∫
p(yt+1|Φt, Θ)p(Θ|Φt)dΘdyt+1 (6.2)

=

∫
E[ys

t+1|Φt, Θ]p(Θ|Φt)dΘ, s = 1, 2, ... (6.3)

which can be approximated from MCMC output. Note that the posterior p(Θ|Φt) was
used in the last section for calculating the predictive likelihood. Therefore, very little
addition computation is needed to obtain out-of-sample forecasts. Conditional variance
forecasts are E[y2

t+1|Φt]− E[yt+1|Φt]
2.
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6.1 Calculations

6.1.1 Jump model

E[rs
t+1|Φt] =

∫
E[rs

t+1|Φt, θ, ωt]p(θ, ωt|Φt)dθdωt (6.4)

≈ 1

N

N∑
i=1

E[rs
t+1|Φt, θ

(i), ω
(i)
t ], s = 1, 2, (6.5)

where {θ(i), ω
(i)
t } is the ith draw from the posterior distribution, p(θ, ω|Φt). For the

variance we require the first two moments

E[rt+1|Φt, θ
i, ωi

t] = µ(i) + µ
(i)
J E[Jt+1|θ(i), ω

(i)
t ] (6.6)

E[r2
t+1|Φt, θ

(i), ω
(i)
t ] = µ(i)2 + σ(i)2 + (µ

(i)2
J + σ

(i)2
J )E[Jt+1|θ(i), ω

(i)
t ] (6.7)

+2µ(i)µ
(i)
J E[Jt+1|θ(i), ω

(i)
t ]. (6.8)

These moments are substituted into (6.5) for each draw of {θ(i), ω
(i)
t }. Since λt+1 depends

on ωt+1 we approximate each conditional expectation of Jt+1 as

E[Jt+1|θ(i), ω
(i)
t ] ≈ 1

R

R∑
j=1

exp(ω
(j)
t+1)

1 + exp(ω
(j)
t+1)

(6.9)

(6.10)

where ω
(j)
t+1 is generated from

ω
(j)
t+1 = γ

(i)
0 + γ

(i)
1 ω

(i)
t + εt+1, εt+1 ∼ NID(0, 1), j = 1, ..., R. (6.11)

6.1.2 SV model

For the SV model we have,

E[rs
t+1|Φt] =

∫
E[rs

t+1|Φt, θ, ht]p(θ, ht|Φt)dθdht (6.12)

≈ 1

N

N∑
i=1

E[rs
t+1|Φt, θ

i, hi
t], s = 1, 2, (6.13)

The conditional moments are

E[rt+1|Φt, θ
(i), h

(i)
t ] = µ(i) (6.14)

E[r2
t+1|Φt, θ

(i), h
(i)
t ] = µ(i)2 + exp(ρ

(i)
0 + ρ

(i)
1 h

(i)
t + σ(i)2

ν /2). (6.15)
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7 Data

Five-minute intraday FX quote data (bid and ask) were obtained from Olsen and As-
sociates for every day from 1986/2/1 - 2002/12/31 for both DEM-USD and JPY-USD
exchange rates.5 With a few exceptions, the construction of daily returns and realized
volatility closely follow Andersen, Bollerslev, Diebold, and Labys (2001) and Maheu and
McCurdy (2002).

Currencies trade 24 hours a day, 7 days a week. The raw data included a number of
missing observations. Missing quotes on the 5-minute grid where linearly interpolated
from the nearest available quote. Prices were constructed as the midpoint of the bid
and ask quote. This resulted in 1.8 million, 5-minute price observations. A day was
defined as beginning at 00:05 GMT and ending 24:00 GMT.6 Continuously compounded
5-minute returns (in percent) were constructed from the price data. Following Ander-
sen, Bollerslev, Diebold, and Labys (2001), all weekends (Saturday and Sunday) were
removed as well as the following slow trading days: December 24-26, 31, January 1,2.
In addition, the moving holidays: Good Friday, Easter Monday, Memorial Day, July
Fourth, Labor Day, Thanksgiving and the day after, as well as any days in which more
than half (144) of the day’s quotes were missing, were removed The remaining data
were linearly filtered by an MA(q) to remove autocorrelation which may be due to the
discrete nature of bid/ask quotes and market microstructure effects. For the JPY-USD,
q = 4 and for DEM-USD, q = 10.

From these filtered data, daily realized volatility was constructed as

RVt =
288∑
j=1

r2
t,j (7.1)

where rt,j is the jth 5-minute return in day t. Daily returns were constructed as the sum
of the intraday 5-minute returns, rt =

∑288
j=1 rt,j.

In a series of papers, Andersen, Bollerslev, Diebold and co-authors, Barndorff-Nielson
and Shephard, among others, have documented various features of realized volatility and
derived their asymptotic properties as the sampling frequency of prices increases over a
fixed-time interval. See Andersen, Bollerslev, and Diebold (2003) and Barndorff-Nielsen,
Graversen, and Shephard (2003) for an overview of the results.

Table 1 reports our summary statistics for both currencies. Notice that the JPY-
USD return is the more volatile of the two currencies. In addition, JPY-USD returns
display larger kurtosis, and vary over a larger range.

5From 1999/1/1 on, we converted the EUR-USD rate to an implied DEM-USD rate based on the
final fixed exchange rate of 1.95583 DEM/EUR at 1998/12/31.

6Data characteristics using the start time 21:05 and end time 21:00 where very similar.

11



8 Results

The data sample for JPY-USD is 1986/12/16 to 2002/12/31 (4001 observations), and
1986/11/04 to 2002/12/31 (4025 observations) for the DEM-USD. Tables 2 and 3 con-
tain full-sample model estimates based on those JPY-USD and DEM-USD FX rates. For
example, estimates of the SV specification in Table 2 imply an unconditional variance
of .617 which is close to the value in Table 1. For each model a total of 90000 MCMC
iterations were performed. The first 10000 draws were discarded to minimize the influ-
ence of starting values. Thus, N = 80000 samples from the posterior distribution are
used to calculate posterior moments.

Figure 1 shows various features of the jump model while Figures 2 and 3 display
characteristics of the out-of-sample performance for the Jump and SV specification for
the JPY-USD data. Out-of-sample calculations are based on a training sample of the
first 3000 observations. Therefore predictive likelihood estimates and model forecasts
appearing in Table 5 are based on the remaining 1001 observations for the JPY-USD,
and 1026 observations for the DEM-USD. Predictive likelihood estimates are displayed
in Figure 3.

Table 2 contains estimates of the Jump model and a SV specification. Note that
Bayesian methods provide exact finite sample performance conditional on the prior
specification. Reported are various features of the posterior distribution. Based on
the posterior mean the unconditional expectation for the autoregressive latent variable,
ωt, driving jump arrival is -2.62. This implies that jumps are infrequent. For instance,
the empirical average of λt is .07. This is consistent with previous studies which com-
bine SV with simple jumps. However, in our case, the jump probability shows clear time
dependencies.

From the model estimates it is seen that the process governing jump arrival is very
persistent. A 95% confidence interval for γ1 is (.937, 971). The posterior mean of of η1 is
.4532 which indicates that lagged absolute returns are important in affecting the jump-
size variance. Notice that the jump-size variance is 3-4 times larger than the normal
innovation variance σ2.

Features of the jump model are displayed in Figure 1. Panel A is returns, B is the
inferred jump probability λt, C the jump size and D the estimated jump times over the
full sample. Clearly this model identifies large moves in returns as jumps. Panels C and
D suggest that some jumps are isolated events while others cluster and lead to more
jumps and higher volatility. This is an important feature of the model.

Predictive likelihood estimates appear in Table 4. The estimates were obtained by
re-estimating the posterior for each observation from 3001 on. For each run, we collected
N = 20000 (after discarding the first 10000) samples from the posterior simulator and
set R = 100. Kass and Raftery (1995) recommend considering twice the logarithm
of the Bayes factor for model comparison, as it has the same scaling as the likelihood
ratio statistic. Based on this, the evidence in favor of the Jump model is positive.7

72 log BF = 2(−1103.760 + 1105.4758) = 3.431. Kass and Raftery (1995) suggest the following
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Model probabilities based on the predictive likelihood estimates are calculated as in
Equation 5.5. The probability in favor of the jump specification is .85 while it is .15 for
the SV model.

Although Bayes factors are an assessment of all distributional features it is interest-
ing to focus on volatility forecasts. Out-of-sample forecasts for both models are assessed
using realized volatility. Table 4 contains Mincer and Zarnowitz (1969) forecast regres-
sions of realized volatility regressed on a model’s conditional variance forecast. Reported
is regression R2 and mean absolute error (MAE). Both measures favor the Jump model
although the differences appear to be small on average. Panel A of Figure 2 displays
realized volatility for the out-of-sample period. Panel B plots the model forecasts. No-
tice that the model forecasts are much less variable than realized volatility. During
high volatility periods both models produce similar forecasts, but during low periods
the Jump model’s variance is lower. During these times the Jump variance is essentially
flat, a time-series pattern similar to that of realized volatility, while the SV forecast
appears to be trending upward.

Differences in the log predictive likelihood in favor of the Jump model are found in
panel B of Figure 3. A positive (negative) value occurs when an observation is more
likely under the Jump (SV) model. There are several influential observations favoring
the Jump model that appear to be high volatility episodes. The influential observations
show up as spikes in the model probability in panel C. It is interesting to note that there
are several upward trending periods in Figure 3C which are not from tail occurrences in
returns, for instance from the middle of 2000 to 2001. The SV model appears to perform
best at the start of the sample, 1999-2000.

The differences in the volatility forecasts become clear when we compare Figure 2B
to 3C. Periods when the Jump variance is lower is exactly when the probability for
the Jump model is increasing (just before 2001 and around 2002). This suggests that
state dependent volatility clustering may be important, that is, periods of normal ho-
moskedasticity along with periods of high volatility that clusters. The Jump model is
able to capture these dynamics relatively well.

Preliminary evidence reveals that the Jump model is quite competitive with a tradi-
tional SV parameterization. Further, out-of-sample predictive likelihoods reveal periods
when the heteroskedastic jump structure appears to do a better job at capture the
dynamics of realized volatility.

To be completed - DEM-USD results.

9 Conclusions

To be completed

interpretation of 2 log BF : 0 to 2 not worth more than a bare mention, 2 to 6 positive, 6 to 10 strong,
and greater than 10 as very strong.
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10 Appendix

Below we provide the details of the posterior simulator for the Jump specification. For
steps 1 - 3 and 6 we use standard conjugate results for the linear regression model (see
Koop (2003)).

1. µ|θ−µ, ω, J, ξ, r. If the prior is normal, p(µ) ∼ N(a,A−1)

p(µ|θ−µ, ω, J, ξ, r) ∝ p(r|θ, ω, J, ξ)p(µ) (10.1)

∼ N(m,V −1) (10.2)

where V = σ−2T + A and m = V −1(σ−2
∑T

t=1(rt − ξtJt) + Aa).

2. σ2|θ−σ2 , ω, J, ξ, r. With an inverse gamma prior, σ2 ∼ IG(νσ2/2, sσ2/2) we have8

p(σ2|θ−σ2 , ω, J, ξ, r) ∝ p(r|θ, ω, J, ξ)p(σ2) (10.3)

∼ IG(
T + νσ2

2
,

∑T
t=1(rt − ξtJt − µ)2 + sσ2

2
) (10.4)

3. µJ |θ−µJ
, ω, J, ξ, r. If p(µJ) ∼ N(b, B−1)

p(µJ |θ−µJ
, ω, J, ξ, r) ∝ p(ξ|θ)p(µJ) (10.5)

∼ N(m,V −1) (10.6)

where V = σ−2
J T + B, and m = V −1(σ−2

J

∑T
t=1 ξt + Bb).

4. η|θ−η, ω, J, ξ, r. We use independent inverse gamma priors for both parameters,
p(η0) ∼ IG(νη0/2, sη0/2), p(η1) ∼ IG(νη1/2, sη1/2). This ensures that the jump
size variance is always positive. The target distribution is

p(η|θ−η, ω, J, ξ, r) ∝ p(ξ|θ)p(η0)p(η1) (10.7)

∝ p(η0)p(η1)
T∏

t=1

(η0 + η1Xt−1)
−1/2 exp

(
−1

2

(ξt − µJ)2

(η0 + η1Xt−1)

)

which is a nonstandard distribution. We use a MH algorithm to sample this
parameter using a random walk proposal. The proposal distribution q(x|ηi−1),
is a fat-tailed mixture of normals where the covariance matrix is calibrated so
approximately 50% of candidate draws are accepted. The mixture specification is
the same as what is used in step 5 below. If ηi ∼ q(x|ηi−1) is a draw from the
proposal distribution, it is accepted with probability

min

{
p(ηi|θ−η, ω, J, ξ, r)

p(ηi−1|θ−η, ω, J, ξ, r)
, 1

}
(10.8)

and otherwise ηi = ηi−1.

8If x ∼ IG(α, β) then p(x) ∝ x−(α+1) exp(−β/x).

14



5. ω(t,τ)|θ, ω−(t,τ), J, ξ, r, t < τ , t = 1, ..., T . The conditional posterior is

p(ω(t,τ)|θ, ω−(t,τ), J) ∝ p(J(t,τ)|ω(t,τ))p(ω(t,τ)|ω−(t,τ), θ) (10.9)

∝ p(ωτ+1|ωτ , θ)
τ∏

i=t

p(Jt|ωt)p(ωt|ωt−1, θ) (10.10)

which is a nonstandard distribution. To improve the mixing properties of the
MCMC output we adapted the blocking procedure that Fleming and Kirby (2003)
use for SV models. Specifically, we approximate the first-difference of ωt as a con-
stant over the interval (t, τ), and sample a block using an independent Metropolis
routine. If ωt is strongly autocorrelated this provides a good proposal density. The
proposal distribution is a fat-tailed multivariate mixture9 of normals,

q(x|ω−(t,τ)) ∼
{

N(m,V ) with probability p

N(m, 10V ) with probability 1− p
(10.11)

where p = .9. The mean vector and variance-covariance matrix are,

ml = ωt−1 +
l

k + 1
(ωt−1 + ωτ+1) l = 1, ..., k, (10.12)

Vlm = min(l,m)− lm

k + 1
, l = 1, ..., k, m = 1, ..., k (10.13)

where k = τ − t + 1 is the block length and is chosen randomly from a Poisson
distribution with parameter 15. V −1 has a very convenient tridiagonal form in
which V −1

ii = 2 and V −1
ij = −1, 1 ≤ i ≤ k, j = i− 1, i + 1, and otherwise 0. A new

draw ω
(i)
(t,τ) from q(x|ω(i−1)

−(t,τ)), is accepted with probability

min

{
p(ω

(i)
(t,τ)|θ, ω(i−1)

−(t,τ), J)/q(ω
(i)
(t,τ)|ω(i−1)

−(t,τ))

p(ω
(i−1)
(t,τ) |θ, ω(i−1)

−(t,τ), J)/q(ω
(i−1)
(t,τ) |ω(i−1)

−(t,τ))
, 1

}
(10.14)

and otherwise ω
(i)
(t,τ) = ω

(i−1)
(t,τ) .

6. γ|θ−γ, ω, J, ξ, r. The conjugate prior for γ is a bivariate normal p(γ) ∼ N(m,V )
which results in a conditional distribution that is also normal. See Koop for details.

7. ξ|θ, ω, J, r. The jump size can be sampled in a block by using the conditional
independence of each ξt. The conditional distribution of ξt is,

p(ξt|θ, ω, J, r) ∝ p(rt|θ, ωt, Jt, ξt)p(ξt|θ) ∼ N(c, C−1) (10.15)

where C = σ−2Jt + σ−2
J,t , and c = C−1(σ−2Jt(rt − µ) + σ−2

J,t µJ)

9In practice a fat-tailed proposal was found to be important when comparing the accuracy of the
block version with a single move sampler.
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8. J |θ, ω, ξ, r. Jt is a Bernoulli random variable with parameter λt. To find the
probability of Jt = 0, 1 note that,

p(Jt = 0|θ, ω, ξ, r) ∝ p(rt|θ, Jt, ξt)p(Jt = 0|ω) ∝ exp(−.5σ−2(rt − µ)2)(1− λt)

p(Jt = 1|θ, ω, ξ, r) ∝ p(rt|θ, Jt, ξt)p(Jt = 1|ω) ∝ exp(−.5σ−2(rt − µ− ξt)
2)λt

which allows calculation of the normalizing constant and hence a draw of Jt.

9. goto 1

The priors used for this model are µ ∼ N(0, 1000), µJ ∼ N(0, 100), σ2 ∼ IG(3, .02),
η0 ∼ IG(2.5, 1), η1 ∼ IG(2.5, 1), γ0 ∼ N(0, 100), γ1 ∼ N(0, 100)I|γ1|<1. The priors se-
lected for this model are for the most part, non-informative. Note that ωt is restricted to
be stationary. The priors on η0 and η1 reflect a reasonable range for the conditional vari-
ance of the jump-size distribution. For example, the probability that these parameters
lie in the interval (.1, 2) is approximately .96.

SV model - to be completed
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Table 1: Summary Statistics

Statistic JPY-USD DEM-USD

rt RVt rt RVt

Mean -4.566e-6 0.5992 -0.2444e-8 .5190
Variance 0.6352 0.62636 0.5447 .2059
Skewness -0.3504 21.6655 0.0017 6.1888
Kurtosis 8.0587 854.2149 4.8476 89.3892
Min -6.9768 0.0290 -3.7165 .0369
Max 5.9780 34.3872 4.1043 10.8711
Obs 4001 4001 4026 4026

rt is percent log differences of daily spot exchange rates,
and RVt is realized volatility, both from 1986/12/16 -
2002/12/31 JPY-USD, 1986/11/4 - 2002/12/31 DEM-
USD.
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Table 2: Model Estimates, JPY-USD

Jump Model
mean stdev median 95% CI

µ 0.0307 0.0125 0.0307 ( 0.0103, 0.0513)
σ2 0.3226 0.0159 0.3223 ( 0.2968, 0.3491)
µJ -0.1272 0.0510 -0.1269 (-0.2115,-0.0440)
η0 0.9089 0.1238 0.8961 ( 0.7273, 1.1276)
η1 0.4532 0.1153 0.4443 ( 0.2793, 0.6599)
γ0 -0.1169 0.0305 -0.1158 (-0.1688,-0.0686)
γ1 0.9554 0.0103 0.9562 ( 0.9372, 0.9709)

SV Model
mean stdev median 95% CI

µ 0.0165 0.0105 0.0165 (-0.0008, 0.03370)
ρ0 -0.0568 0.0125 -0.0559 (-0.0786,-0.03793)
ρ1 0.9234 0.0148 0.9244 ( 0.8974, 0.94599)
σ2

v 0.0763 0.0160 0.0749 ( 0.0524, 0.10433)
The data is percent log differences of daily spot ex-
change rates from 1986/12/16 - 2002/12/31 JPY-USD,
1986/11/4 - 2002/12/31 DEM-USD. Tables report pos-
terior mean, standard deviation, median and 95% con-
fidence intervals for the models.

Table 3: Model Estimates, DEM-USD

Jump Model

Table 4: Log Predictive Likelihood
Model JPY-USD DEM-USD

Jump
-1103.7603
(0.3982)

SV
-1105.4758
(0.2153)

This table reports estimates of log predictive likelihoods
for observations 3001 - 4001 JPY-USD, and 3001 - 4025,
DEM-USD. Numerical standard errors appear in paren-
theses.

21



Table 5: Out-of-Sample Forecast Performance
a b R2 MAE

JPY-USD

SV
.0024

(.0334)
.8899

(.0509)
.2345 .2505

Jump
.2175

(.0218)
.7806

(.0423)
.2488 .2351

This table reports Mincer and Zarnowitz (1969) forecast
regressions of

RVt = a + bVart−1(rt) + errort

where Var(rt) is a model forecast of the one period
ahead conditional variance based on time t − 1 infor-
mation, and RVt is realized volatility for day t. Stan-
dard errors appear in parentheses. R2 is the coefficient
of determination and MAE is mean absolute error for
(RVt − Vart−1(rt)). The number of out-of-sample fore-
casts are 1001 JPY-USD, and 1027 DEM-USD.
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Figure 1: Jump model, JPY-USD
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