
CONSISTENT ESTIMATION WITH A LARGE NUMBER OF

WEAK INSTRUMENTS∗

John C. Chao Norman R. Swanson
University of Maryland Rutgers University

First Draft: June 2001
This Revision: May 2003

Abstract

This paper conducts a general analysis of the conditions under which consistent estimation can be achieved
in instrumental variables regression when the available instruments are weak in the local-to-zero sense. More
precisely, the approach adopted in this paper combines key features of the local-to-zero framework of Staiger
and Stock (1997) and the many-instrument framework of Morimune (1983) and Bekker (1994) and generalizes
both of these frameworks in the following ways. First, we consider a general local-to-zero framework which
allows for an arbitrary degree of instrument weakness by modeling the first-stage coefficients as shrinking
toward zero at an unspecified rate, say b−1

n . Our local-to-zero setup, in fact, reduces to that of Staiger and Stock
(1997) in the case where bn =

√
n. In addition, we examine a broad class of single-equation estimators which

extends the well-known k-class to include, amongst others, the Jackknife Instrumental Variables Estimator
(JIV E) of Angrist, Imbens, and Krueger (1999). Analysis of estimators within this extended class based
on a pathwise asymptotic scheme, where the number of instruments Kn is allowed to grow as a function of
the sample size, reveals that consistent estimation depends importantly on the relative magnitudes of rn,
the growth rate of the concentration parameter, and Kn. In particular, it is shown that members of the
extended class which satisfy certain general condtions, such as LIML and JIV E, are consistent provided
that

√
Kn
rn

→ 0, as n →∞. On the other hand, the two-stage least squares (2SLS) estimator is shown not to

satisfy the needed conditions and is found to be consistent only if Kn
rn

→ 0, as n → ∞. A main point of our
paper is that the use of many instruments may be beneficial from a point estimation standpoint in empirical
applications where the available instruments are weak but abundant, as it provides an extra source, by which
the concentration parameter can grow, thus, allowing consistent estimation to be achievable, in certain cases,
even in the presence of weak instruments. Our results, thus, add to the findings of Staiger and Stock (1997)
who study a local-to-zero framework where Kn is held fixed and the concentration parameter does not diverge
as sample size grows; in consequence, no single-equation estimator is found to be consistent under their setup.
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1 Introduction

In a well-known recent paper, Staiger and Stock (1997) propose an alternative asymptotic framework for analyzing

instrumental variables regression when the available instruments are only weakly correlated with the endogenous

explanatory variables. More precisely, Staiger and Stock (1997) model the effects of having weak instruments using

a clever device which takes the coefficients of the instruments in the first-stage regression to be in a T−
1
2 shrinking

neighborhood of zero, with T denoting the sample size in their paper. They show that, when such a “local-to-

zero” device is employed, the usual single-equation estimators, such as the two-stage least squares (2SLS) and

the limited information maximum likelihood (LIML) estimators, are no longer consistent and instead converge to

nonstandard distributions in the limit1. An important feature of their framework, as have been noted by Staiger

and Stock, is that, in contrast with conventional asymptotic analysis, the concentration parameter under their

weak-instrument setup does not diverge but rather, roughly speaking, stays constant in expectation as the sample

size grows. This, in turn, explains the inconsistency results they obtained.

This paper conducts a general analysis of the conditions under which consistent estimation can be achieved

in instrumental variables regressions even when the available instruments are weak in the local-to-zero sense. In

particular, one key difference between our paper and Staiger and Stock (1997) is that, whereas the latter keeps the

number of instruments fixed in performing the limiting operation, we in this paper investigate, within a general

local-to-zero framework, the case where the number of instruments (or the degree of apparent overidentification)

is allowed to approach infinity as a function of the sample size. A main point of our paper is that the use of many

instruments, as approximated by taking the number of instruments to infinity as a function of the sample size,

often provides an extra source by which the concentration parameter can grow, so that consistent estimation may

become achievable even in the presence of weak instruments in this case.

Asymptotic analyses based on taking the number of instruments to infinity have also been undertaken by

Morimune (1983), Bekker (1994), Angrist and Krueger (1995), Hahn (1997), Donald and Newey (2001), Hahn,

Hausman, and Kuersteiner (2001), amongst others. Hahn and Inoue (2000) have, in fact, referred to this approach

as the “many-instrument” asymptotic approach and have presented Monte Carlo evidence showing that this

approach often provides very good approximations for the finite sample behavior of the usual single-equation

estimators, even when the number of instruments is only moderate. The “many-instrument” papers cited above,

however, do not explicitly analyzed the case where the instruments are weak in the local-to-zero sense. Indeed,

the relationship between the local-to-zero framework and the many-instrument framework is as yet not fully

understood.

An additional objective of this paper is, thus, to provide results which shed light on the connection between

these two important frameworks. To this end, we adopt here a very general setup which combines key features of

the local-to-zero and the many-instrument asymptotic frameworks, and which generalizes both of these frameworks

in a number of ways. First, letting n denote the sample size in our paper, we consider a local-to-zero setup which

generalizes that of Staiger and Stock (1997) in the sense that we take the rate of shrinkage toward zero of the

coefficients of the instrumental variables in the first-stage equation to be 1/bn for some arbitrary nondecreasing

1Related to this work on the local-to-zero modeling of weak instruments is the research by Sargan (1988), Phillips (1989) and

Choi and Phillips (1992), which addresses the implications for statistical inference when the underlying simultaneous equations model

is underidentified or is only partially identified. Indeed, to the best of our knowledge, Phillips (1989) is the first paper to give a

theoretical analysis of both the finite sample and the asymptotic properties of the instrumental variables/2SLS estimator when the

usual rank condition for identification is not formally satisfied.
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sequence {bn} instead of using the specific rate 1/
√
n. Second, we model the rate of information accumulation

in the instruments to be some nondecreasing sequence {m1n}, thus, allowing it to be more general than the usual
assumption that m1n = n. Third, we consider a very broad class of single-equation estimators, which we call

the ω-class. This class of estimators extends the well-known k-class by allowing the value of k to vary across

observations. An important reason for this latter generalization is that this larger class of estimators includes

the Jackknife Instrumental Variables Estimator (JIV E) of Angrist, Imbens, and Krueger (1999), whereas JIV E

is not a member of the k-class. Finally, unlike a number of the other papers which take a many-instrument

asymptotic approach, we do not make a Gaussian error assumption in this paper. In this sense, the framework

adopted here can also be viewed as extending that of Morimune (1983) and Bekker (1994) to the more general

case where the disturbances may be non-Gaussian2.

On the other hand, it should be noted that the scope of our paper is more limited vis-à-vis several of the papers

cited above, as we do not consider asymptotic properties of test statistics and interval estimation procedures;

nor do we derive the asymptotic distributions of the ω-class estimators. Rather, we focus our attention on

establishing the consistency of ω-class estimators under a pathwise asymptotic scheme where both n and the

number of instruments, Kn, are allowed to approach infinity, but with Kn going to infinity at a rate no faster

than n.

Our results indicate that consistent estimation depends less on individual assumptions about the local-to-zero

structure or the rate of information accumulation (as given by specific choices of the sequences bn and m1n), than

it does on the rate of growth of the concentration parameter, which we denote as rn, and which is some function

of bn and m1n. In particular, consistent estimation is found to depend crucially on the relative magnitudes of rn

and Kn. More specifically, our results show that, even within a local-to-zero framework, consistent estimation is

achievable for members of the ω-class which satisfy certain general conditions, provided that
√
Kn

rn
→ 0, as n→∞.

Specializing our results to specific estimators, we show that LIML and JIV E both satisfy our conditions, whereas

the 2SLS estimator does not. Indeed, it turns out that the 2SLS estimator is consistent only if Kn

rn
→ 0, as

n → ∞3. Our results, thus, make precise the sense in which the 2SLS estimator is less robust to instrument

2In recent years, there have been other papers which extend the many-instrument asymptotic framework to the case with non-

Gaussian errors. In particular, Bekker and van der Ploeg (1999) examine the case where the regression errors may be non-Gaussian

and even heteroskedastic but where the instruments are restricted to be dummy variables, whereas van Hasselt (2000) studies the

IV (or 2SLS) estimator in the context of a model with non-Gaussian and homoskedastic errors. Our paper can best be viewed as

complementing these other papers, as we seek to extend the literature in different directions than that taken in these papers. In

particular, note that neither Bekker and van der Ploeg (1999) nor van Hasselt (2000) considers the case of weak instruments in a

local-to-zero framework, as we do in this paper. Moreover, we consider general stochastic instruments, which may be either discrete

or continuous random variables. Finally, as discussed above, we study a very broad class of estimators which includes, in addition to

the 2SLS and LIML estimators, the Jackknife IV estimator (JIV E) amongst others. On the other hand, neither Bekker and van

der Ploeg (1999) nor van Hasselt (2000) considers JIV E in their analyses.
3After the completion of the first draft of our paper, it has come to our attention that an interesting recent paper by Stock and

Yogo (2001) also study the case where the number of instruments is allowed to approach infinity in a local-to-zero framework and,

thus, deserves special note. In particular, it should be pointed out that there are a number of important differences between our

paper and theirs. First, their paper is primarily concerned with the development of test procedures for assessing whether instruments

are weak. Hence, they do not attempt to characterize general conditions under which consistent estimation may be achieved in the

presence of weak instruments, as is done in the current paper. Using our notations, Stock and Yogo (2001) study the case where

the concentration parameter diverges at rate Kn, as Kn →∞ (i.e., the case where rn = Kn). Thus, their analysis does not permit

the same degree of generality as this paper in modeling the extent to which instruments may be weak. They do, however, provide

interesting results on the asymptotic expansion of the distributions of the 2SLS and the LIML estimators under Gaussian errors for
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weakness vis-à-vis LIML, JIV E, and other ω-class estimators which satisfy our general conditions. Moreover,

our analysis gives, to the best of our knowledge, the first formal proof of the consistency of JIV E under a

local-to-zero, many-instrument setup4.

The rest of the paper is organized as follows. Section 2 sets up our model and discusses the assumptions used.

Section 3 presents the main results of the paper and comments on the implications of these results. Concluding

remarks are given in Section 4, and all proofs are gathered in an appendix. The following notation is used in

the remainder of the paper: Tr(·) denotes the trace of a matrix, A+ denotes the Moore-Penrose inverse of a

(possibly singular) matrix, “ > 0” denotes positive definiteness when applied to matrices, lim
n→∞

an denotes the

limit inferior of the sequence {an}, and lim
n→∞an denotes the limit superior of the sequence {an}. In addition,

PX = X(X
0X)−1X0 denotes the matrix which projects orthogonally onto the range space of X and QX = I−PX .

2 Model and Assumptions

Consider the simultaneous equations model (SEM)

y1n = Y2nβ +Xnγ + un, (1)

Y2n = ZnΠ+XnΦ+ Vn, (2)

where y1n and Y2n are, respectively, an n×1 vector and an n×G matrix of observations on the G+1 endogenous
variables of the system, Xn is an n × J matrix of observations on the J exogenous variables included in the
structural equation (1), Zn is an n×Kn matrix of observations on the Kn instrumental variables, or exogenous
variables excluded from the structural equation (1), and un, Vn are, respectively, an n× 1 vector and an n×G
matrix of random disturbances. Further, let ηi = (ui, v0i)

0 where ui and v0i are, respectively, the ith component
of the random vector un and the ith row of the random matrix Vn. The following assumptions are used in the

sequel.

Assumption 1: Π = Πn =
Cn

bn
for some sequence of positive real numbers {bn} , nondecreasing in n, and for

some sequence of nonrandom, Kn ×G parameter matrices {Cn} .
Assumption 2: Let

©
Zn,i : i = 1, ..., n; n ≥ 1

ª
be a triangular array of RKn+J -valued random variables, where

Zn,i = (Z0n,i, X 0
i)
0 with Z0n,i and X0

i denoting the ith row of the matrices Zn and Xn, respectively. Moreover,

suppose that:

(a) Kn →∞ as n→∞ such that Kn

n → α for some constant α satisfying 0 ≤ α < 1.
the rn = Kn case. Secondly, Stock and Yogo (2001) do not attempt to show, as we do, that consistent estimation may be possible,

with respect to certain estimators, even when instruments are so weak that the rate at which the concentration parameter diverges

is actually slower than Kn (i.e., the case where
rn
Kn

→ 0, but
√
Kn
rn

→ 0 as n→∞). Thirdly, Stock and Yogo (2001) do not study as
broad a class of estimators as we do, as their analysis does not include the JIV E estimator.

4Another related paper is Donald and Newey (2001), which studies mean square error (MSE) properties of various single-equation

estimators and proposes procedures for choosing instruments on the basis of MSE criteria. Like Morimune (1983) and Bekker (1994),

Donald and Newey (2001) also employ a many-instrument setup but without a local-to-zero structure. Indeed, the consistency results

presented in this paper can be viewed as extending some of the results of Donald and Newey (2001) to the more general case where

the asymptotic analysis is conducted using a sequence of (approximating) simultaneous equations models; this setup, in turn, allows

for local-to-zero modeling of weak instruments.
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(b) There exists a sequence of positive real numbers {m1n} , nondecreasing in n, and constants D1 and D2,

with 0 < D1 ≤ D2 <∞, such that

D1 ≤ lim
n→∞

λmin

Ã
Z
0
nZn
m1n

!
a.s. (3)

and

lim
n→∞λmax

Ã
Z
0
nZn
m1n

!
≤ D2 a.s., (4)

where Zn = (Zn Xn).

(c) There exists a sequence of positive real numbers {m2n} , nondecreasing in n, and constants D3 and D4,

with 0 < D3 ≤ D4 <∞, such that

D3 ≤ lim
n→∞

λmin

µ
C 0nCn
m2n

¶
(5)

and

lim
n→∞λmax

µ
C0nCn
m2n

¶
≤ D4. (6)

Assumption 3: ηi | Zn ≡ i.i.d.(0,Σ) almost surely for all n, where ηi | Zn denotes the conditional distribution
of ηi given Zn. Further, assume that Σ > 0, and partition Σ conformably with (ui, v

0
i)
0 as Σ =

µ
σuu σ0V u
σV u ΣV V

¶
.

Also, define σgV u to be the g
th element of σV u and Σ

(g,h)
V V to be the (g, h)th element of ΣV V .

Assumption 4: Let ηi,h be the h
th element of ηi with ηi,j , ηi,k, and ηi,l similarly defined, and suppose that

E|ηi,hηi,jηi,kηi,l| <∞, for h, j, k, l = 1, ..., G+ 1. Moreover, for each h, j, k, and l and for all n,
E
¡
[ηi,hηi,jηi,kηi,l] | Zn

¢
= µhjkl a.s.,

where µhjkl = E [ηi,hηi,jηi,kηi,l], the unconditional expectation.

Assumption 5: Define the ratio rn =
m1nm2n

b2
n

, and suppose that as n→∞, rn

n → κ for some constant κ, such

that 0 ≤ κ <∞.

Remark 2.1: (i) Note that the inequality condition (3) in Assumption 2(b) ensures that there exists some

(positive) integer N such that for all n ≥ N,
³
Z
0
nZn

´
/m1n is positive definite and, thus, nonsingular with

probability one. Moreover, (3) and (4) together imply that the rate of growth of Z
0
nZn is the same in all directions

of the data (with probability one), so that Assumption 2(b) rules out cases where there may be different rates of

information accumulation along different directions, such as the case when one has both trending regressors and

non-trending regressors. We do not consider the case where there are multiple rates of information accumulation

as this case does not typically arise in empirical situations where there is a weak-instrument problem. In addition,

note that Assumption 2(b) is more general than the standard condition in IV regression (with a fixed number of

instruments), where (Z0Z) /n is assumed to converge to a positive definite matrix. In particular, this assumption
allows us to accommodate cases where the information in the instruments accumulates at a rate different from

n.5.
5It should be further noted that the case where m1n = n already accommodates a wide variety of possible instrumental variable

designs. In particular, Portnoy (1984, 1985, 1987) has shown that, for the case m1n = n, conditions similar to (3) and (4) hold in

probability for a wide class of random designs. See also the discussion in Andrews (1991) and Koenker and Machado (1999).
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(ii) In order to give an interpretation for rn, note that under Assumption 2:

r−1
n

³
Σ
− 1

2

V VΠnZ
0
nQXn

ZnΠnΣ
− 1

2

V V

´
= Oa.s.(1),

so that the concentration parameter matrix (i.e. Σ
− 1

2

V VΠnZ
0
nQXnZnΠnΣ

− 1
2

V V ), when standardized by rn, is bounded

almost surely. Moreover, under Assumptions 2, there exists a positive integer N such that for all n ≥ N ,

(rn)
−1ΠnZ0nQXnZnΠn is nonsingular with probability one, so that the concentration parameterΣ

− 1
2

V VΠnZ
0
nQXnZnΠnΣ

− 1
2

V V

is not of an order less than rn in any direction, almost surely. Hence, we see that rn can be interpreted as the

rate at which the concentration parameter Σ
− 1

2

V VΠnZ
0
nQXn

ZnΠnΣ
− 1

2

V V grows (if it grows) as n increases. In the

sequel, we shall pay particular attention to the case where rn →∞, as n→∞. In fact, we shall argue in the next
remark that rn may diverge even in the case where the available instruments are weak in the local-to-zero sense.

(iii) To see the relationship between our framework and that of Staiger and Stock (1997), note that in the Staiger-

Stock setup, bn =
√
n and m1n = n. Additionally, Staiger and Stock (1997) take the number of instruments to

be fixed so that in their case the matrix C has a fixed number of columns, say Kn = K for all n, so that C does

not depend on n. In consequence, C0C = O(1), so we can take m2n = 1, ∀n. It follows that in their setup

rn =
m1nm2n

b2n
= 1, for all n.

Hence, rn does not diverge as n→∞ in their setup; and, as they have shown, none of the usual single-equation

estimators consistently estimate β. A main focus of this paper is to add to Staiger and Stock’s results by allowing

Kn to grow to infinity as a function of n, in which case it is possible for the concentration parameter to diverge

(i.e. rn → ∞, as n → ∞) even if we set bn = √n, and even if we take the rate of information accumulation in
the instruments to be n, as is the case in many standard designs. To see this, note that as long as the available

instruments are not “too” weak, so that, as Kn →∞, the elements of C0nCn grow in such a way that the sequence
m2n which satisfies conditions (5) and (6) tends to infinity as n → ∞; then, even in the standard local-to-zero
setup where bn =

√
n and m1n = n, we have that

rn =
m1nm2n

b2n
=m2n →∞ , as n→∞.

Thus, as we will see from the results of the next section, the use of many instruments (as modeled by taking Kn

to infinity as n → ∞) has potential benefits for point estimation since it provides an extra source by which the
concentration parameter can grow.

(iv) We should also briefly compare and contrast our setup with the many-instrument asymptotic framework of

Bekker (1994).6 To keep this comparison focused on the essential features of our framework via-à-vis that of

Bekker (1994), we shall concentrate our discussion on the case where there is no included exogenous variables, so

that J = 0. Within this setup, the alternative asymptotics considered by Bekker (1994), in our notations, boils

down to one where the quantity (n − G)−1Π0Z0nZnΠ is kept fixed, as both Kn and n go to infinity, such that
Kn

n → α, for some constant α satisfying 0 ≤ α < 1. However, unlike our setup and that of Staiger and Stock

(1997), Bekker (1994) does not model Π as being local-to-zero. Hence, within our framework, the Bekker approach

is essentially one of setting bn = 1, ∀n and rn = n. Unlike the Bekker setup, we do not require (n−G)−1Π0Z0nZnΠ
6The type of asymptotic approximation used by Bekker (1994) dates back to the work of Anderson (1976), Kunitomo (1980), and

Morimune (1983), as is pointed out by Bekker in his paper. For further discussion of this type of asymptotics, see Hahn (1997) and

Hahn and Inoue (2000).
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to stay fixed, or even to converge to a limit as n grows, and we do not make a Gaussian error assumption (see

below for further discussion).

(v) As consistent estimation of β turns out to depend crucially on how fast rn approaches infinity relative to

Kn as n→∞, it is natural to measure the quality (or, conversely, the weakness) of instruments in terms of the
relative order of magnitudes of rn and Kn. In particular, we propose the following taxonomy of instruments in

terms of their quality:7,

(a) Refer to the set of available instruments as “not weak” if Kn

rn
→ 0, as n→∞.

(b) Refer to the set of available instruments as “mildly weak” if rn

Kn
→ δ1, for some constant δ1 such that

0 < δ1 <∞.

(c) Refer to the set of available instruments as “moderately weak” if rn

Kn
→ 0, bur

√
Kn

rn
→ 0, as n→∞.

(d) Refer to the set of available instruments as “completely weak” if rn√
Kn

→ δ2, for some constant δ2 such that

0 ≤ δ2 <∞8.

By classifying instrument weakness in terms of the rate at which the concentration parameter grows, we

are taking note of the fact that in some sense there are two forces at play in determining whether consistent

estimation can be attained. To be more specific, note first that it is useful to think of rn as being the product

of two components, m1n and
m2n

b2
n
. The latter ratio gauges the degree to which Πn is local-to-zero in the sense

that, given Assumptions 1 and 2, there exist real constants D and Dwith 0 < D ≤ D < ∞ and some positive

integer N∗ such that ∀n ≥ N∗, Dm2n

b2
n
≤ ||Πn||2 ≤ Dm2n

b2
n
, where ||.|| denotes the usual Euclidean norm so that

||Πn|| =
p
Tr (Π0nΠn). Hence, in the case where

m2n

b2
n
→ 0 as n →∞, m2n

b2
n
is the rate at which we are shrinking

the (squared) distance of Πn from the origin, in order to obtain an appropriate model for the near identification

failure that may be present in a given empirical situation. On the other hand, m1n is the rate at which the

information in the instrumental variables accumulates and, thus, reflects the information content of the available

instruments. Both m1n and
m2n

b2
n
clearly play a role in determining whether consistent estimation is achievable.

Indeed, from the viewpoint of point estimation, one is not necessarily better off to be in a situation where the

available instruments have low information content but enter into the first-stage equation with relatively larger

coefficient values relative to an alternative situation where the instruments have more information content but

smaller first-stage coefficient values.

(vi) Assumption 4 requires the disturbances of the model to have finite absolute fourth moments. In addition, we

require that the conditional fourth order moments of the disturbances given Zn to be equal to the unconditional

fourth moments. This latter condition is implied by an assumption of the independence of ηi and Zn for all i

7A potentially interesting future line of research is the exploration of diagnostic procedures which will give empirical investigators

a sense of whether the set of available instruments might be “too” weak for useful estimation to take place. Some of the measures of

instrument relevance discussed in Shea (1997) and Hall and Peixe (2000) might be useful in this regard.
8As we shall see in the next section, all of the usual estimators, including both 2SLS and LIML, are consistent if the set of

available instruments is “not weak” in the sense defined above, which of course includes as a special case the conventional setting,

where full (asymptotic) identification is assumed and where the number of available instruments is taken to be fixed, so that Kn = K,

for some fixed constant K, and rn = n → ∞. On the other hand, if the instruments are “mildly weak” or “moderately weak”,
LIML, JIV E, and other ω-class estimators satisfying certain general conditions are consistent while 2SLS is not. Additionally, if

instruments are “completely weak” (the case examined by Staiger and Stock (1997) and also Wang and Zivot (1998)), then none of

the currently known estimators are likely to be consistent.

6



and n but is, of course, weaker than such an assumption. Note also that the conditions on the instruments and

the errors which we stipulate in Assumptions 2, 3, and 4 are weaker than that of Morimune (1983) and Bekker

(1994), which assumed fixed instruments and i.i.d. Gaussian errors.

(vii) Assumption 5 stipulates that the rate of growth of the concentration parameter rn must be no faster than n.

This assumption is in accord with our objective of studying the case of weak instruments and weak identification.

The case where the concentration parameter grows at a rate faster than n is often a case where the signal from

the model is so strong that OLS will be consistent even in the presence of endogeneity. This, however, is not the

scenario which we address in this paper.

(viii) It is of further interest to compare our setup with that of an important recent paper by Donald and Newey

(2001). Note, in particular, that our setup can be regarded as being more general than that of Donald and Newey

(2001) in several respects. First, our conditions do not require the triangular array of exogeneous regressors Zn,i

to be i.i.d. for given n, whereas Donald and Newey (2001) explicitly assume that their exogenous variables are

i.i.d. Second, we also study the case where the number of instruments Kn diverges at the same rate as n ( i.e., the

case where the degree of overidentification is significant relative to the sample size), whereas Donald and Newey

(2001) examine the case where Kn

n → 0 as n → ∞. Finally, as mentioned earlier, our asymptotics is based on
a sequence of (local-to-zero) models and not a sequence of data generated by the same model, as is the setup

considered in Donald and Newey (2001).

3 Asymptotic Behavior of Single-equation Estimators

Since the class of estimators that we examine in this paper is an extension of the well-known k-class, we begin by

recalling that the k-class estimator can be written in the form:

bβ(k)n = ¡Y 02nQXnY2n − kY 02nQZn
Y2n

¢+ ¡
Y 02nQXny1n − kY 02nQZn

y1n

¢
, (7)

where k may either be a non-random scalar or may depend on the data and, hence, also on the sample size n.9

In addition, it is well known that k-class estimators can be viewed as instrumental variables estimators which use

as instruments the “adjusted” endogenous regressors:

bY2n(k)i = Y2n,i − kbvn,i, i = 1, ..., n, (8)

where bvn,i is the transpose of the ith row of bVn = QZn
Y2,n, the matrix of OLS residuals from estimating the

first-stage equation (see pp. 166 of Schmidt, (1976) for a more detailed discussion of this interpretation of the

k-class estimator). Hence, the k-class estimator seeks to remove from the ith observation of the endogenous

regressors, Y2n,i, that part which is correlated with ui. It does this by subtracting from Y2n,i a component which

is equal to (some scalar multiple) k times an estimate of vi, since the presence of the disturbance component vi

in Y2n,i is precisely what causes the endogeneity.

Now to motivate our interest in generalizing the k-class, note that by definition, k-class estimators take the

scalar multiple k to be invariant with respect to i (i.e. k does not vary with the observation). As a result, the

k-class is not a rich enough class to include some interesting, recently proposed estimators, such as the JIV E of

Angrist, Imbens, and Krueger (1999). In order to include the JIV E and other potentially interesting estimators,

9We define all estimators using the Moore-Penrose generalized inverse so as to allow for the possibility of perfect multicollinearity,

for a given n. Asymptotically, however, our conditions rule out perfect multicollinearity.
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we examine what we call the ω-class, which extends the k-class by allowing k (or, in our notation, ω) to possibly

vary with both i and n. More specifically, in lieu of expression (8) above, the adjustment to the endogenous

regressors used in constructing the ω-class estimators takes the more general form:

bY2n(ωi,n)i = Y2n,i − ωi,nbvn,i, i = 1, ..., n. (9)

Using bY2n(ωi,n)i , i = 1, ..., n as instruments, it is easy to show, by straightforward algebra, that ω-class estimators

can be written as:

bβω,n = ¡Y 02n £In −QZn
Ωn
¤
QXn

Y2n

¢+ ¡
Y 02n

£
In −QZn

Ωn
¤
QXn

y1n

¢
, (10)

where Ωn is a diagonal matrix of the form Ωn = diag (ω1,n, ω2,n, ....,ωn,n) . Comparing expressions (7) and (10),

it is apparent that every k-class estimator is a special case of the ω-class estimator (10) obtained by setting

ω1,n = ω2,n = ... = ωn,n = k. In addition, note that it is often convenient to rewrite the estimator given by

expression (10) above in the alternative form:

bβω,n = ³Y 02n hPZn
− PXn −QZn

eΩnQXn

i
Y2n

´+ ³
Y 02n

h
PZn

− PXn −QZn

eΩnQXn

i
y1n

´
, (11)

where eΩn = Ωn − In, eΩn = diag (eω1,n, eω2,n, ...., eωn,n) , and eωi,n = ωi,n − 1, for i = 1, ..., n. Without further

restrictions on ωi,n (i = 1, ..., n), or alternatively on eωi,n (i = 1, ..., n), the ω-class estimator is not a consistent
estimator of β under the assumptions of Section 1. Consistent estimation can be obtained, however, given the

following restriction:

Assumption 6: Suppose that for each i and n, eωi,n can be decomposed into the sum of two components as

follows:

eωi,n = ωi,n + ξi,n, (12)

such that ωi,n is either non-random or depends only on the exogenous variables Zn, so that ωi,n = fn,i(Zn).

Also, assume that ωi,n and ξi,n satisfy the following conditions:

(a) lim
n→∞ ln <∞ a.s., where ln = sup

1≤i≤n
|ωi,n|.

(b)
nP
i=1

ωi,n (1− hi,n) = Kn a.s. ∀n,
where hi,n is the ith diagonal element of PZn

;

(c)
nP
i=1
E
¡
ω2
i,n

¢
= O(Kn);

(d) sup
1≤i≤n

|ξi,n| = op
¡
rn

n

¢
.

Theorem 3.1: Under Assumptions 1-6, let bβω,n be defined as in equation (11) above. Suppose that rn →∞ as

n→∞, such that
√
Kn

rn
→ 0. Then,

bβω,n p→ β0 as n→∞.. (13)

Remark 3.2: (i) Part (a) of Assumption 6 rules out unreasonable choices of eωi,n, which may lead to pathological
asymptotic behavior of the ω-class estimator. To better understand parts (b)-(d) of Assumption 6, it is helpful to

8



focus discussion on the special case where J = 0, so that there are no included exogenous regressors. As mentioned

above, an ω−class estimator can be viewed as an IV estimator where the matrix of instrumental variables is

given by bY2n

³eΩn´ = h
PZn

− eΩnQZn

i
Y2n, in the case where J = 0. Now, let W denote the generic matrix of

observations on the instrumental variables. Then, the standard assumption for the validity of instruments can be

stated in terms of the moment condition

E(W 0u) = 0, (14)

where u denotes the vector of disturbances in the structural equation of interest. Note, however, that this condition

is violated by many members of the ω−class, as this class contains many estimators for which E
·bY2n

³eΩn´0 un¸ 6=
0. On the other hand, consistency of the ω-class estimators under the asymptotic scheme described in Theorem 3.1

does not require a condition such as (14) to hold exactly; rather, consistency can be attained if an orthogonality

condition analogous to (14) holds asymptotically. In particular, consistency can be achieved if:

bY2n

³eΩn´0 un
rn

p→ 0 (15)

under the asymptotic scheme described in Theorem 3.1. Given the other assumptions above, (15) can be shown

to hold for those ω−class estimators which satisfy Assumption 6. To understand the role which Assumption 6
plays in establishing (15), note that under this assumption, we can decompose bY2n

³eΩn´ into two components
as follows: bY2n

³eΩn´ = bY (1)
2n − bY (2)

2n , where
bY (1)

2n =
£
PZn −ΩnQZn

¤
Y2n and bY (2)

2n = ΞnQZnY2n with Ωn =

diag (ω1,n,ω2,n, ....,ωn,n) , Ξn = diag (ξ1,n, ξ2,n, ...., ξn,n), and ωi,n, ξi,n (i = 1, ..., n) defined as in Assumption 6.

Part (b) of Assumption 6 helps to ensure that bY (1)
2n satisfies an orthogonality condition of the form (14). To see

this, note that

E
³bY (1)0

2n un
´

= E
¡
Y 02n

£
PZn

−QZn
Ωn
¤
un
¢

= E

µ
C0nZ0nun
bn

¶
+E

¡
V 0n
£
PZn −QZnΩn

¤
un
¢
= 0, (16)

given that E
³
C0

nZ
0
nun

bn

´
= 0 by Assumption 3, and given that

e0gE
¡
V 0n
£
PZn

−QZn
Ωn
¤
un
¢
= E

³
V (g)0
n

£
PZn

−QZn
Ωn
¤
un
´

= σgV uEZn

"
Kn −

nX
i=1

ωi,n(1− hi,n)
#
= 0, g = 1, ..., G, (17)

by Assumption 6(b), where eg and V
(g)
n denote, respectively, the gth column of the G×G identity matrix IG and

of Vn and where EZn
(·) denotes the expectation taken with respect to the probability measure of Zn.

Part (c) of Assumption 6 puts a restriction on the growth rate of the sum of the second moments of ωi,n,

i = 1, ..., n (or on the sum of squared ωi,n, in the case where the ωi,n’s are non-random), as n increases. Without

some control on the sum of second moments of ωi,n, the variance of
bY (1)0

2n un

rn
may not die down asymptotically andbY (1)0

2n un

rn
may not converge in probability to zero as desired.

Finally, part (d) of Assumption 6 ensures that
bY (2)0

2n un

rn
converges to zero in probability. To see this, consider

9



the gth element of
bY (2)0

2 un

rn
, and note that

¯̄̄̄
¯e0g bY

(2)0
2n un

rn

¯̄̄̄
¯ =

¯̄̄̄
¯V (g)0
n [QZn

Ξn]un
rn

¯̄̄̄
¯ ≤

s
V

(g)0
n QZn

V
(g)
n

n

r
u0nun
n

·µ
n

rn

¶
sup
i
|ξi,n|

¸
, (18)

so that part (d) of assumption 6 implies that

¯̄̄̄
e0g bY (2)0

2n un

rn

¯̄̄̄
p→ 0, for g = 1, ..., G.

It should also be noted that the set of estimators satisfying assumption 6 is definitely not empty. In fact, as

we will verify below, both LIML and JIV E can be shown to satisfy this assumption.

(ii) Note that, given the other assumptions, the consistency result obtained in Theorem 3.1 holds regardless of

whether Kn grows at the same rate as n or at a rate slower than n, as long as
√
Kn

rn
→ 0 as n→∞. Hence, our

analysis shows that it is not the relative magnitudes of Kn and n per se, which determines whether consistency

can be attained. Rather, what is more important is the speed of divergence of the concentration parameter

relative to Kn.

(iii) An important member of the ω-class is the LIML estimator. The LIML estimator is defined as follows:

bβLIML,n =
³
Y 02nQXnY2n − bλLIML,nY

0
2nQZn

Y2n

´+ ³
Y 02nQXny1n − bλLIML,nY

0
2nQZn

y1n

´
, (19)

where bλLIML,n is the smallest root of the determinantal equation:

det

½µ
y01nQXn

y1n y01nQXn
Y2n

Y 02nQXny1n Y 02nQXnY2n

¶
− λn

µ
y01nQZn

y1n y01nQZn
Y2n

Y 02nQZn
y1n Y 02nQZn

Y2n

¶¾
= 0 (20)

The LIML estimator can be obtained as a specific member of the ω-class by setting ω1,n = ω2,n = ... = ωn,n =bλLIML,n (or, alternatively, by setting eω1,n = eω2,n = ... = eωn,n = bλLIML,n− 1).10 Moreover, it can be shown that

the LIML estimator satisfies Assumption 6, so that it is a consistent estimator of β, in the sense of Theorem 3.1.

To verify that this is true, we first provide a result on the limiting behavior of bλLIML,n under the asymptotic

scheme described in Theorem 3.1.

Theorem 3.3: Under Assumptions 1-6, let bλLIML,n be the smallest root of the determinantal equation given by

(20). Suppose that rn →∞, as n→∞, such that
√
Kn

rn
→ 0. Then,

bλLIML,n =
n− J

n−Kn − J + ξn, (21)

where ξn = op
¡
rn

n

¢
.

Given Theorem 3.3, it is convenient to set ωi,n =
³

n−J
n−Kn−J

´
− 1 = Kn

n−Kn−J , for i = 1, ..., n. Now, to show that
Assumption 6 is satisfied for the LIML estimator, first observe that in this case:

ln = sup
1≤i≤n

|ωi,n| = Kn
n−Kn − J , (22)

from which it follows that since 0 ≤ α < 1,

lim
n→∞ln = lim

n→∞ln =
α

1− α <∞, (23)

10Of course, the LIML estimator is also a k-class estimator, with k = bλLIML,n.
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so that Assumption 6(a) is satisfied. Next, observe that in this case:

nX
i=1

ωi,n (1− hi,n) =

µ
Kn

n−Kn − J
¶ nX
i=1

(1− hi,n)

=

µ
Kn

n−Kn − J
¶
(n−Kn − J) = Kn, (24)

so that Assumption 6(b) is satisfied. Furthermore, note that in this case:

nX
i=1

E
¡
ω2
i,n

¢
= Kn

(
Knn

(n−Kn − J)2
)
= O (Kn) , (25)

since we assume thatKn = O(n). Thus, Assumption 6(c) is satisfied. Finally, note that since ω does not vary with

the observation in the LIML case, we have that ξi,n = ξn, for all i. Hence, given that we have set ωi,n =
Kn

n−Kn−J ,
Theorem 3.3 implies that

sup
i
|ξi,n| = |ξn| = op

³rn
n

´
, (26)

so that Assumption 6(d) is satisfied as well.

(iv) Another important member of the ω-class is the Jackknife Instrumental Variables Estimator (or JIV E).

JIV E, as proposed by Angrist, Imbens, and Krueger (1999) and also derived in Blomquist and Dahlberg (1999),

is an estimator whose construction is based on a two-step procedure which can be described as follows:

1. First, construct jackknife fitted values bY JIV E2n,i , i = 1, ..., n, by running first stage OLS regressions using all

but the ith observation (i.e. set bY JIV E2n,i = bΠn(i)0Zn,i+ bΦn(i)0Xn,i, for i = 1, ..., n, where ³bΠn(i)0, bΦn(i)0´0 =¡
Zn(i)0Zn(i)

¢−1 ¡
Zn(i)0Y2(i)

¢
is the OLS estimator of the coefficient matrices of equation (2), obtained by

deleting the ith observations, and where Zn(i) denotes a submatrix of Zn obtained by deleting the ith row

from the latter).

2. Next, estimate the structural equation (1) by an IV procedure, using the matrix of instruments
³bY JIV E2n ,Xn

´
,

where bY JIV E2n =
³bY JIV E2n,1 , bY JIV E2n,2 , ......, bY JIV E2n,n

´0
.

Observe that an important motivation for the JIV E method, as noted by Angrist, Imbens, and Krueger (1999),

is that the jackknife fitted value bY JIV E2n,i , obtained from the delete-one estimation procedure described in the first

step above, is uncorrelated with the structural disturbance ui, even in finite sample; whereas, in the usual 2SLS

construction, the fitted values obtained under the first stage regression are only asymptotically uncorrelated with

the structural disturbance. It can be shown that the estimator constructed on the basis of steps 1 and 2 above

can be written in the form:

bβJIV E,n = ¡Y 02n £In −QZn
Hn
¤
QXnY2n

¢+ ¡
Y 02n

£
In −QZn

Hn
¤
QXny1n

¢
, (27)

where Hn = diag
³

1
1−h1,n

, ...., 1
1−hn,n

´
, with hi,n being the ith diagonal element of PZn

. In addition, for JIV E

to be well-defined, we need to make the following assumption:

11



Assumption J11: There exists a constant h, with 0 < h < 1, such that 0 ≤ hi,n ≤ h a.s. for 1 ≤ i ≤ n and for
all n sufficiently large such that PZn

is well-defined almost surely12.

Comparing expression (27) with expression (10) or expression (11), we see that JIV E can also be obtained as a

special case of the ω-class, by setting ωi,n =
³

1
1−hi,n

´
, for i = 1, ..., n or, alternatively, by setting eωi,n = ³ hi,n

1−hi,n

´
,

for i = 1, ..., n. Given Assumption J, it is not difficult to verify that JIV E satisfies Assumption 6 and is thus a

consistent estimator of β. To see that this is true, set:

ωi,n =

·
hi,n − J

n

¸µ
1

1− hi,n

¶
, (28)

for i = 1, ..., n; so that, by construction, ξi,n =
J
n

³
1

1−hi,n

´
. Now, observe that, in this case with probability one:

ln = sup
1≤i≤n

|ωi,n| ≤
·
h+

J

n

¸µ
1

1− h
¶
for all n sufficiently large, (29)

from which it follows that lim
n→∞ln ≤

³
h

1−h

´
< ∞ a.s., so that Assumption 6(a) is satisfied. Next, observe that

in the JIV E case:

nX
i=1

ωi,n (1− hi,n) =
nX
i=1

·
hi,n − J

n

¸µ
1

1− hi,n

¶
(1− hi,n)

=
nX
i=1

·
hi,n − J

n

¸
= Kn + J − J = Kn, (30)

so that part (b) of Assumption 6 is satisfied. Moreover:

nX
i=1

E
¡
ω2
i,n

¢
=

nX
i=1

E

(·
hi,n − J

n

¸2µ
1

1− hi,n

¶2
)

≤
µ

1

1− h
¶2

E

(
nX
i=1

·
h2
i,n − 2hi,n

J

n
+
J2

n2

¸)

≤
µ

1

1− h
¶2 ·

Kn + J − 2(Kn + J)J
n

+
J2

n

¸
= O (Kn) , (31)

where the second inequality follows from the fact that, even if we ignore Assumption J, it must be that 0 ≤ hi,n ≤ 1;
and, hence,

nP
i=1
h2
i,n ≤

nP
i=1
hi,n = Kn + J. It follows that Assumption 6(c) is also satisfied. Finally, note that:

sup
1≤i≤n

|ξi,n| = sup
1≤i≤n

J

n

µ
1

1− hi,n

¶
≤ J

n

µ
1

1− h
¶
= O(n−1),

where the inequality holds by Assumption J, almost surely. Hence, Assumption 6(d) is satisfied as well.

11Note that Assumption J does rule out exogenous regressors of the form ei = (0, ..., 0, 1, 0, ..., 0), where ei denotes the ith elementary

vector, or, alternatively, the ith column of an identity matrix. It is easy to show that hi,n = 1 if ei is a column of Zn. The fact that

JIV E is not well-defined for this type of dummy regressor has not previously been pointed out in the literature, to the best of our

knowledge.
12Note also that Assumption 2, part (b) implies that, for n sufficiently large, the matrix Z

0
nZn is positive definite almost surely,

so that PZn
is well-defined almost surely for large enough n.
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(v) Another interesting special case of the ω-class estimator is the 2SLS estimator13, namely:

bβ2SLS,n =
¡
Y 02n(PZn

− PXn)Y2n

¢+ ¡
Y 02n(PZn

− PXn)y1n

¢
. (32)

However, unlike LIML and JIV E, the 2SLS estimator does not satisfy Assumption 6, as can be seen by casual

inspection; and so its asymptotic behavior is not covered by Theorem 3.1. To compare the limiting behavior of

the 2SLS estimator with that of other ω-class estimators which do satisfy Assumption 6, the following result is

useful.

Theorem 3.4: Under Assumptions 1-5, let bβ2SLS,n be defined as in equation (32) above.

1. Assume that rn

Kn
→ 0 as n→∞; then

bβ2SLS,n
p→ β0 + Σ

−1
V V σV u as n→∞. (33)

(b) Assume instead that rn

Kn
→ δ as n→∞, for some constant δ such that 0 < δ <∞; then

bβ2SLS,n − β0 = (δΨn +ΣV V )
−1 σV u + op(1), (34)

where Ψn=
C0

nZ
0
nQXnZnCn

b2
nrn

.

(c) Assume, on the other hand, Kn

rn
→ 0 as n→∞; then

bβ2SLS,n
p→ β0 as n→∞. (35)

Note that part (a) of Theorem 3.4 shows that under the condition rn

Kn
→ 0, as n → ∞ (i.e. when the set of

available instruments is either “moderately weak” or “completely weak”), the 2SLS estimator, while inconsistent,

does not converge to a random variable, as is the case when the number of instruments is held fixed (i.e. see

Staiger and Stock (1997)). Rather, the 2SLS estimator in our context converges in probability to a nonrandom

limit equaling the sum of β0 and the bias term Σ−1
V V σV u. Interestingly, this convergence to a nonrandom limit

holds even in the case where the concentration parameter does not diverge at all (i.e., even if rn does not tend

to infinity) as long as Kn →∞, as n→∞. This result is consistent with the result given in Chao and Swanson
(2001) based on sequential asymptotics, where it is shown that the variance of the 2SLS estimator tends to zero

as the number of instruments goes to infinity; but a non-zero bias remains. Turning to part (b) of Theorem

3.4, note that when rn goes to infinity at the same rate as Kn (i.e. the case where the instruments are “mildly

weak”), then the 2SLS estimator is again inconsistent. However, in this case, without further assumption, the

2SLS estimator need not converge at all since, under our conditions, we do not require the sequence of matrices

{Ψn} to converge to a limit. On the other hand, a sufficient condition which ensures that the 2SLS estimator
13Since it is well-known that the 2SLS estimator is a k-class estimator, with k = 1, it follows that 2SLS also belongs to the ω-class

with ω1,n = ω2,n = ... = ωn,n = 1 (or with eω1,n = eω2,n = ... = eωn,n = 0 in the alternative formulation of the ω-class estimator given
in expression (11)).
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will converge in probability to a non-random limit is the assumption that Ψn
p→ Ψ, as n→∞, for some constant

positive definite matrix Ψ. Finally, part (c) of Theorem 3.4 shows that consistent estimation based on the 2SLS

estimator (in the absence of bias correction) is only possible if the rate of growth of the concentration parameter

rn tends to infinity faster than the rate of growth of the instruments, Kn, as n increases (i.e. when the set of

available instruments is “not weak”). In the case where the number of instruments is held fixed (so that we can

set m2n = 1, ∀n), this latter requirement is satisfied if the concentration parameter diverges, which in turn may
occur even within a local-to-zero setup provided that b2n goes to infinity at a rate slower than m1n

14.

(vi) It is certainly of interest to compare our results with results obtained by Bekker (1994). Within his framework,

Bekker finds that, if Kn

n → α 6= 0 as n → ∞, then 2SLS is inconsistent whereas LIML is consistent. On the
other hand, if Kn

n → 0, then both 2SLS and LIML are consistent. These results can be obtained as special cases

of the results provided in Theorem 3.1, Remark 3.2 (iii), and Theorem 3.4. To see this, first note that, since the

Bekker framework implicitly takes rn = n, assuming that
Kn

n → α 6= 0 within the Bekker framework is equivalent
to requiring the condition that Kn

rn
→ α 6= 0, so we can deduce directly from Theorem 3.1, Remark 3.2(iii), and

part (b) of Theorem 3.4 that LIML is consistent but 2SLS is not. Alternatively, assuming that Kn

n → 0 within

the Bekker framework is equivalent to the condition that Kn

rn
→ 0, so that from Theorem 3.1, Remark 3.2(iii),

and part (c) of Theorem 3.4, we deduce that, in agreement with the results of Bekker (1994), both estimators are

consistent in this case.

It should be noted, however, that while it is true within the Bekker framework that the 2SLS estimator is

consistent whenever Kn grows at a slower rate than n, this need not be the case more generally, especially in

the presence of weak instruments. This is because whether or not the 2SLS estimator is consistent depends

more crucially on the relative magnitude of rn vis-a-vis Kn as n→∞, and not so much on the relative orders of
magnitude of n and Kn, unless of course rn = n, as in the Bekker framework. Hence, it is entirely possible for

the instruments to be sufficiently weak (in the sense that rn is of an order of magnitude much lower than n, for

n large) so that we actually end up with a situation where Kn

n → 0, but rn

Kn
→ δ for some nonnegative δ <∞, in

which case 2SLS is actually inconsistent (see Theorem 3.4).

(vii) Interestingly, our analysis shows that ω-class estimators satisfying Assumption 6 may be consistent even if

the weakness in the instruments is such that the concentration parameter grows at a rate slower than Kn, so long

as rn grows faster than
√
Kn as n→∞15. Indeed, we conjecture that, given the other assumptions, the condition

14The asymptotic behavior of the 2SLS estimator under a local-to-zero setup has been further investigated recently by Hahn and

Kuersteiner (2002). Like Staiger and Stock (1997), Hahn and Kuersteiner (2002) examine the case where the number of instruments

is held fixed as sample size approaches infinity, but they employ a more general local-to-zero setup which takes bn = nδ for some

0 < δ < ∞. They show that the 2SLS estimator is consistent and asymptotically normal when 0 < δ < 1/2 but is inconsistent and

converges to non-standard distributions when δ ≥ 1/2. The results of Theorem 3.4 above are, in fact, completely consistent with the

results presented by Hahn and Kuersteiner (2002) since, in terms of our notations here, that paper can be viewed as looking at the

case where m1n = n and so rn = n1−2δ. Thus, the concentration parameter will grow provided that δ < 1/2, which, in turn, will

ensure the weak consistency of the 2SLS estimator when number of instruments is assumed to be fixed. Our results show, however,

that, more generally, it is the relative magnitudes of rn and Kn, which determine whether the 2SLS estimator may be consistent,

and the rate at which the first-stage coefficients is allowed to shrink toward zero is important only in so much that it affects rn, the

rate of growth of the concentration parameter.
15Using the terminology introduced in Remark 2.1(v), we say that the set of available instruments is “moderately weak” if rn

Kn
→ 0

but
√
Kn
rn

→ 0 as n→∞ . It should be pointed out that the case with “moderately weak” instruments has not been studied at all by

either Bekker (1994) or Staiger and Stock (1997). In fact, since rn = n in the Bekker framework, the cases studied by Bekker (1994)

correspond to scenarios where the instruments are either “not weak” or are only “mildly weak” in our terminology, depending on
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that
√
Kn

rn
→ 0 as n→∞ is not just a sufficient condition but also a necessary condition for consistent estimation

to be achievable in the presence of weak instruments. Proof of the necessity of this condition is, however, left to

future research.

(viii) Our analysis also makes precise the sense in which ω-class estimators satisfying our Assumption 6 are

more robust to instrument weakness than the 2SLS estimator. Specializing our general results to some specific

estimators, we see that both LIML and JIV E satisfy Assumption 6 and are, thus, consistent even when the

instruments are ”mildly weak” or “moderately weak” in the terminology of Remark 2.1(v), whereas the 2SLS

estimator does not satisfy Assumption 6 and is consistent only if the instruments are “not weak”16. In the case

of LIML, our findings are entirely consistent with the numerical results presented in Staiger and Stock (1997),

which show LIML to be less biased than 2SLS when instruments are weak in the local-to-zero sense.

(ix) For models that are weakly identified, our results suggest that it might be sensible to use many instruments,

when available, in constructing ω-class estimators which satisfy our Assumption 617. This is because even if each

instrument is only weakly correlated with the endogenous regressors, the combined effect of using a lot of them

might nevertheless allow the concentration parameter to be sufficiently large so that reliable point estimation can

be achieved18.

4 Concluding Remarks

This paper puts forth general conditions under which consistent estimation can be attained in instrumental

variables regression in the case where the available instruments are taken to be weak in the local-to-zero sense.

In particular, we consider a general class of single-equation estimators, referred to as the ω-class, which extends

the well-known k-class to include, amongst others, the Jackknife Instrumental Variables Estimator of Angrist,

Imbens, and Krueger (1999). A main conclusion of our paper is that if the number of instruments is allowed to

approach infinity as a function of the sample size, then ω-class estimators which satisfy certain general conditions,

such as LIML and JIV E, will be more robust to instrumental weakness relative to estimators such as the 2SLS

estimator, which do not. Our results, thus, are useful in identifying point estimators whose performance is less

adversely affected by the presence of weak instruments. In addition, our results suggest that the use of a large

number of poor quality instruments may actually improve the reliability of point estimation in situations where

the available instruments are weak and abundant.

A number of questions remain open. In particular, while we have shown that there exists a class of consistent

whether Kn
n
→ 0 or Kn

n
→ α 6= 0 as n→∞. Moreover, as discussed previously, Staiger and Stock (1997) studies the case where the

number of instruments are fixed and the concentration parameter does not diverge, so that the ratio
√
Kn
rn

does not vanish as n→∞
in their setup. Hence, the case they consider correspond to that where the instruments are “completely weak” in our terminology.

16Although, throughout this paper, we have used LIML and JIV E as specific examples of ω-class estimators which satisfy our

Assumption 6, it should be noted that there are other known estimators, not explicitly considered here, which also satisfy this

assumption. In particular, it is an easy exercise to verify that the modified LIML estimators studied in Fuller (1977) and Morimune

(1983) also satisfy Assumption 6 and are, thus, consistent in the sense of Theorem 3.1.
17Note that this prescription only applies to estimators which satisfy our Assumption 6, i.e., estimators such as LIML and JIV E.

On the other hand, in the absence of additional bias adjustment, increasing the number of instruments used in constructing the 2SLS

estimator will increase the bias of that estimator as discussed in Chao and Swanson (2001), amongst other places.
18After completing the current draft of our paper, we learned of a remarkable result obtained by Peter Phillips in his comment on

a recent paper by Han (2002). Indeed, in a location model, Phillips (2002) shows that totally irrelevant instruments can be used to

provide consistent estimation if the number of instruments is allowed to approach infinity.
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estimators even when the instruments are modeled to be weak in the local-to-zero sense, we have not derived the

asymptotic distributions of these consistent estimators. Obtaining the limiting distributions of these estimators

will likely give us insights about the relative efficiency of the different estimators. Related to this question is the

problem of finding the optimal estimator amongst the consistent members of the ω-class. Research is ongoing in

these areas.

5 Appendix

We begin by providing three lemmas which are used in the subsequent proofs.

Lemma A1: Under Assumptions 1-6, suppose that rn →∞ as n→∞ such that
√
Kn

rn
→ 0 . Then, the following

statements are true.

(a) let Ψn =
C0

nZ
0
nQXnZnCn

b2
nrn

, then Ψn = Oa.s.(1); moreover, there exists a positive integer N such that ∀n ≥ N,
Ψn is positive definite almost surely;

(b)
V 0

nMnun

rn

p→ 0 as n→∞;

(c)
V 0

nMnVn

rn

p→ 0 as n→∞;

(d) u0nMnun

rn

p→ 0 as n→∞;

(e) C0
nZ

0
nQXnun

bnrn

p→ as n→∞;

(f)
C0

nZ
0
nQXnVn

bnrn

p→ as n→∞;

(g) V 0
nMnZnCn

bnrn

p→ as n→∞;

where Mn =
h¡
PZn

− PXn

¢−QZn

eΩnQXn

i
.

Proof of Lemma A1:

To prove part (a), we first show that Ψn is positive definite almost surely for n sufficiently large. To proceed,

note that Assumption 2(b) implies that for every ε, where 0 < ε < D1, there exists N < ∞ such that for all

n ≥ N

λmin

Ã
Z
0
nZn
m1n

!
> D1 − ε > 0 a.s. (36)

so that Z
0
nZn/m1n is invertible almost surely for all n ≥ N. It follows that for all n ≥ N

λmin

Ã
Z
0
nZn
m1n

!
= λmax

ÃZ0nZn
m1n

!−1
 a.s. (37)

Moreover, it follows from the Poincaré Separation Theorem (see Magnus and Neudecker, 1988, pages 209-210)

that for all n ≥ N

λmax

"µ
Z0nQXn

Zn
m1n

¶−1
#
≤ λmax

ÃZ0nZn
m1n

!−1
 a.s. (38)
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or

λmin

µ
Z0nQXnZn
m1n

¶
≥ λmin

Ã
Z
0
nZn
m1n

!
> D1 − ε > 0 a.s. (39)

Furthermore, note that

λmin(Ψn) = λmin

µ
C0nZ0nQXn

ZnCn
m1nm2n

¶
≥ λmin

µ
Z0nQXn

Zn
m1n

¶
λmin

µ
C0nCn
m2n

¶
> (D1 − ε)D3 > 0 a.s. for all n ≥ N, (40)

where the last inequality above follows from Assumption 2(c) (in particular, expression (5)) and from expression

(39) above. It follows that for all n ≥ N , Ψn is positive definite almost surely.
Now, to show thatΨn = Oa.s.(1), we note that Assumption 2(b) also implies that for every ε, where 0 < ε <∞,

there exists positive integer N <∞ such that for all n ≥ N

λmax

Ã
Z
0
nZn
m1n

!
< D2 + ε <∞ a.s. (41)

Moreover, by arguments similar to that given above, we can show that for all n ≥ N

λmax

µ
Z0nQXnZn
m1n

¶
≤ λmax

Ã
Z
0
nZn
m1n

!
< D2 + ε <∞ a.s. (42)

so that

λmax(Ψn) = λmax

µ
C 0nZ0nQXnZnCn

m1nm2n

¶
≤ λmax

µ
Z0nQXnZn
m1n

¶
λmax

µ
C0nCn
m2n

¶
< (D2 + ε)D4 <∞ a.s. for all n ≥ N. (43)

For convenience set ε = 1 and let N∗ be that value of N for which the inequality in (43) holds. It follows then

that for all n ≥ N∗, we can bound Ψ(i,i)
n , the ith diagonal element of Ψn, as follows:

Ψ(i,i)
n =

e0iC
0
nZ

0
nQXnZnCnei
b2nrn

≤ λmax

µ
C0nZ0nQXnZnCn

m1nm2n

¶
≤ (D2 + 1)D4 <∞ a.s., (44)

where ei denotes the i
th column of the G×G identity matrix IG. Moreover, for all n ≥ N∗, we can also bound

the absolute value of Ψ
(i,j)
n (i.e., the absolute value of the (i, j)th element of Ψn for i 6= j) as follows:¯̄̄
Ψ(i,j)
n

¯̄̄
=

¯̄̄̄
e0iC

0
nZ

0
nQXnZnCnej
b2nrn

¯̄̄̄

≤
s
e0iC0nZ0nQXnZnCnei

b2nrn

s
e0jC 0nZ0nQXnZnCnej

b2nrn

≤ λmax

µ
C0nZ0nQXnZnCn

b2nrn

¶
≤ (D2 + 1)D4 <∞ a.s. (45)

17



It follows immediately from (44) and (45) that

Ψn =
C 0nZ0nQXnZnCn

b2nrn
= Oa.s.(1). (46)

Before showing parts (b)-(g) of this lemma, we first note that, under Assumption 2, Z
0
nZn is nonsingular almost

surely for n sufficiently large, as has been shown in the proof of part (a) of the lemma above (see expression (40)).

It follows that, for n sufficiently large, the projection matrices PZn
, PXn , QZn

, and QXnare well-defined with

probability one, and so is the matrix Mn =
h¡
PZn

− PXn

¢−QZn

eΩnQXn

i
.

Now, to show part (b), it suffices to show that, under the assumptions of the lemma, the gth element of
V 0

nMnu
rn

converges in probability to zero, i.e.

V
(g)0
n Mnun
rn

p→ 0, (47)

where V
(g)
n , g ∈ {1, ..., G}, denotes an arbitrary gth column of Vn. To show (47), note first that, given Assumption

6 and n sufficiently large, we can write

V
(g)0
n Mnu

rn
=

V
(g)0
n

£¡
PZn

− PXn

¢−QZn
ΩnQXn

¤
un

rn
− V

(g)0
n QZn

ΞnQXnun

rn

=
V

(g)0
n Mnun
rn

− V
(g)0
n QZn

ΞnQXnun

rn
, (48)

where Ωn = diag (ω1,n,ω2,n, ....,ωn,n) and Ξn = diag (ξ1,n, ξ2,n, ...., ξn,n). We will show that both of the terms

on the right-hand side of (48) converge in probability to zero. To proceed, note that the expectation of the first

term on the right-hand side of (48) can be shown to equal zero as follows:

E

Ã
V

(g)0
n Mnun
rn

!
= EZn

Tr
Mn

h
Eη|Zn

³
unV

(g)0
n

´i
rn


 =

σgV u
rn
EZn

¡
Tr
©¡
PZn

− PXn

¢−QZn
ΩnQXn

ª¢
=

σgV u
rn
EZn

Ã
Kn −

nX
i=1

ωi,n (1− hi,n)
!
= 0, (49)

where EZn
(·) denotes the expectation taken with respect to the probability measure of Zn and Eη|Zn

denotes

the expectation taken with respect to the conditional probability measure of η = (u, V ) given Zn and where the

last equality above follows from Assumption 6(b). Next, let mij,n denote the (i, j)th element of Mn and let vig

denote the (i, g)th element of Vn, and we can calculate the second moment of
V (g)0

n Mnun

rn
as follows:

1

r2
n

E
³
V (g)0
n Mnun

´2

=

µ
1

r2
n

¶
EZn


nX
i=1

nX
j=1

nX
k=1

nX
l=1

mij,n mkl,n Eη|Zn
[vigujvkgul]


=

µ
1

r2
n

¶
E(v2

igu
2
i )EZn

"
nX
i=1

m2
ii,n

#
+

µ
1

r2
n

¶
Σ

(g,g)
V V σuuEZn

 nX
i=2

i−1X
j=1

m2
ij,n +

nX
j=2

j−1X
i=1

m2
ij,n


+2

µ
1

r2
n

¶
(σgV u)

2
EZn

 nX
i=2

i−1X
j=1

mii,n mjj,n +
nX
i=2

i−1X
j=1

mij,n mji,n


= An + Bn + Cn, say, (50)
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where the second equality above follows by noting that the expectation Eη|Zn
[vigujvkgul] equals zero except in

the cases where either (i = j = k = l) or (i = j and k = l) or (i = k and j = l) or (i = l and j = k). Dealing with

the term An first, observe that with probability oneµ
1

r2
n

¶
E(v2

igu
2
i )

"
nX
i=1

m2
ii,n

#
≤

µ
1

r2
n

¶
E(v2

igu
2
i )Tr

h
M

0
nMn

i
=

µ
1

r2
n

¶
E(v2

igu
2
i )Tr[

¡
PZn

− PXn

¢
+QXn

ΩnQZn
ΩnQXn

]

≤
µ
1

r2
n

¶
E(v2

igu
2
i )
£
Kn +

¯̄
Tr
¡
ΩnQZn

ΩnQXn

¢¯̄¤
≤

µ
1

r2
n

¶
E(v2

igu
2
i )

·
Kn +

q
Tr
¡
ΩnQZn

Ωn
¢q
Tr
¡
ΩnQXnΩn

¢¸
≤

µ
1

r2
n

¶
E(v2

igu
2
i )
h
Kn + Tr

³
Ω

2
n

´i
=

µ
1

r2
n

¶
E(v2

igu
2
i )

"
Kn +

nX
i=1

ω2
i,n

#
, (51)

where the third inequality above follows from the Cauchy-Schwarz inequality and where the fourth inequality

above follows from the fact that QZn
and QXn are symmetric, idempotent matrices. To see the argument behind

the fourth inequality, take QZn
as an example, and note that we can write QZn

= BnΛnB
0
n, where Bn is an

orthogonal matrix (i.e., BnB
0
n = In = B

0
nBn) whose columns are the orthonormal eigenvectors of QZn

and Λn is

a diagonal matrix with n−Kn − J one’s and Kn + J zero’s along the main diagonal; hence, it follows that
Tr
¡
ΩnQZn

Ωn
¢
= Tr

¡
ΩnBnΛnB

0
nΩn

¢ ≤ Tr ¡ΩnBnB0nΩn¢ = Tr ³Ω2
n

´
, (52)

and, by a similar argument, Tr
¡
ΩnQXnΩn

¢ ≤ Tr
³
Ω

2
n

´
. Now, note that since the bound given by (51) holds

with probability one, we deduce that

An =
µ
1

r2
n

¶
E(v2

igu
2
i )EZn

"
nX
i=1

m2
ii,n

#
≤
µ
1

r2
n

¶
E(v2

igu
2
i )

"
Kn +EZn

Ã
nX
i=1

ω2
i,n

!#
= O

¡
Kn/r

2
n

¢
;

(53)

hence, An → 0 as n→∞ if
√
Kn

rn
→ 0 as n→∞.

Turning our attention next to the term Bn, we note that similar to the argument given for An above, we have
that with probability one µ

1

r2
n

¶
Σ

(g,g)
V V σuu

 nX
i=2

i−1X
j=1

m2
ij,n +

nX
j=2

j−1X
i=1

m2
ij,n


≤

µ
1

r2
n

¶
Σ

(g,g)
V V σuuTr

h
M

0
nMn

i
≤
µ
1

r2
n

¶
σ

(g,g)
V V σuu

"
Kn +

nX
i=1

ω2
i,n

#
. (54)

It follows again that since the bound given in (54) holds with probability one, we deduce that

Bn =

µ
1

r2
n

¶
Σ

(g,g)
V V σuuEZn

 nX
i=2

i−1X
j=1

m2
ij,n +

nX
j=2

j−1X
i=1

m2
ij,n


≤

µ
1

r2
n

¶
Σ

(g,g)
V V σuu

"
Kn +EZn

Ã
nX
i=1

ω2
i,n

!#
= O

¡
Kn/r

2
n

¢
, (55)

19



so that Bn → 0 as n→∞ if
√
Kn

rn
→ 0 as n→∞.

Finally, turning to the term Cn, we note that

2

µ
1

r2
n

¶
(σgV u)

2

 nX
i=2

i−1X
j=1

mii,n mjj,n +
nX
i=2

i−1X
j=1

mij,n mji,n


=

µ
σgV u
rn

¶2
(
Tr
h
M

2

n

i
+
¡
Tr
£
Mn

¤¢2 − 2
nX
i=1

m2
ii

)
, (56)

so that with probability one

2

µ
σgV u
rn

¶2
¯̄̄̄
¯̄
 nX
i=2

i−1X
j=1

mii,n mjj,n +
nX
i=2

i−1X
j=1

mij,n mji,n

¯̄̄̄¯̄
=

µ
σgV u
rn

¶2
¯̄̄̄
¯Tr hM2

n

i
+
¡
Tr
£
Mn

¤¢2 − 2
nX
i=1

m2
ii

¯̄̄̄
¯

≤
µ
σgV u
rn

¶2 ¯̄̄
Tr
h
M

2
n

i
+
¡
Tr
£
Mn

¤¢2
¯̄̄
+ 2

µ
σgV u
rn

¶2 ¯̄̄
Tr
h
M

0
nMn

i¯̄̄
=

µ
σgV u
rn

¶2 ¯̄
Tr
£
PZn

− PXn −QZn
Ωn
¡
PZn

− PXn

¢
+QZn

ΩnQZn
ΩnQXn

¤¯̄
+ 2

µ
σgV u
rn

¶2 ¯̄̄
Tr
h
M

0
nMn

i¯̄̄
≤

µ
σgV u
rn

¶2 £
Kn +

¯̄
Tr
¡
QZn

ΩnQZn
ΩnQXn

¢¯̄¤
+ 2

µ
σgV u
rn

¶2
¯̄̄̄
¯Kn +

nX
i=1

ω2
i,n

¯̄̄̄
¯

≤
µ
σgV u
rn

¶2

Kn +

µ
σgV u
rn

¶2

Tr
¡
ΩnQZn

Ωn
¢
+ 2

µ
σgV u
rn

¶2
¯̄̄̄
¯Kn +

nX
i=1

ω2
i,n

¯̄̄̄
¯

≤
µ
σgV u
rn

¶2

Kn +

µ
σgV u
rn

¶2

Tr
³
Ω

2
n

´
+ 2

µ
σgV u
rn

¶2
¯̄̄̄
¯Kn +

nX
i=1

ω2
i,n

¯̄̄̄
¯

= 3

µ
σgV u
rn

¶2
"
Kn +

nX
i=1

ω2
i,n

#
, (57)

where the second equality from the top follows from the fact that under Assumption 6(b)

Tr
¡
PZn

− PXn
−QZn

ΩnQXn

¢
= Kn − Tr

¡
QZn

Ωn
¢
= 0 a.s. (58)

In addition, note that the third inequality in (57) follows from the Cauchy-Schwarz inequality and the fourth

inequality follows from the same argument as given in expression (52) above. Since the upper bound given in

(57) above holds almost surely, it follows that

|Cn| = 2

µ
σgV u
rn

¶2
¯̄̄̄
¯̄EZn

 nX
i=2

i−1X
j=1

mii,n mjj,n +
nX
i=2

i−1X
j=1

mij,n mji,n

¯̄̄̄¯̄
≤ 2

µ
σgV u
rn

¶2

EZn

¯̄̄̄
¯̄ nX
i=2

i−1X
j=1

mii,n mjj,n +
nX
i=2

i−1X
j=1

mij,n mji,n

¯̄̄̄
¯̄

≤ 3

µ
σgV u
rn

¶2
"
Kn +

nX
i=1

E
¡
ω2
i,n

¢#
= O

¡
Kn/r

2
n

¢
, (59)
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so that Cn → 0 as n→∞ if
√
Kn

rn
→ 0 as n→∞. It follows immediately from (53), (55), and (59) that

1

r2
n

E
³
V (g)0
n Mnun

´2

→ 0 (60)

as n→∞ under the condition that
√
Kn

rn
→ 0 as n→∞. Moreover, in view of (49) and (60), it follows as a direct

consequence of Chebyshev’s inequality that

V
(g)0
n Mnun
rn

p→ 0. (61)

Next, we show that, under the assumptions of the lemma,

V
(g)0
n QZn

ΞnQXnun

rn

p→ 0. (62)

To show this, note that¯̄̄̄
¯V

(g)0
n QZn

ΞnQXn
un

rn

¯̄̄̄
¯ ≤

s
V

(g)0
n QZn

V
(g)
n

rn

s
u0nQXnΞ

2
nQXnun
rn

≤
·µ

n

rn

¶
sup
i
|ξi,n|

¸s
V

(g)0
n QZn

V
(g)
n

n

r
u0nQXnun

n
,

(63)

where the first inequality above follows from Cauchy-Schwarz. Next, note that standard arguments yield

u0nQXnun
n

p→ σuu <∞, (64)

and, from part (e) of lemma A2 given below, we obtain

V
(g)0
n QZn

V
(g)
n

n

p→ Σ
(g,g)
V V (1− α) <∞ (65)

where Σ
(g,g)
V V denotes the (g, g)th element of ΣV V . Moreover, it follows from assumption 6(d) thatµ

n

rn

¶
sup
i
|ξi,n| p→ 0. (66)

(63), (64), (65), and (66) immediately imply that

V
(g)0
n QZn

ΞnQXnun

rn

p→ 0 (67)

as n, Kn, rn → ∞ such that Kn

n → α and
√
Kn

rn
→ 0. Now, the desired result for part (a) follows directly from

(61) and (67).

To show part (c) of the lemma, note that, similar to part (b) above, it is sufficient to simply show that

any arbitrary element of V 0MnV
rn

converges in probability to zero, i.e., it is sufficient to show that, under the

assumptions of the lemma,

V
(g)0
n MnV

(h)
n

rn
=
V

(g)0
n

h¡
PZn

− PXn

¢−QZn

eΩnQXn

i
V

(h)
n

rn

p→ 0 (68)

where
V (g)0

n MnV
(h)

n

rn
is the (g, h)th element of V

0MnV
rn

. Note, however, that (68) can be shown in a manner very

similar to the proof of part (b) above, so to avoid redundancy we omit the proof here.
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Since the proof of part (d) is also similar to part (b), we again omit it to avoid being repetitive.

To show part (e), we again proceed by showing the mean square convergence of the gth element of
C0

nZ
0
nQXnun

bnrn
to

zero, noting, of course, that the matrix QXn
is well-defined almost surely for n sufficiently large under Assumption

2(b), as argued previously. To proceed, write the gth element of
C0

nZ
0
nQXnun

bnrn
as

e0gC0nZ0nQXn
un

bnrn
, (69)

where again eg denotes that gth column of the G × G identity matrix IG. Calculating the first two moments

shows that

E

·
e0gC0nZ0nQXnun

bnrn

¸
= EZn

"
e0gC 0nZ0nQXnE

¡
u | Zn

¢
bnrn

#
= 0 (70)

by Assumptions 3, and that

E

·
e0gC0nZ0nQXnun

bnrn

¸2

= EZn

"
e0gC0nZ0nQXnE

¡
uu0 | Zn

¢
QXnZnCneg

b2nr
2
n

#

=

µ
σuu
rn

¶
EZn

·
e0gC0nZ0nQXn

ZnCneg

b2nrn

¸
, (71)

Note that the expectation EZn
(·) in equation (71) exists for n sufficiently large as a consequence of the proof of

part (a) of this lemma, where we show that, under assumption 2, there exists positive integer N and constant

D∗ <∞ such that for all n ≥ N,
e0gC0nZ0nQXnZnCneg

b2nrn
< D∗ (72)

with probability one. It follows from (72) that for all n ≥ N,

E

·
e0gC 0nZ0nQXn
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=
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¶½
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·
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¸¾
≤
µ
σuu
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¶
D∗ = O(r−1

n ). (73)

The desired result, thus, follows immediately given (70) and (73).

Part (f) of this lemma can be shown by showing the convergence to zero of the (g, h)th element of
C0

nZ
0
nQXnVn

bnrn

in the mean square sense. Since the proof is very similar to that for part (e) above, we omit writing this proof to

avoid redundancy.

To show part (g), we again note that a sufficient argument would be to show the convergence (in probability)

to zero of the (g, h)th element of
V 0

nMnZnCn

bnrn
, where the matrix Mn is well-defined almost surely for n sufficiently

large as previously argued. To begin, write the (g, h)th element as

e0gV 0nMnZnCneh

bnrn
=
V

(g)0
n

£
PZn

− PXn −QZn
ΩnQXn

¤
ZnCneh

bnrn
− V

(g)0
n QZn

ΞnQXnZnCneh

bnrn
. (74)

We will show that both terms on the right-hand side of (74) converge in probability to zero. Starting with the

first term, note that

E

Ã
V

(g)0
n

£
PZn

− PXn −QZn
ΩnQXn

¤
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!

= EZn

E
³
V

(g)0
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− PXn −QZn
ΩnQXn

¤
ZnCneh

bnrn

 = 0 (75)
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since E
³
V

(g)0
n | Zn

´
= 00 by Assumptions 3. Note further that

E

Ã
V

(g)0
n

£
PZn

− PXn −QZn
ΩnQXn

¤
ZnCneh

bnrn

!2

= b−2
n r

−2
n EZn

³
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0
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0
n

£
PZn

− PXn −QXnΩnQZn

¤
E
³
V (g)
n V (g)0

n | Zn
´ £
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− PXn −QZn
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¤
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´
=

Ã
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V V
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0
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0
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£
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− PXn
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ΩnQZn
ΩnQXn

¤
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¢
. (76)

Now, with probability one

e0hC
0
nZ

0
n

£
PZn

− PXn +QXnΩnQZn
ΩnQXn

¤
ZnCneh

≤ e0hC
0
nZ

0
nQXnZnCneh + e

0
hC

0
nZ

0
nQXnΩ

2

nQXnZnCneh

≤ e0hC
0
nZ

0
nQXnZnCneh + (ln)

2e0hC
0
nZ

0
nQXnZnCneh (77)

where ln = sup
1≤i≤n

|ωi,n| as defined in Assumption 6(a). Moreover, there exists a positive integer N and a constant

D∗ <∞ such that for all n ≥ NÃ
Σ

(g,g)
V V

b2nr
2
n

!
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¡
e0hC

0
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0
n

£
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− PXn +QXnΩnQZn
ΩnQXn

¤
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¢
≤

Ã
Σ

(g,g)
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!
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µ·
e0hC

0
nZ

0
nQXnZnCneh
b2nrn

¸
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·
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0
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0
nQXnZnCneh
b2nrn

¸¶
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Ã
Σ

(g,g)
V V

rn

!h
1 +

¡
ln
¢2
i
D∗ = O

¡
r−1
n

¢
, (78)

under assumption 6(a), where the last inequality above follows from expression (72). Expressions (75) and (78)

and the Chebyshev’s inequality then directly imply that the first term on the right-hand side of (74) converges

in probability to zero. Next, to show that the second term vanishes as well, write¯̄̄̄
¯V

(g)0
n QZn

ΞnQXnZnCneh

bnrn

¯̄̄̄
¯ ≤

s
V

(g)0
n QZn

V
(g)
n

bnrn

s
e0hC 0nZ0nQXnΞ

2
nQXnZnCneh
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≤
·r

n
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i
|ξi,n|

¸s
V

(g)0
n QZn

V
(g)
n

n

s
e0hC0nZ0nQXZnCneh

b2nrn
, (79)

where the first inequality above follows from Cauchy-Schwarz. Part (e) of lemma A2 given below, we obtain

V
(g)0
n QZn

V
(g)
n

n

p→ Σ
(g,g)
V V (1− α) <∞. (80)

Moreover, from part (a) of this lemma, we deduce that

e0hC
0
nZ

0
nQXn

ZnCneh
b2nrn

= Oa.s.(1). (81)

Furthermore, Assumptions 5 and 6(d) imply thatr
n

rn
sup
i
|ξi,n| p→ 0. (82)
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It, thus, follows from (79), (80), (81), and (82) that

V
(g)0
n QZn

ΞnQXnZnCneh

bnrn

p→ 0 (83)

under the assumptions of the lemma. The desired result then follows immediately. ¤

Lemma A2: Under Assumptions 2-5, suppose that rn →∞ as n→∞ such that
√
Kn

rn
→ 0. Then, the following

statements are true as n→∞.

(a)
V 0

nM
∗
nun

rn

p→ 0;

(b)
V 0

nM
∗
nVn

rn

p→ 0;

(c)
u0nM

∗
nun

rn

p→ 0, where M∗
n =

h¡
PZn

− PXn

¢− ³ Kn

n−Kn−J
´
QZn

i
;

(d)
V 0

nQZn
un

n

p→ σV u (1− α) ;

(e)
V 0

nQZn
Vn

n

p→ ΣV V (1− α) ;

(f)
u0nQZn

un

n

p→ σuu (1− α) .

Proof of Lemma A2: To begin, we first note that Assumption 2 implies that, for n sufficiently large, the

projection matrices PZn
, PXn , QZn

, and QXnare all well-defined with probability one, so that the matrix Mn =h¡
PZn

− PXn

¢− ³ Kn

n−Kn−J
´
QZn

i
is well-defined with probability one as well. Now, to show part (a) of the

lemma, note first that M∗
n is a special case of the matrix Mn =

£¡
PZn

− PXn

¢−QZn
ΩnQXn

¤
, where we take

ωi,n =
³

Kn

n−Kn−J
´
for all i. Hence, given the proof of part (b) of Lemma A1 above, all we need in order to

establish part (b) of this lemma is to show that
³

Kn

n−Kn−J
´
satisfies conditions (a)-(c) of Assumption 6. To

proceed, observe that, in this case,

ln = sup
1≤i≤n

|ωi,n| = Kn
n−Kn − J , (84)

from which it follows that since 0 ≤ α < 1,

lim
n→∞ln = lim

n→∞ln =
α

1− α <∞, (85)

so that Assumption 6(a) is satisfied. Moreover, observe that in this case

nX
i=1

ωi,n (1− hi,n) =
µ

Kn
n−Kn − J

¶ nX
i=1

(1− hi,n) =
µ

Kn
n−Kn − J

¶
(n−Kn − J) = Kn, (86)

so that Assumption 6(b) is satisfied. Finally, observe that in this case

nX
i=1

E
¡
ω2
i,n

¢
= Kn

(
Knn

(n−Kn − J)2
)
= O (Kn) , (87)

since we assume that Kn = O(n), so that assumption 6(c) is satisfied as well. The desired result then follows

directly given the proof of Lemma A1 part (b).
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The proofs of parts (b) and (c) of this lemma follow in a similar manner from the proofs of parts (c) and (d)

of Lemma A1 and, hence, are omitted here.

To show part (d), it suffices to show that, under the assumptions of the lemma, the gth element of
V 0

nQZn
un

Kn

converges in probability to the gth element of the vector σV u (1− α), i.e.

V
(g)0
n QZn

un

n

p→ σgV u (1− α) . (88)

To proceed, note first that, for n sufficiently large, so that (Z
0
nZn)

−1 is well-defined almost surely, we can take

the expectation of the left-hand sider of (88) to obtain:
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Tr
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h
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³
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¶
→ σgV u (1− α) , as n→∞. (89)

Next, let qij,n denote the (i, j)th element of the matrix QZn
, and we can calculate the second moment of

V (g)0
n QZn

un

n , for n sufficiently large, as follows:
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= Dn + En +Fn, say, (90)

where the second equality above follows by noting that the expectation Eη|Zn
[vg,iujvg,kul] equals zero except in

the cases where either (i = j = k = l) or (i = j and k = l) or (i = k and j = l) or (i = l and j = k). Dealing with

the term Dn first, observe that with probability oneµ
1

n2

¶
E(v2

igu
2
i )

"
nX
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Moreover, note that since the bound given by (91) holds with probability one, we deduce that

Dn =
µ
1

n2

¶
E(v2

igu
2
i )EZn

"
nX
i=1

q2
ii,n

#
= O

µ
1

n

¶
; (92)

hence, Dn → 0 as n,Kn →∞.

25



Turning our attention next to the term En, we see that with probability oneµ
1
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¶
Σ
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It follows again that since the bound given in (93) holds with probability one, we deduce that
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so that En → 0 as n, Kn →∞.
Finally, turning to the term Fn, we note that
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so that with probability one
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Since the upper bound given in (96) above holds almost surely, it follows that
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so that Fn → 0 as n, Kn →∞ . It follows immediately from (92), (94), and (97) that

var

"
V

(g)0
n QZn

un

n

#
→ 0 (98)

as n, Kn → ∞. Moreover, on the basis of (89) and (98), we deduce part (d) of the lemma A2 as a direct
consequence of Chebyshev’s inequality.

Parts (e) and (f) of this lemma can be shown in a manner similar to part (d) above; hence, for brevity, we

omit their proofs. ¤

Lemma A3: Under Assumptions 2-4, the following statements are true as n→∞.

26



(a)
V 0
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−PXn)un

Kn

p→ σV u;

(b)
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n(PZn
−PXn)Vn

Kn

p→ ΣV V .

Proof of Lemma A3: Before proceeding, we note that as argued in the proof of lemma 1, Assumption 2 of

the paper imply that the projection matrices PZn
and PXn are well-defined with probability one for n sufficiently

large, so that the difference PZn
− PXn is also well-defined with probability one for large enough n. Now, to

show part (a), it suffices to show that, under the assumptions of the lemma, the gth element of
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To proceed, note first that, for n sufficiently large, we can take the expectation of the left-hand side of (99) to

obtain:
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Next, let pij,n denote the (i, j)th element of the matrix
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, and we can calculate the second moment
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, for n sufficiently large, as follows:
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where the second equality above follows by noting that the expectation Eη|Zn
[vg,iujvg,kul] equals zero except in

the cases where either (i = j = k = l) or (i = j and k = l) or (i = k and j = l) or (i = l and j = k). Dealing with

the term Gn first, observe that with probability oneµ
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Moreover, note that since the bound given by (102) holds with probability one, we deduce that
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hence, Gn → 0 as n,Kn →∞.
Turning our attention next to the term Hn, we note that in this caseµ
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with probability one. Since the bound given in (104) holds with probability one, we deduce that
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so that Hn → 0 as n, Kn →∞.
Finally, turning to the term In, we note that
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so that with probability one
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Since the upper bound given in (107) above holds almost surely, it follows that
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so that In → 0 as n, Kn →∞ . It follows immediately from (103), (105), and (108) that
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as n, Kn → ∞. Moreover, on the basis of (100) and (109), we deduce part (a) of the Lemma A3 as a direct
consequence of Chebyshev’s inequality.

To show part (b) of the lemma, note that, similar to part (a) above, it is sufficient to simply show that any

arbitrary element of
V 0

n(PZn
−PXn)Vn

Kn
, say the (g, h)th element, converges in probability to the (g, h)th element of

ΣV V , i.e., it is sufficient to show that

V
(g)0
n

¡
PZn

− PXn

¢
V

(h)
n

Kn

p→ Σ
(g,h)
V V as n→∞. (110)

Note, however, that (110) can be shown in a manner very similar to the proof of part (a) above, so to avoid

redundancy we omit the proof here. ¤
Proof of Theorem 3.1: To proceed, note that for n sufficiently large so thatMn =

h¡
PZn

− PXn

¢−QZn

eΩnQXn

i
is well-defined with probability one, and we can write

Y 02nMnY2n

rn
=
C 0nZ0nQXnZnCn

b2nrn
+
C0nZ0nQXnVn

bnrn
+
V 0nMnZnCn

bnrn
+
V 0nMnVn
rn

, (111)

Now, it follows from parts (a), (c), (f), and (g) of lemma A1 that

Y 02nMnY2n

rn
= Ψn + op(1), (112)

where Ψn = b−2
n r

−1
n C0nZ0nQXnZnCn is positive definite almost surely for n sufficiently large given the result of

lemma A1 part (a). Moreover, for n sufficiently large, we can write

Y 02Mnun
rn

=
C 0nZ0nQXnun

bnrn
+
V 0nMnun
rn

, (113)

so that

Y 02nMnun
rn

p→ 0, as n→∞, (114)

given parts (b) and (e) of lemma A1. Next, note that we can write

bβω,n − β0 =

Ã·
Y 02nMnY2n

rn

¸+ ·
Y 02nMnY2n

rn

¸
− IG

!
β0 +

·
Y 02nMnY2n

rn

¸+ ·
Y 02nMnun

rn

¸
. (115)

In view of (112) and (114), it follows by Proposition 2.30 of White (1999) and the Slutsky’s theorem that·
Y 02nMnY2n

rn

¸+ ·
Y 02nMnY2n

rn

¸
− IG p→ 0 (116)

and that ·
Y 02nMnY2n

rn

¸+ ·
Y 02nMnun

rn

¸
p→ 0, (117)

from which we deduce that bβω,n p→ β0 as required. ¤
Proof of Theorem 3.3 To proceed, note first that bλLIML,n is smallest root of the determinantal equation

det

½µ
y01nQXny1n y01nQXnY2n

Y 02nQXny1n Y 02nQXnY2n

¶
− λn

µ
y01nQZn

y1n y01nQZn
Y2n

Y 02nQZn
y1n Y 02nQZn

Y2n

¶¾
= 0 (118)
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or, in more succinct notation,

det
©
Y 0nQXn

Yn − λnY 0nQZn
Yn
ª
= 0, (119)

where Yn = [y1n, Y2n] and where the elements of the determinantal equation given above are all well-defined with

probability one for n sufficiently large, as a consequence of Assumption 2. Now, define Υ =

µ
1 0
−β0 IG

¶
and

note that the smallest root of equation (119) is the same as the smallest root of the equation

det
©
Υ0Y 0nQXn

YnΥ− λnΥ0Y 0nQZn
YnΥ

ª
= 0, (120)

where

Υ0Y 0nQXnYnΥ =

µ
1 −β0

0 IG

¶µ
y01nQXn

y1n y01nQXn
Y2n

Y 02nQXn
y1n Y 02nQXn

Y2n

¶µ
1 0
−β0 IG

¶
=

µ
u0nQXnun u0nQXnY2n

Y 02nQXn
un Y 02nQXn

Y2n

¶
. (121)

and

Υ0Y 0nQZn
YnΥ =

µ
u0nQZn

un u0nQZn
Vn

V 0nQZn
un V 0nQZn

Vn

¶
. (122)

Now, let λn =
n−J

n−Kn−J +
τnrn

n and rewrite (120) as

det

½µ
u0nQXnun u0nQXnY2n

Y 02nQXnun Y 02nQXnY2n

¶
−
µ

n− J
n−Kn − J

¶µ
u0nQZn

un u0nQZn
Vn

V 0nQZn
un V 0nQZn

Vn

¶
− τn

Ã
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0
nQZn

un

n

rnu
0
nQZn

Vn

n
rnV

0
nQZn

un

n

rnV
0

nQZn
Vn

n

!)
= 0, (123)

which, in turn, can be shown, by straightforward manipulation, to be equivalent to the determinantal equation

det

(Ã
u0nM∗

nun
u0nQXnZnCn

bn
+ u0nM∗

nVn
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nZ
0
nQXnun

bn
+ V 0nM∗
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n
rnV

0
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rnV
0
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Vn
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!)
= 0, (124)

where M∗
n =

h¡
PZn

− PXn

¢− ³ Kn

n−Kn−J
´
QZn

i
. Moreover, it is apparent that bλLIML,n, the smallest root of

equation (118), is related to bτLIML,n, the smallest root of (124), by the equation

bλLIML,n =
n− J

n−Kn − J +
bτLIML,nrn

n
. (125)

Furthermore, note that bτLIML,n is also the smallest root of the determinantal equation

det

(Ã
u0nM

∗
nun

rn

u0nQXnZnCn

bnrn
+ u0nM

∗
nVn

rn
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nZ
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bnrn
+ V 0

nM
∗
nun

rn

C0
nZ

0
nQXnZnCn

b2
nrn

+ C0
nZ

0
nQXnVn

bnrn
+ V 0

nQXnZnCn

bnrn
+ V 0

nM
∗
nVn

rn

!

− τn
Ã

u0nQZn
un

n

u0nQZn
Vn

n
V 0

nQZn
un

n

V 0
nQZn

Vn

n

!)
= 0. (126)
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It then follows by parts (a), (e), and (f) of lemma A1 and parts (a)-(f) of Lemma A2 and by continuity that as

n→∞, the difference between bτLIML,n and the smallest root of

det

½µ
0 0
0 Ψn

¶
− τn

µ
σuu (1− α) σ0V u (1− α)
σV u (1− α) ΣV V (1− α)

¶¾
= 0 (127)

goes to zero in probability as n→∞. Since the smallest root of (127) is obviously zero, we deduce immediately
that bτLIML,n = op(1). It follows that from (125) that

bλLIML,n =
n− J

n−Kn − J + op
³rn
n

´
, (128)

as required. ¤
Proof of Theorem 3.4 To show part (a), note first that, for n sufficiently large, PZn

and PXn are well-defined

with probability one, and we can write

Y 02n
¡
PZn

− PXn

¢
Y2n

Kn
=

µ
rn
Kn

¶
C 0nZ0nQXnZnCn

b2nrn
+

µ
rn
Kn

¶
C0nZ0nQXnVn
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µ
rn
Kn
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V 0nQXnZnCn

bnrn
+
V 0n
¡
PZn

− PXn

¢
Vn

Kn
. (129)

Now, since it is assumed in part (a) that rn

Kn
→ 0 as n→∞, it follows from parts (a) and (f) of Lemma A1 and

from part (b) of Lemma A3 that

Y 02n
¡
PZn

− PXn

¢
Y2n

Kn

p→ ΣV V , (130)

where ΣV V is positive definite by assumption 3 and is, thus, nonsingular. Moreover, for n sufficiently large, we

can write

Y 02n
¡
PZn

− PXn

¢
un

Kn
=

µ
rn
Kn

¶
C 0nZ0nQXnun

bnrn
+
V 0n
¡
PZn

− PXn

¢
un

Kn
, (131)

so that

Y 02n
¡
PZn

− PXn

¢
un

Kn

p→ σV u, as n→∞, (132)

by part (e) of lemma A1 and part (a) of Lemma A3. Next, write

bβ2SLS,n − β0 =

"Y 02n ¡PZn
− PXn

¢
Y2n

Kn

#+ "
Y 02n
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¢
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¢
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#
, (133)

Given (130) and (132), it follows immediately by the Slutsky’s theorem that"
Y 02n

¡
PZn

− PXn

¢
Y2n

Kn

#+ "
Y 02n

¡
PZn

− PXn

¢
Y2n

Kn

#
− IG p→ 0 (134)
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and "
Y 02n

¡
PZn

− PXn

¢
Y2n

Kn

#+ "
Y 02n

¡
PZn

− PXn

¢
un

Kn

#
p→ Σ−1

V V σV u, (135)

so that bβ2SLS,n
p→ β0 +Σ

−1
V V σV u as required.

To show part (b) note that since in this case rn

Kn
→ δ, for some δ ∈ (0,∞), as n→∞ , it follows directly from

parts (a) and (f) of Lemma A1 and from part (b) of Lemma A3 that

Y 02n
¡
PZn

− PXn

¢
Y2n

Kn
= (δΨn +ΣV V ) + op(1), (136)

where Ψn = b−2
n r

−1
n C0nZ0nQXnZnCn is positive definite almost surely for n sufficiently large given the result of

part (a) of Lemma A1. In addition, from part (e) of Lemma A1 and part (a) of lemma A3, we deduce that

Y 02n
¡
PZn

− PXn

¢
un

Kn

p→ σV u. (137)

The desired result, thus, follows directly from (136) and (137).

To show part (c), write

Y 02n
¡
PZn

− PXn

¢
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, (138)

where, given Assumption 2, both sides of equation (138) are well-defined with probability one for n sufficiently

large. Now, since it is assumed in this part that Kn

rn
→ 0 as n → ∞, it follows from parts (a) and (f) of lemma

A1 and from part (b) of lemma A3 that

Y 02n
¡
PZn

− PXn

¢
Y2n

rn
= Ψn + op(1), (139)

where, again, we note that, given part (a) of Lemma A1, we see that Ψn is positive definite almost surely for n

sufficiently large. Moreover, note that, for n sufficiently large, we can write

Y 02n
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− PXn

¢
un

rn
=
C0nZ0nQXnun

bnrn
+

µ
Kn
rn

¶
V 0n
¡
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¢
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, (140)

so that

Y 02n
¡
PZn

− PXn

¢
un

rn

p→ 0, as n→∞, (141)

given part (e) of lemma A1 and part (a) of Lemma A3 and given the assumption that Kn

rn
→ 0 as n→∞. Next,

write

bβ2SLS,n − β0 =

"Y 02n ¡PZn
− PXn

¢
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In view of (139) and (141), it follows immediately by the Slutsky’s theorem that"
Y 02n

¡
PZn

− PXn

¢
Y2n

rn

#+ "
Y 02n

¡
PZn

− PXn

¢
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rn
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and "
Y 02n

¡
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− PXn

¢
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rn
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Y 02n
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¢
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#
p→ 0, (144)

from which we deduce that bβ2SLS,n
p→ β0 as required. ¤
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