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Abstract

This paper analyzes conditions under which various single-equation estimators are asymptot-
ically normal in a simultaneous equations framework with many weak instruments. In particular,
our paper adds to the many instruments asymptotic normality literature, including papers by
Morimune (1983), Bekker (1994), Angrist and Krueger (1995), Donald and Newey (2001), Hahn,
Hausman, and Kuersteiner (2001), and Stock and Yogo (2003). We consider the case where in-
strument weakness is such that rn, the rate of growth of the concentration parameter, is slower

than Kn, the growth rate of the number of instruments, but such that
√
Kn

rn
→ 0 as n→∞. In

this case, the rate of convergence is shown to be rn√
Kn
. We also show that formulae for the as-

ymptotic variances of various single-equation estimators are different from those obtained under
assumptions of stronger instruments, i.e., cases where rn is assumed to grow at the same rate or
at a faster rate than Kn. An interesting finding of this paper is that, for the case we study here,
both the LIML and the Fuller estimators can be shown to be asymptotically more efficient
than the B2SLS estimator not just for the case where the error distributions are assumed to
be Gaussian but for all error distributions that lie within the elliptical family.
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1 Introduction

Amongst Peter C. B. Phillips’s many contributions to econometrics are two papers which explore

the theoretical properties of conventional econometric procedures in models which suffer from a

lack of identification. These papers, Phillips (1989) and Choi and Phillips (1992), were the first to

derive both finite sample and asymptotic distributions of the instrumental variables (IV) estimator

in a simultaneous equations system with identification failure. One of the key findings of Phillips

(1989) and Choi and Phillips (1992) is that, when the model is underidentified, the IV estimator

is inconsistent and converges to a random variable, reflecting the fact that even in the limit the

estimation uncertainty does not go away due to the lack of identification.

Since the work of Phillips and Choi and Phillips, research on econometric models with iden-

tification problems has picked up steam and the area is currently one of the most active ones in

econometrics. In particular, econometricians have become interested in the case where the model is

weakly identified (or nearly unidentified), which, in the context of an IV regression, translates to the

case where the instruments are only weakly correlated with the endogenous explanatory variables.

Indeed, in recent years, it has become popular to model weak instruments using the local-to-zero

asymptotic framework of Staiger and Stock (1994), which takes the coefficients of the instruments

in the first-stage regression to be in a n−
1
2 shrinking neighborhood of the origin, where n denotes

the sample size1. An essential feature of the Staiger-Stock local-to-zero device is that it keeps the

so-called concentration parameter from diverging as the sample size approaches infinity, so that,

under their framework, conventional k-class estimators, such as the two-stage least squares (2SLS)

and the limited information maximum likelihood (LIML) estimator, exhibit asymptotic behaviour

similar to that which occurs in the underidentified case, at least when the number of instruments

is held fixed as the sample size is allowed to approach infinity. More specifically, under the Staiger-

Stock local-to-zero framework, conventional k-estimators can be shown to be inconsistent and, in

fact, converges weakly to nonstandard distributions.

More recently, Chao and Swanson (2002b) argue that there may be benefits to using a large

number of instruments when the available instruments are of poor quality. In particular, they show

that by allowing the number of instruments to increase to infinity with the sample size, the growth

of the concentration parameter may be accelerated sufficiently, so that consistent estimation may

become achievable even when all available instruments are weak in the local-to-zero sense. In this

case, the choice of estimator becomes important, as not all estimators are equally susceptible to

instrument weakness. Along these lines, Chao and Swanson show that single-equation estimators

satisfying certain condtions, such as the LIML estimator and the Jackknife Instrumental Variables

Estimators (JIV E), are consistent even when instrument weakness is such that the rate at which

the concentration parameter grows, say rn, is slower than the rate of expansion of the number of

instruments, say Kn, so long as
√
Kn

rn
→ 0 as n → ∞2. On the other hand, the 2SLS estimator

1Other interesting papers which make use of the local-to-zero setup include Wang and Zivot (1998) and Kleibergen

(2002).
2One version of the JIV E estimator was introduced by Phillips and Hale (1977). Other versions of JIV E
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is only consistent if rn approaches infinity faster than Kn
3. In addition, asymptotic distributions

for various k-class estimators in the case where rn approaches infinity at the same rate as Kn (i.e.,
Kn
rn
→ α for 0 < α < ∞) have now been derived by Stock and Yogo (2003). Overall, the work

of Chao and Swanson (2002b) and Stock and Yogo (2003) can be viewed as adding to the many

instrument asymptotic results of Morimune (1983), Bekker (1994), Angrist and Krueger (1995),

Donald and Newey (2001), and Hahn, Hausman, and Kuersteiner (2001) by considering a weakly

identified IV regression model with a local-to-zero structure.

The purpose of the present paper is to further extend the results presented in Chao and Swanson

(2002b) and in Stock and Yogo (2003). More precisely, we extend the asymptotic normality results

obtained by Stock and Yogo (2003) for LIML, Fuller’s modified LIML (FLIML, henceforth),

and the Bias-adjusted Two Stage Least Squares (B2SLS) estimators to the case where instrument

weakness is such that the rate of growth of the concentration parameter rn is slower than the

rate of growth of the number of instruments Kn but such that
√
Kn

rn
→ 0 as n → ∞. Thus, we

obtain asymptotic normality results in situations with weaker instruments than has been assumed

by other papers using the many instruments setup. The rate of convergence in our case is shown

to be rn√
Kn
, which is slower than the rate of convergence to normality obtained by other authors,

and which reflects our assumption of weaker instruments. Formulae for the asymptotic variances

of the estimators are also shown to be different from those obtained under assumptions of stronger

instruments, i.e., cases where rn is assumed to grow at the same rate or at a faster rate than Kn.

An additional finding of this paper is that, for the case studied in this paper, both the LIML

and the FLIML estimators can be shown to be asymptotically more efficient than the B2SLS

estimator not just for the case where the error distributions are assumed to be Gaussian but for all

error distributions that lie within the elliptical family.

The rest of the paper proceeds as follows. Section 2 sets up the model and discusses our asump-

tions. Section 3 presents the main results of the paper and briefly comments on the implications.of

these results. Concluding remarks are given in Section 4, and all proofs are gathered in two ap-

pendices. The following notation is used in the remainder of the paper: Tr(·) denotes the trace
of a matrix, “ > 0” denotes positive definiteness when applied to matrices, lim

n→∞
an denotes the

limit inferior of the sequence {an}, and lim
n→∞an denotes the limit superior of the sequence {an}. In

addition, PX = X(X
0X)−1X 0 denotes the matrix which projects orthogonally onto the range space

of X and MX = I − PX .
have since been introduced and studied independently by Angrist, Imbens, and Krueger (1999) and Blomquist and

Dahlberg (1999).
3Note, however, that, in a fascinating recent paper, Phillips and Han (2003) show that in models with an intercept

term, some linear combination of the structural coefficient may be consistently estimable even if the instruments are

completely irrelevant.
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2 Model and Assumptions

Consider the following two-equation simultaneous equations model (SEM)

y1n = y2nβ +Xnγ + un, (1)

y2n = Znπ +Xnϕ+ vn, (2)

where y1n and y2n are n×1 vectors of observations on the 2 endogenous variables of the system, Xn
is an n×J matrix of observations on the J exogenous variables included in the structural equation
(1), Zn is an n×Kn matrix of observations on theKn instrumental variables, or exogenous variables
excluded from the structural equation (1), and un and vn are n×1 vectors of random disturbances4.
Further, let ηi = (ui, vi)

0 where ui and vi are the ith component of the random vectors un and vn,

respectively. The following assumptions are used in the sequel.

Assumption 1: π = πn =
cn
bn
for some sequence of positive real numbers {bn} , nondecreasing in

n, and for some sequence of nonrandom, Kn × 1 parameter vectors {cn} .
Assumption 2: Let

©
Zi,n : i = 1, ..., n; n ≥ 1

ª
be a triangular array of RKn+J -valued random

variables, where Zi,n = (Z 0i,n, X
0
i,n)

0 with Z 0i,n and X
0
i,n denoting the ith row of the matrices Zn

and Xn, respectively. Moreover, suppose that:

(a) Kn →∞ as n→∞ such that Kn
n → α for some constant α satisfying 0 ≤ α < 1.

(b) Let m1n %∞ as n→∞, and suppose that there exist constants Dλ and Dλ, with 0 < Dλ ≤
Dλ <∞, such that

Dλ ≤ lim
n→∞

λmin

Ã
Z
0
nZn
m1n

!
a.s. (3)

and

lim
n→∞λmax

Ã
Z
0
nZn
m1n

!
≤ Dλ a.s., (4)

where Zn = (Zn Xn).

(c) There exist a sequence of positive real numbers {m2n} , nondecreasing in n, and constants
Dc and Dc, with 0 < Dc ≤ Dc <∞, such that

Dc ≤ lim
n→∞

µ
c0ncn
m2n

¶
(5)

and

lim
n→∞

µ
c0ncn
m2n

¶
≤ Dc. (6)

Assumption 3: Zn and ηi are independent for all i and n.

4Although we only study the case with one endogenous explanatory variable, generalization to the case with an

arbitrary number of endogenous explanatory variables is straightforward. We do not pursue this generlization here

because it complicates notations but does not change the qualitative features of our results.
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Assumption 4:

(a) ηi ≡ i.i.d.(0,Σ), where Σ> 0, and partition Σ conformably with (ui, vi)0 as Σ =
µ

σuu σvu
σvu σvv

¶
.

(b) There exists some constant Dη, with 0 < Dη <∞, such that max
©
E
¡
u8i
¢
, E
¡
v8i
¢ª
≤ Dη.

(c) E
¡
u3i
¢
= E

¡
v3i
¢
= E

¡
u2i vi

¢
= E

¡
uiv

2
i

¢
= 0.

Assumption 5: Define the ratio rn =
m1nm2n
b2n

. Suppose that, as n→∞, rn →∞ such that rnKn
→ 0

but
√
Kn

rn
→ 0.

Remark 2.1: (i) Assumptions 1 and 2 are the same as corresponding assumptions that were made

in Chao and Swanson (2002b). As explained in that paper, these assumptions imply that there

exists a positive integer N such that, for all n ≥ N , 0 < DλDc ≤
π0nZ0nMXnZnπn

rn
≤ DλDc <∞ with

probability one, so that the concentration parameter π0nZ 0nMXnZnπn grows at the rate rn =
m1nm2n
b2n

.

(ii) Assumption 4(c) impose a certain symmetry on the distribution of the disturbances of the

simultaneous equations model given by equations (1) and (2). Similar conditions have also been

assumed in the paper by Koenker and Machado (1999), which examines the asymptotic properties

of a GMM estimator as the number of moment conditions goes to infinity with the sample size.

Note also that our Assumption 4 is satisfied by all distributions within the elliptical family which

have finite eighth moments.

(iii) Assumption 6 focuses attention on the case where the concentration parameter grows at a

slower rate than the number of instruments Kn but at a faster rate than
√
Kn. To the best

of our knowledge, this is a case for which the asymptotic normality of various IV estimators,

such as LIML, FLIML, and B2SLS, has not been established previously. In particular, earlier

papers by Morimune (1983) and Bekker (1994) studied the case where rn ∼ n, i.e., the case

where concentration parameter diverges at the same rate as the sample size, so that those papers

consider situations where the concentration parameter either grows at the same rate as Kn (if
Kn
n → α for some constant α such that 0 < α < 1) or at a faster rate than Kn (if

Kn
n → 0).

In addition, as part of a larger paper on choosing the number of instruments using (asymptotic)

mean-square error formulae of various IV estimators, Donald and Newey (2001) present a proof of

the asymptotic normality of LIML in a many-instruments setup when rn ∼ n. Finally, a recent
paper by Stock and Yogo (2003), which derives the limiting distributions of LIML, FLIML, and

B2SLS within a many weak instruments framework, also considers a case different from ours, as

these authors assume that rn and Kn grow at the same rate. Since the concentration parameter is

a natural measure of instrument weakness, as pointed out by Phillips (1983), Rothenberg (1983),

Stock and Yogo (2001), and others, our analysis here can be viewed as considering cases where

the instruments are weaker than that investigated by other authors using a many-instruments

asymptotic framework. As we will show in the next section of the paper, the case we study here

is also interesting because the weaker instruments lead to rate of convergence and asymptotic

variances that are different vis-à-vis that obtained by assuming faster growth of the concentration

parameter relative to Kn.
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(iv) Note that our assumptions involve a tradeoff of conditions relative to Donald and Newey (2001)

and Stock and Yogo (2003). In particular, we do not make i.i.d. assumptions on the triangular array

of exogenous variables Zi,n. Thus, our assumptions on the exogenous variables are weaker than

those made in Donald and Newey (2001) and Stock and Yogo (2003). On the other hand, we make

more stringent assumptions on the moments of the error distributions. In addition to the symmetry

condition discussed in Remark 2.1(ii) above, our Assumption 4(b) require the error distributions to

possess finite eighth moments, whereas Donald and Newey (2001) and Stock and Yogo (2003) only

assume finite fourth moments. Finally, our Assumption 2(a) impose a less stringent condition on

the rate of increase of the number of instruments relative to Donald and Newey (2001) and Stock

and Yogo (2003). While Donald and Newey (2001) require that Kn
n → 0 as n→∞ in deriving their

asymptotic normality result for LIML and while Stock and Yogo (2003) require that K
2
n
n → 0, we

require only that Kn
n → α, with 0 ≤ α < 1, so that the results of this paper will hold with Kn

growing either at the same rate as n or at a slower rate relative to n.

3 Asymptotic Normality of Single-Equation Estimators

We focus our analysis on the following three estimators:

1. Limited Infomation Maximum Likelihood (LIML) Estimator

bβLIML,n = ³y02nMXny2n − bλLIML,ny02nMZn
y2n

´−1 ³
y02nMXny1n − bλLIML,ny02nMZn

y1n

´
,
(7)

where bλLIML,n is the smallest root of the determinantal equation:
det

½µ
y01nMXny1n y01nMXny2n
y02nMXny1n y02nMXny2n

¶
− λn

µ
y01nMZn

y1n y01nMZn
y2n

y02nMZn
y1n y02nMZn

y2n

¶¾
= 0 (8)

2. Fuller’s Modified LIML (FLIML) Estimator:

bβFLIML,n = ³y02nMXny2n − bkFLIML,ny02nMZn
y2n

´−1 ³
y02nMXny1n − bkFLIML,ny02nMZn

y1n

´
,
(9)

where bkFLIML,n = bλLIML,n − a
n−Kn−J for some positive constant a.

3. Bias-Corrected Two-Stage Least Squares (B2SLS) Estimator:

bβFLIML,n =

µ
y02nMXny2n −

µ
n

n−Kn + 2

¶
y02nMZn

y2n

¶−1
×
µ
y02nMXny1n −

µ
n

n−Kn + 2

¶
y02nMZn

y1n

¶
. (10)
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All three of these estimators are, of course, special cases of the k-class estimator defined by

bβk,n = ¡y02nMXny2n − ky02nMZn
y2n
¢−1 ¡

y02nMXny1n − ky02nMZn
y1n
¢
. (11)

These three estimators are three of the most well-known k-class estimators, and the asymptotic

properties of one or more of these estimators have been studied previously in the many instruments

context by Morimune (1983), Bekker (1994), Donald and Newey (2001) and Stock and Yogo (2003).

However, as discussed above, the purpose of this paper is to derive the asymptotic distributions of

these estimators in the case where the instruments are weaker than that assumed in these earlier

papers.

The following theorems present the main asymptotic results of this paper

Theorem 3.1: (LIML)

Let bβLIML,n be as defined in equation (7) above. Then, under assumptions 1-5,µ
Ψn
σL,n

¶³bβLIML,n − β0

´
d→ N (0, 1) as n→∞,

where Ψn = b
−2
n c

0
nZ

0
nMXnZncn, where

σ2L,n =
£
E
¡
u2jv

2
j

¢
− σ2uv

¤ nX
j=1

E
¡
g2jj,n

¢
+

σ2uv
σ2uu

£
E
¡
u4j
¢
− σ2uu

¤ nX
j=1

E
¡
g2jj,n

¢
−2σuv

σuu

£
E
¡
u3jvj

¢
− σuuσuv

¤ nX
j=1

E
¡
g2jj,n

¢
+2
¡
σuuσvv − σ2uv

¢ X
1≤ i < j ≤ n

E
¡
g2ij,n

¢
, (12)

and where gjj,n and gij,n denote, respectively, the j
th diagonal element and the (i, j)th element of

the matrix Gn = PZn − PXn −
³

Kn
n−Kn−J

´
MZn

.

Theorem 3.2: (FLIML)

Let bβFLIML,n be as defined in equation (9) above. Then, under assumptions 1-5,µ
Ψn
σL,n

¶³bβFLIML,n − β0

´
d→ N (0, 1) as n→∞,

where Ψn and σL,n are as defined in Theorem 3.1 above.

Theorem 3.3: (B2SLS)

Let bβB2SLS,n be as defined in equation (10) above. Then, under assumptions 1-5,µ
Ψn
σB,n

¶³bβB2SLS,n − β0

´
d→ N (0, 1) as n→∞,
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where Ψn is as defined in Theorem 3.1 and where

σ2B,n =
£
E
¡
u2jv

2
j

¢
− σ2uv

¤ nX
j=1

E
¡
g2jj,n

¢
+ 2

¡
σuuσvv + σ2uv

¢ X
1≤ i < j ≤ n

E
¡
g2ij,n

¢
, (13)

with gjj,n and gij,n is as defined in Theorem 3.1.

Remark 3.2: (i) Note that Lemma A4 part (b) in the appendix shows that σ2L,n and σ2B,n grow

at the same rate as Kn as n → ∞. If we make the additional assumptions that, as n → ∞,
Ψn = r−1n Ψn

a.s.→ Ψ, σ2L,n → σ2L, and σ2B,n → σ2B for positive constants Ψ, σ
2
L, and σ2B; then the

asymptotic normality results given in Theorems 3.1-3.3 can be restated as

rn√
Kn

³bβLIML,n − β0

´
d→ N

³
0,σ2LΨ

−2´
,

rn√
Kn

³bβFLIML,n − β0

´
d→ N

³
0,σ2LΨ

−2´
,

rn√
Kn

³bβB2SLS,n − β0

´
d→ N

³
0,σ2BΨ

−2´
.

Interestingly, under Assumption 5, bβLIML,n, bβFLIML,n, and bβB2SLS,n are all consistent, but the rate
of convergence is rn√

Kn
, which depends both on the rate of growth of the concentration parameter rn

and on the rate of increase of the number of instruments. Note further that under Assumptions 2(a)

and 5, rn√
Kn

= o (
√
n), so this rate of convergence is slower than the usual

√
n rate of convergence.

This slower rate of convergence, in turn, reflects the fact that here we are studying the case where

the instruments are weaker than that under the conventional strong identification case, where the

concentration parameter grows at the rate n.

(ii) It is of interest to briefly compare the results we obtained here under Assumption 5 with results

which occur in cases where rn is assumed to grow at the same rate or at a faster rate than Kn. Such

a comparison illuminates the differences between our results and those obtained by other authors

employing a many-instruments setup.

To begin, note that, in general, it can be shown that the three estimators studied here have the

generic (asymptotic) representation

Ψn
σ·,n

³bβ − β0

´
=
f 0nun + d1v0nGnun + d2u0nGnun

σ·,n
+ op (1) , (14)

where

d2 =

(
−σuv

σuu
for bβLIML,n, bβFLIML,n

0 for bβB2SLS,n ,

where

σ2·,n =

(
σ2L,n + σuuE (f

0
nfn) for bβLIML,n, bβFLIML,n

σ2B,n + σuuE (f
0
nfn) for bβB2SLS,n ,

with σ2L,n and σ2B,n as defined in expressions (12) and (13) above, and where Ψn =
c0nZ0nMXnZncn

b2n
,

fn = b
−1
n MXnZncn, and d1 = 1 for all three estimators. Under Assumption 5,

f 0nun
σ·,n = op(1), so that
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the asymptotic distributions of the estimators depend only on the bilinear part of (14), i.e.,

Ψn
σ·,n

³bβ − β0

´
=
d1v

0
nGnun + d2u

0
nGnun

σ·,n
+ op (1) .

It is of interest to first compare our case with the case studied recently by Stock and Yogo

(2003), which assumes that rn grows at the same rate asKn. In the Stock-Yogo case, the asymptotic

distributions of LIML, FLIML, and B2SLS depend on both the linear part, f
0
nun
σ·,n , and the bilinear

part d1v
0
nGnun+d2u

0
nGnun

σ·,n . Thus, the general form of the asymptotic variance for these estimators in

the Stock-Yogo case is different from that which we obtained in Theorems 3.1-3.3 and in Remark

3.2(i) above, as the asymptotic variance in their case also depends on contribution from the linear

component. In addition, Stock and Yogo (2003) find the rate of convergence in their case to be√
Kn. This is the same as our rate of convergence of

rn√
Kn

in the case where rn ∼ Kn. However, for
rn = o (Kn), our rate of convergence is slower than theirs, reflecting the fact that we treat a case

with weaker instruments.

It should be noted that earlier papers by Morimune (1983) and Bekker (1994) have also examined

the case where the concentration parameter grows at the same rate as the number of instruments,

but those papers differ from Stock and Yogo (2003) and also from this paper in that they assume

rn and Kn to grow at the same rate as the sample size n. Hence, the situation studied in those

papers might be better characterized as one with strong, as opposed to weak, instruments.

Finally, in the case where rn grows faster than Kn,

d1v
0
nGnun + d2u

0
nGnun

σ·,n
= op(1),

and the asymptotic distributions depend only on the linear part, f
0
nun
σ·,n and not on the bilinear

component at all. Thus, the general form of the asymptotic variance of LIML, FLIML, and

B2SLS in this case is also qualitative different from what we derived under Assumption 5. The

case where rn grows faster thanKn is one which has been well studied in the literature. In particular,

and as mentioned above, Donald and Newey (2001) derive asymptotic normality results for LIML

under the assumptions that rn ∼ n and Kn
n → 0, as n → ∞. Note also that the case where rn

grows faster than Kn includes the conventional case with full identification and
√
n convergence

of estimators to asymptotic normal distributions, since the conventional setup can be obtained by

assuming rn ∼ n and taking Kn to be fixed for all n.
(iii) Note further that Theorem 3.1-3.3 show that LIML and FLIML are asymptotically equiv-

alent. However, the B2SLS estimator is not asymptotically equivalent to LIML or FLIML.

Indeed, the following result shows that if the distribution of the disturbances of the simultaneous

equations system (1)-(2) are taken to belong to the family of elliptically distributions with finite

eighth moments, then LIML and FLIML can be shown to be asymptotically more efficient than

B2SLS.

Theorem 3.4: Suppose that Assumptions 1-5 hold. Suppose, in addition, that ηi ∼ E2 (0,Ξ),
where Ξ = τΣ for some positive constant τ and where E2 (0,Ξ) is as defined in Definition A1 of
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Appendix A with m = 2. Then, there exists a positive integer N such that for all n ≥ N ,

σ2B,n > σ2L,n. (15)

Note that when the error distribution is Gaussian, LIML and FLIML have interpretations as

maximum likelihood (ML) estimators, so one would expect LIML and FLIML to be more effi-

cient than B2SLS within a many-weak-instruments asymptotic framework. However, our result

shows that even when the errors are non-Gaussian but lie within the elliptical family, in which

case LIML and FLIML do not have strict interpretations as ML estimators, these estimators are

still asymptotically more efficient than B2SLS within the local-to-zero, many instruments frame-

work studied in this paper. This result is consistent with the asymptotic mean square error results

obtained by Donald and Newey (2001) for these estimators under the assumption of i.i.d. instru-

ments. With regard to the relative efficiency of LIML vis-à-vis the B2SLS estimator, our results

might be viewed as extending the work of Donald and Newey (2001) both to the case with weaker

instruments and to the case where the instruments are possibly not i.i.d.

(iv) Another well-known k-class estimator is the (unadjusted) Two-Stage Least Squares (2SLS)

estimator. However, we did not derive the asymptotic distribution of this estimator here because,

as shown in Chao and Swanson (2002b), the 2SLS estimator is inconsistent under Assumption 5.

More specifically, part (a) of Theorem 3.4 of Chao and Swanson (2002b) shows that, when rn
Kn
→ 0

as n→∞, bβ2SLS,n p→ β0 +
σvu
σvv

.

Note further that, as shown in Chao and Swanson (2002a), β0+
σvu
σvv

is also the probability limit of

the Ordinary Least Squares (OLS) estimator in a local-to-zero framework, so that the 2SLS and

the OLS estimators have the same asymptotic bias in the case where the concentration parameter

grows at a slower rate than the number of instruments. Hence, under Assumption 5, both 2SLS

and OLS are asymptotically deficient relative to the three estimators studied in this paper.

4 Concluding Remarks

This paper derives the limiting distributions of the LIML, FLIML, and B2SLS estimators in a

many weak instruments setup where the concentration parameter is assumed to grow at a slower

rate than the number of instruments Kn but at a faster rate than
√
Kn. Thus, we have obtained

asymptotic normality results for these estimators in situations with weaker instruments than in

previous papers that use the many instruments asymptotic framework. In our context, both the

rate of convergence and the form of the variance of the limiting distributions are different than for

cases where the instruments are stronger, i.e., cases where the instruments grow at the same rate

or at a faster rate than Kn. In addition, in constrast to the conventional full-identification case

where all three estimators are asymptotically equivalent, we find that the B2SLS estimator is not

asymptotically equivalent to LIML and FLIML under the weak instruments scenario studied in

9



this paper. In particular, we show that LIML and FLIML are asymptotically more efficient than

B2SLS if the distribution of the distrubances of the underlying instrumental variables regression

model is assumed to belong to the elliptical family.

5 Appendix

Appendix A

In this appendix, we collect some definitions and preliminary lemmas, which we will use to

prove our main results.

Definition A1: The m × 1 random vector X is said to have an elliptical distribution with

parameters µ (m× 1) and Ξ (m×m) if its density function is of the form

km (detΞ)
−1
2 h
¡
(x− µ)0 Ξ−1 (x− µ)

¢
(16)

for some normalizing constant km and some function h (·), where Ξ is positive definite. (Note: A
similar definition appears in Muirhead, 1982, page 34.)

Lemma A2:

Let

Gn = PZn − PXn −
µ

Kn
n−Kn − J

¶
MZn

(17)

and let gjj,n and gij,n denote, respective, the j
th diagonal element and the (i, j)th off-diagonal

element of the matrix Gn. Then, under Assumptions 2(a) and 2(b), the following statements hold

as n→∞

(a) Tr(G4n) = Oa.s.(Kn)

(b)
nP
i=1

nP
j=1

g4ij,n = Oa.s.(Kn),

(c)
P

1≤ i ≤ n

" P
1≤ j < k ≤ n

g2ij,ng
2
ik,n

#
= Oa.s.(Kn),

(d)
P

1≤ i < j ≤ n
g2ii,ng

2
ij,n = Oa.s.(Kn),

(e)
P

1≤ i < j ≤ n
g2jj,ng

2
ij,n = Oa.s.(Kn),

(f)
P

1≤ i < j < k ≤ n

g2ij,ng
2
ik,n = Oa.s.(Kn),

10



(g)
P

1≤ i < j < k ≤ n

g2ij,ng
2
jk,n = Oa.s.(Kn),

(h)
P

1≤ i < j < k ≤ n

g2ik,ng
2
jk,n = Oa.s.(Kn),

(i) Tr(G2n) = Oa.s.(Kn),

(j)
nP
j=1

g2jj,n = Oa.s.(Kn),

(k)
P

1≤ i < j ≤ n
g2ij,n = Oa.s.(Kn).

Proof of Lemma A2:

To show part (a), note that, by direct calculation,

G4n = PZn − PXn +
µ

Kn
n−Kn − J

¶4
MZn

,

where PZn and PXn , and thus G
4
n, are well-defined with probability one for n sufficiently large given

Assumption 2(b). It follows that, with probability one for n sufficiently large,

1

Kn
Tr
¡
G4n
¢
=

1

Kn

"
Tr
¡
PZn − PXn

¢
+

µ
Kn

n−Kn − J

¶4
Tr
¡
MZn

¢#

= 1 +
K3
n

(n−Kn − J)3
,

so that Tr
¡
G4n
¢
= Oa.s.(Kn) as required.

To show (b), note that, for n sufficiently large with probability one, we have

Tr(G4n) =
X

1≤ i ≤ n

 X
1≤ j ≤ n

g2ij,n

2 + X
1≤ i < j ≤ n

 X
1≤ k ≤ n

gki,ngkj,n

2

+
X

1≤ j < i ≤ n

 X
1≤ k ≤ n

gki,ngkj,n

2

≥
X

1≤ i ≤ n

 X
1≤ j ≤ n

g2ij,n

2 .
≥

nX
i=1

nX
j=1

g4ij,n,

where gij,n denotes the (i, j)
th element of Gn. It follows from the result given in part (a) that

Oa.s. (Kn) = Tr(G
4
n) ≥

nX
i=1

nX
j=1

g4ij,n.

11



Similarly, for part (c), we have, for n sufficiently large with probability one, that

Tr(G4n) ≥
X

1≤ i ≤ n

 X
1≤ j ≤ n

g2ij,n

2

≥ 2
X

1≤ i ≤ n

 X
1≤ j < k ≤ n

g2ij,ng
2
ik,n

 ,
so again the result given in part (a) implies that

Oa.s. (Kn) =
1

2
Tr(G4n) ≥

X
1≤ i ≤ n

 X
1≤ j < k ≤ n

g2ij,ng
2
ik,n

 .
To show parts (d)-(h), we note that part (c) of this lemma implies that

Oa.s.(Kn) =
X

1≤ i ≤ n

 X
1≤ j < k ≤ n

g2ij,ng
2
ik,n


= 2

 X
1≤ i < j < k ≤ n

g2ij,ng
2
ik,n +

X
1≤ i < j ≤ n

g2ii,ng
2
ij,n +

X
1≤ i < j < k ≤ n

g2ij,ng
2
jk,n

+
X

1≤ i < j ≤ n

g2jj,ng
2
ij,n +

X
1≤ i < j < k ≤ n

g2ik,ng
2
jk,n

 (18)

The results stated in parts (d)-(h) then follow directly from the expression on the right-hand side

of the last equality in (18) above since each term of the sum which comprises that expression is

non-negative.

The proofs for parts (i)-(k) are very similar to the proofs for parts (a)-(h) by noting that

G2n = PZn − PXn +
µ

Kn
n−Kn − J

¶2
MZn

.

Hence, to avoid redundancy, we omit these proofs. ¤

Lemma A3:

Let Gn and gjj,n and gij,n be as defined in Lemma A2. Then, under Assumptions 2(a) and 2(b)

as n→∞,
P

1≤ i < j ≤ n

³
E
³
g2ij,n

´´2
= O(Kn) and

P
1≤ i < j < k ≤ n

E
³
g2ij,n

´
E
³
g2ik,n

´
= O(Kn).
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Proof of Lemma A3: To proceed, note that part (a) of Lemma A2 implies that

O (Kn) = E
£
Tr
¡
G4n
¢¤

≥ E

 X
1≤ i ≤ n

 X
1≤ j ≤ n

g2ij,n

2
≥

nX
i=1

 nX
j=1

E
¡
g2ij,n

¢2

≥
X

1≤ i < j ≤ n

¡
E
¡
g2ij,n

¢¢2
+

X
1≤ i < j < k ≤ n

E
¡
g2ij,n

¢
E
¡
g2ik,n

¢
, (19)

where the second inequality above follows from application of the Jensen’s inequality. The desired

result follows immediately from (19) by noting that both
P

1≤ i < j ≤ n

³
E
³
g2ij,n

´´2
andP

1≤ i < j < k ≤ n

E
³
g2ij,n

´
E
³
g2ik,n

´
are non-negative, so they cannot be of an order greater than Kn.

Lemma A4: Define the bilinear form

Wn = d1v
0
nGnun + d2u

0
nGnun, (20)

where d1and d2 are constants and Gn is as defined in (17) above. Let σ
2
Wn

denote the variance of

Wn. Suppose Assumptions 2-4 hold, then

(a) σ2Wn
=

nP
j=1

d21E
³
g2jj,n

´ h
E
³
u2jv

2
j

´
− σ2uv

i
+

nP
j=1

d22E
³
g2jj,n

´ h
E
³
u4j

´
− σ2uu

i
+ 2

(
nP
j=1

d1d2E
³
g2jj,n

´ h
E
³
u3jvj

´
− σuuσuv

i)
+ 2

( P
1≤ i < j ≤ n

d21E
³
g2ij,n

´¡
σuuσvv + σ2uv

¢
+ 2

P
1≤ i < j ≤ n

d22E
³
g2ij,n

´
σ2uu + 4

P
1≤ i < j ≤ n

d1d2E
³
g2ij,n

´
σuuσuv

)
(b) σ2Wn

³ Kn,

where gjj,n and gij,n denote, respective, the j
th diagonal element and the (i, j)th off-diagonal element

of the matrix Gn and where, for two sequences xn and yn, the notation “xn ³ yn” means that xn
is of the same order as yn, i.e., xn ³ yn if and only if xn = O (yn) and yn = O (xn).

Proof of Lemma A4:

To show part (a), note that we can write Wn =
nP
j=1

Wjn, where

Wjn = d1gjj,n (ujvj − σuv) +
X

1≤ i < j

d1gij,n (viuj + vjui)

+d2gjj,n
¡
u2j − σuu

¢
+ 2

X
1≤ i < j

d2gij,nuiuj (21)
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and where expression (21) has made use of the fact that Gn is a symmetric matrix. Moreover,

given that ηi = (ui, vi) is an independent sequence by Assumption 4(a), it is easy to see that

σ2Wn
=

nP
j=1

E
³
W 2
jn

´
. It follows by straightforward calculation that

σ2Wn
=

nX
j=1

d21E
¡
g2jj,n

¢ £
E
¡
u2jv

2
j

¢
− σ2uv

¤
+

nX
j=1

d22E
¡
g2jj,n

¢ £
E
¡
u4j
¢
− σ2uu

¤
+2


nX
j=1

d1d2E
¡
g2jj,n

¢ £
E
¡
u3jvj

¢
− σuuσuv

¤
+2

 X
1≤ i < j ≤ n

d21E
¡
g2ij,n

¢ ¡
σuuσvv + σ2uv

¢
+ 2

X
1≤ i < j ≤ n

d22E
¡
g2ij,n

¢
σ2uu

+ 4
X

1≤ i < j ≤ n

d1d2E
¡
g2ij,n

¢
σuuσuv

 (22)

as required.

To show part (b), we first show that σ2Wn
is at most of order Kn. To show this, note that

σ2Wn
=


nX
j=1

d21E
¡
g2jj,n

¢ £
E
¡
u2jv

2
j

¢
− σ2uv

¤
+

nX
j=1

d22E
¡
g2jj,n

¢ £
E
¡
u4j
¢
− σ2uu

¤
2

nX
j=1

d1d2E
¡
g2jj,n

¢ £
E
¡
u3jvj

¢
− σuuσuv

¤
+2

 X
1≤ i < j ≤ n

d21E
¡
g2ij,n

¢ ¡
σuuσvv + σ2uv

¢
+ 2

X
1≤ i < j ≤ n

d22E
¡
g2ij,n

¢
σ2uu

+ 4
X

1≤ i < j ≤ n

d1d2E
¡
g2ij,n

¢
σuuσuv


≤ 2

¡
d21 + d

2
2 + 2d1d2

¢
D

1
2
η

nX
j=1

E
¡
g2jj,n

¢
+4
¡
d21 + 2d

2
2 + 4d1d2

¢
D

1
2
η

X
1≤ i < j ≤ n

E
¡
g2ij,n

¢
= O (Kn) , (23)

where the last equality is implied by parts (j) and (k) of Lemma A2.
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Next, we show that σ2Wn
is not of an order lower than Kn. To proceed, note that

σ2Wn
= $21

 nX
j=1

E
£
g2jj,n

¤+ 2$22
 X
1≤ i < j ≤ n

E
£
g2ij,n

¤
≥ $2∗

 nX
i=1

nX
j=1

E
£
g2ij,n

¤
= $2∗E

£
Tr
¡
G2n
¢¤

= $2∗

µ
Kn +

K2
n

n−Kn − J

¶
, (24)

where $21 = E
³
d2 [ujvj − σuv] + d3

h
u2j − σuu

i´2
, $22 = E (d2 [ujvi + uivj ] + d3uiuj)

2, and $2∗ =
min

©
$21,$

2
2

ª
and where the last equality follows from direct calculation. The desired result follows

immediately from expressions (23) and (24) given Assumption 2(a). ¤

Lemma A5: Let Gn be as defined in (17) above and let gjj,n and gij,n denote, respective, the j
th

diagonal element and the (i, j)th off-diagonal element of the matrix Gn. Then, under Assumption

2-4 as n→∞,
1

K2
n

X
1≤ i < j < k < l ≤ n

E (gik,ngjk,ngil,ngjl,n) = o (1) (25)

Proof of Lemma A5:

We will prove this lemma in two steps. First, we will show that

1

K2
n

X
1≤ i < j < k < l ≤ n

[gik,ngjk,ngil,ngjl,n + gij,ngjk,ngil,ngkl,n + gij,ngik,ngjl,ngkl,n]

= oa.s (1) . (26)

We will then use (26) to show the desired result (25). To proceed, first define

Gn = Gn − dg (Gn) ,

where dg (Gn) = diag (g11,n, ...., gnn,n), i.e., dg (Gn) is an n × n diagonal matrix whose diagonal
elements are the same as that of Gn. Now, note that, by direct calculation, we obtain

Tr(G
4
n) =

X
1≤ i ≤ n

X
j 6=i
g2ij,n

2

+ 2
X

1≤ i < j ≤ n

 X
k 6=i,k 6=j

gki,ngkj,n

2

= 2
X

1≤ i < j ≤ n

g4ij,n

+4
X

1≤ i < j < k ≤ n

£
g2ik,ng

2
jk,n + g

2
ij,ng

2
ik,n + g

2
ij,ng

2
jk,n

¤
+ 8

X
1≤ i < j < k < l ≤ n

[gik,ngjk,ngil,ngjl,n + gij,ngjk,ngil,ngkl,n

+ gij,ngik,ngjl,ngkl,n.] , (27)
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where PZn and PXn and, thus, Gn andG
4
n are each well-defined with probability one for n sufficiently

large in light of Assumption 2(b). Now, let λ1,n ≤ λ2,n ≤ · · · ≤ λn,n be the eigevalues of the matrix

Gn, and note that

Tr(G
4
n) =

nX
i=1

λ4i,n. (28)

Next, observe that part (b) and parts (f)-(h) of Lemma A2 imply that

1

K2
n

X
1≤ j < k ≤ n

g4jk,n = Oa.s.
¡
K−1n

¢
, (29)

1

K2
n

X
1≤ i < j < k ≤ n

£
g2ik,ng

2
jk,n + g

2
ij,ng

2
jk,n + g

2
ij,ng

2
ik,n

¤
= Oa.s.

¡
K−1n

¢
(30)

It follows from equations (27)-(30) that showing that

1

K2
n

X
1≤ i < j < k < l ≤ n

[gik,ngjk,ngil,ngjl,n + gij,ngjk,ngil,ngkl,n + gij,ngik,ngjl,ngkl,n]

= oa.s. (1) , as n→∞,

is equivalent to showing that

1

K2
n

nX
i=1

λ4i,n = oa.s. (1) as n→∞. (31)

To show (31), we first note that, for each n,

λ4n,n ≤
nX
i=1

λ4i,n ≤ λ2n,n

Ã
nX
i=1

λ2i,n

!
(32)
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and

1

Kn

nX
i=1

λ2i,n =
1

Kn
Tr
³
G
2
n

´
≤ 1

Kn

nX
i=1

nX
j=1

g2ij,n

=
1

Kn
Tr
³
G2n − dg (Gn)Gn −Gndg (Gn) + [dg (Gn)]2

´
=

1

Kn
Tr
³
G2n − [dg (Gn)]2

´
=

1

Kn

(
Tr

"
PZn − PXn +

µ
Kn

n−Kn − J

¶2
MZn

#

+
nX
j=1

·µ
n− J

n−Kn − J

¶
pZjj,n − pXjj,n −

µ
Kn

n−Kn − J

¶¸2
≤ 1

Kn

(
Tr

"
PZn − PXn +

µ
Kn

n−Kn − J

¶2
MZn

#

+

µ
n− J

n−Kn − J

¶2 nX
j=1

³
pZjj.n

´2
≤ 1

Kn

(
Kn +

K2
n

n−Kn − J
+

µ
n− J

n−Kn − J

¶2
Kn

)

= 1 +

µ
n− J

n−Kn − J

¶2
+

Kn
n−Kn − J

(33)

where pZjj,n and p
X
jj,n are the j

th diagonal elements of the projection matrices PZn and PXn . It

follows from Assumption 2(a) that 1
Kn

nP
i=1

λ2i,n = Oa.s. (1). Hence, to show (31), we need to show

that

1

Kn
λ2n,n = oa.s. (1) as n→∞. (34)

To show (34), we proceed as follows: let xn be any n × 1 vector such that kxnk = 1 and let xj,n
denote the jth element of xn. Now, consider the quadratic form

x0nG
2
nxn = x0nG

2
nxn − x0n [dg (Gn)Gn]xn

−x0n [Gndg (Gn)]xn + x0n [dg (Gn)]2 xn
≤ x0nG

2
nxn +

¯̄
x0n [dg (Gn)Gn]xn

¯̄
+
¯̄
x0n [Gndg (Gn)]xn

¯̄
+ x0n [dg (Gn)]

2 xn (35)

Note that, for n sufficiently large so that PZn and PXn are well-defined with probability one, we
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have that

x0n [dg (Gn)]
2 xn =

nX
j=1

·µ
n− J

n−Kn − J

¶
pZjj,n − pXjj,n −

µ
Kn

n−Kn − J

¶¸2
x2j,n

≤
µ

n− J
n−Kn − J

¶2 nX
i=1

x2j,n

=

µ
n− J

n−Kn − J

¶2
x0nxn

=

µ
n− J

n−Kn − J

¶2
, (36)

where inequality above follows from the fact that 0 ≤ pZjj,n ≤ 1, 0 ≤ pXjj,n ≤ 1, and
³

Kn
n−Kn−J

´
> 0,

and note that

x0nG
2
nxn ≤ x0nPZnxn + x

0
nPXnxn +

µ
Kn

n−Kn − J

¶2
x0nMZn

xn

≤ 2 +

µ
Kn

n−Kn − J

¶2
, (37)

where the inequality follows from the Rayleigh quotient by making use of the fact that λmax
¡
PZn

¢
=

λmax (PXn) = λmax
¡
MZn

¢
= 1 since PZn , PXn , and MZn

are idempotent matrices. (See pages 203-

204 of Magnus and Neudecker, 1988, for a statement of the Rayleigh quotient.) It then follows from

the Cauchy-Schwarz inequality that¯̄
x0n [dg (Gn)Gn]xn

¯̄
≤

q
x0n [dg (Gn)]

2 xn
p
x0nG2nxn

=

µ
n− J

n−Kn − J

¶s
2 +

µ
Kn

n−Kn − J

¶2
. (38)

Define

∆n =

µ
n− J

n−Kn − J

¶2
+ 2 +

µ
Kn

n−Kn − J

¶2
+2

µ
n− J

n−Kn − J

¶s
2 +

µ
Kn

n−Kn − J

¶2
and note that, for n sufficiently large so that Gn is well-defined with probability one, expressions

(36), (37), and (38) imply that x0nG
2
nxn ≤ ∆n for any n×1 vector xn such that kxnk = 1. Moreover,

since Assumption 2(a) implies that

∆n → 2 +

µ
1

1− α

¶2
+

µ
α

1− α

¶2
+ 2

µ
1

1− α

¶s
2 +

µ
α

1− α

¶2
< ∞,
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so that there exist a positive constant ∆α and a positive integer N such that for all n ≥ N

∆n ≤ ∆α <∞.

It then follows that, for all n ≥ N ,

λ2n,n = max
xn:kxnk=1

x0nG
2
nxn ≤ ∆n ≤ ∆α <∞

with probability one, from which (34) and thus (26) follow immediately as Kn →∞.
Next, we show that (26) implies the desired result (25). To proceed, first define

ζ1n =
X

1≤ i < j < k ≤ n

gik,ngjk,n (vivjσuu + uivjσuv + viujσuv + uiujσvv) ,

and note that

E
¡
ζ21n
¢
=

¡
2σ2uuσ

2
vv + 12σuuσvvσ

2
uv + 2σ

4
uv

¢ X
1≤ i < j < k ≤ n

E
¡
g2ik,ng

2
jk,n

¢

+2
X

1≤ i < j < k < l ≤ n

E (gik,ngjk,ngil,ngjl,n)


Since part (h) of Lemma A2 implies that 1

K2
n

P
1≤ i < j < k ≤ n

E
³
g2ik,ng

2
jk,n

´
= o (1), it follows, given

Assumption 4, that

1

K2
n

X
1≤ i < j < k < l ≤ n

E (gik,ngjk,ngil,ngjl,n) = o (1) (39)

if and only if

1

K2
n

E
¡
ζ21n
¢
= o (1) . (40)

To show equation (40), further define

ζ2n =
X

1≤ i < j < k ≤ n

[gik,ngjk,n (vivjσuu + uivjσuv + viujσuv + uiujσvv)

+gij,ngjk,n (vivkσuu + uivkσuv + viukσuv + uiukσvv)

+gij,ngik,n (vjvkσuu + ujvkσuv + vjukσuv + ujukσvv)] ,

ζ3n =
X

1≤ i < j < k ≤ n

[gij,ngjk,n (vivkσuu + uivkσuv + viukσuv + uiukσvv)

+gij,ngik,n (vjvkσuu + ujvkσuv + vjukσuv + ujukσvv)] ,

and note that ζ1n = ζ2n − ζ3n, so that

E
¡
ζ21n
¢
= E

¡
ζ22n
¢
+E

¡
ζ23n
¢
− 2E (ζ2nζ3n) . (41)
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By direct calculation, we obtain

E
¡
ζ22n
¢
= T1 + 4T2,

where

T1 =
¡
2σ2uuσ

2
vv + 12σuuσvvσ

2
uv + 2σ

4
uv

¢
×

X
1≤ i < j < k ≤ n

E
£
g2ik,ng

2
jk,n + g

2
ij,ng

2
jk,n + g

2
ij,ng

2
ik,n

¤
,

T2 =
¡
2σ2uuσ

2
vv + 12σuuσvvσ

2
uv + 2σ

4
uv

¢ X
1≤ i < j < k < l ≤ n

E (gik,ngil,ngjk,ngjl,n)

+
X

1≤ i < j < k < l ≤ n

E (gij,ngil,ngjk,ngkl,n) +
X

1≤ i < j < k < l ≤ n

E (gij,ngik,ngjl,ngkl,n)

 .
and

E
¡
ζ23n
¢
= T3 + 2T2,

where

T3 =
¡
2σ2uuσ

2
vv + 12σuuσvvσ

2
uv + 2σ

4
uv

¢ X
1≤ i < j < k ≤ n

E
£
g2ij,ng

2
jk,n + g

2
ij,ng

2
ik,n

¤
,

Next, observe that Assumption 4 and Lemma A2 parts (f)-(h) imply that K−2n T1 = o(1) and

K−2n T3 = o(1). In addition, (26) implies that

1

K2
n

X
1≤ i < j < k < l ≤ n

[E (gik,ngjk,ngil,ngjl,n) +E (gij,ngjk,ngil,ngkl,n) +E (gij,ngik,ngjl,ngkl,n)]

= o (1) ,

so that K−2n T2 = o(1) given Assumption 4. It follows that

K−2n E
¡
ζ22n
¢
→ 0, (42)

K−2n E
¡
ζ23n
¢
→ 0. (43)

The Jensen and Cauchy-Schwarx inequalities then imply that, as n→∞,

K−2n |E (ζ2nζ3n)| ≤ K−2n E |ζ2nζ3n| ≤
q
K−2n E

¡
ζ22n
¢q
K−2n E

¡
ζ23n
¢
→ 0.. (44)

K−2n E
¡
ζ21n
¢
→ 0 then follows as a direct consequence of (42), (43), and (44) in view of equation

(41). ¤

Lemma A6: Under Assumptions 1-5, b−1n K
− 1
2

n c0nZ 0nMXnun
p→ 0 as n→∞.
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Proof of Lemma A6:

We will show the mean square convergence of b−1n K
−1
2

n c0nZ 0nMXnun to zero. To proceed, note

that Assumptions and the law of iterated expectations imply that

E

·
c0nZ 0nMXnun

bn
√
Kn

¸
= EZn

"
c0nZ 0nMXnE

¡
un|Zn

¢
bn
√
Kn

#

= EZn

·
c0nZ 0nMXnE (un)

bn
√
Kn

¸
= 0 (45)

E

"µ
c0nZ 0nMXnun

bn
√
Kn

¶2#
= EZn

"
c0nZ 0nMXnE

¡
unu

0
n|Zn

¢
MXnZncn

b2nKn

#

= EZn

·
c0nZ 0nMXnE (unu

0
n)MXnZncn

b2nKn

¸
= σuu

µ
rn
Kn

¶
EZn

·
c0nZ 0nMXnZncn

b2nrn

¸
= O

µ
rn
Kn

¶
= o(1), (46)

given that rn
Kn
→ 0 as n →∞, where the expectation EZn

h
c0nZ0nMXnZncn

b2nrn

i
exists for n sufficiently

large in light of Assumptions 2. The desired result follows immediately from (45) and (46). ¤

Lemma A7: (Gänsler and Stute, 1977)

Let {Xi,n,Fi,n, 1 ≤ i ≤ ln, n ≥ 1} be a square integrable martingale difference array. Also, let
ln %∞ as n→∞, and suppose that for all ε > 0

lnX
i=1

E
£
X2
i,nI (|Xi,n| > ε) | Fi−1,n

¤ P→ 0 (C1)

and

lnX
i=1

E
£
X2
i,n | Fi−1,n

¤ P→ 1. (C2)

Then,
lnP
i=1
Xi,n

d→ N (0, 1) .

Proof of Lemma A7: See Gänsler and Stute (1977).

Remark: Note that, as discussed in Kelejian and Prucha (1999), a sufficient condition for condition

(C1) is the following:
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Condition C1’ :
knX
j=1

E
n
E
h
|Xj,n|2+δ | Fj−1,n

io
→ 0

for some δ > 0.

Since condition C1’ is easier to verify in our case, in the proofs which follow, we will be verifying

condition C1’ instead of condition C1 for the case δ = 2.

Lemma A8: Let Wn be as defined in (20) above and let σ
2
Wn

be the variance of Wn with explicit

formula given in expression (22). Define

Bn = σ−1Wn
Wn. (47)

Then, under Assumptions 2-4,

Bn
d→ N (0, 1) as n→∞.

Proof of Lemma A8:

The proof of this lemma involves verifying conditions C1’ and C2 which jointly imply the central

limit theorem given in Lemma A7. As discussed in the Remark above, we shall verify conditions

C1’ in lieu of condition C1. The proof is, thus, divided into two parts: in part I, we check condition

C1’ and, in part II, we check condition C2.

I. Checking Condition C1’:

As in the proof of Lemma A3, we can write Wn =
Pn
j=1Wjn, where Wjn is as defined in (21)

above. To verify condition C1’ for δ = 2, we need to show that
Pn
j=1E

n¡
σ−1Wn

Wjn

¢4o → 0 as

n→∞. In light of Lemma A4 part (b), this is equivalent to showing that K−2n
Pn
j=1E

³
W 4
jn

´
→ 0

as n → ∞. To proceed, note that direct calculation yields the following expression for the fourth
moment of Wjn

E
¡
W 4
jn

¢
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8X
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Eij,n,

where
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E5j,n = 8
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E7j,n = 8
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Now, making use of Lemmas and Assumption, we see that
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where the inequalities in expressions (48)-(55) are obtained by repeated applications of the Cauchy-

Schwarz and the triangle inequalities. From expressions (48)-(55), it follows immediately that
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II. Checking Condition C2:

First define

Bjn = σ−1Wn
Wjn,

where Wjn and σ2Wn
are as defined in expression (21) and (22), respectively. Now, consider the

σ-fields Fj,n = σ
¡
η1, ...., ηj , Zn

¢
, i = 1, ..., n, and take F0,n to be the trivial σ-field. It follows that

by construction that Fj−1,n ⊆ Fj,n. Moreover, note that Wjn is Fj,n−measurable, and straight-
forward calculation shows that E (Wjn | Fj−1,n) = 0, so that {Wjn,Fj,n, 1 ≤ j ≤ n, n ≥ 1} forms a
martingale difference array.

Hence, to verify condition 2, we need to show
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E
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or, alternatively,
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(58), in turn, is implied by
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in light of the result we obtained in part (b) of Lemma A4. To show (59), we proceed by noting
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A4,n = 4
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Again, making use of Lemma A2 and Assumption 3 and 4, we see that

1

K2
n

|A1,n| ≤ 16
¡
d41 + d

4
2 + 4d

2
1d
2
2

¢
Dη

1

K2
n

X
1≤ i < j ≤ n

E
¡
g4ij,n

¢
+16

¡
d41 + d

4
2 + 4d

2
1d
2
2

¢
Dη

1

K2
n

X
1≤ i < j ≤ n

¡
E
¡
g2ij,n

¢¢2
+64

¡
d41 + d

4
2 + 2d

2
1d
2
2

¢
Dη

1

K2
n

X
1≤ h < i < j ≤ n

E
¡
g2hj,ng

2
ij,n

¢
= O

¡
K−1n

¢
= o(1), (60)

1

K2
n

|A2,n| ≤ 32
¡
d41 + d

4
2 + 4d

2
1d
2
2

¢
Dη

1

K2
n

X
1≤ i < j < k ≤ n

E
¡
g2ij,ng

2
ik,n

¢
+32

¡
d41 + d

4
2 + 4d

2
1d
2
2

¢
Dη

1

K2
n

X
1≤ i < j < k ≤ n

E
¡
g2ij,n

¢
E
¡
g2ik,n

¢
+128

¡
d41 + d

4
2 + 2d

2
1d
2
2

¢
Dη

1

K2
n

X
1≤ h < i < j < k ≤ n

E (ghj,ngij,nghk,ngik,n)

= o(1), (61)

30



1

K2
n

|A3,n| ≤ 8
¡
d21d

2
2 + 8d

3
1d2 + 8d1d

3
2

¢
Dη

1

K2
n

X
1≤ i < j ≤ n

E
¡
g4ij,n

¢
+8
¡
d21d

2
2 + 8d

3
1d2 + 8d1d

3
2

¢
Dη

1

K2
n

X
1≤ i < j ≤ n

¡
E
¡
g2ij,n

¢¢2
+128

¡
d21d

2
2 + 2d

3
1d2 + 3d1d

3
2

¢
Dη

1

K2
n

X
1≤ h < i < j ≤ n

E
¡
g2hj,ng

2
ij,n

¢
= O

¡
K−1n

¢
= o(1), (62)

1

K2
n

|A4,n| ≤ 16
¡
d21d

2
2 + 8d

3
1d2 + 8d1d

3
2

¢
Dη

1

K2
n

X
1≤ i < j < k ≤ n

E
¡
g2ij,ng

2
ik,n

¢
+16

¡
d21d

2
2 + 8d

3
1d2 + 8d1d

3
2

¢
Dη

1

K2
n

X
1≤ i < j < k ≤ n

E
¡
g2ij,n

¢
E
¡
g2ik,n

¢
+256

¡
d21d

2
2 + 2d

3
1d2 + 3d1d

3
2

¢
Dη

1

K2
n

X
1≤ h < i < j < k ≤ n

E (ghj,ngij,nghk,ngik,n)

= o(1), (63)

where the inequalities in expressions (60)-(63) have been obtained by repeated applications of the

Cauchy-Schwarz and the triangle inequalities. The (59) follows directly from expressions ((60)-(63).

¤

Lemma A9: Under assumptions, let bλLIML,n be the smallest root of the determinantal equation
given by (8). Then, under Assumptions 1-5,

bλLIML,n = n− J
n−Kn − J

+

µ √
Kn

n−Kn − J

¶
sGuu
σuu

+ op

µ √
Kn

n−Kn − J

¶
,

where sGuu =
u0nGnun√

Kn
and where Gn is defined in (17) above.

Proof of Lemma A9: To proceed, note first that, by definition, bλLIML,n is the smallest root of
the determinantal equation
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or, in more succinct notation,
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©
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0
nMZn
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ª
= 0, (65)

where Yn = [y1n, y2n] and where the elements of the determinantal equation given above are all

well-defined with probability one for n sufficiently large, as a consequence of Assumption 2. Now,

define Υ =

µ
1 0
−β0 1

¶
and note that the smallest root of equation (64) is the same as the smallest

root of the equation
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where
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and
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Now, let λn =
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n−Kn−J and rewrite (66) as
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which, in turn, can be shown, by straightforward manipulation, to be equivalent to the determi-

nantal equation
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Moreover, it is apparent that bλLIML,n, the smallest root of equation (64), is related to bτLIML,n, the
smallest root of (70), by the equation
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Furthermore, note that bτLIML,n is also the smallest root of the determinantal equation
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Now, rewrite (72) as follows
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where n∗ = n − Kn − J , sGuu =
u0nGnun√

Kn
, sGuv =
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, sGvv =
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Next, using arguments similar to those used to derive results in Lemmas A1 and A2 of Chao and

Swanson (2002b) and also using Theorem 4.5 of White (1984), we can, after ignoring lower order

terms, write
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Explicit calculation of the determinant yieldsµ√
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It follows from the quadratic formula that
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Now, focusing on the square root function
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we note that we can expand R1n as a power series as follows:
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Inserting (76) into (75), we obtain, after minor manipulations,
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The desired result follows immediately by substituting (77) into (71). ¤
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Appendix B

This part of the appendix contains proofs of the main theorems of this paper.

Proof of Theorem 3.1:

By the usual regression algebra, we can write

bβLIML,n − β0 =
³
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 , (78)

where the inverse in (78) exists in probability as n → ∞ in the sense of White (1984) given our

assumptions, as will be shown in expression (81) below. (See page 24 of White, 1984, for a definition

of “existence in probability”) To derive the limiting distribution of (78), first write
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where the first equality above follows from the definition of eλLIML,n. It then follows from Lemmas

A6 and A9 that
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where Gn = PZn−PXn−
³

Kn
n−Kn−J

´
MZn

, where the second equality above from part (d) of Lemma

A2 of Chao and Swanson (2002b), which show that
v0nMZn

un
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p→ σuv, and where the last equality

above follows from arguments similar to that given in part (e) of Lemma A1 of Chao and Swanson

(2002b), which can be used to show that
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√
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= Op(1) and from part (d) of Lemma A2 of

Chao and Swanson (2002b). Note also that by setting d1 = 1 and d2 = −σuv
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in the general formula

(22), we deduce that
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is the variance of the bilinear form v0nGnun − σuv
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u0nGnun. It follows from Lemma A8 above that,

as n→∞,
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Note further that
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where Ψn = r−1n Ψn is nonsingular with probability one for n sufficiently large given Assumption
2, where the second equality above follows from Theorem 3.3 of Chao and Swanson (2002b), and
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where the third equality follows from parts (c) and (f) of Lemma A1. (80) and (81) imply that

µ
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so that µ
Ψn
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as required. ¤

Proof of Theorem 3.2:

By the usual regression algebra, we can write
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where again the inverse in (82) exists in probability as n→∞ in the sense of White (1984) given

our assumptions, as will be shown in expression (84) below. Note that the second equality above

follows from the fact that bkFLIML,n = bλLIML,n− a
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and
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where Ψn is nonsingular with probability one for n sufficiently large given Assumption 2. It follows

immediately from (83) and (84) thatµ
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as required. ¤

Proof of Theorem 3.3:

To proceed, note first that, using the usual regression algebra, we can write
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where the inverse in (85) exists in probability as n → ∞ in the sense of White (1984) given our

assumptions, as will be shown in expression (89) below. Next, note that
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To derive the limiting distribution of (85), we write
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where the fourth equality above follows from arguments similar to that given in part (e) of Lemma

A1 of Chao and Swanson (2002), which can be used to show that
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part (d) of Lemma A2 of Chao and Swanson (2002), which show that
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given Lemma A4 part (b). Note also that by setting d1 = 1 and d2 = 0 in the general formula (22),

we deduce that

σ2B,n =
£
E
¡
u2jv

2
j

¢
− σ2uv

¤ nX
j=1

E
¡
g2jj,n

¢
+ 2

¡
σuuσvv + σ2uv

¢ X
1≤ i < j ≤ n

E
¡
g2ij,n

¢
.

is the variance of the bilinear form v0nGnun. It follows from Lemma A8 above that, as n→∞,
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n Ψn is nonsingular with probability one for n sufficiently large given Assumption 2

and where the third equality follows from parts (a), (c), and (f) of Lemma A1 of Chao and Swanosn

(2002b) and from the fact thatµ
1

n−Kn − J

¶
v0nMZn

vn

σB,n
=

µ√
Kn

σB,n

¶µ
1√
Kn

¶
v0nMZn

vn

n−Kn − J

= Op

µ
K
− 1
2

n

¶
.

using arguments similar to that given to prove part (e) of Lemma A2 of Chao and Swanson (2002b).

(88) and (89) imply that
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as required. ¤
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Proof of Theorem 3.4:

Making use of expressions (12) and (13), we see that
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Since by assumption ηi is E2 (0.Ξ) , we have, as a result of special properties of elliptical distribu-

tions, that
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where κ here denotes the kurtosis parameter of an elliptical distribution as defined in Muirhead

(1982) page 41. It follows that we can rewrite (90) as
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Moreover, Bentler and Berkane (1986) show that the kurtosis parameter κ for a m−variate con-
tinuous elliptical distribution with real positive definite covariance matrix Σ = τΞ must be greater

than −2/ (m+ 2). Setting m = 2, we have that
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