Cross-section Regression with Common Shocks

Donald W. K. Andrews!
Cowles Foundation for Research in Economics
Yale University

April 2003



Abstract

This paper considers regression models for cross-section data that exhibit cross-
section dependence due to common shocks, such as macroeconomic shocks. The
paper analyzes the properties of least squares (LS) and instrumental variables (IV)
estimators in this context. The results of the paper allow for any form of cross-section
dependence and heterogeneity across population units. The probability limits of the
LS and IV estimators are determined and necessary and sufficient conditions are given
for consistency. The asymptotic distributions of the estimators are found to be mixed
normal after re-centering and scaling. ¢, Wald, and F statistics are found to have
asymptotic standard normal, x2, and scaled x? distributions, respectively, under the
null hypothesis when the conditions required for consistency of the parameter under
test hold. But, the absolute values of ¢ statistics and Wald and F' statistics are found
to diverge to infinity under the null hypothesis when these conditions fail. Confidence
intervals exhibit similarly dichotomous behavior. Hence, common shocks are found
to be innocuous in some circumstances, but quite problematic in others.

Models with factor structures for errors, regressors, and I'V’s are considered. Using
the general results, conditions are determined under which consistency of the LS
and IV estimators holds and fails in models with factor structures. The results are
extended to cover heterogeneous and functional factor structures in which common
factors have different impacts on different population units.

Extensions to generalized method of moments estimators are discussed.

Keywords: Asymptotics, common shocks, dependence, exchangeability, factor model,
inconsistency, regression.
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1. Introduction

The regression model estimated by least squares (LS) or instrumental variables
(IV) is the work-horse of econometrics. The properties of LS and IV estimators and
related testing methods have been studied extensively. In particular, there has been
extensive research on the effects on these estimators of key features of economic data
such as simultaneity, measurement errors, left-out variables, heteroskedasticity, and
autocorrelation.

Surprisingly, however, there has been little research on the effects of common
shocks, such as macroeconomic, political, and environmental shocks, on the properties
of LS and IV estimators in cross-section regressions. There has been some research
on models with group effects, e.g., Moulton (1990) and other references listed below,
and on models with spatial autocorrelation, e.g., see Case (1991) and Conley (1999)
and other references listed below. But, this research focuses on shocks that are
predominantly local in nature. Common shocks need not be of this form.

Below we argue that common shocks are, in fact, a likely feature of cross-section
economic data. Then, in the body of the paper, we analyze the effects of common
shocks on the properties of LS and IV estimators and related test statistics.

The population units in cross-section regression are often individuals, households,
or firms, though sometimes they are industries, plants, cities, states, countries, or
products. Common shocks influence each of these different types of population units.
We now discuss a variety of types of common shocks and how they may affect popu-
lation units. Our emphasis is on individuals, households, and firms.

Macroeconomic shocks, both financial and real, impact micro-level population
units. For example, inflation affects nominal wages of individuals; interest rates
affect individual consumption and firm investment; oil price shocks affect firm factor
costs and production; stock market shocks affect individual wealth and firm assets;
and financial crises (including stock market, banking, and foreign exchange crises)
affect individual and firm consumption, investment, and production. Real shocks,
such as aggregate demand and employment shocks, similarly affect the behavior of
individuals and firms.

Federal and state governmental shocks in fiscal and monetary policy cause finan-
cial and real shocks that affect population units. For example, tax changes affect
individual consumption; central bank shocks affect interest rates and inflation and,
hence, individual consumption and nominal wages and firm investment.

Other macroeconomic shocks include changes in international economic agree-
ments (e.g., GATT, WTO, free trade areas, customs unions) that affect individual
consumption and firm level production via their competitive effects. In addition,
large mergers, bankruptcies, and antitrust decisions can cause shocks that are com-
mon across firms and employees at the industry level.

Some results from the estimation of panel models with factor structures provide
direct evidence that macroeconomic shocks affect individual population units. For
example, stock market returns for different companies are found to have a strong
common component.

Note that the impact of common shocks, such as macroeconomic shocks, typically



is not the same across different population units. For example, a stock market shock
affects wealthy individuals much more than poor individuals. An oil price shock
affects airlines and auto companies much more than computer companies. In the
extreme, some common shocks may have no affect on some population units. In the
framework considered below, common shocks are allowed to have different impacts
on different population units depending on the characteristics (possibly observed,
possibly unobserved) of the population units.

In addition to macroeconomic common shocks, there are a myriad of other types
of common shocks that affect micro-level population units. Technology shocks, such
as advances in computer hardware and software, the internet, and other information
technology, affect individual consumer demand and firm productivity.

Legal/institutional shocks include regulatory changes (as have occurred with air-
lines, railroads, trucks, electricity, communications, and banking in the U.S.); fun-
damental statutory changes (such as the Civil Rights Act, Tax Reform Act, and
Americans with Disabilities Act (ADA)); and supreme court decisions. Each of these
shocks affects micro-level units. For example, regulatory changes affect the factor
prices that firms face, and the ADA affects opportunities of individuals with disabil-
ities as well as costs that firms face.

Political shocks include changes in political regimes (such as the fall of commu-
nism in Eastern Europe, the rise of the European Union, changes in government in
democratic societies—exemplified by the election of George W. Bush over Al Gore,
and the rise and fall of dictators—exemplified by Saddam Hussein); changes in policy
of existing regimes; war (including world wars, regional wars, local wars, and civil
wars); terrorism—exemplified by the destruction of the World Trade Center; and
changes in international relations. Again, it is easy to see that these shocks affect
micro-level population units both in the countries in which the political shocks occur
and in other countries.

Environmental shocks include meteorological, i.e., weather, shocks (including el
nino and la nina effects); natural disasters (including floods, earthquakes, droughts,
and forest fires); and man-made disasters (including oil spills, air pollution, over-
fishing, and forest fires). For example, droughts in predominantly agricultural coun-
tries affect food prices, individual consumption, and individual farm production.
Some other environmental shocks, such as global warming and deforestation, may be
sufficiently incremental that they do not have a discernible affect on a cross-section
regression at a given point in time.

Health shocks include diseases (such as AIDS, SARS, and other epidemics) and
medical advances (including vaccines, drugs, and other treatments). Especially in less
developed countries, common health shocks can have pervasive effects on individuals.

Sociological shocks include styles and trends in consumer goods (e.g., mini-vans,
SUVs, and bell bottoms) as well as changes in opportunities for women and minorities.
As with some environmental shocks, some sociological shocks may be too incremental
to have discernible effects on a cross-section regression at a given point in time.

In sum, it seems clear that numerous common shocks occur and affect individual
population units in a given cross-section, whether the units are individuals, house-



holds, firms, or some other units. Furthermore, given the globalization of the econ-
omy, one would expect that the impact of common shocks on micro-level units to
become more pervasive as time passes. The above discussion also indicates that one
expects the effects of common shocks to vary considerably depending on the charac-
teristics of the population unit. Hence, one needs to allow for a heterogeneous impact
of common shocks across population units.

In this paper, we analyze the effects of common shocks on LS and IV estimators
and related tests. We utilize a different probabilistic framework than is usual in sta-
tistics and econometrics. We start by defining random vectors for all units in the
population, not just the observed units, on a given probability space. Then, we con-
sider iid sampling from the population with the randomness in the sampling defined
on the same probability space.? This framework allows for general patterns of cross-
section dependence and heterogeneity, while at the same time yielding asymptotic
results that are remarkably simple. The framework is similar to that used by Conley
(1999) but does not impose a strong mixing assumption.

Using this framework, we address the question of when do common shocks cause
problems for standard methods and when do they not. First, we determine the
probability limit of LS and IV estimators in the general setting. We obtain nec-
essary and sufficient conditions for consistency of the estimators. Next, we specify
standard factor structures for the errors, regressors, and IV’s. We show that con-
sistency holds or fails to hold depending upon the properties of the common factors
and the idiosyncratic components in the models. We extend these results to what
we call heterogeneous factor structures and functional factor structures. In these
factor structures, common shocks are infinite dimensional and the impact of a com-
mon shock on a population unit depends on the characteristics of that unit. Special
cases of the factor structures considered include models with variance components
and models with group structures. But, the factor models covered by the results are
much more general than these models.

Returning to the general setting, we establish that the estimators (suitably nor-
malized) have mixed normal asymptotic distributions. The asymptotic properties of
t, Wald, and F’ statistics are determined. They are found to have asymptotic stan-
dard normal, x?, and scaled x? distributions, respectively, under the null hypothesis
when the necessary conditions for consistency hold. Similarly, the usual confidence
intervals for regression parameters are shown to have asymptotically correct coverage
probabilities when the necessary conditions for consistency hold.

On the other hand, when the conditions for consistency of the parameter under
test do not hold, absolute values of ¢ statistics and Wald and F' statistics diverge to
infinity in probability under the null. Correspondingly, the usual confidence intervals
have coverage probabilities that converge to zero as the sample size goes to infinity.
Such behavior, obviously, is problematic. We conclude that there is a sharp dichotomy
in the behavior of test statistics when common shocks are present depending upon
the assumptions. These results are applied easily to the models discussed above with
standard, heterogeneous, and functional factor structures.

The asymptotic results are obtained by exploiting the exchangeability of the ob-



servations, which results from iid sampling from the population. A law of large num-
bers (LLN) for exchangeable random variables leads to the probability limit results
for the estimators. A martingale difference sequence (MDS) central limit theorem
(CLT) provides the mixed normal asymptotic distributional results. The necessary
and sufficient condition for consistency of the LS slope coefficient estimator is that
the errors are conditionally uncorrelated with the regressors given the o-field C that
is generated by common shocks. The form of C is simple in the case of models with
standard, heterogeneous, or functional factor structures. As noted above, the neces-
sary and sufficient condition holds or fails in the factor structure models depending
on the properties of the factors and idiosyncratic components in the models.

The paper discusses extensions of the results to panel regression models with
a fixed number of time periods T, clustered sampling, and generalized method of
moments (GMM) estimators of moment condition models.

The existing literature on cross-section dependence in cross-section regression
models includes a number of papers on models with group effects (and the closely
related models with variance components and clustered sampling), see Kloek (1981),
Scott and Holt (1982), Greenwald (1983), Pfeffermann and Smith (1985), Moulton
(1986, 1987, 1990), Moulton and Randolf (1989), and Pepper (2002). Donald and
Lang (2001) consider panel regression models with group effects. In these models,
the errors for observations within any given group are correlated (typically equi-
correlated), but the errors (and observations) across different groups are independent.
Thus, these models allow for simple forms of common shocks, but not common shocks
that affect all units in the population, such as many macroeconomic and political
shocks among others.

Conley (1999) considers GMM estimation for cross-section observations that are
assumed to form a stationary strong mixing random field. Conley’s approach is a more
sophisticated and flexible way of handling cross-section dependence than via models
with group effects. The basic idea, however, is similar in that common shocks are
presumed to have predominantly local effects (due to the strong mixing assumption).
Numerous other papers in the spatial econometrics literature consider parametric
models for cross-section dependence that is predominantly local in nature, e.g., see
Anselin (1988), Case (1991), Kelejian and Prucha (1999), Chen and Conley (2001),
and references cited therein. This literature is complementary to the present paper,
which focuses on common shocks that may or may not be local in nature.

There is a growing literature on factor models for panel data in which the number
of time series observations is large and the number of cross-section units may or may
not be large, e.g., see Geweke (1977), Sargent and Sims (1977), Chamberlain and
Rothschild (1983), Forni, Hallin, Lippi, and Reichlin (2000), Forni and Lippi (2001),
Bai and Ng (2001, 2002), Moon and Perron (2002), Pesaran (2002), Phillips and Sul
(2002), Bai (2003), and Stock and Watson (2003). These papers allow for common
shocks in the errors (though not necessarily in the regressors). These papers differ
from the present paper in that we consider common shocks in cross-section models,
rather than in panel models with large T, and we allow for more general forms of
common shocks. In future work, we plan to use the probabilistic framework adopted



here to explore the properties of estimators and tests in panel data models with large
T and large n.

The remainder of this paper is organized as follows. For simplicity and clarity, we
consider results for the LS estimator first. Later we show how these results can be
extended straightforwardly to regression models estimated by IV’s. Section 2 specifies
the regression model and the probabilistic framework employed in the paper. Section
3 establishes the probability limit of the LS estimator and provides conditions under
which the LS estimator is consistent and inconsistent in standard, heterogeneous,
and functional factor structure models. Section 4 establishes the asymptotic mixed
normality of the LS estimator. Section 5 introduces covariance matrix estimators and
determines their probability limits. Section 6 analyzes the asymptotic properties of
t, Wald, and F tests under the null hypothesis. Section 7 extends the results for LS
estimators to IV estimators. Section 8 discusses extensions to panel models with a
fixed time dimension T, clustered sampling, and GMM estimators. Section 9 provides
a brief conclusion. An Appendix provides proofs of results stated in the paper.

All limits are taken as n — oo, where n is the sample size.

2. Regression Model

The probabilistic framework that we adopt is somewhat unconventional because
we want to be explicit about the cross-section dependence that may exist between
all units in the population. We start by defining, for each cross-sectional unit in
the population, the dependent and independent regression variables, as well as other
characteristics of the unit that may or may not be observed. Then, we specify the
sampling scheme used to draw observations from the population.

Let v denote some unit in the population. Let I" denote the set of all units in the
population, where I' is an arbitrary topological space. For population unit v € T,
Y (y) € R denotes the regression dependent variable, X (y) € R¥ denotes the regres-
sion independent variable vector, and S(7y) € S denotes some supplementary variables
that include other characteristics of population unit v and/or some stochastic terms
that are common to some or all of the units in the population, where S is an arbitrary
topological space. Let

W(y) = (Y(7),X(),5())- (2.1)

For each v € T, W() is a random element defined on a (common) probability space
(9, B, P) (using the product Borel o-field on (R, R¥,S)).
For each y € T, the vector (Y (y), X (7)) satisfies the regression model

Y(y) = a0+ X(7) By +U(7), (2.2)

where U(7) is a scalar error, 3, is an unknown k-vector parameter, and «ag is an
unknown scalar parameter. Our interest centers on the properties of the least squares
estimators of 3 and ayg.

A standard assumption for a linear regression model to be well defined is for the
error to have mean zero and to be uncorrelated with the regressors. For cross-section



applications, another standard assumption is that the random elements W (~) are
independent across different units . Thus, the following assumptions are standard
(STD) for cross-section applications:

Assumption STD1. E(1,X(vy)")U(y) =0 for all y € T.
Assumption STD2. {W(v):~ € I'} are independent across vy € T..

We do not impose Assumptions STD1 and STD2. We state these assumptions for
reference only.

Our results allow for arbitrary dependence between W () and W (vy,) for all
71,72 € T'. In particular, (W (vy,), W(75)) may be subject to common shocks and,
hence, be dependent. In addition, the effect of a common shock on the distribution
of (Y(v1),X(71),U(7;)) may depend on S(7;) and, hence, may be different from its
effect on (Y (74), X (72), U(72)) when S(1) # S(7v,). Arbitrary forms of heterogeneity
(i.e., non-identical distributions) of W () across «y € I also are allowed.

Samples of size n for n > 1 are obtained by drawing indices {y; : ¢ > 1} randomly
from T according to a probability distribution G on T' (coupled with its Borel o-field).
(The random indices {v; : ¢ > 1} are defined on the same probability space (2, B, P)
as {W(v) : v € T'}.) That is, we assume:

Assumption 1. {v; : i > 1} are iid indices, independent of {W(~) : v € T'}, each
with some distribution G.

Assumption 1 allows for probabilistic over-sampling of some units or proportional
sampling depending on the specification of the distribution G. Proportional sampling
is obtained when G is a uniform distribution on I'. For example, if I" is a bounded
subset of Euclidean space, then proportional sampling is obtained by taking G to
have a density proportional to Lebesgue measure. Over-sampling of some units is
obtained by taking G to be some non-uniform distribution on I'. A special case of
this is multinomial sampling, e.g., see Imbens and Lancaster (1996), which is a type
of stratified sampling.

We denote
Wi=W(), Yi=Y(y), Xi=X(), Si=5(y), and Uy = U(y,) (2.3)
for i = 1,2,... . (W(~;) is assumed to be a measurable function on (2, B, P) with

respect to the product Borel o-field on (R x R* x S).) In the probability literature,
{W; :i > 1} is called a subordinated stochastic process, subordinated to the process
{W(v) : v € T} via the directing process {~; : ¢ > 1}, see Feller (1966, Ch. X.7,
p. 345). Subordinated processes have been used in economics by Mandelbrot and
Taylor (1967) and Clark (1973), among others, for quite different purposes than those
considered here and in econometrics by Conley (1999) for a similar purpose to that
considered here.

The observations for sample size n are {(Y;, X;) : ¢ = 1,...,n}. In addition, depend-
ing upon the context, S; or some component of S; may be observed for ¢ =1,..., n.

In terms of the sample of the first n observations, the model is

Yi=ap+ X8y + U fori=1,..,n, (2.4)



where Y; is an observed scalar dependent variable, X; is an observed regressor k-
vector, and U; is an unobserved scalar error.

By iterated expectations, the definition that W; = W (v;), and the independence
of {W(~):~v €T} and {v,; : i > 1}, we have: for any vector-valued function A(-) with
E||h(Wi)]] < oo,

B(W:) = E,, BV () = / Eh(W(7))dG (), (2.5)

where E, denotes expectation with respect to the randomness in ;.

To determine the large sample properties of LS estimators of 3, and «ag, we make
use of the fact that the random elements {W; : i = 1,2,...} are exchangeable given
Assumption 1. (That is, (Wr(), ..., Wr(n)) has the same distribution as (W1, ..., W)
for every permutation 7 of (1,...,m) for all n > 2.) In consequence, de Finetti’s
Theorem (e.g., see Hall and Heyde (1980, Thm. 7.1, p. 203)) applies, and we have
the following result.

Lemma 1. Suppose Assumption 1 holds. Then, {W; :i=1,2,...} are exchangeable
random elements and there exists a o-field C C B such that, conditional on C, {W; :
i=1,2,...} are did.

Comments. 1. The o-field C equals ()2 ; Cp, where C,, is the o-field of n-symmetric
random variables (that is, the o-field generated by random variables that depend on
{W; :i=1,2,...} and are invariant to permutations of the first n random variables
{W;:1=1,2,...,n}), see Hall and Heyde (1980, p. 202).

2. The o-field C consists of the common shocks to the random elements {W; :
i =1,2,...}. The effect of a common shock could be the same for all population units
or it could depend on the characteristics of a given unit through the supplementary
variable S;. For example, a common shock could affect observations that are in a
certain group or region, but not other observations. Suppose Sy ; is a dummy variable
that equals one if the i-th observation is in group g and zero otherwise for g =
1, ..., gmax- Let C1, ..., Cy__ denote common shocks, i.e., random variables that are
C-measurable. Then, the regression dependent and independent variables (Y;, X;)
could depend on the common shocks (C1, ..., Cy, ) through the vector S; = (C1.51,
C252,i, ..y CgpnSg.i)'- Thus, only observations in group g are affected by the g-th
common shock. In this case, the model is an example of a model with group effects,
see the Introduction for references.

In the group effect literature, the shocks (Ci, ..., Cy,...) are assumed to be inde-
pendent. But, in the present paper, there is no need to make this assumption. In fact,
(Cy, ..., Cy,r) could just denote the differential impacts of a single common shock
on g different groups and, in this case, correlation between the elements of (Ci, ...,
Conar) Would be expected.

Furthermore, the effect of common shocks may differ across observations in a
continuous manner. For example, suppose the effect of some macroeconomic shock,
such as an interest rate change, depends on the characteristics of the population unit,

such as its wealth holdings, as measured by some absolutely continuous component,



S1,, of S;. The macro shock could take the form of a random function C(-) that
is C-measurable with the effect of the macro shock on the i-th observation being
through C(S1,;). Thus, the impact of the common shock varies continuously across i
depending on the value of 57;.

In this case, the model could be akin to models in the spatial econometrics lit-
erature in which shocks are predominantly local in nature, e.g., due to the spatial
autoregressive assumption in Case (1991) and the strong mixing assumption in Con-
ley (1999). On the other hand, the model could be one in which some common shocks
affect a sufficient number of population units that the effect is not local in nature. For
example, the model could be such that all population units are effected in a manner
that varies continuously, but the effect for all units is significant.

3. Probability Limit of the LS Estimator

3.1. Main Results

~

The LS estimator, 3,,, of 3y can be written as

~

n -1 n
By = Bo+ (nl ZXlXZ/ — YnY:I> (nl ZXiUi — yn[_]n> , where
i=1 =1
X, =nt Z‘Xi and U, =n* Z U;. (3.1)
=1 =1

The LS estimator, a,,, of ap can be written as

an =Y, — X8, =a+Un—X,(B, — By), where Y,, =n"! ZYZ (3.2)
i=1

The probability limits of the terms in the expressions for Bn and &, are determined
using the following LLN for exchangeable random variables, e.g., see Hall and Heyde
(1980, (7.1), p. 202):

Lemma 2. Suppose Assumption 1 holds. Let h(-) be a vector-valued function that
satisfies E||h(W;)|| < co. Then,

n S (W) = E(R(WI)IC) asn— oo,
=1

where C is the o-field given in Lemma 1.
Comments. 1. The convergence in the lemma also holds almost surely (a.s.).

2. The random variable W; that appears in the limit is W (+;), which is a draw from
the population {W () : v € I'} according to the distribution G. In consequence, by



iterated expectations and the independence of {W(y) : v € I'} and {v; : i > 1}
conditional on C, the limit random variable in the lemma can be written as

E(h(Wi)[C) = By, E(h(W (3,))IC, %) / ERW()IC)G(),  (33)

where E,. denotes expectation with respect to the randomness in ;.

To establish the probability limits of Bn and oy, we require (i) some moment con-
ditions and (ii) that the regressor variables contain sufficient idiosyncratic variability
that their conditional covariance matrix given the common shocks C is nonsingular:

Assumption 2. (a) E||X;||> = [ E||X(7)||?dG(y) < o0
(b) E[Ui| = [ EIU(M)|dG() < o

(c) E|lX:Ui|| = [ E|IX(MUM)I|dG(y) < oo

(d) BE(X;X!|C) — E(X;|C)E(X;|C) > 0 a.s.

In terms of the population random elements {W () : v € T'}, Assumption 2(d) is
[ B(X0X(I0)d60) - [ BEXM)IOMGH) [ BXGYI0d60) >0 as. (34
The deviation of the probability limit of Bn from S, is given by

r(C) = (BE(X:X{[C) — E(Xi\C)E(Xi]C)’)fl (BE(X;Ui|C) — E(X;|C)E(Ui|C)). (3.5)

Note that the term E(X;U;|C) — E(X;|C)E(U;|C) in (3.5) is the conditional covariance
given C between X; and U;. Also note that r(C) is the solution to the conditional
population least squares minimization problem

5211% E(U; - XiB|C)' E(U; — X;B|C). (3.6)

In terms of the population random elements {W(y) : v € T'}, (C) is

-1
</E Y IC)G (y /E 2)[C)AG (Y /E 2V IC)dG (y ))
( / E(X(1)U(1)|C)dC / E(X(7)[C)dG(y / E(U(7)[C)dG(y )). (3.7)
The deviation of the probability limit of &, from «ag is given by
s(C) = E(Ui|C) — E(X;]C)'r(C). (3.8)

Using (3.1), (3.2), and Lemma 2, the probability limits of Bn and a,, are easily
obtained:

Theorem 3. Suppose Assumptions 1 and 2 hold. Then,

Bn —p By +17(C) and
ap —p ag + 5(C).



Comments. 1. The convergence in the Theorem holds jointly and almost surely.
2. Theorem 3 states that the probability limit of Bn is g plus a term, r(C), that
may be zero, random, or in some cases a non-zero constant. Similarly, a,, equals ag
plus a term, s(C), that may be zero, random, or a non-zero constant.

3. The term r(C) is zero if and only if the conditional correlation given C between
X; and U; is zero. Note that the standard assumption employed in the literature,
Assumption STD1, coupled with Assumption 1, implies that the unconditional corre-
lation between X; and U; is zero. This does not, however, imply that their conditional
correlation given C is zero. Hence, under Assumption STD1, r(C) is not necessarily
Z€ero.

4. Donald and Lang (2001) consider a regression model with a group structure and
find inconsistency of the LS estimator due to correlations within each of a finite
number of groups. This is an example of the result of Theorem 3.

For any random vectors A and B and any random vector or o-field D, let
Cov(A, B|D) denote the conditional covariance between A and B given D, i.e.,
E(AB'|D) — E(A|D)E(B|D)".

It is easy to see that a necessary and sufficient condition for r7(C) = 0 is the
following:

Assumption CU. Cov(X;,U;|C) =0 a.s.

(CU abbreviates conditionally uncorrelated.)
Necessary and sufficient conditions for r(C) = 0 and s(C) = 0 are Assumption CU
plus the following:

Assumption CMZ. E(U;|C) =0 a.s.

(CMZ abbreviates conditionally mean zero.)
Given Theorem 3, we have the following necessary and sufficient condition for
consistency of 3,, and ay,.

Corollary 4. Suppose Assumptions 1 and 2 hold. Then, Bn —p By if and only if

Assumption CU holds; and (B,,,0n) —p (Bg, o) if and only if Assumptions CU and
CMZ hold.

Comments. 1. Assumptions CU and CMZ are necessary for consistency of the
LS estimators, but they are not necessary for unbiasedness. Unbiasedness holds (by
trivial calculations) under the following standard condition:

Assumption STD3. (a) E(U;|X;) =0 as.
(b) E||5,]] < 0o and E|ay,| < co.

In consequence, if Assumption STD3 holds and {Bn :m > 1} is uniformly integrable,
then 7(C) has mean zero.® Hence, r(C) is either zero or random. It cannot be a non-
zero constant. In this case, inconsistency of Bn is due to randomness that does not
die out as n — oo. Inconsistency is not due to improper centering of Bn that persists
as n — 0o. Analogous comments apply to a,.
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2. If Assumption CU fails, it is still possible to construct a consistent estimator of
Bg if IV’s are available that are uncorrelated with U; conditional on C, see Section 7
below.

Sufficient conditions for Assumptions CU and CMZ in terms of the population
quantities, (X (), U(y)), rather than the observed quantities, (X;, U;), are:

Assumption CU~. (a) Cov(X(7),U(7)|C) =0 a.s. for all v € T..
(b) Either E(U(y)|C) or E(X(v)|C) does not depend on 7 a.s. for all y € T".

Assumption CMZy. E(U(y)|C) =0 a.s. for all y € T.

Lemma 5 (a) Assumptions 1 and CUy imply Assumption CU.
(b) Assumptions 1 and CMZry imply Assumption CMZ.

Comment. It is interesting to note that zero conditional covariance given C between
the population quantities X () and U(y) does not imply zero conditional covariance
given C between the observed regressor X; and the corresponding error U;. The same
is true in terms of unconditional covariances or correlations. Thus, zero covariance
between X () and U(7) does not imply that X; and U; have zero covariance. The
former plus the condition that either EU () or EX(7) does not depend on ~y for all
v € T suffices for X; and U; have zero covariance. Of course, if EU(y) = 0 for all
v € T, then the additional condition holds. In the present context, this additional
condition may seem innocuous, but in the factor structures considered below the
additional condition is not necessarily innocuous.

3.2. Standard Factor Structure

Corollary 4 shows that a necessary and sufficient condition for consistency of
the LS estimator of 3, (or (Bg,ap)) is Assumption CU (or Assumptions CU and
CMZ). We now provide sufficient conditions for Assumption CU (or CU and CMZ)
in terms of a standard factor structure for the regressors and errors.* (We use the
term “standard” here because (i) the factor structure considered here is akin to factor
structures considered in the literature and (ii) we want to differentiate the factor
structure considered here from the heterogeneous and functional factor structures
considered below.)

Assumption SF1. For all v € T,

and S(y) = (C1,Cs), where (a) C; and U*(v) are random d; vectors; X*(v) is a
random dy vector; and Cy is a random k x dp matrix for da > k; (b) {(U*(y), X*(7)) :
v €T}, (C1,C2), and {v; : ¢ > 1} are mutually independent; and (c) (U*(7y), X*(¥))
are independent across y € I'.%

Assumption SF1 defines a factor structure with random common factor vectors
and matrices (C1, C2) and random factor loadings (U*(7y), X*(y)). It is easy to see that
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(C1, C3) is measurable with respect to C. In fact, C = (C1, Cs) using Assumptions
SF1(b) and (c) and the definition of S(v).
Given Assumption SF1, Assumption 2(d) holds provided

EX:XY — EXEX >0 (3.9)

and C9 has full row rank dy a.s.

In keeping with the notation used above, we let U} = U*(v,) and X = X*(v,).
For any random vectors A and B, let Cov(A, B) denote the covariance between A
and B. R

To obtain consistency of the LS slope coefficient estimator 3, we require:

Assumption SF2. Cov(X},U}) = 0.

Note that Assumption SF2 does not require that the error factor loading vector, U,
has mean zero. This allows one element of both U and X to equal one, which
means that the errors and regressors may contain a purely common component.

However, to obtain consistency of the LS intercept estimator, &y, U must have
mean zero:

Assumption SF3. EU = 0.
Assumption SF3 rules out a purely common component in Uj.

We now show that Assumptions 1, SF1, and SF2 imply Assumption CU. Using
Assumptions 1 and SF1, we have

E(Ui|C) = E(C1U]|C) = CLE(U}|C) = C1EUY,
B(X:|C) = B(CoX}|C) = CLE(X}|C) = CLEX], and (3.10)
E(X:Us|C) = E(CoX U CL|C) = CoE(XUY|C)Cy = CoE(X;U)C,

where the second equality in each line holds because C = o(C1,C2) and the third
equality in each line holds because (U}, X}) is a function of {(U*(), X*(7)) : v € T'}
and 7; and the latter are independent of C = o(C1, C3).

Combining the results in (3.10) gives

E(X;U;|C) — E(X;|C)E(U;|C) = CLE(X];UY)C, — CoEXEU} Cy
= Cy(EX,; U — EXEU)C,
=0, (3.11)
where the last equality holds by Assumption SF2.
Assumptions 1, SF1, and SF3 imply Assumption CMZ by the first line of (3.10).

Sufficient conditions for Assumptions SF2 and SF3 in terms of population quan-
tities are:

Assumption SF2y. (a) Cov(X*(v),U*(y)) =0 for all y €T
(b) Either EU*(vy) or EX*(7) does not depend on  for all y € T".

Assumption SF3vy. EU*(y) =0 for all v € T.

12



Assumption SF2v(b) requires a certain degree of homogeneity across population
units. See the Comment following Lemma 5.

The following Corollary is a special case of a more general result (viz., Theorem
9) given below. The first two parts of the Corollary are the results proved above in
(3.10) and (3.11). (The proof is given above because it is instructive.)

Corollary 6. (a) Suppose Assumptions 1, SF1, and SF2 hold. Then, Assumption
CU holds and r(C) = 0.

(b) Suppose Assumptions 1 and SF1-SF3 hold. Then, Assumptions CU and CMZ
hold, r(C) = 0, and s(C) = 0.

(c) Assumptions 1 and SF2~y imply Assumption SF2.

(d) Assumptions 1 and SF3~y imply Assumption SF3.

Comments. 1. Theorem 3 and Corollary 6 combine to show that Bn is consistent

~

under Assumptions 1, 2, SF1, and SF2 and (3,,, &;,) is consistent under Assumptions
1, 2, and SF1-SF3.

2. If Assumptions SF2 and SF3 are strengthened to E(U}|X}) = 0 a.s., then Assump-
tion STD3(a) holds. In this case, B,, and @, are unbiased (provided their expectation
exists). This holds because

E(Ui|X;:) = Ex: cE(Ui|Xi, X[,C) = Ex» cC1E(U}|X;, X}, C)
— Ex: cCLE(U7|X!) = 0 as, (3.12)

where Ex: ¢ denotes expectation with respect to (X7, C).

We now show that the regressors and errors may satisfy the standard factor
structure of Assumption SF1 and the standard assumptions of mean zero errors and
lack of covariance between the errors and regressors, viz., Assumption STD1, yet fail
Assumption CU. In this case, consistency of the LS estimator of 3; does not hold
due to the effect of common shocks.

Instead of Assumptions SF2v and SF3+, consider the following assumption:

Assumption SF4. (a) Cov(X*(7),U; (7)) = 0 and EUf(y) = 0 for all v € T', where
U*(7) = (UF (), Us (7))’ € R*.

(b) C1=(1,Cn) € R?

(C) ECH =0 and ECQCll =0.

(d) [EX*(y)Us(7)dG(y) # 0; EU5(vy) = 0 for all v € T'; C11 # 0 with probability
one; and Cy is full row rank with probability one.

Under Assumption SF4,
U(y) =Ui(y) +Culs (), (3.13)

where Uj () has mean zero and is uncorrelated with the idiosyncratic component of
the regressor X;(7); the error factor C1; has mean zero and is uncorrelated with the
regressor factors Cy; and U () has mean zero but is correlated with the idiosyncratic
component of the regressor X3 (7).
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Theorem 7. Suppose Assumptions 1, SF1, and SF4 hold. Then, Assumption STD1
holds, but Assumption CU does not hold.

Comments. 1. Under Assumptions 1, 2, SF1, and SF4, we have

r(€) = (CoB" (X! = B X)X} = B*X]/Cy) ™ (GB"(X] = B*X[)U3,Cn) and
5(C) = E*Us;Ci1 + (E*X]) Cyr(C), where
Uzi = Uz (73) (3.14)

and E* denotes expectation with respect to (X, U) alone.

2. Theorems 3 and 7 combine to show that Bn is not consistent for 5, under As-
sumptions 1, 2, SF1, and SF4.

3. In the proof of the Theorem, Assumption SF4(c) is used only to show that As-
sumption STD1 holds and Assumption SF4(d) is used only to show that Assumption
CU does not hold.

3.3. Heterogeneous Factor Structure

In this subsection, we generalize the standard factor structure to a heteroge-
neous factor structure. The heterogeneous factor structure allows the effects of the
common shocks to differ across population units depending on the characteristics
of the unit. In particular, the common shocks for the ~-th unit are of the form
(C1(S0(7)), C2(So(7))), where Sp(7) is a vector of characteristics of the -th unit.
Hence, the common shocks take the form of stochastic functions (Cy(-), Ca(+)). The
random element Sp(y) may or may not be observed.

For a random element &, let supp(§) denote the support of £. Let supp(Sp) =
Uyersupp(So(7))-

The heterogeneous factor structure is specified in the following assumptions:

Assumption HF1. For all v € T,

where (a) U*(y) is a random d; vector; C(-) is a random d; vector-valued function
with domain supp(Sp); X*(vy) is a random dy vector; and Cs(-) is a random k X do
matrix-valued function with domain supp(Sp) for da > k; (b) {(U*(y), X*(v), So(7)) :
v € T}, (Ci(+),Ca(v), and {v; : ¢ > 1} are mutually independent; and
(c) (U*(7), X*(7), So(v)) are independent across v € T.9

For notational convenience, let X = X*(v,), U = U*(v;), and So; = So(7;)-
__ With the heterogeneous factor structure, to obtain r(C) = 0 and consistency of
B,,, we need a strengthened version of Assumption SF2 to hold.
Assumption HF2. (a) Cov(X},U|Sp:) =0 a.s.
(b) Either E(U;|So,i) or E(X|So,) does not depend on Sp; a.s.
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Similarly, for s(C) = 0 and consistency of &, we need a strengthened version of
Assumption SF3 to hold:

Assumption HF3. E(U}|Sp;) =0 a.s.

A sufficient condition for Assumptions HF2 and HF3 is E(U;| X}, Sp;) = 0 a.s.
Sufficient conditions for Assumptions HF2 and HF3 in terms of population quan-
tities are:

Assumption HF2y. (a) Cov(X*(y),U*(v)|So(7y)) =0 a.s. for all y € T".
(b) Either E(U*(y)|So(7y)) or E(X*(7)|So(y)) does not depend on Sp(7y) a.s. or on vy
for all v € T

Assumption HF3y. E(U*(y)|So(7y)) =0 a.s. for all y € T".

As in the previous subsection, the common o-field C is the o-field generated by
the common shocks:

C = o(C1(-),Ca()). (3.15)

The following result, like Corollary 6, is a special case of Theorem 9 given below.

Corollary 8. (a) Suppose Assumptions 1, HF1, and HF2 hold. Then, Assumption
CU holds and r(C) = 0.

(b) Suppose Assumptions 1 and HF1-HF3 hold. Then, Assumptions CU and CMZ
hold, r(C) =0, and s(C) = 0.

(c) Assumptions 1 and HF2vy imply Assumption HF2.

(d) Assumptions 1 and HF3~y imply Assumption HF3.

Comment. Corollary 8 andA Theorem 3 show that Assumptions 1, HF'1 and HF2 are
sufficient for consistency of 3,, and, with the addition of Assumption HF3, for a,.

3.4. Functional Factor Structure

We now provide sets of sufficient conditions for Assumption CU and Assumptions
CU and CMZ that are as general as we can find. We call the structures considered
functional factor structures. These structures are sufficiently general that they con-
tain both standard and heterogeneous factor structures. The conditions allow the
effect of common shocks on a population unit to depend on the characteristics of the
population unit via a component Sg(y) of S(y). The common shocks are characterized
by a function C(+). In particular, the effects of the common shocks on unit v is through
C(So(7y)). The errors and regressors are determined by stochastic processes U(-,7)
and X (-,7) that are uncorrelated conditional on Sp(7y) for each v € T'. Specifically,
we have:

Assumption FF1. (a) So(y) is a component of S(7).

(b) C(+) is a random function that does not depend on 7, has domain supp(Sp), and
is a component of S(v) for all y € T.

(¢) For each v € T', U(+,7) and X (-,v) are random functions with ranges R and R*,
respectively, and domain Uersupp(C(So(7)))-
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(d) For each y € T', U(y) = U(C(So0(7)), 7) and X(7) = X (C(So(7)),7)-
() {(U(,7),X(,7),5(()) :v€T},C(-),and {; : ¢ > 1} are mutually independent.
(f) (U(-,7),X(-,7),S0(y)) are independent across y € I.

Assumption FF1 allows the whole distributions of U(-,y) and X (-, ) to vary with
C(So(7)). In contrast, with standard or heterogeneous factor structures, C(Sp(7y))
only affects the multivariate location and scale of the regressors and errors.

Let X;(c) = X(¢,7;), Ui(c) = Ul(e,,;), and Sp; = So(7;)-

Let supp(C) = Uyersupp(C(So(7)))-

Assumption FF2. (a) Cov(X;(c),Ui(c)|So:) = 0 a.s. for all ¢ € supp(C).
(b) Either E(U;(c)|So,i) or E(X;(c)|So,;) does not depend on Sp; for all ¢ € supp(C)

a.s.

Assumptions FF1 and FF2 are sufficient for consistency of Bn To obtain consis-
tency of a,, we also need:

Assumption FF3. E(U;(c)|So,;) = 0 a.s. for all ¢ € supp(C).

Sufficient conditions for Assumptions FF2 and FF3 in terms of the population
random quantities are:

Assumption FF2y. (a) Cov(X(c,7v),U(c,7)[So()) = 0 as. for all ¢ € supp(C)
and all y €T,

(b) Either E(U(c,7)|So(7)) or E(X(c,7)|So(y)) does not depend on Sp(7y) a.s. or on
v for all ¢ € supp(C) and all v € T.

Assumption FF3~. E(U(c,7)|So(y)) =0 a.s. for all ¢ € supp(C) and all y € T.

Sufficiency of Assumptions FF1 and FF2 for Assumption CU etc. are established
in the following theorem:

Theorem 9. (a) Suppose Assumptions 1, FF1, and FF2 hold. Then, Assumption
CU holds and r(C) = 0.

(b) Suppose Assumptions 1, FF1, FF2, and FF3 hold. Then, Assumptions CU and
CMZ hold, 7(C) =0, and s(C) = 0.

(c) Assumptions 1 and FF2vy imply Assumption FF2.

(d) Assumptions 1 and FF3~y imply Assumption FF3.

Comments. 1. Assumptions SF1 and SF2 imply Assumptions FF1 and FF2 with
So(y) =0, C(-) = (C1,Cq), Ule,y) = 4U*(7), and X(¢,7) = c2X*(7y), where ¢ =
(c1,¢2). Analogously, Assumptions SF1-SF3 imply Assumptions FF1-FF3.

2. Assumptions HF1 and HF2 imply Assumptions FF1 and FF2 with C(:) =
(C1(+), Ca(+)), Ule,y) = U*(7), and X (c,7y) = caX*(7y), where ¢ = (c1, c2). Analo-
gously, Assumptions HF1-HF3 imply Assumptions FF1-FF3.
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4. Asymptotic Mixed Normality of the LS Estimator

In this section, we establish the asymptotic distribution of Bn suitably centered
and scaled. These results allow one to determine the effect of cross-section dependence
on the null rejection rates of hypothesis tests and on the coverage probabilities of
confidence intervals constructed using LS estimators.

To establish asymptotic normality of the estimator, we use the following additional
moment conditions:

Assumption 3. (a) EU? = [ EU?(7)dG(v) < oo.
(b) BIIX;U|]* = [ E|IX(M)U()|[*dG(7) < co.

The following quantity is used to center the LS estimator in order to establish its
asymptotic distribution:

n -1
m(C) = (nl > XX _ynyln> (E(XiUi|C) — E(X;|C)E(Ui[C)) - (4.1)
i=1
Note that r,(C) converges in probability to 7(C) as n — oo under Assumptions 1 and
2 by Lemma 2. Also note that r,(C) = 0 if and only if Assumption CU holds.
The conditional asymptotic variance, V¢, of the normalized LS estimator of f3,
given C is defined as follows:

Ve = Bc_lﬁch_l, where
Be = E([X; — E(X;|0)][X; — E(X;|C)]'[C), (4.2)
Qc = E(£¢;/C), and

& = [Xi — E(X|0)]U; — E([Xi — E(Xi|C)]Us|C) — [Xi — E(X:|C)]E(Ui[C).

Note that Bg is positive definite a.s. by Assumption 2(d).

In contrast, under standard assumptions for cross-section data, viz., Assumptions
STD1, STD2, and 1-3, the asymptotic variance of the normalized LS estimator of 3,
is given by

V = B7'QB™!, where

B = E[X; — EX}][X; — EXi],

Q= Eee? and

& = [X; - EX)|U;. (4.3)

Note that the last two of the three terms in the definition of ¢; in (4.2) do not appear
in the definition of £ in (4.3). The second term of ¢; does not appear in 7 because
it is the mean of the first term of &; conditional on C and the mean of & is zero.
Also, the third term of £; does not appear in ff because the third term of ; arises
due to the lack of asymptotic equivalence between n'/2 times the X,U, term in the
definition of 3, see (3.1), and n'/2(plimy, oo X n)Un, which occurs because EU,, is
not necessarily zero in (4.2), whereas these quantities are asymptotically equivalent
under Assumption STD1 because EU,, is zero.
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If Assumption CU holds, then &; and ¢ simplify because the second term in the
definition of §; in (4.2) is zero. If Assumption CMZ holds, the third term of &; is
Z€ero.

If Assumption CU holds, we have

¢ = [Xi — E(X;|0)][U; — E(U;|C)] and
Qc = QO where
O¢ = E([U; — E(U[C)P[X; — B(Xi|C)][X; — E(Xi[C)]'|C). (4.4)

In particular, under Assumptions SF1 and SF2, we have
Q¢ = CLE*[CL(UF — EUN X} — E*X}[X} — E*X}]'CY and
Be = CoFE* [ X} — E*X}|[X] — E*X})'CY, (4.5)

where E* denotes expectation with respect to (U}, X7¥) alone.
Under Assumptions HF1 and HF2, we have

Qe = E*[Cl(So,i)’(Ui* - EUi*)]2CQ(SO’i)[X; — E* X[ X[ — E*X;}’Cg(So,i)’ and
Be = E*Cy(So,)[ X7 — E*XF|IX! — E*X7)Co(S0,), (4.6)

where E* denotes expectation with respect to (U}, X¥, So;) alone.
Next, define
ot = Var(Us|C) = E([U; — E(U|C)]?(C). (4.7)

Suppose the errors are homoskedastic conditional on C, i.e.,
E([U; — E(U|0)|C, X;) = 03 as. (4.8)
Then, if Assumption CU holds, )¢ and V¢ simplify to
Q¢ = 0%B¢ and Vp = 02B, 1, (4.9)

respectively. Note that Assumption CMZ is not needed for these simplifications to
hold. R

The asymptotic distribution of j3,, after centering and scaling is given in the
following theorem.

Theorem 10. Suppose Assumptions 1-3 hold. Let Z ~ N(0,1I) be a standard
normal k-vector that is independent of C. Then,

(a) n1/2(gn - 50 - T?’L(C)) —d Vcl/Qza
(b) Vc_l/anﬂ(Bn — By —1n(C)) —q Z provided Vg > 0 a.s., and
(¢) 7n(C) —p r(C).

Comments. 1. Part (a) of the Theorem implies that n!/ Q(Bn — By —rn(C)) has a
mixed normal asymptotic distribution.

2. Under Assumption CU, part (a) of the Theorem gives the asymptotic distribution
of n1/2(3,, — B,) because r,(C) = 0. Hence, if the errors and regressors have factor
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structures that satisfy Assumptions SF1 and SF2, HF1 and HF2, or FF1 and FF2,
then n!/ Q(Bn — o) has the asymptotic mixed normal distribution given by Vcl/ °Z.
3. Parts (a) and (b) are established using an MDS CLT, e.g., see Hall and Heyde
(1980, Thm. 3.2, p. 58). Part (c) is established using Lemma 2.

4. The asymptotic distribution of a,,, after suitable centering and scaling, can be
obtained by the same argument as for Bn. For brevity, we do not do so here.

5. Covariance Matrix Estimation

The usual heteroskedasticity-robust estimator of the asymptotic variance of Bn is
denoted V,,. It is defined by

~

V, = B, 1§n§,§ 1 where

On =01 UZX; — X, [X; — X,)/, and
=1
Ui =Y —dan— X18,. (5.1)

The usual estimator of the asymptotic variance of Bn that relies on homoskedas-
ticity of the errors is

n

Vo =038, ", where 65 = (n—k—1)"" ) U/ (5.2)
=1

To obtain the probability limits of the covariance matrix estimators, we strengthen
the moment conditions used:

Assumption 4. (a) E||X;||* = [ E||X(7)||*dG(v) < .
(b) EI|X|P|U:| = [ EIIX(MIPIU@)|dG(y) < oo
The probability limit of €, depends on 09, defined in (4.4), and the following
random matrix:
ne = B([r(C) (X — E(X,[C))]*[X; — B(X:|0)][X: — E(X:[C)]'|C) (5.3)
—2E([r(C)'(X; — E(X;[C))][Ui — E(Ui|C)][X; — E(Xi|C)][X; — E(Xi[C)]'[C) -
If Assumption CU holds, then 7(C) = 0 and 7 = 0.
The probability limit of 8% depends on O’% and the following random variable:
e = E([r(C) (Xi — B(X:]C))*|C)
—2E([r(C)(Xi — E(X,[C))][U: — E(Ui[C)][C) - (5.4)
If Assumption CU holds, then 7(C) = 0 and 7¢ = 0.

The asymptotic properties of the covariance matrix estimators YA/n and YA/U,n are
given in the following theorem:
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rem 11. Suppose Assumptions 1-4 hold. Then,
BC7
QC + M,
208 +nel B
Uc +T¢, and
a,n P (UC + TC)Bi N

OISISICIO
>:ng§> 2 b:>
4 l s

Comments. 1. The quantities 7. and 7¢ arise in the Theorem because the residuals,
{U : 1 =1,...,n}, are not consistent estimators of the errors, {U; : i = 1,...,n}, if
Assumptions CU and CMZ do not hold. In fact, only Assumption CU is needed for
= 0 and 7¢ = 0. Hence, if Assumption CU holds but Assumption CMZ does not
hold then the residuals are not consistent estimators of the errors, but Q and o U
are still consistent for Q and UC, respectively. The reason is that U; is consistent for
U — E(Ui[C).
2. If Assumption CU holds (as well as Assumptions 1-4), then n, = 0, Q¢ = QC,
Qn —p QC, and V,, —, B;1Q9B;! = V. If Assumption CU and (4.8) hold, then
Tc =0, a — ac, andVgn—> O'CB L= 5.
3. If Assumptlon CU does not hold, then Qg + 7n¢ does not equal €)¢ in general and
Qn —p Q2 + e # Qc. Hence, if Assumption CU does not hold, V,, = E; 1?2“3; Lis
not a consistent estimator of Vg = B* QCB* in general. Similarly, if (4.8) holds,
but Assumpt1on CU does not hold, then (O’C +TC)BC does not equal Q¢ in general and
o, 2B, —p (O’C + TC)BC #* QC Hence, in this case, v, omn = 0p B 1 is not a consistent
estlmator of Vo = B, QCBC in general.

The probability limits of Y7n and YA/U,n are nonsingular a.s. under Assumption 2(d)
and the following assumption:

Assumption 5. (a) Q3 +ne > 0 a.s.
(b) 0% +7¢ >0 as.

Using Assumption 5, Theorems 10 and 11 combine to give the following results
for the LS estimator of 3 normalized by an estimated covariance matrix:

Corollary 12. Suppose Assumptions 1-5 hold. Let Z ~ N(0,1I;) be a standard
normal k-vector that is independent of C. Then,

(a) (Vi) /201 2(B,, = By = ra(C)) —a (B0 + el Be )™ x V'

(b) V; _1/2 1/2(5 — By) —a Z provided Assumptzon CU also holds,

() Vi 0,1/%1/2(5 — By —Tn(C)) —a (02 +7¢) V2B x V2'* x Z, and

(d) V. 1/2 n'/2(B, — By) —a Z provided Assumption CU and (4.8) also hold.

6. Test Statistics

Asymptotic results for t and Wald (or equivalently, F') tests can be obtained by
using the results of Theorems 10 and 11. Consider the hypotheses Hy : 3; = (3 ; and
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Hl : 5‘7 7& 50,]’ for S()Hlej < ka where 5 = (/817 "'7Bk)/ and /80 = (/80,17 "'750,/6)/' The ¢
statistic for testing Hy against Hj is

T — Vvn (Bni - 50,;‘) | 6.1)
[Valsg

where Bn = (Bml, ...,Bmk)’ and [D];; denotes the j-th diagonal element of a square
matrix D. The usual two-sided ¢ test with nominal significance level « rejects the
null hypothesis when |T,| > 21_, /2, where 2, denotes the a quantile of the standard
normal distribution. A one-sided t test with nominal significance level « rejects Hy
in favor of Hj : B; > By ; when Tp, > 21 4.

Next, consider the hypotheses Hy : RSy = a and H; : RBy # a, where R is
a (non-stochastic) full row rank ¢ x k& matrix and a is a (non-stochastic) g vector.
Define the Wald test statistic W, as follows:

Wy = ||(RV.R) Y0 2(RB,, — a)| > (6.2)

The Wald test with nominal significance level a rejects Hg if W, > Xg’l_a, where
nga is the a quantile of a x? random variable with ¢ degrees of freedom. The Wald

statistic can also be defined using the covariance matrix estimator YA/U,n. In this case,
the Wald statistic divided by q equals the F' statistic. Hence, the results given below
are applicable to the F' test (with the /¢ modification).

Let 7(C); denote the j-th element of r(C).

Properties of the t and Wald tests are given in the following theorem.

Theorem 13. Suppose Assumptions 1-5 hold. Let R be a full row rank q X k matriz.
Then, under Hy,

(a) P (|Tn| > 21-a/2) — @ and P (T}, > z1_q) — a when Assumption CU holds,

(b) P (|Ta| > z1_a2) — 1 when v(C); # 0 a.s.,

(c) P(Tn > z1—a) — 1 when r(C); >0 a.s.,

(d) P (W, > Xg,l—a) — o when Assumption CU holds, and

(e) P(Wn>x21 o) — 1 when Rr(C) # 0 a.s.

Comments. 1. The results of the Theorem continue to hold if the ¢ and Wald
statistics are defined with XA/U,,L in place of YA/n, provided (4.8) holds in parts (a) and
(d). Hence, the results of the Theorem for the Wald test also apply to the F' test.
2. Parts (a) and (d) of the Theorem show that ¢, Wald, and F tests are asymptot-
ically valid in the presence of common shocks provided Assumption CU holds. On
the other hand, parts (b), (c), and (e) of the Theorem show that ¢, Wald, and F
tests typically reject the null hypothesis with probability that goes to one when As-
sumption CU fails to hold. This occurs because |\/nry,(C);| —p 00, /nry(C); —p 00,
and ||y/nRr,(C)||> —p oo in parts (b), (c), and (e), respectively. In this case, the
probability of over-rejection increases as the sample size increases.

3. As stated, Theorem 13 does not cover the case where Assumption CU does not
hold, but r(C); = 0 a.s. when a t test is considered, or Rr(C) = 0 a.s. when a

P
P
P
P
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Wald test is considered. Results for these cases, however, can be determined using
Theorems 10 and 11. In these cases, [v/nrn(C);| = 0 -y 00, /nrp(C); = 0 = 00,
and ||v/nRry(C)||? = 0 -, oo, which means that the ¢t and Wald test statistics have
well-defined asymptotic distributions under the null hypothesis and, hence, do not
reject the null with probability that goes to one under the null hypothesis. But, V,
is not consistent for V¢ in general when Assumption CU does not hold. Hence, T,
and W,, do not have standard normal and x? distributions under the null hypothesis
and do not reject the null with asymptotic probability equal to a in general. Thus, t,
Wald, and F' tests are not asymptotically valid in the case under consideration, but
their behavior is likely to be much superior to that when r(C); # 0 a.s., r(C); > 0
a.s., or Rr(C) # 0 a.s. R

4. The standard 100(1 — «)% confidence interval for 3 ; based on 3, ; is

> A-a/2 |15 > Al—-a/2 [
Clg, , = [Bn; — \/ﬁ/ V Valigs B+ \/ﬁ/ Vil (6.3)

By a standard and simple argument, the behavior of C’I@O’jis determined by the
behavior under the null hypothesis of the t statistic T,,. In consequence, the results
of Theorem 13 imply that under Assumptions 1-5 and Assumption CU, the coverage
probability of Clﬁ ~converges to 1 — a as n — 00, as desired. On the other hand,
under Assumptlons 1-5, if 7(C); # 0 a.s., then the coverage probability of C1I, Bo
converges to zero as n — 00, which is not desired.

7. Instrumental Variables Estimator

In this section, we analyze the standard IV estimator of (5, ) in the regression
model of (2.2). This estimator is employed when it is believed that the regressors
and errors may be correlated. We consider the IV estimator based on a kjy-vector
of non-constant IV’s denoted Z(7) for v € I" and the constant 1. Thus, the IV vector
is Zt(y) = (1,Z(v)")". We use the same framework as above: the population random
elements are {W(y) = (Y(v), X (7),S(7)) : v € '} and the sample is determined by
the random indices {~; : ¢ > 1} which satisfy Assumption 1. In the present situation,
Z(7) is a component of S(7).

Let Z; = Z(7;) and Z;" = Zt(v;). Let Z, =n 1Y "  Z;. Let Y = (Yl,...,Yn)’,
X = (X1, X0), U = (U1, Up), Z = (Z1,..., Zn), 2T = (Zf,..,Z}), and
1, =(1,...,1)". For any full column rank matrix A, let P4 = A(A’A)~ 1A’

7.1. Probability Limit of the IV Estimator

The IV slope coefficient estimator, Bn, equals the LS slope coefficient estimator
from the regression of P;+Y on Py+1, and P+ X. Note that P,+ P, = P, and

Py,+ = P, | 5 + P,. Using these properties and the LS partitioned regression
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formula, we obtain

B, = (Py+ X) (In — P, )Pys X) ™ (Pye X) (I, — Py, ) Pys Y

-1
- <X,PZ71 Z X) X'P, 7Y
-1

= B+ (X'P, 5 X) X'P,, 51U (7.1)
= 50 +

n n -1 n -1
n ' Xi(Zi — Zn) (n—l > (Zi = Z0)(Zi - Z)') ' (Zi— Zn)X]

=1 =1 1=1

n

n -1 n
x | n Y Xi(Zi — Zn) <n1 > (Zi = Zn)(Zi - 7n)'> n ' (2= Zn)Ui
i=1 =1

i=1
The IV intercept estimator, «,, equals the LS intercept estimator from the regression
of Pz+Y on Py+1, and Pz+X. Thus, we have
ap = n_ll'/n,PZ"‘Y - n_ll'InPZ‘*‘XBn
=n Y —n 11 X3,
=ag+Upn— Xn(B, — Bo), (7.2)
using Py+1, = 1,,.
Let
Be = ACCC_IA/& where
Ac = E(X;Z!|C) — E(X;|C)E(Z;|C)" and
e = E(ZiZj|C) — E(Zi|C)E(Zi|C)". (7.3)
To establish the probability limits of Bn and ay,, we replace Assumption 2 with
the following:

Assumption IV-2. (a) E||Zi||> = [ E||Z(7)|]?dG(v) < oo.
() EIZUi = [ BIIZ0)U()dG() < oo.

(c) ElZiX|| = [ EllZ()X (y)'[ldG(7) < oo.

(d) Be >0 as.

The probability limit of 3,, deviates from 3, by
riv(C) = Bg ' Ac(c [E(Z:Ui|C) — E(Zi|C)E(U;(C)). (7.4)
The probability limit of a,, deviates from «g by
siv(C) = E(U;|C) — E(X4|C)rrv(C). (7.5)

Using (7.1), (7.2), and Lemma 2, the probability limits of En and oy, are easily
obtained:
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Theorem 14. Suppose Assumptions 1 and IV-2 hold. Then,

En —p Bo+r1v(C) and
an —p 0o + SIV(C)'

Comments. 1. The convergence in the Theorem holds jointly and almost surely.
2. A necessary and sufficient condition for r7/(C) = 0 is

Assumption IV-CU. Cov(Z;,U;|C) =0 aus.

Assumption IV-CU is not implied by the standard assumption for IV estimators that
Cov(Z;,U;) =0 for i > 1.

3. Necessary and sufficient conditions for 77/(C) = 0 and sy (C) = 0 are Assumption
IV-CU plus the following assumption:

Assumption IV-CMZ. E(U;|C) =0 a.s.
4. The Theorem shows that under Assumptions 1 and IV-2, Bn —p B if and only

if Assumption IV-CU holds, and (3, &y,) —p (Bg, ) if and only if Assumptions
IV-CU and IV-CMZ hold.

5. The Theorem indicates that consistent estimators of 3, can be constructed even
if Assumption CU fails to hold, which implies that the LS estimator is inconsistent,

provided IV’s Z; are available that are uncorrelated with U; conditional on C.

One can provide sufficient conditions for Assumption IV-CU to hold, and to fail
to hold, in terms of a factor structure for the errors and IV’s that is analogous
to that considered in Section 3.2 for the errors and regressors. Specifically, define
Assumptions IV-SF1, ..., IV-SF4, and IV-STD1 as Assumptions SF1, ..., SF4, and
STD1 are defined, respectively, but with X replaced by Z throughout, with Cs being
a random kjy X dg matrix for dy > kyy > k, and with Z(y) added as a component
of S(7). Then, C D o(Cy,C2) (where “ D 7 appears rather than “ =" because the
regressors could add some randomness to C).

In this case, results analogous to those of Corollary 6 and Theorem 7 hold: (i)
Suppose Assumptions 1, IV-SF1, and IV-SF2 hold. Then, Assumption IV-CU holds
and rry(C) = 0. (ii) Suppose Assumptions 1, IV-SF1, IV-SF2, and IV-SF3 hold.
Then, Assumptions IV-CU and IV-CMZ hold, 7y (C) = 0, and s;y(C) = 0. (iii)
Suppose Assumptions 1, IV-SF1, and IV-SF4 hold. Then, Assumption IV-STD1
holds, but Assumption IV-CU does not hold. The proofs of these results are analogous
to those of Corollary 6 and Theorem 7 and, hence, are not given.

Similarly, one can provide sufficient conditions for Assumption IV-CU to hold in
terms of a heterogeneous factor structure for the errors and IV’s that is analogous to
that in Section 3.3 for the errors and regressors. Define Assumptions IV-HF1, TV-
HF2, and IV-HF3 as Assumptions HF1, HF2, and HF3 are defined, respectively, but
with X replaced by Z throughout, with Cs(+) being a random kjy x do matrix-valued
function for dy > kry > k, and with Z(vy) added as a component of S(v). Then,
C D o(Ci(+),Ca(+)). Results analogous to those of Corollary 8 hold: (i) Suppose
Assumptions 1, IV-HF1, and IV-HF2 hold. Then, Assumption IV-CU holds and
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rrv(C) = 0. (ii) Suppose Assumptions 1, IV-HF1, IV-HF2, and IV-HF3 hold. Then,
Assumptions IV-CU and IV-CMZ hold, r1v(C) = 0, and srv(C) = 0.

Finally, general sufficient conditions for Assumption IV-CU can be given by defin-
ing Assumptions IV-FF1, IV-FF2, and IV-FF3 to be the same as Assumptions FF1,
FF2, and FF3, respectively, but with X replaced by Z throughout and with the
range of Z(-,v) being RFv rather than R*. By the same proof as for Theorem 9,
Assumptions 1, IV-FF1, and IV-FF2 imply Assumption IV-CU; and Assumptions 1,
IV-FF1, IV-FF2, and IV-FF3 imply Assumption IV-CMZ.

7.2. Asymptotic Distributions of the IV Estimator
and Test Statistics

Results analogous to those of Theorems 10, 11, and 13 hold for IV estimators
and test statistics. Specifically, when Assumption IV-CU holds, n'/2(j3,, — f3,) is as-
ymptotically mixed normal; IV-based covariance matrix estimators are consistent for
the random asymptotic mixing matrix; t and Wald statistics based on IV estimators
have standard normal and chi-squared asymptotic distributions, respectively, under
the null hypothesis; and confidence intervals based on IV estimators have asymptot-
ically correct coverage probabilities. When Assumption IV-CU does not hold, none
of these results hold. For brevity, we only provide explicit results here for the case
where Assumption IV-CU holds.

Under Assumption IV-CU, the conditional asymptotic variance, V¢, of the nor-
malized IV estimator of 3 given C is

Ve = BglﬁcBgl, where
Qe = AcgglMCCglA’c and
M = E([U; — E(Ui|C)* Zi Z{|C). (7.6)
If the errors are homoskedastic conditional on C and Z;, i.e., E([U; — E(U;|C)]?|C,
Z;) = 0% as. for 04 = Var(U;|C), then Q¢ and V¢ simplify to Q¢ = 02B¢ and
Ve = O’%BC_ L respectively.
The usual heteroskedasticity-robust estimator of the asymptotic variance of 3,, is
V, = B IQ B 1, where
B, = AnCn n» Nn = Angglﬂna;lﬁgw

n "
Ap =0 (Xi—Xn)Zj, Co=n1) ZiZ]
i=1 =1

n
M, =nt ZU}ZZZ{, and U; = Y; — &, — X13,,. (7.7)
The usual estimator of the asymptotic variance of Bn that relies on homoskedas-
ticity of the errors is VU n=02B7! where 62 = (n—k—1)" s U2

We consider the same hypotheses and the same ¢ and Wald statistics, Ty, and Wy,
as in Section 6, but with the LS estimator replaced by the IV estimator and with V;,
replaced by V.
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Let Assumption IV-3 denote Assumption 3 with X; replaced by Z;. Let As-
sumption IV-4 denote Assumption 4 with ||X;||* replaced by || X;|[?||Zi||? and with
|| X:|12|Us] replaced by || Zi||?[|X:|| - |Us|- Let Assumption IV-5 state that Q¢ > 0 a.s.
and 0(2; >0 as.

The asymptotic distribution of n'/2(3, — f,), the probability limits of V;, and
XN/U,TL, and the asymptotic null distributions of the IV-based ¢t and Wald statistics are
given in the following theorem for the case where Assumption IV-CU holds.

Theorem 15. Suppose Assumptions IV-CU, 1, and IV-2,..., IV-5 hold. Let Z ~
N(0, I.) be a standard normal k-vector that is independent of C. Let R be a full row
rank g X k matriz. Then,

= 1/2
a) nl/2(B, — Bo) —a Va'*2,

(
(b) YC—I/in/2(IBNn _ /80) _’dNZ7 N
(c) By, —p Be, Qyn —p Qc, Vi, —p Ve, o —p 02, and V. —p U%Bgl,
(d) P (|Tnl > 21_y2) — @ and P (T,, > z1_o) — o under Hy, and

(e) P

Comments. 1. Parts (d) and (e) of the Theorem continue to hold if the ¢ and Wald
statistics are defined with YN/U,n in place of V,, provided E([U; — E(U;|C)]2|C, Z;) = o
a.s.

2. Parts (d) and (e) of the Theorem show that if Assumption IV-CU holds then
t and Wald tests are asymptotically valid in the presence of common shocks. On
the other hand, in analogy to parts (b), (c), and (e) of Theorem 13, IV-based t and
Wald tests typically reject the null hypothesis with probability that goes to one when
Assumption CU fails to hold. For brevity, such results are not given here.

3. Results for IV-based confidence intervals, analogous to those in Comment 4 fol-
lowing Theorem 13, hold.

4. The proof of Theorem 15 is quite similar to that of Theorems 10, 11, and 13 and,
hence, is not given.

(Wy > 21_) — « under Hy.

8. Extensions

8.1. Panel Models with Fixed T

The results of this paper can be extended to cover panel regression models with a
fixed number of time periods 7. In a panel model, W () is defined to include random
variables for all time periods ¢t = 1,...,T for population unit ~, and all random
variables have a t subscript added, e.g., Y () is replaced by Y;(y). The model is given
by

Yi(v) = ao + Xe(7)' By + Ur(y) for t =1,.... T (8.1)

and v € I'. Samples of n population units for n > 1 are obtained by drawing indices
{v; 14 > 1} according to Assumption 1. The LS and IV estimators of 3, and o are
defined as above but with all sums taken over t = 1,...,T as well as ¢ = 1,...,n and

26



with normalization by (nT)~! rather than n~!. In the present case, for the LS esti-
mator, r(C) and s(C) are defined with E(X;X/|C) replaced by T=' ST E(X# X1,|C),
where X;; = X(v;), and likewise for E(X;|C), E(X;U;|C), and E(U;|C). Consistency
of the LS estimator of 3, depends on whether r(C) = 0 a.s. just as above.

With a panel regression model, one might want to analyze the properties of the
within and between estimators. This can be done in an analogous fashion to the
analysis of the LS and IV estimators. For the within estimator, the model we consider
is

Yi(v) = a(y) + Xe(7) By + Ue(y) for t =1,...,T (82)

and 7 € I', where a(y) is a population unit v fixed effect that may be random or
non-random. The within estimator, Byy,,, is

n T -1 n T
Bwn = ((nT)_l Z Z X Xjy — 7T,z‘YIT,i> ((”T)_l Z Z XYt — 7T,z‘?T,z)

i=1 t=1 i=1 t=1

n T -1 n T
=By + ((nT)_l Z ZXitX'L{t - YT,iYITﬂ‘) ((nT)_l Z Z XitUst — YT,'L'UTJ') ;

i=1 t=1 i=1 t=1
where
n T
Xie = Xa(72), Yae = Ye(73) Ui = Up(7i), Xo = (7)™ " X,
o o i=1 t=1
?TJ = (nT)_1 ZZY”’ and UT,Z' = (nT)_1 ZZU“. (8.3)
i—1 t=1 i1 t=1

The probability limit of BVV,n is By + rw(C), where

T -1 T
rw(C) = (T—l > B(Xu X, - YT’iY/T’i‘C)> (T—l > B(XulUu — YT,J_JTJ\C))
t=1 t=1

(8.4)
The analogue of Assumption CU for the within estimator is
T
71 ZE(XitUit — YT,iﬁT,i]C) =0 a.s. (85)
t=1

Consistency of the within estimator depends on whether (8.5) holds.

The asymptotic distributions of the within estimator and test statistics based on
it can be determined in a manner analogous to that used above for the LS estimator.
The asymptotic properties of the between estimator can be determined in a similar
fashion.
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8.2. Clustered Sampling

The results of the paper can be extended to cover clustered sampling. In this case,
«v is taken to be a cluster, and I' is the population of clusters. Then, W (v) is defined
to include random variables for all population units in the y-th cluster. Population
units in the v-th cluster are indexed by b = 1, ..., B, where B < oo denotes the cluster
size. A sample of n clusters is selected via iid indices {7, : i = 1,...,n} that satisfy
Assumption 1. For each cluster v; selected, a random sample of 7' population units
from the cluster is drawn.

The population units selected from the 7y,-th cluster are denoted with ¢ subscripts
fort = 1,...,T. For example, the regressor variables are X(y;) fort = 1,...,T. Then, as
in the panel model of (8.1), the LS, IV, and covariance matrix estimators are defined
with sums taken over t = 1,...,T as well as ¢ = 1,...,n and with normalization by
(nT)~! rather than n~=!. The definitions of 7(C) and s(C) are altered as in the panel
model of (8.1). The total sample size in this case is nT.

8.3. Generalized Methods of Moments Estimators

The results of this paper can be extended to nonlinear estimators, such as GMM
and maximum likelihood estimators. Here we show how probability limit results
can be obtained for GMM estimators. For brevity, we do not provide asymptotic
distributional results. Such results can be obtained using the same sort of method as
for LS estimators.

Consider the moment functions

9(Z(7),9), (8.6)

where g(-, -) is a known k4 vector-valued function, Z(vy) is a vector of random variables,
0 is a kg vector of unknown parameters, and v € I' is a population unit index. The
standard assumption used to obtain consistency of the GMM estimator for the true
parameter 0y € © is

Assumption GMM-STD. (a) Eg(Z(y),00) =0 for all v €T
(b) Eg(Z(v),0) #0if 0 # 6y and 0 € © for all y € T.

As above, we let S(y) € S denote some supplementary variables that may include
characteristics of population unit v and/or stochastic terms that are common to some
or all of the units in the population. We let W () = (Z(7), S(v)).

As above, samples of size n for n > 1 are obtained by drawing indices {v; :
i = 1,...,n} randomly from T such that Assumption 1 holds. Let W; = W(vy,),
Zi = Z(v;), and S; = S(v;). The random variables {Z; : i = 1,...,n} constitute the
observed sample. R

The one-step GMM estimator, 61 ,, of 6y minimizes

Q1n(0) = (n_lzg(Zi,9)> »t (n_lzg(Zi,9)> (8.7)
=1

=1
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over the parameter space © C R* for some non-random symmetric positive definite
kg x kg matrix 3, such as ¥ = I, .
The two-step GMM estimator, 03 5, of 6y minimizes

QQ,n(Q) = (n_ Z (Zzu9> n ( _lzg ZZ,9> (8'8)

i=1
over the parameter space O, where

n

in - nil Zg(Zhgl,H)g(Zia/él,n)/' (89)
i=1

Note that f]n could be defined with g(Zi,gl,n) replaced by the deviation of g(Z;, /Q\ln)
from its the sample average.

One could also consider the continuous updating GMM estimator. For brevity,
we do not do so.

We employ the following uniqueness assumptions:

Assumption GMM-1. (a) Q1¢(0) = E(9(Z;,0)|C)'~S E(g(Z;,0)|C) has a unique
minimum over © a.s., denoted 60 (C).
(b) Qa2c(0) = E(g(Zi,0)\6)’ZC_IE(g(Zi,0)\C) has a unique minimum over O a.s.,
denoted 03(C), where X¢ = E(g(Zi,01(C))g9(Zi,01(C))'|C).

Next, we introduce some basic assumptions on the parameter space, moment
conditions, and weight matrices ¥ and ¥¢:

Assumption GMM-2. (a) © is a compact subset of RFe.
(b) g(Z;,0) is continuously differentiable in # on © with probability one.

(c) Esupges ||9(Zi,0)[|* < 00 and E'supgee ||(9/06')g(Zs, 0)||-(1+supges |19(Zi, 0)]])
< 0.

(d) X is positive definite, and X¢ is positive definite a.s.
The probability limits of the one-step and two-step GMM estimators are given in

the following theorem:

Theorem 16. Suppose Assumptions GMM-1 and GMM-2 hold. Then, /H\Ln —p
91(6) and 92’71 —p 92(6)

Next, we give a sufficient condition for consistency of GMM estimators.

Assumption GMM-CON. (a) E(g(Z;,00)|C) =0 a.s.
(b) E(g9(Z;,0)|C) #0if 0 # 0y and 0 € © a.s.

Theorem 17. Suppose Assumptions GMM-2 and GMM-CON hold. Then, the one-
step and two-step GMM estimators, 91 n and 92 n, are consistent.
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Comments. 1. Assumption GMM-CON requires that the standard condition for
consistency of GMM estimators holds conditionally on the common shocks a.s., not
unconditionally.

2. Assumption GMM-CON is close to being a necessary condition for consistency
of /H\LH and 52,n- The reason is as follows. Under Assumption GMM-2, one can show
that the distance between /H\j,n and the set of minimizers of Q;¢(#) over © converges
in probability to zero for j = 1,2. If Assumption GMM-CON fails to hold, then with
positive probability E(g(Z;,85)|C) = 0 for some 6; € © with 65 # 6y. Hence, the
set of minimizers of Q);¢(#) over © includes both 6y and 67 with positive probability
for j = 1,2. In this case, one typically has limsup,,_, P(]/Q\j,n -0 <¢e) >0 for
all e > 0 for j = 1,2, which implies that Ej,n does not converge in probability to .
(However, providing simple conditions under which the latter must occur does not
appear to be easy.)

9. Conclusion

This paper calls into question the standard assumption that observations in cross-
section econometric models are independent. The paper takes a further step away
from independence than does the literature on models with group effects or spatial
correlation. The paper allows for common shocks of a very general nature. They may
affect all population units or just some population units. Their effect may depend on
characteristics of the population unit in a discrete or continuous fashion. Their effect
may be local or global in nature.

The paper shows that necessary and sufficient conditions for consistency of LS (or
IV) slope coefficient estimators in regression models with common shocks are that
the errors are uncorrelated with the regressors (or IVs) conditional on the o-field
generated by the common shocks. The LS and IV estimators are shown to have a
mixed normal asymptotic distribution after suitable centering and scaling. The paper
shows that, when the LS (or IV) estimators are consistent, the ¢, Wald, and F tests
and confidence intervals based on them are asymptotically valid.

On the other hand, when the errors are correlated with the regressors (or IVs)
conditional on the common shocks a.s., then the null rejection probabilities of t,
Wald, and F tests based on the LS (or IV) estimators converge to one as n — 0o
and confidence interval coverage probabilities converge to zero as n — oo. Hence,
common shocks can have an innocuous or detrimental effect on estimators and tests
depending on the properties of the errors, regressors, and IVs conditional on the
common shocks.
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10. Appendix of Proofs

Proof of Theorem 3. With convergence in probability replaced by convergence
almost surely, the Theorem follows straightforwardly from (3.1), (3.2), and Lemma 2
using Assumptions 1 and 2. The convergence in probability result then follows from
the almost sure convergence result. [J

Proof of Lemma 5. Using (3.3), which relies on Assumption 1, we have
B(UC) = / E(U(7)[C)dG(),
E(Xi|C) = /E )IC)dG(y), and
E(XiUi|C) = / EX(MUM)IC)G()- (10.1)
Equation (10.1) and Assumption CMZ give
E(U|C) = / E(U(7)[C)dG(y) = (10.2)

Combining the results of (10.1) gives

B(X; Uz|C) (Xi|C)E(Uz’|C)
:/E IC)AG() - / E(X(7)|C)dG(y /E NIC)G(),
— [IBEOVE)E) - BXGIOECMIOHGN)
:b, (10.3)

where the second equality holds by Assumption CU~v(b) and the third equality holds
by Assumption CU~y(a). O

Proof of Theorem 7. Assumption STD1 holds by the following calculations:

EX(7)U(y) = EcCLE(X*()U*(7)'IC)Cy
= EcC2E(X™(7)U* (7)) Ch
= EcCoE(X*(7)Ur (7)) + EcCoE(X*()Us (7)) Cut
—0, (10.4)

for all v € I, where F¢ denotes expectation with respect to the randomness in C, the
first equality holds by Assumption SF1 and iterated expectations, the second equality
holds by Assumption SF1(b), the third equality holds by Assumption SF4(a) and (b),
and the fourth equality holds by Assumptions SF1(b) and SF4(a) and (c). Analogous
calculations give EU(y) = 0.
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Next we show that Assumption CU does not hold. We have
B(UIC) = [ BUMI0G(H)

~ [ B0 (yaca)c:
= EU(v) + Cp /EUé“(v)dG(v)
—0, ' (10.5)

where the first equality holds by (3.3), the second equality holds by Assumption SF1,
the third equality holds by Assumption SF4(a) and (b), and the fourth equality holds
by Assumption SF4(a) and (d).

Given (10.5), we have

Cov(X;,U;|C) = E(X;U; ]C)
/ E(X(1)U()IC)dG()
o / E(X (4))dG(7)C
= G [ EX'0)UI ()G () + 2 [ B (U3 ())G()Crn
- @/E (1))dG(7)Cu
# 0 with positive probability,

10.6)

(
where the second through fourth equalities hold by the same arguments as in (1
and the fifth equality and the inequality hold by Assumption SF4(a) and (d). O

Proof of Theorem 9. We have
E(Ui|C) = E(Us(C(So,))IC)

= Es, i E(Ui(C(50,))IC, So.i)
= EsyiEx, ()50, (Ui(C(S0,i))[50,0), (10.7)

0.5)

where Efg, , denotes expectation with respect to So; alone, Ex, (. s, .(:|So0,s) denotes
conditional expectation with respect to (X;(-), So;) alone given Sp;, the first equality
holds by Assumption FF1(d), the second equality holds by iterated expectations, and
the third equality holds by Assumption FF1(e) and the fact that C = o(C(+)), which
holds by Assumptions FF1(b) and (f).

By similar arguments, we obtain

E(X;UilC) = ESo,iEXi(-),So,i (X5(C(S0,4))Ui(C(S0,i))|50,:) and
E(Xi|C) = Esy, Ex;(.),50.:(Xi(C(50.i))|S0,1)- (10.8)
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Combining (10.7) and (10.8) gives
E(X,U;|C) — E(X;|C)E(U;|C)
= Es,, Ex, (.50, (Xi(C(S0,))Ui(C(S0,:))[S0,)
—Es, . Ex;(),50.,(Xi(C(50,:))150) - Eso,i Ex;(-),50.: (Ui(C(50,:))]50,:)
= Es,.[Ex;(),5.: (Xi(C(50:))Ui(C(S0,i))[S0.1)
—Ex,(,50, (Xi(C(50,))1504) - Ex, ()80, (Ui(C(S0,i))|50,)]
=0, (10.9)
where the second equality holds by Assumption FF2(b) because (i) C(-) is indepen-
dent of (X;(-),U;(+),Sos) and, hence, can be conditioned on and (ii) C(Sp;) is a
constant conditional on C(-) and Sp,; and the third equality holds by Assumption
FF2(a). This result implies Assumption CU.

By (i) and (ii) of the last paragraph applied to the right-hand side of (10.7) and
Assumption FF3, the right-hand side of (10.7) equals zero a.s. Hence, Assumption
CMZ holds.

The proof of parts (c) and (d) is the same as the proof of Lemma 5 with X;, U;,
X(7), U(y), and E(-|C) replaced by X;(c), Ui(c), X(c,7), U(c,7), and E(-), respec-
tively, using (2.5) in place of (3.3). O

Proof of Theorem 10. To prove part (a), we write

n'/2(B, — By —(C))

n -1 n
_ <n > _7n7;> Y (0= Kot~ B~ B0

—1
n
= (nl ZXle/ — YnY;I>

i=1

« (n—l/z > {[Xi — E(X|0)|U; — E(IX; — E(X,|C)Ui|C) — [X; — E(X:[C)| E(Ui|C)}

=1

—[Xn — B(Xi[C)ln 2 Xn:[Uz’ - E(UHC)O
=1

= (Bz' +0p(1)) (”_1/2i§i> + op(1), (10.10)
i=1

where &; is defined in (4.2) and the third equality of (10.10) holds using Lemma 2 to
obtain the By ' + 0,(1) result, using Lemma 2 to obtain X, — F(X;|C) = 0,(1), and
using a MDS CLT to obtain

n~1/2 zn:[Ui — E(U|C)] = Op(1). (10.11)
=1

In particular, we apply Corollary 3.1 of Hall and Heyde (1980, p. 59) to obtain
(10.11). For i > 1, let F; denote the o-field generated by C and (W7, ..., W;). Then,
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{Ui—E(U;|C), F; : i > 1} is a MDS because {U; : i > 1} are iid conditional on C, and
hence, E(U;|Fi—1) = E(U;|C) a.s. A conditional Lindeberg condition holds because,
for all e > 0,

lim n1 iE([Ui — E(U;|0)*1(|U; — E(U;|C)| > n*/%e)| Fi_1)
i=1
= lim E([U; — E(U;|C)]*1(|U; — E(U;|C)] > n'/?e)|C) =0 as.,,  (10.12)

n—oo

where the first equality holds because {U; : i > 1} are iid conditional on C and
the second equality holds by the dominated convergence theorem using E([U; —
E(U;]C)2|IC) < E(U?|C) < oo a.s. by Assumption 3(a). In addition, the normal-
ized sums of conditional variances converge as n — oo because they do not depend
on n: .
n~ 'y " E([Ui — E(UI|C)|Fi—1) = E([Ui — E(U[C))*[C). (10.13)
i=1
Equation (10.13) holds because the conditional variances given F;_; equal the condi-

tional variances given C and the latter are identically distributed by exchangeability.
Hence, the MDS CLT implies that

n~ 123U, - E(U|C)] —q4 E([U: — E(UIC)?[C) x Z¥, (10.14)
i=1
where Z* and E([U; — E(U;|C)]?|C) are independent and Z* ~ N(0,1). This, in turn,
gives (10.11).
Next, {§;,Fi : @ > 1} is a MDS by the same argument as above for {U; —
E(U;|C), Fi : i > 1}. By application of the same MDS CLT as above, we obtain

n
n—1/2 Zgi —a Qe X Z, (10.15)

i=1
where (Q¢, Be) and Z are independent and Z ~ N (0,I;). To establish the CLT,
we note that a conditional Lindeberg condition holds using the moment conditions
of Assumptions 2(a) and 3 and the dominated convergence theorem as above and
the conditional variances converge by the same argument as in (10.13). Combining

(10.10) and (10.15) gives the result of part (a).

Part (b) of the Theorem holds by the same argument as for part (a), but with all

of the terms pre-multiplied by VC_I/ 2,
Part (c) of the Theorem holds using Lemma 2. [

Proof of Theorem 11. Part (a) holds by Lemma 2.
To prove part (b), for notational simplicity, suppose X; is a scalar (otherwise one
can establish the results element by element). Using Theorem 3, we have
Ui = [Ui = E(Ui[C)] = [@n — a0 — B(UIC)] — Xi(B,, — Bo)
= [U; — E(U;|C)] + E(X;|C)r(C) + 0p(1) — X;(r(C) + 0p(1))
= [Ui = E(Ui|C)] — [Xi = E(Xi[C)][r(C) + 0p(1)] + 0p(1) (10.16)
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(where op,(1) does not depend on ). Using (10.16), we can write Q, as
nt Z E(U;|0)4(X; — X )2

+r(C) + 0p(1))? (n_l > X = BOGIC) (X — 702)

i=1

—2[r(C) + 0p(1) _IZX E(Xi|C)][U; = B(U|C0))(X; — Xn)?

=1
+op(1 12 ([U; = E(UI[C)] - [Xi — E(X;[C)][F(C) + 0p(1)]) (Xi — Xn)?
+op(1)n~? zn: (10.17)
=1

The probability limit of (10.17) is Q3 + 7 using Lemma 2. Hence, part (b) holds.
Part (c) follows from parts (a) and (b).
To prove part (d), note that 62 equals the expression in (10.17) for Q, with
X; — X, replaced by 1. This, combined with Lemma 2, establishes part (d).
Part (e) follows from parts (a) and (d). O

Proof of Theorem 13. We have
= [Val;)* v (@w Boj —n(C )) + [Vl vara(C);, (10.18)

where r,,(C); denotes the j-th element of 7,(C). When Assumption CU holds, we have
m(C); = 0 and [V} 1/2\/7(5n7j Bo ;) —a N(0,1) by the combination of Theorems
10(a) and 11(c) and Comment 2 to Theorem 11. Hence, part (a) of the Theorem
holds.
When r(C); # 0 a.s., we have

[Tl = 10p(1) + ([Bg (0 +11¢) Bz i + 0p(1) ™2V (C)j] —p 00, (10.19)

where the equality holds using Theorems 10(a) and 11(c) and the divergence to
infinity holds because [B;'(Q% + n¢)B;'];; is positive a.s. (by Assumptions 2(d)
and 5(a)) and 7,(C); —p 7(C); by Theorem 10(c). In consequence, part (b) of the
Theorem holds. Part (c) holds by a similar argument.

To establish part (d), under Hy, we have

W, = [|[(RV,R) V20 2R(B, — By — r(C)) + (RV,R) /202 Rr,(C)||?. (10.20)

When Assumption CU holds, we have Rr,(C) =0 a.s. and (R‘A/nR’)*l/2n1/2R(Bn -
Bo) —a N(0,1;) by Theorems 10(a) and 11(c). Hence, part (d) of the Theorem holds.
When Assumption Rr(C) # 0 a.s., we have

W, = [|0p(1) +nY*(RB; YO + ne] Bo 'R + 0,(1)) Y2 Rr, (C)||* —p 00, (10.21)
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where the first equality uses (10.20) and Theorems 10(a) and 11(c) and the divergence
to infinity uses the fact that B, 1[92 + n¢) B !is nonsingular a.s. by Assumptions
2(d) and 5(a). Hence, part (e) of the Theorem holds. [

Proof of Theorem 16. The proof is a variation of a standard argument for deter-
mining the probability limit of an extremum estimator. First, we show that

sup |Q1.n(0) — Q1c(0)] —5 0. (10.22)
0cO
This holds because (i) Q1.,(0) — Q1,¢(#) —p 0 for all § € © by Lemma 2 and (ii)
stochastic equicontinuity of {Q1,(0) — Q1¢(0) : 0 € O} for n > 1 holds by Lemma
1(a) of Andrews (1992) with Q, () = Q1.n(0) — Q1c(0) and Qn(F) = 0 using a mean
value expansion and Assumption GMM-2(b) and (c) to verify Assumption SE-1 of
Andrews (1992). Results (i) and (ii) combine to establish (10.22) by a generic uniform
convergence result, e.g., see Andrews (1992, Thm. 1).
Next, we have

f 0p) a.s. for all 0 10.23

o (%1]131(91 Q1 c(0) > Qic(Ao) as. for all e > 0, ( )

where B(01(C),e) denotes an open ball of radius e centered at 6;(C). This holds

because Q1,¢(#) is a continuous function a.s. defined on a compact set by Assumption

GMM-2(a) and (b) and it has a unique minimum at ;(C) a.s. by Assumption GMM-
1(a). Equation (10.23) implies that

lim P > 0 d) =1 10.24

T P(_ nt  Que(®) > Quelb) <9 (10.24)

by the bounded convergence theorem. Hence, given any ¢,e1 > 0, there exists a

constant § > 0 such that

i B 0) > Qrc(bo) +0) > 1 -1, 10.25
(9ee,e¢1§(91(c),5) Q1.c(0) = Qc(fo) +6) = €1 ( )

Using (10.25), we have

P(f1n ¢ B(t1(C),€))
< P(Q1 c(B10) — Qic(fo) > 0) + &1
= P(Que(f1n) = Qua(Brn) + Qua(B1n) — Quc(fo) > 0) + 1
< P(Que(01n) — Qua(B1n) + Qunlf0) — Que(fo) > 0) +e1
< (QSUP|Q1n( ) —Qic(0)] =6) +e
- et (10.26)

where the second inequality holds because Ql,n(gl,n) < Q1,n(0p) by the definition
of 51,n, and the convergence to 1 holds by (10.22). Because £; > 0 is arbitrary in
(10.26), the limit of P(/Q\l,n ¢ B(01(C),¢)) is zero for all € > 0 and the result of the
theorem for 51,,1 is proved.

36



The corresponding result for /égm holds by an analogous argument provided f]n —p
Yc. The latter holds using (i) Lemma 2 with h(W;) = g(Zi,00)9(Zi, 0o)’, (ii) mean
value expansions of g(Z;, 01 ,,) around 6y using Assumptions GMM-2(b) and (c), and
(iii) 61, —p 61(C). O
Proof of Theorem 17. By Assumption GMM-CON(a), Q;c(6p) = 0 for j = 1,2.
By Assumption GMM-CON(b) and Assumption GMM-2(d), Q;c(#) > 0 for allf € ©
with 0 # 0y a.s. for j = 1,2. Thus, Assumption GMM-1 holds with #1(C) = 6y and
02(C) = 6y a.s. Theorem 16 now gives 601, —p 0o and 02, —, 6p. O
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Footnotes

1 This paper has been prepared for the Ted Hannan Lecture at the Australasian
Meetings of the Econometric Society to be held in Sydney, Australia in July 2003.
The author thanks the organizers of these meetings for their work. The author thanks
Peter Phillips for remarks and comments made over the years on the general topic
considered in this paper. He also thanks Joe Altonji and Guido Imbens for references
and gratefully acknowledges the research support of the National Science Foundation
via grant number SES-0001706.

2 This approach allows for multinomial sampling, which is a type of stratified
sampling. Extensions to clustered sampling are also possible.

3 This holds because, for any integrable random variables {£,, : n > 1} and &, we
have (i) | B¢, — E¢| < E|&, — €| and (ii) E|¢, —&] — 0 £, —¢ —, 0 and {&, :n > 1}
is uniformly integrable, e.g., see Dudley (1989, Thm. 10.3.6, p. 279).

4 Note that some authors refer to the following type of structure as an approzimate
factor structure because it allows for a purely idiosyncratic component as well as
common factors.

5 We take S(y) = (C1,Cs) for convenience because it guarantees that C =
o(C1, Cy). Instead, if we took S(y) = 0, then C would not necessarily equal o(C1, C2)
without some additional assumptions, which would just clutter the presentation. For
example, if some element of U*(7y) equaled zero for all 7 € T', then the corresponding
element of C7 would not appear in U(7y) and, hence, would not be part of the random
variables that generate C.

6 The common shocks (Cy(+),Cs(+)) are included as part of S(v) for the same
reason as in footnote 5.
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