
Estimation and Inference in Social Experiments

Christopher Ferrall

Department of Economics
Queen’s University

http://qed.econ.queensu.ca/pub/faculty/ferrall

May 28, 2004

Abstract:
This paper develops a framework for analyzing the outcome of experiments carried out
on forward-looking subjects. Natural experiments, unexpected policy changes, and true
experiments are all included in the framework as special cases. These concepts are defined in
conjunction with explicit notions of controlled and randomized experiments. The persistent
issues of sample-selection bias and heterogeneous impacts that surround interpretations of
experiments are endogenous to the model. Special attention is given to interpreting empirical
impact of the treatment within the model. The environments in which estimated mean
impacts correspond to mean subjective impacts are specified, and they are found to be a
small, uninteresting subset of environments contained within the framework.

JEL Classification: C1, C9

Keywords:
Dynamic Programming, Treatment Effects, Policy Experiments

Correspondence:

C. Ferrall, Dept. of Economics, Queen’s University, Kingston, Ontario K7L 3N6, CANADA.

ferrallc@post.queensu.ca

Research support from the Social Science and Humanities Research Council of Canada is
gratefully acknowledge. This paper is partly based on a draft research report supported by
the Social Research and Demonstration Corporation. Helpful comments from Susumu Imai,
Shannon Seitz, Bruce Shearer, and participants at the 2001 CEA Meetings in Montreal, the
2002 SED Meetings in New York, Laval, the Chicago Federal Reserve Bank, and Chicago
are appreciated.



I. Introduction

The Negative Income Tax (NIT) experiments of the 1960s and 1970s were expected to

set economic policy analysis on a course of ever increasing confidence and precision (Orcutt

and Orcutt 1968). Yet, based on the methods and resources available at the time, the

NIT experiments failed to provide definitive measurement of the elasticity of labor supply

(Pencavel 1987). The experimental design did not clearly identify the parameters of interest,

and a host of econometric problems were encountered. This experience and the steady growth

of non-experimental data sources and econometric methods kept large-scale experiments

from becoming commonplace. More recently economists have become less ambivalent about

experiments, in part because the goals stated for social experiments have become more

modest. Social experiments are now more carefully designed to demonstrate the impact of

a particular policy change on selected outcomes. Indeed, despite the failures of the NIT

experiments, the potential power of controlled experiments to solve problems of endogenous

explanatory variables has influenced non-experimental econometric analysis by placing great

emphasis on so-called natural experiments and the closely linked technique of instrumental

variables.

This paper revisits the use of social experiments to identify parameters of a model of

individual behavior.1 In contrast to the state-of-the-art at the time of the NIT, current

empirical models of behavior emphasize forward-looking decision-making, unobserved differ-

ences between agents, and differences between the information available to agents and the

econometrician. These considerations lead to modeling the behavior of subjects in an exper-

iments as a discrete-choice dynamic program. Thus this paper relates closely to Rust (1994)

which characterized the estimation of discrete-choice Markov decision problems. Here three

state variables are introduced to Rust’s framework to account for experimental (or quasi-

1 The leading example of a controlled experiment designed to study and to be studied by
a unified model of individual behavior is Shearer’s (1994) experiment on incentives to carry
out hard physical labor (tree planting).
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experimental) treatment. The standard model is also extended to integrate unanticipated

(“zero-probability”) events, sample selection, observed and unobserved heterogeneity, av-

eraged data, and hypothetical uses of the results. While nearly all these elements have

appeared before in applications of discrete choice dynamic programming, they have been

seen as extensions to the standard model of a homogeneous, stable environment with ran-

dom sampling and fixed initial conditions. Here the elements of heterogeneity, exogenous

variation, and endogenous initial conditions are combined within a unified strategy to solve,

estimate, and apply a model.

Much of the recent literature on experiments and program evaluation seeks to define

quantities, such as the mean treatment effect, that can be recovered from data under weak

assumptions and a trend toward viewing such quantities as primitive parameters. For ex-

ample, in discussing the “local average treatment effect” (LATE) introduced by Imbens and

Angrist (1994), Manksi (1996) notes, “Imbens and Angrist do not argue that an analyst

should. . .be concerned with this subpopulation. They motivate their interest [in LATE] by

stressing that this quantity is identified in circumstances where the effect of treatment on

compliers is not identified” (p. 723). In contrast, this paper reserves the term ‘parameter’

for unknown constants of two types: a parameter of an agent’s objective function or a pro-

portion of a (unknown) agent type in the population. In short, the objects of interest are

independent of the nature of the experiment. Quantities such as mean treatment effects,

which are dependent of the experiment, are derived from the underlying parameters and the

policy environment surrounding agents.

Several implications are presented suggesting that intuition from a static model and a

view of individual treatment impacts as primitive parameters does not readily extend into the

dynamic world in which individual impact arises from individual response. In short, while

random assignment to treatment alone is useful, it is not sufficient on its own to identify

elements of the environment that are important for policy analysis. This paper is not the

first to suggest that experimental impacts, while easy to interpret, may be of limited value
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unless combined with a model that accounts for how subjects become eligible for random

assignment and why they respond to treatment. Others include Heckman et al (1999), Hotz

et. al (1999), Ichimura and Taber (2000), Rosenzweig and Wolpin (2000), Todd and Wolpin

(2003) and Lise et al (2004) and Moffitt (2004).

The framework presented here encompasses provides a formal language for describing

experiments and using all the information available in the outcomes they generate. The

formal definition of a social experiment is sufficiently precise to describe a complete solution

algorithm, alternative estimation procedures, and use of results to analyze hypothetical

policy changes. The definition is also sufficiently general to include designed experiments,

field trials, demonstration projects, unexpected policy changes, and random acts of nature.

As examples, four situations are mapped into the basic framework to illustrate its ability to

represent exogenous variation as it is usually portrayed in the literature.

As with any fully specified ‘structural’ model, a complete likelihood function for a sam-

ple of independent observations is generated, and some results concerning identification of

the estimated parameters are provided. However, particular attention is paid to estimating

the model using averaged data. There are three reasons. First, maximum likelihood estima-

tion on individual data demands the model be completely consistent with the experiment

and data collection. Rectifying even incidental discrepancies between the data and the data

generating process often requires costly increases in computation. Applying Generalized

Method of Moments (GMM) on averaged data smooths many discrepancies between the

model and reality, allowing a more parsimonious model. Second, use of averaged data means

the estimated model is nested by a atheoretic impact analysis. The social experiment model

becomes a null hypothesis about mean outcomes which, if not rejected, can replace the athe-

oretic analysis as an explanation of the experimental results. Emphasizing GMM based on

limited information is thus motivated by a desire to counteract the view that structural esti-

mation is a non-nested alternative to a simple analysis of impact. The auxiliary assumptions

can be viewed as testable against an alternative that simply treats random assignment as
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exogenous variation. Third, many controlled and natural experiments are studied with pro-

prietary and confidential data. In these cases access to individual outcomes is limited. This

paper emphasizes that limited access to outcomes in evaluations of experiments does not

in itself preclude estimation of a rational model that can explain and predict experimental

outcomes.

II. Experiments and Econometrics

This section introduces the basic analysis of treatment effects in experiments in order to

frame later comparisons with the modeling approach. Begin by selecting a result to study,

denoted Y . The impact of treatment on Y is the difference ∆ between Y conditional on

assignment to the treatment group (g = 0) and assignment to the control group (g = 1):2

∆ ≡ Y0 − Y1. (1)

∆ is treated as an unobserved random variable endogenous to many decisions made before

and after the experiment begins. In the extreme, when only the random assignment to

experimental groups is considered exogenous and thus all other covariates are potentially

jointly determined with Y0, the sample mean treatment effect,

∆̂ = Ê[Y0 | g = 0]− Ê[Y1 | g = 1] (2)

remains an unbiased estimate of the population mean individual treatment effect:

E[∆̂] = E[Y0 | g = 0]− E[Y1 | g = 1] = E[Y0]− E[Y1] = E[∆]. (3)

Thus ∆̂ answers an important question. Yet a well-run experiment raises more questions

than it answers. How would ∆ change if the ‘dose’ were increased or decreased? Or if

subjects were treated longer? How long after the end of the experiment do its effects last?

2 Usually the subscript 1 denotes the treatment group, but using it to denote the control
group reflects more clearly the backward induction used to solve the model.
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When ∆ is taken as a primitive parameter, these questions are unanswerable. They are

answerable, however, within a model of behavior of the subjects in both the treatment and

control groups. Other issues surrounding the interpretation and application of experimental

outcomes include the following:

¦ Too Many Impacts. One advantage of using only mean treatment effects from con-

trolled experiments is that they are easy to explain to politicians and other non-specialists

(Burtless 1995). In the textbook case, Y and ∆ are both scalars, and explaining the im-

pact of a program would be straightforward. In practice, several measurements are taken

at different points after random assignment. If E[∆] is estimated for all of them, then

Y is a vector that concatenates all results of interest measured at each point in time.

With a multi-dimensional impact vector, no one statistic summarizes the outcome of the

experiment. Because ∆ is not based on a theory of how subjects react to the experiment,

impact analysis provides no objective way to aggregate variation across time or across

impacts. The clarity of a scalar ∆ gives way to a cloud of impacts out of which many

different and possibly conflicting conclusions might be reached.

¦ Degrees of Freedom. Although the number of measurements in an experiment is

usually pre-determined, presumably the impact continues past this point. The reported

impact vector ∆ itself does not predict or forecast further results. Put succinctly, im-

pact analysis is a method-of-moments estimate with a free parameter for every result of

interest (∆). This freedom leaves no power to forecast behavior after the experiment

or subsequent to (hypothetical) policy changes. Correlations across impacts cannot be

exploited to generate more efficient estimates. In the model developed here all results

arise from one underlying model with a number of parameters that are independent of

the measurements take from the experiment. Impact within the experiment can be pro-

jected beyond the measured sample into hypothetical situations, including policies not

identical to the treatment and populations not included in the experiment.

¦ Sample-Selection, Entry Effects and Heterogeneity Bias. Experiments are rarely
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conducted on randomly sampled members of the population of interest. For example,

a proposed training program may, if it were to become policy, draw entrants from a

large segment of the workforce, say all low-wage workers. This pool may be so large

and diffuse that any attempt to sample it systematically is prohibitively costly. It is

more cost-effective to sample subjects who are most likely to respond to the treatment,

perhaps by restricting the experimental sample to people who visit an employment office

without knowledge of the experiment. In contrast, a model of the experiment (if it is

good) applies in both the treatment and control groups, both inside and outside the

experiment.

¦ Experiments and Policy. The fundamental question posed by an experiment is:

If the treatment were to replace the status quo and became policy, would the

experimental results predict the real results?

This is different than the more narrow ‘what if’ questions raised early, because they

could, in principle, be answered by a larger or longer experiment that varied parameters.

But any social experiment must be finite-lived, voluntary, and without an open window

of opportunity to enter treatment. A policy, on the other hand, applies in the future

to subjects not eligible at the time the policy was announced. It may be available

repeatedly, and it may not be voluntary. Because experimental treatment is a one-

shot temporary intervention, the subjects of an experiment all anticipate a return to a

world without treatment. The status quo policy is de facto the terminal state for both

the treatment and control groups. From the beginning this limitation was noted, and

Orcutt and Orcutt (1968) suggested that varying the treatment period may identify the

size of the terminal bias in treatment. However, if the current policy were eliminated,

the sample selected into an experiment comes from a world which would no longer exist.

The initial conditions themselves cannot be treated away. Without a reliable model of

behavior under the status quo it is not possible to correct for sample selection bias in

real policy forecasts solely based on the experimental results. But if the experimental
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treatment were implemented, it would modify the status quo and by that fact alone

modify the impact of the program. When combined with the other issues left unresolved

by random assignment alone, status quo bias in both the initial and terminal conditions

of an experiment make it nearly impossible to project experimental results into policy

predictions without a model of behavior to explain reaction to the treatment.

III. The Social Environment

Before describing an experiment it is necessary to describe the environment in which the

experiment takes place. The environment is called ‘social’ not because individuals interact,

although such interactions can be incorporated into the framework (see VII). Rather, poli-

cies parameters and other aspects of the setting outside the experiment affect the results

generated by the experiment, and in this sense the social situation affects the outcome of an

experiment. (The Appendix provides some notation and convention used in the technical

aspects of the paper.)

III.A Subject Behavior

The model of subject behavior is a discrete-state, discrete-choice dynamic program.3

Each period the subject is in a state θ, an element of the state space Θ. Each period

the subject chooses an action vector α from a set of feasible actions A ( θ ). A choice-state

combination (α, θ) is referred to as an outcome. The value of an outcome is written

v(α, θ) = U(α, θ) + δE [V (θ′)] = U(α, θ) + δ
∑

θ′
P { θ′ |α , θ }V (θ′), (4)

and depends on the one-period utility U(α, θ), the discount factor δ, and the outcome-to-state

transition probability P { θ′ |α , θ } . V (θ′) is the value of entering state θ′ given that an optimal

3 The framework can be extended to include approximation of a state space where some
state variables take on a continuum of values using methods described in, for example, Rust
(1997). A continuous state space is often assumed so as to smooth the model’s predic-
tions. Other approaches to smoothness are integrated into this framework and may make a
continuous state space unnecessary.
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decision will be made then and for all future periods:

∀ θ ∈ Θ, V ( θ ) = max
α∈A( θ ) v(α, θ). (5)

The dynamic program in (4) and (5) can describe environments in which no unexpected

events occur to subjects. Yet the essence of an experiment is that subjects do not anticipate

treatment. More notation is required to account for the exogenous and unexpected aspects

of an experiment. For this purpose it proves useful to think of the state vector θ as the

concatenation of five sub-vectors, each of which contains state variables that play specific

roles in the model:

θ ≡
(

θclock θexp θend θexog θpol

)
(6)

=
(
( t r f ) ( g e ) ( · · · d k ) (Λ Γ) [Ψp[d]]

)
.

The ‘pol’ vector contains parameters describing current public policies that affect subjects.

The ‘exog’ vector contains preference and technology parameters; ‘end’ contains the variables

typically thought of as state variables, i.e. those endogenous to the subject’s problem (4)-

(5). These variables pertain to the world outside the experiment. The ellipsis indicates

that the modeler chooses the elements of the endogenous vector except for the required

variables d and k, which are described below. The remaining two sub-vectors describe the

subject’s situation inside the experiment, and they are defined in the next section. Outside

the experiment the values of θclock and θexp are transparent to the subject. The required

state variables within each sub-vector that are listed above will be defined as the role of each

sub-vector is described.

When the state and action spaces are large, the transition P { θ′ |α , θ } becomes exceed-

ingly complex if allowed to take an arbitrary form. On the other hand, any restrictions

on the transition must not rule out common specifications. To balance these concerns the

evolution of state variables is described with some special notation.
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Definition 1. A discrete jump process q′ = q?(q̄, [πj], [Qj]) means ∀ (α, θ),

P {q′ | α, θ} =
J(α,θ)∑

j=1
πj(α, θ)

B
[
q′ ∈Qj(α, θ)

]

|Qj(α, θ)| +


1−

J(α,θ)∑

j

πj(α, θ)


B [q′ = q̄(α, θ)] . (7)

In words, q?(q̄, [πj], [Qj]) means that the next realized value of q is either the default

value q̄ (a scalar) or jumps into one of J sets Qj with corresponding probability πj. The

notation [Qj] emphasizes that the jump sets are organized into a vector parallel to the

vector of probabilities, [πj]. The probability of the default event is 1 −∑
j πj, although the

default value can appear in the jump sets, so q̄ may be more likely to occur than the default

event itself. Within each jump set the values are equally likely: πj/|Qj |. This is assumed

without loss of generality, because the modeler has the option of specifying each jump set as

a singleton. Note that (7) makes it explicit that the arguments of the jump process depend

on the current outcome (α, θ). In the extreme, each set could contain a single value, although

most models have much more restrictive processes and it would be more difficult to classify

different types of state variables without notation that succinctly describes the simple cases

that occur most often, as this list of examples illustrates:4

Examples A discrete jump process q ∈ θ is:

¦ absorbing at n if q = n → q′ = q?(n, [0], [∅]);

¦ invariant if q is absorbing for all values q = 1,2, . . . , Q;

¦ autonomous [at θ] if [at θ] q? is not a function of α;

4 To show the flexibility of this notation, consider one extended example. Suppose that q
is iid at states where some other variable z is 0. Otherwise, q retains its current value. For
example, q might be an index for job offers in a search model. While unemployed (z = 0),
job offers arrive iid from a discrete distribution, but while employed (z = 1) the offer stays
constant at its current value. Using the discrete jump notation, this process is described as

q?
(

q , B [z = 0]
[
p1 p2 · · · 1−∑Q−1

i pi

]
, [ {1} {2} · · · {Q} ]

)
. (8)

Multiplying the vector of jump probabilities by the scalar B [z = 0] makes the probability
of the default (and current) value equal 1 when z 6= 0. If the model specifies that z is
ergodic, this means that for any employed state there exists at least one action that will lead
to a positive probability of unemployment. Here q is dependent on z at employed states.
Although q itself is not ergodic, its dependence on z keeps the overall transition ergodic.
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¦ independent [at q = n] if (q = n implies) q? is not a function of α or any other

state variable s 6= q;

¦ ergodic [at θ] if for n = 1,2, . . . , Q, ∃αn ∈A(θ) : P{q′ = n | (αn, θ)} > 0;

¦ iid if for constants [pi], q′ = q?
(

q ,
[
p1 · · · 1−∑Q−1

i=1 pi

]
, [ {1} · · · {Q} ]

)
;

¦ dependent if q is not ergodic, but for any two values q?, q??, there exists a

chain of outcomes (α1, θ1), (α2, θ2), . . . , (αm, θm), m < Q − 1, with corresponding

values of q such that P
{
q′ = q?? | (αm, θm)

}
> 0, P

{
q′ = qm | (αm−1, θm−1)

}
> 0, . . .,

P
{
q′ = q1 | (α?, θ?)

}
> 0;

Invariant states as defined above differ across individuals but are fixed for a given indi-

vidual. The set of invariant states partitions the state space. That is, there exist a set of

subsets in which all the invariant states are constant, and the state of any subject in one of

these subsets remains in the subset forever.

Requirement 1. Transitions and Choice Probabilities.

R1a. 0 < δ < 1; U(α, θ) is a smooth function of a vector of exogenous parameters

Υ ∈ U ⊂ <N1 ; P { θ′ |α , θ } is a smooth function of a vector Π ∈ P ⊂ <N2 of

exogenous parameters; U and P are bounded open sets.

R1b. For all Π ∈ P each variable q ∈ θ follows a discrete jump process that is invariant,

ergodic, or dependent.

R1c. State-contingent choice probabilities are smoothed by a logistic kernel with pa-

rameter 0 < ρ < 1:

ṽ(α, θ) ≡ B [α ∈A( θ )] exp
{

ρ

1− ρ
[v(α, θ)− V ( θ )]

}

P {α | θ } =
ṽ(α, θ)∑
α′ ṽ(α′, θ)

. (9)

From R1 the complete transition function can be described. The formulas for P { θ′ |α , θ }

and Ps { θ′ | θ } are given in the Appendix.
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III.B Observed and Unobserved Heterogeneity

A group of subjects that, for the purposes of the model and the experiment, share

observable characteristics that do not vary over time is called a demographic group and is

indexed by d ∈ θend. The number of demographic groups, D, is pre-determined and finite.

In addition, subjects are also divided into K pre-determined groups indexed by k ∈ θend

and sharing unobserved characteristics. A subject’s demographic group and unobserved

type completely specify their environment outside the experiment. For example, suppose

a model is posited in which income tax rates depend on location but a subject’s location

is not determined endogenously by α and is taken as given in the analysis. Location is

then a demographic variable. Each unique combination of location and the values of other

demographic variables would define a demographic group. Further, the model posits that

subjects differ in the marginal utility of leisure, which is also treated as given in the model

but not directly observable to others. Neither government policy nor the experiment cannot

directly treat subjects differently based on marginal utility, so each value of it would help

define an unobserved type.

Individuals who differ in observed ways are likely to differ in unobserved ways. Although

d is an index of fixed exogenous variation, it is problematic to limit the correlation between

it and the underlying preference parameters indexed by k. Continuing the marginal tax rate

example, people with low marginal utility of leisure may choose to live in locales with low

income taxes. One solution is to model all results of interest including d itself. This may not

be feasible, and it can detract from a focus on the experimental results. A second solution

is to let exogenous variables be parametric functions of observed characteristics and other

‘deeper’ estimated parameters. This creates a hybrid model in which some parameters are

related to observed characteristics and some are not. The middle-ground strategy adopted

here assumes non-parametric unobserved heterogeneity (Heckman and Singer 1984) and

mixture probabilities that depend on the demographic index d. The advantages of this

assumption over a hybrid model will be described below.
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Requirement 2. Exogenous Parameters.

R2a. θend contains exactly two invariant states, denoted d and k, and taking on positive

integer values up to D and K, respectively.

R2b. The exogenous parameters of a subject’s problem (4)-(5) are collected in a vector

of size N = N1 + N2 + 2 that is specific to each type k:

Γ[k] ≡ (Υk Πk δk ρk ) . (10)

R2c. U(α, θ) and P { θ′ |α , θ } are (not necessarily smooth) functions of a vector Ψp of

policy instruments. The policy vector θpol takes on exactly one value (and so is

invariant) and consists of D sub-vectors indexed by d:

θpol ≡ (Ψp[1] Ψp[2] · · · Ψp[D] ) . (11)

R2d. The (invariant) proportion of the population with a given combination ( k d )

equals λ̄[d]λ[d, k], where: λ̄[d] ∈ Ψp[d]; λ[d, k] ∈ θexog; λ̄ ∈ ΞD; and λ[d] ∈ ΞK for all d.

R2e. Outside an experiment θclock and θexp are single valued and have no affect on

U(α, θ) and PP { θ′ |α , θ } .

R2f. The exogenous vector has length P = K(D + N) and takes on exactly one value,

defined in three ways:

θexog ≡ (λ[1,1] · · ·λ[D,K] Υ1 Π1 δ1 ρ1 · · · ΥK ΠK δK ρK )

≡ (Λ[1] Λ[2] · · · Λ[D] Γ[1] · · · Γ[K] )

≡ (Λ Γ) . (12)

The bounded open set of possible exogenous vectors is:

Θ̂exog ≡
{
ΞK

}D ×
{
U×P× (0,1)

2
}K

⊂ <P . (13)

The exogenous vector contains all parameters of the model to be estimated from data.

The ˆ is included in Θ̂exog to avoid confusing the set of valid estimates of θexog and the set of
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values that the exogenous vector takes on in a social experiment, which is by definition the

singleton {θexog}. If the parameters Γ and proportions Λ are estimated freely, then compli-

cated correlations between policy parameters and demographic variables are possible, and

membership in group d can be considered a lagged endogenous choice. A policy experiment

that changes values in θpol without changing Λ̄ or Λ assumes that the policy change would

not invoke a response in demographic variables. However, mixing probabilities can be ad-

justed along with policy parameters if there is other evidence on how d would respond to

changes in θpol.

The primitive outcome-to-state transition and the endogenous choice probabilities com-

bine to generate the state-to-state transition Ps defined in the Appendix. By requiring that

k and d are indices for all invariant (non-ergodic) endogenous variables, a stationary (or

ergodic) distribution over the state space is determined by Ps, Λ̄, and Λ. This stationary

distribution, denoted P−∞(θ), describes the population prior to the experiment.

Implication 1: Ergodic and smooth probabilities. Under R1-R2:

I1a. There exists a unique distribution P−∞{θ} such that

∀ d, k, λ̄[d]λ[d, k] =
∑

θ′
B [k = k′, d = d′]P−∞{θ′} (14)

∀ θ ∈ Θ, P−∞{θ} =
∑

θ′
Ps { θ | θ′ }P−∞{θ′}. (15)

I1b. P {α | θ }, Ps { θ′ | θ } and P−∞ are smooth functions of θexog on Θ̂exog.

All proofs are provided in the Appendix.

These results are nearly the same as Rust’s (1994) smoothness results, except in three

respects. Rust specifies an error term (often extreme value) in the utility with infinite

support to ensure smooth choice probabilities. Instead, the approach followed by Eckstein

and Wolpin (1999) and others is followed here by smoothing choice probabilities without an

error term in the utility. The state space for the subject’s problem therefore remains discrete

(and bounded). Second, Rust assumed a ‘transparent’ environment (defined below) and was

not concerned with sampling from an endogenous distribution over the state space. Third,
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in Rust the observed component of the state vector could follow an arbitrary transition that

could include absorbing states. Here, extra structure is placed on the transition to guarantee

an ergodic distribution.

III.C Measurements

From a subject’s point of view the outcome (α, θ) completely describes their current

situation and what can be known about the future. Realistically the experimenter cannot

observe all the aspects of an individual’s current outcome. Furthermore, social experiments

are carried out on selected populations, and selection is based on observed characteristics of

the subjects. A description of what is observed (or measured) by the experimenter is made

an integral part of the model. Measurements are also called results.

Requirement 3. Measurements.

R3a. Y : A(Θ)×Θ → <M is the measured result vector generated by outcomes. Y (α, θ)

does not include k or θexog.

R3b. The state variables in the vectors θobs and θcond, defined as

θobs ≡ ( θexp d ) = ( g e d ) (16)

θcond ≡ ( t θobs ) = ( t g e d ) , (17)

are by definition observed but excluded from Y (α, θ).

R3c. Sample information is contained in y = [y (θobs)], where y (θobs) is a vector,

y (θobs) = [yn (θobs)], and where yn (θobs) is a panel of measurements for subject n in

measurement group θobs. That is, y (θobs) = [yn (θcond)] and yn (θcond) corresponds

to Y (α, θ) for subject n in period t.

R3d. The number of subjects in each group is denoted N (θobs). Missing information

is denoted ẏ. The number of observations available in a conditioning period is

denoted N (θcond) =
∑N(θobs)

n=1 B [yn (θcond) 6= ẏ].
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The expected measured result conditional on arriving at state θ is

E [Y | θ] ≡
∑

α∈A(θ)
P {α | θ }Y (α, θ). (18)

Since there is an ergodic distribution, there is a constant expected outcome within each

observed group. That is,

E−∞ [Y | d ] ≡
∑

θ′
end

B [d = d′]E [Y | θ′]P−∞{θ′}/λ̄[d] (19)

is the mean status quo result before an experiment is carried out. It is not necessary to

sum over elements of the state vector outside of θexog because the requirements so far have

ensured that in the social environment they are either single-valued or have no effect on

subject behavior.

Definition 2. Social Environment. A social environment

V ( Θ, A(θ), U(α, θ), P { θ′ |α , θ } , Y (α, θ), y )

includes a state space, action sets, a utility, a transition, a measurement, and data that

satisfy R1-R3.

Examples. A social environment V is

¦ autonomous if no subject can affect the future: ∀ (α, θ), P { θ′ |α , θ } = P { θ′ | θ } ;

¦ myopic if no subject places value on future states: ∀ k , δk ≈ 0;

¦ static if it is autonomous or myopic;

¦ irrational if ∀ k, ρ ≈ 0;

¦ homogeneous if K = 1;

¦ transparent if α ∈ Y (α, θ) and θend

∣∣∣
¬k,d

∈ Y (α, θ).

In a myopic environment subjects do not care about the future, while in an autonomous

environment they may care about the future but cannot influence it. In either case the future
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is irrelevant to decisions made today so Pa {α | θ } is a function of U(α, θ) alone and we might

call the environment static. In an irrational environment choice probabilities are equal for

all feasible choices, so measured results are unrelated to the value of actions.

In a homogeneous environment, subjects in the same demographic group have identical

problems and identical conditional choice probabilities. In a transparent environment the

observer has the same information about the distribution over next period’s state as the

subject, except for the permanent values k and θexog. A weaker assumption (not listed

above) is conditional homogeneity. In this case subjects that share some observed qualities,

including perhaps measured outcomes before random assignment, also share unobserved type

with high probability. This assumption relates to matching estimators described in Heckman

et al. (1999) and the assumption of ‘unconfoundedness’ in Hotz et a. (1999). That is, in

a conditionally homogeneous environment, pre-assignment outcomes can be used to control

for endogenous selection of subjects into a non-experimental program.

IV. The Experiment

IV.A Treatment

An experiment introduces into a social environment a program of treatment that takes

place in a finite number of phases each with a finite maximum duration. A subject’s status

in the program is described by the sub-vector θclock in (6). There are three required clock

variables, the phase of treatment, f , the time spent residing in the phase so far, r, and the

experimental period, t, at which measurements for the current outcome will be made. Before

a subject enters treatment they are in phase f = 0, which corresponds to the ‘real world’ of

the social environment. After completing treatment a subject enters the last phase f = F ,

which in some cases is the same as phase 0. Within a phase, r determines the future course

of treatment but not current utility. A phase between 0 and F lasts at most R[f ] periods.
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The experimental time t does not affect a subject and is used to coordinate outcomes across

experimental groups.

The results for a subject determine the course of treatment, and based on the subject’s

information the clock setting next period is deterministic. Since all new state transitions

created by the experiment are excluded from the social environment V, the model requires

that all effects of treatment enter through adjustments to the utility or transition as functions

of the experimental clock. Parameters of the treatment that may be subject to hypothetical

variation are collected in a vector Ψt.

Requirement 4. Program of Treatment.

R4a. The treatment vector takes the form:

Ψt = (R f+(y; θclock) · · · ) (20)

where R is a F − 1 vector of positive integers denoting the maximum length of

phases f = 1,2, . . . , F − 1, and f+ (y; θclock) is the phase increment next period.

U(α, θ) and P { θ′ |α , θ } are functions of the remaining (modeler-specified) ele-

ments of Ψt, which can interact with the current phase f and treatment group

g.

R4b. Treatment is deterministic: ∀ (α, θ) : 0 < f < F ,

f ′ = f? (f + B [r = R[f ]] + f+,0, ∅) (21)

r′ = r? (B [f+ = 0, r < R [f ]] r + 1,0, ∅) (22)

t′ = t?(t + 1,0, ∅). (23)

R4c. Treatment is progressive: f ≤ f + f+ ≤ F and f < f + f+ when r = R [f ].

R4d. Utility and the transition of state variables (other than those in θclock) are unaf-

fected by r and t: ∀ (α, θ), q ∈ θendog, r̃, t̃,

U(α, θ) = U(α, θ)
∣∣∣
r̃,t̃

(24)

q?(q̄, [πj], [Qj]) = q?(q̄, [πj], [Qj])
∣∣∣
r̃,t̃

. (25)
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The transition rules for treatment are simpler than the notation might suggest. The

phase next period can only depend on θclock and the measurement vector Y (α, θ), because

the experimenter must be able to set the phase based on observed results. If a subject has

not reached R[f ], their next phase can be the current phase (f+ = 0) or some other further

phase (f+ > 0), including the post-treatment phase (f+ = F − f). When r = R[F ] the only

difference is that the default phase becomes f + 1 rather than f . The discrete jump process

for r simply says that r′ = r + 1 if the phase next period will be the same as this period.

Otherwise r = 1. Since the treatment program is deterministic given measurements and

group assignment, it follows that r and f can be determined for a subject based on the data

generated, yn (θcond).

Examples of treatment.

A phase 1 ≤ f < F − 1 is

¦ a qualification phase if ∀ (α, θ), U(α, θ) = U(α, θ)
∣∣∣
F

and ∀ q ∈ θend, q?() = q?()
∣∣∣
F
;

¦ autonomous if f+ = 0;

¦ a waiting period if it is an autonomous qualification phase;

¦ an entry period if it is a waiting period and f = 1;

¦ voluntary if ∀ θ ∃α ∈ A(θ) : f + B [r = R[f ]] + f+ = F.

In a qualification phase, utility is untreated, although the course of treatment may

depend on results. In an autonomous phase the course of treatment does not depend on

results. Combining these two properties results in a waiting period, and a waiting period

at the beginning of an experiment is an entry period. The program of treatment does not

specify how subjects enter treatment. Nor does it describe what happens once treatment

ends by entering phase F . These are elements of an experiment associated with treatment

groups which are defined next.

IV.B Experimental Groups and Policy Innovations

18



Each subject is associated with an experimental status described by the sub-vector θexp

introduced in (6). A single experiment might include multiple treatment groups and multiple

criteria for entry. For example, subjects may be assigned different doses of the treatment or

face different selection criteria. Differences across groups must be accounted for by either

treatment status (g) or initial conditions (e). The control group is by definition g = G. In

a simple experiment G = 1 and the treatment group is designated g = 0. When G > 1

more than one treatment group share the same control group. Upon random assignment

the control group transits directly to f = F . Treatment groups begin with an initial clock

setting θ̄clock (θexp).

Experimental (or measurement) time t has to be synchronized across experimental groups

because random assignment may occur after different selection criteria. Sample selection in

a group e occurs in a range of periods, [tmin(e), t0(e)]. The length of the selection period

T (e) = t0(e) − tmin is specified by the modeler. Random assignment occurs at the end of

t0, which is normalized to 0 in one group and is less than zero for all other groups. Post-

assignment measurements are made in the range [t0+1, tmax]. Because selection occurs before

assignment to treatment, the data process begins before treatment starts, before subjects

are aware that they will take part in an experiment.

The modeler defines which results are feasible for each conditioning point in the ex-

periment, θcond defined in (17). Valid measurements are indicated with a Boolean function

H [y; θcond]. A non-valid measurement implies selection out of the sample, and prior to

random assignment lead to ineligibility for the experiment. The criteria may differ across

experimental groups, but not between treatments and controls for the same treatment. For

example, suppose treatment group e requires six periods of non-employment to be eligible for

random assignment. Then T (e) = 6. If z is an indicator for employment then t ≤ t0 implies

H [y; θcond] = 1 − B [z]. Note that the state space must be constructed so that the selection

criteria can be represented as a sequence of feasible results that subjects must satisfy. In this

example z must be an element of y or directly inferable from it. The state space need not
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be expanded so that the complete criteria be computable from y. In this case, for example,

it is unnecessary to include five lagged values of z so that eligibility for the experiment can

be deduced from a single result vector y. Post-assignment histories may also be selected if

subjects can be lost due to attrition.

Subjects who meet eligibility requirements for group e are assigned a value of g according

to a discrete jump process, g = g?(g, [µg], [g]). Recall that the arguments of g? can depend

upon the current outcome (α, θ). Thus, we can require that for t 6= t0 group assignment

is invariant:
∑

µg = 0. Jump probabilities are specified only apply at t = t0. In a true

experiment the probability µg is under the control of the experimenter, which implies that

µg can only be a function of d, e, and the result vector Y (α, θ). A ‘randomized experiment’

µg only depends on e and would thus equal the sample proportions of each treatment gorup.

At the other extreme, group assignment is under the direct control of the subject. The value

of g would be directly determined by the action vector α. Note, however, that the subject

does not get to choose the date of assignment t0.

True experiments are usually of interest because they inform policy decisions. It is pre-

sumed that the question,“How would the treatment affect the population if it were policy?”

will be asked of any experiment. This framework distinguishes between an experiment and

an unexpected change in policy, which will be called a policy innovation. An experiment is a

temporary one-time application of a treatment to a selected population. Potential subjects

unwittingly become eligible for treatment by making choices under the status quo. Treat-

ment will end and all subjects return to the status quo environment. A policy innovation

is a permanent application of a treatment to all eligible members of the population. The

population is informed of the program of treatment and can enter treatment at any point

they become eligible, either now or in the future.

The case e = 0 is reserved for policy innovations. A policy innovation is a new social envi-

ronment that embeds the treatment into the status quo. A policy innovation has a short-run,

non-stationary effect while the treated choice probabilities operate on the untreated state
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distribution generated by the old regime. When considering long-run effects, there is a con-

flict between the definitions of a social environment and a program of treatment. Treatment

programs are of a finite length. Social environments are infinite. A finite treatment has

no long-run impact in an ergodic environment. In contrast, when a treatment program is

turned into a policy members of the population can expect to enter treatment any time they

satisfy some criteria. To embed a finite treatment in an infinite social environment, policy

innovations will be recurring treatments. A member of the population that completes treat-

ment enters phase F and then becomes eligible for treatment again by moving back to phase

0. For simplicity, the transition from F to 0 occurs with a constant probability τ(g). The

subject moves to phase 1 if they satisfy the criteria for treatment. This restores stationary

to the environment while retaining the finite nature of treatment.

Requirement 5. Experimental Groups

R5a. The parameters for experimental groups are organized as sub-vectors of Ψx,

Ψx(θexp) =
(

T H [y; θobs] g?
0() θ̄clock τ

)
, (26)

where: T (e) is the length of the selection period before random assignment;

H [y; θcond] ∈ {0,1} is an indicator for whether y is a feasible measurement at point

θcond; g?
0() is the discrete jump process for g at random assignment; θ̄clock (θexp) is

the clock setting just after random assignment; and τ(g) is the treatment recur-

rence probability.

R5b. For g = G, θ̄clock = ( t0 + 1 1 F ). Based on T (e) and other values of θ̄clock,

observations are split into pre- and post-assignment periods, tmin(e) ≤ t0(e) ≤

0 ≤ tmax(e), as described in the Appendix. Entry group assignment takes an iid

discrete jump at t̄ ≡ mine tmin(e)− 1; group assignment takes place at t0:

E > 0, t = t̄ → e′ = e?(e,1/E, [e]) (27)

t 6= tmin → e′ = e?(e,0, ∅) (28)

t 6= t0 → g′ = g? (g,0, ∅) (29)
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t = t0 → g′ = g?
0(). (30)

R5c. Given e, no selection occurs before t0 and feasible measurements before random

assignment are the same in all treatment groups:

t < tmin(e) → H [y; θcond] = 1

t <= t0(e) → H [y; θcond] = H [y; θcond]
∣∣∣
g′

(31)

R5d. Pre-treatment status recurs with probability B [e = 0, g < G] τ(g):

f = F → f ′ = f? (F,B [e = 0, g < G] τ(g),0) . (32)

For e > 0, a transition out of phase 0 is never expected: f = 0 < e → f ′ =

f?(f,0, ∅). For e = 0, the transition occurs when the subject meets the earliest

eligibility standard of any other entry group (see the Appendix).

A social experiment is simply a collection of one or more treatment and entry groups

applied to a social environment.

Definition 3. Social experiment. A social experiment E (Ψx,Ψt,V) is a program of

treatment and a set of experimental groups applied to a social environment V that satisfy

R1-R5.

Examples. A treatment group or experiment is

¦ controlled if choice probabilities in phase 0 and phase F are equivalent: ∀(α, θ),

P {α | θ }
∣∣∣
f=0

= P {α | θ }
∣∣∣
F
;

¦ selected if T > 0 and there exists y and θcond such H [y; θcond] 6= 1;

¦ randomized if at t = t0, g? is an iid discrete jump process;

¦ a policy innovation if e = 0, and is recurring if τ > 0;

¦ natural if it is a non-recurring policy innovation and g corresponds to subsets of

d: ∀ g ∃Dg ⊆ {0,1, . . . , D} : t = t0, d ∈Dg̃ → g′ = g? (g̃,0, ∅);
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¦ naturally randomized if it is natural and for all d ∈ Dg, there exists a d′ ∈ DG:

Ψp[d] = Ψp[d′] and Λ[d] = Λ[d′].

An experiment is a surprise change in the environment which alters rational behavior

from that point on. A policy innovation is a surprise change in the environment that becomes

part of the environment. The difference between a true experiment (e > 0) and a policy

innovation (e = 0) is that a subject of an experiment has only one unanticipated chance at

treatment. If subjects of a true experiment are not eligible for treatment when the experiment

occurs then they are never eligible again. In a policy innovation an individual knows that the

treatment will be available (or mandatory) in the future. The difference between a recurring

(τ > 0) and non-recurring (τ = 0) innovation is that in a recurring innovation receipt of

treatment does not preclude receiving it later on.

In a controlled experiment those assigned to the control group act exactly as they would

have if they had not been selected from the population in the first place. They also act

(conditional on the current state) as the treatment groups will act after treatment ends.

This rules out Hawthorne and placebo effects. R5.3 and randomization ensure that the

distribution over states at random assignment are identical across treatment groups, but not

necessarily across experimental groups due to differences in selection criteria. An experiment

may be controlled but not randomized if g is correlated with endogenous states. Since θexog

contains d and k, randomization requires that assignment to g is uncorrelated with both

observed and unobserved types. Independence is required just prior to applying the first

selection criterion for e.

In all types of experiments phase 0 and phase F have infinite horizons. With τ = 0 an

individual knows that they leave phase 0 and enter treatment only once. Since treatment is

progressive they eventually enter the absorbing phase F , which in this case is the environment

before the innovation or experiment. With τ > 0 the previous environment is replaced

altogether because in phase F the positive probability of undergoing treatment again affects

23



the value of choices. The value of choices in phase F affect the value of choices in f = 0,

and vice versa. The value function and choice probabilities in these two phases must be

computed simultaneously in all phases. If S denotes the size of the endogenous state space

(the number of distinct values of θend

∣∣∣
¬d,k

), then S is the size of the state space for a single

subject in the status quo environment. A recurring policy innovation expands the state space

for a single subject to S × S × ∏F−1
f=1 R[f ].

Implication 2: Natural experiments as controlled and randomized experiments.

I2a. A natural experiment is not randomized.

I2b. A natural experiment conducted on a myopic environment is controlled.

Prior to random assignment subjects of a policy innovation can anticipate assignment

and would (presumably) make different decisions than in the post-treatment phase. In a

dynamic environment there is no way to guarantee that a natural experiment is controlled

without specifying more aspects of the social environment. In a myopic environment subjects

do not anticipate the future so even if they are informed of the policy innovation they will act

the same before random assignment as after any treatment ends. Technically, the definition

of randomization cannot be satisfied by a natural experiment. Thus a naturally randomized

experiment is defined as a natural experiment where assignment to treatment group is based

on an demographic variable that is irrelevant to the policy vector.

There are a two types of situations often referred to as natural experiments which, in

this framework, would be classified as a true experiment (E > 0) or not as an experiment

at all. First, the temporary expiration of a policy that one can credibly model as unantici-

pated in the status quo environment. Although this situation is not designed it meets all the

other requirements of a deliberate experiment. Such a situation is controlled if there exists

some demographic group not affected by the temporary expiration but which is modelled as

identical (in a policy sense) as the affected group. On the other hand, an ordinary policy in-

novation such as raising the minimum wage does not fit as an experiment in this framework.
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As with a natural experiment, assignment to treatment is based on a demographic charac-

teristic. Subjects enter ‘treatment’ by being affected by the new minimum wage. Unless

the change is temporary agents in the treatment group will modify behavior permanently

even in the status quo. In addition, outcomes in the post-treatment phase are dependent

on treatment since subjects can expect to be affected by the minimum wage at some future

date. Within this framework, a permanent change in policy should be modelled as a recur-

rent policy innovation: E = 0 and τ > 0. Under conditions on the social environment similar

to those for a natural experiment, such a policy innovation can still end up being controlled.

IV.C Examples of Social Experiments

The Appendix shows how four situations can be placed within this framework: the

Illinois Re-employment Bonus Experiment, the NIT Experiments, the Vietnam Draft Lottery

natural experiment, and non-experimental lifecycle data.

V. Predicting Experimental Results

Return to section II, where Ê[Y0 | g = 0] and Ê[Y1 | g = 1] denoted the sample mean

outcomes within treatment groups. Impact was defined in (1) as the difference in mean

outcomes. In an experiment with demographic variation, multiple outcomes and treatments,

and repeated observations, impact is a vector conditioned on a subset of the state vectors

θcond introduced in (17). These variables are, by definition, exogenous to individual outcomes,

conditional on pre-assignment behavior satisfying the sample-selection criteria. This section

derives the conditional mean outcomes in a social experiment and derives their relation to

individual outcomes and individual impact.

V.A Sample Selection

The model of subject behavior generates a stationary distribution across states outside

25



the experiment, denoted P−∞{θ} and defined in (15). The data generating process begins

with the the experimenter setting t = t̄ for all points in the state space and then letting the

ordinary transitions take place. The distribution across states at the start of t̄ + 1, given

type k, is

Ω { θ′ | k, θcond} ≡
1

max{E,1}λ̄[d]λ[k, d]

∑

θ

Ps {θ′ | θ}B [k]P−∞ {θ}
∣∣∣
t̄
. (33)

Requirement R5.2 and the presence of E (the number of experimental groups) in the de-

nominator ensure that each experimental groups is a copy of the target population. Define

ω (k; θcond) as the cumulative proportion of type k that has survived selection up to the start

of period t in conditioning group θcond. For all k this proportion is initialized as

ω (k; θcond)
∣∣∣
t̄
≡ 1. (34)

For computational purposes, ω (k; θcond) is not defined as the distribution of k given θcond.

This allows predictions to be computed in parallel for all values of k. Only when predictions

are confronted with data will the distribution across k be ‘fixed up’ using ω (k; θcond) and

λ[d, k].

At t = t̄ + 1 the selection process for at least one group begins. In these groups the

distribution in the next period will condition on satisfying the first entry condition defined

by H [y; θcond]. When t reaches t0 in a group, random assignment to treatment group g and

the initial clock setting takes place between observation of the current result and the start

of period t0 + 1. The subject ‘wakes up’ in period t0 + 1 either undergoing treatment or in

the control group. By assumption (and for simplicity) they immediately re-optimize given

their initial state and the program of treatment, including the case that a recurring policy

innovation (E = 0, τ > 0) has occurred and their environment has changed forever. The

generalized transition that accounts for selection (feasible histories) and random assignment

is written

P ? { θ′ | θ } =
∑
α

P

{
θ′

∣∣∣
B[t=t0]θ̄clock

| α, θ

}
H [Y (α, θ); θcond]P {α | θ} . (35)
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The assignment B [t = t0] θ̄clock (θexp) is shorthand for saying that the insertion of the initial

clock setting for θ′ occurs only when making the transition from t0 to t0 + 1. (The clock

setting depends on the new value of g which cannot be determined from old outcome when g

is not deterministic. Therefore, initializing the clock cannot be described as a discrete jump

process.)

In general, the conditional distribution of subjects across θ at the start of any period

t ≥ tmin is denoted Ω {θ | k, θcond}. Subjects will choose actions that determine their outcome

(α, θ) that period. The experimenter measures the outcome Y (α, θ) if the result is feasible.

If so, the subject’s state next period is realized and they will contribute to the distribution

next period. Otherwise they leave the sample and the distribution at t+1 must be corrected

for the proportion of outcomes for which H [y; θcond] = 0. The cumulative proportion of the

type k population making it to t is

ω (k; θcond) = ω

(
k; θcond

∣∣∣
t−1

) [∑

θ′

∑

θ

P ? { θ′ | θ }Ω
{

θ | k, θcond

∣∣∣
t−1

}]
. (36)

The sequence ω (k; θcond) is non-increasing in t. The distribution across states at any t can

now be defined recursively in terms of the t− 1 distribution:

Ω { θ′ | k, θcond} =
ω

(
k; θcond

∣∣∣
t−1

)

ω (k; θcond)

∑

θ

P ? { θ′ | θ }Ω
{

θ | k, θcond

∣∣∣
t−1

}
. (37)

Note that for t ≤ t0 this distribution only describes subject’s still (partially) eligible for

the sample. The selection in periods until the end of t0 have not yet been imposed. The

distribution of the invariant types in an experimental group (at time t) is:

λ?(k|θcond) ≡ λ[k, d]
ω (k; θcond)∑K

k′=1 ω (k′; θcond)
. (38)

At tmin−1 this would equal λ[k, d], if the experiment is randomized. Once selection begins, the

joint distribution of k and d drifts away from the population proportion, because subjects of

differing types have different propensities to satisfy the selection criteria in θexp. If selection

ends at t0, then λ? becomes constant for all t > t0:

t > t0 → λ? (k|θcond) = λ?

(
k|θcond

∣∣∣
t0+1

)
≡ λ?

0 (k|θobs) . (39)
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With attrition, the condition on t would change to the period at which attrition ends.

Implication 3: Solution algorithm. The model of subject behavior and empirical

results in a social experiment can be solved by the algorithm in the Appendix.

V.B Mean Outcomes and Mean Treatment Effects

The mean observed outcome and the empirical impact in treatment group g are

Ê [Y | θcond] =
1

N(θcond)

N(θcond)∑

n=1
B [yn(θcond) 6= ẏ] yn(θcond) (40)

∆̂(θcond) ≡ Ê [Y | θcond]− Ê
[
Y | θcond

∣∣∣
G

]
, (41)

where N(θcond) was defined in R3. Using (37), the model analogue to the empirical values

are

E[Y | θcond] =
∑

θ

λ? (k|θcond)Ω { θ | k, θcond }E [Y |θ] (42)

∆(θcond) ≡ E [Y | θcond]− E
[
Y | θcond

∣∣∣
G

]
. (43)

The impact in (43) varies over experimental time t and experimental group e for several

reasons. First, the treatment effect itself is non-stationary over t as the subjects progress

through treatment. Given g the treatment is constant, but subjects in different experimental

groups entered treatment at different stages. Selection into the experiment also creates a non-

stationarity in both treatment and control groups as the distribution across states drifts back

to the unselected distribution P−∞{θ}. That is, if the experimental group e is not a random

sample of the population then the distribution over states in the control group G varies with

experimental time t even though the controls never leave the status quo environment.

It would seem desirable that a particular treatment should have an impact that is not

dependent on the experimental design. Otherwise, there would be little hope of using the

experimental results to make policy-relevant statements outside of the experiment. The

status quo outcome E−∞ [Y | d ] defined in (19) can stand for the long-run analogue to E[Y1].
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It might appear straightforward to define the analogue to E[Y0] as well, but it is not. The

first attempt might be to let the non-stationarity in t die out by looking at outcomes as

t → ∞. After selection ends the distribution over states begins to converge to an ergodic

distribution. This distribution is not the same as P−∞{θ} because the unobserved type k is

also selected, and its distribution is not ergodic. The long-run post-assignment distribution

in group θexp is a re-weighted version of the ergodic distribution for the selection-bias on

unobserved types.

Implication 4: Long Run Impact.

I4a. For e > 0 or τ = 0,

∀ θ, P+∞{θ | θcond} ≡ lim
t→∞

λ?
0 (k|θobs)Ω{θ | k, θcond} =

(
λ?
0 (k|θobs)

λ[k, d]

)
P−∞{θ | d}. (44)

I4b. For e > 0 the long-run in-sample impact of an experiment or non-recurrent policy

is independent of the treatment program, Ψt.

I4c. In a randomized experiment or in an experiment carried out on a homogeneous

environment, the long-run in-sample impact is zero.

The long-run in-sample impact is not necessarily zero, but only because of selection

on permanent unobserved heterogeneity. The true impact of a treatment on an individual

can, of course, be long-lasting but not permanent. How long treatment lasts depends on

many factors including the transition PS{θ′ | θ}, which determines how quickly a short-term

perturbance gets washed away by the ergodic nature of the social environment.

The point is that in a selected experiment there is no hope of ‘waiting out’ the selection

effects. Even if the effect of sample-selection on transient heterogeneity dies away quickly,

the treatment effect dies away before selection on unobserved type does. At no point in an

experiment does the selection component of empirical impacts give way to a pure treatment

effect. On the other hand, suppose that there is enough confidence that the experiment was

randomized that the assumption can be maintained. Then if, after a long period past the
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end of treatment, the empirical impact does not go to zero one could reject the assumption

of a homogeneous environment.

To restate the problem: in defining a timeless impact of an experimental treatment

applied to a social environment there is no way to disentangle non-stationary selection effects

from non-stationary treatment effects when studying outcomes of an experiment. However,

any social experiment also implies a version of the treatment g in which it becomes policy.

Requirement R4 codified this by reserving experimental group e = 0 for policy innovations.

Definition 4. Policy Outcomes and Impact

D4a. The long-run average effect of implementing treatment g as a policy in demo-

graphic group d is defined as

E+∞ [Y | d, g] ≡ E

[
Y | θcond

∣∣∣
e=f=0,g

]
. (45)

D4b. The long-run average policy impact of implementing treatment g is

∆∞[d, g] ≡ E+∞ [Y | d, g]− E−∞ [Y | d] . (46)

The notation and the substance behind (45) resolve both of the problems in using P+∞

to compute long-run impact. First, E+∞ [Y | d, g] does depend on g because by definition

a policy innovation is not a finite disturbance to the social environment, unless τ(g) = 0.

Second, E+∞ does not depend on the selection criteria, because all experimental groups

are mapped into e = 0 for the purpose of calculating policy innovations. Selection bias is

explicitly avoided by measuring outcomes in phase f = 0 before any selection criteria have

been applied.

V.C Individual Treatment Effects

Reaching farther back into section II we find the atheoretic outcomes Y0 and Y1. Unlike

the mean outcomes just discussed, these are two different outcomes for a single subject

assigned to treatment and control status. The fundamental problem that social experiments
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attempt to solve is that Y0 and Y1 are never both experienced by the same subject. Yet, as

with mean impacts, defining the model equivalents of Y0 and Y1 is not straightforward in a

social environment. As a first pass consider:

Yg
?≡ Y (α, θ)

∣∣∣
g
. (47)

This reveals a poverty of notation when applying the notation of section II to the dynamic

and uncertain social environment defined in section III. The theoretical result depends on

the whole state, including possibly unobserved actions, state variables, policy parameters,

and exogenous parameters. Clearly Yg must be considered a random variable defined on a

sample space that includes realizations not available at all possible time periods. Perhaps Yg

is implicitly based on subjective information available at time t0 or perhaps time tmin−1. A

further complication arises when results are measured at a number of periods after random

assignment. In this case the outcome (α, θ) in (47) has date t, but at t0 elements of the

state at t are still unrealized, even given the subject’s information set at time t0. Thus, the

right-hand side of equation (47) is unrealized until t. Until then the outcome can only be an

expectation based on an information set available in a certain period.

More precisely, Yg is supposed to be the answer to the question, “Given what you know

now at time t̃, if you were placed in situation g at time t0, what do you expect the result to

be at time t?” As always, t is the date of outcome measurement, t0 is the date of random

assignment, and t̃ is the date when the expectation is taken. Presumably the information

set does not include realizations after random assignment, because by then the subject is

already reacting to being assigned to g. Hence, t̃ ≤ t0. But it is also problematic to condition

upon less information than before random assignment. This requires the subject to suspend

knowing that they will be placed in group g only at t0. In other words, for t̃ ≤ t < t0 the

subject must answer as if they are pretending that they don’t know random assignment

will occur at t0. Without this pretense the actual random assignment occurs at t̃ and the

treatment is altered because the time between t̃ and t0 becomes an auxiliary qualification

phase. One notion of individual treatment avoids this problem by setting t̃ = t0.
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Definition 5. Individual Treatment Effects The expected subjective treatment effect is

the expected difference in results between assignment to a treatment group and a control

group given the information available to the subject as of random assignment at the end of

t0:

∆S(α
0, θ0) ≡ E

[
Y (α, θ) | (α0, θ0)

]
− E

[
Y (α, θ)

∣∣∣
G
| (α0, θ0)

]
(48)

Notice that in the atheoretic framework ∆ = Y0 − Y1. It would be tempting to consider

associating ∆S with E[Y (α, θ) − Y (α, θ)
∣∣∣
g
]. Random assignment would appear to imply that

conditioning on assignment as of time t0 has no effect on expectations, making it possible

to interchange the expectation and subtraction operators in (48). However, this is valid

only in special social experiments carried out on special social environments in which the

distribution over states does not depend upon which group the subject is assigned to.

Implication 5: Individual treatment as an expected difference. When:

I5a. t = t0 + 1

I5b. or Ψt is autonomous and type k is autonomous or irrational,

then

∆S(α
0, θ0) = E

[
Y (α, θ)− Y (α, θ)

∣∣∣
G
| (α0, θ0)

]
.

Even if the social environment is autonomous the experimental treatment may not be.

Since treatment may have a direct effect on measured results, the distribution over θclock must

also not be affected by realized outcomes between t0 and t. In effect nothing subjects do or

experience between time t0 and time t can alter the state distribution. In other environments

and other experiments the subjective impact cannot be expressed as an expected difference in

results. For example, a myopic environment (δ = 0) is not sufficient for the result. Although

myopic subjects place no weight on outcomes between now and t, their myopic choices

between time t0 and time t alter the distribution across states at time t when the environment

and experiment are not autonomous. Thus, perhaps counter-intuitively, a static decision

framework is neither necessary nor sufficient to identify ∆ in (1) with ∆S in (48).
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Although the difference in mean outcomes can be treated as an unbiased estimate of the

mean over individual impacts in a timeless model, in other environments individual subjective

impact as defined above fails to match up with empirical impact in a transparent way.

Does there exist a notion of individual and subjective impact for which (41) is an unbiased

estimate? The answer, obviously, is the notion in which individuals form expectations under

the same information set as the experimenter uses to condition empirical impact.

Implication 6: Subjective treatment effects. The mean treatment effect (41) corre-

sponds to an expected individual effect (48) when:

I6a. the environment is irrational or

I6b. the environment is autonomous and homogeneous, or

I6c. subjects conduct the following thought experiment: they set the probability of

being in any state in the outside environment equal to P−∞{θ | d}; they form the

expectation conditional upon becoming eligible for the sample; but for tmin ≤ t ≤

t0 they set choice probabilities as if they were ignorant that random assignment

is to occur at the end of t0.

What happened to the straightforward and intuitively appealing individual impact ∆

as defined in (1)? The problem is that (1) conditions on the value of one variable, t, that

is irrelevant to the individual while at the same time integrating out information available

to and pertinent to the individual (type, initial state, and experimental clock). Therefore

differences between mean outcomes within groups cannot typically be interpreted as the

average of treatment effects felt by individuals.

VI. Estimation and Inference

VI.A Likelihood

The exogenous vector θexog introduced in (12) contains all parameters to estimate from
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the experimental results, including type proportions within demographic groups.

Implication 7: Likelihood. Under R1 - R5:

I7a. The post-assignment likelihood function for subject n of measurement group θobs

is denoted L
(

θ̂exog ; n, θobs

)
and can be computed through backward recursion.

I7b. The full-sample log-likelihood function, lnL
(

θ̂exog ; y
)
, is a smooth function of

θ̂exog on Θ̂exog.

I7c. In a transparent environment the likelihood can be computed using forward re-

cursion.

I7d. In a transparent and homogeneous environment where Υ is identified, consistent

estimates of Υ can be computed without solving the value function.

I7e. The likelihood for pre-random assignment results requires the joint distribution

of θ for tmin ≤ t < t0, the Cartesian product of the outcome space (excluding θexp

and θclock) on itself t0 − tmin times.

I7f. For an irrational type (ρk ≈ 0) the discount factor δk and exogenous parameters

Υk are statistically unidentified.

The ergodic distribution P−∞ accounts for the distribution of subjects across all invari-

ant states, including unobserved type k which must be integrated out of the likelihood. The

post-random assignment likelihood (defined in the Appendix) integrates out pre-assignment

results, because in general it is not feasible to exploit information prior to t0. The mea-

surements at t0 contribute to the likelihood even though assignment takes place after the

measurement is made. Although the distribution in (35) is relatively simple to compute for

t < t0, it only expresses the distribution across states for subjects partially eligible for their

experimental group. The distribution across states in period t < t0 for subjects who are ulti-

mately eligible for random assignment requires tracking from t0 back to period t. This goes

against the Markov (sequential) nature of the subject’s behavior and the selection criteria.

The extra information required to track the likelihood back from t0 builds up exponentially
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with the length of the selection criteria. Unless the selection period is short, or the model

itself has a small state space, the extended state space required by pre-assignment results

will be infeasible to compute.

Rust (1994) provides the concentrated likelihood in transparent and homogeneous envi-

ronments. Several other algorithms for estimating dynamic programming models assume a

transparent and/or homogeneous environment. For example, Aguirregabiria and Mira (2002)

maintain transparency and homogeneity. In a related paper, Arcidiacono and Jones (2002)

relax homogeneity. Keane and Wolpin (1997) assume transparency but not homogeneity.

Because the utility and discount factor are unidentified under the null hypothesis of an

irrational environment, inference is non-standard. However, some parameters in Π may be

identified in an irrational environment. In particular, any state variables that are included

in the result vector will allow identification of parameters of the discrete jump process that

drives those variables.

VI.B Impact-based Estimates

There are several reasons why maximum likelihood estimates of the exogenous parame-

ters may be infeasible or unattractive. First, the burden of calculating the likelihood may be

large, particularly if the environment is transparent. When the environment is not transpar-

ent the subject’s choices are based on more information than available in y. The likelihood

must integrate out these choices. Second, the likelihood is exacting. Any inconsistencies be-

tween the model experiment and the actual experiment can lead to zero-probability events

appearing in y. Finally, data on individual subjects may not be available to the researcher

because experimental results are often proprietary due to informed-consent laws.

These concerns lead to consideration of estimating θexog from averaged data. Define ∆̌

as the difference between predicted and observed mean outcomes:

∆̌ (θcond) ≡ Ê [Y | θcond]− E [Y | θcond] . (49)
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By adding and subtracting a term, the empirical impact can be expressed as

∆̂(θcond) ≡ ∆̌ (θcond)− ∆̌
(
θcond

∣∣∣
G

)
+ ∆(θcond) . (50)

The empirical impact is a combination of theoretical outcomes and differences between the-

oretical and empirical outcomes. A set of reported impacts can be interpreted as reporting a

particular mixture of theoretical and empirical moments. In an unrestricted impact analysis

the mean outcomes in control groups are taken as given and not determined by ∆̂(θcond).

The impact for non-control groups is a parameter free available to match the means exactly.

Let

NM =
D∑

d=1

E∑

e=0

G∑

g=0

tmax∑

t=t0+1
MB [N(θcond) > 0] (51)

denote the number of moments. The number of free parameters in an impact analysis is

the number of impacts NU = NM(G− 1)/G. A social experiment V model places two kinds of

restrictions on an impact analysis. First, a social experiment is a model of subject behavior

where the number of parameters equals P < NU . Second, the social experiment predicts the

outcomes in control groups as well as treatment groups. This provides additional within-

sample restrictions on the social experiment model.

Definition 6. Impact-based estimates of the exogenous vector solve

θ̂IE
exog ≡ min

θexog∈∈Θ̂exog

∑

θcond

∆̌ (θcond)
′
A (θcond) ∆̌ (θcond) . (52)

where A (θcond) is a M ×M positive-definite matrix.

Implication 8: Impact-based estimation. Given an social experiment E,

I8a. The empirical impact in (41) can be considered an estimate of reduced-form

parameters of the model, ∆(θcond).

I8b. θ̂IE
exog is a hypothesis nested by an impact analysis ∆̂(θcond). The number of

over-identifying restrictions on θ̂IE
exog is DF ≥ NM − P −D.

I8c. In an experiment with an entry period, the null hypothesis of a myopic environ-

ment implies the joint hypothesis ∆(θcond) = 0 for t = t0 + 1, . . . , t0 + R(1).
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In short, impact analysis cannot be rejected in favor of a social experiment model, E,

but it can fail to improve the fit enough to justify rejection of an estimated model using

conventional tests. The final result also suggests that social experiment framework itself

helps with identification of parameters of a dynamic program. Rust (1994) shows that a

dynamic programming model is unidentified non-parametrically. The discount factor is a

key parameter that itself cannot be identified without assuming parametric structure. The

social experiment makes assumptions about the utility and transition, but by definition the

presence of, say, an entry period is not a freely estimated parameter. Thus, within this

structure P8c indicates that the value of the discount factor can yield testable implications

about the outcomes of experiments.

VII. Applications and Extensions

VII.A Out-of-Sample Prediction

An out-of-sample prediction is defined as using estimates within the same social environ-

ment V that surrounds the experiment. Implication I8 says that an impact analysis uses up

all degrees of freedom in the information contained in mean outcomes concerning the social

environment, leaving no freedom to predict outcomes beyond the end of the sample, t > tmax.

By contrast, predictions using the social experiment framework are based on estimates of

the exogenous parameters, for example based on θ̂exog = θ̂IE
exog. For any t > t0,

Êt [Y ] =
∑

θ̂

Ê [Y | θ] Ω̂{θ̂ | k, θcond}. (53)

Further, point estimates of the exogenous parameters come with an estimated distribution,

Ĥ(θ̂IE
exog). Subject to onerous calculations, a confidence interval can be placed around point

forecasts of out-of-sample outcomes.

Outcomes can be predicted for hypothetical treatments and selection criteria by simply

including them in θexp with sample proportions equal to zero. Hypothetical experiments
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conducted in the same environment would be based on the same result function Y (α, θ), and

these predictions would have a well-defined confidence interval associated with them. As with

any out-of-sample predictions, the confidence interval widens with the distance between the

hypothetical conditions and the in-sample conditions. In the case of a social experiment, the

more different the hypothetical selection criteria and program of treatment are from those

in the experiment, the less confidence would be placed on any predictions.

VII.B Out-of-Population Prediction

An out-of-population prediction uses the estimated model in a different social environ-

ment, denoted V⊥. For simplicity, consider a hypothetical social environment with a single

demographic group (D⊥ = 1) that differs from the estimated environment in just four re-

spects. The new demographic group faces its own policy vector θ⊥pol; it has its own distribu-

tion of unobserved types Λ⊥; it is measured using its own vector Y ⊥; and data are based on

its own set of experimental groups θ⊥exp.

This environment can be resolved completely to make predictions for ‘real world’ results.

In this case, both the pre- and post-assignment ergodic distributions differ from P−∞ and

must be re-computed. With an additional statement that describes feasible histories that

accord with Y ⊥, the results of carrying out the social experiment in the novel environment

also fall out automatically. In other words, a hypothetical experiment E⊥ can be designed

and simulated on an hypothetical environment V⊥ based on information gathered from an

experiment conducted in another environment.

When demographic variables are segregated from unobserved and estimated parameters

as in done in the definition of a social environment, then out-of-population predictions are

simpler, if not necessarily better or more accurate. Only the hypothetical policy vector

must be observed. Without making ad hoc assumptions, the estimated exogenous vectors

are inserted into the state space as the values pertaining to the hypothetical environment.

The individual’s problem is solved for the policy vector for each unobserved type k. What
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remains to be determined are the type proportions λ⊥. This requires a vector y⊥ of moments

drawn from the experimental group with at least K − 1 elements. In the worst case this

vector could simply be the mean outcomes from the unselected population as long as the

measurement vector is longer than the number of unobserved types. The type proportions

are then chosen to match the data:

Definition 7. Out-of-population Environment. Given an estimated social environment

V̂, an out-of-population environment V̂⊥
(
Y ⊥, y⊥,Ψ⊥

p ,H⊥ [y⊥; θcond] , V̂
)

is defined as:

V̂⊥ =
(
Θ̂⊥,A(θ), U(α, θ), P { θ′ |α , θ } , Y ⊥(α, θ), y⊥

)

where

θ̂⊥ ≡
(
0 0 0 0 0 θend θ̂⊥exog Ψ⊥

p

)

θ̂⊥exog =
(
Λ̂⊥ Γ̂

)

Λ̂⊥ = arg min
Λ⊥∈ΞK

∆̌(Λ⊥)A⊥∆̌(Λ⊥)′ (54)

Ψ⊥
x =

(
0 H⊥ [y⊥; θcond] · · ·

)
.

The presence of · in a definition indicates parameters that are irrelevant to the definition.

A out-of-population environment has no experimental treatment program, but the single

group e = g = G = E = 0 must be defined to indicate how the data are generated. The length

of the selection period T is zero, which is a normalization since no exogenous variation needs

to be inserted into the probability distribution as in (35). (The sample may still be selected

after t0 as indicated by H⊥ [·].) The data-gathering process must be described because the

out-of-population mixture across types is estimated using GMM on the available data.

Individual problems need to be solved exactly K times in order to solve λ̂⊥ iteratively.

The extent to which estimates from a social experiment can or should be applied in other

contexts depends on the quality of data available from elsewhere and, of course, the ability

of the estimated model to predict behavior for out-of-sample policies.

Segregating observed variation from unobserved variation and using a finite-mixture to

model unobserved variation leads to straightforward applications of the model to populations
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not eligible for the experiment. In contrast, the more common way of including policy and

demographic information parameters within a model is to interact the in-sample index d

directly with the exogenous parameter vector Γ. For example, consider a case in which

requirement R2 is violated by including a dummy-variable for, say, race in a wage equation.

To apply the estimated model out of sample would require that race is observed in Y ⊥ or the

effect of race must be integrated out of the predictions. In either case, it is assumed that race

plays the same role in the target population as in the original population. This assumption

is not necessary under R2, which would assume that people categorized as different races

behave in observably different ways because they are a different mixture of the underlying

types k.

VII.C Other Extensions

The appendix describes four other extensions: attrition bias, measurement error, non-

stationary environments and stochastic policies, and equilibrium environments.

VIII. Conclusion

All economic policy interventions, whether carried out as an experiment or not, change

the incentives and constraints faced by the agents in the economy. These changes cre-

ate a backdrop of ‘exogenous variation’ against which to measure individual and aggregate

responses. The literature on social and natural experiments usually casts the analysis of

exogenous variation in a static framework, although all such interventions have dynamic

effects, whether intended or not.

A commonly held preconception is that experiments and quasi-experiments can be in-

terpreted without a model of subject response to the experiment. This position has been

challenged by others on both practical and theoretical grounds. This paper folds these ob-

jections into a general framework that defines an experiment as an unexpected change in

40



an environment that is already dynamic and uncertain. The element of surprise is a main-

tained hypothesis about the distribution of unobserved states at the time of assignment to

experimental groups. The environments and experiments in which the intuition from static

frameworks carries through can be described. They are found to be a small and uninter-

esting subset of the set of environments and experiments defined here. As an alternative to

these unappealing assumptions, a constructive set of tools is developed here for designing,

estimating, and applying a complete model of a social experiment under general conditions.

To implement this framework for a particular experiment can entail a great deal of nota-

tion and computational costs. The return is a model that is parsimonious in free parameters.

In particular, the model can be seen as a restriction placed on the analysis of experimental

impact, which in itself has no power to predict outside the experiment under either the null

hypothesis that the model is true or the alternative. In addition, the cost of extending the

estimated model to other environments is relatively cheap. The solution and estimation

of the social experiment is an upfront cost which makes multiple applications inexpensive

on the margin. Whether the computational cost and attention to detail demanded by the

framework are worthwhile depends on the quality of the situation under study and the model

chosen to explain it, as well as how the results are to be put to use.
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IX. Appendix

Notation

N1. Greek letters denote vectors and structural parameters of the model (elements of
the exogenous vector). Vectors are often split into sub-vectors. For example, let
xa = (x y z ) and xb = ( r s ). Then x = (xa xb ) is equivalent to saying x =

(x y z r s ). Capital Greek letters are typically a set or the concatenation
of vectors with the corresponding lower-case letter. A concatenation of items
can also be denoted [xn], where xn could be a scalar, a vector or a set.

N2. Lower-case Roman letters denote individual elements of vectors; capital Ro-
man letters denote policy parameters or the maximum value of a variable with
corresponding lower-case letter; bold capital letters denote sets.

N3. The cardinality of a set S is denoted |S|, and the length of a vector v is denoted
|v|. The open simplex in M dimensions is denoted

ΞM ≡


x : x ∈ <M , i < M → 0 < x[i] < 1−

i−1∑

j=1
x[j], x[M ] = 1−

M−1∑

i=1
x[i]



 . (55)

N4. The Boolean (indicator) function is denoted

B [z] ≡
{

0 z is false
1 z is true.

(56)

N5. If θ is a vector, then θ
∣∣∣
x=5,y=3

means that the elements of θ named x and y are

to be set to 5 and 3, respectively. When the variable being set is clear from the
value being assigned, its name is dropped: θ

∣∣∣
Y

is short for θ
∣∣∣
y=Y

. Finally, θ
∣∣∣
¬x

is defined as the vector excluding the variable x.

Transitions. Let h index variables in θ and let the discrete jump process for state variable
θ[h] be written θ[h]?(h̄, [πh

j ], [Hj]). Then

P { θ′ |α , θ } =
|θ|∏

h=1





1−

Jh∑

j=1
πh

j


B [θ′[h] = h̄] +

Jh∑

j=1

πh
j

|Hj |
B [θ′ [h] ∈Hj]


 . (57)

Combining choice and transition probabilities generates the complete state-to-state transition

Ps { θ′ | θ } =
∑

α∈A(θ)

P {α | θ }P { θ′ |α , θ } (58)

=
∑

α∈A(θ)





ṽ(α, θ)∑
α′ ṽ(α′, θ)

|θ|∏

h=1





1−

Jh∑

j=1
πh

j


B [θ′[h] = h̄] +

Jh∑

j=1

πh
j

|Hj |
B [θ′ [h] ∈Hj]






 .
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Proof of I1.
PI1a. Since Θ and A(θ) are both finite sets, U(α, θ) is bounded. By R1.1 unique values

of v(α, θ) and V (θ) solve the contraction (4)-(5). By R1.3 all feasible actions
have non-zero choice probabilities at each state. Combined with R1.2 and R2.1
the state-to-state transition Ps is ‘irreducible’ over all states in θend excluding d

and k. Thus a unique stationary distribution over these states exists (e.g. see
Theorem 3.11.1 in Judd 1998). By R2.4-6 all other elements of the state vector
are single-valued, so a unique P−∞(θ) exists for which (14) and (15) hold.

PI1b. From R2.3, R1.3, and envelope theorems on the dynamic program, P {α | θ }
and Ps are smooth functions of θexog. Since P−∞ uniquely solves a set of linear
equations in Ps it also is smooth in θexog.

Proof of I2.
PI2a. In a natural experiment g is directly related to d ∈ θend, and is thus not iid at

t0.
PI2b. Immediate.

Proof of I3. Solution algorithm.
a. Set d = D, k = K, f = F , r = 1, g = G, e = E.
b. Set policy parameters Ψd = θpol[d].
c. Set exogenous parameters Γ = θend[k].
d. Iterate on (5) for all θend except k and d to find V (θ) to a specified tolerance.
e. Compute choice probabilities (P {α | θ } in ) and solve the stationary distribution

(P−∞ in ) for the current value of k and d. See Judd (1998 p. 85) for details.
f. Decrease f by 1 and set r = R[f ]. Iterate back to r = 1 solving for value functions

and choice probabilities.
g. Repeat the previous step through f = 1.
h. If e = 0, g < G and τ > 0, then set V0 = VF iterate on the infinite horizon problem

in () to a specified tolerance.
i. Set t = tmin. Compute E−∞ [Y | d], ω (k; θcond) and Ω{θ|k, θcond}.
j. Increase t by 1. Update Ω and ω . If t = t0 then reset clock to θ̄clock.
k. Repeat previous step until t = tmax.
l. Decrease g by 1. Set f = F and return to step f until g = 0.

m. Decrease e by 1. Set g = G− 1 and return to step f through e = 1.
n. Decrease k by one. Set e = E and return to step c through k = 1.
o. Compute E[Y ] =

∑
k λ[d, k]E[Y ] for all g, e, t.

p. Decrease d. Set k = K and return to step b through d = 1.

Proof of I4.
PI4a. Since d and k are the only invariant states the remaining endogenous states form

an ergodic system. The distribution over states conditional on k and d converges
to P−∞{θ | k, d}. Since k 6∈ θcond, the conditional distribution must correct for
the permanent selection bias in k.
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PI4b. This follows from the previous result, because

lim
t→∞

∆(θcond) =
K∑

k=1

(
λ?
0 (k|θobs)− λ?

0
(
k|θobs

∣∣∣
G

))
E−∞ [Y | k, d] (59)

which is not a function of the treatment program.

PI4c. If treatment is randomized λ?
0 (k|θobs) = λ?

0

(
k|θobs

∣∣∣
G

)
. If the environment is

homogeneous λ?
0 (1|θobs) = 1. In either event the ultimate impact is zero.

Proof of I5. The question is when can treatment impact be expressed as a difference in
results integrated over a common distribution: P

{
θ | (α0, θ0)

}
= P

{
θ | (α0, θ0)

} ∣∣∣
G

. Because

if this is the case we can write

∆S(α
0, θ0) =

∑

θ

[
E [Y | θ]− E [Y | θ]

∣∣∣
G

]
P

{
θ | (α0, θ0)

}
. (60)

This would mean that the impact of the treatment is isolated in conditional choice proba-
bilities at the time of measurement. To show the two conditions are each sufficient, express
the conditional distribution recursively:

P̃
{

θ1 | (α0, θ0)
}
≡ P ?

{
θ1 | (α0, θ0)

}

for s > 0,

P̃
{

θs+1 | (α0, θ0)
}
≡

∑

θs

Ps

{
θs+1 | θs

}
P̃

{
θs | (α0, θ0)

}

PI5a. Assignment at t0 takes place after α0 is set, so for s = t0 + 1 there is no distri-
butional impact, except for the difference in the initial clock settings. That is,

P
{

θ1 | (α0, θ0)
}

= P

{
θ1

∣∣∣
θclock

| (α0, θ0)
∣∣∣
g′

}
for any other group g′.

PI5b. For t > t0 + 1 there will be an impact on choice probabilities during periods
t0 + 2, t0 + 3, . . . , t − 1 unless behavior is irrational. Otherwise, only when the
environment and the treatment are autonomous will the intervening impact have

no effect on transition probabilities: Ps{θs+1|(α0, θ0)} = Ps

{
θs+1|(α0, θ0)

∣∣∣
g′

}
.

Proof of I6.

I6a. Immediate, because the mean and all individual treatment effects are zero.

I6b. This is equivalent to I5, but selection on permanent unobserved heterogeneity
must be ruled out by assuming homogeneity. Otherwise the mean treatment
effect is averaging over unobserved types while an individual conditions on their
own type.

I6c. In the convoluted scenario, the chain of conditional probabilities is exactly that
defined in (35) and (37). One gets the same numerical value when a person is
randomly drawn from the stationary distribution, conditional on d, and forms
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the correct conditional expectation. However, this fails to maintain the infor-
mation set available to the individual, since the randomly selected person knows
their current state (including their type k).

Proof
I7a.

L
(

θ̂exog ; θ, tmax + 1, θobs

)
≡ 1

for t0 ≤ t ≤ tmax,

L
(

θ̂exog ; θ, t, n, θobs

)
=

∑
α

[
B [yn(θcond) = Y (α, θ)]

∑

θ′
P ?

{
θ′ | (α, θ)

}L
(

θ̂exog ; θ′, t + 1, n, θobs

)]

L
(

θ̂exog ; n, θobs

)
≡

∑

θ′
λ?
0 (k′, θobs)Ω

{
θ′ | k′, θcond

∣∣∣
t0−1

}
L

(
θ̂exog ; θ′ , t0 + 1, n

)
. (61)

The full-sample log-likelihood function is

lnL
(

θ̂exog ; y
)

=
∑

θobs

N(θobs)∑

n=1
lnL

(
θ̂exog ; n, θobs

)
. (62)

I7b. By Implication I1 all probabilities are smooth in θexog. Ω{θ|k, θcond} is smooth
in P {α | θ } and Ps, and the likelihood is smooth in Ω.

I7c. With transparency the state is observable up to k, and the sums over α and θ′

collapse to a single factor:

lnL =
∑

θobs

N(θobs)∑

n=1
ln




K∑

k=1
λ?
0 (k, θobs)

tmax∏
t=t0

P ?{θt+1 | (αn
t , θn

t )}P{αn
t | θn

t }

, (63)

where (αn
t , θn

t ) is shorthand for the unique solution to Y (αn
t , θn

t ) = yn(θcond).
I7d. With homogeneity Υ is identified from observable conditional choice probabili-

ties.
I7e. By R1, P {α | θ } = 1/|A(θ)| for an irrational type, which is not a function of Υk

and δk. The likelihood would be flat in these parameters.

Proof of I8.
P8a. Immediate.
P8b. Immediate.
P8c. An entry period by definition has no affect on utility. In a static environment

control and treatment groups will behave the same during the entry period,
leading to a prediction of zero impact during the first R(1) periods of the ex-
periment.

Coordinating time across groups.

45



a. For e > 0, let the initial clock have elements ( t0 + 1 rc fc ). Let r̄(e) ≡ rc +
∑fc−1

x=1 R(x) be an index of how far into the program the group enters treatment.
Set t0(z) ≡ 0, where z ≡ argmaxθexp r̄(θexp) is the group that enters treatment at
the latest stage.

b. Set t0 in other groups so that members of the group cannot reach treatment
state θ̄clock(z) before t = 0: t0(θexp) ≡ − [r̄ (θ̄clock(z))− r̄ (θexp)] .

c. Set tmin to be 1 + t0 − T (e). Set tmax as t0 plus the length of post-assignment
observations in the group.

d. For e = 0, set f ′ = f? (1,0,0)for (α, θ) ∈ ht̄, and t̄ = mine tmin(e) − 1.

Applications of the Framework.
Ap1. The Illinois Re-employment Bonus Experiment.

Woodbury and Spiegelman (1987) report the results of two controlled experi-
ments carried out on new claimants to unemployment insurance (UI) in Illinois.
Meyer’s (1995) review of the evidence from these and related experiments sug-
gests an on-going influence of such experiments and the analysis of their results.
The two experiments were based on the same entry conditions and shared a
common control group, thus G = 3. In each case the treatment consisted of a
cash bonus for finding a job within 11 weeks of beginning their claim. In one
treatment group the bonus was paid to the employee. In the other it was paid
to the employer. It was indeed an unexpected experimental intervention with
a finite duration, thus E > 0. There were not multiple samples with different
entry conditions, thus E = 1. The main selection criterion was that the subject
filed a new UI claim and registered in a job service area in northern and central
Illinois. The claimant also needed to qualify for 26 or more weeks of UI and to
be between the ages of 20 and 55. For simplicity we will assume that location
and age are treated as demographic variables in order to concentrate on the un-
employment criteria. Let m, j ∈ Y (α, θ) be indicators for employment status and
registering at a job service bureau in the current period (week), respectively.
Let n ∈ Y (α, θ) be the number of weeks of UI eligibility if unemployed next
period. The modeler decides whether and to what extent these variables are
under the control of the subject by locating them in θ or α or by making them
functions of other elements of the outcome. The length of the selection period
is thus T = 2: the date of random assignment is t0 = 0 and selection begins at
tmin = −1. The selection criteria are, for t = −1, H [y; θcond] = m(n > 26) and, for
t = 0, H [y; θcond] = j(1−m).
There are three phases of treatment (F = 4). Phase f = 1 is the period during
which the subject can qualify for the employment bonus. They must start a job
within 11 weeks of entry into the experiment, while receiving UI benefits for the
spell of unemployment at the start of the experiment. This implies R[1] = 11.
The phase increment is f+ = m until r = 11, when it becomes f+ = 2(1 −m).
That is, the person stays in the qualification phase as long as they don’t start
working. If they reach the final period they move to phase 4 if they don’t work,
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otherwise they make the default transition to f = 2. The second phase (f = 2)
requires the subject to hold the job for four periods, thus R[2] = 4. The phase
increment is f+ = 2(1 −m) for r < 4 because if they failed to keep the job for
four weeks they lost the chance to receive the bonus and moved back to the
real world. At r = 4 the phase increment is f+ = 1 − m. Phases 1 and 2 are
qualification phases because the utility and transition are not treated during
them. The last treatment phase lasts one period, R[3] = 1, and is characterized
by an increase of $500 in income, paid either directly to the individual (and
presumably entering U(α, θ)) or to the employer, depending on the value of g.

By mapping the re-employment bonus experiment into this framework it be-
comes possible to analyze its outcome using a model of endogenous job search
and UI eligibility. That is, the re-employment bonus will affect the propen-
sity to enter UI-eligible unemployment is embedded within the model. The
experiment provides no direct experimental (i.e. controlled) evidence on how
the bonus would affect this propensity, because both the treatment and con-
trol groups entered this state under the status quo. However, a model cast in
this framework would need to explain both the treatment and control group
outcomes while accounting for endogenous transitions into unemployment. If
successful at crossing this in-sample hurdle, it is not a great leap for the model
to predict accurately the unobserved situation of a permanent application of
the treatment. The finite and temporary nature of the bonus, and the fact
that its receipt depends on subject action,is fully accounted for by using the
pre-assignment value of outcomes in the post-treatment phase F .

We can contrast this approach to the one taken by Davidson and Woodbury
(1993) that lacked a framework to embed an experiment in a social environ-
ment. In their analysis, becoming unemployed and becoming eligible for UI are
exogenous parameters calibrated to pre-assignment outcomes and results from
other studies. The analysis thus assumes a homogeneous population and an
unselected group entering the experiment. Policy implications are then based
on an assumption that implementing a reemployment bonus would leave un-
changed the propensity to become unemployed and to establish UI eligibility
prior to becoming unemployed. While the Davidson and Woodbury model is a
stationary infinite horizon environment, experimental outcomes are analyzed as
if the re-employment bonus immediately became an on-going (recurring) policy.

Ap2. NIT Experiments

Unlike the Illinois re-employment bonus experiments, the NIT experiments were
not cleanly designed and executed. Here we will just describe how many of the
problems with the NIT experiments listed by Pencavel (1987) are normalized
by this framework. First comes the strongly selected and widely scattered ge-
ographic locations of the experiments. This is automatically captured by al-
lowing each demographic group to have its own distribution over unobserved
type. (Applying results to non-sampled locations is described in section VII.)
Next, is the fact that entry into the experiment was based on being a low
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income household. This simply requires that T (e) = 1, income be an element
Y (α, θ), and the feasible condition be that income is less than some amount. The
three-year period of treatment made it unclear whether short-run or long-run
elastiticities were being measured. In the social experiment the finite nature of
the treatment is explicit, the difference with a permanent policy innovation is
clear, and the permanence of the treatment effects would be endogenous to the
sequential decision model and the parameters estimated from the data. Next,
in some locales the size of the transfer and the claw-back rate differed across
treatment households. This is handled by specifying more than one treatment
group (G > 1). Finally, in some locales assignment into groups was not random,
because households were assignment treatment according to forecasts designed
to minimize the experimental costs. As long as these non-random aspects of
assignment are explicit, the jump process g?

0() can be specified to handle them.
In short, the framework outlined above coupled with a adequate model of la-
bor supply decisions can rescue the exogenous variation generated by the NIT
experiments from the so-called flaws in its design.

Ap3. Vietnam Draft

A classic example of a natural experiment is the Vietnam draft lottery (Angrist
1990). The experiment is that each draft board drew birthdates randomly
to determine priority in filling their draft requirement. Hence, assignment to
treatment was based on a demographic variable. The draft lottery was not a
true experiment, because the structure of the lottery was known ahead of time
and the ‘experiment’ could be anticipated by the subjects. Thus a description of
the draft lottery as a social experiment requires E = 0. However, treatment was
temporary because exposure to the draft was not permanent, and thus τ = 0.

The draft lottery is naturally randomized if date of birth is independent of unob-
served type k. Note that other demographic variables, such as age and parent’s
education, can be included in the social environment and are not required to be
independent of birthdate. Yet, a model of the Vietnam draft lottery as a natu-
rally randomized social experiment resting on this assumption is problematic on
two levels. First, policies such as minimum school entry age, mandatory school
attendance age, and minimum automobile license age, are directly related to
birthdate. They may therefore generate a correlation between birthdate and
other endogenous variables. However, the social experiment is not bound to
account for these policy differences, and it may be acceptable to ignore them.

At a deeper level the unobserved type k may be correlated with birthdate. For
instance, suppose the model includes unobserved human capital and observed
schooling as endogenous choices. Schooling at age 16 can be treated as a de-
mographic variable, but differences in human capital at age 16, conditional on
schooling at age 16, would in this environment be treated as exogenous parame-
ters that differ over unobserved type k. The modeler has the choice of assuming
that the distribution over k is independent of birthdate, which would result in
the draft lottery being a naturally randomized experiment. The fact that local
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draft boards conducted their own lotteries can be exploited to avoid assuming
that k is independent of birthdate. A birthdate in one locale with a low draft
number could be paired with the same birthdate in another locale with a high
draft number. Location and date of birth are perhaps safely assumed to be
uncorrelated, and it may be possible to pair locales with similar policy vectors
(e.g. similar schooling policies). The result is a social environment in which the
draft is a naturally randomized experiment as defined earlier.

Ap4. Non-experimental Lifecycle Data

The requirement that the social environment is stationary is not restrictive
in non-experimental situations. Consider the case: E = 0; τ = 0; U(α, θ)

∣∣∣
f=0

=

U(α, θ)
∣∣∣
F
= 0. The ‘experiment’ can now represent an individual’s lifetime. Itera-

tion on the infinite horizon value function converges in two iterations. Different
phases correspond to different stages of decision making generated by policy,
such as the age before majority and the age after mandatory retirement. Tran-
sitions must be specified so that the desired initial distribution over endogenous
states corresponds to the ergodic distribution P−∞{θ}. Otherwise, assuming a
transparent environment means that the initial distribution is not relevant to
applying the model to data, because initial conditions are observed up to the
unobserved type k.

Other Extensions of the Basic Framework.

Ex1. Attrition Bias. In practice, individuals often agree to participate in an exper-
iment, but then when their assignment is revealed they make a second choice to
continue or not. When participation in the experiment is costly to the subjects,
and the treatment is valued differently than the status quo, this leads to a bias
in estimated impacts. Related to this issue is attrition bias: if subjects drop
from study at a rate that depends on the treatment, then the attrition rate will
differ between the treatment and control group.

It is straightforward to allow for endogenous attrition in the social experiment.
Let α contain a choice variable j which equals one when the subject agrees to
participate in the next period. Thus, for t ≥ t0, H [y; θcond] = j. Typically j = 0
implies that f ′ = F . That is, non-participation means treatment ends and the
subject returns to the real world. Suppose further that the cost of participation
is an additive component of utility:

u?(α, θ) = j (u(α, θ)− κ) + (1− j)u(α, θ)
∣∣∣
f=F

(64)

where κ ∈ Υ and u?(α, θ) is the utility augmented by the participation decision.
Given that the subject has participated up to the current period, they will
participate again if the current value plus discounted future expected value of
treatment outweighs the cost κ. Only when agents are myopic does the partici-
pation decision boil down to a static tradeoff: j = 1 when u(α, θ)−u(α, θ)

∣∣∣
f=F

> κ.
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In any case, the decision depends on all the exogenous parameters and the re-
alized state a subject finds themselves in. For example, subjects with less to
gain from the treatment (perhaps because they are less patient and have lower
values of δ) are more likely to drop out conditional on the realized state.
To control for attrition that occurs at the point of random assignment can
require a slight extension of the model, because this bias is caused by a lag
between a subject’s agreeing to participate in the experiment and being assigned
treatment status g. To account for this lag, t0 now represents the period at which
the experiment is revealed and participation is requested. Phase f = 1 would
now denote the period between the initial decision to participate and the date
of random assignment. R[1] is the maximum lag between a baseline survey and
random assignment. Phase 2 is the first true phase of treatment. During phase
1, g is a discrete jump process that will take on a new value when the subject
makes the jump out of phase 1. Phase 1 would in most cases by an entry period
as defined above. The extended utility u? implies that the decision to drop out
(and, hence, random assignment bias) is a function of the discounted expected
value of treatment and the status quo situation all conditional upon information
available to the subject. Thus, subjects who initially agreed to participate based
on (64) may drop out once their group assignment is realized. (If full records
are kept at t0, often called the baseline interview, then the initial decision to
participate can also be modelled using u?.)

Ex2. Measurement Error. As discussed earlier, maximum likelihood estimation
is sensitive to the assumption that measurements are made without error.
True measurement error and discrepancies between reality and the model can
generate zero-probability observations that leave the likelihood function unde-
fined. This can be seen in the main component of the likelihood defined in the
Appendix which contains the Boolean component B [yn(θcond) = Y (α, θ)]. We
can extend the model by specifying that outcomes are subject to independent
normally-distributed errors. The exogenous vector is expanded to take the form:

θexog ≡ (Λ Γ Σ) (65)

where Σ is a M-vector of standard deviations in results, Σ = [σm]. The Boolean
component is now replaced with a normal kernel over the outcome space:

exp

{
−1

2

(
yn (θcond)− Y (α, θ)

Σ

)(
yn (θcond)− Y (α, θ)

Σ

)′}
. (66)

(The division by Σ is element-by-element, and a scaling constant would also
appear.) The measurement error would not affect the progress of the experiment
through the transition rule f+(y; θclock). The likelihood function is not reliant on
‘transparency’ of the state and action vector, so the same general form applies
in the case of this type of measurement error.

Ex3. Non-stationary Environments and Stochastic Policies. If at some level
the environment is not ergodic then it is not clear how experimental results,
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however obtained, could be useful ex post to address policy questions. When
subject behavior is non-stationary before and after the experiment, then the
same subjects will never be in the same position to react to true policy changes
that occur after the experiments end. A good reason to relax the assumption of
stationarity is to allow subjects to make decisions while facing a finite horizon,
for example in anticipation of retirement or death. Another good reason is to
have individuals make decisions starting from an initial distribution over states
that is not endogenous to the model. As discussed earlier, lifecycle data that
does not include random assignment can be modelled as a program of treatment
within a special (trivial) stationary environment. But to include lifecycle effects
and experimental treatment, an endogenous variable, say a, must be cyclical:
a′ = a?(B [a < A] a+1, [0], [∅]). The value of terminal states, V (θ

∣∣∣
A
) and the jump

values of initial states, P (θ
∣∣∣
a=1

), are both determined by exogenous parameters

and not by endogenous choices. Dying agents are ‘re-born’ at a = 1 and the
overall stationarity required for drawing lessons for policy is restored through
an overlapping generations framework. The allowance for policy innovations as
e = 0 means that the transition path between the old and new steady-states are
computable within the framework already described.

Recently Keane and Wolpin (2002) have examined the effect of uncertain changes
in government policies within a model of welfare. In the basic definition of a
social environment the policy vector takes on a singe value, and the demo-
graphic variable d serves as a permanent index into the policy vector. It is
straightforward (albeit expensive) to allow the values in the policy vector to
follow a discrete jump process, d′ = d?(d, [πd], [{d}]). The possible realized val-
ues of policy parameters would be pre-determined and the parameters of the
discrete jump process could be estimated inside or outside the model. As with
Keane and Wolpin’s framework, this allows expectations that heretofore unob-
served regimes (such as introduction or elimination of a program) can affect
current behavior. Policy experiments would then be conducted by letting the
government set the realized values of policy parameters and/or their transition
probabilities.

Ex4. Equilibrium Environments. Equilibrium can be considered a restriction
on the environment that subjects face. For example, in a partial equilibrium
environment, prices are parametric to all individual agents and the modeler.
In a general equilibrium the prices remain parametric to agents but become
endogenous to the modeler’s choice or estimates of underlying preference and
technology parameters. In many cases we can associate equilibrium outcomes
with certain elements of the policy vector Ψp. For example, rather than treat
prices as given, they would have to satisfy an endogenous restriction: h(Ψp) = 0,
where all the implied optimizing behavior and aggregate outcomes are implicit in
h(·). Solving the model would require finding exogenous parameters that satisfy
this restriction. Alternatively, the econometric objective can be penalized for a
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failure to satisfy these restrictions. In this approach the equilibrium prices are
elements of the exogenous vector. Ferrall (2004) discusses the computational
tradeoffs between these two approaches to imposing equilibrium in a general
class of problems of which a social experiment is a special case.
Combining equilibrium restrictions and small-scale experiments require special
consideration (Heckman et al. 1998). The framework here makes it straight-
forward to include equilibrium responses only when appropriate. For f = F

one equilibrium restriction is imposed within and perhaps across demographic
groups. Any case of e > 0 is an experiment within the same equilibrium, pre-
suming N(θobs) is small. A case of e = 0 will require computing new equilibrium
restrictions whether it is an hypothetical or real policy innovation being ana-
lyzed.
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