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I. Basic Notation

A. Next to the symbol in the left column put the letter of its meaning on the right. Put “?”

for symbols that are not familiar to you. (An example is provided.)

a. 5
∑

0. there exists

b. 11
∏

1. equivalent (indifference) to

c. 4 ∀ 2. union

d. 0 ∃ 3. preferred to

e. 12
⋂

4. for all

f. 8 ∅ 5. summation

g. 2
⋃

6. subset of

h. 9 ‖ · ‖ 7. orthogonal to

i. 3 º 8. empty set

j. 10 # 9. norm

k. 7 ⊥ 10. cardinality of

l. 6 ⊆ 11. product

m. 1 ∼ 12. intersection

B. Give a simple and correct use of each of the following operands. An example is provided.

a.
∑ ∑3

k=0
1
2

k
= 1 + 1

2 + 1
4 + 1

8 = 15
8

b.
∏ ∏3

k=0
1
2

k
= 11

2
1
4

1
8 = 1

64

c.
⋃ {1,2,3} ⋃ {3,4} = {1,2,3,4}

d.
⋂ {1,2,3} ⋂ {3,4} = {3}

e. lim limx→0
1

1+x
= 1

f. | | or det( )
∣∣∣∣

1 1
−2 0

∣∣∣∣ = 2
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C. Give a simple and correct example of the following mathematical objects.

a. A lower-triangular matrix:
(

1 0
−2 2

)

b. An unbiased estimate of the population mean (based on a sample of size N)

X̄ ≡ 1
N

N∑

i=1
Xi

c. A singular matrix:
(

1 1
−2 −2

)

d. A non-monotonic function (a formula not a graph): f(x) = x2
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D. Translate this symbolic statement into an English sentence:

∃ U ∈ < : ∀x ∈ <, |f(x)| ≤ U.

There exists a real number U such that for any number x, the absolute value of f(x)

is less than or equal to U.

What kind of function is f(x)? BOUNDED

E. Translate this English sentence into symbolic notation:

For every element of the set S there is a neighborhood

around it that is fully contained in S.

∀s ∈ S∃εs > 0 : x ∈ S∀x : ‖x− s‖ < εs.

What kind of set is S? OPEN
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II. Definitions

F. Let f(x) : < → <. Complete the definition of the derivative:

f ′(x) ≡ lim
ε→0

f(x + ε)− f(x)
ε

G. For the following subsets of the real line (a-d), put a “
√

” for all properties that apply. Put ”?”

for properties you are not sure of.

a. [0,1] b. (−∞,2.2) c. [0,2]
⋃

(3,∞) d.
{
1,1/2, . . . ,1/n, . . .

}

1. open
√

2. bounded
√ √

3. closed
√

4. connected
√ √

5. compact
√

H. For the following functions (a-d), put a “
√

” for all properties that apply. Put ”?” for properties

you are not sure of.

a.f(x) = 3 b.f(x) = x2 c.f(x) = |x| d.f(x) = e−x2

1. bounded
√ √

2. continuous at x = 0
√ √ √ √

3. differentiable at x = 0
√ √ √

4. concave
√

QED Graduate Methods Review 2004 KEY Page 4



I. Let X and Y be two random variables, with joint density f(x, y). Then X and Y are said to be

independent if

there exists functions fx(x) and fy(y) such that f(x, y) = fx(x)fy(y) for all x and y.

J. Let X be a discrete random variable with density

f(x) =





1/3 if x = 0
1/2 if x = 1
1/6 if x = 3
0 otherwise

.

Compute the population mean and variance of X. (You can leave your answer in a form ready

to be calculated, such as “1 + 3.5 + (6− 3.77)2”. )

a. E[X] = 01
3 + 11

2 + 31
6 = 1.

b. V ar[X] = (0− 1)2 1
3 + (1− 1)2 1

2 + (3− 1)2 1
6 = 1.
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K. Let Z denote the standard normal random variable (mean 0 and variance 1.0.

a. Sketch the density of Z: SEE ANY STATS BOOK

b. Fill in the missing elements < d > and < x > of the formula for the density function of Z

(usually denoted either f(z) or φ(z)):

f(z) =
1

< d >
exp

{
−1

2
< x >

}
where < d >=

√
2π and < x >= z2.

L. Let Z1, Z2, Z3, . . . Z99 denote independent standard normal random variables (as many as needed).

Provide formulas using the Z ′s that follow these distributions:

a. the t with 10 degrees of freedom: t =
Z1√∑11
n=2 /10

.

b. the χ2 distribution with 9 degrees of freedom: χ2
9 =

∑9
n=1 Z2

i .

c. the F distribution with 15,35 degrees of freedom: F15,35 =
1
15

∑15
n=1 Z2

n

1
35

∑50
n=16 Z2

n

.
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III. Functional Forms in Economics

M. Let U(c) =
∑K

t=0 βkE[u(ct)] be a consumer’s utility over a consumption path c = (c0, c2, . . . , cK).

a. The consumer is risk




averse if u
′′

< 0 (more generally, strictly concave)

neutral if u
′′

= 0

loving if u
′′

> 0 (more generally, strictly convex).

b. β is called the discount factor.

c. If K = ∞, |β| < 1, and ct = c̄ for all t, then U(c) simplifies to u(c̄)/(1− β).

N. Write down the general form of each of these types of utility (or production) functions, defined

over two goods, x1 and x2. (Sketch an indifference (or isoquant) curve for the first two.)

a. Cobb-Douglas:

u(x1, x2) = Axα
1xβ

2

b. Leontief:

u(x1, x2) = Amin{αx1, βx2}

c. CES (Constant-elasticity-of-substitution):

u(x1, x2) = A
(

αxρ
1 + (1− α)xρ

2

)1/ρ
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O. Apply the concepts below to the Edgeworth Box. (The solid curves represent Person 1’s pref-

erences; the dotted curves represent Person 2’s preferences. Point: A is the endowment.)

a. Shade the allocations that are Pareto Superior to C and label the area X.

b. Shade the allocations in the core and label the area Y.

c. List which of the allocations A, B, and C are on the contract curve:B

d. Add an indifference curve for Person 1 and Person 2 that would illustrate a competitive

equilibrium allocation on the price line through A.

e. Illustrate a lump sum re-allocation that would result in B being a competitive allocation.

Label the new endowment Z.

QED Graduate Methods Review 2004 KEY Page 8



IV. Problem Solving

P. Consider the function:

f(x) = 1 + x− x3/6.

a. Derive the first order necessary condition (FONC) for a point x? to be a local optimal

value of f(x).

FONC: if x? is a local min/max, then 1− [x?]2/2 = 0.

b. Solve for all solutions to the FONC

x? = ±
√

2

c. Derive the second order necessary condition for an optimal value

SONC: if x? is a local min [max], then −2x? ≥ [≤] 0.

d. Conclude whether each of your solution(s) in b is a maximum/minimum/inflection.

1. x? =
√

2. This point satisfies FONC and SONC for a local maximum.

It cannot be ruled out as a local maximum on this basis. However, since it also

satisfies the second order SUFFICIENT condition for a maximum (−2x < 0) it can

be concluded it is a LOCAL MAXIMUM.

2. x? = −
√

2. This point satisfies FONC and SONC for a minimum. It cannot

be ruled out as a local minimum. However, since it satisfies the second order

SUFFICIENT condition (−2x > 0) it can be concluded it is a LOCAL MINIMUM.

NB: no global optimal points exist. The point x = 0 is the one and only

inflection point.
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