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I. Introduction by way of Example

I.1 Solving the basic optimal stopping problem

Examples

� job search*

� American options

� retirement

� patent renewal

Basic Assumptions

1. a simple work or stay unemployed decision

2. a decision to work is permanent

3. a known number of periods T to search

4. a constant value of continuing to search

5. a known and constant distribution of wage offers

I.1.a One Period (T) Decision

A person is unemployed coming into period T . The person values staying at home at

some value α. The person has a wage offer in hand, wT . The choice: stay unemployed (U)

or work (W). The values of the two choices are:

V U
T = α

V W
T (wT ) = wT . (1)
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The optimal choice (or optimal decision rule) is: work if V W
T (wT ) ≥ V U

T , or if wT ≥ α. This

defines the lowest wage offer, the reservation wage, that will be accepted by the person in

period T :

w?
T = α. (2)

Given the optimal decision rule, we can determine the indirect value of of entering period T

unemployed with the offer wT in hand:

VT (wT ) = max{V U
T , V W

T (wT )}

= max{α, wT } (3)

= max{w?
T , wT }

I.1.b Two Period (T and T-1) Decision

Enter T-1 unemployed, with wage offer wT−1 in hand. If the job offer is accepted, the

job lasts today and tomorrow. Can either take the job or stay at home today and search

again tomorrow. Tomorrow’s wage offers are drawn from the distribution F (w):

F (w) = Prob(wage offer < w)

f(w) = F ′(w) = density of wage offers (4)

Income tomorrow is discounted by the rate β, 0 ≤ β < 1. An unemployed person makes a

decision in period T-1 to accept the job offer or not to maximize discounted expected income.

The values of the parameters (T, α, β, F ()) define the basic search model.

Given the distribution of wage offers expected in time T, we can write down the expected

income of arriving in period T unemployed:

EVT =
∫ ∞

0
VT (wT )f(wT )dwT

= αF (α) +
∫ ∞

α
wT f(wT )dwT (5)

= w?
T F (w?

T ) +
∫ ∞

w?
T

wT f(wT )dwT
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The value taking of the two choices at T-1 are then

V W
T−1(wT−1) = wT−1 + βwT−1

V U
T−1 = α + βEVT (6)

The optimal decision: work if V W
T−1(wT−1) ≥ V U

T−1. This defines the lowest wage offer accept-

able at time T − 1:

w?
T−1 = α + βEVT

1 + β
≥ w?

T (7)

This in turn determines the indirect value of

VT−1(wT−1) = max{V U
T−1, V W

T−1(wT−1)}

= max{α + βEVT , (1 + β)wT−1} (8)

= (1 + β)max{w?
T−1, wT−1}

I.1.c General Finite Period (1,2, . . . , T) Decision

The person enters an arbitrary period t unemployed with wage offer wt in hand. If the

job offer is accepted, the job lasts through period T. The person can either take the job or

stay at home today and search again tomorrow. Tomorrow’s wage offers are drawn from

the distribution F (w). If we have solved backwards from t = T , then the expected (indirect)

value of entering period t+1 unemployed is a value EVt+1. This in turn determines the value

of the two choices at period t:

V W
t (wt) =

T
∑

k=t

βk−twt = wt
1− βT−t+1

1− β

V U
t = α + βEVt+1 (9)

The optimal decision: work if V W
t (wt) ≥ V U

t . This defines the lowest wage offer acceptable at

time t:

w?
t = (α + βEVt+1)

1− β
1− βT−t+1 ≥ w?

t+1 (10)
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The indirect value of a wage offer at time t:

Vt(wt) = max{V U
t , V W

t (wt)}

= max{α + βEVt+1, V W
t (wt)} (11)

= 1− βT−t+1

1− β
max{w?

t , wt}

From this we can compute the value of entering period t unemployed:

EVt =
∫ ∞

0
Vt(wt)f(wt)dwt

= (α + βEVt+1)F (w?
t ) +

∫ ∞

w?
t

wtf(wt)dwt

= 1− βT−t+1

1− β

(

w?
t F (w?

t ) +
∫ ∞

w?
t

wtf(wt)dwt

)

(12)

This allows backward recursion to continue for t−1, t−2, . . . ,1. Period T fits into this genernal

formula if we define EVT+1 = 0. With that definition the equations w?
t , Vt, EVt can be used

for any period t within a finite decision horizon.

I.1.d Infinite Horizon Problem (T=∞)

If we let T go to infinity then the decision horizon disappears. Today is just like tomorrow,

in the sense that tomorrow is no more closer to T than today. The person enters an arbitrary

period (‘today’) with wage offer w in hand. If the job offer is accepted, the job lasts forever.

The person can either take the job or stay at home today and search again next period

(‘tomorrow’). Tomorrow’s wage offers are drawn from the distribution F (w). The value of

taking a job offer in any period is the present discounted value of the stream of wages:

V W (w) =
∞
∑

k=t

βk−twt = lim
T→∞

wt
1− βT−t+1

1− β
= wt

1− β
for0 ≤ β < 1 (13)

The value of not taking an offer is the expected value of staying at home and then entering

tomorrow unemployed:

V U = α + βEV (14)

The term EV has yet to be defined. In the finite horizon case, it could be determined

before the optimal decision rule today. But today and tomorrow are the same, so in the
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infinite horizon problem the optimal decision rule and the indirect value of unemployment

must be determined simultaneously. Whatever value EV is, the optimal decision rule is still

simple: work if V W (w) ≥ V U . This defines the lowest wage offer acceptable at any time:

w? = (α + βEV )(1− β) (15)

Given a reservation wage w? we could determine the value of unemployment:

V (w) = max{V U , V W (w)}

= max{α + βEV, V W (w)} (16)

= 1
1− β

max{w?, w}

And given the reservation wage we can determine the expected value of unemployment:

EV =
∫ ∞

0
V (w)f(w)dw

= 1
1− β

(w?F (w?) +
∫ ∞

w?
wf(w)dw) (17)

The equations for EV and w? form a system of simultaneous equations that determine

optimal decisions. One way to solve this system of equations is to begin with the period T

problem and continue backward until w?
t converges. This will work because it is straightfor-

ward to show that for 0 ≤ β < 1

lim
T→∞

w?
1 = w?. (18)

That is, as the horizon disappears the reservation wage converges to the infinite horizon

reservation wage.

I.2 Properties of the Basic Job Search Model

I.2.a Response of w? to α and β

The basic job search model we have set up has a small number of parameters that

determine the optimal process of job search. These parameters are the value of a period

spent unemployed (α), the discount factor (β), and the distribution of wage offers (f(w)).
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It is possible to use integration by parts to write an implicit equation for w? that does not

depend on EV as well. That is, the reservation wage in the infinite horizon model satisfies:

w? − α = β(E(w)− α) + β
∫ w?

0
F (z)dz. (19)

(This is tedious to show and you are not required to know this equation.) Given this result,

we can it to see how the reservation wage responds to the parmaeters of the model.

dw?

dα
− dα

dα
= −β

dα
dα

+ βF (w)dw?

dα
(20)

This is an expression for the total derivative of the reservation wage with respect to a change

in the parameter α. It is analogous to a comparative static exercise in micro theory, in the

sense that it measures the response of the optimal decision rules to an exogenous parameter.

Solve for the total derivative:

dw?

dα
= 1− β

1− βF (w?)
∈ {0,1} (21)

That is, the reservation wage goes up with the value of unemployment but not dollar-for-

dollar. One way to think of this result is the following: an increase in α makes the person

richer. Some of this increase in wealth is consumed in longer unemployment spells, but not

all of it. If a job is rejected in order to stay unemployed and enjoy the higher value of α,

then it may take several periods to get another acceptable offer. We know that F (w?) is the

probability of rejecting the next job offer as well.

As an exercise, derive dw?

dβ .

I.3 Exponential Offer Distribution

Let

f(w) = λe−λw, w > 0 (22)

which implies:

F (w) = 1− e−λw, w > 0
∫ ∞

x
wf(w)dw = (1− F (x)) [x + 1

λ
]. (23)
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So Θ = (α, β, λ) defines the basic, infinite-horizon, exponential-offer-distribution, search

model. For this distribution,

EV = V U(1− e−λw?) + 1
1− β

∫ ∞

w?
wλe−λwdw (24)

We can get a system of two equations that defines the model:

EV = w?

1− β

(

1− e−λw?
)

+ 1
1− β

[

w? + 1
λ

]

e−λw? (25)

w? = (1− β) [α + βEV ] (26)

As an exercise, derive dw?

dλ . It may simplify things to re-write the model as γ = 1/λ and

solve for dw?

dγ first. Further, find the expressions for dw?

dα and dw?

dβ specific to this problem. If

we put the total derivatives in a vector, we have:

dw?

dΘ =
(

dw?

dα
dw?

dβ
dw?

dλ

)

(27)
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II. The Search Model and Likelihood Estimation

II.1 The Search Model Can Produce a Linear Regression

The basic statistical model for earnings paid to individuals is the linear regression model

in log-linear form:

lnW = xβx + u (1)

Here x is a row vector of observed individual characteristics that are expected to influence

earnings; βx is a column vector of unknown parameters; and the scalar u is the difference

between the expected log earnings offer E[lnW |xβx] = xβx and the actual value. It captures

unobserved influences on a person’s earnings. With u ∼ N(0, σ2), the linear regression model

with normally distributed errors is defined by Θr = (x, βx, σ2).

How does (1) relate to the infinite horizon search model (25)-(26) with parameters Θ =

(∞, α, β, F ())? First, (1) introduces exogenous explanatory variables, x. If we set α = β = 0,

then the reservation wage becomes 0, and the searcher accepts any job offer. If we further set

lnw ∼ N(xβx, σ2) we see that the regression model is a special case of the job search model, in

which log wage offers are normally distributed with a constant variance σ2 and an individual

specific mean xβx. That is, Θr(x, βx, σ2) = Θ(∞,0,0, N(xβx, σ2)) ≡ Θ?.

II.2 But It’s Unlikely

The OLS estimate of β̂x is (X ′X)−1X ′Y , where X is the matrix of individual observations x

and Y is the vector of observations on lnW . Under the classical (Gauss-Markov) assumptions,

E[β̂x] = β and V ar[β̂x] = σ2(X ′X)−1
. Suppose that one estimates (1) using OLS but the data

were generated not by Θ? but by the more general model Θ = (∞, α,0, N(xβx, σ2))? That is,

people still have no foresight but they do have an alternative to working with a value grater

than 0.

What would the data look like? Let’s start with the case that we get to observe x for a

random sample, but that we don’t observe earnings for people who rejected the wage offer.
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Then all observed earnings would be greater than α. The residual u in (1) would no longer

be have mean 0 but rather

E[u|x] = σE[z|z > (α− xβx)/σ], (2)

where z ∼ N(0,1). It follows that the error term would be correlated with x. That violates

the key assumption of the Gauss-Markov Theorem. Thus, OLS estimates of (1) applied to

the static search model (β = 0) results in biased estimates of βx:

E[β̂x|α > 0] 6= βx.

This is an example of a selection bias in OLS estimates of a regression equation.

II.3 Instead it Produces a Likelihood Function

II.3.a Probit for Working

Under the normality assumption it turns out that

E[u|x] = σE[z|z > d] = σ
φ(d)

1−Φ(d)
, (3)

where φ and Φ are the standard normal density and distribution function, respectively.

Further, under search model the chances that a person chooses to work is 1 − F (α) = 1 −

σΦ(α−xβx
σ ). We see that the argument is exactly d.

Let’s begin again with a model that says that the probability a person is employed is

1−Φ(−xγx) and not employed Φ(−xγx). Code a new variable m to equal 1 for people working

and m = 0 for those not working (created from the earnings data: m = W > 0). Then the

probability of a given observation is

Prob(m|x, γx) = [1−Φ(−xγx)]
m [Φ(−xγx)]

1−m
. (4)

The likelihood of the observation is this probability given the data:

L(γx|m,x) = Prob(m|x, γx) (5)
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The log-likelihood of a random sample of searchers:

lnL(γx) =
N

∑

i=1
lnL(γx|mi, xi). (6)

This function is globally concave in γx. The parameter vector that maximizes the sample

likelihood are called maximum likelihood estimates:

γ̂MLE
x ≡ argmax

γx
lnL(γx). (7)

MLE estimates of γx are consistent. The search model says that γx = βx/sigma except for the

constant term, which would be γx[1] = (βx[1]−α)/σ. The parameter σ of the search model is

not separately identified from the likelihood function for m alone.

We can generalize. Suppose that rather than having a common opportunity cost α, it is

α = zβz

where z is a vector of observed characteristics of the person (which may or may not overlap

with x). Now the search model is Θ = (∞, zβz,0, N(xβx, σ2)). The working proability becomes

zβz − xβx and the reduced-form probability for m is

Prob(m|x, z, βx, βz) = [1−Φ(zβz − xβx)]
m [Φ (zβz − xβx)]

1−m
. (8)

Based on this probability, we can’t distinguish the homo- and heterogeneous opportunity

cost search models, except by sorting the demographic variables into x and z a priori.

II.3.b Aside: The Heckman-Lee Two-Step Procedure

Given consistent estimates of the model’s probability of working, we could correct the

earnings regression for selection bias. First, compute an auxillary random variable

λ̂([zx]) =
φ

(

zβ̂z − xβ̂x

)

1−Φ(
(

zβ̂z − xβ̂x

)

)
(9)

Then run the second-stage regress

lnW = xβ?
x + γλλ̂([zx]) + uλ. (10)
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The OLS estimate of β? is a consistent estimate of β.

The canonical form for the selection model is

observation:Q = (y,m, x1, x2)

y? = x1β1 + ε1 (11)

m? = x2β2 + ε2 (12)

m = m? > 0 (13)

y = y?m (14)
(

ε1
ε2

)

∼ N
((

0
0

)

,
(

σ2 ρσ
ρσ 1

))

(15)

When compared to the search model, it is important to note that m? is the difference between

the offered wage and the reservation wage and its mean and variance have been normalized

to 0 and 1, respectively. The full parameter vector is

θ =









β1
β2
σ
ρ









. (16)

A truncated observation (m = y = 0) occurs with probability f(0,0) = P (m? < 0) =

Φ(−x2β2). The joint probability of a selected observation can be written f(y,1) = fy(y)fm(1|y)

where

fy(y) = 1
σ

φ((y − x1β1)/σ)

fm(1|y) =
∫ ∞

−x2β2
f(ε2|y)dε2

= 1−Φ
(

−x2β2 − ρ(y − x1β1)/σ
√

1− ρ2

)

The full log-likelihood of an observation given estimates θ̂ is

lnL(θ̂|Q) =(1−m) lnΦ(−x2β̂2)

+m

[

− ln σ̂ −
(y − x1β̂1)2

2σ̂2 + ln
(

1−Φ
(

−x2β̂2 − ρ̂(y − x1β̂1)/σ
√

1− ρ̂2

))

]

(17)

II.3.c The Unrestricted Search Model
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What happens when β 6= 0? Now the reservation wage w? is influenced by both oppor-

tunity costs and the wage offer distribution. Estimating the reduced-form probit requires

iteration. Since we are not assuming that offers follow the log-normal distribution the itera-

tion includes the evaluation of an improper integral in (17). It is important to note that the

searcher cares about the level of wages, so f(w) 6= φ(w) in (17). Instead, f(w) is the density

of the log-normal distribution.

If we ignore an important technical point, the likelihood function for a single observation

is:

Prob(m, lnW ;Θ) = [Φ((w?(Θ)− βxx)/σ)]1−m [φ ((lnW − βxx)/σ) /σ]m. (18)

The demographic variables x and z do not enter this expression symmetrically. The z vari-

ables only shift the reservation wage (the lower-bound) of observed data, whereas variables

in x also shifts the distribution of accepted earnings above the reservation wage.

Discuss technical point . . . .

13



III. Integration and the Curse of Dimensionality

Notation: x = (x1, x2, . . . , xn). Then x∼k ≡ (xk+1, xk+2, . . . , xn), i.e., sub-vector selection

and z ∼ v ≡ (z, v), i.e., row concatenation.

III.1 Numerical Integration

See the lucid discussion in Judd, 7.1-7.2

III.2 Integration in Higher Dimensions

You wish to evaluate numerically

I(l, u) ≡
∫ um

lm

∫ um−1

lm−1
. . .

∫ u1

l1
f(x1, x2, . . . , xm)dx1dx2 . . . dxm.

where l and u are m× 1 vectors containing the limits to the integration in the corresponding

dimensions of the function f(x). A multi-dimensional integral can be written as a sequence

of recursive one-dimensional integrals:

I1(x∼1, l, u) ≡
∫ u1

l1
f(x1, x∼1)dx1.

Ik+1(x∼k+1, l, u) ≡
∫ uk+1

lk+1
Ik(xk+1 ∼ x∼k+1)dxk+1.

So that I(l, u) = Im(∅, l, u). The cost of calculating a recursive problem for a given level of

precision ε is exponential in m. Each time another dimension is added the same amount

number of evaluation points nm must be added to maintain one-dimensional precisions. But

for each of these points n ∗ n ∗ n . . . = nm−1 points in the recursion are added.

III.3 Monte Carlo Integration

Monte Carlo integration (8.2) breaks the curse of dimensionality in an average sense.

That is, the precision (expressed as variance) of the Monte Carlo approximation to I(l, u) is

of order 1/
√

N , where N is the number of replications, irrespective of dimension m. However,

Monte Carlo integration is not smooth in the limits of integration l and u. Thus, for functions
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that require continuity (such as likelihoods) in which I(l, u) enter Monte Carlo is not a

solution.

III.4 Smooth Recursive Monte Carlo Integration

This problem can be resolved whenever the joint function f(x) can be decomposed into

a recursive sequence of functions that are easy to compute. In the case of a joint density,

this means writing

f(x1, x2, . . . , xm) = f1(x1|x∼1)f2(x2|x∼2) . . . f(xm)

as the recursive product of conditional densities. In the case of jointly normal random vari-

ables the conditional densities are indeed easy to compute (they are just normal densities).

So we can rewrite I(l, u) as

∫ uk

lk

[

∫ uk−1

lk−1

[

. . .

[

∫ u1

l1
f1(x1|x∼1)dx1

]

f2(x2|x∼2)dx2 . . .

]

f(xm)dxm

]

Notice

h1(x∼1) ≡
∫ u1

l1
f1(x1|x∼1)dx1 = F1(u1|x∼1)− F1(l1|x∼1)

So given a random draw x̃2 ∼ F2(x2|x∼2, l2 ≤ x2 ≤ u2), we can approximate the innermost two

integrals with

h1(x̃2 ∼ x∼2)
∫ u2

l2
f3(x2|x∼3)dx2 = h1(x̃2 ∼ x∼2) [F2(u2|x∼3)− F2(l2|x∼3)] = h1h2(x∼2).

Proceeding recursively, we get a product

h =
m
∏

k=1
hk(x̃k−1 ∼ x∼k−1).

It is not too difficult to show that E[h] = I(l, u).
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