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Abstract

This paper discusses estimation methods for limited dependent variable (LDV) models that
employ Monte Carlo simulation techniques to overcome computational problems in such models.
These di�culties take the form of high dimensional integrals that need to be calculated repeatedly
but cannot be easily approximated by series expansions. In the past, investigators were forced
to restrict attention to special classes of LDV models that are computationally manageable. The
simulation estimation methods we discuss here make it possible to estimate LDV models that are
computationally intractable using classical estimation methods.

We �rst review the ways in which LDV models arise, describing the di�erences and similarities
in censored and truncated data generating processes. Censoring and truncation give rise to the
troublesome multivariate integrals. Following the LDV models, we described various simulation
methods for evaluating such integrals. Naturally, censoring and truncation play roles in simulation
as well. Finally, estimation methods that rely on simulation are described. We review three general
approaches that combine estimation of LDV models and simulation: simulation of the log-likelihood
function (MSL), simulation of moment functions (MSM), and simulation of the score (MSS). The
MSS is a combination of ideas from MSL and MSM, treating the e�cient score of the log-likelihood
function as a moment function.

We use the rank ordered probit model as an illustrative example to investigate the comparative
properties of these simulation estimation approaches.
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1 Introduction

This Chapter discusses classical estimation methods for limited dependent variable (LDV) mod-
els that employ Monte Carlo simulation techniques to overcome computational problems in such
models. These di�culties take the form of high dimensional integrals that need to be calculated re-
peatedly. In the past, investigators were forced to restrict attention to special classes of LDV models
that are computationally manageable. The simulation estimation methods we discuss here make
it possible to estimate LDV models that are computationally intractable using classical estimation
methods.

One of the most familiar LDV models is the binomial probit model, which speci�es that the
probability that a binomial random variable y is one, conditional on the regression vector x, is
�(x0�) where �(�) is the univariate standard normal cumulative distribution function (c.d.f.). Al-
though this integral has no analytical expression, � has accurate, rapid, numerical approximations.
These help make maximum likelihood estimation of the binomial probit model straightforward and
most econometric software packages provide such estimation as a feature. However, a simple and
common extension of the binomial probit model renders the resulting model too di�cult for max-
imum likelihood computation. Introducing correlation among the observations generally produces
a likelihood function containing integrals that cannot be well approximated and rapidly computed.

An example places the binomial probit model in the context of panel data in which a cross-
section of N experimental units (individuals or households) is observed repeatedly, say in T con-
secutive time periods. Denote the binomial outcome for the nth experimental unit in the tth time
period by ynt 2 f0; 1g. In panel data sets, econometricians commonly expect correlation among
the ynt for the same n across di�erent t, reecting the presence of unobservable determinants of
ynt that evolve slowly for each experimental unit through time. In order to model such correlation
parsimoniously, econometricians have adapted familiar models with correlation to the probit model.
One can describe each ynt as the transformation of a latent, normally distributed, y�nt:

ynt =

(
0 if y�nt < 0
1 if y�nt � 0

)
where y�nt � N(x0nt�; 1):

Then, one can assign the latent y�nt a nonscalar covariance matrix appropriate to continuously
distributed panel data. For example, stacking the y�nt �rst by time period and then by experimental
unit, a common speci�cation of the covariance matrix is the variance components plus �rst-order

1



autoregression model
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where JT is a T � T matrix of ones, 0 � �2� < 1, and j�j < 1.
Now consider the impact of such nonscalar covariance matrices on the likelihood for the observed

ynt. Although the marginal probabilities that ynt is zero or one are unchanged, the likelihood
function consists of the joint probabilities that the dependent series fyn1; yn2; : : : ; ynT g are the
observed sequences of zeros and ones. These joint probabilities are multivariate normal integrals
over T dimensions and there are 2T possible integrals.1

The practical signi�cance of the increased dimensionality of the integrals is that traditional
numerical methods generally cannot compute the integrals with su�cient speed and precision to
make the computation of the maximum likelihood estimator workable. In this chapter, we review
a collection of alternative, feasible, methods based on the ideas of estimation with simulation
suggested by McFadden (1989) and Pakes and Pollard (1989).

In Section 2, we describe LDV models and illustrate the computational di�culties classical
estimation methods encounter. Section 3 summarizes basic simulation methods, covering censored
and truncated sampling methods. Estimation of LDV models and simulation are combined in
Section 4 where three general approaches are reviewed: simulation of the log-likelihood function,
simulation of moment functions, and simulation of the e�cient score. We provide computational
examples throughout to illustrate the various methods and their properties. We conclude this
chapter with a summary of the main approaches presented.

2 Limited Dependent Variable Models

2.1 The Latent Normal Regression Model

Consider the problem of maximum likelihood estimation given the N observations on the vec-
tor of random variables y drawn from a population with cumulative distribution function (c.d.f.)
F (�; Y ) = Prfy � Y g. Let the corresponding density function with respect to Lebesgue mea-
sure be f(�; y). The density f is a parametric function and the parameter vector � is unknown,
�nite-dimensional, and � 2 �, where � is a compact subset of RK . Estimation of � by maximum
likelihood (ML) involves the maximization of the log-likelihood function `N (�) � PN

n=1 ln f(�; yn)
over �. Often, �nding the root of a system of normal equations r�`N (�) = 0 is equivalent. In the
limited dependent variable models that we consider in this chapter, F will be a mixture of discrete
and continuous distributions, so that f may consist of nonzero probabilities for discrete values of
y and continuous probability densities for intervals of y. These functions are generally di�cult
to compute because they involve multivariate integrals that do not have closed forms, accurate
approximations, or rapid numerical solutions. As a result, estimation of � by classical methods is
e�ectively infeasible.

1A partial list of studies in numerical analysis of such integrals is Clark (1961), Daganzo (1980), Davis and
Rabinowitz (1984), Dutt (1973), Dutt (1976), Fishman (1973), Hammersley and Handscomb (1964), Horowitz et al.

(1981), Moran (1984), Owen (1956), Rubinstein (1981), Stroud (1971), and Thisted (1988).
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In this section, we review the various forms of likelihood functions that arise in LDV models. In
the �rst subsection, we discuss models generated as partially observed or censored latent dependent
variables. The second subsection describes truncated latent dependent variables. In this case, one
views observations in a latent data set as missing entirely from an observed data set. Within these
broad categories, we review discrete, mixed discrete/continuous, and mixture likelihood functions.
Following our discussion of likelihood functions, subsection 2.6 treats the structure of the score
function for LDV models and the last subsection gives a concrete illustration of the intractability
of classical estimation methods for the general LDV model.

2.2 Censoring

In general, and particularly in LDV models, one can represent the data generating process for y
as an `incomplete data' or `partial observability' process in which the observed data vector y is an
indirect observation on a latent vector y�. In such case, y� cannot be recovered from the censored
random variable y.

De�nition 1 (Censored Random Variables) Let Y � be a random variable from a population
with c.d.f. F (Y �) and support A. Let B be the support of the random variable Y = �(Y �) where
� :A! B is not invertible. Then Y is a censored random variable.

In LDV models, � is often called the `observation rule;' and though it may not be monotonic,
� is generally piece-wise continuous. An important characteristic of censored sampling is that no
observations are missing. Observations on y� are merely abbreviated or summarized, hence the
descriptive term `censored.' Let A � RM and B � RJ .

The latent c.d.f. F (�; Y �) for y� is related to the observed c.d.f. for y by the integral equation

F (�; Y ) =
Z
fy�j�(y�)�Y g

dF (�; y�): (2)

In the LDV models that we consider, F (�; y�) is the multivariate normal c.d.f. given by F (�; y�) =R
�(y� � �;
)dy� where 
 is a positive de�nite matrix, and

�(y� � �;
) � fdet[2�
]g�1=2 exp
�
�1
2
(y� � �)0
�1(y� � �)

�
: (3)

We will refer to this multivariate normal distribution as the N(�;
) distribution. The mean vector
is often parameterized as a linear function of observed conditioning variables X : �(�) = X�, where
� is a vector of K� slope coe�cients. The covariance is matrix is usually a function of a vector of
K� variance parameters �.

The p.d.f. for y is the function that integrates to F (�; Y ). In this chapter, integration refers to
the Lebesgue-Stieltjes integral and the p.d.f. is a generalized derivative of the c.d.f.2 This means
that the p.d.f. has discrete and continuous components. Everywhere in the support of Y where F
is di�erentiable, the p.d.f. can be obtained by ordinary di�erentiation:

f(�; Y ) =
@JF (�; Y )

@Y1 : : : @YJ
: (4)

A simple illustration of such p.d.f.'s is given below in Example 2. In the LDV models we con-
sider, F generally has a small number of discontinuities in some dimensions of Y so that F is not

2Such densities are formally known as Radon-Nikodym p.d.f.'s. with respect to Lebesgue measure.
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di�erentiable everywhere. At a point of discontinuity Y d, we can obtain the generalized p.d.f. by
partitioning Y into the elements in which F is di�erentiable, fY1; : : : ; YJ 0g say, and the remaining
elements fYJ 0+1; : : : ; YJg in which the discontinuity occurs. The p.d.f. then has the form

f(�; Y ) = @J
0

@Y1:::@YJ0
� [F (�; Y )� F (�; Y � 0)]

= f(�; Y1; : : : ; YJ 0) �PrfYj = Y d
j ; j > J 0j�; Y1; : : : ; YJ 0g;

(5)

where the discrete jump F (�; Y ) � F (�; Y � 0) reects the nontrivial probability of the event
fYj = Y d

j ; j > J 0g.3 Examples 1 and 2 illustrate such probabilities.
It is these probabilities, the discrete components of the p.d.f., that pose computational obstacles

to classical estimation. One must carry out multivariate integration and di�erentiation in (2){(5)
to obtain the likelihood for the observed data | see the following example for a clear illustration of
this problem. Because accurate numerical approximations are unavailable, this integration is often
handled by such general purpose numerical methods as quadrature. But the speed and accuracy
of quadrature is inadequate to make the computation of the MLE practical except in special cases.

Example 1 (Multinomial Probit) The multinomial probit model is a leading illustration of the
computational di�culties of classical estimation methods for LDV models, which require the repeated
evaluation of (2){(5). This model is based on the work of Thurstone (1927) and was �rst analyzed
by Bock and Jones (1968). For a multinomial model with J = M possible outcomes, the latent
y� is N(�;
) where � is a J � 1 vector of means and 
 is a J � J symmetric positive de�nite
covariance matrix. The observed y is often represented as a vector of indicator functions for the
maximal element of y�: �(y�) = [1fy�j = maxi y

�
i g; j = 1; : : : ; J ]. Therefore, the sampling space

B of y is the set of orthonormal elementary unit vectors, whose elements are all zero except for a
unique element that equals one:

B = f(1; 0; 0; : : : ; 0); (0; 1; 0; 0; : : : ; 0); : : : ; (0; 0; : : : ; 0; 1)g :

The probability function for y can be written as an integral over J � 1 dimensions after noting
that the event fyj = 1; yi = 0; i 6= jg is equivalent to fy�j � y�i � 0; i = 1; : : : ; Jg. By creating
the �rst-di�erence vector zj � [y�j � y�i ; i = 1; : : : ; J; i 6= j] � �jy

� and denoting its mean and
covariance by �j = �j� and 
j = �j
�

0
j respectively, F (�; y) and f(�; y) are both functions of

multivariate normal negative orthant integrals of the general form

�(�;
) �
Z 0

�1
: : :

Z 0

�1
�(x+ �;
) dx:

We obtain

F (�; y) =
JX
j=1

1fyj � 1g�(��j ;
j)

and

f(�; y) =

( QJ
j=1 �(��j ;
j)

yj if y 2 B
0 if otherwise

)
: (6)

3The height of the discontinuity is denoted by

F (�;Y ) � F (�;Y � 0) � lim
�#0

F (�;Y )� F (�;Y � �):
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When J = 2, this reduces to the familiar binomial probit likelihood mentioned in the Introduction:

f(�; y) = �(�2 � �1; 1)y1�(�1 � �2; 1)y2
= �(��0; 1)1�y0�(�0; 1)y0 (7)

where �0 = �1 � �2 and y0 = y2.
If J > 5, then the likelihood function 6 is di�cult to compute using conventional expansions

without special restrictions on the covariance matrix, or without adopting other distributions that
imply closed-form expressions. Examples of the former approach are the factor-analytic structures
for 
 analyzed in Heckman (1981), Bolduc (1991), and Bolduc and Kaci (1991), and the diagonal

 discussed in Hausman and Wise (1978), p.310. An example of the latter is the i.i.d. extreme-
value distribution which, as McFadden (1973) shows, yields the analytically tractable Multinomial
Logit model. See also Lerman and Manski (1981), p.224, McFadden (1981), and McFadden (1986)
for further discussions on this issue.

Example 2 (Tobit) The tobit or censored regression model4 is a simple example of a mixed dis-
tribution with discrete and continuous components. This model has a univariate latent structure
like probit: y� � N(�; �2). The observation rule is also similar: �(y�) = 1fy� � 0g � y� which leads
to the sample space B = fy 2 R j y � 0g and c.d.f.

F (�; Y ) =

(
0 if Y < 0R

fy�<Y g �(y
� � �; �)dy� = �(Y � �; �2) if Y � 0

)

The p.d.f. is mixed, containing discrete and continuous terms:

f(�; Y ) =

8><
>:

0 if Y < 0
�(��; �2) if Y = 0
�(Y � �; �2) if Y > 0

9>=
>; (8)

The discrete jump in F at Y = 0 corresponds to the non-zero probability of fY = 0g, just as in
binomial probit. F is di�erentiable for Y > 0 so that the p.d.f. is obtained by di�erentiation. Just
as in the extension of binomial to multinomial probit, multivariate tobit models present multivariate
integrals that are di�cult to compute.

Example 3 (Nonrandom Sample Selection) The nonrandom sample selection model provides
a �nal example of partial observability which generalizes the tobit model.5 In the simplest version,
the latent y� consists of two elements drawn from a bivariate normal distribution where


(�) =

"
1 �12
�12 �22

#

The observation rule is

�(y�) =

 
�1(y

�)
�2(y�)

!
=

 
1fy�1 � 0g

1fy�1 � 0g � y�2

!

so that the �rst element of y is a binomial variable and the second element is an observation on
y�2 when y1 = 1; otherwise, there is no observation of y�2 because y2 is identically zero. That is,
the sampling space of y is the union of two disjoint sets: B = f(0; 0)g[ f(1; y2); y2 2 Rg. Thus,

4Tobin (1958).
5See Gronau (1974), Heckman (1974), Lewis (1974), Lee (1978), and Lee (1979).
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two cases capture the nonzero regions of the c.d.f. of y. First of all, the c.d.f. is constant on
B0 = [0; 1)� [0;1):

F (�; Y ) =

Z
fy�

1
<0g

�(y� � �;
) dy� = �(��1; 1); Y 2 B0

because y�2 is unrestricted (and unobserved) in this case. Once Y1 reaches 1, the entire sampling
space for y1 has been covered and the c.d.f. on B1 = [1;1)�R is increased according to

F (�; Y ) = 1 fY2 � 0g�(��1; 1) +
R
fy�

1
�0;y�

2
�Y2g �(y

� � �;
) dy�; Y 2 B1

= 1 fY2 � 0g�(��1; 1) + �

 "
�1

Y2 � �2

#
;

"
1 ��12

��12 �22

#!
; Y 2 B1

The p.d.f. will therefore be

f(�; Y ) =

(
�(��1; 1) if Y1 = 0

�
�
�1 + �12(Y2 � �2)=�22; 1� �212=�

2
2

� � � �Y2 � �2; �22� if Y1 = 1

)

The sample selection process is often more complicated, with several causes of sample selection. In
such cases, the latent y�1 is a vector with each element associated with a di�erent cause of partial
observation. The latent y�2 is observed only if all the elements of y�1 (suppose there are J =M � 1)
are positive so that the observation rule is

�(y�) =

 
�1(y

�)
�2(y�)

!
=

 
1fy�1 � 0g�QJ

j=1 1fy�1j � 0g
�
� y�2

!
;

where 1fy�1 � 0g is a (M � 1)� 1 vector of indicator variables. The sampling space is

B = fy 2 RM j yM = y�2 ;
M�1Y
j=1

yj = 1; yj 2 f0; 1g; j < Mg [ fy 2 RM j
M�1Y
j=1

yj = 0; yj 2 f0; 1gg;

and the likelihood function contains multivariate integrals over the M � 1 dimensions of y�1.

Other types of nonrandom sample selection lead to general discrete/continuousmodels and mod-
els of switching regressions with known sample separation. Such models are discussed extensively
in Dubin and McFadden (1984), Hanemann (1984), Lee (1978), Maddala (1983), and Amemiya
(1984).

2.3 Truncation

When it is represented as a partial observation, a limited dependent variable is a censored latent
variable. Another mechanism for generating limited dependent variables is truncation, which refers
to dropping observations so that their realization goes unrecorded.

De�nition 2 (Truncated Random Variables) Let F (Y ) be the c.d.f. of y� and let D be a
proper subset of the support of F and Dc its complement such that Pr fy� 2 Dcg > 0. The function

G(Y ) =

(
F (Y )=PrfY 2 Dg if Y 2 D

0 if Y 2 Dc

)

is the c.d.f. of a truncated y�.

6



One can generate a sample of truncated random variables with the c.d.f.G by drawing a random
sample of y� and removing the realizations that are not members of D. This is typically the way
truncation arises in practice. To draw a single realization of the truncated random variable, one
can draw y�'s until a realization falls into D. The term `truncation' derives from the visual e�ect
dropping the set Dc has on the original distribution when Dc is a tail region: the tail of the p.d.f.
is cut o� or truncated.

To incorporate truncation, we expand the observation rule to

y =

(
�(y�) if y� 2 D

unobserved otherwise

)
(9)

where D is an `acceptance region.' This situation di�ers from that of the nonrandom sample
selection model in which an observation is still partially observed: At least, every realization is
recorded. In the presence of truncation, the observed likelihood requires normalization relative to
the latent likelihood:

f(�; Y ) =

R
fy�2Dj�(y�)=Y g dF (�; y

�)R
D
dF (�; y�)

(10)

The normalization by a probability in the denominator makes the c.d.f. proper, with an upper
bound of one.

Example 4 (Truncated Normal Regression) If y� � N(�; �2) and y is an observation of y�

when y� > 0, the model is a truncated normal regression. Setting D = fy 2 R j y > 0g makes
B = D so that the c.d.f. and p.d.f. of y are

F (�; Y ) =

8<
:

0 if Y � 0R Y
0

�(y���;�)dy�R1
0

�(y���;�)dy� =
�(Y��;�2)��(��;�2)

1��(��;�2) if Y > 0

9=
;

f(�; Y ) =

(
0 if Y � 0

�(Y��;�)
1��(��;�2) if Y > 0

)

As in the tobit model, a normal integral appears in the likelihood function. However, this
integral enters in a nonlinear fashion, in the denominator of a ratio. Clearly, multivariate forms
of truncation lead to multivariate integrals in the denominator.

To accommodate both censored and truncated models, in the remainder of this chapter we will
often denote the general log-likelihood function for LDV models with a two-part function:

ln f(�; y) = ln f1(�; y)� ln f2(�; y) (11)

where f2 represents the normalizing probability Prfy� 2 Dg = R
D
dF (�; y�). In models with only

censoring, f2 � 1. But in general, both f1 and f2 will require numerical approximation. Note
that in this general form, the log-likelihood function can be viewed as the di�erence between two
log-likelihood functions for models with censoring. For example, the log-likelihood of the truncated
regression in Example 4 is the di�erence between the log-likelihoods of the tobit regression in
Example 2 and the binomial probit model mentioned in the Introduction and Example 1 (see
equations (7) and (8)):6

1 fY > 0g ln
h

�(Y��;�)
1��(��;�2)

i
= 1 fY > 0g ln [�(Y � �; �)] + 1 fY = 0g�(��; �2)

� �1 fY > 0g ln �1� �(��; �2)�+ 1 fY = 0g�(��; �2)�
6Note that scale information about y� is available in the censored and truncated normal regression models than

in the case of binary response, so that �2 is now identi�able. Hence, the normalization �2 = 1 is not necessary, as it
is in the binary probit model where only the discrete information 1fY > 0g is available.
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2.4 Mixtures

LDV models have come to include a family of models that do not necessarily have limited dependent
variables. This family, containing densities called mixtures, shares an analytical trait with the LDV
models that we have already reviewed: the p.d.f. generally contains discrete probability terms.

De�nition 3 (Mixtures) Let F (�; Y ) be the c.d.f. of y� depending on a parameter � and H(�)
another c.d.f. Then the c.d.f.

G(Y ) =

Z
F (�; Y ) dH(�)

is a mixture.

Possible ways in which mixtures arise in econometric models are unobservable heterogeneity
in the underlying data generating process (see, for example, Heckman (1981)) and \short-side"
rationing rules (Quandt (1972), Goldfeld and Quandt (1975), Laroque and Salani�e (1989)). Laroque
and Salani�e (1989) discuss simulation estimation methods for the analysis of this type of model.

Example 5 (Mixture) A cousin of the nonrandom sample selection model is the mixture model
generated by an underlying trivariate normal distribution, where


(�) =

2
64 1 �12 �13
�12 �22 �23
�13 �23 �23

3
75

The observation rule maps a three-dimensional vector into a scalar; the rule can be written as

y = 1fy�1 � 0g � y�2 + 1fy�1 < 0g � y�3
An indicator function determines whether y�2 or y�3 is observed. An important di�erence with sample
selection is that the indicator itself is not observed. Thus, y is a `mixture' of y�2's and y�3's. As a
result, such mixtures have qualitatively distinct c.d.f.'s, compared to the other LDV models we have
discussed. In the present case,

F (�; Y ) =

Z
fy�

1
�0;y�

2
�Y g[fy�

1
<0;y�

3
�Y g

�(y� � �;
)dy�

=

Z
fy�

1
�0;y�

2
�Y g

�(y� � �;
)dy� +
Z
fy�

1
<0;y�

3
�Y g

�(y� � �;
)dy�

and

f(�; Y ) � dF (�; Y )

dY
= �(Y � �2; �2)

Z
fy�

1
�0g

�(y�1 � �1j2;
1j2)dy�1

+�(Y � �3; �3)

Z
fy�

1
<0g

�(y�1 � �1j3;
1j3)dy�1

= �(Y � �2; �2)�(�1j2;
1j2) + �(Y � �3; �3)�(��1j3;
1j3)

where, for j = f2; 3g,
�1jj � E(y�1jy�j = Y ) = �1 + �1j(Y � �j)=�

2
j


1jj � V (y�1jy�j = Y ) = 1� �21=�
2
j

are conditional moments. The p.d.f. particularly demonstrates the weighted nature of the distribu-
tion: The marginal distributions of y�2 and y�3 are mixed together by probability weights.
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2.5 Time Series Models

LDV models are not typically applied to time series datasets, but short time series have played an
important role in the analysis of panel or longitudinal data sets. Such time series are another source
of high dimensional integrals in likelihood functions. Here we expand our introductory example.

Example 6 (Multiperiod Binary Probit Model) A random sample of N economic agents is
followed over time, with agent n being observed for T periods. The latent variable y�nt = �nt + �nt
measures the net bene�t to the agent characterizing an action in period t. Typically, �nt is a linear
index function of a k�1 vector of exogenous explanatory variables xnt, i.e., �nt � x0nt�. The agent
chooses one of two actions in each period, denoted by ynt 2 f0; 1g, depending upon the value of y�nt:

�(y�) �
�
ynt = 1 if y�nt > 0
ynt = 0 if y�nt � 0

t = 1; � � � ; T: (12)

Hence, the sample space for �(y�) is B = �T
t=1f0; 1g, i.e., all possible (2T ) sequences of length T ,

with 0 and 1 as the possible realizations in each period.
Let the distribution of y�n � (y�n1; � � � ; y�nT )0 be the multivariate normal given in equation (3).

Then, for individual n the LDV vector fyntg, t = 1; :::; T , has the discrete p.d.f.

f(�;
; Y ) = �((�1)1�yn1 � �n1(�); � � � ; (�1)1�ynT � �nT (�);
):
This is a special case of the multinomial probit model of example (1), with J = 2T alternatives

and a typically highly restricted 
, reecting the assumed serial correlation in the f�ntgTt=1 sequence.
By way of illustration, let us consider the speci�c covariance structure, found very useful in

applied work7:
�nt = �n + �nt; �nt = ��n;t�1 + �nt; j�j < 1; (13)

and �; � independent. This implies that


 = �2� �

0
BBBBBBB@

1 � �2 : : : �T�1

� 1 � : : : �T�2

�2 �
. . .

. . .
...

...
...

. . . 1 �
�T�1 �T�2 : : : � 1

1
CCCCCCCA
+ �2� � JT :

The variance parameters �2� and �2� cannot both be identi�ed, so the normalization �2� + �2� = 1 is

used.8

The probability of the observed sequence of choices of individual n is

Prfyn; �; xng =
Z bn(yn)

an(yn)
�(y�n � �n;
n) dy

�
n;

with � �
�
�; �2�; �

�
and

ant =

�
0 if ynt = 1
�1 if ynt = 0

;

bnt =

�
+1 if ynt = 1
0 if ynt = 0

:

7See Hajivassiliou and McFadden (1990), B�orsch-Supan et al. (1992), and Hajivassiliou (1993a).
8This is the structure assumed in the introductory example | see equation (1) above.
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Note that the likelihood of this example is another member of the family of censored models.
Time series models like this do not present a new analytical problem. Indeed, such time series
models are more tractable for estimation because classical methods do provide consistent, though
statistically ine�cient, estimators (see Poirier and Ruud (1988), Hajivassiliou (1986), and Avery
et al. (1983)).9 Keane (1993) discusses extensively special issues in the estimation by simulation
of panel data models and M�uhleisen (1991) compares the performance of alternative simulation
estimators for such models. Studies of dynamic discrete behavior using simulation techniques are
Berkovec and Stern (1991), Bloemen and Kapteyn (1991), Hajivassiliou and Ioannides (1991), Hotz
and Miller (1989), Hotz and Sanders (1991), Hotz et al. (1991), Pakes (1992), and Rust (1992).

In this chapter, we do not analyze the estimation by simulation of `long' time series models.
We refer the reader to Lee and Ingram (1991), Du�e and Singleton (1993), Laroque and Salani�e
(1990), and Gourieroux and Monfort (1990) for results on this topic.

2.6 Score Functions

For models with censoring, the score for � can be written in two ways which we will use to motivate
two approaches to approximation of the score by simulation:

r� ln f(�; y) =
r�f(�; y)

f(�; y)
(14)

= E [r� ln f(�; y
�)j y] (15)

where r� is an operator that represents partial di�erentiation with respect to the elements of �.
The ratio (14) is simply the derivative of the log-likelihood and simulation can be applied to the
numerator and denominator separately. The second expression (15), the conditional expectation
of the score of the latent log-likelihood, can be simulated as a single expectation if r� ln f(�; y

�) is
tractable. Ruud (1986), van Praag and Hop (1987), Hajivassiliou and McFadden (1990), and Haji-
vassiliou (1992) have noted alternative ways of writing score functions for the purpose of estimation
by simulation.

Here is the derivation of (15): Let F (�; y� j y) denote the conditional c.d.f. of y� given that
�(y�) = y.10 We let

E[t(y�) j y] �
Z
t(y�)dF (�; y� j y) (16)

denote the expectation of a random variable t(y�) with respect to the conditional c.d.f. F (�; y� j y)
of y� given �(y�) = y. Then

r�f(�; y)

f(�; y)
=

1

f(�; y)

Z
fy�j�(y�)=yg

r�dF (�; y
�)

=

Z
fy�j�(y�)=yg

r�f(�; y�)
f(�; y�)

f(�; y�)
f(�; y)

dy�

9Panel data sets in which each agent is observed for the same number of time periods T are called balanced,
while sets with Tn 6= T for some n = 1; � � � ;N are known as unbalanced. As long as the determination of Tn is not
endogenous to the economic model at hand, balanced and unbalanced sets can be analyzed using the same techniques.
There exists, however, the interesting case in which Tn is determined endogenously through an economic decision,
which leads to a multiperiod sample-selection problem. See Hausman and Wise (1979) for a discussion of this case.

10Formally,

F (�;Y � j �(y�) = y) � lim
�#0

Pr fy� � Y �; y � � < �(y�) � yg

Prfy � � < �(y�) � yg

10



= E [r� ln f(�; y
�)j �(y�) = y]

since f(�;y�)
f(�;y) = f(�; y�=

R
fy�j�(y�)=yg f(�; y

�)dy� is the p.d.f. of the truncated distribution fy�j�(y�) =
yg.

This formula for the score leads to the following general equations for normal LDV models when
y� has the multivariate normal p.d.f. given in (3):

r� ln f(�; y) = 
�1[E(y�jy)� �]
r
 ln f(�; y) = 1

2

�1 fV(y�jy) + [E(y�j�(y�) = y)� �][E(y�j�(y�) = y)� �]0 � 
g
�1 (17)

using the standard derivatives for the log-likelihood of a multivariate normal

r� ln �(y
� � �;
) = 
�1(y� � �)

r
 ln �(y� � �;
) = 1
2


�1[(y� � �)(y� � �)0 � 
]
�1 (18)

According to (17), the score of a normal LDV model depends only on the �rst two moments of a
truncated multivariate normal random variable z generated by the truncation rule

z =

(
y� if �(y�) = y

unobserved otherwise

)
(19)

The functional form of these moments depends on the speci�cation of the LDV function � .
For LDV models with truncation, there are no changes to (14){(16). The only change that

(9) requires for (19) is the restriction to the acceptance region D. That is, the score depends on
only the �rst two moments of a truncated multivariate normal random variable z0 generated by the
truncation rule

z0 =

(
y� if �(y�) = y, y� 2 D

unobserved otherwise

)

As a result, there is a basic change to (17). Because the log-likelihood function of truncated models
is the di�erence between two log-likelihood functions for censored models (see equation (11)), the
score is expressed as the di�erence in the scores for such models:

r� ln f(�; y) = r� ln f1(�; y)�r� ln f2(�; y)
= E [r� ln f(�; y�)j �(y�) = y]� E [r� ln f(�; y�)j y� 2 D]

so that (17) becomes

r� lnF (�; y) = 
�1[E(y�j�(y�) = y)� E(y�jy� 2 D)]
r
 lnF (�; y) = 1

2

�1 fE[(y� � �)(y� � �)0j�(y�) = y]
� E[(y� � �)(y� � �)0jy� 2 D]g
�1

2.7 The Computational Intractability of LDV Models

The likelihood contribution f(�; yn) and the score r� ln f(�; yn) are functions of at most M -
dimensional integrals over the region D(y) � fyj�(y�) = yg in the domain of the M � 1 latent
vector y�n. The fundamental source of the computational intractability of classical estimation meth-
ods for the general LDV model is the repeated evaluation of such integrals. To illustrate, consider
a multinomial probit model with M = 16 alternatives, with K = 20 exogenous variables that vary
by alternative. A random sample of N = 1000 observations is available. Suppose the M � M
variance-covariance matrix 
 of the unobserved random utilities has 15�16

2 � 1 = 119 free elements

11



(after imposing identi�cation restrictions). Then, the number of parameters to be estimated is
p = 139. Suppose the analyst uses an iterative Newton-Raphson type of numerical procedure, em-
ploying numerical approximations to the �rst derivatives based on two-sided �rst di�erences and
that 20 iterations are required to achieve convergence, which is a realistic number.11 Each iteration
requires at least 2p evaluations of the likelihood function for approximating the �rst derivatives.
We thus expect that �nding the ML estimator will require about 20�2p function evaluations. Since
the sample consists of N = 1000 individuals, we will have to calculate N � 20 � 2p contributions
to the likelihood function, each of which, in general, will be 16-dimensional integrals. Let s be the
time in seconds a given computer requires to approximate a 16-dimensional integral by numerical
quadrature methods. Our hypothetical ML estimation will thus require about N � 20 � 2p � s
seconds. On a typical modern supercomputer (say a Cray 1) one could expect s � 2. Hence, using
such a supercomputer, our problem would take about 1000�20�178�2=3600 hours, which is about
4 months of Cray 1 CPU! It is crucial to stress that such numerical quadrature methods o�er only
poor approximations to integrals of such dimension.12 The maximum likelihood estimates resulting
from 4 months of Cray 1 CPU would be utterly unreliable. The need for alternative estimation
methods for these problems is apparent.

3 Simulation Methods

3.1 Overview

Two general approaches to exploiting simulation in parametric estimation are to approximate the
likelihood function and to approximate such moment functions as the score. The likelihood func-
tion can be simulated by Monte Carlo techniques over the latent marginal distribution f(�; y�)
in equation (4) for the mixture case, equation (5) for the discrete/continuous case, and equation
(10) for the truncated case. Alternatively, the score can be approximated either by integrating
both numerator and denominator in equation (14) or by integrating over the latent conditional
p.d.f. f(�; y�jy) as in equation (15). Thus, simulation techniques focus on the simulation from
these two distributions, f(�; y�) and f(�; y�jy). The censoring and truncation discussed above for
LDV models also appear in simulations and we consider methods for e�ecting each type of obser-
vation rule below. As we will show in Section 4, some simulation estimation methods use censored
simulation for the estimation of the main types of LDV models discussed in Section 2, (censored,
truncated, and mixture models), whereas other estimation methods use truncated simulation for
the estimation of these models.

Simulation of standard normal random variables is an old and well-studied problem. Relatively
fast algorithms are widely available for generating such random variables on a computer. Thus,
consider the simulation of the latent data generating process. We can always write

y� = � + ��; (20)

where � is a vector of M independent standard normal random variables and � is a matrix square
root of 
, so that 
 = ��0. It is convenient to set � to the (lower triangular) Cholesky factor.
Clearly, the latent data generating process can be simulated rapidly with simulations of � for any

11See Quandt (1986) for a discussion of issues in numerical optimization methods.
12Clark (1961) proposed another numerical approximation method for such integrals | see also Daganzo et al.

(1977) and Daganzo (1980). The Horowitz et al. (1981) study �nds serious shortcomings in the numerical accuracy
of the Clark method in typical problems with high J and unrestricted 
.
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values of � and 
. Such simulations can be used in turn to simulate the likelihood and log-likelihood
functions and their derivatives with respect to the parameters.

As in all of the examples given above, the observation rules common in LDV models imply
regions of integration that are rectangles: that is, for some matrix A, and vectors b0, and b1,
possibly with some in�nite elements,

fy� j �(y�) = yg = fy� j b0 � Ay� � b1g (21)

where rank(A) � M . These are the problems that we will consider. Since Ay� is also normally
distributed, it will often be convenient to simulate Ay� instead of y�. In that case, we simply
transform the mean vector and covariance matrix to A� and A
A0, respectively. Without any loss
of generality in this section, we set A = IM , the M �M identity matrix. We denote D = fz 2
RM j b0 � z � b1g.

Such regions as (21) have two important analytical properties. First of all, rectangular regions
have constant boundaries with respect to the variable of integration, simplifying integration. Sec-
ondly, the di�erentiation in (4) and (5) can be carried out analytically to obtain likelihood functions
composed of multivariate normal p.d.f.'s of the form (3) and multivariate normal c.d.f.'s of the form

PrfD;�;
g �
Z
1fy� 2 Dg�(y� � �;
) dy� (22)

Thus, simulation of the likelihood can be restricted to terms in PrfD;�;
g. Simulation of the
score in (14) involves only the additional terms

r� PrfD;�;
g = 
�1
R
1fy� 2 Dg(y� � �)�(y� � �;
) dy�

r
 PrfD;�;
g = 1
2


�1 fR 1fy� 2 Dg [(y� � �)(y� � �)0 � 
]�(y� � �;
) dy�g
�1 (23)

Normalized by PrfD;�;
g, these equations transform to

r� ln PrfD;�;
g = 
�1[E(y�jy� 2 D)� �]
r
 ln PrfD;�;
g = 1

2

�1 fE [(y� � �)(y� � �)0jy� 2 D]� 
g
�1 (24)

which are terms in (17).
In the remainder of this section, we will discuss the simulation of (22){(24). For this purpose

we denote
y��i � [y�m;m = 1; : : : ;M ;m 6= i] ;

��i � E(y��i); 
�i;�i � V(y��i) and 
�i;i � Cov(y��i; y
�
i )

and the conditional moments

��iji(y�i ) � E(y��ijy�i ) and 
�i;�iji � V(y��ijy�i ):
These conditional moments have the well-known formulas

��iji(y�i ) = ��i +
�i;i
�1i;i (y
�
i � �i);


�i;�iji � 
�i;�i � 
�i;i
�1ii 
i;�i:

The conditional mean and variance of y�i given y
�
�i, denoted �ij�i and 
iij�i, are de�ned analogously.

We also de�ne
y�<i � [y�m;m = 1; : : : ; i� 1]

and use a similar notation for the marginal and conditional moments of this subvector of random
variables. For example, the conditional mean of y�i given y

�
<i is

�ij<i(y�<i) = �i + 
i;<i

�1
<i;<i(y

�
<i � �<i):
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3.2 Censored Simulation

We begin by focusing on the integrals in (22) and (23) accumulated in the vector

E [h(y�;D)] � E

2
641fy� 2 Dg

0
B@ 1

y�

vec(y�y�0)

1
CA
3
75 (25)

The elements of h are censored random variables. We consider two basic methods of simulation:
direct censoring of the multivariate normal random variable and importance sampling.

3.2.1 Multivariate Normal Simulation

A direct method for simulating PrfD;�;
g and its derivatives is to make repeated Monte Carlo
draws for �, use (20) to calculate y� for each �, and then form an empirical analogue of (25), by
working only with the realization that fall in set D. Let f�1; : : : ; �Rg be R simulated draws from
the N(0; IM) distribution and ~yr = �+ ��r (r = 1; : : : ; R) so that

�h =
1

R

RX
r=1

h(~yr;D)

is an unbiased simulation of (25). As R gets larger, the sampling variance of �h, P (1 � P )=R
approaches zero and �h converges strongly to E[h(y�;D)]. The simulation of PrfD;�;
g is simply
the observed frequency with which the simulations of y� fall into D. Its derivatives with respect
to � and 
 are functions of the average simulation of 1fy� 2 Dgy� and 1fy� 2 Dgy�y�0. We will
call this the crude Monte Carlo (CMC) simulator. Lerman and Manski (1981) conducted the �rst
extensive application of Monte Carlo integration as a numerical technique to the estimation of LDV
models using the CMC simulator.

The CMC is quick to compute and ideal for computers with a \vectorization facility."13 How-
ever, the CMC also has at least two major drawbacks: First, it is not continuous in parameters. The
simulator jumps at parameter values where a ~yr is on the boundary of D. For example, consider
parameter values (�0;�0) chosen so that the mth element of the rth simulation equals its lower
bound in D:

~yrm = �0m + �0m�r = b0m

where �0m is the mth row of �0. Decreasing the parameter �m from �0m will cause the indi-
cator 1f~yr 2 Dg to jump from 1 to 0, and this will result in discrete jumps in the elements of
h(~yr;D) and �h. Such discontinuities make computation of estimators and asymptotic distribution
theory awkward.14 Second, the number of computations required by the CMC rises inversely with
PrfD;�;
g, which makes it intractable when this probability is small. It should be noted that
in principle the accuracy of the CMC can be improved by use of so-called simulation-variance-
reduction techniques, as, for example, the use of control and antithetic variates. See Hendry (1984)
for de�nitions.

13Such a mechanism allows simultaneous operation on adjacent elements of a vector using multiple processors.
See Hajivassiliou (1993b) who shows that the CMC exhibits the greatest speed gains from vectorization among 13
alternative simulation methods.

14See Quandt (1986) for a discussion of iterative parameter search algorithms and their requirements for di�eren-
tiability of the function to be optimized.
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3.2.2 Importance Sampling

Importance sampling is another general method for reducing the sampling variance of integrals
computed by Monte Carlo integration over (censoring) intervals. The CMC involves sampling y�

from the �(y� � �;
) p.d.f. and evaluating the function h(y�;D). A simple generalization of this
procedure rewrites E[h] in terms of another sampling distribution :

E[h] =

Z
h(y�;D)�(y�� �;
) dy� =

Z �
h(~y;D)

�(~y � �;
)
(~y;�;
; �)

�
(~y;�;
; �) d~y:

� is a vector of parameters characterizing the design of the importance sampler (�). Note that for
h(�) = 1, this expression corresponds to PrfD;�;
g. By drawing a random variable ~y from the
importance p.d.f.  and evaluating the weighted indicator function h(~y)w(~y), where

w(~y) � �(~y � �;
)

(~y;�;
; �)
;

one obtains an alternative unbiased simulation of PrfD;�;
g. The �rst advantage o�ered by
importance sampling is the ability to substitute sampling from  for sampling from �. In some
cases,  may be sampled more quickly, or, in a more general setting, sampling from � may be
impractical.

In addition, if  also has an analytical integral over a truncated sampling region C such that
D � C, then this analytical integral can be exploited as an approximation to PrfD;�;
g as follows:

PrfD;�;
g = Prf~y 2 Cg
Z
C

1f~y 2 Dgw(~y)(~y;�;
; �)
Prf~y 2 Cg d~y:

By drawing from the truncated p.d.f. (~y; �;
; �)=Prf~y 2 Cg, fewer simulations are `wasted' on
outcomes of zero and, in e�ect, Prf~y 2 Cgw(~y) approximates PrfD;�;
g. When  is a good
approximation to �, so that the ratio of densities w � �= is relatively constant, the sampling
variance of the importance-sampling simulator is small. As noted above, the sampling variance of
the CMC for a single simulation is P (1�P ), while the sampling variance of the importance sampler
is

V (PC � 1f~y 2 Dgw(~y)) = P 2
C
� PD �

h
V (w(~y) j ~y 2 D) + (1� PD) � E (w(~y) j ~y 2 D)2

i
;

where PC � Prf~y 2 Cg and PD � Prf~y 2 Dg. In the extreme case that  = �, V (w(~y) j ~y 2 D) =
0 and E (w(~y) j ~y 2 D)2 = PD. Therefore, good approximations to � a�ord improvements over the
CFC. Geweke (1989) introduces importance sampling in Monte-Carlo integration in the context of
Bayesian estimation.15

De�nition 4 (GHK Importance Sampling Simulator) The GHK importance p.d.f. is the `re-
cursively truncated' multivariate normal p.d.f.

(~y;�;
;D) = �(~y � �;
)
"

MY
m=1

n
�
�
c1m; �

2
mj<m

�
� �

�
c0m; �

2
mj<m

�o#�1
(26)

15Other investigations of the use of Monte Carlo integration in Bayesian analysis are, inter alia, Bauwens (1984),
Kloek and van Dijk (1978), and West (1990).
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for ~y 2 D where �mj<m �
q

mmj<m and

cim � bim � �mj<m(~y<m); i = 0; 1:

By construction, the support of this p.d.f. is D. Conditional on ~y<m, ~ym is univariate truncated
normal on Dm with conditional mean determined by ~y<m. Draws from  can be made recursively
according to the formula

~ym = �mj<m(~y<m) + �mj<m��1
h
!m�

�
c1m; �

2
mj<m

�
� (1� !m)�

�
c0m; �

2
mj<m

�i
(27)

where the ! are independently distributed uniform random variables.16 The GHK simulator is the
product

hGHK(~y) �
MY
m=1

n
�
�
c1m; �

2
mj<m

�
� �

�
c0m; �

2
mj<m

�o
�
0
B@ 1

~y
vec(~y~y0)

1
CA (28)

is an unbiased simulator of E(h).

The GHK simulator was developed by Geweke (1992), Hajivassiliou and McFadden (1990), and
Keane (1990). Experience suggests that the sampling variance of hGHK(~y) is very small so that
it approximates E(h) well in practice. This approximant has the properties of lying in the unit
interval, summing to one over all the disjoint rectangular regions surrounding and including D, and
being a continuous function of !, �, 
, b0, and b1. These properties are discussed in B�orsch-Supan
and Hajivassiliou (1993). Moreover, Hajivassiliou et al. (1992) found conclusive evidence for the
superior root-mean-squared-error performance of the GHK method in an extensive Monte-Carlo
study comparing the GHK to 12 other simulators for normal rectangle probabilities PrfD;�;
g.

3.3 Truncated Simulation

We now turn to the expectations in (24). These are ratios of the integrals in (25) and cannot
be simulated without bias using the censored simulation methods above. Even ignoring the bias,
one must ensure that the denominator of the ratio is not zero. For example, the CMC and some
importance sampling simulators can yield outcomes of zero for probabilities and thus violate this
requirement.17 In this subsection, we describe two general procedures which draw directly from
the truncated distributions associated with the expectations in equation (24).

3.3.1 Acceptance/Rejection Methods

Acceptance/rejection (A/R) methods provide a mechanism for drawing from a conditional density
when practical exact transformations from uniform or standard normal variates are not available.
The following result is standard; see Devroye (1986), Fishman (1973), or Rubinstein (1981) for
proofs.

16This method is described extensively in Devroye (1986) and is a simple application of the cumulative probability
integral transform result | see Feller (1971). Computationally more e�cient methods for generating univariate
truncated normal variates exist | for example Geweke (1992). The advantage of the method presented in the
preceding equation, however, is that it is continuous in �, 
, and !m, which, as already mentioned, is a desirable
property of simulators for asymptotic theory and for iterative parameter search. The method of constructing  in
this example can also be extended to a bivariate version using a bivariate normal c.d.f. and standardizing adjacent
pairs of elements.

17It should be noted that one of the attractive properties of the GHK simulator is that it generates simulated
probability values that are bounded away from 0 and 1, unlike many other importance sampling simulators. See
B�orsch-Supan and Hajivassiliou (1993) for details.
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Proposition 1 Suppose �(y�) is a J-dimensional density, and one wishes to sample from the
conditional density �(y�jD) � �(y�)=

R
D
�(y�) dy�. Suppose (~y) is a density with a support A

from which it is practical to sample, with the property that

sup
D

�(~y)

(~y)
� � < +1;

where D � A. Draw ~y from  and ! from a uniform density on [0; 1], repeat this process until
a pair satisfying ~y 2 D and �(~y) � !� � (~y) is observed, and accept the associated ~y. Then, the
accepted points have density �(�jD).

The choice of a suitable comparison density (�) is important because it determines the expected
`yield' of the acceptance/rejection scheme. The main attractive feature of A/R is that the accepted
draws have the correct truncated distribution. The practical shortcoming, though, is that the
operations necessary until a speci�c number of draws are accepted may be very large.

The A/R scheme also provides an unbiased simulator of 1=PrfD;�;
g if R
D
(~y) d~y = �(D) is

practical to compute. The conditional probability of acceptance, given f~y 2 Dg, is R
D �(~y) d~y=� =

PrfDg=�, so that the marginal probability of acceptance is �(D) PrfDg=�. The distribution of
the number of trials to get an acceptance is the geometric and its expectation is �= [�(D) PrfDg].
Therefore, if t is the number of draws made until ~y is accepted, t ��(D)=� is an unbiased simulator
of 1=PrfDg.
Example 7 The recursively truncated normal p.d.f. in De�nition 4 works well in practice as the
comparison distribution. A bound on the density ratio is given by

� =
MY
m=1

n
�
�
b1m � �mj<m(b1<m); �2mj<m

�
� �

�
b0m � �mj<m(b0<m); �2mj<m

�o

where the conditional moments are conditioned on ~y<m equal to the boundaries. Since A = D,
�(D) = 1.

3.3.2 Gibbs Resampling

Gibbs resampling is another way to draw from truncated distributions. An in�nite number of
calculations are required to generate a �nite number of draws with distribution approaching the
true one. But convergence to the true distribution is geometric in the number of resamplings,
hence the performance of this simulator in practice is generally very satisfactory. In addition, this
simulator is continuous and di�erentiable in the parameters � and 
. The Gibbs simulator is based
on a Markov chain that utilizes computable univariate truncated normal densities to construct
transitions, and has the desired truncated multivariate normal as its limiting distribution.18 This
simulator is de�ned by the following Markovian updating scheme.

Proposition 2 Consider the multivariate normal distribution N(�;
) truncated on D, which is
assumed to be �nite. De�ne a recursive procedure with steps j = 1; : : : ; J in rounds g = 1; : : : ; G.
Let fy�(jg)g be a sequence on D such that on the jth step of the gth round, the jth element of y�(jg)

is computed from y
�(j;g�1)
�j by

y
�(jg)
j = �jj�j

�
y
�(j;g�1)
�j

�
+ �jj�j � ��1

h
!j;g�1�

�
cg1j; �jj�j

�
� (1� !j;g�1)�

�
cg0j; �jj�j

�i
18This simulator can be generalized in principle to non-normal distributions, provided the corresponding univariate

distributions are easy to sample.
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where
cgij � bij � �jj�j

�
y
�(j;g�1)
�j

�
; i = 0; 1;

and the !jg are independent uniform [0,1] variates and �jj�j =
q

jjj�j . Repeat this process G

\Gibbs resampling rounds." Then the random draws obtained by this simulator have a distribution
that converges in L1 norm at a geometric rate to the true truncated distribution fy�jy� 2 Dg as the
number of Gibbs resampling rounds G grows to in�nity.

This result is proved in Hajivassiliou and McFadden (1990). It relies on stochastic relaxation
techniques as discussed in Geman and Geman (1984). See also Tierny (1992) for other theoreti-
cal results on the Gibbs resampling scheme.19 We present below Monte Carlo experiments with
simulation estimators based on this truncated simulation scheme.

4 Simulation and Estimation of LDV Models

4.1 An Overview

In this Section, we bring together the parametric estimation of the LDV models described in
Section 2 with the simulation methods in Section 3. Our focus is the consistent estimation of
the parameters of the model; we defer the discussion of limiting distributions to a later section.
Our exposition follows the general historical trend of thought in this area. We begin with the
application of simulation to approximating the log-likelihood function. Next, we consider the
simulation of moment functions. Because of the simulation biases that naturally arise in the log-
likelihood approach, the unbiased simulation of moment functions and the method of moments is
an alternative approach. Finally, we discuss simulation of the score function. Solving the normal
equations of ML estimation is a special case of the method of moments and simulating the score
function o�ers the potential for e�cient estimation.

One can organize a description of the methods along the following lines. Figure 1 gives a
diagrammatic presentation of a useful taxonomy. In this �gure, the various estimation methods are
represented as elliptical sets and the properties of the associated simulation methods are represented
as rectangular sets. Five families of estimation methods are pictured. All of the methods fall into the
class of generalized method of simulated moments (GMSM). This is the simulated counterpart to the
generalized method of moments (GMM) (see Newey and McFadden (1993)). Within the GMSM, fall
the method of simulated scores (MSS), the simulated EM (SEM), the method of simulated moments
(MSM), and maximum simulated likelihood (MSL). In parallel with the types of LDV models,
the simulation methods are divided between censored and truncated sampling. The simulation
methods are further separated into those that simulate the e�cient score of the LDV models with
and without bias.

The MSM is a simulated counterpart to the method of moments (MOM). As the �gure shows,
the MSM is restricted to simulation methods that generate unbiased simulations using censored
simulation methods. The MSL estimation method also rests on censored simulation but, as we will
explain, the critical object (the log-likelihood function) is simulated with bias. The SEM algorithm
is an extension of the EM algorithm using unbiased simulations from truncated distributions; it
falls, therefore, in the upper half of the �gure. Of these methods, only the MSS has versions that
use both classes of simulation methods, censored and truncated, that we have described above.

19The usefulness of Gibbs resampling for Bayesian estimation has been recognized by Geweke (1992), Chib (1993),
and by McCulloch and Rossi (1993).
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MSS

Figure 1: Taxonomy of Simulation Estimators

Throughout this section, we will assume that we are working with models for which the max-
imum likelihood estimator is well-behaved. In particular, we suppose that the usual regularity
conditions are met, ensuring that the ML estimator is the most e�cient CUAN estimator. We will
illustrate the methods using the rank ordered probit model. This LDV model is a natural candi-
date for most approaches to estimation with simulation and the exact MLE performs well in small
samples.

Example 8 (Rank Ordered Probit) The rank ordered probit model is a generalization of the
multinomial probit model described in Example 1. Instead of observing only the most preferred
(or highest ranked) alternative, each observation records the rank order of the alternatives from
most preferred to least preferred. The rank ordering yields considerably more information about
the underlying preference parameters than the simpler, highest-ranked-alternative response. Hence,
consumer survey designers often prefer to ask for complete rankings.

We can express the observation rule of rank ordered data algebraically as

y = �ij(y
�) = 1

n
y�(i) = y�j

o
; i; j = 1; : : : ; J

where the
n
y�(j)

o
correspond to the order statistics of y�,

y�(1) � y�(2) � : : :� y�(J);

so that the �rst element of y is the index of the largest element of y� and so on until the last
element is assigned the index of the smallest element of y�. The sample space of y consists of the
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J ! � J � (J � 1) � : : : � 2 di�erent J � J matrices containing zeros and ones such that only a single
entry equals one in each row and column:

B =

8<
:[yij ; i; j = 1; : : : ; J ] j yij 2 f0; 1g ;

X
i

yij =
X
j

yij = 1

9=
; :

Thus, even moderate numbers of alternatives correspond to discrete sampling spaces with many
outcomes.

The c.d.f. of y is not particularly informative; it is simpler to derive the probability of each
possible outcome directly: The rank ordering y corresponds to values of y� in a set satisfying J � 1
inequalities:

D(y) �
n
y� 2 RJ j y1�y� � y2�y� � : : : � yJ�y�

o
;

where yj� is the row vector [yj1; : : : ; yjJ ]. Such additional inequalities as y1�y� � y3�y� are redundant.
As in the multinomial choice model, it is convenient to transform the latent y� into a vector of J�1
di�erences:

zy � �yy
� = [yi�y� � yi+1;�y�; i = 1; : : : ; J � 1]

where
�y � [yij � yi+1;j ; i = 1; : : : ; J � 1; j = 1; : : : ; J ]

is a J � 1 � J di�erencing matrix. According to this de�nition, D(y) = fy� j zy � 0g. The
transformed random vector zy is also multivariate normal and for all Y 2 B,

f(�; Y ) = Pr fy = Y ;�;
g = �(�Y �;�Y 
�
0
Y ): (29)

One probability term in this p.d.f. is equivalent in computational complexity to the normal orthant
integrals of the choice probabilities in Example 1.

We will use the various simulation and estimation methods to estimate this rank ordered probit
model in Monte Carlo experiments. Because a natural standard of comparison is the MLE, we
present �rst a Monte Carlo experiment for the MLE in a workable case.

Example 9 When J = 4, the MLE is computable using standard approximation methods. In our
basic Monte Carlo experiment the population parameters will be

� =

2
6664

�1
�1=3
1=3
1

3
7775 and 
 =

2
6664

1 1=2 0 0
1=2 1 0 0
0 0 1 1=2
0 0 1=2 1

3
7775 :

These values yield a reasonable amount of variation in y and they induce signi�cant inconsistency
in the popular rank ordered logit estimator (Beggs et al. (1981)) when it is applied to the data. The
block diagonal 
 contains covariances among the latent y� that are zero in the latent logit model. The
� and 
 parameters are not all identi�able and so we normalize by reducing the parameterization
to �Y � and �Y 
�0

Y for Y = I4, the 4� 4 identity matrix. The �rst variance in �Y 
�0
Y is also

scaled to 1. In order to restrict �Y 
�
0
Y to be positive semi-de�nite, this covariance matrix is also

parameterized in terms of its Cholesky square root. Putting the mean parameters �rst, then stacking
the non zero elements of the Cholesky parameters, the identi�able population parameter vector is
�0 = [�0:6667;�0:6667;�0:6667; 0:5000; 1:3230; 0:0000;�0:3780; 0:9258].
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Parameter Population Mean Standard Lower Median Upper

Value Deviation Quartile Quartile

�1 -0.6667 -0.6864 0.1317 -0.7702 -0.6807 -0.5921
�2 -0.6667 -0.6910 0.2351 -0.8354 -0.6629 -0.5231
�3 -0.6667 -0.7063 0.2263 -0.8276 -0.6648 -0.5374
�4 -0.5000 -0.5135 0.2265 -0.6402 -0.5016 -0.3645
�5 1.3230 1.3536 0.3002 1.130 1.317 1.519
�6 0.000 -0.0127 0.1797 -0.1241 -0.008616 0.09545
�7 -0.3780 -0.4081 0.1909 -0.5158 -0.3891 -0.2765
�8 0.9258 0.9385 0.2461 0.7513 0.9140 1.074

Table 1: Sample Statistics for Rank Ordered Probit MLE

The basic Monte Carlo experiment will be a random draw from the distribution of each estimator
for N = 100 observations on y. There will be 500 replications of each estimator. Results of
the experiment for the MLE are in Table 1. The MLE has a small bias relative to its sampling
variance and the sampling variance is small enough to make hypothesis tests for equal means or zero
covariances quite powerful. It appears that the bias in the MLE is largely caused by asymmetry in the
sampling distribution: The medians are closer to the population values than the means. Overall, the
asymptotic approximation to the distribution of the MLE is good. The inverse information matrix
predicts the standard deviations in the fourth column of Table 1 to be 0.1296, 0.1927, 0.1703, 0.2005,
0.2248, 0.1543, 0.1514, 0.1987. Therefore, the actual sampling distribution has more variation than
the asymptotic approximaton.

For the simulation estimators, we will also conduct Monte Carlo experiments for a model
with J = 6 alternatives. In that case, the MLE is not easily computed. We will use the popu-
lation values

� =

2
66666664

�1
�3=5
�1=5
1=5
3=5
1

3
77777775

and 
 =

2
66666664

1 1=2 0 0 0 0
1=2 1 0 0 0 0
0 0 5=4 3=4 1=4 1=4
0 0 3=4 5=4 1=4 1=4
0 0 1=4 1=4 5=4 3=4
0 0 1=4 1=4 3=4 5=4

3
77777775
;

which correspond to �0 =[-0.4000, -0.4000, -0.4000, -0.4000, -0.4000, -0.5000, 1.414, 0.000, -
0.3536, 0.9354, 0.000, -0.1768, -0.6013, 1.052, 0.000, 0.000, 0.000, -0.4752, 0.8799] when normal-
izing on Y = I6.

4.2 Simulation of the Log-Likelihood Function

One of the earliest applications of simulation to estimation was the general computation of multi-
variate integrals in such likelihoods as that of the multinomial probit by Monte Carlo integration.
Crude Monte Carlo simulation can approximate the probabilities of the multinomial probit to
any desired degree of accuracy, so that the corresponding maximum simulated likelihood (MSL)
estimator can approximate the ML estimator.
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De�nition 5 (Maximum Simulated Likelihood) Let the log-likelihood function for the un-
known parameter vector � given the sample of observations (yn; n = 1; : : : ; N) be

`N(�) �
NX
n=1

[ln f(�; yn)]

and let ~f(�; y; !) be an unbiased simulator so that f(�; y) = E![ ~f(�; y; !)jy] where ! is a simulated
vector of R random variates. The maximum simulated likelihood estimator is

�̂MSL � argmax
�

~̀
N(�)

where

~̀
N (�) �

NX
n=1

ln ~f(�; yn; !n)

for some given simulation sequence f!ng.
It is important to note that MSL estimator is conditional on the sequence of simulators f!ng.

For both computational stability and asymptotic distribution theory, it is important that the sim-
ulations do not change with the parameter values. See McFadden (1989) and Pakes and Pollard
(1989) for an explanation of this point.

Example 10 B�orsch-Supan and Hajivassiliou (1993) proposed MSL estimation of the multinomial
probit model of Example 1 using the GHK simulator for the choice probabilities. In this example,
we make similar calculations for the rank ordered probit model of Example 9. Instead of the normal
probality function in (29), we used the probability simulator in the �rst element of hGHK in (28)
to compute the simulated log-likelihood function ~̀

N (�).
20 For the simulations of the probability of

each observation, we drew a vector of J�1 = 3 independently distributed uniform random variables
for each !n. For each replication of �̂MSL, we drew a new dataset f(yn; !n);n = 1; : : : ; Ng before
maximizing ~̀

N(�) over �. Each ~f(�; yn; !n) consisted of a single simulation of f(�; yn) (R = 1).

Parameter Population Mean Standard Lower Median Upper

Value Deviation Quartile Quartile

�1 -0.6667 -0.7230 0.1424 -0.8219 -0.7198 -0.6253
�2 -0.6667 -0.6077 0.2162 -0.7342 -0.5934 -0.4640
�3 -0.6667 -0.9555 0.2520 -1.087 -0.9256 -0.7860
�4 -0.5000 -0.6387 0.1430 -0.7305 -0.6415 -0.5379
�5 1.3230 1.2595 0.1741 1.134 1.237 1.353
�6 0.0000 0.0131 0.1717 -0.09063 0.01013 0.1285
�7 -0.3780 -0.6715 0.2088 -0.7883 -0.6639 -0.5292
�8 0.9258 1.3282 0.2211 1.185 1.301 1.448

Table 2: Sample Statistics for Rank Ordered Probit MSLE Using GHK (J=4, R=1)

The results of this Monte Carlo for J = 4 are in Table 2. In contrast with the MLE, this MSLE
exhibits much larger bias. The median is virtually identical to the mean. The sampling variances
are also larger, particularly for the covariance parameters. Nevertheless, this MSLE gives a rough
approximation to the population parameters.

20The order of integration a�ects this simulator, but we do not attempt to describe our particular orderings. They
were chosen purely on the basis of a convenient algorithm for �nding the limits of integration.
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Parameter Population Mean Standard Lower Median Upper

Value Deviation Quartile Quartile

�1 -0.4000 -0.4585 0.1504 -0.5565 -0.4561 -0.3664
�2 -0.4000 -0.2489 0.2059 -0.3898 -0.2460 -0.0940
�3 -0.4000 -0.5054 0.1710 -0.6056 -0.4957 -0.3891
�4 -0.4000 -0.4589 0.2013 -0.5779 -0.4551 -0.3216
�5 -0.4000 -0.6108 0.1882 -0.6934 -0.6016 -0.5042

Table 3: Sample Statistics for Rank Ordered Probit MSLE Using GHK (J=6, R=1)

The results of this Monte Carlo for J = 6 are in Table 3. For brevity, only the mean parameters
are listed. Once again, substantial biases appear in the sample of estimators. Given our experience
with J = 4, it seems likely that these biases are largely due to simulation. We will con�rm this
below as we apply other methods to this case.

Note that unbiased simulation of the likelihood function is neither necessary nor su�cient for
consistent MSL estimation. Because the estimator is a nonlinear function (through optimization)
of the simulator, the MSL estimator will generally be a biased simulation of the MLE even when
the criterion function of estimation is simulated without bias because

E
h
~̀(�)

i
= `(�) 6) E

�
argmax

�

~̀(�)

�
= argmax

�
`(�):

Note also that while unbiased simulation of the likelihood function is often straightforward, unbi-
ased simulation of the log-likelihood is generally infeasible. The logarithmic transformation of the
intractable function introduces a nonlinearity that cannot be overcome simply. However, to obtain
an estimator with the same probability limit as the MLE, a su�cient characteristic of a simulator
for the log-likelihood is that its sample average converge to the same limit as the sample average
log-likelihood. Only by reducing the error of a simulator for the log-likelihood function to zero at
a su�ciently rapid rate with sample size can one expect to obtain a consistent estimator. Such
results rest on a general proposition that underlies the consistency of many extremum estimators
(see Newey and McFadden (1993), Theorem 2.1):

Lemma 1 Let

1. � 2 �, a compact subset of RK ,

2. Q0(�), QN (�) be continuous in �,

3. �0 �argmax�2�Q0(�) be unique,

4. �̂N �argmax�2�QN(�) and

5. QN(�)! Q0(�) in probability uniformly in � 2 � as N !1.

Then �̂N ! �0 in probability.

We will assume from now on that the log-likelihood function is su�ciently regular to exploit
this lemma. In particular, we suppose that the yn are i.i.d., that � is identi�able, that f(�; y) is
continuous at each � in a compact parameter space �, and that E [sup�2� jln f(�; y)j] <1. We refer
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the reader to Newey and McFadden (1993), Theorem 2.5 for further discussion of these conditions
and their roles.

For LDV models with censoring, the generic likelihood simulator ~f(�; yn; !n) is the average of
R replications of one of the simulation methods described above:

~f(�; yn; !n) � 1

R

RX
r=1

~f(�; yn; !nr):

If the model includes truncation, then the likelihood simulation typically involves a ratio of such
averages, because a normalizing probability appears in the denominator, although unbiased simu-
lation of the ratio is possible (see Section 3.3). In any case, the simulation error will generally be
OP (1=R). Thus, a common approach to approximating the log-likelihood function with su�cient
accuracy is increasing the number of replications per observation R with the sample size N . This
statistical approach is in contrast to a strictly numerical approach of setting R high enough to
achieve a speci�ed numerical accuracy independent of sample size.

Parameter Population Mean Standard Lower Median Upper
Value Deviation Quartile Quartile

�1 -0.6667 -0.6795 0.1366 -0.7726 -0.6774 -0.5840
�2 -0.6667 -0.6528 0.2267 -0.7913 -0.6268 -0.5029
�3 -0.6667 -0.8327 0.2299 -0.9686 -0.8085 -0.6768
�4 -0.5000 -0.5771 0.2159 -0.7076 -0.5641 -0.4412
�5 1.3230 1.3582 0.2459 1.1863 1.3184 1.5036
�6 0.0000 -0.0121 0.2089 -0.1380 -0.01570 0.1275
�7 -0.3780 -0.5034 0.2016 -0.6256 -0.4875 -0.3753
�8 0.9258 1.1334 0.2454 0.9505 1.1142 1.2814

Table 4: Sample Statistics for Rank Ordered Probit MSLE Using GHK (J=4, R=5)

Example 11 For illustration, let us increase the replications in the previous examples from R = 1
simulation per observation to 5. The summary statistics are listed in Tables 4 and 5. In both cases,
J = 4 and J = 6, the biases are signi�cantly reduced. See B�orsch-Supan and Hajivassiliou (1993)
for a more extensive Monte Carlo study of the relationship between R and bias in the multinomial
probit model.

Parameter Population Mean Standard Lower Median Upper

Value Deviation Quartile Quartile

�1 -0.4000 -0.4088 0.1256 -0.4893 -0.4053 -0.3227
�2 -0.4000 -0.3059 0.1776 -0.4200 -0.2966 -0.1846
�3 -0.4000 -0.4554 0.1387 -0.5373 -0.4553 -0.3615
�4 -0.4000 -0.4288 0.1661 -0.5369 -0.4219 -0.3142
�5 -0.4000 -0.5046 0.1773 -0.6211 -0.4976 -0.3872

Table 5: Sample Statistics for Rank Ordered Probit MSLE Using GHK (J=6, R=5)

In the rank ordered probit model and similar discrete LDV models, all that is necessary for
estimator consistency is that R! 1 as N !1. No relative rates are required provided that the
likelihood is su�ciently regular. Nor must the simulations ! satisfy any restrictions on dependence
across observations. The following proposition, taken from Lee (1993), establishes this situation.

24



Proposition 3 Let f(�; y) be uniformly bounded away from zero for all � 2 �, a compact set, and
all y 2 B, the sample space of y. Assume that the set of regularity conditions in the paragraph
after Lemma 1 hold. Let f!nrg be and i.i.d. sequence over the index r. The MSL estimator
�̂MSL � argmax�

1
N

PN
n=1 ln

~f (�; yn; !n) is consistent if R!1 as N !1.

Proof. By a uniform law of large numbers and the lower bound of f ,

sup
y;�

�����
~f(�; yn; !nr)

f(�; yn)
� 1

����� P! 0, as R! 1;

so that

sup
�

1

N

���~̀N (�)� `N (�)��� P! 0; as R!1; N !1:

Since our regularity assumptions in the paragraph after Lemma 1 guarantee that

sup
�

���� 1N `N(�)� E[ln f(�; y)]

���� P! 0 as N ! 1;

then ~̀
N(�)=N also converges uniformly to E[ln f(�; y)] and consistency follows by Lemma 1. 2

Thus, the property of estimator consistency makes modest demands on the simulations of the
likelihood function. Strictly speaking, one could employ a common sequence of simulations f!rg for
all simulated likelihoods which grows at an arbitrarily slow rate with sample size. The di�erences
between simulation designs appear only in the limiting normal distributions of the estimators.
It is especially important to note that consistency does not con�ne such di�erences to sampling
variances. Both the expectations and the variances of the approximate limiting distribution can be
a�ected by the simulation design.

Note that Proposition 3 does not apply to models with elements of y which are continuously
distributed and unbounded. Additional work is needed in this area. See Hajivassiliou and McFadden
(1990) for the special conditions needed for an example of a multiperiod (panel) autocorrelated tobit
model.

From the standpoint of asymptotic distribution theory, the simplest use of simulation makes
independent simulations for the contribution of each observation to the likelihood function. If
elements of the sequence f!nrg are independent across the observation index n, as well as the
replication index r, then we preserve the independence of the ~f(�; yn; !nr) and its derivatives
across n, permitting the application of familiar laws of large numbers and central limit theorems.
When ~f is di�erentiable in �, we can make a familiar linear approximation for �̂MSL:

0 =
1p
N
r�

~̀(�0) +

�
1

N
r2
�
~̀(��)

�p
N(�̂MSL � �0) (30)

where the elements of �� lie on the line segment between �̂MSL and �0. The consistency of �̂MSL

implies the consistency of �� which in turn implies that

1

N
r2
�
~̀(��)

P! E
h
r2
� ln f(�0; y)

i
� I(�0) (31)

using the argument that supports Proposition 3. The leading term is a sum of N i.i.d. terms

1p
N
r�

~̀(�0) =
1p
N

NX
n=1

r�
~f(�0; yn; !n)

~f(�0; yn; !n)

25



to which we would like to apply a central limit theorem. But we are prevented from this by the
fact that the expectation of these terms is not zero. Consider the simple factorization, obtained by
adding and subtracting terms,

1p
N
r�

~̀(�0) =
1p
N
r�`(�0) +AN + BN (32)

where
AN = 1p

N

PN
n=1

n
r� ln ~f � E!

h
r� ln ~f

io
BN = 1p

N

PN
n=1

n
E!
h
r� ln ~f

i
� r� ln f

o (33)

AN is a sum of i.i.d. terms with zero expectation and can be viewed as the source of pure simulation
noise in �̂MSL. BN is the potential source of simulation bias. The next result can be used to show
that R=

p
N !1 is a su�cient rate of increase to avoid such bias.

Proposition 4 Let ~�(�; y; !) be an unbiased simulator for �(�; y) such that V (~���jy) = O(R�1).
Let s(�; y; �) be a moment function such that E[s(�0; y; �)] = 0. Consider the simulator ~s(�; y) �
s(�; y; ~�) and let R=

p
N !1. If ~s is Lipschitz in ~� 2 S uniformly in �, then the simulation bias

BN � 1p
N

NX
n=1

fE! [~s(�; y)]� s(�; y; �)g P! 0:

Proof. If ~s is Lipschitz in ~� uniformly in � then

~s � s = [r�s(�; y; �)] (~�� �) + [r�s(�; y; �
�)�r�s(�; y; �)] (~� � �) ;

where �� is on the line segment joining ~� and �. According to the hypothesis of unbiasedness,

E!(~s� s) = E! f[r�s(�; y; �
�)�r�s(�; y; �)] (~� � �)g

so that
kE!(~s � s)k �M�E(~�� �)2 = O(R�1)

for some �nite M� according to the Lipschitz hypothesis. Therefore, BN = OP (
p
N=R) and the

result follows. 2

In the multinomial and rank ordered probit cases, the Lipschitz requirement is generally met by
the regularity conditions that bound the discrete probabilities and the smoothness of the probability
simulator ~f : � = (f;r�f), ~� = ( ~f;r�

~f ), and s = (r�f)=f . We are not aware of any slower rates
for R that avoid bias in the limiting distribution of �̂MSL.

Proposition 5 Let f be bounded uniformly away from zero and Lipschitz in � on a compact space
�. Let ~f (�; y; !) be an unbiased di�erentiable simulator for f(�; y), also bounded uniformly away
from zero and Lipschitz in � on � such that V ( ~f�f) = O(R�1). Let R=

p
N ! 1. Then the

simulation components

AN +BN � 1p
N

NX
n=1

n
r� ln ~f(�; yn; !n)� r� ln f(�; yn)

o
P! 0

and �̂MSL is asymptotically e�cient.
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Proof. The di�erence between simulated and exact scores can be written

AN +BN = 1p
N

P
n
1
~f

h
r�

~f � ~f � r� ln f
i

= O(1) 1p
N

P
n

h
r�

~f � ~f � r� ln f
i

By the Chebychev inequality,

Pr

(����� 1p
N

X
n

h
r�i

~f � ~f � r�i ln f
i����� > �

)
� 1

�
p
N

X
n

V
h
r�i

~f � ~f � r�i ln f
i
= O(

p
N=R)

for each component of the gradient. The result follows from this order and equations (30){(33). 2
Propositions 4 and 5 demonstrate that bias is the fundamental hurdle that MSL must overcome.

The logarithmic transformation of the likelihood function forces one to increase R with the sample
size to obtain a consistent estimator. Given enough simulations to overcome bias, there are enough
simulations to make the asymptotic contribution of simulation to the limiting distribution of �̂MSL

negligible.
There is a simulation design that uses the same total number (N �R) of simulations of ! as the in-

dependent design, but applies every simulation of ! to every observation of y. That is, the simulated
log-likelihood function is generated according to the double sum ~̀(�) =

PN
n=1

PNR
m=1 ln

~f(�; yn; !m).
The motivation for this approach is to take advantage of all N �R simulations that must be drawn
when R independent simulations are made for each observation. Lee (1993) �nds that e�ciency
requires only that R ! 1 as N ! 1 with this design. This approach appears to gain e�ciency
without any additional computational cost. However, one simulates each contribution to the like-
lihood N �R times rather than merely R times, substantially increasing the cost of evaluating the
average simulated log-likelihood function. The computational savings gained by pooling simula-
tions in this manner are generally overcome by the added computational cost of calculating O(N2)
likelihoods instead of O(N3=2), especially when N is large.

We close our discussion of simulated likelihood functions by noting that the method of simulated
pseudo-maximum likelihood (SPML) of Laroque and Salani�e (1989) is another early simulation
estimation approach for LDV models. This method, originally developed for the mixture models of
Subsection 2.4 in the case of the analysis of markets in disequilibrium, uses simulation to overcome
the high dimensional integration di�culties that arise in calculating the moments of such models.

De�nition 6 (Simulated Pseudo Maximum Likelihood) Let the observation rule �(y�) =
y yield a mixture model with the �rst two moments g1(xn; �) � E(y j xn; �) and g2(xn; �) �
E
�
(y � Ey)2 j xn; �

�
. Consider simulating functions ~gj(xn; �; !; R), j = 1; 2, based on auxiliary

simulation sequences f!g, such that ~gj(xn; �; !; R) converge almost surely to gj(xn; �) as R ! 1,

j = 1; 2. The simulated pseudo maximum likelihood estimator �̂SPML is de�ned by:

�̂SPML � argmax
�

1

N

NX
n=1

 (yn; ~g1(�); ~g2(�)) ; (34)

where  (�) � 1
2

�
(yn � g1(�))2=g22(�) + ln g2(�)

�
corresponds to the log-likelihood contribution assum-

ing yn � N(g1(�); g2(�)).
Laroque and Salani�e (1989) prove that for xn 2 X 2 R, � 2 � compact, and ~gj(�) su�ciently

continous on X � �, then �̂SPML
p! �̂PML as R ! 1.21 It should be noted that for particular

21Pseudo maximum likelihood estimation methods, which are special types of the Classical Minimum Distance
(CMD) approach, are developed in Gourieroux et al. (1984a) and Gourieroux et al. (1984b). See Newey and McFadden
(1993) for a discussion of CMD and the closely related generalized method of moments (GMM).

27



choices of a pseudo likelihood function  (�), the SPML estimator can be shown to be consistent for
a �nite number of simulations R, because it then satis�es the basic linearity property of the MSM
approach. Such a choice could be  (�) � (yn � g1(�))2, which corresponds to the assumption that
yn � N(g1(�); 1).

4.3 Simulation of Moment Functions

The simulation of the log-likelihood is an appealing approach to applying simulation to estimation,
but this approach must overcome the inherent simulation bias that forces one to increase R with the
sample size. Instead of simulating the log-likelihood function, one can simulate moment functions.
When they are linear in the simulations, moment functions can be simulated easily without bias.
The direct consequence is that the simulation bias in the limiting distribution of an estimator is
also zero, making the need to increase the number of simulations per observation with sample size
unnecessary. This was a key insight of McFadden (1989) and Pakes and Pollard (1989).

Method of moments (MOM) estimators have a simple structure. Such estimators are generally
constructed from `residuals' that are di�erences between observed random variables y and their
conditional expectations. These expectations are known functions of the conditioning variables x
and the unknown parameter vector � to be estimated, let E(y j x; �) � �(�; x). Moment equations
are built up by multiplying the residuals by various weights or instrumental variable functions and
specifying the estimator as the parameter values which equate the sample average of these products
with zero: The MOM estimator �̂MOM is de�ned by

1

N

NX
n=1

wn(X; �̂MOM)
h
yn � �(�̂MOM ; ; xn)

i
= 0: (35)

The consistency of such estimators rests on the uniform convergence of the sample averages to their
population counterparts for any value of � as the sample size approaches in�nity. When the unique
root of the population equations is �0, the population value of �, the root of the sample equations,
converges to �0. The limiting distribution of �̂MOM is derived from the linear expansion

0 =
1p
N

NX
n=1

wn(�0)en(�0) +

"
1

N

NX
n=1

wn(��)r�en(��) + en(��)r�wn(��)

#p
N(�̂MOM � �0);

where we have denoted the residual by en(�) � yn � E(yn j xn; �) and �� lies between �̂MOM and
�0. Because E[en(�0)] = 0, the leading term will generally converge to a limiting normal random
variable with zero expectation, implying no asymptotic bias in �̂MOM :

1p
N

NX
n=1

wn(�0)en(�0)
d! N(0;�MOM);

where
1

N

NX
n=1

wn(�0)V [en(�0) j xn]wn(�0)
0 p! �MOM :

One of the matrices in the second term converges to zero:

1

N

NX
n=1

en(��)r�wn(��)
p! 0:
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This fact is often exploited by replacing the weights w in (35) with consistent estimates that do
not change the limiting distribution of �̂MOM . Thus under regularity conditions,

p
N(�̂MOM � �0)

d! N(0; H�1�H 0�1);

where
1

N

NX
n=1

wn(��)r�en(��)
p! H:

Simulation has an a�nity with the MOM. Substituting an unbiased, �nite-variance simulator
for the conditional expectation �(�; xn) does not alter the essential convergence properties of these
sample moment equations. We therefore consider the class of estimators generated by the method
of simulated moments (MSM).

De�nition 7 (Method of Simulated Moments) Let ~�(�; x; !) = 1=R
PR

r=1 ~�(�; x; !r) be an
unbiased simulator so that �(�; x) = E[~�(�; x; !) j x] where ! is a simulated random variable. The
method of simulated moments estimator is

�̂MSM � argmin k~sN (�)k

where

~sN (�) � 1=N
NX
n=1

wn(�) [yn � ~�(�; xn; !n)] (36)

for some sequence f!ng.

De�ning the MSM estimator as a minimizer rather than the root of the simulated moments
equation ~s(�) = 0 is an important part of making the MSM operational. Newey and McFadden
(1993), Sections 1 and 2.2.3, discuss the general di�culties that MOM poses for the construction
of consistent estimators. Whereas the structure of ML provides a direct link between parameter
identi�cation and estimator consistency, MOM does not. It is often di�cult to guarantee that a
system of nonlinear equations has a unique solution. MSM inherits these di�culties. Also, the
addition of simulation in MSM may introduce problems that were not present in the original MOM
formulation. For example, simulated moment equations may not exhibit solutions at all in small
samples, leading one to question the reliability of asymptotic approximations. This property may
be the greatest practical drawback of this method of estimation using simulations, although it does
not greatly a�ect the asymptotic distribution theory extended from the MOM case.

Example 12 To construct an MSM estimator for the rank ordered probit model, we construct a
set of moment equations corresponding to the elements of y:

PN
n=1 yijn
N

� Pr
n
yij = 1; �̂; 
̂

o
= 0; i; j = 1; : : : ; J � 1:

Not all J2 elements of y are needed because these elements have a singular distribution. As the
sampling space of y makes clear, we can focus our attention on the �rst J � 1 rows and columns of
y.

Because we obtain more moment equations than parameters, we combine the moments of y
according to the method of classical minimum distance (CMD) using the inverse of the sample
covariance of the elements of y as the normalizing matrix. Note, however, that one could use more
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Parameter Population Mean Standard Lower Median Upper

Value Deviation Quartile Quartile

�1 -0.6667 -0.6906 0.1481 -0.7792 -0.6918 -0.5948
�2 -0.6667 -0.7887 0.3714 -0.9496 -0.7109 -0.5431
�3 -0.6667 -0.6953 0.2223 -0.8347 -0.6594 -0.5366
�4 -0.5000 -0.6683 0.4271 -0.8962 -0.5688 -0.3679
�5 1.3230 1.4143 0.4384 1.118 1.337 1.633
�6 0.0000 0.1764 0.5053 -0.1957 0.08331 0.5563
�7 -0.3780 -0.3077 0.2765 -0.4703 -0.3207 -0.1747
�8 0.9258 0.7714 0.3356 0.5955 0.7980 0.9834

Table 6: Sample Statistics for Rank Ordered Probit CMD (J=4)

Parameter Population Mean Standard Lower Median Upper
Value Deviation Quartile Quartile

�1 -0.6667 -0.6976 0.1905 -0.7915 -0.6809 -0.5798
�2 -0.6667 -0.9790 0.9576 -1.099 -0.7619 -0.5654
�3 -0.6667 -0.8561 0.6394 -1.008 -0.6900 -0.4813
�4 -0.5000 -0.7083 0.6392 -0.8918 -0.5559 -0.3327
�5 1.3230 1.4733 0.8402 1.086 1.323 1.662
�6 0.0000 0.0780 0.6268 -0.3091 0.03749 0.4616
�7 -0.3780 -0.3828 0.5423 -0.5758 -0.3099 -0.1110
�8 0.9258 0.8560 0.6857 0.5023 0.7341 0.9745

Table 7: Sample Statistics for Rank Ordered Probit CMD, MSM Version, (J=4,R=1)

moments to increase the e�ciency of the estimator. For example, the cross-products yijykl (i 6=
k; j 6= l) contain additional sample information about the population parameters.

The CMD estimation results are described in Table 6 for J = 4 ranked alternatives. This
classical estimator is much less e�cient than the MLE. In addition, it exhibits large bias and
skewness in the sampling distribution.

The summary statistics for the MSM version of the CMD estimator are listed in Table 7. There
was R = 1 simulation of the GHK probability simulator for each observation and each probability.
As expected, the sampling variance is larger for the MSM estimator than for the CMD estimator.
In addition, the bias and skewness in the CMD estimator for the mean parameters seems to be
aggravated by the simulation in the MSM estimator.

We do not present analogous results for J = 6 alternatives because the MSM estimator is not
practical in this case. With 720 elements in the sampling space, the amount of simulation becomes
prohibitive. This illustrates another important drawback in this method: the MSM works best for
sample spaces with a small number of elements.

The analogies between MSM and MOM are direct and, as a result, the asymptotic analysis
is generally simpler than for MSL. The �rst di�erence with MSL appears in the requirements on
the simulation design for estimator consistency. Whereas MSL requires that R! 1 regardless of
whether simulations are independent across observations, MSM yields consistent estimators with
�xed R provided that the simulations vary enough to make a law of large numbers work. Because
the simulated moments are linear in the simulations, one has the option of applying the law of
large numbers to large numbers of observations alone, or in combination with large numbers of
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simulations.

Proposition 6 Let ~�(�; x; !) be an unbiased, �nite variance, simulator for �(�; x) and let either

1. f!nr;n = 1; : : : ; N; r = 1; : : : ; Rg be i.i.d. random variables for �xed R, or

2. f!r; r = 1; : : : ; Ng be an i.i.d. sequence for R = N and let !nr = !r; n = 1; : : : ; N .

Then �̂MSM
p! �0 under the regularity conditions

1. sN (�) � 1=N
PN

n=1 wn(�) [yn � �(�; xn)] is continuous in �,

2. sN (�) ! s0(�) �plim1=N
PN

n=1 wn(�) [�(�0; xn)� �(�; xn)] in probability uniformly in � 2 �,
a compact parameter space,

3. s0(�) is continuous in � and s0(�) equals zero only at �0.

Proof. The average di�erence between the classical moment functions and their simulated
counterparts is

sN (�)� ~sN (�) =
1

N

NX
n=1

wn(�) [~�(�; xn; !n)� �(�; xn)] (37)

=
1

NR

NX
n=1

RX
r=1

wn(�) [~�(�; xn; !nr)� �(�; xn)] ; (38)

where sN (�) � 1=N
PN

n=1 wn(�) [yn � �(�; xn)]. Under design (1), the f~�n � �ng are an i.n.i.d.

sequence so that a uniform law of large numbers applied to (37) implies sN (�) � ~sN (�)
p! 0 as

N ! 1. Under design (2), sN (�)� ~sN (�) is written in (38) as a U-statistic and a uniform law of

large numbers for U-statistics (Lee (1993)) implies sN (�) � ~sN (�)
p! 0 as N ! 1. Therefore, in

either case, by continuity, ksN (�)� ~sN (�)k p! 0 uniformly in � and Lemma (1) implies the result.
2

The opportunity to �x R for all sample sizes o�ers signi�cant computational savings that are a
key motivation for interest in the MSM. As we shall see below, the bene�ts of the dependent design
are generally modest. Thus, while the theoretical applicability of U-statistics to MSM is interesting
in itself, we will not consider it further in this section.22 We continue with the analogy between
the MOM and the MSM. Note �rst of all that an analogous linear expansion for �̂MSM exists:

0 =
1p
N

NX
n=1

wn(�0)~en(�0) +

"
1

N

NX
n=1

wn(��)r�~en(��) + ~en(��)r�wn(��)

#p
N(�̂MSM � �0);

where we have denoted the simulated residual by ~en(�) � yn�~�(�; xn) and �� lies between �̂MSM and
�0. Because E[~en(�0)] = 0, the leading term will generally converge to a limiting normal random
variable with zero expectation, implying no asymptotic bias in �̂MSM :

1p
N

NX
n=1

wn(�0)en(�0)
d! N(0;�MSM);

22See Lee (1993).
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where
1

N

NX
n=1

wn(�0)V [~en(�0) j xn]wn(�0)
0 p! �MSM :

Also, as before,

1

N

NX
n=1

~en(��)r�wn(��)
p! 0;

so that under regularity conditions,

p
N(�̂MSM � �0) d! N(0; H�1�MSMH

0�1);

where
1

N

NX
n=1

wn(��)r�~en(��)
p! H:

The equivalence of the H matrices also rests on the unbiased simulation of �: If �(�; x) =
E[~�(�; x; !) j x], then r��(�; x) = r�E[~�(�; x; !) j x] = E[r�~�(�; x; !) j x] for the smooth
simulators described in Section 3.

While the �rst moment of the MSM estimator does not depend on R, the limiting covariance
matrix, and hence relative e�ciency, does. Simulation noise introduces a generic di�erence between
the covariance matrices of �̂MOM and �̂MSM . Intuition suggests, and theory con�rms, that the
larger R is, the more e�cient the MSM estimator will be as the simulation noise is diminished. The
extra variation in �̂MSM is contained in the object (37). This term is generated conditional on the
realizations of y and is, by de�nition, independently distributed of the classical moment function.
Inating the simulation noise by

p
N and evaluating it at �0, we can apply a central limit theorem

to it to obtain the following result.

Proposition 7 �MSM = �MOM + 1=R ��S where

1

N

NX
n=1

wn(�0) � V [~�(�0; xn; !nr)� �(�0; xn)] � wn(�0)
0 p! �S :

If it were not for the simulation noise, the MSM estimator would be as e�cient as its MOM
counterpart. McFadden (1989) noted that in the special case where ~� is obtained by averaging
simulations of the data generating process itself, �S = �MOM and �MSM = (1 + 1=R)�MOM. In
this case, the ine�ciency of simulation is easy to measure and one observes that 10 replications are
su�cient to reduce the ine�ciency to 10% compared to classical MOM.

The proposition suggests that full e�ciency would be obtained if we simply increased R without
bound as N grows. That intuition is formalized in the next proposition, which is analogous to
Proposition 5 (see McFadden and Ruud (1992)).

Proposition 8 If R = O(N�); � > 0, then
p
N(�̂MOM � �̂MSM )

d! 0.

For any given residual and instrumental variables, there generally exist optimal weights among
MOM estimators and the same holds for MSM as well. In what is essentially an asymptotic
counterpart to the Gauss-Markov theorem, if H = �MSM then the MSM estimator is optimal
Hansen (1982). To construct an MSM estimator that satis�es this restriction, one normalizes the
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simulated residual by its variance and makes the instrumental variables the partial derivatives of
the conditional expectation of the simulated moment with respect to the unknown parameters:

wn = [r��(�; xn)] fV [yn � ~�(�;!n; xn)]g�1

One can approximate these functions using simulations that are independent of the moment simula-
tions with R �xed, but e�ciency will require increasing R with sample size. If ~� is di�erentiable in
�, then independent simulations of the r� ~� are unbiased simulators of the instruments. Otherwise,
discrete numerical derivatives can be employed. The covariance matrix can be estimated using
the sample variance of ~� and the simulated variance of y. Ine�ciency in simulated instruments
constructed in this way has two sources: the simulation noise and the bias in the inverse of an
estimated variance. Both sources disappear asymptotically if R approaches in�nity with N . While
it is critical that the simulations of w be independent of the simulations of ~�, there is no obvious
advantage to simulating the individual components of w independently. In some cases, for example
simulating a ratio, it appears that independent simulation may be inferior.23

4.4 Simulation of the Score Function

Interest in the e�ciency of estimators naturally leads to attempts to construct an e�cient MSM
estimator. The obvious way to do this is to simulate the score function as a set of simulated
moment equations. Within the LDV framework however, unbiased simulation of the score with a
�nite number of operations is not possible with simple censored simulators; the e�cient weights are
nonlinear functions of the objects that require simulation. Nevertheless, it may be possible with
the aid of simulation to construct good approximations that o�er improvements in e�ciency over
simpler MSM estimators.

There is an alternative approach based on truncated simulation. We showed in Section 2 that
every score function can be expressed as the expectation of the score of a latent data generating
process taken conditional on the observed data. In the particular case of normal LDV models,
this conditional expectation is taken over a truncated multivariate normal distribution and the
latent score is the score of an untruncated multivariate normal distribution. Simulations from the
truncated normal distribution can replace the expectation operator to obtain unbiased simulators
of the score function.

In order to include both the censored and truncated approaches to simulating the score function,
we de�ne the method of simulated scores as follows.24

De�nition 8 (Method of Simulated Scores) Let the log-likelihood function for the unknown
parameter vector � given the sample of observations (yn; n = 1; : : : ; N) be `N (�) �

PN
n=1 ln f(�; yn).

Let ~�(�; yn; !n) = 1=R
PR

r=1 ~�(�; yn; !nr) be an asymptotically (in R) unbiased simulator of the
score function �(�; y) = r ln f(�; y) where ! is a simulated random variable. The method of
simulated scores estimator is �̂MSS �argmin�2� k~sN (�)k where ~sN (�) � 1=N

PN
n=1 ~�(�; yn; !n) for

some sequence f!ng.
Our de�nition includes all MSL estimators as MSS estimators, because they implicitly simulate

the score with a bias that disappears asymptotically with the number of replications R. But there
are also MSS estimators without simulation bias for �xed R. These estimators rely on simulation
from the truncated conditional distribution of the latent y� given y. We turn to such estimators
�rst.

23A Taylor series expansion suggests that positive correlation between the numerator and denominator of a ratio
can yield a smaller variance than independent simulation.

24The term was coined by Hajivassiliou and McFadden (1990).
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4.4.1 Truncated Simulation of the Score

The truncated simulation methods described in Section 3.3 provide unbiased simulators of the
LDV score (17), which is composed of elements of the form (24). Such simulation would be ideal,
because R can be held �xed, thus leading to fast estimation procedures. The problem is that these
truncated simulation methods pose new problems for the MSS estimators that use them.

The �rst truncated simulation scheme, discussed in subsection 3.3.1 above, is the A/R method.
This provides simulations that are discontinuous in the parameters, a property shared with the
CMC. A/R simulation delivers the �rst element in a simulated sequence that falls into a region
which depends on the parameters under estimation. As a result, changes in the parameter values
cause discrete changes in which element in the sequence is accepted. An example of this phenomenon
is to suppose that one is drawing a sequence of normal random variables f�rg � N(0; IM) in order to
obtain truncated multivariate normal random variables for rank ordered probit estimation. Given
the observation y, one seeks a simulation from D(y), as de�ned in Example 8. Let the simulation
of y� be ~yt(�1;�1) � �1 + �1�t at the parameter values (�1;�1). At neighboring parameter values
where two elements of the vector ~yt(�;�) are equal, the A/R simulation is at the point of jumping
from the value ~yt(�;�) to another point in the sequence f~ys(�;�)g. See Hajivassiliou and McFadden
(1990) and McFadden and Ruud (1992) for treatments of the special asymptotic distribution theory
for such simulation estimators. Briey described, this distribution theory requires a degree of
smoothness in the estimator with respect to the parameters that permits such discontinuties but
allows familiar linear approximations in the limit. See Ruud (1991) for an illustrative application.

The second truncated simulation scheme we discussed above was the Gibbs resampling simu-
lation method. See subsection 3.3.2. This method is continuous in the parameters provided that
one uses a continuous univariate truncated normal simulation scheme. But this simulation method
also has a drawback: Strictly applied, each simulation requires an in�nite number of resampling
rounds. In practice, Gibbs resampling is truncated and applied as an approximation. The limited
Monte Carlo evidence that we have seen suggests that such approximation is reliable.

Simulation of the e�cient score �ts naturally with the EM algorithm for computing the MLE
derived by Dempster et al. (1977). The EM algorithm includes a step in which one computes
an expectation with respect to the truncated distribution of y� conditional on y. Ruud (1991)
suggested that a simulated EM (SEM) algorithm could be based on simulation of the required
expectation.25 This substitution provides a computational algorithm for solving the simulated
score of MSS estimators.

De�nition 9 (EM Algorithm) The EM algorithm is an iterative process for computing the MLE
of a censored data model. On the ith iteration, the EM algorithm solves

�i+1 = argmax
�
Q(�; �i; y) (39)

where the function Q is

Q(�1; �0; y) � E�0
h
ln f(�1; y�)

��� yi (40)

where E�0 [� j y] indicates an expectation measured with respect to f(�0; y�jy).
If Q is continuous in both � arguments, then (39) is a contraction mapping that converges to a

root of the normal equations; as Ruud (1991) points out,

� = �1 = �0 ) r�1Q(�
1; �0; y) = r� ln F (�; y) (41)

25van Praag et al. (1989) and van Praag et al. (1991) also investigated this approach and applied it in a study of
the Dutch labor market.

34



so that the �rst-order conditions for an iteration of (39) and the normal equations for ML are
intimately related.

Unlike the log-likelihood function, this Q can be simulated without bias for LDV models because
the latent likelihood f(�; y�) is tractable and Q is linear in ln f(�; y�) (see equation (40)). According
to (41), unbiased simulation of Q implies a means for unbiased simulation of the score. Although it
is not guaranteed, an unbiased simulator of Q usually yields a contraction mapping to a stationary
point.

For LDV models based on a latent multivariate normal distribution, the iteration in (39) is
quite simple to compute, given Q or a simulation of Q. If f(�; y�) = �(y� � �; 
), then

�1 =
1

N

NX
n=1

E�0(y
�
n j yn) and 
1 =

1

N

NX
n=1

E�0
h
(y�n � �1)(y�n � �1)0 j yn

i
; (42)

which are analogous to the equations for the MLE using the latent data. This algorithm is often
quite slow, however, in a neighborhood of the stationary point of (39). Any normalizations necessary
for identi�cation of � can be imposed at convergence. See Ruud (1991) for a discussion of these
points.

Example 13 (SEM Estimation) In this example, we will apply the SEM procedure to the rank
ordered probit model of our previous examples. We simulated an (approximately) unbiased ~Q of
Q by drawing simulations of y�n from its truncated normal distribution conditional on yn using
the Gibbs resampling method truncated to 10 rounds. The support of this truncated distribution is
speci�ed as D(y) in Example 8. The simulated estimators were computed according to (42), after
replacing the expectations with the averages of independent simulations.

Parameter Population Mean Standard Lower Median Upper

Value Deviation Quartile Quartile

�1 -0.4000 -0.3827 0.1558 -0.4907 -0.3848 -0.2757
�2 -0.4000 -0.4570 0.3271 -0.5992 -0.4089 -0.2455
�3 -0.4000 -0.4237 0.2262 -0.5351 -0.3756 -0.2766
�4 -0.4000 -0.4268 0.2710 -0.5319 -0.3891 -0.2580
�5 -0.4000 -0.4300 0.2622 -0.5535 -0.3794 -0.2521

Table 8: Sample Statistics for Rank Ordered Probit SEM Using Gibbs Simulation (J=6,R=5)

The usual Monte Carlo results for 500 experiments with J = 6 ranked alternatives are reported
in Table 8 for data sets containing 100 observations and R = 5 simulations per observation. These
statistics are comparable to those in Table 5 for the MSL estimator of the same model with the
same number of simulation replications. The biases for the true parameter values appear to be
appreciably smaller in the SEM estimator, while the sampling variances are larger. We cannot
judge either estimator as an approximation to the MLE, because the latter is prohibitively di�cult
to compute.

Although truncated simulation is generally more costly, the SEM estimator remains a promising
general approach to combining simulation with relatively e�cient estimation. It is the only method
that combines unbiased simulation of the score with optimization of an objective function and the
latter property appears to o�er substantial computational advantages.
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4.4.2 Censored Simulation of Ratios

The censored simulation methods in Section 3.2 can also be applied to approximating the e�cient
score. These simulation methods tend to be much faster computationally than the truncated
simulation methods, but censored simulations introduce simulation bias in much the same way as
in the MSL. Censored simulation can be applied to discrete LDV models by noting that the score
function of an LDV model with observation rule y � �(y�) can generally be written in the ratio
form:

r�f(�; y)

f(�; y)
=

R
fy�j�(y�)=ygr�dF (�; y

�)R
fy�j�(y�)=yg dF (�; y�)

=
E(r�dF (�; y�) j �(y�) = y)

Prfy� j �(y�) = yg ;

where F (�; y�jy) is the conditional c.d.f. of y given �(y�) = y. See subsection 2.6 for more details.
van Praag and Hop (1987), McFadden (1989), and Hajivassiliou and McFadden (1990) note that this
form of the score function o�ers the potential of estimation by simulation.26 A MSS estimator can
be constructed by simulating separately the numerator and denominator of the score expressions:

~sN (�) =
1

N

NX
n=1

~d(�; yn; !1n)

~p(�; yn; !2n)
; (43)

where ~d(�; yn; !1n) = 1=R1
PR1

r=1
~d(�; yn; !1nr) is an unbiased simulator of the derivative function

r�f(�; y) and ~p(�; yn; !2n) = 1=R2
PR2

r=1 ~p(�; yn; !2nr) is an unbiased function of the probability
expression f(�; yn). Hajivassiliou and McFadden (1990) prove that when the approximation of
the scores in ratio form is carried out using the GHK simulator, the resulting MSS estimator is
consistent and asymptotically normal when N !1 and R2=

p
N ! 1. The number of simulations

for the numerator expression, R1, a�ects the e�ciency of the resulting MSS estimator. Because
the unbiased simulator ~p(�; y; !2) of f(�; y) does not yield an unbiased simulator of the reciprocal
1=f(�; y) in the simulator 1=~p(�; y; !2), R2 must increase with sample size to obtain a consistent
estimator. This is analogous to simulation in MSL. In fact, this simulation scheme is equivalent to
MSL when !1 = !2 and ~d = r� ~p.

McFadden and Ruud (1992) note that MSM techniques can also be used generally to remove
the simulation bias in such MSS estimators. In discrete LDV models, where y has a sampling space
B that is countable and �nite, we can always write y as a vector of dummy variables for each of
the possible outcomes so that

E�(yi) = Prfyi = 1; �g = f(�; Y ) if Yi = 1; Yj = 0; j 6= i:

Thus,

E�

�r�f(�; y)

f(�; y)

�
= 0 =

X
Y 2B

f(�; Y ) � r�f(�; Y )

f(�; Y )

and the score can be written

r�f(�;y)
f(�;y) =

P
Y 2B 1 fy = Y g r�f(�;Y )

f(�;Y )

=
P

Y 2B [1 fy = Y g � f(�; Y )] r�f(�;Y )
f(�;Y ) :

(44)

26See Hajivassiliou (1993c) for a survey of the development of simulation estimation methods for LDV models.
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Provided that the \residual" 1 fy = Y g�f(�; Y ) and the \instrumental variables"r�f(�; Y )=f(�; Y )
are simulated independently, equation (44) provides a moment function for the MSM. In this form,
the instrumental variables ratio can be simulated with bias as in (43) because the residual term
is independently distributed and possesses a marginal expectation equal to zero at the population
parameter value. For example, we can alter (43) to

~sN (�) =
1

N

NX
n=1

X
Y 2B

[1 fyn = Y g � ~p(�; Y; !1n)]
~d(�; Y; !2n)

~p(�; Y; !2n)
; (45)

where !1 and !2 are independent pseudo-random variables. While such bias does not introduce
inconsistency into the MSM estimator, the simulation bias does introduce ine�ciency because the
moment function is not an unbiased simulator of the score function. This general approach underlies
the estimation method for multinomial probit originally proposed by McFadden (1989).

4.4.3 MSM versus MSS

MSM and MSS are natural competitors in estimation with simulation because each has a compara-
tive advantage. MSM uses censored simulations that are cheap to compute, but it cannot simulate
the score without bias within a �nite number of calculations. MSS uses truncated simulations
that are expensive to compute (and introduce jumps in the objective function with A/R simula-
tions), but simulates the score (virtually) without bias. McFadden and Ruud (1992) make a general
comparison of the asymptotic covariance matrices that suggests when one method is preferable to
another.

Consider the special MSS case in which the simulations ~Y �(�; Y; !) are drawn from the latent
conditional distribution and the exact latent score r�`

� is available so that

~sMSS(�) = R�11
R1X
r=1

r�`
�[�; ~Y �(�; Y; !)]:

Then �S , the contribution of simulation to the covariance matrix of the estimator, has a useful
interpretation:

�S = (�� � �0)=R

where �� = E!fr�`
�(�; Y �)[r�`

�(�; Y �)]0g is the information matrix of the latent log-likelihood.
The simulation noise is proportional to the information loss due to partial observability.

In the simplest applications of censored simulation to the MSM, the simulations are independent
of sample outcomes and their contribution to the moment function is additively separable from the
contribution of the data: Thus we can write ~sMSM (�) = g(�; Y; !2) � ~g(�;!1; !2) (see (45)). In

that case, �S simpli�es to V
np

N [~g(�0;!1; !2)]
o
. In general, the simulation process makes R

independent replications of the simulations f!r; r = 1; : : : ; Rg, so that

~g(�;!1; !2) = R�1
RX
r=1

~g(�;!1r; !2)

and �S = R�1V�0 [~g(�0;!1; !2)]. In an important special case of censored simulation, the simulation
process makes R independent replications of the modeled data generating process, f ~Y (�;!1r); r =
1; : : : ; Rg, so that

~g(�;!1; !2) = R�12
R2X
r=1

g[�; ~Y (�;!1r); !2] (46)
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and �S = R�1V[g(�0; Y; !0)] = �M=R. Then the MSM covariance matrix equals 1 + 1=R times
the classical MOM covariance matrix without simulation G�1�M(G0)�1. Now let us specialize to
simulation of the score. For simplicity, suppose that the simulated moment functions are unbiased
simulations of the score: E[~sMSM(�) j Y ] = r�`(�; Y ). Of course in most cases, the MSM estimator
will have a simulation bias for the score. The asymptotic variance of the MSM estimator is

�M = limN!1V[~sMSM(�0)� r�`(�0; Y )]
= limN!1V[~sMSM(�0)] + �0

= �W +�0

where �S = �M=R and �W holds additional variation attributable to the simulation of the score.
If the MSS and MSM estimators use the same number of simulation replications, we can make
a simple comparison of the relative e�ciency of the two methods. The di�erence between the
asymptotic covariance matrices is

R�1��10 [�0 + (R+ 1)�W � (�� � �0)]�
�1
0 :

This expression gives guidance about the conditions under which censored simulation is likely to
dominate truncated. It is already obvious that if �W high, so that censored simulation is ine�cient
due to a poor approximation of the score, then truncated simulation is likely to dominate. On
the other hand, if �0 is low, because partial observability causes a large loss in information, then
estimation with censored simulation is likely to dominate truncated.

Thus, we might expect that the censored simulation method will dominate the truncated one
for the multinomial probit model, particularly if �W = 0. That, however, is a special case in which
a more e�cient truncated simulation estimator can be constructed from the censored simulation
estimator. Because E[~s(�) j Y ] = r�`(�; Y ),

E[g(�; Y; !2)� ~g(�;!1; !2)] = r�`(�; Y )] , E[~g(�;!1; !2)] = E
n
g[�; ~Y (�;!); !0]

o
= 0 8�:

The bias correction is obviously unnecessary and only increases the variance of the MSM estima-
tor. But an MSM estimator based on g(�; Y; !) is a truncated simulation MSM estimator; only
simulation for the particular Y observed is required. We conclude that the censored method can
outperform the truncated method only by choosing E![e(�)] 6= r�`(�; Y ) in such a way that the
loss in e�ciency in �M is o�set by low �0 and low �W .27

4.5 Bias Corrections

In this section, we interpret estimation with simulation as a general method for removing bias from
approximate parametric moment functions, following McFadden and Ruud (1992). The approxi-
mation of the e�cient score is the leading problem in estimation with simulation. In a comparison
of the MSM and MSS approximations, we have just described a simple trade-o�. On the one hand,
the simulated term in the residual of (45) that replaces the expectation in (44) is clearly redundant
when the instrumental variables are r�f(�; Y )=f(�; Y ): The expectation of the simulated terms
multiplied by the instruments is identically zero for all parameter values so that the simulation
merely adds noise to the score and the resulting estimator. On the other hand, the simulated resid-
ual is clearly necessary when the instruments are not ideal. Without the simulation, the moment
equation is invalid and the resultant estimators are inconsistent.

27The actual di�erence in asymptotic covariance matrices is more complicated than the formula above however,
because G 6= �M 6= �0.
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This trade-o� motivates a general structure of simulated moments estimators. We can interpret
the extra simulation term as a bias correction to an approximation of the score. For example, one
can view the substitution of non-ideal weights into the original score function as an approximation
to the score, chosen for its computational feasibility. Because the approximation introduces bias,
the bias is removed by simulating the (generally) unknown expectation of the approximate score.
Suppose the moment restrictions have a general form

E[s(�0; y;X) j X ] = 0:

When the moment function s is computationally burdensome, an approximation g(�; y;X;!) be-
comes a feasible alternative. The additional argument ! represents an ancillary statistic containing
the \coe�cients" of the approximation. In general, such approximation will introduce ine�ciency
and bias into MOM estimators constructed from g. Simulation of g over the distribution of y pro-
duces an approximate bias correction ~g(�;X;!0; !), where !0 represents the simulated component.
Thus, we consider estimators �̂ that satisfy

g(�̂; y;X; !)� ~g(�̂;X;!0; !) = 0 (47)

MSM estimators have this general form; and feasible MSS estimators generally do, too.

4.5.1 A Score Test for Estimator Bias

The appeal of simulation estimators without bias correction is substantial. Although, the simulation
of moments or scores overcomes a substantial computational di�culty in the estimation of LDV
models, there may remain practical di�culties in solving the simulated moment functions for the
estimators. Whereas maximum likelihood possesses a powerful relationship between the normal
equations and the likelihood function, moment equations generally do not satisfy such `integrability'
conditions. As a result, there is not even a guarantee that a root of the estimating equations exists.
Bias correction can introduce a signi�cant amount of simulation noise to estimators. For these
reasons, the approximation of the log-likelihood function itself through simulation still o�ers an
important opportunity to construct feasible and relatively e�cient estimators.

MSS, and particularly MSL, estimators can be used without bias correction if the bias is negli-
gible relative to the sampling error of the estimator and the magnitude of the true parameter. A
simple score test for signi�cant bias can be developed and implemented easily.

Conditional on the MSS estimator, the expectation of the simulated bias in the approximate
score should be zero. The conditional distribution of the elements of the bias correction are i.n.i.d.
random variables to which a central limit theorem can be applied. In addition, the White-Eicker
estimator of the covariance matrix of the bias elements is consistent so that the usual quadratic
statistic, measuring the statistical signi�cance of the bias term, can be computed. As an alternative
to testing the signi�cance of this statistic, the bias correction term can be used to compute a local
approximate con�dence region for the biases in the moment function or the estimated parameters.
This has the advantage of providing a way to assess whether the biases are important for the
purposes of inference.

5 Conclusion

In this chapter, we have described the use of simulation methods to overcome the di�culties in com-
puting the likelihood and moment functions of LDV models. These functions contain multivariate
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integrals that cannot be easily approximated by series expansions. However, unbiased simulators
of these integrals can be computed easily.

We began by reviewing the ways in which LDV models arise, describing the di�erences and
similarities in censored and truncated data generating processes. Censoring and truncation give
rise to the troublesome multivariate integrals. Following the LDV models, we described various
simulation methods for evaluating such integrals. Naturally, censoring and truncation play roles in
simulation as well. Finally, estimation methods that rely on simulation were described in the �nal
section of this chapter. We organized these methods into three broad groups: MSL, MSM, and
MSS. These are not mutually exclusive groups. But each group has a di�erent motivation: MSL
focuses on the log-likelihood function, the MSM on moment functions, and the MSS on the score
function. The MSS is a combination of ideas from MSL and MSM, treating the e�cient score of
the log-likelihood function as a moment function.

Software for implementing these methods is not yet widely available. But as such tools spread,
and as improvements in the simulators themselves are developed, simulation methods will surely
become a familiar tool in the applied econometrician's workshop.

6 Acknowledgements

We would like to thank John Geweke and Dan McFadden for very helpful comments. John Wald
provided expert research assistance. We are grateful to the National Science Foundation for partial
�nancial support, under grants SES-929411913 (Hajivassiliou) and SES-9122283 (Ruud).

References

Amemiya, T. 1984. Tobit Models: A Survey. Journal of Econometrics, 24, 3{61.

Avery, R., Hansen, L., and Hotz, V. 1983. Multiperiod Probit Models and Orthogonality Condition
Estimation. International Economic Review, 24, 21{35.

Bauwens, L. 1984. Bayesian Full Information Analysis of Simultaneous Equation Models using
Integration by Monte Carlo. Berlin: Springer-Verlag.

Beggs, S., Cardell, S., and Hausman, J. 1981. Assessing the potential demand for electric cars.
Journal of Econometrics, 17, 1{20.

Berkovec, J., and Stern, S. 1991. Job Exit Behavior of Older Men. Econometrica, 59, 189{210.

Bloemen, H., and Kapteyn, A. 1991. The Joint Estimation of a Non-linear Labour Supply Function
and a Wage Equation Using Simulated Response Probabilities. mimeo, Tilburg University.

Bock, R.D., and Jones, L.V. 1968. The measurement and prediction of judgement and choice. San
Francisco: Holden-Day.

Bolduc, D. 1991. Generalized Autoregressive Errors in the Multinomial Probit Model. Transporta-
tion Research B | Methodological. forthcoming.

Bolduc, D., and Kaci, M. 1991.Multinomial Probit Models with Factor-Based Autoregressive Errors:
A Computationally E�cient Estimation Approach. mimeo, Universit�e Laval.

40



B�orsch-Supan, A., and Hajivassiliou, V. 1993. Smooth Unbiased Multivariate Probability Simula-
tors for Maximum Likelihood Estimation of Limited Dependent Variable Models. Journal of
Econometrics, 58(3), 347{368.

B�orsch-Supan, A., Hajivassiliou, V., Kotliko�, L., and Morris, J. 1992. Health, Children, and
Elderly Living Arrangements: A Multi-Period Multinomial Probit Model with Unobserved
Heterogeneity and Autocorrelated Errors. Pages 79{108 of: Wise, D. (ed), Topics in the
Economics of Aging. Chicago: University of Chicago Press.

Chib, S. 1993. Bayes Regression with Autoregressive Errors: A Gibbs Sampling Approach. Journal
of Econometrics, 58(3), 275{294.

Clark, C. 1961. The Greatest of a Finite Set of Random Variables. Operations Research, 9, 145{162.

Daganzo, C. 1980. Multinomial Probit. New York: Academic Press.

Daganzo, C., Bouthelier, F., and She�, Y. 1977. Multinomial Probit and Qualitative Choice: A
Computationally E�cient Algorithm. Transportation Science, 11, 338{358.

Davis, P., and Rabinowitz, P. 1984. Methods of Numerical Integration. New York: Academic Press.

Dempster, A.P., Laird, N.M., and Rubin, D.B. 1977. Maximum likelihood from incomplete data
via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39, 1{38.

Devroye, L. 1986. Non-Uniform Random Variate Generation. New York: Springer.

Dubin, J., and McFadden, D. 1984. An Econometric Analysis of Residential Electric Appliance
Holdings and Consumption. Econometrica, 52(2), 345{362.

Du�e, D., and Singleton, K. 1993. Simulated Moments Estimation of Markov Models of Asset
Prices. Econometrica, 61(4), 929{952.

Dutt, J. 1973. A Representation of Multivariate Normal Probability Integrals by Integral Trans-
forms. Biometrika, 60, 637{645.

Dutt, J. 1976. Numerical Aspects of Multivariate Normal Probabilities in Econometric Models.
Annals of Economic and Social Measurement, 5, 547{562.

Feller, W. 1971. An Introduction to Probability Theory and its Applications. New York: Wiley.

Fishman, G. 1973. Concepts and Methods of Digital Simulation. New York: Wiley.

Geman, S., and Geman, D. 1984. Stochastic Relaxation, Gibbs Distributions, and the Bayesian
Restoration of Images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6,
721{741.

Geweke, J. 1989. Bayesian Inference in Econometric Models Using Monte Carlo Integration. Econo-
metrica, 57.

Geweke, J. 1992. E�cient Simulation from the Multivariate Normal and Student-t Distributions
Subject to Linear Constraints. Computing Science and Statistics: Proceedings of the Twenty-
Third Symposium, 571{578.

41



Goldfeld, S., and Quandt, R. 1975. Estimation in a Disequilibrium Model and the Value of Infor-
mation. Journal of Econometrics, 3(3), 325{348.

Gourieroux, C., and Monfort, A. 1990. Simulation Based Inference in Models with Heterogeneity.
mimeo, INSEE.

Gourieroux, C., Monfort, A., Renault, E., and Trognon, A. 1984b. Pseudo Maximum Likelihood
Methods: Applications to Poisson Models. Econometrica, 52, 701{720.

Gourieroux, C., Monfort, A., Renault, E., and Trognon, A. 1984a. Pseudo Maximum Likelihood
Methods: Theory. Econometrica, 52, 681{700.

Gronau, R. 1974. The E�ect of Children on the Housewife's Value of Time. Journal of Political
Economy, 81, 168{199.

Hajivassiliou, V. 1986. Serial Correlation in Limited Dependent Variable Models: Theoretical and
Monte Carlo Results. Cowles Foundation Discussion Paper No.803.

Hajivassiliou, V. 1990. The Method of Simulated Scores: A Presentation and Comparative Evalua-
tion. mimeo, Cowles Foundation for Research in Economics, Yale University.

Hajivassiliou, V. 1992. The Method of Simulated Scores: A Presentation and Comparative Evalua-
tion. Cowles Foundation Discussion Paper, Yale University.

Hajivassiliou, V. 1993a. Estimation by Simulation of the External Debt Repayment Problems.
Cowles Foundation Discussion Paper, Yale University.

Hajivassiliou, V. 1993b. Simulating Normal Rectangle Probabilities and Their Derivatives: The
e�ects of Vectorization. International Journal of Supercomputer Applications, ?, ?

Hajivassiliou, V. 1993c. Simulation Estimation Methods for Limited Dependent Variable Models.
Pages 519{543 of: Maddala, G.S., Rao, C.R., and Vinod, H.D. (eds), Handbook of Statistics
(Econometrics), vol. 11. Amsterdam: North-Holland.

Hajivassiliou, V., and McFadden, D. 1990. The Method of Simulated Scores, with Application to
Models of External Debt Crises. Cowles Foundation Discussion Paper No. 967.

Hajivassiliou, V., , and Ioannides, Y. 1991. Switching Regressions Models of the Euler Equation:
Consumption Labor Supply, and Liquidity Constraints. mimeo, Cowles Foundation for Research
in Economics, Yale University.

Hajivassiliou, V., McFadden, D., and Ruud, P. 1992. Simulation of Multivariate Normal Orthant
Probabilities: Methods and Programs. mimeo, Cowles Foundation for Research in Economics,
Yale University.

Hammersley, J., and Handscomb, D. 1964. Monte Carlo Methods. London: Methuen.

Hanemann, M. 1984. Discrete/Continuous Models of Consumer Demand. Econometrica, 52(3),
541{562.

Hansen, L.P. 1982. Large Sample Properties of Generalized Method of Moments Estimators. Econo-
metrica, 50, 1029{1054.

42



Hausman, J., and Wise, D. 1978. A Conditional Probit Model for Qualitative Choice: Discrete
Decisions Recognizing Interdependence and Heterogeneous Preferences. Econometrica, 46,
403{426.

Hausman, J., and Wise, D. 1979. Attrition Bias in Experimental and Panel Data: The Gary
Negative Income Maintenance Experiment. Econometrica, 47(2), 445{473.

Heckman, J. 1974. Shadow Prices, Market Wages, and Labor Supply. Econometrica, 42, 679{694.

Heckman, J. 1979. Sample Selection Bias as a Speci�cation Error. Econometrica, 47, 153{161.

Heckman, J. 1981. Dynamic Discrete Models. Pages 179{195 of: Manski, C., and McFadden, D.
(eds), Structural Analysis of Discrete Data with Econometric Applications. Cambridge: MIT
Press.

Hendry, D. 1984. Monte Carlo Experimentation in Econometrics. Pages 937{976 of: Griliches, Z.,
and Intriligator, M. (eds), Handbook of Econometrics, vol. 2. Amsterdam: North Holland.

Horowitz, J., Sparmonn, J., and Daganzo, C. 1981. An Investigation of the Accuracy of the Clark
Approximation for the Multinomial Probit Model. Transportation Science, 16, 382{401.

Hotz, V.J., and Miller, R. 1989. Conditional Choice Probabilities and the Estimation of Dynamic
Programming Models. GSIA Working Paper 88-89-10.

Hotz, V.J., and Sanders, S. 1991. The Estimation of Dynamic Discrete Choice Models by the
Method of Simulated Moments. NORC, University of Chicago.

Hotz, V.J., Miller, R., Sanders, S., and Smith, J. 1991. A Simulation Estimator for Dynamic
Discrete Choice Models. mimeo, NORC, University of Chicago.

Keane, M. 1990. A Computationally E�cient Practical Simulation Estimator for Panel Data,
with Applications to Estimating Temporal Dependence in Employment and Wages. mimeo,
University of Minnesota.

Keane, M. 1993. Simulation Estimation Methods for Panel Data Limited Dependent Variable
Models. Page ? of: Maddala, G.S., Rao, C.R., and Vinod, H.D. (eds), Handbook of Statistics
(Econometrics), vol. 11. Amsterdam: North-Holland.

Kloek, T., and van Dijk, H. 1978. Bayesian Estimates of Equation System Parameters: An Appli-
cation of Integration by Monte Carlo. Econometrica, 46, 1{20.

Laroque, G., and Salani�e, B. 1989. Estimation of Multi-Market Disequilibrium Fix-Price Models:
An Application of Pseudo Maximum Likelihood Methods. Econometrica, 831{860.

Laroque, G., and Salani�e, B. 1990. The Properties of Simulated Pseudo-Maximum Likelihood
Methods: The Case of the Canonical Disequilibrium Model. Working Paper No. 9005, CREST-
Departement de la Recherche, INSEE.

Lee, B.-S., and Ingram, B. 1991. Simulation Estimation of Time-Series Models. Journal of Econo-
metrics, 47, 197{205.

Lee, L.-F. 1978. Unionism and Wage Rates: A Simultaneous Equation Model with Qualitative and
Limited Dependent Variables. International Economic Review, 19, 415{433.

43



Lee, L.-F. 1979. Identi�cation and Estimation in Binary Choice Models with Limited (Censored)
Dependent Variables. Econometrica, 47, 977{996.

Lee, L.-F. 1993. On the E�ciency of Methods of Simulated Moments and Maximum Simulated
Likelihood Estimation of Discrete Response Models. Econometric Theory. forthcoming.

Lerman, S., and Manski, C. 1981. On the Use of Simulated Frequencies to Approximate Choice
Probabilities. Pages 305{319 of: Manski, C., and McFadden, D. (eds), Structural Analysis of
Discrete Data with Econometric Applications. Cambridge: MIT Press.

Lewis, H.G. 1974. Comments on Selectivity Biases in Wage Comparisons. Journal of Political
Economy, 82(6), 1145{1155.

Maddala, G.S. 1983. Limited Dependent and Qualitative Variables in Econometrics. Cambridge:
Cambridge University Press.

McCulloch, R., and Rossi, P.E. 1993. An Exact Likelihood Analysis of the Multinomial Probit
Model. Working Paper 91-102, Graduate School of Business, University of Chicago.

McFadden, D. 1973. Conditional Logit Analysis of Qualitative Choice Behavior. Pages 105{142
of: Zarembka, P. (ed), Frontiers in Econometrics. New York: Academic Press.

McFadden, D. 1981. Econometric Models of Probabilistic Choice. Pages 198{272 of: Manski, C.,
and McFadden, D. (eds), Structural Analysis of Discrete Data with Econometric Applications.
Cambridge: MIT Press.

McFadden, D. 1986. Econometric Analysis of Qualitative Response Models. Pages 1395{1457 of:
Griliches, Z., and Intriligator, M. (eds), Handbook of Econometrics, vol. 2. Amsterdam: North
Holland.

McFadden, D. 1989. A Method of Simulated Moments for Estimation of Discrete Response Models
without Numerical Integration. Econometrica, 57, 995{1026.

McFadden, D., and Ruud, P. 1992. Estimation by Simulation. University of California at Berkeley
Working Paper.

Moran, P. 1984. The Monte Carlo Evaluation of Orthant Probabilities for Multivariate Normal
Distributions. Australian Journal of Statistics, 26, 39{44.

M�uhleisen, M. 1991. On the Use of Simulated Estimators for Panel Models with Limited-Dependent
Variables. mimeo, University of Munich.

Newey, W.K., and McFadden, D.L. 1993. Estimation in Large Samples. Page ? of: Engle, Rob,
and McFadden, Daniel (eds), Handbook of Econometrics, vol. Vol. 4. North Holland.

Owen, D. 1956. Tables for Computing Bivariate Normal Probabilities. Annals of Mathematical
Statistics, 27, 1075{1090.

Pakes, A. 1992. Estimation of Dynamic Structural Models: Problems and Prospects Part II: Mixed
Continuous-Discrete Controls and Market Interactions. mimeo, Yale University.

Pakes, A., and Pollard, D. 1989. Simulation and the Asymptotics of Optimization Estimators.
Econometrica, 57, 1027{1057.

44



Poirier, D., and Ruud, P.A. 1988. Probit with Dependent Observations. Review of Economic
Studies, 55, 593{614.

Press, W., Flannery, B., Teukolsky, S., and Vetterling, W. 1986. Numerical Recipes. Cambridge:
Cambridge University Press.

Quandt, R. 1972. A New Approach to Estimating Switching Regressions. Journal of the American
Statistical Association, 67, 306{310.

Quandt, R. 1986. Computational Problems in Econometrics. Pages 1395{1457 of: Griliches, Z.,
and Intriligator, M. (eds), Handbook of Econometrics, vol. 1. Amsterdam: North Holland.

Rubinstein, R. 1981. Simulation and the Monte Carlo Method. New York: Wiley.

Rust, J. 1992. Estimation of Dynamic Structural Models: Problems and Prospects Part II: Discrete
Decision Processes. SSRI Working Paper #9106, University of Wisconsin at Madison.

Ruud, P. 1986. On the Method of Simulated Moments for the Estimation of Limited Dependent
Variable Models. mimeo, University of California at Berkeley.

Ruud, P. 1990. A Note on Computing Multinomial Probit Estimators by Simulation. Department
of Economics, University of California at Berkeley.

Ruud, P. 1991. Extensions of Estimation Methods Using the EM Algorithm. Journal of Econo-
metrics, 49, 305{341.

Stern, S. 1992. A Method for Smoothing Simulated Moments of Discrete Probabilities in Multino-
mial Probit Models. Econometrica, 60, 943{952.

Stroud, A. 1971. Approximate Calculation of Multiple Integrals. New York: Prentice Hall.

Thisted, R. 1988. Elements of Statistical Computing. New-York: Chapman-Hall.

Thurstone, L. 1927. A Law of Comparative Judgement. Psychological Review, 34, 273{286.

Tierny, L. 1992. Markov Chains for Exploring Posterior Distributions. University of Minnesota
Working Paper.

Tobin, J. 1958. Estimation of Relationships for Limited Dependent Variables. Econometrica, 26,
24{36.

van Dijk, H.K. 1987. Some Advances in Bayesian Estimation Methods Using Monte Carlo Inte-
gration. Pages 205{261 of: Fomby, T.B., and Rhodes, G.F. (eds), Advances in Econometrics,
vol. 6. Greenwich, Connecticut: JAI Press.

van Praag, B.M.S., and Hop, J.P. 1987. Estimation of Continuous Models on the Basis of Set-Valued
Observations. Erasmus University Working Paper, presented at the ESEM Copenhagen.

van Praag, B.M.S., Hop, J.P., and Eggink, E. 1989. A Symmetric Approach to the Labor Market by
Means of the Simulated Moments Method with an Application to Married Females. Erasmus
University Working Paper, presented at the EEA Augsburg.

45



van Praag, B.M.S., Hop, J.P., and Eggink, E. 1991. A Symmetric Approach to the Labor Market
by Means of the Simulated EM-Algorithm with an Application to Married Females. Erasmus
University Working Paper, presented at the ESEM Cambridge.

West, M. 1990. Bayesian Computations: Monte-Carlo Density Estimation. Duke University, Dis-
cussion Paper #90-A10.

46


