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I. REVIEW OF MULTIPLE LINEAR REGRESSION

I.1 Introduction

To motivate multiple regression, let’s consider the demand for milk by households. To

eliminate the supply curve we will assume that milk is produced with a constant Marginal

Cost technology so that quantities do not affect equilibrium prices. Let m be the quantity

of milk purchased (say each week) and let I be household income. Suppose the household

has the utility function

U(m, I − pm) = mα(I − pm)1−α (I.1)

where p is the price of milk faced by the household and U is the utility function for the

household defined in terms of milk and all other goods. The Marshallian demand function

in terms of log milk consumption takes the form:

lnm = lnα + ln I − ln pm. (I.2)

In other words, under Cobb-Douglas utility function the amount of milk purchased by

the household is log-linear in price and income, with coefficients on income and the price of

milk equal to 1 in absolute value. We might specify the following regression equation:

lnm = β1 + β2I + β3p + u (I.3)

The disturbance term u accounts for different tastes for milk across households associated

with different values of α. Households with the same income and facing the same prices might

have different milk consumptions because of differences in tastes: for example, one household

might have young children which would push up total milk consumption.

Even with tastes differing across households, the Cobb-Douglas model implies two hy-

potheses about the MLRM: β2 = 1 and β3 = −1. These hypotheses might be interesting to

test given data on milk prices, household income, and household consumption of milk.



But notice that this demand function has two variables: income and milk price. We

could certainly estimate a simple linear regression model including only one variable or the

other (either price or income). But since both variables can be measured much less would be

left to the residual term if both were included in the analysis. Furthermore, the joint test of

the Cobb-Douglas model in the paragraph above could not be implemented. The Multiple

LRM is generalizes the simple LRM to allow two or more variables on the right hand side

of the PRE.

I.2 Definition of the Multiple Regression Model

I.2.a Assumptions A0-A3

The multiple linear regression model (MLRM) generalizes the simple LRM:

A.0. Sample Information

The data consist of N vectors of k related variables.

Sample ≡ [(X21, X31, . . . , Xk1, Y1),

(X22, X32, . . . , Xk2, Y2), (I.4)

...

(X2N , X3N , . . . , XkN , YN), ].

where Xji is the value of the jth variable for the ith observation. For example, X2

might be income, X3 might be the price of milk, X4 might be number of children, etc.

Then X43 equals the number of children in household (or observation) 3. We begin

numbering the X variables at 2 to hold a place for the constant term.

A.1. The Population Regression Equation(PRE).

The variables in X and Y are related by:

Y = β1 + β2X2 + β3X3 + . . . + βkXk + u (I.5)



Each coefficient βj is an unknown population parameter. Notice that the simple linear

regression model is the special case of the multiple regression model, k = 2. Since an

economic variable like Y is undoubtedly influenced by many potentially observable

influences (like price, income) there is perhaps a better way to interpret any linear

regression model as a special case of a larger (greater k) model. In particular, we

should think of the smaller model as a difference in the observed sample information.

If we do not observe all the factors that influence Y , then we have a a sample restricted

in the X variables that we can observe. We do not necessarily have the wrong model

if we only include one variable in the regression when there should be many.

The sample for a multiple regression model is written:

Y1 = β1 + β2X21 + β3X31 + . . . + βkXk1 + u1

Y2 = β1 + β2X22 + β3X32 + . . . + βkXk2 + u2 (I.6)

...

YN = β1 + β2X2N + β3X3N + . . . + βkXkN + uN

A.2? The PRE written in Matrix Notation

It is much easier to work with the multiple regression model in matrix notation. To

do this we have to define several vectors and matrices:
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X ≡
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Note: The subscripts for the matrix X are the reverse of the usual

row/column ordering. Why? We want to ”bind” the variable name first (X2

refers to variable number 2), but we naturally write an equation on one line

(or row), forcing us to have X2 refer to a column rather than a row.

With the notation above, all the sample information is represented by one matrix

equation.

y = Xβ + u (I.11)

I.2.b Interpretation of βj in the LRM

Take expectations of both sides of (premat):

E[Yi|X2, X3, . . . , Xk] = β1 + β2X2 + β3X3 + . . . + βkXk + E[u|X2, X3, . . . , Xk] (I.12)

Then, using basic calculus we see

∂E[Yi|X2, X3, . . . , Xk]
∂Xj

= βj (I.13)

We can interpret the coefficient on the jth variable to be the partial derivative of the expected

value of Y with respect to a change in the jth variable. For example, if Y is log-consumption

of milk and X2 is the log of household income, then β2 is the income elasticity of milk demand.

I.3 Derivation of OLS Estimates for the Multiple Regression Model

I.3.a Definition of variables used in OLS estimation
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ŷ ≡ Xβ̂ (I.15)

e ≡ y − ŷ = y −Xβ̂ (I.16)

SS ≡ e′e (I.17)

OLS estimates of β minimize the scalar function SS. In class we derive the OLS estimator

for the MLRM:

β̂OLS ≡ (X ′X)−1X ′y. (I.18)

This expression is only meaningful if the k × k matrix X ′X is invertible. We rely on the

following result which we will not prove:

X ′X is invertible if and only if The columns of X (corresponding to variables in

the data set) are linearly independent of each other.

Linear independence means that no column can be written as a linear combination of

the others. You might recall that this is the same as saying that X has full rank. You may

be tempted to distribute the inverse operator through the matrix multiplication:

(X ′X)−1 = X−1X−1

If this is possible, then β̂OLS reduces to X−1y. But note that one can distribute the inverse

operator only if each matrix in the multiplication has an inverse. X is a N × k, and can only

have an inverse if k = N , because only square matrices have inverses. Therefore, if k < N

then it is not possible to simplify (I.18) any more.

OLS in 3 Special Cases of the MLRM

Case.1. k = 1 (only a constant term appears on the right hand side)

Now X is simply a column of 1’s and must have full rank. X ′X then equals the scalar

N (because it equals 1 ∗ 1 + 1 ∗ 1 + ... + 1 ∗ 1 = N . The matrix X’y simply equals the

sum of Y values in the sample. So the OLS estimate β̂1 reduces to Ȳ when only a

constant term is included in the regression.

Case.2. k = 2 (simple LRM)



This is the case studied as the Simple LRM. You should verify that:
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Then you should use the formula for the inverse of a 2 × 2 matrix to get (X ′X)−1.

With some manipulation it is possible to show that (I.19) gives back exactly the scalar

formulas for β̂1 and β̂2 for the case k = 2.

Case.3. k = N

In this case we have as many parameters to estimate as we have observations. We

have N equations in N unknowns. As long as X (which is now square N ×N and k× k

since N = k) has an inverse, then OLS will find the estimates that satisfy the equation

y = Xβ̂, which is simply β̂ = X−1y. But we already have seen that (I.18) collapses to

this expression if X is invertible. The prediction error is identically equal to 0 for each

observation because we can perfectly explain each observation. If X is not invertible,

then we cannot find N different values of β̂. We no longer have a system of linearly

independent equations because X is no longer full rank.

Using the derived formulas for the OLS estimates we get the OLS prediction and error

formulas:

ŷ = X(X ′X)−1X ′y (I.20)

e = (I −X(X ′X)−1X ′)y

σ̂2 = e′e/(N − 2) = 1
N − 2y′(I −X(X ′X)−1X ′)′(I −X(X ′X)−1X ′)y

= 1
N − 2y′(I −X(X ′X)−1X ′)y

Note that each of these expressions except the last takes the form ”some matrix that involves

only X” × the vector y. In other words, each is a linear function of the Y observations in the

sample. The final expression is different since it includes y′ and y.

Exercise: Use the formulas in (I.20) to derive computational properties of

OLS estimates for the MLRM that are analogous to those derived for the simple

LRM.



I.4 Computing and Interpreting OLS Estimates of the MLRM

Two Examples

Ex.1. Purely Numerical Example
. list y x1 x2 x3
y x1 x2 x3
1. -6.545413 1 1 0
2. -1.589974 2 4 .6931472
3. 1.504102 3 9 1.098612
4. -5.820597 4 16 1.386294
5. -10.82546 5 25 1.609438
6. -6.8942 6 36 1.791759
7. -13.92935 7 49 1.94591
8. -19.82583 8 64 2.079442
9. -17.99812 9 81 2.197225
10. -16.14051 10 100 2.302585

* Note that x2 = x1 ∗ x1, which is okay because x2 is not LINEARLY dependent
* on x1

. regress y x1 x2 x3

Source | SS df MS Number of obs = 10
---------+------------------------------ F( 3, 6) = 14.91
Model | 402.13325 3 134.044417 Prob > F = 0.0035
Residual | 53.9568585 6 8.99280976 R-square = 0.8817
---------+------------------------------ Adj R-square = 0.8225
Total | 456.090108 9 50.6766787 Root MSE = 2.9988
------------------------------------------------------------------------------
y | Coef. Std. Err. t P>|t| [95 Conf. Interval]
---------+--------------------------------------------------------------------
x1 | -18.23062 6.387585 -2.854 0.029 -33.86047 -2.600757
x2 | .7900252 .3449069 2.291 0.062 -.0539316 1.633982
x3 | 32.77203 11.73369 2.793 0.031 4.060729 61.48333
cons | 10.54565 5.461673 1.931 0.102 -2.81858 23.90989
------------------------------------------------------------------------------

* If Stata didn’t have the regress command, you could use
* Stata matrix commands to compute OLS estimates using (I.18)
* See "help matrix" in Stata
* The accum subcommand computes X’X using the variables you list
. matrix accum XpX = x1 x2 x3
. matrix list XpX, nohalf
x1 x2 x3 cons
x1 385 3025 102.08283 55
x2 3025 25333 776.24766 385
x3 102.08283 776.24766 27.650244 15.104413
cons 55 385 15.104413 10

* The inv() function computes the matrix inverse
. matrix Xi = inv(XpX)



. matrix list Xi, nohalf
x1 x2 x3 cons
x1 4.5370967 -.24149327 -8.1097843 -3.407188
x2 -.24149327 .01322843 .41656987 .18971409
x3 -8.1097843 .41656987 15.309946 5.4410995
cons -3.407188 .18971409 5.4410995 3.3170804

* the vecaccum subcommand treats the first listed variable as the y vector
* and computes X’y
. matrix vecaccum Xy = y x1 x2 x3
. matrix Xy = Xy’
. matrix list Xy, nohalf
y
x1 -703.48823
x2 -5634.6157
x3 -182.33711
cons -98.065355

. matrix beta = Xi * Xy

. matrix list beta, nohalf
y
x1 -18.230615
x2 .79002516
x3 32.77203
cons 10.545653

* Note that the vector beta is identical to the "coef" column in the regress
* output table
* This computes the estimated variance matrix - discussed later.
. matrix VCM = 8.99280976 * Xi
. matrix l VCM, nohalf
x1 x2 x3 cons
x1 40.801248 -2.1717031 -72.929747 -30.640194
x2 -2.1717031 .11896076 3.7461336 1.7060627
x3 -72.929747 3.7461336 137.67943 48.930773
cons -30.640194 1.7060627 48.930773 29.829873

Ex.2. Substantive Example

Does a person’s regligious background relate to their sexual behavior? Or, more to

the point, was Billy Joel right when he sang “Catholic girls start much too late?”.

We can actually study this question ”scientifically” using the NSLY used in one or

more homework assignments. Here is an annotated log file for the analysis, including

data cleaning, summary statistics, and estimates.
. keep relig fage* sex
. * to focus on Billy’s refrain, look only at young women
. drop if sex==1
(6403 observations deleted)



. * missing values of relig coded as missing

. drop if relig<0
(20 observations deleted)

. * religion is coded into 10 categories, will collapse to 4

. tab relig
IN WHAT|
RELIGION WAS|
R RAISED -| Freq. Percent Cum.
------------+-----------------------------------
0 | 221 3.53 3.53
1 | 261 4.17 7.70
2 | 1796 28.68 36.37
3 | 95 1.52 37.89
4 | 320 5.11 43.00
5 | 523 8.35 51.35
6 | 167 2.67 54.02
7 | 2159 34.47 88.49
8 | 58 0.93 89.41
9 | 663 10.59 100.00
------------+-----------------------------------
Total | 6263 100.00

. gen none = cond(relig==0,1,0)

. gen prot = cond(relig<7&relig>0,1,0)

. gen cath = cond(relig==7,1,0)

. * Apologize for grouping everyone else into one bundle

. gen oth = cond(relig>7,1,0)

. * Hey, why not have a recoded religion variable (4 values)?

. gen relig2 = none + 2*prot + 3*cath + 4*oth

. tab relig2
relig2| Freq. Percent Cum.
------------+-----------------------------------
1 | 221 3.53 3.53
2 | 3162 50.49 54.02
3 | 2159 34.47 88.49
4 | 721 11.51 100.00
------------+-----------------------------------
Total | 6263 100.00

. * Who is raised a 2? We need labels!!

. label define religions 1 "none" 2 "protest" 3 "catholic" 4 "non chrst"

. label values relig2 religions

. tab relig2
relig2| Freq. Percent Cum.
------------+-----------------------------------
none | 221 3.53 3.53
protest | 3162 50.49 54.02
catholic | 2159 34.47 88.49
non chrs | 721 11.51 100.00
------------+-----------------------------------
Total | 6263 100.00



. descr fage*
3. fage83 byte 8.0g F - AGE @FIRST SEXUAL INTERCOUR
4. fage84 byte 8.0g F - AGE FIRST SEXUAL INTERCOURS
5. fage85 byte 8.0g F AGE 1ST HAD SEXUAL INTERCOURS

. * first the person is asked if they have ever had

. * sexual intercourse. IF YES for the first time, then the person is

. * asked age at first intercourse. IF NO or YES in earlier year then

. * fage is coded as negative.

. gen byte age = fage83 if fage83>0
(1259 missing values generated)

. * this adds people who said yes for first time in 1984

. replace age = fage84 if fage84>0
(2522 real changes made)

. * now 1985

. replace age = fage85 if fage85>0
(245 real changes made)

. * The variable age is now the age of first intercourse of

. * all people who have had intercourse by 1985

. tab age
age| Freq. Percent Cum.
------------+-----------------------------------
2 | 1 0.02 0.02
3 | 1 0.02 0.04
8 | 3 0.05 0.09
9 | 4 0.07 0.16
10 | 11 0.20 0.36
11 | 11 0.20 0.55
12 | 29 0.52 1.07
13 | 95 1.70 2.77
14 | 236 4.22 6.99
15 | 521 9.31 16.30
16 | 1020 18.23 34.54
17 | 1059 18.93 53.47
18 | 1134 20.27 73.74
19 | 620 11.08 84.82
20 | 370 6.61 91.44
21 | 231 4.13 95.57
22 | 124 2.22 97.78
23 | 62 1.11 98.89
24 | 32 0.57 99.46
25 | 18 0.32 99.79
26 | 9 0.16 99.95
27 | 3 0.05 100.00
------------+-----------------------------------
Total | 5594 100.00

. regress age none cath oth
Source | SS df MS Number of obs = 5594
---------+------------------------------ F( 3, 5590) = 31.10
Model | 460.623661 3 153.54122 Prob > F = 0.0000



Residual | 27598.6357 5590 4.93714414 R-squared = 0.0164
---------+------------------------------ Adj R-squared = 0.0159
Total | 28059.2594 5593 5.0168531 Root MSE = 2.222

------------------------------------------------------------------------------
age | Coef. Std. Err. t P>|t| [95 Conf. Interval]
---------+--------------------------------------------------------------------
none | -.4101829 .160575 -2.554 0.011 -.7249723 -.0953935
cath | .566983 .0659714 8.594 0.000 .4376534 .6963127
oth | .3732208 .0980449 3.807 0.000 .1810148 .5654268
cons | 17.2053 .0412396 417.204 0.000 17.12446 17.28615
------------------------------------------------------------------------------

. * significant t values indicate that that age

. * differs for that religion significantly compared to

. * protestant christians

. * If you ever want to see hatVar(beta hat), use the matrix "get(VCE)" command

. matrix eVbhat = get(VCE)

. matrix l eVbhat

symmetric eVbhat[4,4]
none cath oth cons
none .02578433
cath .0017007 .00435223
oth .0017007 .0017007 .00961279
cons -.0017007 -.0017007 -.0017007 .0017007

. * Why don’t we include dummy variable for each religion?

. regress age none cath oth prot
Source | SS df MS Number of obs = 5594
---------+------------------------------ F( 3, 5590) = 31.10
Model | 460.623661 3 153.54122 Prob > F = 0.0000
Residual | 27598.6357 5590 4.93714414 R-squared = 0.0164
---------+------------------------------ Adj R-squared = 0.0159
Total | 28059.2594 5593 5.0168531 Root MSE = 2.222

------------------------------------------------------------------------------
age | Coef. Std. Err. t P>|t| [95 Conf. Interval]
---------+--------------------------------------------------------------------
none | -.7834037 .1788735 -4.380 0.000 -1.134065 -.4327422
cath | .1937622 .1027795 1.885 0.059 -.0077254 .3952499
oth | (dropped)
prot | -.3732208 .0980449 -3.807 0.000 -.5654268 -.1810148
cons | 17.57853 .0889499 197.623 0.000 17.40415 17.7529
------------------------------------------------------------------------------

. * Answer: because X’X is not invertible!!!!

I.5 Random Variables and Matrix Notation

To derive the statistical properties of OLS estimates, we must define the notion of a

random vector and the notions of the mean and variance of a random vector.



Definitions

Def D.1. Random matrix

A random matrix is a matrix whose elements are random variables.

For example the vector of disturbance terms in (I.11) is a random vector since each

element of the vector is a random variable. A constant matrix is, of course, a special

type of random matrix in the same sense that a constant is a special case of a random

variable that does not vary across points in the sample space.

Def D.2. Expectation of a random matrix V (m× r).

The expectation of a random matrix is the matrix of expectations of each random

variable in the random vector. That is, let V be a m × r random matrix, and let vij

denote the random variable in the ith row and jth column of V . Then

E[V ] ≡
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Expectation is still a linear operator when defined this way. That is, if A is a n ×m

matrix of constants and C is a n× r vector of constants, then

E[AV + C] = AE[V ] + C (I.22)

m does not have to equal r. That is, the transformation matrix A may change the

dimensions of the random matrix. AV is a n × r random matrix, not a m × r. The

proof of this result requires you to write out what an element of the matrix AV + C

looks like, apply the expectation operator to it, and then see that the result is exactly

the same as if you had written out AE[V ] + C.

Def D.3. Variance of a random vector Let v be m× 1.

Then V ar(v) ≡ E [(v − E[v])(v − E[v])′].

This generalizes the notion of covariance, which itself generalized the notion of vari-

ance. Notice that (v−E[v])(v−E[v])′ is a m×m matrix (when v is m×1). So V ar(v) is



always a square matrix. If we multiply (v-E[v])(v-E[v])’ out, we can see that the ith

row, jth column of it contains (vi − E[vi])(vj − E[vj]). The expectation of this scalar

random variable is by definition:

E[(vi − E[vi])(vj − E[vj])] = Cov(vi, vj) (I.23)

Each element of V ar(v) is a covariance. The diagonal elements of V ar(v) are simply

the variances of the corresponding elements of the v vector. Since Cov(r, s) = Cov(s, r),

the matrix V ar(v) is symmetric. Summing this up,

V ar(v) =
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
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



(I.24)

Def D.4. Variance of a linear transformation

Let v be m× 1 random vector and A a n×m matrix of constants. Then

V ar[Av] = E [(Av −AE[v])(Av −AE[v])′] = E [A(v − E[v])(v − E[v])′A′] = AV ar[v]A′

(I.25)

This result generalizes the simpler result that when multiplying a random variable by

a constant it changes the variance by the square of the constant. In fact, if m = n = 1,

then we simply get back the old formula V ar(av) = a2V ar(v).

Here’s an example. Let v =
(

vw1
v2

)

with

V ar[v] =
(

σ2
1 0
0 σ2

2

)

(I.26)

This means that v contains two random variables that have zero covariance. (They

may be statistically independent of each other as well, since independence implies

zero covariance, but not necessarily). Let A = (2− 2). Then

w = Av = 2v1 − 2v2 (I.27)



is the random variable that is simply twice the difference of the two random variables

in the vector v. From the result above,

V ar[Av] =AV ar[v]A′

=(2 −2 )
(

σ2
1 0
0 σ2

2

)

(

2
−2

)

(I.28)

=
(

2σ2
1 − 2σ2

2

)

(

2
−2

)

= 4σ2
1 + 4σ2

2

This is exactly the formula we would have used without the matrix notation, since

the weighted sum of zero-covariance random variables is the sum of the variances

multiplied by the square of the weights. Keeping track of variances and covariances

in matrices is very convenient.

I.6 Assumptions of the LRM in Matrix Notation

Remaining Assumptions

A.2. The PRE is correct

A.3. The matrix X is fixed (non-random) across samples.

A.4. Mean 0 errors: E[u] = 0, where 0 is a N × 1 vector containing 0s.

A.5. V ar[u] = σ2I

In words: the variance matrix for u is diagonal (0 covariance across observations) and

has equal elements on the diagonal (equal variance).

A.6. u ∼ N(0, σ2I)

In words: The u vector is a normal vector, in the sense that each element of u is

normally distributed.

Notice that the only change between simple and multiple regression is the change in the

dimension of X. So if we had started out with matrix notation we would have been able to



use these forms of the assumptions from the start. That is, A4 above is the same as the

A4, just using different notation. The same is true of A3 through A7, the only difference

being that A5 and A6 can stated together.

Now we can start analyzing the statistical properties of OLS estimate β̂OLS and σ̂2.

I.7 Statistical Properties of OLS Estimates

Properties Under A0-A4

Prop.1. E[β̂] = β (OLS is unbiased)

Properties Under A0-A6

Prop.1. V ar[β̂] = σ2(X ′X)−1

Prop.2. β̂ is BLUE

Properties Under A0-A7

Prop.1. β̂ ∼ N(β, σ2(X ′X)−1)

Prop.2. σ̂2 ∼ χ2
N−k

Prop.3. σ̂2 is statistically independent of β̂

I.8 Formulating and Testing Multiple Hypotheses

The null hypothesis H0 : β2 = 0 places one restriction on the possible values of the

population parameters. But we might like to test several hypotheses together. For example,

H0 :β2 = 0

β3 = 0

β4 = 0

This null hypothesis places three simultaneous restriction on the population parameters.

One might think to test each of the restrictions with a t test and then somehow aggregate



the results of those t tests into a decision about all three restrictions. But remember that

a classical hypothesis test requires that α, the probability of the Type I error, must be

controlled for. That means we must be able to determine the probability of rejecting H0

when it is true. But each of the single t tests ignores the other restrictions, so setting α for

each test separately doesn’t determine the α for some combination of them. Without control

over α it is not possible to determine how strongly the data support or don’t support the

multiple hypothesis.

We need a single test statistic for a multiple hypothesis. We will restrict attention

to linear hypotheses, which are linear restrictions on the values contained in the parameter

vector β. A linear restriction on β takes the form

Rβ = c

where R is a r × k matrix of constants and c is a r × 1 vector of constants. For example, if

k = 5 then the joint hypothesis above could be written:





0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

















β1
β2
β3
β4
β5













=





0
0
0





Logical Steps of a F-tests for multiple hypotheses

Step.1. Compute RSS for the unrestricted model (without imposing H0). Denote this RSSUR.

Step.2. Impose H0 on the OLS estimates, run the resulting regression, and compute RSS.

Denote this RSSR.

That is when minimizing the sum of squared residuals (e’e), we will force the estimates

β̂ to satisfy Rβ̂ = c. Adding a restriction to the estimates reduces their ability to choose

values for β̂ to fit the data. It must be the case that RSSR ≥ RSSUR.

Step.3. Consider two mutually exclusive states of the world:

A. H0 is true



In this world the true parameters actually satisfy the restriction being imposed on

the estimated parameters in the restricted model. Imposing a true restriction should

not make very much difference in the results. That is, imposing a true restriction

should not change the amount of variation in Y attributed to the residual u. RSSUR

would not be very different from RSSR if H0 is true. The only reason why they

would differ at all if H0 is true is because allowing β̂ 6= R allows the estimates to

pick up sampling variation in the relationship between X and Y . On the other

hand,

B. H0 is false, HA is true.

Imposing a false restriction on the estimated parameters should affect OLS abilitly

to fit the Y observations. That is, if Rβ 6= c then this should be would be reflected

in Rβ̂ 6= c and the RSS in the restricted and unrestricted models would be much

different.

Step.4. Based on comparing these two possible states, a large difference in the restricted and

unrestricted RSS would therefore be evidence against H0.

The ratio (RSSR − RSSUR)/RSSUR tells us the proportionate change in the amount

of variation attributed to variance in u when the restriction is imposed. In fact,

under H0, the difference RSSR-RSSUR, which is a random variable, is distributed as

a chi-squared random variable with r degrees of freedom (the number of linear

restrictions), and it is distributed independently of the unrestricted RSS when H0 is

true. The intuition for this result is simply that the change in the RSS is due to

explaining the sampling variation if the restriction is indeed true. And the sampling

variation is independent of the model (by assumption u is drawn independently of

everything else going on in the LRM).

Step.5. Because the numerator and denominator are independent under H0, the expected

value of the ratio is the ratio of expected values.

The mean of a χ2 random variable equals its degrees of freedom. Therefore, the
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ratio given above would have a mean equal to r/(N − k) under HO. It makes sense to

normalize the ratio so that is has a mean of 1 under H0, which leads to test statistics

for linear hypotheses

F =
RSSR−RSSUR

r
RSSUR

N−k

(I.29)

Under H0, F follows the F (r,N − k) distribution. Therefore, we should reject H0 if

F ≥ F ?
α(r,N − k). The alternative is simply that the restriction is not true:

HA : Rβ 6= c

This is inherently a two-sided test, because we are not specifying which equations in

HA has a greater-than sign and which equations have a less-than sign.

Three Special Cases of F Tests

Case.1. r = 1

When the restriction matrix R contains one row (r = 1), then the test statistic is

F (1, N − k). A chi-square random variable with one degree of freedom is simply a

standard normal Z variable squared. So F (1, N − k) can be written Z2/C/(N − k),

where C is a χ2 with N − k degrees of freedom. But this expression is exactly the

square of a t variable with N − k degrees of freedom. Hence a t-test is a special case

of the more general F -test.

Case.2. H0 : β2 = β3 = . . . = βk = 0

This particular hypothesis (with r = k − 1 restrictions) is called the test for overall

significance. How would you interpret this hypothesis? Under this H0, the linear

regression model would reduce to Y = β1 +u. No X variables show up in the PRE. So

this hypothesis is the hypothesis that none of the X variables are linearly statistically

related to Y . The alternative is that at least one of the X variables is linearly related

to Y , although which ones that might be is not specified.
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Notice that the restricted model simply includes a constant. The OLS estimate of

β1 would in the restricted model be simply β̂1 = Ȳ . The RSSR would then simply be

TSS! The restricted unexplained variation is simply the total variation in Y around

its sample mean. Recall that TSS = ESS +RSS, so RSSR - RSSUR equals TSS−RSSR,

which equals ESSUR. So the test statistic for a test of overall significance reduces to

F =
ESS
k−1

RSSUR
N−k

(I.30)

which is simply the ratio of the two MS (mean-squared) entries in the analysis of

variance table. The F statistic reported in the Stata output table is exactly this

number.¡br¿

Case.3. Test for overall significance and k = 2

We can go even further here. If we have a simple LRM (k = 2), then the test for

overall significance collapses to H0 : β2 = 0, which we know can also be tested with

the t test β̂/ŝe(β̂2). But the F version of the test is F (1, N − k), which we know from

example 1 is the square of a t test. And, indeed, the overall F statistic is exactly

equal to the the square of the t statistic for β̂2 in a simple LRM. You should confirm

this fact.

I.8.a Example of specifying a joint hypothesis test

We return to the example started earlier concerning sexual behavior and religious back-

ground.
. * Let’s test whether expected age of first intercourse
. * differs
significantly by religious background . test none cath oth

( 1) none = 0.0
( 2) cath = 0.0
( 3) oth = 0.0

F( 3, 5590) = 31.10
Prob > F = 0.0000
. * Conclusion: We can reject the hypothesis that
. * expected age of first intercourse is the same for
. * all religious backgrounds



. *

. * Let’s perform the F test directly rather than using "test"

. * The regress above is the Unrestricted Model

. qui regress

. di "Unrestricted RSS = " result(4) Unrestricted RSS = 27598.636

. local u = result(4) . * The Restricted Model imposes H0 on the estimates, which

. * in this case means none cath oth all have zero coefficients

. * So the Unrestricted model is

. regress age

Source | SS df MS Number of obs = 5594
---------+------------------------------ F( 0, 5593) = .
Model | 0.00 0 . Prob > F = .
Residual | 28059.2594 5593 5.0168531 R-squared = 0.0000
---------+------------------------------ Adj R-squared = 0.0000
Total | 28059.2594 5593 5.0168531 Root MSE = 2.2398

------------------------------------------------------------------------------
age | Coef. Std. Err. t P>|t| [95 Conf. Interval]
---------+--------------------------------------------------------------------
cons | 17.42063 .0299471 581.714 0.000 17.36192 17.47934
------------------------------------------------------------------------------

. di "The Restricted RSS = " result(4) The Restricted RSS = 28059.259

. local r = result(4)

. di "So the F statistic for the test is " ((‘r’-‘u’)/3)/(‘u’/(5594-4)) So the F statistic
for the test is 31.099197
. * Notice that this is the F statistic reported by test, and
. * since this is a test of overall significance it is also
. * equal to the F statistic reported in the regression output

I.9 Prediction and Analysis of Variance in the MLRM

I.9.a Prediction

The OLS prediction for a particular Y or for the expected value of Y conditional on values

of X follows the same logic as in the simple LRM. Now, however, we want to predict for a

1×k vector of X values, which would describe one observation. Let X0 be the vector you want

to predict for. Then following the earlier discussion the mean and individual predictions are

the same,

Ê[Y0|X0] = X0β̂ (I.31)

Ŷ0|X0 = X0β̂ (I.32)



But the variances in our predictions vary:

V ar(Ê[Y0]) = X0
′V ar(β̂)X0 = σ2XO

′(X ′X)−1XO (I.33)

V ar(Ŷ0) = X0
′V ar(β̂)X0 + σ2 (I.34)

which must be estimated by

ˆV ar(Ê[Y0]) = σ̂2X0
′(X ′X)−1X0 (I.35)

ˆV ar(Ŷ0) = σ̂2(X0
′(X ′X)−1X0X0 + 1) (I.36)

Notice the sharp increase in the amount of computation required to compute the esti-

mated variance of a prediction as we move from k=2 to the general LRM. Now, to compute

a confidence interval for a prediction after the estimation process itself requires a 1×k vector

multiplied by a k × k matrix, the result (1× k vector) then multiplied by a k × 1. For k = 10,

this would take hours by hand. It is very important then to learn how to use Stata’s predict

command and/or Stata’s matrix algebra facilities.
.
. * Let’s compute 95 confidence intervals for expected
. * age for each religion - first, what is the critical t value?
. di invt(5590,.95)
1.9603884
. * By the way: notice that with 5590 degrees of freedom t=z
. predict agehat
. * grab estimated standard error of mean prediction
. predict ahse, stdp
. * here’s one way to compute lower and upper bound
. gen alo = agehat - ahse * invt(5590,.95)
. gen ahi = agehat + ahse * invt(5590,.95)
. sort relig2
. by relig2: summ alo agehat ahi

-> relig2= none
Variable | Obs Mean Std. Dev. Min Max
---------+-----------------------------------------------------
alo | 221 16.49089 0 16.49089 16.49089
agehat | 221 16.79512 0 16.79512 16.79512
ahi | 221 17.09935 0 17.09935 17.09935

-> relig2= protest
Variable | Obs Mean Std. Dev. Min Max
---------+-----------------------------------------------------
alo | 3162 17.12446 4.17e-06 17.12446 17.12446



agehat | 3162 17.20531 4.70e-06 17.20531 17.20531
ahi | 3162 17.28615 4.73e-06 17.28615 17.28615

-> relig2= catholic
Variable | Obs Mean Std. Dev. Min Max
---------+-----------------------------------------------------
alo | 2159 17.67134 0 17.67134 17.67134
agehat | 2159 17.77229 3.80e-06 17.77229 17.77229
ahi | 2159 17.87323 0 17.87323 17.87323

-> relig2= non chrs
Variable | Obs Mean Std. Dev. Min Max
---------+-----------------------------------------------------
alo | 721 17.40415 0 17.40415 17.40415
agehat | 721 17.57853 0 17.57853 17.57853
ahi | 721 17.7529 0 17.7529 17.7529

. *CONCLUSION: On average, Catholic girls start .58 years to 1.38 years

. * later, 19 times out of 20.

I.9.b Analysis of Variance

The analysis of variance interpretation of OLS works exactly the same way in the MRLM

as the Simple LRM. In particular, OLS estimates decompose the total variation in Y around

the sample mean into two components: explained variation and unexplained or residual

variation. So TSS = RSS + ESS. The only differences is that RSS, ESS, and TSS must be

extended to matrix notation.

RSS = y′(I −X(X ′X)−1X ′)y (I.37)

M ≡ NxN matrix of ones (I.38)

I − 1
N

M = (I − 1
N

M)′(I − 1
N

M) (I.39)

TSS = y′(I − 1
N

M)y (I.40)

ESS = y′(X(X ′X)−1X ′ − 1
N

M)′(X(X ′X)−1X ′ − 1
N

M)y (I.41)

R2 ≡ ESS
TSS

(I.42)

I.10 Violation of MLRM Assumptions

Violations of A0-A7



A.0. Sample

If the data do not contain all the data then one cannot compute all of the OLS

estimates, so violation of this assumption is fatal to estimating the full model.

A.1. PRE

There are many reasons to think about how the form of the Population Regression

Equation may be wrong. Perhaps one is not sure that the PRE should be linear,

log-linear, or some other transformation of the original data. Even worse, perhaps

the relation between Y and X can’t be linearized at all. That is one way to think

about the - as extensions of the OLS model in which the relationship between Y and

X is a specific one that cannot fit into the LRM framework.

A.2. PRE generates the sample

If the PRE did not generate the sample information then some other process did. So

violation of these assumptions is in many respects equivalent to the violation of A1.

A.3. Mean zero error

As mentioned in the original discussion of the assumptions, A3 is really a technical

assumption. If E[u] is not zero then one can re-define β1 to include the mean of u.

A.4. No Correlation between errors and exogenous variables

Recall that under A0-A4 OLS estimates are unbiased estimates of the LRM parame-

ters. Violating Assumptions A0-A3 leads to either trivial changes (in the case of A0

and A3) or fairly esoteric statistical issues of what model seems to be generating the

data. I call this esoteric because it tends to lead one away from the economic con-

tent of the LRM, unless one looks for other specifications that come from economic

theory. However, most analyses of violations of A1 and A2 are not based on economic

theory.

Violation of A4/A4* is another matter altogether. If cov(u,X) is not 0 (the A4* way

of seeing it), or if one cannot think of X as ”exogenous” to Y (the A4 way), then one
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is in trouble. And this trouble has a lot to do with economic theory.

A.5. Violation of scalar variance matrix

Traditionally one would go from this point to study ways to ”fix” OLS estimates

when A5 and A6 do not hold. But it is important that these assumptions only enter

at the point of deriving V ar(β̂). This means estimated standard errors and confidence

intervals won’t be good if A5 and/or A6 is not true. However, this is in many ways

a much smaller problem than having either a non-linear model or not even having

unbiased estimates. Therefore, our discussion of these assumptions is brief.

A.6. Violation of normal errors

Since OLS estimates are linear in the Y , violation of the normality assumption is

really only a problem in small samples. That’s because for values of N larger than

30 the Central Limit Theorem begins to kick in. That is β̂ will be asymptotically

normally distributed even if u is not normally distributed.
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II. LIMITED DEPENDENT VARIABLES

II.1 Introduction

We have been studying the linear regression model, which in matrix form can be written:

Y = Xβ + u (II.1)

This model is both quite general and fairly simple to estimate. It is general because various

transformations of the data (such as taking logarithms or including squares of variables)

allows (II.1) to model much more complex relationships between X and Y than its linear

form might suggest. It is simple to estimate because the OLS estimates of β are linear and

have good statistical properties under reasonable assumptions. Linearity also implies that

OLS estimates can be computed with hundreds of variables in X and tens-of-thousands of

observations.

One property of a linear relationship which is often annoying is that it will goes ev-

erywhere from −∞ to +∞ except in the case when the slope equals 0. For many types of

variables this property is desirable or at least innocuous. But for many variables the domain

of the relationship is inherently limited to something less than (−∞,+∞). In general these

are called limited dependent variables.

We already are familiar with the most restrictive case of a limited-dependent variable:

a binary (0-1) random variable. However, we have been careful to make such variables the

endogenous (Y ) variable in a linear regression.

Types of LDV:

Typ.1. binary:

Typ.2. ordered:

Typ.3. multinomial:

Typ.4. censored:



Typ.5. truncated:

II.2 The Linear Probability Model

We will now consider how OLS performs when Y is simply Recall that we have been

putting discrete variables in the X vector since the first day of class when we coded marital

status as a 0 or 1 variable. However, when the discrete variable is the left-hand side variable,

some difficulties arise.

There are many examples in economics when we want to explain the outcome of a

binary random variable. To return to an earlier example, we might want to build a model to

explain who becomes married. (Recall that our earlier analysis used marital status to explain

something else.) We might want to explain who works and who doesn’t, who belongs to a

union and who doesn’t, who drives to work and who rides the bus, who cheats on their taxes

and who doesn’t, which countries are net debtors and which aren’t, etc. There are limitless

examples outside of economics as well: which patients respond to a new treatment and which

don’t, which countries have capital punishment and which don’t, which bridges collapse in

earthquakes and which don’t, etc.

Why do discrete variables on the left-hand side of (II.1) cause problems? The most

obvious difficulty is that u can not be normally distributed. When u is normally distributed,

Y is a continuous random variable. We haven’t let this stop us before. For instance, whether

you work or not is a 0/1 outcome. However, a variable that counts occurrences can be thought

of as approximately continuous. But when the possible outcomes collapse to only two or

three in number, and these outcomes are qualitative (e.g. married or not) not quantitative,

then the normality assumption may be a problem.

Example 1.

Consider data where

Y =
{

0 if person i is unmarried
1 if person i is married (II.2)



Suppose we estimate the model:

Y = β1 + β2AGE + u. (II.3)

Here is some Stata output using data from the NLSY concerning marital status and age:
. summ
Variable | Obs Mean Std. Dev. Min Max
---------+-----------------------------------------------------
age | 2613 23.24914 2.990209 20 26
married | 2613 .3647149 .4814423 0 1

. regress married age
Source | SS df MS Number of obs = 2613
---------+------------------------------ F( 1, 2611) = 312.60
Model | 64.7337249 1 64.7337249 Prob > F = 0.0000
Residual | 540.692988 2611 .207082722 R-square = 0.1069
---------+------------------------------ Adj R-square = 0.1066
Total | 605.426713 2612 .231786643 Root MSE = .45506

------------------------------------------------------------------------------
married | Coef. Std. Err. t P>|t| [95 Conf.Interval]
---------+--------------------------------------------------------------------
age | .0526474 .0029777 17.680 0.000 .0468085 .0584864
cons | -.8592924 .0697994 -12.311 0.000 -.9961602 -.7224246
------------------------------------------------------------------------------

Notice that AGE is positively related to marital status: older people are more likely to

be married than younger people. That shouldn’t be too suprising. The coefficient on age

tells us more than that. It also tells at what rate the probability of being married changes

with age. Now notice:
. predict marhat
. tab marhat age

| AGE OF R AT INTERVIEW DATE
marhat| 20 26 | Total
-----------+----------------------+----------
.1936561 | 1198 0 | 1198
.5095406 | 0 1415 | 1415
-----------+----------------------+----------
Total| 1198 1415 | 2613

The predicted values from the regression take on values that Y can’t possibly take on.

How do we interpret a predicted marital status of 20 year-olds equal to 0.193? Are twenty

year-olds 20 percent married on average? We can interpret the predicted values from a



regression on a binary value as the predicted p
¯
robability that Y takes on the value 1. That

is, OLS estimates of (II.3) predict that the probability of 20-year-olds being married (Y=1)

as 0.193. In other words:

P̂ (Y = 1|X = 20) = Ê(Y |X = 20) = β̂1 + β̂220. (II.4)

This is called, for the obvious reason, the L
¯
inear Probability Model (LPM), but that is just

a fancy name for OLS when the explained variable is binary. In the LPM it is impossible to

guarantee that the predicted values actually fall between 0 and 1, which probabilities must.

This is a problem for the LPM model, and it arises because a linear regression model isn’t

well-suited for binary values.

II.3 Another Approach: Binary Response Model

Let’s go back and see if we can’t come up with a better model of variables such as

marital status, who wins a hockey game, and so forth. In fact, let’s start with the following

statement: some people are more married than other people. Some people are so married

that a small change in their lives wouldn’t shift them to being single. Meanwhile, some

people are just over the threshold (no pun intended). If not for the final beer last night

they might not be married today. In the same way, some people are more single than other

people.

In other words, the binary variable Y captures differences in some measured status, in

this case being married or not, but underlying that status is a continuous quantity. Let Y ?

be an index of how married a person is. By definition, a person is married if their value of

Y ?, unobserved to us, is big enough to push them into being marriage. Figure 1 illustrates

the idea. The index Y ? is defined so that Y ? is negative for single persons, leading to Y = 0.

People whose value of Y ? is greater than 0 are married, so Y = 1. The observed binary

random variable Y is related to unobserved continuous random variable Y ? by the rule:

Y =
{

0 if Y ? ≤ 0
1 if Y ? > 0.

(II.5)



Y ? is a convenient construction that captures the idea that underneath the black-and-

white world of binary variables often lie shades of gray. In some ways Y ? is like utility in

microeconomic theory. (In fact, latent variables underneath binary choices like marriage

or whether or not to ride the bus to work can be interpreted as the utility the individual

places on the choice.) Utility indicates the rank of a consumption bundle to a consumer, and

the magnitude of utility numbers in an economic model have no meaning except in ranking

bundles. The magnitude of Y ? only matters in deciding whether the person is above or below

the cut-off. We can therefore set the threshold for being married equal to 0 without loss of

generality. We also can’t estimate the variance of Y ? , because it is an unobserved quantity,

often called a latent variable. That is why we assume u has a fixed variance, unlike the

OLS model which estimates the variance of u.

Let’s now build a model for Y ? . That is, let’s assume that it is statistically related to

other observed characteristics of the individual contained in a vector X:

Y ? = Xβ + u (II.6)

In other words, we can think of Y ? as the variable for which the linear regression model is

appropriate. For instance, the older a person is, the more likely they are to be married. In

that case, the coefficient on age, say β3, is greater than 0. Our goal, as in the regression

model, is to estimate β and thereby estimate the effect of variables on the probability of

being married. We can assume that u, and therefore Y ? , is a continuous random variable.

The difference between (II.3) and (II.6) is that Y ? is not observed by us, we only observe Y.

We can not estimate (II.6) with OLS because we do not observe the left-hand side variable.

We have built a continuous model underneath the binary random variable Y.

Equations (II.5) and (II.6) together form two-thirds of a binary response model. The

final third describes the distribution of the disturbance term u Let the distribution of u

be denoted F (u). That is, F (u) equals the probability that the realization of the random

variable is less than or equal to u. Since Y is binary random variable, conditional on X, its



whole distribution is summarized by the probability that Y = 0. Using (II.5) and (II.6),

P (Y = 0|X) =P (Xβ + u < 0|X) = P (u < −Xβ)

=F (−Xβ). (II.7)

And,

P (Y = 1|X) = 1− P (Y = 0|X) = 1− F (−Xβ). (II.8)

Figure 2 illustrates these formulas. The cumulative distribution function for u is graphed.

The cutoff for being married is still Y ? = 0, but this implies that a person is married when

u is greater than −Xβ. The characteristics in X shift the threshold, and therefore, the

probability of observing values of Y. Note the difference between this model and the Linear

Probability Model (LPM). The LPM, or OLS on a binary variable, assumes implicitly that

the probability is linear in Xβ, whereas the model we have developed assumes that the latent

variable underneath Y is linear in Xβ.

II.4 Definition of The Logit and Probit Models

How do we estimate β in (II.6)? We have to complete our model by making an assumption

about the distribution of u. We begin with the easiest assumption possible. Namely,

F (u) = eu

1 + eu . (II.9)

This is called the logistic distribution. It is straightforward to show the following properties:

Properties of the Logistic Distribution

P.1. 1− F (u) = 1
1+eu

P.2. F (∞) = 1

P.3. F (0) = 0.5

P.4. f(u) = eu

(1+eu)2

P.5. f(u) = f(−u) (symmetric distribution around 0)



P.6. E[u] = 0

P.7. V ar[u] = π2/3

Since we do not observe either Y ? or u, we can not estimate the variance of u, so we use

a distribution with fixed variance unlike the OLS model. Changing the variance of u would

not affect the probability of Y = 0 or Y = 1. The density and distribution function for the

logistic distribution are illustrated in Figure 3. The logistic density is similar in shape to the

normal distribution, but the logistic distribution has fatter tails than the normal distribution

with the same variance.

The reason why assuming u is logistic is the simplest model is because the probabilities

of observing values of Y have closed-forms in terms of X and β. Assuming u is logistic, we

can write the probability of Y = 1 and Y = 0 conditional on X as:

P (Y = 0|X;β) = F (−Xβ) = e−Xβ

1 + e−Xβ (II.10)

P (Y = 1|X;β) = 1− F (−Xβ) = 1
1 + e−Xβ . (II.11)

A convenient way to express these two probabilities in one formula is

P (Y |X;β) =
(

e−Xβ
)1−Y 1

1 + e−Xβ . (II.12)

Notice that when Y = 1, the first term equals 1 and when Y = 0 the first term equals e−Xβ,

so (II.12) captures both probabilities. Notice that in (II.12) the probability of observing the

endogenous variable Y depends on both the vector of true parameters β and the value of

the exogenous vector X. The notation P (Y = 0|X;β) emphasizes that β helps determine the

conditional probability.

By assuming that u follows the logistic distribution we have now completed our model

for Y and X:

II.4.a Logit Binary Response Model



Y =
{

0 if Y ? < 0
1 if Y ? ≥ 0

Y ? = Xβ + u (II.13)

F (u) = eu

1 + eu

A very similar model is the case when u is assumed to follow the standard normal distribution.

That model is called the probit binary response model or simply a probit. In the probit

model,

F (u) = Φ(u) =
∫ u

−∞
(2π)−1/2e−0.5x2

dx. (II.14)

where Φ is the standard normal (Z-variable) cumulative distribution function. The logit and

probit models tend to give very similar results, but the probit model is a little more difficult

to explain because the necessary probabilities do not have closed-form solutions like the logit

model. (Recall that there is no closed form expression for Φ which is why we use tables of

normal probability values.)

How do we interpret the coefficients in the β vector in the logit model?

How do we estimate the logit model using a sample of data? Let Yi and Xi equal the

values for the ith observation, i = 1,2, . . . , N . There are methods that make clever use of

OLS estimates to estimate the logit model, so if you only had the ability to compute OLS

estimates, you could estimate the logit model. However, most modern statistical programs

like Stata will estimate the logit and probit models the right way. It takes more computing

time, but computers are so fast these days that you might not even notice the extra time.

For this reason we will not discuss methods based on OLS.

II.5 Summary

Highlights

Pt.1. When Y is a binary random variable, the linear regression modeled is re-christened

the Linear Probability Model (LPM).



Pt.2. The LPM has several unattractive features, including the fact that the predicted

probabilities are not guaranteed to lie between 0 and 1.

Pt.3. In the logit model, the observed binary variable Y is linked to a continuous latent

(unobserved) random variable Y ? whose value determines the outcome of Y . Y ? is

assumed to follow the logistic distribution. The probit model is the same, except Y ?

is assumed to follow the normal distribution.

Pt.4. The logistic distribution is similar to the normal distribution, but it leads to simpler

expressions for P (Y = 0) and P (Y = 1).



III. Intro to Maximum Likelihood Estimation

III.1 Introduction

The best method for estimating the parameters β is the method of maximum likelihood

(ML). ML is a non-linear estimation procedure. That is, the ML estimates β̂ are not linear

functions of Y. Like OLS, ML are chosen so as to optimize a function. As you know, OLS

esimates minimize the sum of the residuals squared for the observations in the sample. ML

estimates, on the other hand, maximize the likelihood function for the observations in the

sample. The likelihood function is the probability of observing the values in the sample if

the estimates β̂ were the true parameters β. In (8.3), we have already written down the

probability of observing a particular data point give the true parameters β.

Assuming that the observations in the sample are independent, the likelihood function

is the product of the likelihood for each observation. This is exactly the same idea behind

the fact that the probability of seeing two heads on two independent coin tosses equals the

product of observing a head on each separate toss. Here, the probability of seeing person 1

married and person 2 unmarried equals the probability that person 1 is married times the

probability that person 2 is unmarried. For a binary variable model the likelihood function

is written:

L(β̂) =
N
∏

i=1
P (Y = Yi|Xi; β̂). (III.1)

The symbol
∏

is the product symbol just as
∑

is the summation symbol. We do not know the

true value of β, so we do not know the true probabilities of seeing the values of Yi. If we did

know the true value of β there would be no reason to estimate the model. In the likelihood

function we replace the unknown true values with estimated values. It is convenient to work

with the log of L:

lnL(β̂) =
N

∑

i=1
lnP (Y = Yi|Xi, β̂). (III.2)

If we maximize the log-likelihood it is the same as maximizing the likelihood, because



logarithm is a monotonic transformation of the objective function. Now use the assumption

that u is logistic to substitute an explicit formula for P:

lnL(β̂) =
N

∑

i=1
(1− Yi)(−Xiβ̂)− ln(1 + e−Xiβ̂). (III.3)

ML estimates of β are the values of β̂ that maximize this objective function given the sample

information (Yi, Xi).

Example 2.

Consider the small data set below where N=7 and there is only one explanatory

variable in the X matrix:
i X Y
- --- ---
1 66 0
2 70 1
3 69 0
4 80 1
5 68 0
6 67 1
7 72 0

We use a very small sample so that we can write out the complete likelihood function

without using the summation sign. For this sample, the logit likelihood function for the

sample would be

lnL(β̂) =− (β̂1 + β̂266)− ln(1 + e−(β̂1+β̂266)+

− ln(1 + e−(β̂1+β̂270))

− (β̂1 + β̂269)− ln(1 + e−(β̂1+β̂269))

− ln(1 + e−(β̂1+β̂280))

− (β̂1 + β̂268)− ln(1 + e−(β̂1+β̂268))

− ln(1 + e−(β̂1+β̂267))

− (β̂1 + β̂272)− ln(1 + e−(β̂1+β̂272)). (III.4)

The ML estimates are the values of β̂1 and β̂2 that maximize this function. There are only

two parameters, β1 and β2. If we had more data the form of the likelihood function would

be the same: we would simply add the additional observations to the likelihood function.



Since our goal is to maximize lnL by choosing β̂1 and β̂2, you should be tempted to take

derivatives of lnL with respect to β̂1 and β̂2, set them to 0, and solve. This is indeed correct.

The problem is that you won’t get closed-form solutions as in with OLS estimates. That is,

the ML estimates of the logit model can’t be written in a formula like β̂1 = Ȳ − β̂2X̄. (Try it

if you don’t believe me. This is not always the case for ML. For the linear regression model,

the ML estimates of β under assumption A.6 are exactly the same as the OLS estimates.

See, for example, Gujarati for the derivation.) To maximize lnL for the logit model requires

numerical methods. We do not have time to discuss the algorithm that Stata or other

programs use to find the values of β̂ to maximize lnL. (You might have learned about

Newton’s method to maximize functions numerically in calculus class. Stata uses a related

algorithm.)

Example 2 (Continued)

Here is Stata output for the ML logit estimates of the small data above
. logit y x

Iteration 0: Log Likelihood =-4.7803567
Iteration 1: Log Likelihood =-4.1779391
Iteration 2: Log Likelihood =-4.1676834
Iteration 3: Log Likelihood =-4.1676145

Logit Estimates Number of obs = 7
chi2(1) = 1.23
Prob > chi2 = 0.2683
Log Likelihood = -4.1676145 Pseudo R2 = 0.1282

------------------------------------------------------------------------------
y | Coef. Std. Err. t P>|t| [95 Conf. Interval]
---------+--------------------------------------------------------------------
x | .2206555 .2349038 0.939 0.391 -.3831838 .8244948
cons | -15.77234 16.41216 -0.961 0.381 -57.96114 26.41647
------------------------------------------------------------------------------

The iterations indicate that Stata searched numerically for the ML estimates

and took 4 rounds to find the ML estimates. Notice on each round the value of the

likelihood falls until estimates are found for which the likelihood can not be improved.

We can directly check that we and Stata agree on the form of the likelihood function,

by replacing the ML estimates reported in the table into equation (III.3):



lnL(β̂ML) =− (−15.77 + 0.22× 66)− ln(1 + e−(−15.77+0.22×66))

− ln(1 + e−(−15.77+0.22×70)

− (−15.77 + 0.22× 69)− ln(1 + e−(−15.77+0.22×69))

− ln(1 + e−(−15.77+0.22×80)

− (−15.77 + 0.22× 68)− ln(1 + e−(−15.77+0.22×68))

− ln(1 + e−(−15.77+0.22×67)

− (−15.77 + 0.22× 72)− ln(1 + e−(−15.77+0.22×72))

=− 4.1676145. (III.5)

To check the last line it’s easiest to use Stata:

. gen mylk = -(1-y)*(-15.77+0.2270*x) - ln(1+exp(-(-15.77+0.2270*x)))

. summ mylk

Variable | Obs Mean Std. Dev. Min Max
---------+-----------------------------------------------------
mylk | 7 -.5953735 .4052748 -1.304808 -.1419979

. display 7*(-.5953735)
-4.1676145

The χ2 statistic 1.23 equals twice the difference between the final likelihood value

and the likelihood value in iteration 0, 1.23 = 2× (−4.1676145− (−4.7803567)). Why

this value should be reported and why it is chi-squared distributed is discussed below.

The pseudo-R2 value is analogous to the R-squared derived in the linear regression

model, and researchers in some disciplines rely on it as a measure of fit in logit or

probit models. However, it doesn’t have quite the same interpretation or definition

as R-square. We will ignore it.

The rest of the table is exactly the same as in the regression output. The only

difference is that the Std.Err column is based on a different formula (discussed below).

But given that, the t-statistic and confidence intervals are based on the same formulas

as in regression model. This means you can use the standard errors and t-ratios



reported by Stata for the logit model in the same way as the regression model to test

hypotheses about β and to form confidence intervals. In this case, the t-statistic on

X fails to reject the null hypothesis that β2 = 0.

Here are the results of estimating the probit model on the same data:
. probit y x

Probit Estimates Number of obs = 7
chi2(1) = 1.25
Prob > chi2 = 0.2633
Log Likelihood = -4.1545828 Pseudo R2 = 0.1309

------------------------------------------------------------------------------
y | Coef. Std. Err. z P>|z| [95 Conf. Interval]
---------+--------------------------------------------------------------------
x | .1397627 .1418225 0.985 0.324 -.1382042 .4177296
cons | -9.975761 9.8966 -1.008 0.313 -29.37274 9.421219
------------------------------------------------------------------------------

Notice that the estimated coefficients and estimated standard errors are a bit

different than those computed in the logit model. However the likelihood value, t

ratios and chi-squared statistics are very similar. The difference is caused by the

different shapes of the logistic and normal distribution functions. But because the

two distributions are pretty similar, the logit and probit models usually give very

similar results.

III.2 Statistical Properties of ML Estimates

It can be shown that the ML estimates of β, in fact any ML estimates in a

very general class of statistical models, are consistent and distributed asymptotically

normally. Unlike their OLS counterparts in the regression model, ML estimates are

not guaranteed to be unbiased nor are they normally distributed in small samples.

However, with large N, the bias goes away and the estimates become normally dis-

tributed. This means our usual t-distributions for testing hypotheses and forming

confidence intervals are the same. (ML estimates also have minimum variance among

all consistent estimates if the model is correctly specified, so they are also efficient

estimates.)

glossary.htm#estimate�
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The t-ratio for βj is the familiar

t = β̂j − βj

ŝe(β̂j)
,

where ŝe(β̂j) is determined from a different formula. We will rely on Stata to com-

pute it correctly, but some discussion of it is worthwhile. Recall that the variance-

covariance matrix (VCM) for β̂ contains the variances and covariances between our

estimated values. The standard error of a parameter is simply the square root of

the corresponding diagonal element in the VCM. Why would ML estimates vary

over samples? Because the data will be different across samples and the resulting

maximizing values of β̂ will change. Those estimates are generated from first order

conditions on a maximization problem, which involve the first derivatives of lnL.

The change in β̂ is therefore related to how much the first derivative of lnL changes

across samples. It is the second derivative lnL which indicates the change in the sec-

ond derivative. So you shouldn’t be surprised that Var(β̂) is related to the Hessian

of lnL, that is
∂2 lnL
∂β̂∂β̂′

.

In fact, it turns out that

V̂ar(β̂) = −∂2 lnL
∂β̂∂β̂′

−1

.

Why this is the right formula goes well beyond the scope of this class. Stata does

compute this matrix, however, and reports the square-root of its diagonal elements

as the estimated standard errors of β̂. (By analogy, recall that OLS estimates solve

the normal equation (X ′X)−1β̂ = X ′y, and that V ar(β̂) = σ2(X ′X)−1. The matrix

(X ′X)−1 is the Hessian for the objective function in OLS estimation (RSS=e’e),

so without realizing it, you have already seen that the inverse of a Hessian matrix

determines the variance matrix for a vector of estimates.

In ML estimation, F-tests of linear restrictions can be used as in the linear

regression model. Stata’s test will work as usual after you run a logit or probit. But



a better test in some ways is the likelihood ratio test, which relies on the chi-squared

distribution. The likelihood ratio test statistic is the ln of the ratio of the likelihoods

in the restricted and unrestricted model. For the test of overall significance, the

chi-squared test has k − 1 degrees of freedom, where k is the number of estimated

coefficients. That is, suppose you have the unrestricted model

Y ? = Xβ + u (III.6)

and you want to test a restriction on the true parameters β, which can be written:

H0 : f(β) = 0.

Here f(β) is a function that states the restriction. For instance, if the hypothesis is

β6 = 5, then f(β) = β6− 5. Unlike the F-test we used earlier, the restriction does not

have to be linear in β, although linear restrictions are much easier to understand and

to implement.

The procedure for testing H0 is similar in the ML case: Estimate both the re-

stricted and unrestricted versions of the model. If the fit of the models is very

different, then that gives us evidence that the restriction is not true (because if it

were true the restricted and unrestricted estimates would only differ because of sam-

pling variation in the data). In the F test we used the RSS (Residual Sum of Squares)

to summarize the fit of the two models. In the logit case we don’t really have a RSS,

because the model generates a prediction for Y ? which is unobserved. Instead, the

maximal value of the likelihood function itself is used to summarize the fit of the

model. A larger likelihood value means the model is making the observed data more

”probable.” The likelihood must therefore be larger in the unrestricted model than

in the restricted model. The bigger the difference the more evidence there is that

the restricted model is not true and H0 is false.

So, as usual, hypothesis testing comes down to knowing how big is big so that

the probability of a type I error can be determined and controlled. This requires



a test statistic that can be computed from the data and for which we know the

distribution under H0. In ML estimation, there are three test statistics commonly

used. The one we will use is the likelihood ratio test. Let LUR be the log-likelihood in

the UnRestricted model and LR be the log-likelihood in the Restricted model. Then

the test statistic is

LR = −2(LR − LUR). (III.7)

Notice that LR ≤ LUR, so LR must be greater than or equal to zero. (The log of a ratio

is the difference in the logs, so LR is related to the likelihood ratio. Hence its name.)

The larger LR is, the more the restricted model disagrees with the unrestricted one.

So the key is to know what the distribution of LR is under H0. The answer:

Under H0, LR ∼ χ2
m, where m is the number of restrictions that H0 im-

poses on the unrestricted model.

To perform a likelihood-ratio test, do the following:

Step1. Specify model and H0. Determine the number of restrictions m, and choose

level of significance α.

Step2. Run both restricted and unrestricted models, record final log-likelihood values

for each model.

Step3. Compute LR defined in (III.7), i.e. twice the absolute difference of the log-

likelihoods.

Step4. Look up critical value of χ2
m using the for your level of significance. (In Stata,

use the chiprob(m,LR) function to look up the probability to the right of the

calculated LR statistic and compare that to your signficance level α). Reject

H0 if LR is greater than the critical value or (equivalently) if chiprob(m,LR) <

α. (Note: as with the F-test, likelihood ratio tests are by their nature always

one-sided .)

The Stata command lrtest will automate steps 3 and 4 for you. However, unlike



test, it will not automate the computation of the restricted and unrestricted models.

So you have to run two separate logits (or probits) to compute the LR statistic.

What is the chi-square statistic reported in the output table? Stata begins

iterating on the likelihood function by setting β̂2 = 0 and computing the optimal value

of β̂1. So the first value of the likelihood reported in the output is the restricted model

under the hypothesis that β2 = 0. This is exactly the same hypothesis implicitly

tested by the F-statistic reported in the linear regression table. In other words, it is

a test of overall significance of the X variables. In example, the overall chi-squared

statistic has m=1 degree of freedom because k = 2. The value 1.23 in the example is

not significant at the 10 percent level, because the probability of a chi-square random

variable with one degree of freedom being greater than 1.23 equals 0.26 (from the

output). Therefore, we fail to reject the hypothesis that Y ? does not depend upon

X. This agrees with the t statistic on β̂2.

III.3 Prediction

How do we use our ML estimates of β to make predictions? When we predict in

the logit model, we are predicting the probability that Y is either 0 or 1 conditional

on some vector X0. For instance,

P̂ML(Y = 1|X0) = 1
1 + e−X0β̂ML

. (III.8)

We can use this prediction in several ways. We could say that we predict Y=1 when

P̂ (Y = 1|X0) > 0.5. In other words, one way to predict Y directly is to predict that it

takes on the more likely outcome given X0:

Ŷ |X0 =
{

0 if P̂ (Y = 1|X0) < 0.5
1 if P̂ (Y = 1|X0) ≥ 0.5

(III.9)

When you use predict in Stata, it computes P̂ (Y = 1|X) for each observation. This

is analogous to the how one would interpret OLS predictions (i.e. the LPM). In the

LPM, Ŷ0|X0 is interpreted as the predicted probability:

P̂OLS(Y = 1|X0) = X0β̂OLS (III.10)



where β̂OLS equals the OLS estimates from the LPM in (II.3).

Let’s see how the predictions compare between the logit model and the OLS

(LPM) model. The code below starts after running the logit command described

above (so that the first predict command uses the logit model):
. predict yhat1
. regress y x

Source | SS df MS Number of obs = 7
---------+------------------------------ F( 1, 5) = 0.99
Model | .282808198 1 .282808198 Prob > F = 0.3659
Residual | 1.43147752 5 .286295503 R-square = 0.1650
---------+------------------------------ Adj R-square = -0.0020
Total | 1.71428571 6 .285714286 Root MSE = .53507

------------------------------------------------------------------------------
y | Coef. Std. Err. t P>|t| [95 Conf. Interval]
---------+--------------------------------------------------------------------
x | .0460385 .0463215 0.994 0.366 -.0730347 .1651118
cons | -2.807281 3.262017 -0.861 0.429 -11.19256 5.578
------------------------------------------------------------------------------

. predict yhat2

. list yhat1 yhat2 y

yhat1 yhat2 y
1. .2298651 .2312634 0
2. .4191044 .4154176 1
3. .3665359 .369379 0
4. .867623 .875803 1
5. .3169634 .3233405 0
6. .2712247 .2773019 1
7. .5286834 .5074946 0

yhat1 contains P̂ML(Y = 1|X) while yhat2 contains P̂OLS(Y = 1|X). So ML

logit says that the probability that y=1 for observation 1 is 0.23, implying that the

probability that y=0 is 0.77. (You should check for yourself how Stata came up with

.23.) The LPM gives the same prediction, to two decimal places. In fact, the two

predictions are pretty close to each other. Notice that if we follow the two definitions

of Ŷ0, both models fail to “predict” Y correctly for observations 2,6 and 7. In both

models, Y = 0 is more likely for i = 2, but the actual value was 1. Likewise for

observations 6 and 7.



Also notice that β̂ML and β̂OLS are quite different even though the predicted

probabilities are quite similar. This isn’t as surprising as you might think. Recall

that the logit and LPM are different statistical models for the same data. The

parameters β have different interpretations in the two models even if we choose to

use the same name. And notice that the t-statistic for β̂2 is similar in the two models,

because β2 = 0 in both models implies no statistical relationship between X and Y .

The potential problems with LPM do not show up in this example within the

sample. Namely, the predicted probabilities all fall between 0 and 1. You might

check, however, that Ŷ |X < 0 in the LPM whenever X < 61. In this data, X is

air temperature in degrees Fahrenheit. So for reasonable temperatures, the LPM

provides nonsense predictions for reasonable values of the independent variable.

III.4 Summary

Highlights

Pt.1. Estimates based on the method of Maximum Likelihood (ML) are consistent,

asymptotically normally distributed, and efficient in the logit and probit mod-

els as well as many other statistical models. ML estimates are generally not

unbiased in small samples.

Pt.2. In ML estimated standard errors follow different formulas than the OLS es-

timated standard errors, but they are used in exactly the same way to test

hypotheses and to form confidence intervals about coefficients.

Pt.3. The F-test for overall significance with OLS estimates is replaced with a chi-

squared test with ML estimates based on the log ratio of (maximal) likelihoods

in the restricted and unrestricted models.

Pt.4. The predicted probabilities and conclusions from hypothesis tests are usually

similar in the LPM, logit and probit models.
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