Multiple Linear Regression on the Volunteer Activity Survey Data

Professor, Chris Ferrall
Econometrics 452 Section B
Data Set \#377, Screening Sample

Day, Kathleen \& Rose Anne Devlin. "The payoff to work without pay: volunteer work as an investment in human capital." Canadian Journal of Economics, vol. 31(5) Nov. 1998 pp 1179-91.

Introduction

It is common practice to encourage any entrants to the work force with the old adage "If you can't find a job then volunteer." Besides the benefit of having concrete experience on your resume, authors Day and Devlin explore the financial benefit of volunteer work in, "The payoff to work without pay." The objective of their paper is to empirically verify that volunteer work increases one's earnings with a human capital earnings equation. One can contend that volunteer work leads to the acquisition of useful skills and experience thus, the "human capital model provides a natural framework for studying the returns to volunteering." (p. 1181)

The Model Paper: Data

By using the data from Statistics Canada, compiled in the 1987 Survey of Volunteer Activity (VAS) in conjunction with the November 1987 Labour Force Survey (LFS); Day and Devlin estimate a human capital earnings equation and measure the financial returns of volunteering. More specifically, the data set is the VAS screening file, and contains 37,426 observations. Though the Labour Force Survey is overwhelming to work with, the data set contains respondents' answers to both surveys. For a given individual, observations indicate volunteer and labour market activities. For the authors, the importance of this is paramount because they are estimating a human capital earnings equation and the VAS contains information on income.

Though the data set contains 37,426 observations, Day and Devlin work with a sub-sample of 5,147 observations as they are the only ones that prove useful for empirically verifying the hypothesis that volunteer work increases one's earnings. From
the sub-sample, only 3003 individuals had volunteered in the period November 1986 to October 1987.

From the initial set of observations, the data set requires a bit of work before even a regression can be considered. To begin with, the income data is not in ideal form because the income data is available on a household basis and not on an individual basis and no distinction is made between employment income and other income sources. Understandably, the observations in the income variable are presented in ranges to protect confidentiality of the respondents.

As a result of the nature of the income variable, the data set had to be refined. Day and Devlin restricted their sample to employed individuals who were the sole wage earners in their household. The assumption is sole wage earners who volunteered were more likely to do so on a part time basis. Moreover, individuals over the age of sixty-five were eliminated from the sample because "employment income is less likely to be an important share of household income." (p.1181) Lastly, individuals who had not responded to the other questions of interest to their study were excluded.

The VAS screening file continues a multitude of information on the volunteer activities pursued. However, for the purposes of the Day and Devlin equation estimation, a volunteer was strictly defined as an individual "whose volunteer activities are carried out through a formal organization". Therfore, even though the VAS documents individuals who help neighbours or senior citizens informally, those individuals are ignored from the study.

The Model Paper: Method

Day and Devlin use the human capital model to estimate the returns to volunteering. The principal determinant of level of earnings is the individual's stock of human capital which is a function of education and labour market experience. The basic equation is as follows:

$$
\ln W_{i}=\beta_{0}+\beta_{1} S_{i}+\beta_{2} E^{E X P_{i}}+\boldsymbol{\beta}_{3} \text { EXP }_{i}^{2}+\varepsilon_{I}
$$

Where W_{i} is the earnings of individual $i, \mathrm{~S}_{\mathrm{i}}$ is years of schooling, EXP_{1} denotes experience and ε_{I} is a stochastic error term. However, the variable EXP, or experience is difficult to measure. Though Day and Devlin mention Mincer's definition of experience, age minus years of schooling minus six, they offer no other substitute. However, this measure makes it difficult to distinguish volunteer experience from other activities as it relates to the contribution of an individual's stock of human capital. Notably, Day and Devlin use Mincer's definition of experience when creating their variable, EXP.

Furthermore, Day and Devlin devote much of their discussion to measuring the impact of volunteer experience on an individual's human capital. The VAS is inadequate to provide the detailed information on the total lifetime hours volunteered by each individual, or an accurate measure of time spent earning income. Thus, after determing the specifications of a simultaneous model, a simple dummy variable is added to the above question. By adding a dummy variable indicating whether the individual is or has ever been a volunteer, we have the following equation:

$$
\ln W_{i}=\beta_{0}+\beta_{1} S_{i}+\beta_{2} E X P_{i}+\beta_{3} \operatorname{EXP}_{i}^{2}+\beta_{4} \text { VOL }_{i}+\varepsilon_{I}
$$

Thus, if there is a positive return to volunteering, then the coefficient of the dummy variable, will be positive and statistically significant. Day and Devlin further explain that its magnitude will provide a sample estimate to the payoff to volunteering. Moreover, they expand their analysis by dividing the volunteer organizations into type and analyzing their results.

By estimating the human capital equation, they find their estimated coefficients for the earnings equations "are consistent with other studies." (1186) The findings of Day and Devlin can be summarized as follows:

- Earnings of males are higher than those of females
- Earnings of married individuals from sole-earner households have higher incomes than single individuals
- The higher the education level, the higher the income level of an individual

Day and Devlin conclude there is a positive payoff to volunteerism, of approximately 7 per cent higher incomes. Yet they also acknowledge that they are unable to explain why this is so, and put forward numerous unverified hypothesis; clearly highlighting the need for further research in the area.

Emulating the Data

Determining the payoff to work without pay in the same way as Day and Devlin do in their paper was not difficult because we were able to access the Volunteer Activity Survey Screening file. However, we did encounter difficulties attempting to emulate their sub sample and by extension, the number of individuals who volunteered during the period 1986 to October 1987.

We were able to narrow our 37426 observations to 5159 , instead of 5147. Our dummy income variable allowed us to follow their directions perfectly and eliminate individuals whose answer was "not stated/don't know" as well as those in the highest income range, of greater than $\$ 60,000$. Secondly, we kept all employed individuals, and then further narrowed the observations down by discerning which households had only one employed person. We chose this variable as a measure of the sole wage earners in the household. Lastly, we eliminated all observations for individuals over the age of 65 . We encountered difficulty when we had to exclude individuals who had not responded to other questions of interest, as that was ambigious. Having browsed our observations and used the "codebook" command in Stata, we were still unable to reduce the observations in our subsample to less than 5159. In the table in Appendix A, we have listed the Variable names and their definitions.

The only variable we felt we had to construct and make our own assumptions on was EXP, or experience. The authors used its Mincer's definition as age minus years of schooling minus six. Following their method, we chose the mid point of the age range, as the variable was quoted in ranges. However, years of schooling was encoded to general assumptions associated with each level; thus ELEMENT, or no school, was coded as 4; HIGHSCH as 6; POSTSEC as 6.5; DIPLOMA as 7, and UNIVERS as 8. Again, these are mid points of these ranges.

In the article, much discussion is devoted to the type of the organization volunteered with and the occupation of individuals and the separate effects these two variables have on the payoffs associated with volunteerism. For the purposes of this assignment, we ignored the organizational and occupational analysis. Notably, in the
paper, Day and Devlin do not indicate occupation or volunteer organization on their comprehensive set of variables, yet both variables are present in their regressions. The summary statistics on the variables we included are indicated in the table below.

The summary statistics are as follows:

Table 1. Summary Statistics		
Variable	Mean	Standard Deviation
EARNINGS (lnw)	1.51	.398
MALE	.614	.487
MARRIED	.476	.499
ELEMENT	.100	.300
HIGHSCH	.449	.497
POSTSEC	.100	.301
DIPLOMA	.180	.384
UNIVERS	.171	.376
FAMSIZE	2.30	1.22
OWNKIDS1	.153	.411
OWNKIDS2	.153	.408
OWNKIDS3	.458	.838
KIDSCH	.076	.303
FRENCH	.168	.374
ENGLISH	.168	.374
OTHLANG	.032	.176
EXP	25.1	11.9
EXP	698	
RURAL	772	.431
TOWN	.247	.429
CITY	.243	.500
HOURS (f05q13)	.510	10.8
VOL	39.7	.494

Based on our attempted emulation of Day and Devlin's method, we are confident we were able to work effectively with the Volunteer Activity Survey Screening sample and create a data set comparable to the one in the paper.

Emulating the Results

After working with the data set sub sample, we were able to run a regression on 10 variables. It was not surprising that we were able to achieve similar results to Day and Devlin. Thus, our human capital model was formulated as follows:

$$
\ln \mathrm{W}_{\mathrm{i}}=\boldsymbol{\beta}_{0}+\boldsymbol{\beta}_{1} \mathrm{MALE}_{\mathrm{i}}+\boldsymbol{\beta}_{2} \text { MARRIED }_{\mathrm{i}}+\boldsymbol{\beta}_{3} \mathrm{HIGHSCH}_{\mathrm{i}}+\boldsymbol{\beta}_{4} \text { DIPLOMA }_{i}+\boldsymbol{\beta}_{5} \mathrm{UNIVERS}_{\mathrm{i}}+\boldsymbol{\beta}_{6} \text { EXP }_{\mathrm{i}}+
$$

$$
\boldsymbol{\beta}_{7} \operatorname{EXP}^{2}{ }_{1}+\boldsymbol{\beta}_{8} \text { RURAL }_{+}+\boldsymbol{\beta}_{9} \text { CITY }_{\mathrm{i}}+\boldsymbol{\beta}_{10} \mathrm{VOL}_{\mathrm{i}}+\boldsymbol{\varepsilon}_{\mathrm{I}}
$$

The results of our regression are in the table below.

Table 2. Regression Table		
Variable	Coefficient (Standard Error)	t-statistic
MALE	.124 $(.011)$	11.0
MARRIED	.131 $(.011)$	11.4
HIGHSCH	.044 $(.014)$	3.20
DIPLOMA	.160 $(.017)$	9.45
UNIVERS	.229 $(.017)$	13.1
EXP	.027 $(.017)$	13.1
EXP ${ }^{2}$	$-4.04 \mathrm{e}^{04}$ $\left(3.51 \mathrm{e}^{05}\right)$	-11.5
RURAL	-.020 $(.015)$.-1.37
CITY	.080 $(.013)$.6 .34
VOL	.044 $(.011)$	4.16
CONS	.863 $(.029)$	29.4

In specific comparison to the results obtained by Day and Devlin, we were in fact able to simulate their model and show two coefficients exactly the same to their second decimal point; $\boldsymbol{\beta}_{2}$ is 0.136 for Day and Devlin and we estimate it at 0.131 and $\boldsymbol{\beta}_{7}$ is 0.0004 for Day and Devlin which is what we estimate! In terms of general trends, our human capital model supports their conclusions; the earnings of males, married individuals, and higher education levels indicate higher levels of income.

To conclude our results we performed a hypothesis test on β_{10}, or the dummy variable on volunteering. Day and Devlin estimate volunteering to have a 7\% increase on earnings, where as we estimate only 4%. Regardless, we formulated our test as follows:

$$
\mathrm{H}_{0}: \beta_{10} \text { equal to } 0 \quad \mathrm{H}_{\mathrm{a}}: \beta_{10} \text { not equal to } 0
$$

With a t-statistic of 4.157 , and a p-value of 0.00 we know we can reject the null hypothesis, H_{6}, and retain the alternative. Thus, volunteering has a positive effect on earnings.

Summary

The process of choosing an article, and recreating the data set was a surprisingly intriguing experience. Even just initially, the plethora of research and work available was overwhelming yet exciting. We were able to find an article that we personally found interesting. In fact, we were hoping to reach the same conclusion because obviously, as students with relatively little work experience, it is encouraging to know that volunteering does increase one's earnings.

Taking the VAS Screening sample and ending up with a sub sample was a very enlightening experience as it took much of the theory from class and forced us to put it into practice - thereby allowing us to see the relevance and importance of understanding theory. More importantly, the theory was in fact applicable! From our experience regressions do not make sense, unless the data is in a form that you can make sense of it.

Though "The payoff to work without pay" was easy to understand, when it came to emulating the results we found that at times it was difficult to understand what Day and Devlin did with their data. The footnotes were extremely helpful in this endeavour,
but as we are only introductory econometric students, it took time to comprehend their actions. As well, though our regression was restricted to 10 variables, we found the 10 we chose were relevant because we ignored any of the volunteer organization results, partly because the authors were not clear in the article how they collapsed some of the observations in to certain groups. Lastly, we were unclear how to approach variables that were indicated as reference groups, for instance, ENGLISH, so we chose to create it as dummy variable.

Overall, at the beginning we were overwhelmed with the task in front of us, but clearly it was not as daunting as it seemed once we understood the nature of our data and how we were going to discern if there is a payoff to work without pay.

APPENDIX A: Table of Variable Names

Variable Names \& Definitions	
EARNINGS	Income range of individual
MALE	Dummy variable, 1 if male, 0 otherwise
MARRIED	Dummy variable, 1 if married, 0 otherwise
ELEMENT	Dummy variable, 1 if no school or elementary, 0 otherwise
HIGHSCH	Dummy variable, 1 if high school, 0 otherwise
POSTSEC	Dummy variable, 1 if some post-secondary education, 0 otherwise
DIPLOMA	Dummy variable, 1 if post-secondary diploma, 0 otherwise
UNIVERS	Dummy variable, 1 if university degree, 0 otherwise
FAMSIZE	Number of individuals residing in the household
OWNKIDS1	Number of own children ages $0-2$ years old
OWNKIDS2	Number of own children ages $3-5$ years old
OWNKIDS3	Number of own children ages $6-15$ years old
KIDSCH	Number of children ages $16-24$ attending school
FRENCH	Dummy variable, 1 if language at home is French., 0 otherwise
ENGLISH	Dummy variable, 1 if language at home is English, 0 otherwise
OTHLANG	Dummy variable, 1 if language at home is other, 0 otherwise
EXP	Experience
EXP ${ }^{2}$	Experience squared
RURAL	Dummy variable, 1 if lives in small urban areas and rural areas, 0 otherwise
TOWN	Dummy variable, 1 if lives in other cities, 0 otherwise
CITY	Dummy variable, 1 if lives in metro areas, 0 otherwise
HOURS (f05q13)	Total Usual weekly hours worked
VOL	Dummy variable, 1 if volunteered in current year, 0 otherwise

APPENDIX B: Log File

(In the interests of saving space, only Stata Commands are here.)

```
-> . Qextract
getting information about file 377 ...
loading variables from 377 (vas87scr) only (no data yet)... done
-> . do "a:project3.do"
/* Assignment 1: The payoff to work without pay
by Kathleen M. Day & Rose Anne Devlin*/
#delimit;
/* To begin emulating the data set, we need to drop individuals who don't know
their income or make over $60,000.*/
tab f06_q35c, missing;
tab f06_q35c, gen(dinc);
drop if dinc1==.;
count if dinc8>0;
drop if dinc8>0;
/* We need to only have employed individuals.*/
tab lfstatus, missing;
tab lfstatus, gen(demp);
count if demp1>0;
keep if demp1>0;
```

```
/*We need to have individuals under the age of 65.*/
tab f03q33, missing;
tab f03q33, gen(dage);
count if dage8<1 & dage9<1;
keep if dage8<1 & dage9<1;
/* We need sole wage earners, thus households with only one employed person.*/
tab empfam, missing;
tab empfam, gen(dsole);
count if dsole1>0;
keep if dsole1>0;
/* We need to generate our dependent variable.*/
gen lnw=ln(f06_q35c);
tab lnw;
tab f06_q35c;
/* We now generate our dummy variables*/
tab f03q34;
count if f03q34>1;
count if f03q34<2;
gen male = f03q34<2;
tab f03q35;
count if f03q35<2;
gen married = f03q35<2;
tab f03q38;
count if f03q38<2;
gen element = f03q38<2;
count if f03q38>=2 & f03q38<3;
gen highsch = f03q38>=2 & f03q38<3;
count if f03q38>=3 & f03q38<4;
gen postsec = f03q38>=3 & f03q38<4;
count if f03q38>=4 & f03q38<5;
gen diploma = f03q38>=4 & f03q38<5;
count if f03q38>=5;
generate univers = f03q38>=5;
tab f06_q30b;
count if f06_q30b<2;
gen french = f06_q30b<2;
tab f06_q30a;
count if f06_q30a<2;
gen english = f06_q30b<2;
tab f06_q30c;
count if f06_q30c<2;
gen othlang = f06_q30c<2;
tab f06_q15, missing;
count if f06_q15<8;
gen vol = f06_q15<8;
tab province, gen(dprov);
tab f03q33;
gen mdage = f03q33;
recode mdage 1=15.5 2=18 3=22 4=30 5=40 6=50 7=60;
tab f03q38;
gen educ = f03q38;
recode educ 1=4 2=6 3=6.5 4=7 5=8;
gen exp = mdage - educ -6;
gen exp2 = exp*exp;
tab areaflg;
gen location = areaflg;
recode location 1=1 2=1 3=1 4=2 5=3;
```

/* Finally we can summarize our variables*/ - summarize;					
Variable	Obs	Mean	Std. Dev.	Min	Max
QEDid	5159	19335.16	10856.56	17	37426
province	5159	35.02733	16.13405	10	59
f03q34	5159	1.385928	. 4868608	1	2
f03q35	5159	1.709827	. 7604273	1	3
f03q33	5159	4.704012	1.239381	1	7
f03q38	5159	2.872844	1.301905	1	5
f05q13	5159	39.73638	10.78829	1	65
lfstatus	5159	1	0	1	1
f05q7374	5159	7.723008	3.496222	1	13
f05q75	5159	23.81644	14.35259	1	49
famsize	5159	2.300833	1.222535	1	4
ownkids1	5159	. 1525489	. 4109173	0	3
ownkids2	5159	. 1533243	. 4082611	0	3
ownkids3	5159	. 4582283	. 837835	0	5
kidsatsh	5159	. 0763714	. 3031148	0	3
empfam	5159	1	0	1	1
areaflg	5159	3.135104	1.513852	1	5
f06_q15	2991	1.817452	1.09763	1	7
f06_q30a	5026	1.193593	. 3951531	1	2
f06_q30b	5026	1.827099	. 3781992	1	2
f06_q30c	5026	1.967171	. 1782073	1	2
f06_q35c	5159	4.856755	1.544678	1	7
dinc1	5159	. 0155069	. 1235693	0	1
dinc2	5159	. 0752084	. 2637528	0	1
dinc3	5159	. 122892	. 3283451	0	1
dinc4	5159	. 1484784	. 355608	0	1
dinc5	5159	. 2504361	. 4333062	0	1
dinc6	5159	. 2362861	. 4248411	0	1
dinc7	5159	. 1511921	. 3582707	0	1
dinc8	5159	0	0	0	0
demp1	5159	1	0	1	1
demp2	5159	0	0	0	0
demp3	5159	0	0	0	0
dage1	5159	. 0038767	. 0621485	0	1
dage2	5159	. 0178329	. 1323567	0	1
dage3	5159	. 1108742	. 3140067	0	1
dage4	5159	. 364024	. 4812021	0	1
dage5	5159	. 2618725	. 4396962	0	1
dage6	5159	. 1242489	. 3298972	0	1
dage7	5159	. 1172708	. 3217739	0	1
dage8	5159	0	0	0	0
dage9	5159	0	0	0	0
dsole1	5159	1	0	1	1
dsole2	5159	0	0	0	0
dsole3	5159	0	0	0	0
dsole4	5159	0	0	0	0
dsole5	5159	0	0	0	0
dsole6	5159	0	0	0	0
dsole7	5159	0	0	0	0
lnw	5159	1.513611	. 3982359	0	1.94591
male	5159	. 6140725	. 4868608	0	1
married	5159	. 4762551	. 4994843	0	1
element	5159	. 0998255	. 2997963	0	1
highsch	5159	. 4489242	. 4974326	0	1
postsec	5159	. 1004071	. 3005711	0	1

diploma	5159	. 1802675	. 3844474	0	1	
univers	5159	. 1705757	. 3761742	0	1	
french	5159	. 1684435	. 3742959	0	1	
english	5159	. 1684435	. 3742959	0	1	
othlang	5159	. 0319829	. 1759717	0	1	
vol	5159	. 5797635	. 4936446	0	1	
dprov1	5159	. 0595077	. 2365953	0	1	
dprov2	5159	. 0226788	. 1488918	0	1	
dprov3	5159	. 0674549	. 2508325	0	1	
dprov4	5159	. 0767591	. 2662346	0	1	
dprov5	5159	. 1482846	. 3554163	0	1	
dprov6	5159	. 1752278	. 3801986	0	1	
dprov7	5159	. 0783097	. 2686844	0	1	
dprov8	5159	. 0986625	. 2982373	0	1	
dprov9	5159	. 1517736	. 3588361	0	1	
dprov10	5159	. 1213413	. 3265552	0	1	
mdage	5159	37.46462	11.67113	15.5	60	
educ	5159	6.371971	1.071837	4	8	
exp	5159	25.09265	11.93134	3.5	50	
exp2	5159	771.9706	697.889	12.25	2500	
location	5159	1.736965	. 8293825	1	3	
city	5159	. 5099826	. 4999488	0	1	
town	5159	. 2430704	. 4289788	0	1	
rural	5159	. 2469471	. 4312775	0	1	
Lastly, we can run a regression.*/						
- regress	lnw male married highsch dip					
Source	SS	df MS			$\begin{array}{lr} \text { Number of obs }= & 5159 \\ F(10,5148) & =104.75 \end{array}$	
Model	138.300197	$10 \quad 13.8300197$			Prob $>\mathrm{F}=0.0000$	
Residual	679.716544	5148 .	. 132035071		R -squared =	$=0.1691$
		5158 .			Adj R-squared	0.1675
Total	818.016741		. 158591846		Root MSE	$=.36337$
lnw	Coef.	Std. Err.		$P>\|t\|$	[95\% Conf. Interval]	
male	. 1242691	. 0112996	10.998	0.000	. 1021172	. 1464211
married	. 1309856	. 0114507	11.439	0.000	. 1085373	. 1534339
highsch	. 044223	. 0138084	3.203	0.001	. 0171527	. 0712933
diploma	. 1599195	. 016916	9.454	0.000	. 1267568	. 1930821
univers	. 22895	. 0174548	13.117	0.000	. 1947311	. 2631689
exp	. 0268639	. 0020546	13.075	0.000	. 022836	. 0308918
exp2	-. 0004037	. 0000351	-11.504	0.000	-. 0004725	-. 0003349
rural	-. 0199525	. 0146007	-1.367	0.172	-. 048576	. 008671
city	. 0797786	. 0125896	6.337	0.000	. 0550976	. 1044595
vol	. 0439993	. 0105852	4.157	0.000	. 0232478	. 0647507
_cons	. 8634901	. 0293548	29.416	0.000	. 8059423	. 9210379

-

end of do-file
-> . BREAK
sending Break to calling program...
Session ended at 22 Mar 2001; 10:35:14

The Influence of Male and Female Incomes on Patterns of Household Expenditure:

A Study of the Family Expenditures Survey with References to Phipps and Burton

The data set for this paper was obtained from the Queen's Economics Data Archive (file number 21). The reference paper is:

Phipps, Shelley and Peter Burton (1998) 'What's Mine is Yours? The Influence of Male and Female Incomes of Patterns of Household Expenditure,' Economica 65, 599-613

1. Introduction

Differences in gender have assumed important roles in determining household spending and consumption patterns. As more women enter the labour force, and assume higher income occupations, the difference between male and female consumption patterns become increasingly relevant to economic analysis. Early research in household spending patterns focused on models that assumed that husband and wife have the same, or household, utility functions. Attempting to correct for this unrealistic assumption, recent theory has focused on relationship models where spouses may disagree over certain areas of spending, yet assume a gendered assignment of responsibility to reach a compromise. To test whether the household utility function theory bears relevance to empirical results, Phipps and Burton study the Family Expenditures Survey conducted by Statistics Canada in 1992 (FAMEX). The FAMEX offers a detailed respondent profile, providing comprehensive spending and income figures, thus permitting more thorough analysis regarding their interrelation. The primary advantage of the FAMEX is that both respondent and spousal income is reported, as well as number of weeks worked, allowing for a full-time/part-time labour status distinction of both income earners. As well, the survey also reports the number of other full-time and part-time earners in the household. This inclusion allows for a more accurate depiction of the typical two-income household. Finally, the fourteen spending categories reported by the survey cover almost all aspects of typical household expenditures. Phipps and Burton use these aspects of the FAMEX to test the relevance and magnitude of husband and wife spending differentials when applied to specific spending categories. Nominal spending and income statistics, descriptive statistics, multiple regressions and probit estimations of observed household
purchases of a particular good are the tools used by Phipps and Burton to make inferences regarding gender wage levels and spending differences. The authors restrict their sample, and our attempts to replicate the same restricted sample did not strictly match Phipps and Burton. The method used, as well as the reasons for our deviation will be discussed in Section 2. After fourteen regressions using each of the spending categories as the dependent variable, the author's results show that income-pooling behaviour of husband and wife is statistically valid in only six categories. This conclusion refutes the hypothesis that there is a household utility function over all goods. For the purposes of this paper we will restrict our testing to the donations category ${ }^{1}$ of household spending, one of the eight categories where income pooling was rejected. While the regression results are closely related to those derived by the authors, irregularities with the inclusion of component figures in the donations figure result in rejection of the income-pooling hypothesis. The reasons for these deviations will be discussed in Section 3. This paper is organized in four sections. Section 2 provides a description of the FAMEX survey, restricted sample derivation and summary of key variables. Section 3 presents regression results that illustrate how the influence of male and female income, as well as other factors discussed. Section 4 provides a summary and conclusions.

2. Data

The FAMEX was conducted nationwide in 1992 by Statistics Canada and represents data collected during at least one, yet usually more, interviews with a

[^0]respondent from a private household. During the interview, respondents were asked to recall expenditures made during 1991, thus repeat visits were needed so that respondents could consult financial records. The final public-use observation count includes 9492 observations. Total spending amounts were reported by the respondent in numerous areas of consumption, falling under the following categories: restaurant food, household food, housing, wife's clothing, husband's clothing, child care, household operations, recreation flows, recreation stocks, donations, transportation flows, transportation stocks, and tobacco and alcohol. In addition, household economic statistics beyond income were reported, such as social assistance received, sources of income or size of residence. In total, 251 figures were reported by each respondent.

We had difficulty restricting our sample exactly as Phipps and Burton restricted their sample. Our sample consisted only of married couples ${ }^{2}$, with or without children. Households where there lived any other persons earning income, such as employed teenagers, were excluded. Inclusion of these households would complicate the results, since income earning teenagers will have input on how those earning are spent. To keep labour supply constant across households, any households where either spouse or respondent did not work at least 40 weeks were dropped, thus including only full-time workers. This reduces the possibility that differences in patterns of expenditure are explainable as a result of labour related cost. Based on this criteria, our restricted sample consisted of 950^{3} observations, which is greater Phipps and Burton sample of 921. The difference is explained as the authors control for hours of full-time paid employment, since there is less variation compared to simple full-time workers. How this is

[^1]implemented, given the absence of explicit or implicit indication of hours of full-time paid employment, the authors do not make clear. However, the sample means of both male and female income is very close to Phipps and Burton's figures despite this discrepancy. For these figures, as well as others used in our regression, refer to Table 1.

The authors do not present their own calculations for all the variables found in Table 1, so comparison is not possible ${ }^{4}$. However, the authors do present mean male and female income, and their figures do differ from our own mean calculations, thus indicating that our other calculations in Table 1 differ from the authors. This is due to our inability to narrow the sample size to Phipps and Burtons 921 observations, however the difference between our calculations of mean income and the authors differ by less than 2%. The small difference may be indicative of the similarity, and our relative success, in paralleling Phipps and Burton's observations.

Looking at the data, we can note some interesting trends. First, the mean income levels are $44,441.30$ for males and $31,592.80$ for females ${ }^{5}$. This is consistent with empirical evidence that finds that male income is higher than female income. Secondly, Phipps and Burton neglect to mention criteria for estimating total donations, such as whether donations are net of receipts. Given that donations comprised of 8 possible subcategories ${ }^{6}$, our estimation of 3,759 total donations was not the same as Phipps and Burton. Continuing, it is interesting to note that 59% of respondents lived in urban areas^{7}, yet respondents living in a suburban environment would have more in common with city dwellers than their rural counterparts they are grouped with. Both males and

[^2]females report roughly the same level of education, where 3.3 represents a point between some post-secondary education (3) and a college certificate (4). The males average occupation score is 4.9 , while females average is 3.4 . Since traditionally male occupations were assigned higher numbers, this figure is also sensical.

The remainder of the figures presented are calculated and used in the regression, as presented in Section 3. Age-squared and wage-squared are tabulated to test the marginal effect of age and weight on donations. Multiplying husband income by wife income to create HWINCOME independent variable is used to test the effect of interaction of husband and wife income levels on donations. It is interesting to note that Phipps and Burton state only male-age squared is included, but male and female ages are included. This problem in interpretation is representative of the author's brief explanation of demographic control variables. This, combined with an absence of their complete calculated coefficient estimates makes our own accurate replication more frustrating.

Empirical Results

Table 2 contains the estimation results for the expression relating total donations given by the household to the explanatory variables found in Table 1. In addition, dummy variables were calculating for provincial estimates and included to test regional differences. Since the focus of their paper are income effects on expenditures, Phipps and Burton report only coefficient results for the income based variables. Although our
paper deals with only donation expenditures, Phipps and Burton include figures for all 14 expenditures ${ }^{8}$. Further, they conduct likelihood ratio tests for the pooling restriction that $\beta_{\mathrm{HINC}}=\beta_{\mathrm{WINC}}$ and $\beta_{\mathrm{HINCSQ}}=\beta_{\mathrm{WINCSQ}}=\beta_{\mathrm{HWINCOME}} * 0.5^{9}$. Continuing this discussion, the authors derive iso-expenditure curves to illustrate the income-expenditure relation in cases where the pooling hypothesis was rejected. Since our analysis focuses exclusively on donation expenditure, we will discuss all coefficient estimates.

HINC has a positive effect positive effect on donations, yet WINC has a negative effect. This result contradicts Phipps and Burton, who find both factors have a negative effect on donations. Further, HINCSQ has a negative effect and WINCSQ a positive effect on donations, where Phipps and Burton find both have positive effects. Given the deviation that exists in the sample set, and in the lackluster definition of donation calculations, a discrepancy is not surprising. Also, HINCSQ and WINCSQ have such a minimal effect, inconsistencies would not have a great impact on these variables.

Education levels for both men and women have significant positive effects on donation expenditure, although the effect is greater for men than for women. Looking at HOCC and WOCC, we see a significant negative effect on donations. This can be interpreted as a move towards from 'white-collar' towards 'blue-collar' type employment negatively affects donation expenditure. It is interesting to note that blue-collar positions tend to be lower paying. As well, education levels have also been linked to higher income levels. These two results contradict the previous observation that income is negatively related to donations.

[^3]Also interesting to note is the fact that living in a city is negatively related to donation expenditure. This is congruent with the idea that rural Canadians donate more than do their urban counterparts. When HAGE and WAGE is considered, we see that age is of both male and female age is negatively related to donation expenditure. Yet the relation is small for females, and significantly larger for males, indicating that donation expenditure is more sensitive to male aging than female.

The hypothesis put forth by Phipps and Burton found that the null-hypothesis $\beta_{\mathrm{HINC}}=\beta_{\mathrm{WINC}}$ and $\beta_{\mathrm{HINCSQ}}=\beta_{\mathrm{WINCSQ}}=\beta_{\mathrm{HWINCOME}}{ }^{*} 0.5$ could be rejected at the 10% significance level. Our own F-test of this hypothesis derives a p-value of .085 , showing that the income pooling theory can also be rejected at the 10% significance level. It is interesting to note that Phipps and Burton p-value of .019 would have been rejected at the 5\% significance level, while our income pooling hypothesis would have been retained.

The adjusted R^{2} was lower than the amount Phipps and Burton reported. This is significant as the authors state that the adjusted R^{2} was already lower than microdata figures usually indicate ${ }^{10}$. Therefore, decreased emphasis should be placed on our results due to low proportion of sample variation explained by the regression function.

4. Summary and Conclusions

The method and results presented above present some mixed conclusions. The socio-economic variables considered and tested are ones that would normally impact household expenditure. Education levels and occupation control variables have positive effect on donation expenditure, as would be expected. Also, our results show that age is negatively related to donation. Since Phipps and Burton do not provide comparable

[^4]figures in their discussion, we do not know how congruent our conclusions are with the authors.

The inconsistency with the coefficients that are presented by the authors, those associated with income, are indicative of the problems we experienced in replicating Phipps and Burton's data set. Although the positive relation between HINC and DONTOT contrast Phipps and Burton, the coefficient estimate for WINC was closer to the value determined by the authors. Our own conclusion that income pooling is not evident in donation expenditure at the 10% significance level is consistent with the author's own conclusions, despite our p-value discrepancy.

This problem is derived from the author's lack of clarity in outlining component sub-categories of the 14 main categories they analyze. Our attempts to minimize this error, by choosing donations which has the smallest number of potential sub-categories, still resulted in our creating a donations expenditure variable which was not the same as the authors. Added clarity regarding these figures would be beneficial, however we understand that available space constrained the author's inclusion of these figures.

One further problem encountered is the absence of some other defining socioeconomic variables, such as if the household received social assistance beyond U.I. This would certainly impact expenditure patterns of the typical Canadian household. Also, some of the variables that are included, such as male age and it's square, would lead us to presume that female age squared would be included. We are unsure whether this exclusion was purposeful. If it was, then the reasons for this should be explained. If it was not, we wonder what other variables are we not including simply because they were not mentioned.

In closing, some questions raised by this analysis are worth commenting on. There is a distinct difference between men and women in their propensity to donate. This seems to due to a number of different gender factors, such a more distinct effect of male aging than female aging. Although the Phipps and Burton wished to test for the simple existence of a household utility through an income pooling hypothesis, it would be interesting to break down each expenditure grouping and discern the sources of different gender behaviour. For instance, would age be more significant in determining donation expenditure gender differences than in transportation expenditures. Analysis in these areas would certainly be beneficial in uncovering the sources of the gender-household utility gap.

REFERENCES

Phipps, Shelley and Peter Burton (1998) 'What's Mine is Yours? The Influence of Male and Female Incomes of Patterns of Household Expenditure,' Economica 65, 599-613

Stata Corporation Website: http://www.stata.com

Appendix A

TABLE 1: VARIABLE DESCRIPTIONS, SAMPLE MEANS AND STANDARD DEVIATIONS

Variable Name	Description	Mean
DONTOT	Total Donations	$\begin{aligned} & 3759.4 \\ & (6321.6) \end{aligned}$
HAGE	Husband's age	$\begin{aligned} & 39.9 \\ & (7.1) \end{aligned}$
WAGE	Wife's age	$\begin{aligned} & 37.8 \\ & (6.9) \end{aligned}$
HINC	Husband's income	$\begin{aligned} & 44441.3 \\ & (23144.6) \end{aligned}$
WINC	Wife's income	$\begin{aligned} & 31592.8 \\ & (15977) \end{aligned}$
HEDUC*	Husband's education level	$\begin{aligned} & 3.30 \\ & (1.3) \end{aligned}$
WEDUC*	Wife's education level	$\begin{aligned} & 3.31 \\ & (1.2) \end{aligned}$
CITY	Probability of respondent living in a city	$\begin{aligned} & .59 \\ & (.5) \end{aligned}$
HAGESQ	Husband's age squared	$\begin{aligned} & 950 \\ & (1640.4) \end{aligned}$
HINCSQ	Husband's income squared	$\begin{aligned} & 2.51 * 10^{9} \\ & \left(3.60 * 10^{9}\right) \end{aligned}$
WINCSQ	Wife's income squared	$\begin{aligned} & 1.25 * 10^{9} \\ & \left(1.94 * 10^{9}\right) \end{aligned}$
HWINCOME	Husband*wife income	$\begin{aligned} & 1.52 * 10^{9} \\ & \left(1.41 * 10^{9}\right) \end{aligned}$
HWINCOME	Husband*wife income	$\begin{aligned} & 1.52 * 10^{9} \\ & \left(1.41 * 10^{9}\right) \end{aligned}$
HOCC	Husband's occupation level	$\begin{aligned} & 4.9 \\ & (3.6) \end{aligned}$
WOCC	Wife's occupation level	$\begin{gathered} 3.4 \\ (2.1) \end{gathered}$

Appendix B

TABLE 2: THE IMPACT OF INCOME POOLING ON HOUSEHOLD DONATIONS

Independent Variable	OLS Parameter Esitmates
HAGE	-549.51
	(-1.77)
WAGE	-2.96
	(-0.051)
HINC	0.014
WINC	(0.286)
	-0.027
HEDUC	(-0.495)
	227.97
WEDUC	(1.05)
	187.89
CITY	(0.82)
	-815.76
HAGESQ	(-1.78)
	7.596167
HINCSQ	(1.972)
	$-6.15^{*} 10^{-8}$
WINCSQ	(-0.434)
	$4.15^{*} 10^{-7}$
HWINCOME	(1.922)
	$1.02^{*} 10^{-6}$
HOCC	(2.37)
	-15.8312
WOCC	(-0.24)
NUIREC	-51.8126
Constant	(-0.44)
Adjusted R	1387.813
N	(1.339)
	11889.25
	(1.93)
	0.0684

Note: t-ratios are presented in parentheses

Appendix C
 LOG File

The following is the log file representing how the figures presented were calculated in Stata:

```
gen hsex = cond(sex==1,sex,ssex)
husbands sex
gen wsex=cond(sex==1,ssex,sex)
wifes sex
gen hage= cond(sex==1,age,sage)
husbands age
gen wage=cond(sex ==1,sage,age)
wifes age
gen heduc=cond(sex==1,educ,seduc)
husbands education
gen weduc=cond(sex==1,seduc,educ)
wifes education
gen hinc=cond(sex==1,ibt,sibt)
husbands income before taxes
gen winc=cond(sex==1,sibt,ibt)
wifes income before taxes
gen hocc=cond(sex==1,occu,socc)
husbands occupation
    (36 missing values generated)
gen wocc=cond(sex==1,socc,occu)
wifes occupation
(35 missing values generated)
Creating dummy variables
tabulate prov, gen(dvp)
    geographic code |
    (province)| Freq. Percent Cum.
\begin{tabular}{|c|c|c|c|}
\hline masked records & 10 & 1.01 & 1.01 \\
\hline newfoundland & 59 & 5.97 & 6.98 \\
\hline prince edward island| & 31 & 3.13 & 10.11 \\
\hline nova cotia & 52 & 5.26 & 15.37 \\
\hline new brunswick | & 69 & 6.98 & 22.35 \\
\hline quebec | & 181 & 18.30 & 40.65 \\
\hline ontario | & 270 & 27.30 & 67.95 \\
\hline manitoba & 49 & 4.95 & 72.90 \\
\hline saskachewan | & 88 & 8.90 & 81.80 \\
\hline alberta & 98 & 9.91 & 91.71 \\
\hline british columbia & 82 & 8.29 & 100.00 \\
\hline
\end{tabular}
```

Generating the aggregate donation total:
\rightarrow. gen dontot $=$ giftc + mgc + otgif + chaor + relor + oco \rightarrow
GIFTC - GIFTS AND CONTRIBUTIONS
MGC - MONETARY GIFTS AND CONTRIBUTIONS
OTGIF - OTHER GIFTS
CHAOR - CHARITABLE ORGANIZATIONS
RELOR - RELIGIOUS ORGANIZATIONS
OCO - OTHER CHARITABLE ORGANIZATIONS
\rightarrow. gen hincsq $=$ hinc*hinc
\rightarrow Husbands income before taxes squared
\rightarrow. gen wincsq $=$ winc * winc
\rightarrow Wifes income before taxes squared
-> . gen hwincome $=$ hinc* winc
Husbands multiplied by wifes income before taxes
Tabulations:
summ hage

Variable	Obs	Mean	Std. Dev.	Min	Max
hage \|	950	39.86947	7.138537	25	54

Variable	Obs	Mean	Std. Dev.	Min	Max
wage ${ }^{\text {\| }}$	950	. 89895	6.997086	25	54

Variable	Obs	Mean	Std. Dev.	Min	Max
hagesq \|	950	1640.48	570.8558	625	2916

Variable	Obs	Mean			Min	Max
hsex \|	950	1	0	1	1	

Variable	Obs	Mean	Std. Dev.	Min	Max
--					

-> . summ heduc

Variable	Obs	Mean	Std. Dev.	Min	Max
heduc \|	949	3.302424	1.300034	1	5

Variable	Obs	Mean	Std. Dev.	Min	Max
weduc	950	30526	1.226453		5

-> . summ hinc
Variable Obs Mean Std. Dev. Min Max
--> . summ winc
Variable | Obs

winc | 950
->. summ hocc
Variable| Obs Mean Std. Dev. Min Max
---1
-> . summ wocc

Variable	Obs	Mean	Std. Dev.	Min	Max
wocc	915	3.419672	2.022533	1	11
-> . summ hincsq					
Variable	Obs	Mean	Std. Dev.	Min	Max
hincsq ${ }^{\text {\| }}$	950	$2.51 \mathrm{e}+09$	$3.60 \mathrm{e}+09$		9 + 10

-> . summ wincsq

Variable	Obs	Mean	Std. Dev.	Min	Max
wincsq	950	+09	$1.94 \mathrm{e}+09$	0	$4 \mathrm{e}+$

-> . summ hwincome
Variable| Obs Mean Std. Dev. Min Max
hwincome | $950 \quad 1.52 \mathrm{e}+09 \quad 1.41 \mathrm{e}+09 \quad-2.98 \mathrm{e}+08 \quad 1.65 \mathrm{e}+10$
->.
summ city

regress dontot city nuirec hage wage heduc weduc hinc winc hoce wocc dvp1 dvp2 dvp3 dvp4 dvp5 dvp6 dvp7 dvp8 dvp9 dvp10 hagesq hincsq wincsq hwincome

Sourc	SS df MS			Number of obs $=893$		
				$\begin{gathered} F(25,867)=3.62 \\ \text { Prob }>F=0.0000 \end{gathered}$		
Model \| $3.4668 \mathrm{e}+09 \quad 25138673295$						
Residual	\| 3.3215e+10 867383		8309872.5	R-squared $=0.0945$		
---------+--------------------------------10				$\begin{aligned} & \text { Adj R-squared }=0.0684 \\ & \quad \text { Root MSE } \quad=6189.5 \end{aligned}$		
dontot	Coef. Std. Err.		$t \quad \mathrm{P}>\|\mathrm{t}\|$	[95\% Conf. Interval]		
city	-815.7664 4	456.4707	-1.787	0.07	-1711.683	80.15046
nuirec	1387.813	1036.65	1.339	0.181	-646.8238	3422.449
hage	-549.5136	309.0352	-1.778	0.076	-1156.058	57.03099
wage	-2.95748	58.19512	-0.051	0.959	-117.1773	111.2623
heduc \|	227.9706	216.1409	1.055	0.292	-196.2499	652.1912
weduc	187.8909	226.5848	0.829	0.407	-256.8279	632.6097
hinc	. 0138123 . 0	. 0483688	0.286	0.775	-. 0811213	. 1087459
winc	-. 0279641	. 0564535	-0.495	0.620	-. 1387655	. 0828374
hocc	-15.83118	65.2511	-0.243	0.808	-143.8998	112.2374
wocc	-51.81263	115.8241	-0.447	0.655	-279.1411	175.5158
dvp1	2260.092	2116.013	1.068	0.286	-1893.015	6413.199
dvp2	347.1528	1177.402	0.295	0.768	-1963.739	2658.045
dvp3	-716.0433	1373.261	-0.521	0.602	-3411.348	1979.261
dvp4	252.0214	1159.193	0.217	0.828	-2023.13	2527.173
dvp5	330.5415	1085.067	0.305	0.761	-1799.124	2460.207
dvp6	-1523.192	897.8458	-1.696	0.090	-3285.397	239.0139
dvp7	-326.2074	838.0809	-0.389	0.697	-1971.112	1318.697
dvp8	-103.7304	1218.645	-0.085	0.932	-2495.569	2288.108
dvp9	1916.459	1011.838	1.894	0.059	-69.48015	3902.398
dvp10\|	\| 1734.798	990.4305	1.752	0.080	-209.1242	3678.72

hagesq	7.596167	3.851476	1.972	0.049	.0368611	15.15547
hincsq \|	$-6.15 \mathrm{e}-08$	$1.42 \mathrm{e}-07$	-0.434	0.664	$-3.40 \mathrm{e}-07$	$2.17 \mathrm{e}-07$
wincsq \|	$4.15 \mathrm{e}-07$	$2.16 \mathrm{e}-07$	1.922	0.055	$-8.78 \mathrm{e}-09$	$8.38 \mathrm{e}-07$
hwincome \|	$1.02 \mathrm{e}-06$	$4.27 \mathrm{e}-07$	2.376	0.018	$1.77 \mathrm{e}-07$	$1.85 \mathrm{e}-06$
_cons \|	11889.25	6162.088	1.929	0.054	-205.1008	23983.61

-> . summ hage

Variable	Obs	Mean	Std. Dev.	Min	Max
hage	950	39.86947	7.138537	25	54
-> . summ	wage				

Variable	Obs	Mean	Std. Dev.	Min	Max
wage \|	950	37.89895	6.997086	25	54
-> . summ hagesq					

Variable	Obs	Mean	Std. Dev.	Min	Max
hagesq \|	950	1640.48	570.8558	625	2916
-> . summ hsex					
Variable	Obs	Mean	Std. Dev.	Min	Max
hsex	950	1	0	1	

Variable	Obs	Mean	Std. Dev.	Min	Max

-> . summ weduc

Variable	Obs	Mean	Std. Dev.	Min	Max
--					

Variable Obs Mean Std. Dev. Min Max

hinc	95044441.31	23144.6 -	-22688	234336
-> . summ winc				
Variable	Obs Mean	Std. Dev.	Min	Max
winc \|	95031592.86	15977.02	-7700	220000
-> . summ hoce				
Variable	Obs Mean	Std. Dev.	Min	Max
hoce \|	9164.973799	3.594071	1	11
-> . summ wocc				
Variable	Obs Mean	Std. Dev.	Min	Max
wocc\|	9153.419672	2.022533	1	11
-> . summ hincsq				
Variable	Obs Mean	Std. Dev.	Min	Max
hincsq \|	$950 \quad 2.51 \mathrm{e}+09$	$3.60 \mathrm{e}+09$		$5.49 \mathrm{e}+10$
-> . summ wincsq				
Variable	Obs Mean	Std. Dev.	Min	Max
wincsq \|	$950 \quad 1.25 \mathrm{e}+09$	$1.94 \mathrm{e}+09$	0	$4.84 \mathrm{e}+10$
-> . summ hwincome				
Variable	Obs Mean	Std. Dev.	Min	Max
	\| $950 \quad 1.52 \mathrm{e}+0$	$09 \quad 1.41 \mathrm{e}+09$	-2.98e	+08 $\quad 1.65 \mathrm{e}+10$
-> . summ city				
Variable	Obs Mean	Std. Dev.	Min	Max
city	950.5884211	. 4923788	0	1
-> . summ dontot				
Variable	Obs Mean	Std. Dev.	Min	Max
dontot	9503759.42	6321.634	30	122950

-> . regress dontot city nuirec hage wage heduc weduc hinc winc hocc wocc dvp1 dvp2 dvp3 dvp4 dvp5 dvp6 dvp7 dvp8 dvp9 dvp10 hagesq hincsq wincsq hwincome

--						
dontot \mid	Coef.	Std. Err.	t	P> $\|t\|$	$[95 \%$	Conf. Interval]

-> . regress dontot city nuirec hage wage heduc weduc hinc winc hocc woce dvp1 dvp2 dvp3 dvp4 dvp5 dvp6 dvp7 dvp8 dvp9 dvp10 hagesq hincsq wincsq hwincome

Source	SS df	MS		Number of obs $=$	893
				$F(25,867)=$	3.62
Model	$3.4668 \mathrm{e}+09$		138673295	Prob > F	$=0.0000$
Residual	$3.3215 \mathrm{e}+10$	867	38309872.5	R -squar	d $=0.0945$
				Adj R-squared	0.0684
Total	$3.6681 \mathrm{e}+10$	8924	1122748.7	Root MSE	$=6189.5$

dontot	Coef.	td. Err. t	t P>	[95\% Conf. Interval]		
city	-815.7664	456.4707	-1.787	0.074	-1711.683	80.15046
nuirec	1387.813	1036.65	1.339	0.181	-646.8238	3422.449
hage	-549.5136	309.0352	-1.778	0.076	-1156.058	57.03099
wage	-2.95748	58.19512	-0.051	0.959	-117.1773	111.2623
heduc \|	227.9706	216.1409	1.055	0.292	-196.2499	652.1912
weduc \|	187.8909	226.5848	0.829	0.407	-256.8279	632.6097
hinc \|	. 0138123	. 0483688	0.286	0.775	-. 0811213	. 1087459
winc	-. 0279641	. 0564535	-0.495	0.620	-. 1387655	. 0828374
hoce	-15.83118	65.2511	-0.243	0.808	-143.8998	112.2374
wocc	-51.81263	115.8241	-0.447	0.655	-279.1411	175.5158
dvp1	2260.092	2116.013	1.068	0.286	-1893.015	6413.199
dvp2	347.1528	1177.402	0.295	0.768	-1963.739	2658.045
dvp3	-716.0433	1373.261	-0.521	0.602	-3411.348	1979.261
dvp4	252.0214	1159.193	0.217	0.828	-2023.13	2527.173
dvp5	330.5415	1085.067	0.305	0.761	-1799.124	2460.207
dvp6	-1523.192	897.8458	-1.696	0.090	-3285.397	239.0139
dvp7	-326.2074	838.0809	-0.389	0.697	-1971.112	1318.697
dvp8	-103.7304	1218.645	-0.085	0.932	-2495.569	2288.108
dvp9	1916.459	1011.838	1.894	0.059	-69.48015	3902.398
dvp10\|	1734.798	990.4305	1.752	0.080	-209.1242	3678.72
hagesq	7.596167	3.851476	1.972	0.049	. 0368611	15.15547
hincsq \|	-6.15e-08	1.42e-07	-0.434	0.664	-3.40e-07	2.17e-07
wincsq \|	4.15e-07	2.16e-07	1.922	0.055	-8.78e-09	8.38e-07
hwincome	\| 1.02e-06	6 4.27e-07	2.376	60.018	$1.77 \mathrm{e}-07$	$1.85 \mathrm{e}-06$
_cons	\| 11889.25	$25 \quad 6162.088$	81.92	290.054	-205.100	23983.61

-> . test hinc=winc hincsq=wincsq=hwincome*. 5
(1) hinc - winc $=0.0$ hincsq - wincsq - hwincome $* 5=0.0$
$\mathrm{F}(1,867)=4.91$
Prob $>\mathrm{F}=0.0847$

Do previous smoking behaviors affect adolescent smoking status?

Modeled from the paper, "Does cigarette price influence adolescent experimentation?"
from the Journal of Health Economics, 20(2): 261-270
By Sherry Emery, Martha M. White, John P. Pierce
Dataset \#386: Youth Smoking Survey

March 25, 2001

INTRODUCTION

The paper we selected is entitled "Does cigarette price influence adolescent experimentation?" by Emery, White, and Pierce. The objective of their paper was to adequately measure the adolescents' price sensitivity to smoking as well as test whether this price responsiveness is affected by smoking experience. They chose their data set from the 1993 US national survey of youth smoking: TAPS (longitudinal Teenage Attitudes and Practices Survey). They estimated a two-part model of demand, the first one being a model of smoking participation, and the second part was a model of conditional demand for cigarettes among current and established smokers. These models are represented by:

$$
\text { SMOKE }_{i}=\alpha \text { PRICE }_{i}+\beta_{1} \text { TOBACON }_{i}+\beta_{2} \text { SOCDEM }_{i}+\beta_{3} \text { PSYCHSOC }_{i}+\varepsilon_{I}
$$

Where PRICE is real price/pack of cigarettes, determined by the US consumer price index (CPI), and TOBACON is an index that indicates state-level tobacco control activity. SOCDEM represents a set of socio-demographic variables, such as gender, parental marital status, job possession, and household income. PSYCHSOC is representative of a group of psycho-social variables like school performance, parental bond, and family smoking, and belief that there are health risks associated with the occasional cigarette. The survey targeted adolescents in the range of 10-22 years of age, but the study restricted the sample to those ≥ 14 years old. The authors of the study utilized the answers to various questions in order to categorize the respondents into experimental, current, and established smokers. Some of their measures of smoking behaviour include questions such as: "Have you smoked a cigarette?", "Have you
smoked more than 100 cigarettes in your lifetime?", and "Have you smoked in the past 30 days?". Those who had smoked in the past 30 days were identified as current smokers. Established smokers were defined as those who had smoked in the past 30 days, as well as those that attested to smoking at least 100 cigarettes in their lives. Experimenters answered positively to trying a cigarette, but had not smoked within 30 days prior to the survey. The model was regressed for each category, and a table of parameter estimations for adolescent smoking behaviour was provided.

The results from these tests coincide with previous studies in that price and other state-controlled policies are not significantly associated with smoking behaviours of the adolescents in the experimental group. This can be attributed to the sporadic consumption of cigarettes by experimenters. However, price is an important indicator of smoking behaviours within more advanced smokers, i.e. established smokers. Their estimates suggest that price plays an influential role in moderating the amount smoked within adolescents.

DATA AND MODEL SELECTION

The data set we used was the Youth Smoking Survey, which contains 9,491 observations from adolescents throughout Canada. The ages of the respondents varied from 15-19 years, whereas the TAPS surveyed people who were in between the ages of 10 and 22. The Youth Smoking Survey included subjects from all provinces, whereas TAPS used respondents from only 48 states.

We eliminated the adolescents who responded negatively to the question, "Have you ever tried cigarette smoking?". We divided the remaining subjects into two
categories: those who had smoked within the last year, and those who hadn't. We labeled those who hadn't smoked within the last year, along with those who were labeled "valid skip" as "non-smokers". Those respondents who didn't answer the question (i.e. "not stated") were dropped from the sample. From this, we calculated the sample populations for both "Smokers" ($\mathrm{n}=2530$) and "Non-smokers" $(\mathrm{n}=3758)$.

ESTIMATION AND RESULTS

We replicated a similar model as described in the paper, using 9 unique variables. We selected a list of variables to describe our independent variable, average number of cigarettes smoked per day (NCIGS):

$$
\begin{aligned}
\mathrm{NCIGS}_{\mathrm{i}}= & \beta_{1}+\beta_{2} \mathrm{SEX}_{i}+\beta_{3} \mathrm{JOB}_{\mathrm{i}}+\beta_{4} \mathrm{AGE}_{\mathrm{i}}+\beta_{5} \mathrm{HOME}_{\mathrm{i}}+\beta_{6} \mathrm{FAPP}_{i}+\beta_{7} \mathrm{MAPP}_{\mathrm{i}}+ \\
& \beta_{8} \mathrm{FSMOKE}_{\mathrm{i}}+\beta_{9} \mathrm{MSMOKE}_{\mathrm{i}}+\beta_{10} \mathrm{RISK}_{\mathrm{i}}+\varepsilon_{i}
\end{aligned}
$$

Where $\mathrm{SEX}_{\mathrm{i}}$ is the gender of the respondent, $\mathrm{JOB}_{\mathrm{i}}$ represents whether or not the subject holds a job, $\mathrm{AGE}_{\mathrm{i}}$ is the age (in years) of the adolescent, $\mathrm{HOME}_{\mathrm{i}}$ indicates whether or not the subject smokes in their own home, FAPP_{i} defines whether the father approves of the adolescent smoking while $\mathrm{MAPP}_{\mathrm{i}}$ is whether the mother approves of the adolescent smoking, FSMOKE $_{i}$ signifies whether the father of the subject smokes and MSMOKE $_{i}$ is whether the mother of the subject smokes, and finally, RISK $_{i}$ indicates whether the subject believes there to be a health risk associated with an occasional cigarette.

After selecting the descriptive variables, we tabulated the summary statistics for both non-smokers and smokers, which are provided in Table 1.

Variable	Smokers $($ Smoke $=1), \mathrm{n}=2530$	Non-Smokers $($ Smoke $=0), \mathrm{n}=3758$
Male (\%)	$51.5(50.0)$	$49.6(50.0)$
Working at a job (\%)	$54.2(49.8)$	$53.4(49.9)$
Age (yrs.)	$17.1(1.4)$	$16.8(1.4)$
Smokes in own home (\%)	$59.6(49.1)$	$1.1(10.5)$
Father approves (\%)	$3.8(19.1)$	$0.05(2.3)$
Mother approves (\%)	$4.8(21.4)$	$0.05(2.3)$
Father smokes (\%)	$42.1(49.4)$	$33.8(47.3)$
Mother smokes (\%)	$42.2(49.4)$	$29.8(45.8)$
Health risk (\%)	$61.3(48.7)$	$65.6(47.5)$

TABLE 1: DESCRIPTIVE STATISTICS \rightarrow MEAN (STANDARD DEVIATION)
We generated variables that interacted the dependent variables with the dummy variable, which specifies whether they had smoked in the past year. We then regressed the average number of cigarettes smoked per day variable (ncigs) on these newly generated interaction terms, along with the original dependent variables, to produce parameter estimates. Table 2 presents the parameter estimates from the regression, with the respective p -values in parenthesis.

Dependent variables	
Male	$1.744^{-11}(1.000)$
Job possession	$-2.13 e^{-11}(1.000)$
Age	$4.47{ }^{-11}(1.000)$
Smokes in own home	$3.04 \mathrm{e}^{-10}$ (1.000)
Father approves	$2.77 \mathrm{e}^{-10}$ (1.000)
Mother approves	-7.19 - $^{-10}$ (1.000)
Father smokes	$-2.22 e^{-11}(1.000)$
Mother smokes	$3.14 \mathrm{e}^{-11}$ (1.000)
Health risk	$-9.18 \mathrm{e}^{-13}(1.000)$
Dummy variable	
Smoked in last year	16.815 (0.346)
Interaction variables	
Sex * smoked in last year	-14.184 (0.000)
Job possession * smoked in last year	-4.154 (0.054)
Age * smoked in last year	-8.846 (0.000)
Smokes in own home * smoked in last year	-26.255 (0.000)
Father approves * smoked in last year	-2.189 (0.513)
Mother approves * smoked in last year	-15.480 (0.000)
Father smokes * smoked in last year	8.574 (0.000)
Mother smokes * smoked in last year	10.823 (0.000)
Health risk * smoked in last year	5.372 (0.000)
Intercept	$7.40 \mathrm{e}^{-11}(1.000)$

We set up a hypothesis test to see whether the variables had a significant impact on the average number of cigarettes smoked per day. After taking the expected values of each category (non-smokers and smokers) and taking the difference of these values, we arrive at our null hypothesis:

$$
\begin{aligned}
& \mathrm{H}_{0}: \beta_{2}=\beta_{4}=\beta_{6}=\beta_{8}=\beta_{10}=\beta_{12}=\beta_{14}=\beta_{16}=\beta_{18}=\beta_{20}=0 \\
& \mathrm{H}_{\mathrm{A}}: \beta_{2} \neq 0 \& / \text { or } \beta_{4} \neq 0 \& / \text { or } \beta_{6} \neq 0 \& / \text { or } \beta_{8} \neq 0 \& / \text { or } \beta_{10} \neq 0 \text { \&/or } \beta_{12} \neq 0 \\
& \quad \& / \text { or } \beta_{14} \neq 0 \& / \text { or } \beta_{16} \neq 0 \& / \text { or } \beta_{18} \neq 0 \& / \text { or } \beta_{20} \neq 0
\end{aligned}
$$

We performed this test on STATA at the 5\% significance level, and generated an Fstatistic of 125.23 , with a p -value of 0.000 . Given these values, we can reject the null hypothesis in favour of the alternative, at any significance level, that the variables have no impact on the number of cigarettes smoked per day. The interaction terms of the dummy variable with job possession and father's approval have shown to be the most significant of the interacted variables (with p-values of 0.054 and 0.513 respectively).

SUMMARY

Upon further analysis, another interesting correlation can be drawn from the data. For instance, out of 2,411 respondents labeled as "Smokers", only 3.8\% of their fathers and 4.8% of their mothers approve of their children's smoking habits. However, of these smokers, 42% have at least one parent that smokes as well. This supports the argument that children tend to mimic their parents' behavior, regardless of their parents' approval. Also, the high number of parental disapproval for their children's smoking habits is indicative of their concern for the health of their kids. Therefore, the risks associated
with cigarette smoking are realized by parents and more established smokers than within adolescents and experimental smokers.

The model paper concludes that price does affect the level of cigarette consumption within certain types of smokers, yet further studies need to be done to find what factors lead to the deterence of youth smoking in order to decrease the amount of smokers within the adolescent population. There are many factors in determining how much adolescent experimentation occurs, and how many cases of experimentation lead to established smoking patterns. Surveys and consequent studies should focus upon alternative public policy approaches that specifically address experimentation with smoking.

This is a Stata log file for a QED session
Course: Econ 452
Students:
Date and time: Fri, 23 Mar 2001, 15:22:10

At the end of the QED session, this file will be copied to:
82_265_Fri_ng.log
82_265_Fri_cao.log
These files will also be uploaded to:
http://edith.econ.queensu.ca/statausr/logfiles/Econ452
Type help QEDstata for a list of QED commands
Student work begins below this line

pause: "Type BREAK to end session started at 23 Mar 2001 15:22:10"
-> . do a:proj3
. * Project3 Do-File Commands*/
. \#delimit;
delimiter now ;
. Qextract QEDid age sex q72_62 q11a_19a q3_9a q26_40 q27_36 q28_38 q41_35a q43_37a q49b_44b
dvamtsmk, ds(386);
getting information about file 386 ...
loading variables from 386 (yss94lfs) only (no data yet)... done
./* Extracts the variables from the data set */
$>$
$>$ keep if q3_9a == 1;
(3203 observations deleted)
./* Criteria --> Person must answer: 'yes' to having tried cigs */
$>$
$>$ tab q11a_19a, gen(dhab);

smoked in \| last week \|	Freq.	Percent	Cum.
did smoke	2530	40.24	40.24
did not smoke \|	285	4.53	44.77
valid skip \|	3424	54.45	99.22
not stated \|	49	0.78	100.00
Total	6288	100.00	

```
./* creates dummy variable whether or not smoked in the last year */
>
> gen smoke = q11a_19a;
```

```
./* Generates new variable = # smokers */
>
drop if smoke == 9;
(49 observations deleted)
. replace smoke = 0 if smoke > 1;
(3709 real changes made)
./* Changes all other responses to 'whether smoked' = non-smokers --> explicit assumption1*/
>
> gen ncigs = dvamtsmk;
. replace ncigs = 0 if dvamtsmk == 996;
(3709 real changes made)
. replace ncigs = . if dvamtsmk == 999;
(119 real changes made, }119\mathrm{ to missing)
. drop if ncigs == .;
(119 observations deleted)
./* Drops missing values */
>
>/*To generate summary statistics:*/
>
> tab sex, gen(dsex);
\begin{tabular}{|c|c|c|c|}
\hline sex & Freq. & Percent & Cum. \\
\hline male? & 3083 & 50.38 & 50.38 \\
\hline female? | & 3037 & 49.62 & 100.00 \\
\hline Total & 6120 & 100.00 & \\
\hline
\end{tabular}
. summ dsex1 if smoke==0;
Variable| Obs Mean Std. Dev. Min Max
    dsex1| 3709 .4963602 .5000542 0 1
. summ dsex1 if smoke==1;
\begin{tabular}{c|ccccc} 
Variable & Obs & Mean & Std. Dev. & Min & Max \\
-------------------------------------------------------- \\
dsex1| & 2411 & .5151389 & .4998744 & 0 & 1
\end{tabular}
. tab q72_62, gen(djob);
        job |
possession | Freq. Percent Cum.
\begin{tabular}{|c|c|c|c|}
\hline yes | & 3284 & 53.66 & 53.66 \\
\hline no| & 2833 & 46.29 & 99.95 \\
\hline not stated & 3 & 0.05 & 100.00 \\
\hline
\end{tabular}
```

Total	6120	-100.00			
. summ djob1 if smoke==0;					
Variable	Obs	Mean S	Std. Dev.	Min	Max
djob1 \|	3709.53	. 5332974 .	. 4989573	0	1
. summ djob1 if smoke==1;					
Variable	Obs	Mean S	Std. Dev.	Min	Max
djob1 \|	2411.5	. 5416839 .	. 4983628	0	1
. summ age if smoke==0;					
Variable	Obs	Mean S	Std. Dev.	Min	Max
age \|	370916	6.842551	1.39289	15	19
. summ age if smoke $==1$;					
Variable	Obs	Mean S	Std. Dev.	Min	Max
age \|	2411 17	7.058481	1.404314	15	19
. tab q26_40, gen(home);					
smokes in \midown home \mid Freq. Percent Cum.					
yes \|	1477	24.13	24.13		
no \|	1204	19.67	43.81		
valid skip	\| 3424	$24 \quad 55.95$	$55 \quad 99.75$		
not stated	\| 15	50.25	100.00		
Total	6120	$0 \quad 100.00$			
. summ home 1 if smoke $==0$;					
Variable	Obs	Mean St	Std. Dev.	Min	Max
home1 \|	3709	. 0110542	. 1045703	0	1
. summ home 1 if smoke $==1$;					
Variable	Obs	Mean St	Std. Dev.	Min	Max
home1 \|	2411	. 5956035	. 4908767	0	1
. tab q27_36, gen(fapp);					
	father	- Freq.	Percent		

. summ fapp1 if smoke==0;

Variable	Obs	Mean	Std. Dev.	Min	Max

fapp1\| 3709	.0005392	.0232182	0	1	

. summ fapp1 if smoke==1;

Variable	Obs	Mean	Std. Dev.	Min	Max
fapp1 \|	2411	. 0377437	. 1906152	0	1

. tab q28_38, gen(mapp);

. summ mapp1 if smoke $==0$;

| Variable | Obs | Mean | Std. Dev. | Min | Max |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -- | | | | | |
| mapp1\| | 3709 | .0005392 | .0232182 | 0 | 1 |

. summ mapp1 if smoke $==1$;

Variable	Obs	Mean	Std. Dev.	Min	Max
--					
mapp1\|	2411	.0481128	.214049	0	1

. tab q41_35a, gen(fsmoke);

father \mid	Freq.	Percent	Cum.
yes \mid	2268	37.06	37.06

	no\| 35	3506	$57.29 \quad 9$	94.35		
i don't have a father * don't know \| not stated			*\| 300	$00 \quad 4.90$	99.25	
		32	0.52	99.77		
		14	0.2310	100.00		
Total		6120	100.00			
. summ fsmoke1 if smoke $==0$;						
Variable	Obs	Mean S	Std. Dev.	Min	Max	
fsmoke1 \|	3709 . 3	. 3375573	. 4729405	0	1	
. summ fsmoke1 if smoke==1;						
Variable	Obs	Mean S	Std. Dev.	Min	Max	
fsmoke1 \| 2411 . 4214019 . 49388					1	
tab q43_37a, gen(msmoke);						
mother		Freq.	Percent	Cum.		
$\begin{array}{c\|c} \text { yes } & 2124 \\ \text { no } & 3924 \end{array}$			34.71	34.71		
			64.129	98.82		
i don't have a mother * \|			$45 \quad 0.74$	99.56		
don't	't know \|	13	0.21	99.77		
not	stated \|	14	0.2310	00.00		
Total		6120	100.00			
. summ msmoke1 if smoke $==0$;						
Variable	Obs	Mean St	Std. Dev.	Min	Max	
msmoke1 \|	3709.	. 2981936	6. 4575266	60	1	
. summ msmoke1 if smoke $==1$;						
Variable	Obs	Mean S	Std. Dev.	Min	Max	
msmoke1 \|	2411	. 4222314	4.4940175	50	1	
. tab q49b_44b, gen(risk);						
health risk \|						
occasional \| cigarette	Freq.	Percent	Cum.			
yes \|	3911	63.91	63.91			
no\|	2005	32.76	96.67			
don't know \|	\| 190	$0 \quad 3.10$	099.77			
not stated \|	14	0.23	100.00			

. regress ncigs dhab1 sex sexdhab1 q72_62 jobdhab1 age agedhab1 q26_40 homdhab1 q27_36 fapdhab1 q28_38 mapdhab1 q41_35a fsmdhab1 q43_37a msmdhab1 q49b_44b rskdhab1;

Total\|	25994474.7	6119
4248.15732	Adj R-squared $=0.5542$	
Root MSE	$=43.518$	

ncigs \|	Coef. Std. Err.	$\mathrm{P}>\|\mathrm{t}\| \quad$ [95\%	f. Interval]
dhab1 \|	16.8154117 .82806	0.9430 .346	-18.13387 51.76469
sex	$1.74 \mathrm{e}-111.433509$	$0.000 \quad 1.000-2.8$	-2.810184 2.810184
sexdhab1	\| -14.18429 2.293374	-6.185 0.000	-18.68011 -9.688469
q72_62	-2.13e-11 1.393649	0.0001 .000	-2.732044 2.732044
jobdhab1	\| -4.15395 2.151983	-1.930 0.054	-8.372597 . 0646962
age \|	4.47e-11 . 5145252	0.0001 .000	-1.008651 1.008651

agedhab1	8.846009	.8269603	10.697		0.000	7.224875	10.46714
q26_40	$3.04 \mathrm{e}-10$	2.033621	0.000	1.000	-3.986615	3.986615	
homdhab1	-26.25456	2.628243	-9.989	0.000	-31.40685	-21.10228	
q27_36	$2.77 \mathrm{e}-10$	3.171268	0.000	1.000	-6.216804	6.216804	
fapdhab1	-2.189185	3.34344	-0.655	0.513	-8.743506	4.365136	
q28_38	$-7.19 \mathrm{e}-10$	3.56988	0.000	1.000	-6.998224	6.998224	
mapdhab1	-15.48041	3.799516	-4.074	0.000	-22.9288	-8.032013	
q41_35a	$-2.22 \mathrm{e}-11$	1.103071	0.000	1.000	-2.162408	2.162408	
fsmdhab1	8.573838	1.740675	4.926	0.000	5.1615	11.98618	
q43_37a	$3.14 \mathrm{e}-11$	1.334784	0.000	1.000	-2.616648	2.616648	
msmdhab1	10.8228	2.081453	5.200	0.000	6.742417	14.90318	
q49b_44b	$-9.18 \mathrm{e}-13$.6096182	0.000	1.000	-1.195067	1.195067	
rskdhab1 \|	5.372864	1.075629	4.995	0.000	3.264251	7.481477	
_cons \|	$7.40 \mathrm{e}-11$	12.69186	0.000	1.000	-24.88053	24.88053	

. test dhab1 sexdhab1 agedhab1 fapdhab1 mapdhab1 fsmdhab1 msmdhab1 rskdhab1 jobdhab1 homdhab1;
(1) $\mathrm{dhab} 1=0.0$
(2) sexdhab1 $=0.0$
(3) agedhab $1=0.0$
(4) fapdhab1 $=0.0$
(5) mapdhab1 $=0.0$
(6) fsmdhab $1=0.0$
(7) $\mathrm{msmdhab} 1=0.0$
(8) $\mathrm{rskdhab} 1=0.0$
(9) jobdhab1 $=0.0$
(10) homdhab1 $=0.0$
$F(10,6100)=125.23$
Prob $>\mathrm{F}=0.0000$

Econ 452B

Using OLS Regression techniques to estimate Chaloupka and Wechsler's "Price, Tobacco Control Policies and Smoking among young adults""

By:

Data Set: Survey of Smoking in Canada (\# 373)
""Price, Tobacco Control Policies and Smoking among young adults", Journal of Health Economics, Vol:16, 1997, pp 359-373

Introduction

Much is known about the health consequences of cigarette smoking and other forms of tobacco use. Despite this cigarette smoking remains high, especially among the youths and young adults. After declining rapidly throughout 1970's, the decrease in smoking participation has reached a plateau in recent years.

Chaloupka and Wechsler's paper (1997) examines the effectiveness of two major tobacco control policies in discouraging smoking among young adults. It studies the effects of cigarette prices (which are directly proportional to changes in excise taxes) and restrictions on smoking in public places on smoking participation among students in U.S. colleges and universities. The reason this age group was chosen is that at this age smoking practices become firmly established. Almost all smokers first use cigarettes by high school graduation, while nearly no first use occurs after age 20. Almost 45% of people who ever smoked daily began daily smoking between the ages of 18 and 29 years. Therefore, a sample of college and university students was used by Chaloupka and Wechsler to capture this age range and to thus explore how price and policies may be used to discourage smoking.

The data utilized in the model paper was taken from the 1993 Harvard College Alcohol Study, which focused on binge drinking in colleges. In the study, all respondents were asked about their current/past smoking participation as well as their daily cigarette consumption. These data were used to construct various variables that reflect cigarette demand (like smoking participation, frequency of cigarette consumption, average daily cigarette consumption and so on). Additionally, a variety of independent variables were constructed to control for other factors affecting cigarette demand, which include age, age
squared, indicators of gender, race/ethnicity, marital status, parental education, oncampus living, fraternity or sorority membership and employment. Indicators of price were included, by Chaloupka and Wechsler, using site-specific data, while that on restrictions included a set of five dichotomous indicators including restrictions in the workplace, schools, restaurants, retail stores and other public places. Chaloupka and Wechsler test the effect of age on cigarette consumption as well as how price and various restrictions affect cigarette consumption.

In their paper Chaloupka and Wechsler do not use ordinary least squares techniques and deem them "inappropriate" for this data set, due to the "limiting" nature of the data set. Instead, two alternative approaches are used. In the fist step, probit measures are used to estimate a smoking participation equation. In the second step, least square methods are used to estimate average daily cigarette consumption by smokers.

Based on these testing procedures, they find that age is significant in affecting cigarette consumption. They report that the price of cigarettes has a negative and statistically significant impact on smoking amongst college students. Finally they also conclude that policies restricting smoking in public places and private work-sites appear also to have a negative impact but of a smaller scale as compared to price effects.

Our analysis attempts the more modest goal of establishing whether or not average cigarette consumption is affected by various restrictions on smoking in the workplace, as well as whether or not a variety of other variables affect cigarette consumption.

Information for our analysis is adapted from the Survey of Smoking in Canada (SOIC). This survey was conducted in 1995 across all provinces and involved telephone
interviews with 15,804 individuals aged 15 to 78 years old. The survey deals with the smoking patterns, practices and beliefs of interviewees. SOIC is useful in a variety of ways. Firstly, it contains information on a random sample of Canadians within the appropriate age group, who are either subject to or not subject to a variety of smoking restrictions. Secondly, it details individuals' actual average cigarette usage as a 'continuous' variable, in contrast to Chalupka and Weschsler's (1995) constructed continuous variable, which is essentially the mid-point of a variety of consumption ranges. Additionally, most of the variables in the model paper, including data on age, marital status, sex, and workplace restrictions are available within the SOIC. The data on workplace restrictions is particularly useful as it lays out a variety of levels of restrictions for comparison.

Despite these favourable aspects of the SOIC, there are many disadvantages which persist. Firstly, we have data only on restrictions within the workplace, thus forcing our analysis to focus on a sample of working individuals. Since is unlikely that one would not work because of smoking restrictions, we can eliminate non-working individuals to focus on how daily cigarette consumption differs among working individuals who face a variety of levels of smoking restrictions in their place of work. This serves as the main distinguishing feature between our analysis and the model paper which focused on university students. However, as the emphasis of both analyses is on cigarette consumption within a particular age group, rather than occupation status, this assumption seems fairly robust. Finally, we do not have data on ethnicity/race or parental education, however the variable 'language spoken at home' will be used as an arguable substitute for ethnicity.

Data

The data used in our analysis was manipulated as follows. Firstly, our study focuses on young adults between the ages of 18 and 29, thus individuals outside of this range are excluded (11327). Secondly, individuals who were not working are excluded as we are interested in looking at how restrictions on smoking in the workplace affect average cigarette consumption in this younger portion of the labour force. This eliminates a further 3085 individuals. Also, individuals who smoke no cigarettes are excluded to focus on how smoking consumption varies among individuals who already smoke (3). Finally, individuals with incomplete data in any of the appropriate areas (average cigarette use, age, sex, marital status, language spoken and restrictions in the workplace) were excluded (895). After all this our final sample is reduced to 494 participants.

The variable containing information on restrictions ranges from restricted completely (24.5% of our sample), allowed to smoke only in designated areas (36.0\%), restricted only in certain places (10.9\%), not restricted at all (27.9\%). To control for the effects of men and women facing differing work environments, we also explore the interactions of sex with restrictions on cigarette consumption.

Table 1.shows the summary statistics for the appropriate variables.

Results

Table 2. has been constructed to reflect the regression results of average cigarette consumption on the respective variables as well as dummy variables so generated to account for categorical data.

Table 2 shows that, based on our sample, differences in age, age-squared, sex, marital status, as well as language spoken have no significant effect on a person's average cigarette consumption. Additionally, Table 2 indicates that the difference between both people who are completely restricted from smoking at work and those who face no restrictions at work is significant in having an impact on an individuals average cigarette consumption (p -value $=0.000$). It is also evident from the table that the difference between those who are allowed to smoke only in certain areas of the workplace and those who face no restrictions are significant (p -value $=0.000$). The effect of restrictions on average cigarette consumption are strongly negative in both cases, and imply that an increase in 'restrictions' reduce average daily cigarette consumption. It is also evident that the coefficients of both these types of restrictions are, together, significantly different from zero- thus supporting our previous conclusion ($\mathrm{F}=6.86$, prob $>\mathrm{F}=0.000)$.

The effect of being male and having various restrictions in the workplace is insignificant, thus indicating that multicollinearity is not a factor here. More specifically, the difference between one being male and facing a particular restriction is not significantly different from one being female and having the same restriction in affecting average cigarette consumption. Table 2 again stands testimony to these results.

Discussion and Conclusions

While numerous econometric studies of cigarette demand have been published over the past several decades, most of these studies have used diverse data and methods to estimate the effects of cigarette prices and taxes on smoking participation and cigarette
consumption in the overall population. One general conclusion emerges from such studies: higher cigarette prices significantly reduce cigarette smoking. However, relatively few studies use individual-level data to focus on the price responsiveness of cigarette smoking among youths and young adults. Furthermore, a more recent phenomenon in the anti-smoking campaign is restrictions on smoking in public places, where studies have gradually taken precedence only recently. Thus, the research undertaken by Chaloupka and Wechsler addresses these issues by studying the impact of cigarette prices and restrictions on smoking in public places and private worksites on smoking participation and the frequency of cigarette consumption in a large, nationally representative sample of college/university students. This paper attempts to reflect upon the results of the article by considering the effect of restrictions on smoking in the work place on the average daily consumption of cigarettes by individuals in the appropriate age group.

The results gathered from the OLS estimation indicate that there is a statistically significant difference between no restrictions employed compared with (1)full restrictions employed and (2)restrictions for smoking only in certain areas on average cigarette consumption. This ties in well with Chaloupka and Wechsler's results, which indicate that "relatively stringent limits on smoking in public places and workplaces can influence the decision to smoke by young adults". However, due to skipped, invalid or unknown data, present in our survey (which were subsequently eliminated), our sample size was greatly reduced. Furthermore, the fact that our survey data was only indirectly related to the journal article required the elimination of further records to more closely model our data to that of the article, as well as the use of proxy variables in the place of more
appropriate ones. The sum of all this is that these factors may have affected the robustness of our OLS estimation. This reasoning may be applied to our finding that age did not significantly affect average cigarette consumption. This differs from the findings in other empirical studies such as that done in our model paper as well as that conducted by Grossman et al (1983). Both these studies found that age is estimated to be statistically significant in affecting cigarette consumption. This discrepancy may be due to the limited sampling size as mentioned above.

The following discussion will briefly outline some of the issues and concerns that we came across in undertaking the survey data study. It is interesting that the authors chose to study the effects of cigarette prices and restrictions on smoking in public places and private workplaces among students in colleges/universities. Clearly, this is an interesting age group to study since it contains individuals whose smoking practices are likely to be in the process of becoming firmly set. Thus, it is important to use such an age range during which policies to discourage smoking can have a significant impact. As well, given that college/university students will be the leaders of tomorrow and will shape future public policy, understanding the determinants of cigarette smoking for this population is particularly important. The fact that restrictions in the workplace have a significant impact suggests a possible role for them as a policy instrument.

A few problem areas with the original journal article as well as results based on our survey data stand out quite clearly. Firstly, it is highly probable that cigarette smoking is underreported in survey data. However, no information is available on the extent of underreporting or on how underreporting varies with consumption. Assuming that all smokers underreport by the same degree then this may not affect the estimates for
policy variables. The loss of information for many individuals reduces the certainty of our results. For example, for the variable "average number of cigarettes smoked daily", it is calculated that approximately 72.3% of the survey data set is coded missing, and these are not valid skips. Equally the model article does not seem able to underline sufficient information to estimate cigarette demand equations or other economic models of addictive behavior. As well, details on the selection of colleges and universities, the sampling procedure, questionnaire, and response rates for this survey were lacking in the model article.

It is unclear as to why the authors decided to use ordered probit methods and least squares methods instead of ordinary least squares. It is only observed that the probit methods provide a general sense of the relationships between prices, policies, and cigarette smoking. However, is it due to the lack of or limited nature of dependent variables that the ordinary least squares method cannot be executed? Or is it a problem regarding the specific independent variable; that is, smoking participation or average daily consumption that renders the OLS technique inappropriate? Such questions need to be clarified more thoughtfully by the article. Our OLS estimates concur in terms of restrictions on smoking in the workplace, but not in terms of the effect of age on smoking. Nonetheless, Chaloupka and Wechsler's contribution proves to be significant in the study of tobacco control policies and smoking among young adults.

Appendix

TABLE 1
Summary Statistics

Variable	Obs	Mean	Std. Dev.	Min	Max
Average \# of cigarettes smoked daily	494	1259.567	870.3722	3	5357
Age Group	494	22.82389	2.95115	18	29
Sex	494	1.481781	.5001745	1	2
Marital Status	494	3.293522	1.253344	1	4
Language spoken at home	494	1.251012	.6123716	1	4
Smoking restrictions at date of work	494	2.453441	1.191952	1	7

Table 2

Regression Results from OLS Estimation

Variable
Co-efficient (Standard Error)

Age
332.98
(173.34)
Age^{2}

- 6.49
(3.71)

Sex
203.22
(78.69)

Marital Status - Married
-225.85
(248.60)

Marital Status - Single
Language Spoken at home - English
Language Spoken at home - French
Language Spoken at home - Both English and French
Smoking Restrictions at place of work -
Restricted Completely
(107.78)

Smoking Restrictions at place of work -
Allowed only in designated places
(96.07)

Smoking Restrictions at place of work -
-59.06
Restricted only in certain places (133.93)
Smoking Restrictions at place of work -
-57.95
Not Restricted at all
(491.09)

Break-up by Age group:

Age	Freq.	Percent Cum.	
18	36	7.29	7.29
19	37	7.49	14.78
20	39	7.89	22.67
21	58	11.74	34.41
22	68	13.77	48.18
23	59	11.94	60.12
24	83	16.80	76.92
25	21	4.25	81.17
26	27	5.47	86.64
27	20	4.05	90.69
28	20	4.05	94.74
29	26	5.26	100.00

Break-up by Marital Status:

Marital Status	Freq.	Percent Cum.	
Married	112	22.67	22.67
Separated-Divorced	13	2.63	25.30
Single	369	74.70	100.00

Total $494 \quad 100.00$

Break-up by Sex:

Sex
Freq. Percent Cum.
$\begin{array}{llll}\text { Male } & 256 & 51.82 & 51.82\end{array}$
$\begin{array}{llll}\text { Female } & 238 & 48.18 & 100.00\end{array}$
Total $494 \quad 100.00$

Break-up by Language most often spoken at home:

Language most often spoken at home

Freq. Percent Cum.

English	403	81.58	81.58
French	71	14.37	95.95
Both equally	7	1.42	97.37
Other	13	2.63	100.00

Total 494100.00
Break-up by Smoking restrictions at place of work:
Smoking restrictions at place of work

Freq. Percent Cum.

Restricted completely	121	24.49	24.49
Allowed only in designated areas	178	36.03	60.53
Restricted only in certain places	54	10.93	71.46
Not restricted at all	138	27.94	99.39
Don't know	3	0.61	100.00
	Total	$\mathbf{4 9 4}$	$\mathbf{1 0 0 . 0 0}$

STATA LOG

```
********
This is a Stata log file for a QED session
Course: Econ 452
Students: wen
Date and time: Sun, 25 Mar 2001, 12:32:08
At the end of the QED session, this file will be copied to:
84_222_Sun_wen.log
These files will also be uploaded to:
http://edith.econ.queensu.ca/statausr/logfiles/Econ452
Type help QEDstata for a list of QED commands
Student work begins below this line
***********************************************************************
********
pause: "Type BREAK to end session started at 25 Mar 2001 12:32:08"
-> . Qextract
getting information about file 373 ...
loading variables from 373 (sosic95) only (no data yet)... done
-> . browse
-> . drop if agegp1 <18 | agegp1>29
(11327 observations deleted)
-> . gen agegp1sq = agegp1*agegp1
```

```
-> . browse
-> . drop if sex == .
(0 observations deleted)
-> . QEDmerge c2q21 , ds(373)
unrecognized command: QEDmerge
r(199);
-> . Qmerge c2q21 , ds(373)
working some more ...
QEDid QEDmerge c2q21
    Was observation in memory, data set
                        373, or both? Freq. Percent
Cum.
```



```
--
Total 15804 100.00
-> . browse
-> . drop if c2q21==.
(11099 observations deleted)
-> . browse
-> . drop if mst==.
(3025 observations deleted)
-> . drop if c4q28==.
(201 observations deleted)
-> . drop if c2q22==.
(O observations deleted)
-> . browse
-> . Qmerge clavgcig , ds(373)
QEDmerge already defined
r(110);
-> . browse
-> . drop QEDmerge
-> . browse
-> . Qmerge clavgcig , ds(373)
working some more ...
QEDid QEDmerge clavgcig
    Was observation in memory, data set
                                    373, or both?
                                    Freq. Percent
Cum.
```


Total $1479 \quad 100.00$
-> . tab c4q28, nolabel gen(lang)

language most often speak at home	Freq.	Percent	Cum.
1	1179	79.72	79.72
2	238	16.09	95.81
3	10	0.68	96.48
4	52	3.52	100.00
Total	1479	100.00	

-> . drop mst1
-> . drop mst2
-> . drop mst3
-> . tab c2q22, nolabel gen(res)

smoking restriction s at place of work	Freq.	Percent	Cum.
1	498	33.67	33.67
2	476	32.18	65.86
3	165	11.16	77.01
4	335	22.65	99.66
7	5	0.34	100.00
Total	1479	100.00	

-> . browse
-> . drop if sex==.
(14325 observations deleted)
-> . browse
-> . drop if clavgcig==.
(982 observations deleted)
-> . browse
-> . clear
-> . use "A: \final data.dta", clear
(373 : sosic95 : survey of smoking in canada)
-> . browse
-> . browse
-> . browse
-> . drop QEDmerge
-> . Qmerge clciguse , ds(373)
working some more ...
QEDid QEDmerge clciguse
Was observation in memory, data set 373 , or both?

Freq. Percent
Cum.

-> . regress clavgcig agegp1 agegp1sq fem1 fem2 mg1 mg2 mg3 lang1 lang2 lang3 lang4 res1 res2 res3 res4 res5

Source 494	SS	df	MS	Number of obs $=$
				F(12, 481) =
5.18				
Model	42710512.0	12	3559209.33	Prob > F
0.0000				
Residual	330760549	481	687651.87	R-squared
0.1144				
				Adj R -squared $=$
0.0923 (0				
Total	373471061	493	757547.792	Root MSE =
829.25				

clavgcig Interval]	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf.
agegp1	332.9815	173.3406	1.921	0.055	-7.616724
673.5798					
agegp1sq $.7947563$	-6.490118	3.707489	-1.751	0.081	-13.77499
fem1	203.2189	78.68926	2.583	0.010	48.60175
357.8361					
fem2	(dropped)				
mg1	-225.8352	248.6014	-0.908	0.364	-714.314
262.6436					
mg2	(dropped)				
mg3	-417.2045	244.6243	-1.705	0.089	-897.8688
63.45969					
lang1	356.9957	236.0838	1.512	0.131	-106.8872
820.8787					
lang2	277.8875	254.2531	1.093	0.275	-221.6965
777.4715					
lang3	669.8344	391.8525	1.709	0.088	-100.1197
1439.789					
lang4	(dropped)				
res1	-453.8946	139.7906	-3.247	0.001	-728.5702
179.219					
res2	-291.2785	130.7409	-2.228	0.026	-548.1725
34.38456					
res3	(dropped)				
res4	59.06489	133.932	0.441	0.659	-204.0992
322.229					
res5	1.105058	499.9122	0.002	0.998	-981.1765
983.3866					
_cons	-2786.574	2030.729	-1.372	0.171	-6776.77
1203.623					

3.86			
Model	73.1000615	12	6.09167179
0.0000			
Residual	758.39583	481	1.57670651
0.0879			
0.0652			
Total	831.495892	493	1.68660424
1.2557			

F(12, 481) =
Prob $>$ F =

R-squared =
Adj R -squared $=$
Root MSE = --------

```
lnavgcig | Coef. Std. Err. t P>|t| [95% Conf.
Interval]
```

agegp1	. 4666611	. 262477	1.778	0.076	-. 0490822
. 9824043					
agegp1sq	-. 0092326	. 005614	-1.645	0.101	-. 0202635
. 0017984					
fem1	. 2320113	. 1191534	1.947	0.052	-. 0021143
. 4661368					
fem2	(dropped)				
mg1	-. 2828236	. 376439	-0.751	0.453	-1.022492
. 4568444					
mg2	(dropped)				
mg3	-. 5308499	. 3704168	-1.433	0.152	-1.258685
. 1969851					
lang1	. 2294103	. 3574846	0.642	0.521	-. 473014
. 9318346					
lang2	.1814799	. 384997	0.471	0.638	-. 5750038
. 9379637					
lang3	. 7792978	. 5933538	1.313	0.190	-. 3865879
1.945183					
lang4	(dropped)				
res1	-. 7069455	. 1632037	-4.332	0.000	-1.027626
. 3862653					
res2	-. 4539421	. 1454726	-3.120	0.002	-. 7397824
. 1681018					
res3	. 0041952	. 2028035	0.021	0.984	-. 3942951
. 4026856					
res 5	. 1609639	. 7436285	0.216	0.829	-1.300198
1.622126					
_cons	1.358006	3.070716	0.442	0.659	-4.675669
7.391681					

-_--_--
-> . regress lnavgcig agegp1 agegp1sq fem1 fem2 mg1 mg2 mg3 lang1 lang3 lang4 res1 res2 res3 res5

$\begin{gathered} \text { Total } \\ 845.28 \end{gathered}$	373471061	493757	. 792		Root MSE	
clavgcig \| Interval]	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf.	
lang1	394.476	239.5065	1.647	0.100	-76.12003	
$\begin{aligned} & 865.072 \\ & \quad \text { lang2 } \end{aligned}$	300.8077	257.9815	1.166	0.244	-206.0892	
$\begin{array}{r} 807.7046 \\ \text { lang3 } \end{array}$	617.3326	398.2758	1.550	0.122	-165.2225	
$\begin{array}{r} 1399.888 \\ \text { lang } 4 \\ \text { res } 1 \end{array}$	(dropped) -429.541	139.2387	-3.085	0.002	-703.1251	-
$\begin{array}{r} 155.9569 \\ \text { res2 } \end{array}$	-287.5235	131.6011	-2.185	0.029	-546.1009	-
$\begin{array}{r} 28.94615 \\ \text { res } 3 \\ \text { res } 4 \end{array}$	$\begin{gathered} \text { (dropped) } \\ 109.7906 \end{gathered}$	135.7797	0.809	0.419	-156.9972	
$\begin{array}{r} 376.5784 \\ \text { res } 5 \end{array}$	204.8489	501.838	0.408	0.683	-781.1911	
$\begin{gathered} 1190.889 \\ \text {-cons } \\ 1576.467 \end{gathered}$	1062.675	261.4907	4.064	0.000	548.8832	

res5	229.5	501.8436	0.457	0.648	-756.5358
1215.536					
_cons	1432.5	115.1308	12.442	0.000	1206.288
1658.712					

-> . browse
-> . regress clavgcig agegp1 agegp1sq fem1 fem2 mg1 mg2 mg3 lang1 lang3 lang4 res1 res2 res3 res5


```
-------
-> . regress lnavgcig agegp1 agegp1sq fem1 fem2 lang1 lang2 res1 res2
res3 res4 res5
    Source | df MS Number of obs =
4 9 4
---------+------------------------------- F( 9, 484) =
4.46
    Model | 63.7122039 9 7.07913377 Prob > F =
0.0000
Residual | 767.783688 484 1.58632993 R-squared =
0.0766
---------+------------------------------- Adj R-squared =
0.0595
    Total | 81.495892 493 1.68660424 Root MSE =
1.2595
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
lnavgcig \\
Interval]
\end{tabular} & Coef. & Std. Err. & t & \(P>|t|\) & [95\% Conf. \\
\hline agegp1 & . 4624112 & . 2631787 & 1.757 & 0.080 & -. 0547027 \\
\hline . 9795252 & & & & & \\
\hline agegp1sq & -. 0087817 & . 0056269 & -1.561 & 0.119 & -. 0198379 \\
\hline . 0022745 & & & & & \\
\hline fem1 & . 1865439 & . 1180242 & 1.581 & 0.115 & -. 0453593 \\
\hline . 418447 & & & & & \\
\hline fem2 & (dropped) & & & & \\
\hline lang1 & -. 0483528 & . 290405 & -0.167 & 0.868 & -. 6189631 \\
\hline . 5222574 & & & & & \\
\hline lang2 & -. 1186269 & . 3227804 & -0.368 & 0.713 & -. 7528508 \\
\hline . 5155969 & & & & & \\
\hline res1 & -. 7073429 & . 211706 & -3.341 & 0.001 & -1.123319 \\
\hline . 2913666 & & & & & \\
\hline res2 & -. 448087 & . 1984448 & -2.258 & 0.024 & -. 8380067 \\
\hline . 0581673 & & & & & \\
\hline res 3 & (dropped) & & & & \\
\hline res 4 & . 0127567 & . 203233 & 0.063 & 0.950 & -. 3865713 \\
\hline . 4120847 & & & & & \\
\hline res 5 & . 2830401 & . 7496289 & 0.378 & 0.706 & -1.189889 \\
\hline 1.755969 & & & & & \\
\hline _cons & 1.054056 & 3.054983 & 0.345 & 0.730 & -4.94861 \\
\hline 7.056722 & & & & & \\
\hline
\end{tabular}
_------
-> . save "A:\sssaws.dta"
file A:\sssaws.dta saved
-> . regress clavgcig agegp1 agegp1sq fem1 fem2 lang1 lang2 res1 res2
res3 res4 res5
\begin{tabular}{lll} 
Source \(\mid ~\) & SS & MS \\
494 & Number of obs \(=\) \\
\(--------+----------------------------~\) & \(F(9, ~ 484)=\) \\
5.86 & &
\end{tabular}
```


\qquad
-> . regress clavgcig agegp1 agegp1sq fem1 fem2 mg1 mg2 mg3 lang1 lang3 lang4 res1 res2 res3 res5

Source 494	SS	df	MS	Number of obs $=$
				$F(12,481)=$
5.18				
Model	42710512.0	12	3559209.33	Prob > F
0.0000				
Residual	330760549	481	687651.87	R -squared
0.1144				
				Adj R-squared $=$
0.0923				
Total	373471061	493	757547.792	Root MSE =
829.25				


```
r(198);
-> . xi: regress clavgcig agegp1 agegp1sq fem1*i.c2q22 mst
fem1*i.c2q22
i: operator invalid
r(198);
-> . regress lnavgcig agegp1 agegp1sq fem1 fem2 mg1 mg2 mg3 lang1
lang2 lang3 lang4 res1 res2 res3 res4 res5 fres1 fres2 fres3 fres4
    Source | SS Mf NS Number of obs =
494
---------+------------------------------- F( 15, 478) =
3.16
    Model | 74.9540559 15 4.99693706 Prob > F =
0.0001
Residual | 756.541836 478 1.58272351 R-squared =
0.0901
---------+------------------------------- Adj R-squared =
0.0616
    Total 831.495892 493 1.68660424 Root MSE =
1.2581
-------
lnavgcig | Coef. Std. Err. t P>|t| [95% Conf.
Interval]
---------+---------------------------------------------------------------------
-------
\begin{tabular}{|c|c|c|c|c|c|}
\hline agegp1 & . 4653588 & . 2634117 & 1.767 & 0.078 & -. 0522291 \\
\hline \multicolumn{6}{|l|}{. 9829468} \\
\hline agegp1sq & -. 0091926 & . 0056353 & -1.631 & 0.103 & -. 0202655 \\
\hline . 0018804 & & & & & \\
\hline fem1 & . 2763878 & . 2388895 & 1.157 & 0.248 & -. 1930156 \\
\hline \multicolumn{6}{|l|}{. 7457911} \\
\hline fem2 & (dropped) & & & & \\
\hline mg1 & -. 2535987 & . 3786869 & -0.670 & 0.503 & -. 9976954 \\
\hline \multicolumn{6}{|l|}{. 490498} \\
\hline mg 2 & (dropped) & & & & \\
\hline mg3 & -. 5009791 & . 3728798 & -1.344 & 0.180 & -1.233665 \\
\hline \multicolumn{6}{|l|}{. 2317069} \\
\hline lang1 & . 2261884 & . 3590023 & 0.630 & 0.529 & -. 4792292 \\
\hline \multicolumn{6}{|l|}{. 9316061} \\
\hline lang2 & . 184086 & . 3863492 & 0.476 & 0.634 & -. 5750667 \\
\hline \multicolumn{6}{|l|}{. 9432388} \\
\hline lang3 & . 7764261 & . 5948289 & 1.305 & 0.192 & -. 3923764 \\
\hline \multicolumn{6}{|l|}{1.945229} \\
\hline lang4 & (dropped) & & & & \\
\hline res1 & -. 6205406 & . 3253636 & -1.907 & 0.057 & -1.25986 \\
\hline \multicolumn{6}{|l|}{. 0187791} \\
\hline res2 & -. 3821635 & . 3159927 & -1.209 & 0.227 & -1.00307 \\
\hline \multicolumn{6}{|l|}{. 2387429} \\
\hline res3 & (dropped) & & & & \\
\hline res 4 & . 2405764 & . 3453432 & 0.697 & 0.486 & -. 4380019 \\
\hline \multicolumn{6}{|l|}{. 9191548} \\
\hline res5 & . 2279672 & . 8295743 & 0.275 & 0.784 & -1.402096 \\
\hline \multicolumn{6}{|l|}{1.85803} \\
\hline fres1 & (dropped) & & & & \\
\hline
\end{tabular}
```

fres2	. 0214531	. 3049182	0.070	0.944	-. 5776927
. 6205989					
fres3	. 1184468	. 4309045	0.275	0.784	-. 7282543
. 9651478					
fres 4	-. 2509959	. 3291604	-0.763	0.446	-. 8977761
. 3957842					
_cons	1.238128	3.085392	0.401	0.688	-4.82448
7.300735					

-> . xi: regress clavgcig i.c2q22*i.fem1 i.c4q28*i.c2q28					
i.c2q22 Ic2q22_1-7 (naturally coded; Ic2q22_1 omitted)					
i.fem1		Ifem1_0-1	(naturally coded;		Ifem1_0 omitted)
i.c2q22*i.fem1		IcXf_\#-\#	(coded as above)		
i.c4q28		Ic4q28_1-4	(naturally coded;		Ic4q28_1 omitted)
c2q28 not found					
r(111) ;					
-> . xi: regress clavgcig i.c2q22*i.fem1 i.c4q28*i.c2q22					
i.c2q22		Ic2q22_1-7	(naturally coded;		Ic2q22_1 omitted)
i.fem1		Ifem1_0-1	(naturally coded;		Ifem1_0 omitted)
i.c2q22*i.fem1		IcXf_\#-\#	(coded as above)		
i.c4q28		Ic4q28_1-4	(naturally coded;		Ic4q28_1 omitted)
i.c4q28*i.c2q22		IcXc_\#-\#	(coded as above)		
Source	SS	df	MS		Number of obs $=$
494					
					F(19, 474) =
2.71					
Model	36627408.0	19192	758.31		Prob > F
0.0001					
Residual	336843653	474710	40.619		R -squared
0.0981					
					Adj R-squared =
0.0619 le					
Total	373471061	49375	47.792		Root MSE =
843.00					

-_-_---

clavgcig | Coef. Std. Err. \quad [\quad P $>$ |t| Conf.
Interval]

Ic2q22_2	150.8893	136.0257	1.109	0.268	-116.3985
418.1772					
Ic2q22_3	364.733	226.7216	1.609	0.108	-80.77062
810.2367					
Ic2q22_4	565.0646	164.7734	3.429	0.001	241.288
888.8412					
Ic2q22_7	422.8657	504.0264	0.839	0.402	-567.5367
1413.268					
Ifem1_1	286.3597	159.7771	1.792	0.074	-27.59935
600.3187					
IcXf_2_1	-161.5793	204.386	-0.791	0.430	-563.1939
240.0353					
IcXf_3_1	82.64645	289.7133	0.285	0.776	-486.6348
651.9277					

$\begin{gathered} \text { Total } \\ 829.25 \end{gathered}$	373471061	493757	. 792		Root MSE	=
clavgcig \| Interval]	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf.	
agegp1	332.9815	173.3406	1.921	0.055	-7.616724	
673.5798 agegp1sq $.7947563$	-6.490118	3.707489	-1.751	0.081	-13.77499	
fem1 \|	203.2189	78.68926	2.583	0.010	48.60175	
$\begin{array}{r} 357.8361 \\ \mathrm{mg} 1 \end{array}$	-225.8352	248.6014	-0.908	0.364	-714.314	
$\begin{array}{r} 262.6436 \\ \mathrm{mg} 2 \\ \mathrm{mg} 3 \end{array}$	$\begin{gathered} \text { (dropped) } \\ -417.2045 \end{gathered}$	244.6243	-1.705	0.089	-897.8688	
$\begin{array}{r} 63.45969 \\ \text { lang } 1 \end{array}$	356.9957	236.0838	1.512	0.131	-106.8872	
$\begin{array}{r} 820.8787 \\ \text { lang2 } \end{array}$	277.8875	254.2531	1.093	0.275	-221.6965	
$\begin{array}{r} 777.4715 \\ \text { lang } 3 \end{array}$	669.8344	391.8525	1.709	0.088	-100.1197	
$\begin{array}{r} 1439.789 \\ \text { lang } 4 \\ \text { res } \end{array}$	$\begin{gathered} \text { (dropped) } \\ -512.9595 \end{gathered}$	107.7802	-4.759	0.000	-724.7376	-
$\begin{array}{r} 301.1813 \\ \text { res } 2 \end{array}$	-350.3434	96.0705	-3.647	0.000	-539.1131	-
$\begin{array}{r} 161.5737 \\ \text { res } 3 \end{array}$	-59.06489	133.932	-0.441	0.659	-322.229	
$\begin{array}{r} 204.0992 \\ \text { res5 } \end{array}$	-57.95983	491.0943	-0.118	0.906	-1022.915	
$\begin{gathered} 906.9954 \\ \text {-cons } \\ 1257.147 \end{gathered}$	-2727.509	2027.909	-1.345	0.179	-6712.164	

\qquad
-> . gen fres5 = fem1* res5
-> . regress c1avgcig agegp1 agegp1sq fem1 mg1 mg2 mg3 lang1 lang2 lang3 lang4 res1 res2 res3 res5 fres1 fres2 fres3 fres5


```
    _cons | -2727.509 2027.909 -1.345 0.179 -6712.164
1257.147
-> . test res1 res2 res3 res5
    ( 1) res1 = 0.0
    ( 2) res2 = 0.0
    ( 3) res3 = 0.0
    (4) res5 = 0.0
        F(4, 481)=6.86
        Prob > F = 0.0000
-> . test res1 res2
    ( 1) res1 = 0.0
    ( 2) res2 = 0.0
        F( 2, 481) = 12.22
            Prob > F = 0.0000
-> . BREAK
sending Break to calling program...
Session ended at 25 Mar 2001; 16:51:39
***************************************************************************
********
```


Economics 452 Assignment 3

Why Bother: an Analysis of Volunteer Work in Canada, 1987

2001-03-24

Volunteer work is an integral but understudied component of Canadian economic activity. In 1987 alone, whether individuals reported participating in non-standard labour such as fundraising for charity or coaching a youth sports team, 5337000 Canadians contributed over 1017548000 hours of unpaid work to at least one volunteer organization. Assuming a thirty-five hour work week and fifty-two weeks per year, these hours amounted to approximately 522000 full-time workers, an informal labour force that employed more individuals across Canada than agriculture. With this in mind, there can be little doubt as to the economic and social importance of volunteer work within Canadian society. Nonetheless, there does not appear to be a consensus as to what motivates individuals to dedicate their free time to volunteering, an allotment time that could otherwise be used for leisure, and also which people are more likely to do so.

These notions are evaluated and tested in To Volunteer or not: Canada, 1987, an article published in the Canadian Journal of Economics by Francois Vaillancourt. The purpose of his article was to "examine how the benefits and costs of doing volunteer work, as they are represented by individual characteristics such as age, education, or occupation, explain the choice to carry out or to not carry out volunteer work." Within the context of the Time Allocation/ Household Production Model, Vaillancourt hypothesised the effect of fifteen different explanatory variables on doing or nor doing volunteer work, and subsequently tested his predictions using probit analysis. Our paper will consist of three sections. First, we will briefly review the theories, methodologies, and results recorded in the latter article. Second, using similar data and an OLS
regression model, we will attempt to replicate Vaillancourt's analysis. Third, we shall report our results and offer some concluding remarks.

I. Literature and Economic Theory

François Vaillancourt's "To Volunteer or not: Canada, 1987" examines two dimensions of economic theory, the Time Allocation/ Household Production Model and the Human Capital Model. His goal is to link these theories with 1987 National Labour Force Survey data in order to explain the benefits, costs, and choices that will make it likely that an individual will engage in volunteer work.

For the purpose of his analysis, Vaillancourt uses the broad definition of volunteer work provided by Statistics Canada. This definition includes all unpaid labour that is likely to replicate organized market activity and be explained by economic variables. Work such as involvement in charitable organizations, clubs, pressure groups, sports teams, unions, and other volunteer associations would fall under this classification. Volunteer work does not, however, include informal market activities such as minding children and aiding in domestic chores. With this definition in mind, Vaillancourt looks to economic theory to explain the reasons why individuals will chose to volunteer.

In order to determine the benefits of volunteer work, Vaillancourt looks to the Time Allocation/ Household Production Model and Jacob Mincer's Human Capital Model. The former deems that time not spent doing wage-earning labour can be allocated to either leisure or performing non-market work- volunteering is one such
activity. As such, the returns from volunteer work have to equal those of other preferred activities. The Human Capital Model postulates that many individuals will be motivated only by their enlightened self-interest. More specifically, many will volunteer if they can reap direct benefits from their efforts, including improving themselves through the development of skills, increased networking, or/ and a better public image. In both models, an individual will volunteer until the benefits of his labour equals its opportunity cost. Unfortunately, although these models are informative as to the motivations behind why individuals commit or refuse to dedicate their time to volunteer work, the costs and benefits described are vague, subjective to individual, group, or regional preferences, and are extremely difficult to test empirically, especially within the bounds of any available census data. As a consequence, Vaillancourt decides to look at some prominent characteristics of those individuals who do and do not volunteer, such as their age, income, work status, and employment, that will be reliably contained in the survey data and can be used to explain the choices people have made.

In his analysis, Vaillancourt examines the multivariate impact of sixteen explanatory variables on doing volunteer work. The cross sectional data used in his paper was collected by Statistics Canada through the 1987 Labour Force Survey and by a follow-up questionnaire for the participants who responded positively to the volunteerspecific questions. Volunteer work served as the dependant variable in the analysis, taking on a value of one for those doing volunteer work and zero otherwise. The explanatory variables taken from the survey are as follows:

[^5]4) Marital Status
5) Occupation
6) Work Status
7) Total Income
8) Number of children (0-2) (3-5) (6-15)
9) Occupation
10) Work Status
11) Hours of Work
12) Size of city residence
13) Usual language
14) Religion
15) Region of residence
16) Number of hours worked in a week

Using a probit technique, Vaillancourt then estimated the relationship between these variables and volunteer work. The results of his analysis are mixed, and can be observed in Appendix A. They generally show, however, that an individual's choice to do volunteer work can be meaningfully explained by economic analysis. More precisely, the results indicate that these choices will differ between men and women, reflecting the existing social arrangements that exist between the sexes, and that both consumption (household production) and investment (human capital) play a role in the decisions that individuals make.

II. Data and Analysis

The data used for both the Vaillancourt article and this paper comes from the same Statistics Canada survey from October, 1987. The sample size of the data set is 26,757 , with well over 100 variables. In order to emulate the regression carried out in the article, there were a number issues that were encountered in the data.

Firstly, the fact that the survey itself was a two-part process requires recognition. The first question asked of participants was: "There are many ways in which people may
give their time and skills to various groups and organizations. It is hard to remember all the things one could have done during a year, so let me ask you specifically...". Upon a positive answer regarding volunteer work, a follow up questionnaire was then administered. The resulting effect on the data is that there are a large number of missing values. The variable that was selected for this paper was the response to the question "Did you volunteer at any time in the past year?" However, this question was administered after the initial screening of the Labour Force survey, and hence creates the large number of missing values.

The second issue encountered is with selection of the availability of choices upon which to create dependent variable for our model. The author's choice of the simple question "Did you volunteer in the last year?" was a poor and arbitrary choice, and does not lend itself to much interpretation by way of the amount of volunteer work that occurs in Canada, and the characteristics that affect the level of contribution. That being said, it was the best available source for the purposes of this paper, and it was retained.

The third issue encountered was in the data itself. In selecting variables of the model, we wanted to accurately follow what Vaillancourt had set out for his regression. However, the "Occupation" variable was a large number of contradictions in it, especially when compared with the "Work Status" variable. When diagnostic tests were run on the individual variables, they proved to be significant. However the data itself claims that although an individual may be unemployed, it is still a full-time job. There are 110 Canadians who are unemployed, yet working full-time, and 16 more unemployed, while
engaging in part-time work. Additionally, the "Unemployed" category was dropped from the article's regression, while also dropping the "Production Workers" category. Due to this confusion, Occupation was not included in one of the regressions we ran.

There were some definite problems that arose when handing the data for provinces. Vaillancourt had amalgamated several provinces into regions (Atlantic, Prairies) for the purposes of commonality, yet retained British Columbia and Quebec. This distorted the data, and perhaps might have been more effective if it had remained in province form. However, we felt that these distortions were minimal, and retained the regions.

The final issue encountered was the "How many children do you have?" variables. The data has three separate questions that were asked in order to assess the number of children that the sample individual has, and the number of children in each age category. This was incredibly distortionary, and even the author has trouble printing it in his table, seen in Appendix 1.

There was a great deal of recoding and generation of variables that was needed in order to arrive at suitable model to regress. There were three steps that we took in creating our "do" file that enabled us to obtain the most desirable and accurate model. Firstly, we recoded a large number of variables for the purposes of both identification and regression. Next, we created dummies variables for most of the existing variables in the data. This is because most of the variables in the data set that we selected were
categorical, and as such did not have a meaningful value for Stata without any alteration. For example, the "Age" variable was divided up into categories for various age groups. A value for the category of $15-16$ years is assigned a value of say, 1 , and $16-20$ is 2 . They need to be divided up in order to be regressed properly. Finally, the model was constructed using a interaction terms, so as to analyze the effect of certain variables when combined with each other, upon the dependent variable. In the case of marital status, there were only two values, and a missing value, so we made an assumption that a missing variable denoted "not married".

The dummy variables were created on the following variables: age, sex, education, marital status, work status, total income, children, size of city of residence, language, religion, and region.

The regression model is constructed as follows:

```
vol \(=\beta_{1}+\beta_{2 s e x}+\beta_{3 \text { agegroup }}+\beta_{4}\) educ \(+\beta_{5 \text { marital }}+\beta_{60 c c}+\beta_{7}\) workf \(+\beta_{\text {sincome }}+\beta_{9}\) ownkids1 +
\(\beta_{100 w n k i d s 2}+\beta_{11}\) ownkids3 \(+\beta_{12}\) citysize \(+\beta_{1 \text { eng }}+\beta_{14}\) fren \(+\beta_{150 \text { ther }}+\beta_{16}\) religion \(+\beta_{17}\) region +
\(\beta_{18 w o r k h r s}+\beta_{19 k i d s}+\varepsilon\)
```

Vol is the dependent variable, $\boldsymbol{\varepsilon}$ is an error term, and the remaining variables are explanatory variables.

Analysis of this data set is somewhat unconventional given the author's choice of using an indicator variable as the dependent variable. This is a particularly interesting choice given that, at minimum in our similar data set, there is also an average number of hours volunteered variable that could have been chosen. The consequence of this choice is that our regressor coefficients represent the percentage change in likelihood of
volunteering, ergo 0.06 would indicate a 6% greater likelihood for some group possessing that attribute to volunteer. However, it would not be indicative of any underlying population value equal to that, as any member of population either did (1) or did not (0) volunteer.

As mentioned above, the final regression chosen is quite similar to that modelled by Villancourt (Appendix A) with two notable exceptions:

1. Addition of the variable KIDS, a dummy variable constructed to indicate whether the respondent had any children
2. Omission of the variables expressing occupation sector (e.g. health and education)

These additions were made because of examinations of the data. KIDS was added because the data on children had been disaggregated into particular groups, and an understanding of the overall effect was desired. The omission of variables expressing occupation and/or occupation sector were because a cross-tabulation of workforce participation (not working, part-time, full-time) with occupation, which included a category for not working, was contradictory, as seen in figure 1.1

Figure 1.1: Occupation Statistics
Type of Job

Occupation Category	Not Working	Full Time	Part Time	Total	
	$\mathbf{1}$	0	2889	202	3091
$\mathbf{2}$	0	1719	700	2419	
$\mathbf{3}$	0	2380	906	3286	
$\mathbf{4}$	0	3547	1842	5389	
$\mathbf{5}$	0	5832	735	6567	
$\mathbf{6}$	5880	110	15	6005	
Total	$\mathbf{5 8 8 0}$	$\mathbf{1 6 4 7 7}$	$\mathbf{4 4 0 0}$	$\mathbf{2 6 7 5 7}$	

Note, occupation Category 6 is not working. Notice then, that there people who said that they were full-time non-working (110) and part-time non-working (15). Given no criteria to judge which was more accurate, we felt that examining the effect of more non-work time (i.e. as expressed through the Type of Job) would be a more interesting examination than occupational categories which are somewhat arbitrary anyway (e.g. Medical doctors with primary school teachers and university deans).

The final results of the regression are shown in Figure 1.2, and demonstrate that at the 5% significance level we retain the impacts of sex, all of our age-group effects, all of our educational effects, being single, type of job (as described above), those at the highest end of the income bracket ($\$ 40,000+$), those who have many older children (see ownkids5b in description), being in non-metro cities, having a home language other than English or French, and being in an undefined religion.

Table 1.2: Impact Of individual Characteristics On Doing Volunteer Work

Canada, 1987, All Canadians

| | Variable | All Canadians |
| :--- | :---: | :---: | P-Values | | | |
| :--- | :---: | :---: |
| Volunteer Work | 0.0405 | |
| | (0.0083) | 0.00 |
| Male | | |
| Age (15-16 years omitted) | -0.0583 | |
| | (0.0247) | 0.0190 |
| $17-19$ | -0.0593 | |
| | (0.0239) | 0.0130 |
| $20-24$ | -0.0679 | |
| | (0.0237) | 0.0040 |
| $25-34$ | -0.1293 | |
| | (0.0243) | 0.0000 |

45-54	-0.1755 (0.0261)	0.0000
	-0.1743	
$55-64$	(0.0265)	0.0000
$65-69$	-0.2329	
	(0.0295)	0.0000
70 and over	-0.2809	
	(0.0280)	0.0000

Education (none or elementary omitted)

	-0.0836	
Secondary	(0.0106)	0.0000
	-0.1644	
Post-Secondary, no degree	(0.0172)	0.0000
Post Secondary, with degree	-0.1727	
	(0.0153)	0.0000
University	-0.2168	
Marital Status (Married omitted)	(0.0186)	0.0000
Single	0.0278	
	(0.0125)	0.0270
Separated, divorced, widowed	0.0127	
Work Status (full time omitted)	(0.0128)	0.3220
Part time	-0.0315	
	(0.0133)	0.0018
Does not work	-0.0522	

Total Income \$ (less than 5,000 omitted)		
$5,000-9,999$	0.0255	
	(0.0309)	0.4110
$10,000-14.999$	-0.0104	
	(0.0304)	0.7340
$15,000-19,999$	-0.0232	
	(0.0307)	0.4410
	-0.0246	
$20,000-29,999$	(0.0302)	0.4150
	-0.0406	
$30,000-39,000$	(0.0303)	0.1810

40,000-59,999	$\begin{gathered} -0.0665 \\ (0.0308) \end{gathered}$	0.0310
60,000 and over	$\begin{aligned} & -0.1011 \\ & (0.0332) \end{aligned}$	0.0020
Children Aged 0-2 years $+($ ownkids 0 omitted)		
1	$\begin{gathered} 0.0197 \\ (0.0198) \end{gathered}$	0.3190
2	$\begin{gathered} 0.0570 \\ (0.0353) \end{gathered}$	0.1060
3	$\begin{gathered} 0.1445 \\ (0.1838) \end{gathered}$	0.4320
Children Aged 3-5 years + (ownkidsa0 omitted)		
1	$\begin{gathered} 0.0246 \\ (0.0161) \end{gathered}$	0.4040
2	$\begin{gathered} 0.0322 \\ (0.0385) \end{gathered}$	0.0510
3	$\begin{gathered} -0.7971 \\ (0.4083) \end{gathered}$	0.1480
Children Aged 6-15 years + (ownkidsb0 omitted)		
1	$\begin{gathered} 0.0302 \\ (0.0209) \end{gathered}$	0.4560
2	$\begin{gathered} 0.001 \\ (0.0236) \end{gathered}$	0.4510
3	$\begin{gathered} 0.0245 \\ (0.0329) \end{gathered}$	0.0800
4	$\begin{gathered} 0.0436 \\ (0.0329) \end{gathered}$	0.1897
5	$\begin{gathered} 0.2279 \\ (0.0303) \end{gathered}$	0.2540
Size of city of residence (500,000 and over omitted)		
100,000-499,999	$\begin{gathered} -0.0075 \\ (0.0135) \end{gathered}$	0.5790
30,000-99,999	$\begin{gathered} -0.0072 \\ (0.0132) \end{gathered}$	0.5830
Less than 30,000	$\begin{gathered} -0.0314 \\ (0.0119) \end{gathered}$	0.0080

Rural	$\begin{aligned} & -0.0095 \\ & (0.0119) \end{aligned}$	0.4220
Usual Language		
English	$\begin{gathered} 0.0375 \\ (0.0325) \end{gathered}$	0.2560
French	$\begin{gathered} 0.0318 \\ (0.0350) \end{gathered}$	0.3640
Others	$\begin{gathered} -0.0893 \\ (0.0311) \end{gathered}$	0.0040
Religion (Protestant omitted)		.
None	$\begin{aligned} & -0.0198 \\ & (0.0138) \end{aligned}$	0.1540
Catholic	$\begin{gathered} -0.0439 \\ (0.0132) \end{gathered}$	0.0010
Others	$\begin{aligned} & -0.0308 \\ & (0.0168) \end{aligned}$	0.0680
Region (Ontario omitted)		
Atlantic	$\begin{gathered} 0.0539 \\ (0.0182) \end{gathered}$	0.0030
Quebec	$\begin{gathered} 0.0204 \\ (0.0124) \end{gathered}$	0.1010
Prairies	$\begin{aligned} & -0.0144 \\ & (0.0115) \end{aligned}$	0.2120
British Columbia	$\begin{gathered} 0.0238 \\ (0.0151) \end{gathered}$	0.1140
Hours Worked	$\begin{aligned} & -0.0001 \\ & (0.0003) \end{aligned}$	0.6700
Kids	2.11405 (1.1584)	0.0000
Constant	$\begin{aligned} & -0.0223 \\ & (0.0222) \end{aligned}$	0.0000
R-Sqaured	0.0681	
Sample Size	26757	

Note: Standard Error in ()

Testing more generally shows what categories we can dismiss as not being significant influencers of likelihood to volunteer. This is performed through F-tests as shown below in Figure 1.3.

F-Tests	F Value	Prob > F	Variables
Age Groups	20.46	0.0000	Iagegr_2 Iagegr_3 Iagegr_4 Iagegr_5 Iagegr_6 Iagegr_7 Iagegr_8 Iagegr_9
Education Levels	53.45	0.0000	Ieduc_2 Ieduc_3 Ieduc_4 Ieduc 5
Marital Status	2.66	0.0700	Imarit_2 Imarit_3
Type of Job	6.34	0.0018	Iworkf_1 Iworkf_2
Income Bracket	7.06	0.0000	Iincom_2 Iincom_3 Iincom_4 Iincom_5 Iincom_6 Iincom_7 Iincom_8
Having Young Children	1.09	0.3537	Iownki_1 Iownki_2 Iownki_3
Having Middle Children	2.18	0.0878	Iownkia1 Iownkia2 Iownkia3
Having Older Children	1.49	0.1897	Iownkib1 Iownkib2 Iownkib3 Iownkib4 Iownkib5
City Size	2.06	0.0831	Icitys_2 Icitys_3 Icitys_4 Icitys_5
Speaking an official language	0.68	0.5048	eng fren
Language	15.88	0.0000	eng fren other
Religious beliefs	4.27	0.0051	Irelig_2 Irelig_3 Irelig_4
Geographic Region	5.29	0.0003	Iregio_2 Iregio_3 Iregio_4 Iregio 5

Figure 1.3: F-Tests

Notice that we are unable to reject the null about the effect of Marital Status, having children (any age), city size, or speaking an official language at the 5% significance level.

We also tested our model for heteroskedasticity and specification error. Note that our tests for specification error were above simply the F-test above, but rather looked at whether we introduced specification error by dropping the occupation or occupation category variables. The specification error of our model shows that removing all the
occupations introduces a systemic error, whereas removing only the occupational categories does not (performed using a Hausman test).

Perhaps more interestingly, all our models showed significant heteroskedasticity. This is, of course, a significant problem given that we modelled our regression on that of the author. This suggests that there may be significant heteroskedastic errors in that paper as well. This is shown through the Cook-Weisberg test (see Figure 1.4) and through correlations with the residuals of our estimation (see Graph A and Figure 1.5).

Cook-Weisberg test on Estimation	Chi Squared	Prob $>$ Chi Squared
With Occupation	652.47	0.0000
With Occupation Categories	627.62	0.0000
Without any Occupation	600.67	0.0000

Figure 1.4: note the null hypothesis is constant errors

Does Volunteer

Residual ${ }^{2}$ Freq.	Percent		Cum.
$0.0-0.1$	1	0.04	0.04
$0.1-0.2$	9	0.33	0.37
$0.2-0.3$	134	4.94	5.31
$0.3-0.4$	424	15.63	20.94
$0.4-0.5$	683	25.18	46.13
$0.5-0.6$	649	23.93	70.06
$0.6-0.7$	473	17.44	87.5
$0.7-0.8$	236	8.7	96.2
$0.8-0.9$	71	2.62	98.82
$0.9-1.0$	22	0.81	99.63
$1.0-1.1$	10	0.37	100
Total	$\mathbf{2 7 1 2}$	$\mathbf{1 0 0}$	

Does Not Volunteer

Residual 2 Freq.	Percent		Cum.
$0.0-0.1$	7514	83.17	83.17
$0.1-0.2$	1383	15.31	98.47
$0.2-0.3$	134	1.48	99.96
$0.3-0.4$	4	0.04	100
Total	$\mathbf{9 0 3 5}$	$\mathbf{1 0 0}$	

Does Volunteer

Variable	Obs	Mean		Std. Dev. Min		Max		
Residuals 2		2712	5.75	1.51745	1	11		

Does Not Volunteer

Variable	Obs		Mean	Std. Dev. Min	Max	
Residuals 2		9035	1.184062	0.427226	1	4

Figure 1.5, Note that for presentation purposes the residuals squared were grouped.
Notice that with these large heteroskedasticity errors, we would expect there to be specification errors. This suggests the potential for significant questioning of the original paper and its findings.

III. Conclusion

Data analysis on similar, if not identical data, shows that the author may very well have chosen a model with significant heteroskedasticity errors. In part this is not
surprising given that the dependent variable is an indicator variable. A more useful, although perhaps not as media friendly, analysis would have been on the number of hours volunteered. This would have more fully captured any dependency, and we would expect at least a potential for more constant errors.

Appendix A: Results from Volunteer or not: Canada, 1987

Table 1: Impact of individual characteristics on doing volunteer work
Canada, 1987, All Canadians
(As published in the Vaillancourt paper)

Variable
All Canadians
Volunteer Work

Male	-0.0960
(-5.620)	

Age (15-16 years omitted)	
	-0.1433
$17-19$	(-2.850)
	-0.224
$20-24$	(-4.530)
	-0.0456
$25-34$	(-0.940)
	0.1034
	(2.090)
$35-44$	0.1782
	(3.400)
$45-54$	0.1782
	(3.340)
$55-64$	0.1843
	(3.080)
$65-69$	-0.0311
	(-0.540)

Education (none or elementary omitted)
0.2938

Secondary
(12.000)

Post-Secondary, no degree	$\begin{gathered} 0.5879 \\ (17.340) \end{gathered}$
Post Secondary, with degree	$\begin{gathered} 0.5798 \\ (18.810) \end{gathered}$
University	$\begin{gathered} 0.7983 \\ (23.490) \end{gathered}$
Marital Status (Married omitted)	
Single	$\begin{aligned} & -0.0703 \\ & (-2.790) \end{aligned}$
Separated, divorced, widowed	$\begin{aligned} & -0.0559 \\ & (-2.150) \end{aligned}$
Occupation (production workers omitted)	
Managers and Professionals	$\begin{aligned} & 0.2499 \\ & (9.860) \end{aligned}$
Education and health workers	$\begin{aligned} & 0.2601 \\ & (8.540) \end{aligned}$
Office workers	$\begin{aligned} & 0.1058 \\ & (4.260) \end{aligned}$
Sales people	$\begin{aligned} & 0.1192 \\ & (4.020) \end{aligned}$
Work Status (full time omitted)	
Part time	$\begin{aligned} & 0.1549 \\ & (6.270) \end{aligned}$
Does not work	$\begin{aligned} & -0.0108 \\ & (-0.360) \end{aligned}$
Total Income \$ (less than 10,000 omitted)	
10,000-14.999	$\begin{aligned} & 0.0313 \\ & (1.030) \end{aligned}$
15,000-19,999	$\begin{aligned} & 0.0867 \\ & (2.950) \end{aligned}$
20,000-29,999	$\begin{aligned} & 0.1321 \\ & (5.310) \end{aligned}$
30,000-39,000	$\begin{aligned} & 0.2203 \\ & (9.380) \end{aligned}$

40,000-59,999	$\begin{aligned} & 0.2309 \\ & (9.560) \end{aligned}$
60,000 and over	$\begin{gathered} 0.3774 \\ (12.810) \end{gathered}$
Children Aged 0-2 years+	$\begin{aligned} & -0.0785 \\ & (-3.420) \end{aligned}$
Children Aged 3-5 years+	$\begin{aligned} & 0.1185 \\ & (5.380) \end{aligned}$
Children Aged 6-15 years+	$\begin{gathered} 0.1794 \\ (14.970) \end{gathered}$
Size of city of residence (500,000 and over omitted)	
100,000-499,999	$\begin{aligned} & 0.1421 \\ & (5.650) \end{aligned}$
30,000-99,999	$\begin{aligned} & 0.1933 \\ & (7.540) \end{aligned}$
Less than 30,000	$\begin{gathered} 0.2825 \\ (12.070) \end{gathered}$
Rural	$\begin{gathered} 0.3725 \\ (17.140) \end{gathered}$
Usual Language (English omitted)	
French	$\begin{aligned} & -0.0720 \\ & (-2.140) \end{aligned}$
Others	$\begin{gathered} -0.5607 \\ (-14.380) \end{gathered}$
Religion (Protestant omitted)	
None	$\begin{gathered} -0.3414 \\ (-14.010) \end{gathered}$
Catholic	$\begin{aligned} & -0.1136 \\ & (-5.540) \end{aligned}$
Others	$\begin{aligned} & 0.1692 \\ & (6.550) \end{aligned}$

Region (Ontario omitted)

	0.0917
Atlantic	(3.260)
	-0.1013
Quebec	(-3.170)
	0.3731
Prairies	(17.650)
	0.1801
British Columbia	(7.170)
Hours Worked	-0.0023
	(-4.440)

Note: T-Statisitcs in ()

Appendix B: Log File

```
. use d:\neil.dta;
(378 : vas87vol : volunteer activity survey - volunteer file)
. rename f03q34 sex;
. rename f03q35 marital;
. rename f03q33 agegroup;
. rename f03q38 educ;
. rename f05ftpt workf;
. rename f05q75 occ;
. rename areaflg citysize;
. rename f05q18 workhrs;
. rename f06_q17 vol;
. rename f06_q30a eng;
. rename f06_q30b fren;
. rename f06_q30c other;
. rename f06_q31 religion;
. rename f06_q35c income;
. rename province region;
. /*
> Data Information
> */
> tab sex;
\begin{tabular}{|c|c|c|c|}
\hline sex & Freq. & Percent & Cum. \\
\hline male & 12270 & 45.86 & 45.86 \\
\hline female & 14487 & 54.14 & 100.00 \\
\hline Total & 26757 & 100.00 & \\
\hline
\end{tabular}
. tab sex, nol;
\begin{tabular}{|c|c|c|c|}
\hline sex & Freq. & Percent & Cum. \\
\hline 1 & 12270 & 45.86 & 45.86 \\
\hline 2 & 14487 & 54.14 & 100.00 \\
\hline tal & 26757 & 100.00 & \\
\hline
\end{tabular}
```

```
. recode sex 2=0;
(14487 changes made)
```

. tab marital;

marital status	Freq.	Percent	Cum.
married	17911	66.94	66.94
single	5972	22.32	89.26
other	2874	10.74	100.00
Total	26757	100.00	

. tab marital, nol;

$\begin{array}{r} \text { marital } \\ \text { status } \end{array}$	Freq.	Percent	Cum.
1	17911	66.94	66.94
2	5972	22.32	89.26
3	2874	10.74	100.00
Total	26757	100.00	

- tab agegroup;

age group	Freq.	Percent	Cum.
15-16 years	1062	3.97	3.97
17-19 years	1308	4.89	8.86
20-24 years	2380	8.89	17.75
25-34 years	6170	23.06	40.81
35-44 years	5434	20.31	61.12
45-54 years	3429	12.82	73.94
55-64 years	3259	12.18	86.12
65-69 years	1390	5.19	91.31
70 years and over	2325	8.69	100.00
Total	26757	100.00	

. tab agegroup, nol;

age group	Freq.	Percent	Cum.
1	1062	3.97	3.97
2	1308	4.89	8.86
3	2380	8.89	17.75
4	6170	23.06	40.81
5	5434	20.31	61.12
6	3429	12.82	73.94
7	3259	12.18	86.12
8	1390	5.19	91.31
9	2325	8.69	100.00
Total	26757	100.00	

. tab educ;

education	Freq.	Percent	Cum.
none or elementary	4774	17.84	17.84
high school	13348	49.89	67.73
some post-secondary	2205	8.24	75.97
post-secondary certificate, diploma	3616	13.51	89.48
university	2814	10.52	100.00
Total	26757	100.00	

. tab educ, nol;

education	Freq.	Percent	Cum.
1	4774	17.84	17.84
2	13348	49.89	67.73
3	2205	8.24	75.97
4	3616	13.51	89.48
5	2814	10.52	100.00
Total	26757	100.00	

. tab workf;

type of job	Freq.	Percent	Cum.
full-time	16477	78.92	78.92
part-time	4400	21.08	100.00
Total	20877	100.00	

. tab workf, nol;

type of job	Freq.	Percent	Cum.
1	16477	78.92	78.92
2	4400	21.08	100.00
Total	20877	100.00	

. tab occ;

math,stats,systems analysis and related 8.80	138	0.52
architects and engineers	151	0.56
9.36		
architecture and engineering related	139	0.52
9.88		
social science and related	377	1.41
11.29		
religion	70	0.26
11.55		
university and related	84	0.31
11.87		
elementary, secondary and related	738	2.76
14.62		
other teaching and related	243	0.91
15.53		
health diagnosing and treating	85	0.32
15.85		
nursing,therapy and related	765	2.86
18.71		
medecine and health related	216	0.81
19.52		
artistic and recreation	288	1.08
20.59		
stenographic and typing	790	2.95
23.55		
bookkeeping, account-recording and relat 27.21	980	3.66
office machine and edp operators	166	0.62
27.83		
material recording,scheduling and distr 28.81	263	0.98
```reception,info, mail and message distri 30.36```	414	1.55
library,files, corres, other clerical and	673	2.52
32.87		
sales, commodities	1465	5.48
38.35		
sales,services and other sales	296	1.11
39.46		
protective services	335	1.25
40.71		
food,beverage preparation, rel lodging 45.28	1224	4.57
personal,apparel and furnishing service 48.76	932	3.48
other service occupations	698	2.61
51.37		
farmers and farm management	753	2.81
54.19		
other farming,horticulture and animal h 56.87	718	2.68
fishing, hunting,trapping and related	179	0.67
57.54		
forestry and logging	151	0.56
58.10		



11	738	2.76	14.62
12	243	0.91	15.53
13	85	0.32	15.85
14	765	2.86	18.71
15	216	0.81	19.52
16	288	1.08	20.59
17	790	2.95	23.55
18	980	3.66	27.21
19	166	0.62	27.83
20	263	0.98	28.81
21	414	1.55	30.36
22	673	2.52	32.87
23	1465	5.48	38.35
24	296	1.11	39.46
25	335	1.25	40.71
26	1224	4.57	45.28
27	932	3.48	48.76
28	698	2.61	51.37
29	753	2.81	54.19
30	718	2.68	56.87
31	179	0.67	57.54
32	151	0.56	58.10
33	122	0.46	58.56
34	439	1.64	60.20
35	318	1.19	61.39
36	186	0.70	62.08
37	116	0.43	62.52
38	117	0.44	62.96
39	157	0.59	63.54
40	178	0.67	64.21
41	211	0.79	65.00
42	582	2.18	67.17
43	269	1.01	68.18
44	205	0.77	68.94
45	863	3.23	72.17
46	660	2.47	74.63
47	114	0.43	75.06
48	449	1.68	76.74
49	219	0.82	77.56
50	1436	5.37	82.92
51	4569	17.08	100.00
Total	26757	100.00	

. tab citysize;

area population size codes	Freq.	Percent	Cum.
major metro area	5603	20.94	20.94
other large metro area	3177	11.87	32.81
minor metro area	3641	13.61	46.42
other cities	6137	22.94	69.36
small urban areas and rural areas	8199	30.64	100.00
Total	26757	100.00	


| area |
| ---: | ---: | ---: | ---: |
| population |
| size codes |$\quad$ Freq. $\quad$ Percent $\quad$ Cum.

. tab workhrs;

total actual hours worked last week	Freq.	Percent	Cum.
0	11872	44.37	44.37
1	15	0.06	44.43
2	66	0.25	44.67
3	67	0.25	44.92
4	87	0.33	45.25
5	99	0.37	45.62
6	119	0.44	46.06
7	57	0.21	46.28
8	237	0.89	47.16
9	40	0.15	47.31
10	221	0.83	48.14
11	35	0.13	48.27
12	201	0.75	49.02
13	35	0.13	49.15
14	89	0.33	49.48
15	236	0.88	50.36
16	285	1.07	51.43
17	54	0.20	51.63
18	92	0.34	51.98
19	41	0.15	52.13
20	352	1.32	53.44
21	82	0.31	53.75
22	99	0.37	54.12
23	62	0.23	54.35
24	407	1.52	55.87
25	164	0.61	56.49
26	77	0.29	56.77
27	102	0.38	57.16
28	602	2.25	59.41
29	151	0.56	59.97
30	1104	4.13	64.10
31	182	0.68	64.78
32	3270	12.22	77.00
33	86	0.32	77.32
34	183	0.68	78.00
35	287	1.07	79.07


36	410	1.53	80.61
37	194	0.73	81.33
38	263	0.98	82.31
39	68	0.25	82.57
40	1736	6.49	89.06
41	71	0.27	89.32
42	260	0.97	90.29
43	53	0.20	90.49
44	117	0.44	90.93
45	210	0.78	91.71
46	73	0.27	91.99
47	67	0.25	92.24
48	267	1.00	93.24
49	16	0.06	93.30
50	413	1.54	94.84
51	19	0.07	94.91
52	98	0.37	95.28
53	21	0.08	95.35
54	31	0.12	95.47
55	77	0.29	95.76
56	78	0.29	96.05
57	18	0.07	96.12
58	25	0.09	96.21
59	5	0.02	96.23
60	337	1.26	97.49
61	12	0.04	97.53
62	28	0.10	97.64
63	8	0.03	97.67
64	11	0.04	97.71
65	613	2.29	100.00
------------------100			

. tab workhrs, nol;

total actual hours worked last week	Freq.	Percent	Cum.
0	11872	44.37	44.37
1	15	0.06	44.43
2	66	0.25	44.67
3	67	0.25	44.92
4	87	0.33	45.25
5	99	0.37	45.62
6	119	0.44	46.06
7	57	0.21	46.28
8	237	0.89	47.16
9	40	0.15	47.31
10	221	0.83	48.14
11	35	0.13	48.27
12	201	0.75	49.02
13	35	0.13	49.15
14	89	0.33	49.48
15	236	0.88	50.36


16	285	1.07	51.43
17	54	0.20	51.63
18	92	0.34	51.98
19	41	0.15	52.13
20	352	1.32	53.44
21	82	0.31	53.75
22	99	0.37	54.12
23	62	0.23	54.35
24	407	1.52	55.87
25	164	0.61	56.49
26	77	0.29	56.77
27	102	0.38	57.16
28	602	2.25	59.41
29	151	0.56	59.97
30	1104	4.13	64.10
31	182	0.68	64.78
32	3270	12.22	77.00
33	86	0.32	77.32
34	183	0.68	78.00
35	287	1.07	79.07
36	410	1.53	80.61
37	194	0.73	81.33
38	263	0.98	82.31
39	68	0.25	82.57
40	1736	6.49	89.06
41	71	0.27	89.32
42	260	0.97	90.29
43	53	0.20	90.49
44	117	0.44	90.93
45	210	0.78	91.71
46	73	0.27	91.99
47	67	0.25	92.24
48	267	1.00	93.24
49	16	0.06	93.30
50	413	1.54	94.84
51	19	0.07	94.91
52	98	0.37	95.28
53	21	0.08	95.35
54	31	0.12	95.47
55	77	0.29	95.76
56	78	0.29	96.05
57	18	0.07	96.12
58	25	0.09	96.21
59	5	0.02	96.23
60	337	1.26	97.49
61	12	0.04	97.53
62	28	0.10	97.64
63	8	0.03	97.67
64	11	0.04	97.71
65	613	2.29	100.00
Total	26757	100.00	
. tab vol;			
did you volunteer			


. tab vol, nol;

. tab eng;

language speak most often at home	Freq.	Percent	Cum.
yes english	20730	79.05	79.05
not english	5493	20.95	100.00
Total	26223	100.00	
. tab eng,			
language			
home	Freq.	Percent	Cum.
1	20730	79.05	79.05
2	5493	20.95	100.00
Total	26223	100.00	

. tab fren;

language speak most often at home	Freq.	Percent	Cum.
yes french	4714	17.98	17.98
not french	21509	82.02	100.00
Total	26223	100.00	

. tab fren, nol;

language   speak most   often at   home	Freq.	Percent	Cum.	
1	4714	17.98	17.98	
2 \| 2	21509	82.02	100.00	
Total \| 2	26223	100.00		
- tab other;				
	Freq.	Percent	Cum.	
yes other	1112	4.24	4.24	
not other \| 2	25111	95.76	100.00	
Total \| 2	26223	100.00		
. tab other, nol;				
language speak most often at home	Freq.	Percent	Cum.	
1	1112	4.24	4.24	
2 \| 2	25111	95.76	100.00	
Total \| 2	26223	100.00		
tab region;				
region and province	\|	Freq.	Percent	Cum.
newfoundland		1757	6.57	6.57
prince edward island		694	2.59	9.16
nova scotia		1941	7.25	16.41
new brunswick		2033	7.60	24.01
quebec		4113	15.37	39.38
ontario		5063	18.92	58.31
manitoba		2067	7.73	66.03
saskatchewan		2668	9.97	76.00
alberta		3660	13.68	89.68
british columbia		2761	10.32	100.00
Total		26757	100.00	

```
. tab region, nol;
 region and
 province Freq. Percent Cum.
```




```
> If we wanted to test if having kids is relevant:
> */
>
> gen kids =ownkids1+ownkids2+ownkids3;
. recode kids 9=1 8=1 7=1 6=1 5=1 4=1 3=1 2=1;
(6521 changes made)
. recode region 10=3 11=3 12=3 13=3 24=2 35=1 46=4 47=4 48=4 59=5;
(26757 changes made)
. tab workf, nol m;
\begin{tabular}{|c|c|c|c|}
\hline type of job & Freq. & Percent & Cum. \\
\hline 1 & 16477 & 61.58 & 61.58 \\
\hline 2 & 4400 & 16.44 & 78.02 \\
\hline . & 5880 & 21.98 & 100.00 \\
\hline Total & 26757 & 100.00 & \\
\hline
\end{tabular}
. recode workf .=0;
(5880 changes made)
. /*
> With occupation
> */
>
> xi: regress vol sex i.agegroup i.educ i.marital i.occ i.workf i.income
> i.ownkids1 i.ownkids2 i.ownkids3 i.citysize eng fren other i.religion
> i.region workhrs kids;
i.agegroup Iagegr_1-9 (naturally coded; Iagegr_1 omitted)
i.educ Ieduc_1-5 (naturally coded; Ieduc_1 omitted)
i.marital Imarit_1-3 (naturally coded; Imarit_1 omitted)
i.occ Iocc_1-51 (naturally coded; Iocc_1 omitted)
i.workf Iworkf_0-2 (naturally coded; Iworkf_0 omitted)
i.income Iincom_1-8 (naturally coded; Iincom_1 omitted)
i.ownkids1 Iownki_0-3 (naturally coded; Iownki_0 omitted)
i.ownkids2 Iownkia0-3 (naturally coded; Iownkia0 omitted)
i.ownkids3 Iownkib0-5 (naturally coded; Iownkib0 omitted)
i.citysize Icitys_1-5 (naturally coded; Icitys_1 omitted)
i.religion Irelig_1-4 (naturally coded; Irelig_1 omitted)
i.region Iregio_1-5 (naturally coded; Iregio_1 omitted)
 Source | df MS Number of obs =
11747
----------+---------------------------------
 F(101, 11645) =
9.42
 Model | 157.563146 101 1.56003115 Prob > F =
0.0000
Residual | 1928.32431 11645 . 16559247 R-squared =
0.0755
----------+--------------------------------
 Adj R-squared =
0.0675
 Total 2085.88746 11746 .177582791 Root MSE =
.40693
```

Interval]					[95\% Conf.	
sex	. 0321131	. 0097823	3.283	0.001	. 0129381	
. 051288						
Iagegr_2	-. 0555099	. 0251196	-2.210	0.027	-. 1047485	-
. 0062713						
Iagegr_3	-. 0576734	. 0244881	-2.355	0.019	-. 1056741	-
. 0096726						
Iagegr_4	-. 0625111	. 0243877	-2.563	0.010	-. 110315	-
. 0147071						
Iagegr_5	-. 1191445	. 0250855	-4.750	0.000	-. 1683162	-
. 0699727						
Iagegr_6	-. 1612816	. 0268619	-6.004	0.000	-. 2139353	-
. 1086278						
Iagegr_7	-. 1606298	. 0273436	-5.874	0.000	-. 2142279	-
. 1070318						
Iagegr_8	-. 2133149	. 0305162	-6.990	0.000	-. 2731318	-
. 1534981						
Iagegr_9	-. 2600447	. 0292718	-8.884	0.000	-. 3174224	
. 202667						
Ieduc_2	-. 0786713	. 0107354	-7.328	0.000	-. 0997144	-
. 0576282						
Ieduc_3	-. 1512455	. 0174629	-8.661	0.000	-. 1854758	-
. 1170153						
Ieduc_4	-. 1587024	. 0159757	-9.934	0.000	-. 1900175	-
. 1273873						
Ieduc_5	-. 1836109	. 0207474	-8.850	0.000	-. 2242793	-
. 1429425						
Imarit_2	. 0273076	. 0125958	2.168	0.030	. 0026177	
.0519975						
Imarit_3	. 0098108	. 0128415	0.764	0.445	-. 0153606	
. 0349822						
Iocc_2	. 1468405	. 0792653	1.853	0.064	-. 0085328	
. 3022138						
Iocc_3	. 1968155	. 0824341	2.388	0.017	. 0352308	
. 3584002						
Iocc_4	. 0775776	. 1001416	0.775	0.439	-. 1187167	
. 273872						
Iocc_5	. 212465	. 0930875	2.282	0.022	. 0299979	
. 3949322						
Iocc_6	. 2576839	. 0936274	2.752	0.006	. 0741585	
. 4412092						
Iocc_7	. 0984358	. 0945537	1.041	0.298	-. 0869053	
. 283777						
Iocc_8	. 1335662	. 0872164	1.531	0.126	-. 0373925	
. 304525						
Iocc_9	. 3058433	. 1564534	1.955	0.051	-. 0008315	
. 6125182						
Iocc_10	. 0116874	. 1238243	0.094	0.925	-. 231029	
. 2544038						
Iocc_11	. 1591471	. 0851522	1.869	0.062	-. 0077655	
. 3260597						


Iocc_12	. 2258927	. 0929991	2.429	0.015	. 043599
. 4081865					
Iocc_13	. 1741267	. 1143506	1.523	0.128	-. 0500196
. 398273					
Iocc_14	. 1724134	. 0810271	2.128	0.033	. 0135866
. 3312401					
Iocc_15	. 2746732	. 0921562	2.981	0.003	. 0940317
. 4553147					
Iocc_16	. 1530604	. 0867157	1.765	0.078	-. 0169169
. 3230377					
Iocc_17	. 2144804	. 0809358	2.650	0.008	. 0558327
. 3731281					
Iocc_18	. 2006034	. 0799492	2.509	0.012	. 0438895
. 3573173					
Iocc_19	. 2645921	. 0900636	2.938	0.003	. 0880523
. 4411318					
Iocc_20	. 2454638	. 0846036	2.901	0.004	. 0796266
. 411301					
Iocc_21	. 2230298	. 0831469	2.682	0.007	. 060048
. 3860116					
Iocc_22	. 2171132	. 0810645	2.678	0.007	. 0582131
. 3760132					
Iocc_23	. 1516495	. 0789293	1.921	0.055	-. 0030652
. 3063642					
Iocc_24	. 1182127	. 0857945	1.378	0.168	-. 049959
. 2863844					
Iocc_25	. 2296013	. 0842698	2.725	0.006	. 0644184
. 3947843					
Iocc_26	. 2239001	. 0789818	2.835	0.005	. 0690826
. 3787176					
Iocc_27	. 1919116	. 0799604	2.400	0.016	. 0351759
. 3486473					
Iocc_28	. 2173009	. 0801099	2.713	0.007	. 060272
. 3743297					
Iocc_29	. 1354322	. 0829487	1.633	0.103	-. 0271613
. 2980256					
Iocc_30	. 2333876	. 0810873	2.878	0.004	. 074443
. 3923323					
Iocc_31	. 2201487	. 0888209	2.479	0.013	. 0460449
Iocc_32	. 2461149	. 0899667	2.736	0.006	. 0697651
. 4224647					
Iocc_33	. 2571083	. 0930027	2.765	0.006	. 0748074
. 4394092					
Iocc_34	. 2366875	. 0816418	2.899	0.004	. 0766558
. 3967192					
Iocc_35	. 2772055	. 0828177	3.347	0.001	. 114869
. 439542					
Iocc_36	. 2549663	. 0866289	2.943	0.003	. 0851591
. 4247734					
Iocc_37	. 2615628	. 0914387	2.861	0.004	. 0823277
. 4407979					
Iocc_38	. 2681276	. 0917728	2.922	0.003	. 0882375
. 4480177					
Iocc_39	. 2760778	. 0891877	3.095	0.002	. 1012549
. 4509006					


Iocc_40	. 2687465	. 0869904	3.089	0.002	. 0982307
. 4392624					
Iocc_41	. 2420571	. 0854779	2.832	0.005	. 074506
. 4096081					
Iocc_42	. 2567827	. 0806047	3.186	0.001	. 0987839
. 4147815					
Iocc_43	. 2407831	. 0848957	2.836	0.005	. 0743732
. 407193					
Iocc_44	. 2349454	. 0902702	2.603	0.009	. 0580007
. 4118901					
Iocc_45	. 2151617	. 0796393	2.702	0.007	. 0590552
. 3712682					
Iocc_46	. 2341708	. 0800759	2.924	0.003	. 0772086
. 3911329					
Iocc_47	. 239658	. 0944165	2.538	0.011	. 0545858
. 4247301					
Iocc_48	. 2197607	. 0817303	2.689	0.007	. 0595556
. 3799657					
Iocc_49	. 178386	. 087541	2.038	0.042	. 006791
. 349981					
Iocc_50	. 2498545	. 0924815	2.702	0.007	. 0685752
. 4311337					
Iocc_51	. 2154076	. 090751	2.374	0.018	. 0375205
. 3932947					
Iworkf_1	-. 016965	. 0487405	-0.348	0.728	-. 1125045
. 0785746					
Iworkf_2	-. 0263318	. 0497435	-0.529	0.597	-. 1238373
. 0711737					
Iincom_2	. 0234786	. 0309912	0.758	0.449	-. 0372695
. 0842266					
Iincom_3	-. 0132025	. 0304854	-0.433	0.665	-. 0729589
. 046554					
Iincom_4	-. 0272315	. 0306804	-0.888	0.375	-. 0873703
. 0329073					
Iincom_5	-. 0287829	. 0302633	-0.951	0.342	-. 088104
. 0305382					
Iincom_6	-. 0435395	. 0303769	-1.433	0.152	-. 1030833
. 0160043					
Iincom_7	-. 0660699	. 0308741	-2.140	0.032	-. 1265884
. 0055515					
Iincom_8	-. 0941562	. 0332722	-2.830	0.005	-. 1593752
. 0289371					
Iownki_1	. 0214991	. 0197669	1.088	0.277	-. 0172474
. 0602456					
Iownki_2	. 0611728	. 035278	1.734	0.083	-. 0079779
. 1303235					
Iownki_3	. 1279186	. 1838012	0.696	0.486	-. 2323626
. 4881997					
Iownkial	. 0231921	. 0161418	1.437	0.151	-. 0084485
. 0548328					
Iownkia2	. 0314435	. 0385624	0.815	0.415	-. 0441454
Iownkia3	-. 8290114	. 408347	-2.030	0.042	-1.62944
. 0285827					
Iownkib1	. 0303737	. 0209106	1.453	0.146	-. 0106147
. 071362					


Iownkib2 .0479266	. 0015182	. 0236757	0.064	0.949	-. 0448901	
Iownkib3	. 0282264	. 0329243	0.857	0.391	-. 0363108	
. 0927636						
Iownkib4	. 0398367	. 0578995	0.688	0.491	-. 073656	
. 1533295						
Iownkib5	. 2130335	. 1304133	1.634	0.102	-. 0425985	
. 4686655						
Icitys_2	-. 0097056	. 0135915	-0.714	0.475	-. 0363471	
. 016936						
Icitys_3	-. 0100951	. 0132317	-0.763	0.446	-. 0360314	
. 0158412						
Icitys_4	-. 0342598	. 0119751	-2.861	0.004	-. 057733	-
. 0107866						
Icitys_5	-. 0114432	. 0122245	-0.936	0.349	-. 0354053	
. 0125189						
eng	. 0376487	. 032592	1.155	0.248	-. 026237	
. 1015345						
fren	. 03357	. 0350352	0.958	0.338	-. 0351049	
. 1022449						
other	-. 0805608	. 0311613	-2.585	0.010	-. 1416422	-
. 0194794						
Irelig_2	-. 0201449	. 0138633	-1.453	0.146	-. 0473193	
. 0070295						
Irelig_3	-. 0448581	. 0132844	-3.377	0.001	-. 0708978	-
. 0188184						
Irelig_4	-. 0330662	. 0168624	-1.961	0.050	-. 0661194	-
. 0000131						
Iregio_2	. 055946	. 01827	3.062	0.002	. 0201336	
. 0917583						
Iregio_3	. 0223716	. 0125656	1.780	0.075	-. 002259	
. 0470021						
Iregio_4	-. 0071283	. 0116024	-0.614	0.539	-. 029871	
. 0156144						
Iregio_5	-. 0226089	. 0151371	-1.494	0.135	-. 0522802	
. 0070624						
workhrs	. 0000736	. 0002665	0.276	0.782	-. 0004488	
. 000596						
kids	-. 0231496	. 0222215	-1.042	0.298	-. 0667074	
. 0204083						
_cons	1.856079	. 1831479	10.134	0.000	1.497078	
2.21508						

. hausman, save;
. hettest;
Cook-Weisberg test for heteroscedasticity using fitted values of vol
Ho: Constant variance
chi2 (1) $=652.47$
Prob > chi2 $=0.0000$

```
. /*
> Without occupation
> */
```



Ieduc_4	-. 1726939	. 0152758	-11.305	0.000	-. 2026369	-
. 1427508						
Ieduc_5	-. 2168058	. 0185935	-11.660	0.000	-. 2532522	-
. 1803594						
Imarit_2	. 0277819	. 012544	2.215	0.027	. 0031936	
. 0523701						
Imarit_3	. 0126913	. 0128263	0.989	0.322	-. 0124503	
. 0378329						
Iworkf_1	-. 0314512	. 0132805	-2.368	0.018	-. 0574831	-
. 0054193						
Iworkf_2	-. 052245	. 0147457	-3.543	0.000	-. 0811491	
. 023341						
Iincom_2	. 0254872	. 030997	0.822	0.411	-. 0352721	
. 0862466						
Iincom_3	-. 0103709	. 0304775	-0.340	0.734	-. 070112	
. 0493702						
Iincom_4	-. 023211	. 0306585	-0.757	0.449	-. 0833068	
. 0368848						
Iincom_5	-. 0246281	. 0302198	-0.815	0.415	-. 083864	
. 0346079						
Iincom_6	-. 0405551	. 0303246	-1.337	0.181	-. 0999965	
. 0188862						
Iincom_7	-. 0664538	. 0307865	-2.159	0.031	-. 1268005	
. 006107						
Iincom_8	-. 1010766	. 0331834	-3.046	0.002	-. 1661215	-
. 0360316						
Iownki_1	. 0196732	. 0197549	0.996	0.319	-. 0190497	
. 058396						
Iownki_2	. 0569584	. 0352585	1.615	0.106	-. 0121542	
. 1260709						
Iownki_3	. 1444977	. 1838286	0.786	0.432	-. 215837	
. 5048325						
Iownkial	. 0245538	. 0161424	1.521	0.128	-. 0070881	
. 0561957						
Iownkia2	. 0321625	. 0385166	0.835	0.404	-. 0433366	
. 1076615						
Iownkia3	-. 7971523	. 4083187	-1.952	0.051	-1.597525	
. 0032204						
Iownkib1	. 0302185	. 0208788	1.447	0.148	-. 0107074	
. 0711444						
Iownkib2	. 0009545	. 0236408	0.040	0.968	-. 0453854	
. 0472945						
Iownkib3	. 0245316	. 0328908	0.746	0.456	-. 0399398	
. 0890029						
Iownkib4	. 0436285	. 0578452	0.754	0.451	-. 0697578	
. 1570147 ( 0.06						
Iownkib5	. 2278861	. 1302579	1.749	0.080	-. 0274411	
. 4832134 . 0.080 . 027410						
Icitys_2	-. 0075218	. 0135481	-0.555	0.579	-. 0340783	
. 0190347						
. 0186068 . $0.038062{ }^{\text {c }}$						
Icitys_4	-. 0313599	. 0118658	-2.643	0.008	-. 0546187	
. 008101						
Icitys_5	-. 0095384	. 0118876	-0.802	0.422	-. 0328401	
. 0137632						


eng	. 0374744	. 0325494	1.151	0.250	-. 0263279	
. 1012767						
fren	. 0317823	. 0350128	0.908	0.364	-. 0368485	
. 1004132						
other	-. 0893659	. 0311147	-2.872	0.004	-. 1503558	-
. 0283759						
Irelig_2	-. 0197579	. 0138424	-1.427	0.154	-. 0468914	
. 0073756						
Irelig_3	-. 043877	. 0132666	-3.307	0.001	-. 0698818	-
. 0178721						
Irelig_4	-. 0307739	. 0168424	-1.827	0.068	-. 0637877	
. 00224						
Iregio_2	. 053969	. 0182279	2.961	0.003	. 0182392	
. 0896987						
Iregio_3	. 0204132	. 0124418	1.641	0.101	-. 0039747	
. 0448012						
Iregio_4	-. 0143542	. 0114885	-1.249	0.212	-. 0368736	
. 0081652						
Iregio_5	-. 0238437	. 0150786	-1.581	0.114	-. 0534003	
. 0057129						
workhrs	-. 0001109	. 0002599	-0.427	0.670	-. 0006203	
. 0003985						
kids	-. 0222843	. 0221982	-1.004	0.315	-. 0657964	
. 0212278						
_cons	2.11405	. 1584272	13.344	0.000	1.803506	
2.424593						

------
. hausman;
---- Coefficients ----

	(b) Prior	(B) Current	$\begin{gathered} \text { (b-B) } \\ \text { Difference } \end{gathered}$	$\begin{gathered} \text { sqrt (diag(V_b-V_B)) } \\ \text { S.E. } \end{gathered}$
sex	. 0321131	. 0405276	-. 0084146	. 0052493
Iagegr_2	-. 0555099	-. 0583382	. 0028283	. 0041325
Iagegr_3	-. 0576734	-. 0593026	. 0016293	. 0051513
Iagegr_4	-. 0625111	-. 0679166	. 0054056	. 0057129
Iagegr_5	-. 1191445	-. 1293923	. 0102478	. 0061378
Iagegr_6	-. 1612816	-. 1755496	. 0142681	. 0062028
Iagegr_7	-. 1606298	-. 1742744	. 0136445	. 0067739
Iagegr_8	-. 2133149	-. 2328848	. 0195699	. 0076367
Iagegr_9	-. 2600447	-. 28094	. 0208954	. 0084865
Ieduc_2	-. 0786713	-. 0836043	. 004933	. 0013681
Ieduc_3	-. 1512455	-. 1643923	. 0131468	. 002878
Ieduc_4	-. 1587024	-. 1726939	. 0139915	. 0046771
Ieduc_5	-. 1836109	-. 2168058	. 033195	. 0092052
Imarit_2	. 0273076	. 0277819	-. 0004743	. 0011415
Imarit_3	. 0098108	. 0126913	-. 0028805	. 0006243
Iworkf_1	-. 016965	-. 0314512	. 0144862	. 0468963
Iworkf_2	-. 0263318	-. 052245	. 0259132	. 0475076
Iincom_2	. 0234786	. 0254872	-. 0020087	
Iincom_3	-. 0132025	-. 0103709	-. 0028316	. 000691
Iincom_4	-. 0272315	-. 023211	-. 0040205	. 0011596
Iincom_5	-. 0287829	-. 0246281	-. 0041548	. 0016206
Iincom_6	-. 0435395	-. 0405551	-. 0029844	. 0017813


Iincom_7	-. 0660699	-. 0664538	. 0003838	. 0023238
Iincom_8	-. 0941562	-. 1010766	. 0069204	. 0024292
Iownki_1	. 0214991	. 0196732	. 0018259	. 0006908
Iownki_2	. 0611728	. 0569584	. 0042144	. 0011705
Iownki_3	. 1279186	. 1444977	-. 0165792	.
Iownkial	. 0231921	. 0245538	-. 0013617	.
Iownkia2	. 0314435	. 0321625	-. 000719	. 001879
Iownkia3	-. 8290114	-. 7971523	-. 0318591	. 004815
Iownkib1	. 0303737	. 0302185	. 0001552	. 001154
Iownkib2	. 0015182	. 0009545	. 0005637	. 0012847
Iownkib3	. 0282264	. 0245316	. 0036948	. 0014864
Iownkib4	. 0398367	. 0436285	-. 0037917	. 0025063
Iownkib5	. 2130335	. 2278861	-. 0148526	. 006365
Icitys_2	-. 0097056	-. 0075218	-. 0021838	. 0010855
Icitys_3	-. 0100951	-. 0072281	-. 0028671	. 0011691
Icitys_4	-. 0342598	-. 0313599	-. 0028999	. 0016145
Icitys_5	-. 0114432	-. 0095384	-. 0019048	. 0028503
eng	. 0376487	. 0374744	. 0001743	. 0016648
fren	. 03357	. 0317823	. 0017876	. 0012536
other	-. 0805608	-. 0893659	. 0088051	. 001705
Irelig_2	-. 0201449	-. 0197579	-. 000387	. 0007603
Irelig_3	-. 0448581	-. 043877	-. 0009811	. 0006877
Irelig_4	-. 0330662	-. 0307739	-. 0022924	. 0008224
Iregio_2	. 055946	. 053969	. 001977	. 00124
Iregio_3	. 0223716	. 0204132	. 0019583	. 0017593
Iregio_4	-. 0071283	-. 0143542	. 0072259	. 0016217
Iregio_5	-. 0226089	-. 0238437	. 0012348	. 0013295
workhrs	. 0000736	-. 0001109	. 0001845	. 0000591
kids	-. 0231496	-. 0222843	-. 0008653	. 001018

b = less efficient estimates obtained previously from
regress.
$B$ = fully efficient estimates obtained from regress.
Test: Ho: difference in coefficients not systematic

```
chi2(51) = (b-B)'[(V_b-V_B)^(-1)](b-B)
 = 16.20
Prob>chi2 = 1.0000
```

. hausman, clear;
. /*
> Now recoding occupation as in the paper
> */
> gen occcat=occ;

- recode occcat $1 / 9=1 \quad 10 / 16=2 \quad 17 / 22=3 \quad 23 / 28=4 \quad 29 / 33=5 \quad 34=4 \quad 35 / 49=5$

50/51=6;
(26625 changes made)
. xi: regress vol sex i.agegroup i.educ i.marital i.occcat i.workf
i.income
> i.ownkids1 i.ownkids2 i.ownkids3 i.citysize eng fren other i.religion > i.region workhrs kids;
i.agegroup Iagegr_1-9 (naturally coded; Iagegr_1 omitted)
i.educ Ieduc_1-5 (naturally coded; Ieduc_1 omitted)

i.marital		Imarit_1-3	(naturall	coded	Imarit_1 omitted)	
i.occcat		Ioccca_1-6	(naturall	coded;	Ioccca_1 omitte	
i.workf		Iworkf_0-2	(naturall	coded;	Iworkf_0 omitted)	
i.income		Iincom_1-8	(naturall	coded	Iincom_1 omitted)	
i. ownkids1		Iownki_0-3	(naturally	coded	Iownki_0 omitted)	
i. ownkids2		Iownkia0-3	(naturall	coded	Iownkia0 omitted)	
i.ownkids3		Iownkib0-5	(naturall	coded;	Iownkib0 omitted)	
i.citysize		Icitys_1-5	(naturall	coded;	Icitys_1 omitted)	
i.religion		Irelig_1-4	(naturall	coded;	Irelig_1 omitted)	
i.region		Iregio_1-5	(naturall	coded;	Iregio_1 omitted)	
$11747$						$=$
					F ( 56, 11690)	$=$
15.76						
Model	146.436402	562.6	493575		Prob > F	$=$
0.0000						
Residual	1939.45106	. 11690.1	906848		R-squared	=
0.0702						
					Adj R-squared	
0.0657						
Total	2085.88746	611746 . 17	11746.177582791		Root MSE	
vol	Coef.	Std. Err	t	$P>\|t\|$	[95\% Conf.	
Interval]						
sex	. 032243	. 0091152	3.537	0.000	. 0143756	
. 0501104						
Iagegr_2	-. 0598032	. 0247695	-2.414	0.016	-. 1083556	-
. 0112508						
Iagegr_3	-. 0621361	. 0239249	-2.597	0.009	-. 1090328	-
. 0152393						
Iagegr_4	-. 0697037	. 023704	-2.941	0.003	-. 1161675	-
. 0232399						
Iagegr_5	-. 1281327	. 0243247	-5.268	0.000	-. 1758133	-
. 0804522						
Iagegr_6	-. 1745722	. 0261257	-6.682	0.000	-. 225783	-
. 1233614						
Iagegr_7	-. 1740813	. 026502	-6.569	0.000	-. 2260297	-
. 1221329						
Iagegr_8	-. 2319032	. 0295306	-7.853	0.000	-. 2897882	-
. 1740183						
Iagegr_9	-. 2800779	. 028008	-10.000	0.000	-. 3349783	-
. 2251776						
Ieduc_2	-. 0814517	. 0106716	-7.633	0.000	-. 1023699	-
. 0605335						
Ieduc_3	-. 1564391	. 0173438	-9.020	0.000	-. 1904358	-
. 1224425						
Ieduc_4	-. 1605266	. 0157006	-10.224	0.000	-. 1913024	-
.1297508						
$\begin{aligned} & \text { Ieduc_5 } \\ & 1491366 \end{aligned}$	-. 1880216	. 0198376	-9.478	0.000	-. 2269065	-


$\begin{aligned} & \text { Imarit_2 } \\ & .0520336 \end{aligned}$	. 0274571	. 012538	2.190	0.029	. 0028806
$\begin{aligned} & \text { Imarit_3 } \\ & .0371 \end{aligned}$	. 0119733	. 0128187	0.934	0.350	-. 0131534
$\begin{aligned} & \text { Ioccca_2 } \\ & .0602628 \end{aligned}$	. 0200087	. 020536	0.974	0.330	-. 0202453
$\begin{aligned} & \text { Ioccca_3 } \\ & .0937105 \end{aligned}$	. 0585842	. 01792	3.269	0.001	. 0234579
$\begin{aligned} & \text { Ioccca_4 } \\ & .0697273 \end{aligned}$	. 0375701	. 0164053	2.290	0.022	. 0054129
$\begin{aligned} & \text { Ioccca_5 } \\ & .1046508 \end{aligned}$	. 0734052	. 0159403	4.605	0.000	. 0421596
$\begin{aligned} & \text { Ioccca_6 } \\ & .1538562 \end{aligned}$	. 0558995	. 0499737	1.119	0.263	-. 0420572
$\begin{aligned} & \text { Iworkf_1 } \\ & .0685413 \end{aligned}$	-. 0265508	. 0485122	-0.547	0.584	-. 1216429
$\begin{aligned} & \text { Iworkf_2 } \\ & .0535906 \end{aligned}$	-. 0431997	. 0493786	-0.875	0.382	-. 13999
$\begin{aligned} & \text { Iincom_2 } \\ & .0864777 \end{aligned}$	. 0257635	. 030974	0.832	0.406	-. 0349508
$\begin{aligned} & \text { Iincom_3 } \\ & .049327 \end{aligned}$	-. 0103823	. 0304613	-0.341	0.733	-. 0700916
$\begin{aligned} & \text { Iincom_4 } \\ & .0353732 \end{aligned}$	-. 0246997	. 0306469	-0.806	0.420	-. 0847727
$\begin{aligned} & \text { Iincom_5 } \\ & .0334598 \end{aligned}$	-. 0257862	. 0302249	-0.853	0.394	-. 0850321
$\begin{aligned} & \text { Iincom_6 } \\ & .0190232 \end{aligned}$	-. 0404306	. 030331	-1.333	0.183	-. 0998845
$\begin{aligned} & \text { Iincom_7 } \\ & .0045784 \end{aligned}$	-. 0649689	. 0308089	-2.109	0.035	-. 1253594
$\begin{aligned} & \text { Iincom_8 } \\ & .0320876 \end{aligned}$	-. 0972097	. 0332227	-2.926	0.003	-. 1623317
$\begin{aligned} & \text { Iownki_1 } \\ & .0586911 \end{aligned}$	. 0200002	. 0197386	1.013	0.311	-. 0186907
$\begin{gathered} \text { Iownki_2 } \\ .1248546 \end{gathered}$	. 0557946	. 0352317	1.584	0.113	-. 0132654
$\begin{aligned} & \text { Iownki_3 } \\ & .497023 \end{aligned}$	. 1369765	. 1836815	0.746	0.456	-. 2230699
Iownkia1   . 0548076	. 0231812	. 0161345	1.437	0.151	$-.0084451$
$\begin{aligned} & \text { Iownkia2 } \\ & .1066563 \end{aligned}$	. 031204	. 0384928	0.811	0.418	-. 0442482
$\begin{aligned} & \text { Iownkia3 } \\ & .0134709 \end{aligned}$	-. 7862258	. 4079738	-1.927	0.054	-1.585922
Iownkib1   . 0684597	. 0275453	. 0208729	1.320	0.187	-. 0133691
Iownkib2   . 0446667	-. 0016679	. 0236381	-0.071	0.944	$-.0480025$
$\begin{aligned} & \text { Iownkib3 } \\ & .0886361 \end{aligned}$	. 024184	. 0328809	0.736	0.462	-. 0402681
Iownkib4   . 1499931	. 0366583	. 0578189	0.634	0.526	-. 0766764
$\begin{aligned} & \text { Iownkib5 } \\ & .4683472 \end{aligned}$	. 2131587	. 1301871	1.637	0.102	-. 0420297
Icitys_2   .0178045	-. 0087611	. 0135527	-0.646	0.518	-. 0353268


$\begin{aligned} & \text { Icitys_3 } \\ & .0166547 \end{aligned}$	-. 0092045	. 0131924	-0.698	0.485	-. 0350638	
Icitys_4	-. 0332083	. 0118965	-2.791	0.005	-. 0565275	-
. 009889						
Icitys_5	-. 0145645	. 0119912	-1.215	0.225	-. 0380693	
. 0089402						
eng	. 038327	. 0325245	1.178	0.239	-. 0254264	
. 1020804						
fren	. 0321667	. 0349838	0.919	0.358	-. 0364075	
. 1007408						
other	-. 085165	. 0311008	-2.738	0.006	-. 1461279	-
. 0242022						
Irelig_2	-. 0199384	. 0138339	-1.441	0.150	-. 0470552	
. 0071784						
Irelig_3	-. 0442059	. 0132585	-3.334	0.001	-. 0701947	-
. 0182172						
Irelig_4	-. 0302815	. 0168286	-1.799	0.072	-. 0632683	
. 0027053						
Iregio_2	. 0545934	. 0182229	2.996	0.003	. 0188734	
. 0903134						
Iregio_3	. 0227345	. 0124532	1.826	0.068	-. 0016757	
. 0471448						
Iregio_4	-. 0122635	. 0114942	-1.067	0.286	-. 0347941	
. 0102671						
Iregio_5	-. 0230834	. 0150683	-1.532	0.126	-. 0526198	
. 006453						
workhrs	-. 0000635	. 0002617	-0.243	0.808	-. 0005764	
. 0004494						
kids	-. 0203219	. 0221845	-0.916	0.360	-. 0638071	
. 0231633						
_cons	2.049875	. 1657797	12.365	0.000	1.72492	
2.374831						

- hausman, save;
- hettest;

Cook-Weisberg test for heteroscedasticity using fitted values of vol Ho: Constant variance $\begin{array}{lll}\text { chi2 (1) } & = & 627.62 \\ \text { Prob }>\text { chi2 } & = & 0.0000\end{array}$
. /*
> Testing to see if occupational categories are significant.
> Answer, yes as a group they seem to be.
> Then cross-tab with workf. We get results that are contradictory within the
> categories, so despite the Ftest, we choose to drop occupation
$>$ */
> test Ioccca_2 Ioccca_3 Ioccca_4 Ioccca_5 Ioccca_6;
$(1) \quad$ Ioccca_2 $=0.0$
$(2) \quad$ Ioccca_3 $=0.0$
$(3)$ Ioccca_4 $=0.0$
$(4)$ Ioccca_5 $=0.0$
(5) Ioccca_6 = 0.0

```
F(5, 11690) = 5.28
 Prob > F = 0.0001
```

. tab occcat workf;

|  | type of job <br> full-time |  |  | part-time |
| ---: | ---: | ---: | ---: | ---: |$\quad$ Total

```
. /*
> Without occupation
> */
>
> xi: regress vol sex i.agegroup i.educ i.marital i.workf i.income
> i.ownkids1 i.ownkids2 i.ownkids3 i.citysize eng fren other i.religion
> i.region workhrs kids;
i.agegroup Iagegr_1-9 (naturally coded; Iagegr_1 omitted)
i.educ Ieduc_1-5 (naturally coded; Ieduc_1 omitted)
i.marital Imarit_1-3 (naturally coded; Imarit_1 omitted)
i.workf Iworkf_0-2 (naturally coded; Iworkf_0 omitted)
i.income Iincom_1-8 (naturally coded; Iincom_1 omitted)
i.ownkids1 Iownki_0-3 (naturally coded; Iownki_0 omitted)
i.ownkids2 Iownkia0-3 (naturally coded; Iownkia0 omitted)
i.ownkids3 Iownkib0-5 (naturally coded; Iownkib0 omitted)
i.citysize Icitys_1-5 (naturally coded; Icitys_1 omitted)
i.religion Irelig_1-4 (naturally coded; Irelig_1 omitted)
i.region Iregio_1-5 (naturally coded; Iregio_1 omitted)
 Source | SS Mf NS Number of obs =
11747
---------+------------------------------ F(51, 11695) =
16.76
 Model 142.054731 51 2.78538688 Prob > F =
0.0000
Residual | 1943.83273 11695 .16621058 R-squared =
0.0681
---------+------------------------------- Adj R-squared =
0.0640
 Total | 2085.88746 11746 .177582791 Root MSE =
.40769
```

-_----
vol Coef. Std. Err. $\quad$ P>|t| [95\% Conf.
Interval]


Iownkial	. 0245538	. 0161424	1.521	0.128	-. 0070881	
. 0561957						
Iownkia2	. 0321625	. 0385166	0.835	0.404	-. 0433366	
. 1076615						
Iownkia3	-. 7971523	. 4083187	-1.952	0.051	-1.597525	
. 0032204						
Iownkib1	. 0302185	. 0208788	1.447	0.148	-. 0107074	
. 0711444						
Iownkib2	. 0009545	. 0236408	0.040	0.968	-. 0453854	
. 0472945						
Iownkib3	. 0245316	. 0328908	0.746	0.456	-. 0399398	
. 0890029						
Iownkib4	. 0436285	. 0578452	0.754	0.451	-. 0697578	
. 1570147						
Iownkib5	. 2278861	. 1302579	1.749	0.080	-. 0274411	
. 4832134						
Icitys_2	-. 0075218	. 0135481	-0.555	0.579	-. 0340783	
. 0190347						
Icitys_3	-. 0072281	. 0131799	-0.548	0.583	-. 0330629	
. 0186068						
Icitys_4	-. 0313599	. 0118658	-2.643	0.008	-. 0546187	-
. 008101						
Icitys_5	-. 0095384	. 0118876	-0.802	0.422	-. 0328401	
.0137632						
eng	. 0374744	. 0325494	1.151	0.250	-. 0263279	
. 1012767						
fren	. 0317823	. 0350128	0.908	0.364	-. 0368485	
. 1004132						
other	-. 0893659	. 0311147	-2.872	0.004	-. 1503558	-
. 0283759						
Irelig_2	-. 0197579	. 0138424	-1.427	0.154	-. 0468914	
. 0073756						
Irelig_3	-. 043877	. 0132666	-3.307	0.001	-. 0698818	-
.0178721						
Irelig_4	-. 0307739	. 0168424	-1.827	0.068	-. 0637877	
. 00224						
Iregio_2	. 053969	. 0182279	2.961	0.003	. 0182392	
. 0896987						
Iregio_3	. 0204132	. 0124418	1.641	0.101	-. 0039747	
. 0448012						
Iregio_4	-. 0143542	. 0114885	-1.249	0.212	-. 0368736	
. 0081652						
Iregio_5	-. 0238437	. 0150786	-1.581	0.114	-. 0534003	
. 0057129						
workhrs	-. 0001109	. 0002599	-0.427	0.670	-. 0006203	
.0003985						
kids	-. 0222843	. 0221982	-1.004	0.315	-. 0657964	
. 0212278						
_cons	2.11405	. 1584272	13.344	0.000	1.803506	
2.424593						

. /*
> Residuals, Specification Errors \& Heteroskedasticity > */
$>$

```
> predict res, residuals;
(15010 missing values generated)
. gen ressq=res^2;
(15010 missing values generated)
. graph ressq vol;
. sort vol;
- gen ressqcat=ressq;
(15010 missing values generated)
. recode ressqcat 0/0.1=1 0.1/0.2=2 0.2/0.3=3 0.3/0.4=4 0.4/0.5=5
> 0.5/0.6=6 0.6/0.7=7 0.7/0.8=8 0.8/0.9=9 0.9/1=10 1/1.1=11;
(11747 changes made)
```

. by vol: tab ressqcat;

$\begin{aligned} \text {-> } & \text { vol= } \\ & \text { ressqcat } \end{aligned}$	yes Freq.	Percent	Cum.
1	1	0.04	0.04
2	9	0.33	0.37
3	134	4.94	5.31
4	424	15.63	20.94
5	683	25.18	46.13
6	649	23.93	70.06
7	473	17.44	87.50
8	236	8.70	96.20
9	71	2.62	98.82
10	22	0.81	99.63
11	10	0.37	100.00
Total	2712	100.00	


-> vol= . no observations
. by vol: sum ressqcat;

-> vol= no

. hausman;

	(b)   Prior	(B)   Current	$\begin{gathered} (b-B) \\ \text { Difference } \end{gathered}$	$\begin{gathered} \text { sqrt (diag(V_b-V_B)) } \\ \text { S.E. } \end{gathered}$
sex	. 032243	. 0405276	-. 0082846	. 0038665
Iagegr_2	-. 0598032	-. 0583382	-. 001465	
Iagegr_3	-. 0621361	-. 0593026	-. 0028334	
Iagegr_4	-. 0697037	-. 0679166	-. 0017871	
Iagegr_5	-. 1281327	-. 1293923	. 0012595	. 0002897
Iagegr_6	-. 1745722	-. 1755496	. 0009774	
Iagegr_7	-. 1740813	-. 1742744	. 0001931	. 0007545
Iagegr_8	-. 2319032	-. 2328848	. 0009816	
Iagegr_9	-. 2800779	-. 28094	. 0008621	
Ieduc_2	-. 0814517	-. 0836043	. 0021526	. 0007126
Ieduc_3	-. 1564391	-. 1643923	. 0079532	. 0020335
Ieduc_4	-. 1605266	-. 1726939	. 0121673	. 0036277
Ieduc_5	-. 1880216	-. 2168058	. 0287842	. 0069145
Imarit_2	. 0274571	. 0277819	-. 0003248	
Imarit_3	. 0119733	. 0126913	-. 000718	
Iworkf_1	-. 0265508	-. 0314512	. 0049004	. 046659
Iworkf_2	-. 0431997	-. 052245	. 0090453	. 0471255
Iincom_2	. 0257635	. 0254872	. 0002762	.
Iincom_3	-. 0103823	-. 0103709	-. 0000114	
Iincom_4	-. 0246997	-. 023211	-. 0014888	
Iincom_5	-. 0257862	-. 0246281	-. 0011581	. 0005554
Iincom_6	-. 0404306	-. 0405551	. 0001245	. 0006233
Iincom_7	-. 0649689	-. 0664538	. 0014848	. 0011727
Iincom_8	-. 0972097	-. 1010766	. 0038669	. 0016162
Iownki_1	. 0200002	. 0196732	. 0003271	
Iownki_2	. 0557946	. 0569584	-. 0011638	
Iownki_3	. 1369765	. 1444977	-. 0075212	
Iownkial	. 0231812	. 0245538	-. 0013726	
Iownkia2	. 031204	. 0321625	-. 0009584	
Iownkia3	-. 7862258	-. 7971523	. 0109265	.
Iownkib1	. 0275453	. 0302185	-. 0026732	
Iownkib2	-. 0016679	. 0009545	-. 0026225	
Iownkib3	. 024184	. 0245316	-. 0003475	
Iownkib4	. 0366583	. 0436285	-. 0069701	
Iownkib5	. 2131587	. 2278861	-. 0147274	
Icitys_2	-. 0087611	-. 0075218	-. 0012393	. 000356
Icitys_3	-. 0092045	-. 0072281	-. 0019765	. 0005731
Icitys_4	-. 0332083	-. 0313599	-. 0018484	. 0008552
Icitys_5	-. 0145645	-. 0095384	-. 0050261	. 001573
eng	. 038327	. 0374744	. 0008526	.
fren	. 0321667	. 0317823	. 0003843	-


other	-. 085165	-. 0893659	. 0042008	
Irelig_2	-. 0199384	-. 0197579	-. 0001805	-
Irelig_3	-. 0442059	-. 043877	-. 000329	-
Irelig_4	-. 0302815	-. 0307739	. 0004924	-
Iregio_2	. 0545934	. 053969	. 0006244	.
Iregio_3	. 0227345	. 0204132	. 0023213	. 0005322
Iregio_4	-. 0122635	-. 0143542	. 0020907	. 000362
Iregio_5	-. 0230834	-. 0238437	. 0007603	-
workhrs	-. 0000635	-. 0001109	. 0000474	. 0000307
kids	-. 0203219	-. 0222843	. 0019624	.

b = less efficient estimates obtained previously from
regress.
$B$ fully efficient estimates obtained from regress.
Test: Ho: difference in coefficients not systematic

```
chi2(50) = (b-B)'[(V_b-V_B)^(-1)](b-B)
 = 27.65
Prob>chi2 = 0.9957
```

. hettest;
Cook-Weisberg test for heteroscedasticity using fitted values of vol Ho: Constant variance chi2(1) $=600.67$ Prob > chi2 = 0.0000
. /*
> F -tests
$>$ */
> test Iagegr_2 Iagegr_3 Iagegr_4 Iagegr_5 Iagegr_6 Iagegr_7 Iagegr_8 Iagegr_9;

1)	Iagegr_2 = 0.0
2)	Iagegr_3 $=0.0$
3)	Iagegr_4 $=0$.
4)	Iagegr_5 = 0.0
5)	Iagegr_6 = 0.0
6)	Iagegr_7 = 0.0
7)	Iagegr_8 = 0.0
8)	Iagegr_9 = 0 .

$F(8,11695)=20.46$
Prob $>\mathrm{F}=0.0000$
. test Ieduc_2 Ieduc_3 Ieduc_4 Ieduc_5;
( 1) Ieduc_2 $=0.0$
( 2) Ieduc_3 $=0.0$
( 3) Ieduc_4 $=0.0$
( 4) Ieduc_5 $=0.0$
$F(4,11695)=53.45$
Prob $>\mathrm{F}=0.0000$

```
. test Imarit_2 Imarit_3;
 (1) Imarit_2 = 0.0
 (2) Imarit_3 = 0.0
 F(2, 11695) = 2.66
 Prob > F = 0.0700
. test Iworkf_1 Iworkf_2;
 (1) Iworkf_1 = 0.0
 (2) Iworkf_2 = 0.0
 F(2, 11695) = 6.34
 Prob > F = 0.0018
. test Iincom_2 Iincom_3 Iincom_4 Iincom_5 Iincom_6 Iincom_7 Iincom_8;
 (1) Iincom_2 = 0.0
 (2) Iincom_3 = 0.0
 (3) Iincom_4 = 0.0
 (4) Iincom_5 = 0.0
 (5) Iincom_6 = 0.0
 (6) Iincom_7 = 0.0
 (7) Iincom_8 = 0.0
 F(7, 11695) = 7.06
 Prob > F = 0.0000
. test Iownki_1 Iownki_2 Iownki_3;
 (1) Iownki_1 = 0.0
 (2) Iownki_2 = 0.0
 (3) Iownki_3 = 0.0
 F(3, 11695) = 1.09
 Prob > F = 0.3537
. test Iownkia1 Iownkia2 Iownkia3;
 (1) Iownkial = 0.0
 (2) Iownkia2 = 0.0
 (3) Iownkia3 = 0.0
 F(3, 11695) = 2.18
 Prob > F = 0.0878
 . test Iownkib1 Iownkib2 Iownkib3 Iownkib4 Iownkib5;
 (1) Iownkib1 = 0.0
 (2) Iownkib2 = 0.0
```

```
(3) Iownkib3 = 0.0
(4) Iownkib4 = 0.0
(5) Iownkib5 = 0.0
 F(5, 11695) = 1.49
 Prob > F = 0.1897
. test Icitys_2 Icitys_3 Icitys_4 Icitys_5;
 (1) Icitys_2 = 0.0
 (2) Icitys_3 = 0.0
 (3) Icitys_4 = 0.0
 (4) Icitys_5 = 0.0
 F(4, 11695) = 2.06
 Prob > F = 0.0831
. test eng fren;
 (1) eng = 0.0
 (2) fren = 0.0
 F(2, 11695) = 0.68
 Prob > F = 0.5048
. test eng fren other;
(1) eng = 0.0
(2) fren = 0.0
(3) other = 0.0
 F(3, 11695) = 15.88
 Prob > F = 0.0000
. test Irelig_2 Irelig_3 Irelig_4;
 (1) Irelig_2 = 0.0
 (2) Irelig_3 = 0.0
 (3) Irelig_4 = 0.0
 F(3, 11695) = 4.27
 Prob > F = 0.0051
 . test Iregio_2 Iregio_3 Iregio_4 Iregio_5;
 (1) Iregio_2 = 0.0
 (2) Iregio_3 = 0.0
 (3) Iregio_4 = 0.0
 (4) Iregio_5 = 0.0
 F(4, 11695) = 5.29
 Prob > F = 0.0003
```

end of do-file
-> . log close

## ECON 452

## Project 3

Health Services Utilization of Canada's Immigrant and Non-Immigrant Populations

Authors:

Data Set:

File \#: 35

Paper:
"Health Status and Health Services Utilization of Canada's Immigrant and Non-Immigrant Populations" by Mireille Laroche. Canadian Public Policy, Vol. XXVI, No. 1, 2000.

## 1. Introduction

Under Canada's Immigration Act, every immigrant applicant needs to undergo successfully a medical examination in order to immigrate to Canada. Applicants are judged inadmissible to immigrate if they are likely to be a danger to public health or safety, or if their admission could generate excessive demands on health or social services. While the immigration legislation ensures a satisfactory health condition for those entering the country, it cannot guarantee the maintenance of such a condition through time. The objective of the current study is to assess possible differences in the utilization rates of health services between immigrants and those of the Canadian-born population. Pursuing this line of inquiry will help policymakers evaluate the impact of immigration on the health-care system as well as the efficiency of the health-screening policy in place.

Our analysis is built on a recent study by Laroche (2000)[1]. She compared the health status of immigrants and their utilization rates of health services to those of the Canadian-born population using data contained within two cycles (1985 and 1991) of the General Social Survey (GSS). Her results showed that neither the health status of immigrants nor their utilization rates of health services differ significantly from those of the Canadian-born population.

Laroche used three self-reported measures of health status. The first measure describes the health status of the respondents by subjectively qualifying it in categories that range from "excellent" to "poor". The second measure is a binary variable, taking the value of one if the respondent has at least one health problem and zero otherwise. Finally, the third measure takes the value one if the respondent suffers from any long-term activity limitations and zero otherwise. All three measures of health status were regressed on an extensive number of explanatory variables. The ordered probit estimation method was preferred to OLS since with the former approach, the categorical dependent variables could be evaluated on a non-linear scale.

Health services utilization was estimated using four different dependent variables: the length of stay in hospital and the number of consultations with a general practitioner, a specialist or a nurse the respondents have had during the 12 months preceding the time of the interview[2]. Since a large number of observations for these variables were clustered at zero, Ordinary Least Squares (OLS) estimation method could not be used as the resulting estimates could have been subject to bias[3]. Instead, a two-limit tobit estimation procedure was used to regress the length of stay in a hospital and the number of consultations on the explanatory variables.

The explanatory variables for the utilization of health services regressions were immigration status, time of arrival, sex, weight, type of smoker, age, age-squared, marital status, number of children, household income, education, occupation and mother tongue. Interaction variables were created between immigration status and household income, education, age, age-squared and mother tongue.

The estimated coefficients on the dummy variables related to the immigration status and interaction variables between immigration status and various socio-economic characteristics were generally not , when tested jointly, significantly different from zero, indicating that immigrants' and non-immigrants' use of health services is not significantly different. Laroche concluded that Canada's immigrant
population is more or less as healthy as the average native-born Canadian is and will use, on average, similar amounts of health-care services. Her findings reflect the fact that the medical screening process that immigrant applicants must pass before immigrating to Canada efficiently 'filters out' those with severe medical conditions.

Our aim in the current study is to assess possible differences in the utilization rates of health services by both populations using the 1991 cycle of the GSS. In particular, for the sub-sample of respondents who have spent some time in a hospital during the 12 months prior to the time of the interview, we test whether the length of stay differs for immigrants and non-immigrants. This modification of Laroche's model allows us to use the OLS method of estimation. Our results show that the utilization rates of health services of immigrants do not differ significantly from those of the Canadian-born population and thus support Laroche's findings.

The study is divided into four sections. The second part outlines our manipulation of the data and introduces a regression model similar to the one used by Laroche. Section 3 presents the regression results and a final section discusses our main conclusions.

## 2. Data

The 1991 cycle of the GSS provides information on the health condition, usage of medical services in the prior 12 months, and socio-economic characteristics of 11,924 respondents of which approximately 1,700 are immigrants. Residents of the Yukon and Northwest Territories were excluded. The survey involves interviews with non-institutionalized Canadians 15 years of age or older. Since invididuals in the survey were not selected using random sampling, weights developed by Statistics Canada were used to adjust the quantitative estimates.

Laroche used a broad range of explanatory variables to verify the importance of age, education, and several other socio-economic characteristics in the determination of a person's utilization rate of health services, regardless of the respondent's immigration status. However, our focus is on possible differences in utilization rates between the two groups. Consequently, only relevant variables were selected (refer to Table 1).

Several transformations of the extracted variables were required to make them compatible to our OLS approach. We eliminate those respondents who did not spend any time in hospital, which meant deleting observations that have missing values for these variables. As a result 10,420 of the total 11,924 observations are removed leaving 1,504 . A dummy variable called imm is generated to indicate whether a person is an immigrant or not. It takes the value of 0 if the person is Canadian-born and 1 if born outside Canada. Observations that had missing values for imm are dropped as there would be no basis on which to differentiate between immigrants and non-immigrants if that variable had a missing value. This eliminated a further 34 observations leaving 1,470. Respondents born outside of Canada and for whom no 'age at immigration' was reported were also eliminated from our sub-sample. Hence, we are left with 1,460 observations to conduct our regression. Of these, $14.2 \%$ ( 207 observations) are immigrants.

The effect of age on the length of stay in hospital was incorporated in two explanatory variables. Since the age variable provided in the GSS survey, dvagegr, is a range variable, we use the range midpoint to provide single values for age. This is stored in a variable called midage. A variable agesq is then generated, which is simply the square of midage. The intuition behind the use of this variable is that the relationship between the number of nights spent in hospital and age is unlikely to be linear. One drawback associated with the midpoint method is the presence of unequal ranges for the age variable.

Laroche's use of dummy variables for the cohort of arrival of immigrants was a source of confusion. She included these variables in order to identify possible changes in health services utilization by the immigrant population over time. This line of inquiry is not the focus of our paper. Consequently we exclude cohort dummy variables entirely from our regression as they have no bearing on our analysis. Dummy variables related to education are also singled out under the assumption that the level of education is partially reflected in household income.

A further transformation creates a variable that reflects the fraction of their life a respondent has spent in Canada. The idea is that immigrants who have spent most of their lives in Canada are assumed to enjoy a level of health similar to native-born Canadians. The variable immper captures this information. It takes a value of 1 if the respondent was born in Canada and a value given by the formula (midage dvageimc)/midage otherwise. This formula calculates the fraction of an immigrant's life spent in Canada.

Finally, with regards to household income, dummy variables like the ones used by Laroche are generated. These are incl (income less that $\$ 10000$ ), inc 2 (income greater than or equal to $\$ 10000$ and less than $\$ 20,000$ ), inc3 (income greater than or equal to $\$ 20000$ and less than $\$ 40000$ ), and inc4 (income greater than $\$ 40,000$ ) [4].

Our regression thus takes the form[5]:
$\mathrm{c} 2 \mathrm{a}=\mathrm{b}_{1}+\mathrm{b}_{2}$ imm $+\mathrm{b}_{3}$ immper $+\mathrm{b}_{4}$ midage $+\mathrm{b}_{5}$ ages $q+\mathrm{b}_{6}$ inc $2+\mathrm{b}_{7}$ inc $3+\mathrm{b}_{8}$ inc 4

## 3. Results

The regression was run using the OLS method of estimation. Coefficient estimates and their corresponding p-value are reported in Table 2. The key parameter is the one related to the immigration status, imm. A t-test was conducted to verify if the coefficient for immigration status is significant. The following null and alternative hypotheses were formulated:

$$
\begin{gathered}
\mathrm{H}_{0}: \mathrm{b} 2=0 \\
\mathrm{H}_{\mathrm{A}}: \mathrm{b} 2!=0
\end{gathered}
$$

The resulting p-value of 0.487 strongly retains the null, agreeing with the general findings of Laroche that there is no significant difference in health services utilization between immigrants and non-immigrants. Interestingly, the parameter related to the fraction of life spent in Canada (immper) shows up negative. It is however not significant and is therefore not given further consideration.

As expected, the coefficient for age (midage) is not statistically significant, whereas the one related to age-squared (agesq) is highly significant ( p -value $=0.004$ ). This indicates that the relationship between the time spent in hospital and age is not linear - a plausible result as hospital use is expected to increase exponentially as an individual gets older.

The coefficients related to the dummy variables for income are significant at the $5 \%$ level for low and high levels of income. This suggests that as income rises, the time spent in hospital decreases.

## 4. Summary

Laroche's paper addresses some concerns about immigration and immigration policy in Canada. For one, it allays the fear that the increased number of immigrants in recent years places a disproportionately large burden on the healthcare system. In addition, the screening process employed by immigration Canada is vindicated from being too lax.

Our results demonstrate that there is no significant differences in the rates of utilization of health services between immigrants and non-immigrants in Canada and thus support Laroche's findings. The explanatory variables age-squared and household income explain most of the variation in the dependent variable.

However, the poor quality of our model is reflected in the low value of the $\mathrm{R}^{2}$ statistic $\left(\mathrm{R}^{2}=0.0559\right)$. Recognizing the fact that only one variable is statistically significant at the $1 \%$ level, it is not surprising that such a low $\mathrm{R}^{2}$ was obtained. Moreover, even if most of the variables were found to be significant, it is unlikely that we would obtain a high $\mathrm{R}^{2}$. It is to be noted that there are many factors that might affect the time spent in hospital that were not accounted for in our regression model. In particular, as mentioned earlier, the study fails to capture the unmet needs of individuals. Hence this shortcoming in the data has yielded a low $\mathrm{R}^{2}$. This inadequacy was prevalent in Laroche's paper as well because her coeffcient estimates for most variables were also statistically insignificant.

In spite of our limited understanding of the probit and tobit estimation methods, our modified model yielded the same results as Laroche. Based on the conclusion derived from both Laroche's and our results, it was interesting to learn that both our studies collided with the misconception that immigrants would have a higher level of health service utilization than non-immigrants. In essence, our study, which employed a simplified model, reaffirmed the conclusions arrived at by Laroche.

## 5. Tables

Table 1
Description of Selected Variables from GSS
GSS Variable Description
c2a $\quad$ Number of nights spent in hospital, nursing home, etc... during the past 12 months

q11	Country of birth   $1-$ If country of birth is C   $2-$ If born outside Canada
Dvageimc	Age at time of immigration


Dvhhinc	$\begin{aligned} & \text { Household income (coded value ranges) } \\ & 1 \text { - no income } \\ & 2-<5000 \\ & 3-5000-9999 \\ & 4-10000-14999 \\ & 5-15000-19999 \\ & 6-20000-29999 \\ & 7-30000-39999 \\ & 8-40000-59999 \\ & 9-60000-79999 \\ & 10->=80000 \end{aligned}$
Dvagegr	Age of respondent (coded value ranges) $1-15-17$ $2-18-19$ $3-20-24$ $4-25-29$ $5-30-34$ $6-35-39$ $7-40-44$ $8-45-49$ $9-50-54$ $10-55-59$ $11-60-64$ $12-65-69$ $13-70-74$ $14-75-79$ $15-80-99$

Table 2
Regression Results

Variable	Estimated Coefficient (p-values   in parentheses)
Immigration Status	-2.61
	$(0.487)$
Percentage of life spent in Canada	-8.14
	$(0.278)$
Estimated age	-0.322
	$(0.116)$
Estimated age-squared	0.0055
	$(0.004)$
Household income greater than or equal to $\$ 10000$	-4.52
and less than \$20,000	$(0.036)$
Household income greater than or equal to $\$ 20000$	-3.15
and less than \$40000	$(0.150)$
Household income greater than \$40,000	-5.08
	$(0.024)$
Constant	22.0

## Appendix

Table 3
Summary Statistics for respondents who have spent time in hospital

Variable	Means (std. Errors in   parentheses)
Time Spent in Hospital (days)	12.1
	$(30.3)$


Country of birth (1=Canada; 2=Outside)	1.14
	$(0.349)$
Age at time of immigration	21.7
	$(14.96)$
Household income	6.06
	$(2.02)$
Age of respondent	8.86
	$(4.41)$
Fraction of life spent in Canada	0.944
	$(0.174)$
Estimated Age of respondent using median	52.2
of ranges	$(23.0)$
Age-squared	3253.8
	$(2485.6)$
Number of observations	1460

## LOG FILE

-> . Qextract
getting information about file 35 ...
loading variables from 35 (gss6_91) only (no data yet)... done
-> . summarize c 2 a

Variable	Obs	Mean	Std. Dev.	Min	Max
--------------------------------------------------------------					
c2a\|	1504	12.65891	32.49902	1	365

-> . summarize c2a if dvageimc > 0 \& dvageimc < 99

Variable Obs Mean Std. Dev. Min Max
$\qquad$

$c 2 a$	200	15.25	42.76108	1	365

->. gen imm=1 if q11==2
(10052 missing values generated)
-> . replace imm=0 if q11 == 1
(9863 real changes made)
-> . drop if $\mathrm{c} 2 \mathrm{a}==$.
(10420 observations deleted)
-> . drop if imm==.
(34 observations deleted)
-> . summarize dvagegr if dvagegr $==15$

Variable Obs Mean Std. Dev. Min Max

$\begin{array}{llllll}\text { dvagegr } & 153 & 15 & 0 & 15 & 15\end{array}$
-> . browse
-> . gen midage $=16$ if dvagegr $==1$
(1434 missing values generated)
-> . run "C:\WINDOWS\TEMP\STD000000.tmp"
-> . summarize midage

$\begin{array}{llllll}\text { midage | } & 1470 & 52.28129 & 23.01062 & 16 & 89.5\end{array}$
-> . gen immper $=1$ if q11 == 1
(217 missing values generated)
-> . replace immper $=($ midage - dvageimc $) /$ midage if $q 11==2$
(207 real changes made)
-> . sort q11
-> . gen inc $1=($ dvhhinc $>=1 \&$ dvhhinc <=3 $)$
$->$. gen inc2 $=($ dvhhinc $>=4 \&$ dvhhinc $<=5)$
-> . gen inc3 $=($ dvhhinc $>=6 \&$ dvhhinc $<=7)$
-> . gen inc4 $=($ dvhhinc $>=8 \&$ dvhhinc <= 10)

Variable	Obs	Mean	Std. Dev.	Min	Max
c2a	1470	12.16122	30.31187	1	365
q11	1470	1.147619	. 3548427	1	2
dvageimc	\| 207	21.65217	714.95932	0	50
dvhhinc	1176	6.061224	2.024445	1	10
dvagegr	1470	8.87483	4.408434	1	15
imm	1470	. 147619	. 3548427	0	1
midage	1470	52.28129	23.01062	16	89.5
immper	1460	. 9436651	1.1736334	-. 0454	
inc1 1	1470	. 0952381	. 2936434	0	1
inc 21	1470	. 2326531	. 4226667	0	1
inc3	1470	. 2387755	. 4264804	0	1
inc4 ${ }^{\text {\| }}$	1470	. 2333333	. 4230965	0	1
-> . drop if immper==.					
(10 observations deleted)					
. regress c2a imm immper midage agesq inc2 inc3 inc4					

Source $\mid$ SS df MS $\quad$ Number of obs $=1460$



Total| 1337783.261459916 .917932

$$
\text { Root MSE }=29.493
$$

imm $\mid-2.611017$	3.754138	-0.696	0.487	-9.975131	4.753096	
immper $\mid-8.135771$	7.493506	-1.086	0.278	-22.83502	6.563483	
midage \|	-.322281	.2047106	-1.574	0.116	-.7237882	.079332
agesq \|	.0055148	.0019112	2.886	0.004	.0017658	.0092638
inc2 \|	-4.524167	2.155772	-2.099	0.036	-8.752927	-.2954076
inc3 \|	-3.145445	2.185488	-1.439	0.150	-7.432496	1.141605
inc4 \|	-5.082878	2.252384	-2.257	0.024	-9.501153	-.6646025
_cons \| 22.03957	9.110446	2.419	0.016	4.168525	39.91061	

-> . summ

Variable	Obs	Mean	Std. Dev.	Min	Max
c2a	1460	12.11918	30.28065	1	365
q11 \|	1460	1.141781	. 3489447	1	2
dvageimc	\| 207	21.65217	714.95932	0	50
dvhhinc	1170	6.061538	2.024987	1	10
dvagegr	1460	8.860959	4.409223	1	15
imm	1460	. 1417808	. 3489447	0	1
midage \|	1460	52.20274	23.00105	16	89.5
immper	\| 1460	. 9436651	1.1736334	-. 045454	
inc1	1460	. 0952055	. 2935991	0	1
inc $2 \mid$	1460	. 2335616	. 4232414	0	1
inc3 ${ }^{\text {\| }}$	1460	. 2390411	. 426644	0	1
inc4 \|	1460	. 2335616	. 4232414	0	1
agesq ${ }^{\text {\| }}$	1460	3253.812	2485.558	256	8010.25
immper2	\| 1460	- 94.36651	17.36334	-4.54545	

[1] "Health Status and Health Services Utilization of Canada's Immigrant and Non-Immigrant Populations" Canadian Public Policy Vol.XXVI no. 12000
[2] Since this study only assesses health services utilization through actual hospitalization/consultations rather than desired or required medical attention; it fails to capture the unmet needs of individuals.
[3] For both surveys, approximately 70 percent of respondents did not consult a specialist, while about 89 percent of them reported having no consultations with a nurse. In 1985, 20 percent of respondents reported having no consultations with a general practitioner. This proportion fell to 16 percent in 1991. Finally, in both survey years, approximately 87 percent of the respondents did not stay overnight in a hospital.
[4] The base dummy variable for household income was incl. Hence it is excluded from the regression
[5] All betas are estimates

# Have Trade Unions altered the Gender Gap? <br> Canadian Evidence 

## Department of Economics

Queen's University

May 25, 2001

Data Set:
1984 Survey of Union Membership
QED DLI Archive File Number: 374
Model Paper:
Maki, D. and Ng, I. (1990), "Effects of trade unions on the earnings differential between male and females: Canadian evidence", Canadian Journal of Economics, 2, 305-311.

## I. Introduction

Earnings differential between males and females has long been an interest of many researchers. However, at the start of the 1990s, relatively few studies had examined the effects of trade unions on the male-female wage gap. The negligible effects found in the United States, does not immediately imply the same is true in Canada. A study has shown that the male-female wage gap is larger in the union sectors than in the non-union sectors in Canada, suggesting trade unions may have enlarged the wage difference between male and female workers. This motivates Maki and Ng to perform their empirical study, "Effects of trade unions on the earnings differential between males and females: Canadian evidence".

The purpose of this paper is to first give an overview of Maki and Ng 's study. Section II therefore begins with an outline of their objective, and follows by a description of their data, theoretical considerations, methods, and conclusion. Section III is the beginning of our attempt to create a model that is similar to those used by Maki and Ng in their study. It includes a description of our data set, along with a comparison that is made between our data set and the data set used by Maki and Ng. Section IV is a depiction of our model, along with estimation and hypothesis testing. Section V concludes.

## II. Maki and Ng's study

As implicitly stated in the title, the authors' objective is to see whether trade unions have an impact on the earnings gap between male and female workers in Canada. If such
an impact has existed, the next response is to find out its direction and magnitude. The micro data, 1984 Survey of Union Membership (SUM), which involved approximately 75,000 Canadian residents, who are age fifteen or older, is used to examine this issue. Given this relatively large sample size, the authors decided to limit their analysis. This is done by firstly, selecting 10 percent random sample of all cases and secondly, eliminating all individuals who are not classified as employed. This leaves a sample of 4,093 individuals, with 2,293 males and 1,800 females.

The theoretical considerations made by the authors are explanations for why the effect of trade unions on male-female earnings differential is an empirical issue. The authors broke down the overall effect of trade unions on male-female differential into three parts: male-female membership effect, the extent which unions differently affected wages of unionised male and female workers, and the extent which unions differently affected wages of non-unionised male and female workers. The effect of the first component is deterministic, in the sense that the male union density was greater than the one of female in 1981. Thus, for any given level of unionisation, unions will increase the male-female wage gap. However, the latter two components, the wage effect, may widen or reduce the male-female wage gap. Thus, an examination of empirical data is needed to draw a conclusion.

The main model used by the authors in their analysis is a lin-lin model that takes the form as follows:

$$
\begin{align*}
\text { WAGE }=a_{0}+ & a_{1} \text { A2534 }+a_{3} \text { A4554 }+a_{4} \text { A55 } \\
& +a_{5} \text { EDHS }+a_{6} \text { EDSPS }+a_{7} \text { EDDIP }+a_{8} \text { EDDEG } \\
& +a_{9} \text { MARRD }+a_{10} \text { PTIME }+a_{11} \text { UNION }+a_{12} \text { MINES } \\
& +a_{13} \text { MFG }+a_{14} \text { CONS }+a_{15} \text { TRANS }+a_{16} \text { TRADE } \\
& +a_{17} \text { COMM }+a_{18} \text { PUBLIC } \tag{1}
\end{align*}
$$

where: WAGE is the dependent variable, and all independent variables are indicator variables for age, education, marital status, types of job (i.e. part-time or full-time), and industries. Estimations of equation (1) are performed separately for males and females and moreover, separately for public and private sector.

The authors draw two main conclusions from their regression analysis. Firstly, unions have widened the male-female wage gap, even when differences in the level of unionisation are taken into account. Secondly, the effects of trade unions on male-female wage gaps are different between the public and private sectors, with the wage gap increasing in the private sector, but decreasing in the public sector.

## III. Data

The micro data, 1984 Survey of Union Memberships (SUM) is also used in the present analysis and obtained though the Queen's Economics Department's Data Liberation Initiative (DLI) Archive. In an attempt to create a similar data set, we generated variables that are used by Maki and Ng in their study. At the initial stage, we discovered there are observations with dv1, the hourly wage rate or the dependent
variable in equation (1), classified as missing. Given the importance of dv1 in our analysis, we eliminated these observations. We then followed the sample selection criteria that are outlined by Maki and Ng in their paper. We first generated a 10 percent random sample and then, removed individuals that are not classified as employed. This leaves a sample of 3416 individuals of which 1823 are males and 1593 are females. As noticed, our data set is different from Maki and Ng 's data set, which contains a sample of 4,093 individuals, with 2,293 males and 1,800 females. Consequently, different results will be obtained, leading to different interpretations.

Table 1 provides a summary of variable definitions and their sample means used in the present analysis. Given that there are differences in the sample size, variable definitions, and other uncertainties arising from the sample selection process, the sample means are not identical. However, they are similar to the ones shown in Maki and Ng's paper, in the sense that there are consistent social trends observed. For instance, the mean hourly wage rate is higher for males than for females. The reason for this may be because on average, there are higher proportions of male workers with a university degree than females. Another observable trend is that females are on average, more likely to work part-time than males. Consequently, this may explain why the degree of unionisation is higher for males, since part-time workers tend not to be unionised. Lastly, male workers prefer to work in the manufacturing sectors, while female workers more likely to work in the areas of community, business and personal service. For the public sector, the proportions of male and female workers are approximately the same on average.

## IV. Estimation and Hypothesis Testing

Instead of following a separate regression approach, as in Maki and Ng's case, we chose females as the base group and used a pooled (interactive) regression function, which is illustrated as follows:

$$
\begin{align*}
\mathrm{WAGE}=\beta_{0}+ & \beta_{1} \mathrm{~A} 2534+\beta_{3} \mathrm{~A} 4554+\beta_{4} \mathrm{~A} 55 \\
& +\beta_{5} \mathrm{EDHS}+\beta_{6} \mathrm{EDSPS}+\beta_{7} \mathrm{EDDIP}+\beta_{8} \mathrm{EDDEG} \\
& +\beta_{9} \mathrm{MARRD}+\beta_{10} \mathrm{PTIME}+\beta_{11} \mathrm{UNION} \\
& +\beta_{12} \mathrm{MINES}+\beta_{13} \mathrm{MFG}+\beta_{14} \mathrm{CONS}+\beta_{15} \mathrm{TRANS} \\
& +\beta_{16} \mathrm{TRADE}+\beta_{17} \mathrm{COMM}+\beta_{18} \mathrm{PUBLIC} \\
& +\beta_{19} \mathrm{MALE}+\beta_{20} \mathrm{MA} 2534+\beta_{21} \mathrm{MA} 4554+\beta_{22} \mathrm{MA55} \\
& +\beta_{23} \mathrm{MEDHS}+\beta_{24} \mathrm{MEDSPS}+\beta_{25} \mathrm{MEDDIP}+\beta_{26} \mathrm{MEDDEG} \\
& +\beta_{27} \mathrm{MMARRD}+\beta_{28} \mathrm{MPTIME}+\beta_{29} \mathrm{MUNION} \\
& +\beta_{30} \mathrm{MMINES}+\beta_{31} \mathrm{MMFG}+\beta_{32} \mathrm{MCONS}+\beta_{33} \mathrm{MTRANS} \\
& +\beta_{34} \mathrm{MTRADE}+\beta_{35} \mathrm{MCOMM}+\beta_{36} \mathrm{MPUBLIC} \tag{2}
\end{align*}
$$

Coefficient estimates are provided in Table 2, along with t-ratios.

To establish whether a conditional mean male-female wage differential exits, we test the following hypothesis:

$$
\begin{array}{ll}
\mathrm{H}_{0}: \beta_{\mathrm{j}}=0 & \text { for } \mathrm{j}=19, \ldots, 36 \\
\mathrm{H}_{1}: \beta_{\mathrm{j}} \neq 0 & \text { for } \mathrm{j}=19, \ldots, 36
\end{array}
$$

Given the F-statistic is equal to 12.71 , with a p -value of 0.0000 , the null hypothesis is rejected in favour of the alternative hypothesis at the one percent significance level. Thus, a male-female wage gap exists. General F-tests are also applied to test whether the gender gap differs across age groups or across education levels, with all else remaining constant in both cases. Provided the test statistics are 1.84 and 1.08 , respectively, with the corresponding p -values of 0.1188 and 0.3660 , the null hypotheses are retained at the one percent significance level, indicating the wage gap neither differs across age groups nor across education levels.

A t-test is used to test the relevance of MUNION, an interaction term which is a product of two dummy variables, MALE and UNION. Since the test statistics equals -2.863 , with a p-value of 0.004 , the null hypothesis is rejected at the one percent significance level, indicating trade unions have affected males' earnings differently from females' earnings. Lastly, to determine whether the gender gap differs across industries, a general F-test is applied. The test-statistic is equal to 8.64 , with a p-value of 0.0000 , and consequently, the null hypothesis test is rejected at the one percent significance level, indicating there is strong evidence that the gender gap is industries-dependent.

## V. Conclusion

The issue of whether trade unions have an impact on the conditional mean wage differential between male and female workers in Canada is the central theme of the present analysis. This empirical topic is not new, in the sense that Maki and Ng have
examined this issue with the Survey of Union Memberships (SUM) conducted in 1984. They found that trade unions have enlarged the gender gap, even when the differences in the degree of unionization are taken into considerations. Moreover, the effects of unions are different in the private sector than in the public sector, with the gender gap widening in the private sector, while the reverse is true in the public sector.

We attempted to replicate a similar data set used by Maki and Ng to examine this issue. However, the lack of descriptions in the model paper created difficulties in yielding very similar results. For instance, the authors did not describe as to how they generated a 10 percent random sample of all cases, or how they grouped various industries into few major categories. Uncertainties also arose in the process of handing observations having the hourly wage rate reported as missing. Consequently, we made an assumption and a modification. We assumed that the authors eliminated these missing observations prior to generating a 10 percent random sample. Moreover, we redefined the dummy variable for marital status, with a value of one referring to an individual who is married, and a value of zero corresponding to a person who is not currently married (i.e. single, widow or others).

Instead of using two separate regression functions for males and females, as in Maki and Ng 's study, we followed a more informative and flexible approach, the pooled (interactive) regression, and chose females as the base group. After estimation, we performed various hypotheses tests, with the first about whether a conditional mean wage gap exists between males and females. Test results indicate there is a gender gap, which
varies across industries, but not across age groups or education levels. Moreover, trade unions have affected males' earnings differently from females' earnings.

We suggested future research to find explanations for the opposing effects of trade unions on the wage gaps found in the public and private sectors and moreover, to investigate the dynamics of trade unions. The latter means to examine the effects of trade unions on the gender gap, in terms of directions and magnitudes over time. However, given the usual trade-off between cost-effectiveness and accuracy, this may have to be done using not micro, but aggregate data.

We gained many insights in the present analysis. In the classroom, everything is always assumed to be in control, but there are many factors, whether endogenous or exogenous, in the outside world. As recalled from previous experiences, there are no uncertainties or guesses arising from the data set. For example, there are no missing values, and variables used in assignments are always well defined. This was not the case here. For example, there are observations with the hourly wage rate reported as missing. Moreover, variable definitions are not clearly defined in the model paper. Consequently, adjustments have to be made, and sometimes, this process could be frustrating and timeconsuming. Another interesting point arising from the analytical process was that the complexity of the models increases as more parameters are added. This was illustrated by moving from a separate to a pooled (interactive) regression approach. Although the latter approach is more flexible and informative, additional parameters made interpretations of regression coefficient estimates more difficult.

## VI. Appendix

## A. Tables

TABLE 1: Variable Definitions and Sample Means

Variable	Definition	Sample Means		
		Males	Females	Average
WAGE	Hourly Earnings	1108¢	$846 \not \subset$	986¢
Age				
A2534	Age 25 to $34=1 ;$ other $=0$	30\%	30\%	30\%
A3544	Age 35 to $44=1 ;$ other $=0$	25\%	23\%	24\%
A4554	Age 45 to 54 = 1; other $=0$	14\%	14\%	14\%
A55	Age 55 and over $=1 ;$ other $=0$	10\%	8\%	9\%
Education				
EDHS	High school completion $=1$; other $=0$	52\%	54\%	53\%
EDSPS	```Some post-secondary education = 1; other = 0```	9\%	9\%	9\%
EDDIP	Post-secondary diploma $=1$; other $=0$	11\%	17\%	14\%
EDDEG	University degree $=1$; other $=0$	14\%	12\%	13\%
Marital Status				
MARRD	Married $=1 ;$ other $=0$	70\%	63\%	67\%
Type of Work				
PTIME	Part-time worker $=1 ;$ full-time worker $=0$	8\%	27\%	17\%
Member of Union				
UNION	Union member $=1 ;$ non-union member $=0$	39\%	34\%	37\%
Recoded Industries				
MINES	Mines, Quarries, and Oil Wells = 1 ; other $=0$	4\%	0.4\%	$2 \%$
MFG	Manufacturing $=1 ;$ other $=0$	23\%	10\%	17\%
CONS	Construction $=1$; other $=0$	$7 \%$	1\%	4\%
TRANS	Transportation, Communication and utilities $=1$; other $=0$	12\%	4\%	8\%
TRADE	Wholesale and Retail Trade; Finance, Insurance and Real Estate $=1$; other $=0$	19\%	27\%	23\%
COMM	Community, Business and Personal Service $=1$; other $=0$	22\%	48\%	$34 \%$
PUBLIC	Public Administration $=1$; other $=0$	10\%	8\%	9\%

SOURCE: 1984 Survey of Union Membership

TABLE 2: Determinants of Hourly Earnings

Independent Variable	Description	Coefficient	t-value
Age	Age 25 to $34=1 ;$ other $=0$	151.80	5.27
A2534	Age 35 to $44=1 ;$ other $=0$	258.81	8.26
A2544	Age 45 to $54=1 ;$ other $=0$	245.33	7.00
A4554	Age 55 and over $=1 ;$ other $=0$	198.91	4.72

Education

EDHS	High school completion $=1 ;$ other $=0$	152.11	3.78
EDSPS	Some post-secondary education $=1 ;$ other $=0$	275.65	5.47
EDDIP	Post-secondary diploma $=1 ;$ other $=0$	398.03	8.73
EDDEG	University degree $=1 ;$ other $=0$	650.97	13.19

Marital Status
MARRD
Married $=1 ;$ other $=0 \quad 28.69$
1.29

Type of Work

PTIME	Part-time worker $=1$; full-time worker $=0$	-24.05	-1.05
Member of Union			
UNION	Union member $=1$; non-union member $=0$	235.98	10.12
Recoded Industries	Mines, Quarries, and Oil Wells $=1$; other $=0$   Manufacturing $=1 ;$ other $=0$   Construction $=1 ;$ other $=0$	-141.58	-329.33

Gender
MALE
MALE $=1 ;$ FEMALE $=0$
-226.69
-2.11
Interactions with Male (M)

## Age

MA2534
MA3544
MA4554
MA55

Education
MEDHS
MEDSPS
MEDDIP
MEDDEG

Age 25 to 34	31.89	42.39
Age 35 to 44	60.13	1.31
Age 45 to 54	120.63	2.35
Age 55 and over	109.41	1.86
High school completion	28.00	0.57
Some post-secondary education	70.67	1.09
Post-secondary diploma	-25.63	-0.43
University degree	64.17	1.04


Marital Status			
MMARRD	Married	66.68	2.00
Type of Work			
MPTIME	Part-time worker	-145.63	-3.33
Member of Union			
MUNION	Union member	-88.64	-2.86
Recoded Industries			
MMINES	Mines, Quarries, and Oil Wells	561.04	2.93
MMFG	Manufacturing	459.70	4.49
MCONS	Construction	466.50	3.27
MTRANS	Transportation, Communication and Utilties	372.97	3.38
MTRADE	Wholesale and Retail Trade; Finance, Insurance and Real Estate	343.02	3.47
MCOMM	Community; Business and Personal Service	213.09	2.16
MPUBLIC	Public Administration	487.85	4.56
CONSTANT		652.16	7.10
F ( 37,3378 )		69.67	
n	Number of Observations	3416	

SOURCE: 1984 Survey of Union Membership

## B. Log File

```
-> . Qextract
getting information about file 374 ...
loading variables from 374 (sum84) only (no data yet)... done
-> . *THIS IS A LIST OF STATA COMMANDS FOR HW1.
-> .
-> . count if dv1 == .
40510
-> . count if dv1 != .
44166
-> . do "C:\windows\TEMP\STD050000.tmp"
. /*
> Given the importance of dv1, the hourly wage rate (the dependent
> variable chosen), we ELIMINATE OBSERVATIONS WITH dv1
> CLASSIFIED AS MISSING.
> */
. drop if dv1 == .
(40510 observations deleted)
```

. /*
> GENERATE A 10 PERCENT RANDOM SAMPLES
> */

- gen u = uniform()
. sort u
. drop if _n > 0.1*_N
(39750 observations deleted)
. drop u
. \#delimit
delimiter now ;
. /*
> 36. lfstatus
> KEEP OBSERVATIONS only IF classified as EMPLOYED
> */
> tab lfstatus;

labour force status	Freq.	Percent	Cum.
employed	3416	77.36	77.36
unemployed	405	9.17	86.53
not in labour force	595	13.47	100.00
Total	4416	100.00	

. tab lfstatus, nolabel;

| labour <br> force |  |
| ---: | :---: | :---: |
| status | Freq. Percent Cum. |



```
. /*
> total number of males and females: need not to be the same as in the article
> reason: number of employed may differ in the two random samples
> */
>
> /*
> generate a dummy for male
> */
>
> gen MALE = sex == 1;
. /*
> 8. age
> generate dummies for each age group
> */
>
> tab age;
```

age group	Freq.	Percent	Cum.
15-16 years	62	1.81	1.81
17-19 years	222	6.50	8.31
20-24 years	501	14.67	22.98
25-34 years	1027	30.06	53.04
35-44 years	810	23.71	76.76
45-54 years	480	14.05	90.81
55-64 years	287	8.40	99.21
65-69 years	17	0.50	99.71
70 years and over	10	0.29	100.00
Total	3416	100.00	


age group	Freq.	Percent	Cum.
1	62	1.81	1.81
2	222	6.50	8.31
3	501	14.67	22.98
4	1027	30.06	53.04
5	810	23.71	76.76
6	480	14.05	90.81
7	287	8.40	99.21
8	17	0.50	99.71
9	10	0.29	100.00
Total	3416	100.00	

. tab age, gen (dage);

age group	Freq.	Percent	Cum.
15-16 years	62	1.81	1.81
17-19 years	222	6.50	8.31
20-24 years	501	14.67	22.98
25-34 years	1027	30.06	53.04
35-44 years	810	23.71	76.76
45-54 years	480	14.05	90.81
55-64 years	287	8.40	99.21
65-69 years	17	0.50	99.71
70 years and over	10	0.29	100.00
Total	3416	100.00	

. /*
> create new age group dummies as in the paper + labelling > */
$>$
> gen A2534 = dage4;

- gen A3544 = dage5;
. gen A4554 = dage6;
. gen A55 = dage7 == $1 \mid$ dage8 == $1 \mid$ dage $9==1$;
. /*
$>$ check: A55, works?
> */
$>$

```
> tab age A55;
\begin{tabular}{|c|c|c|c|}
\hline age group & 0 & 1 & Total \\
\hline 15-16 years & 62 & 0 & 62 \\
\hline 17-19 years & 222 & 0 & 222 \\
\hline 20-24 years & 501 & 0 & 501 \\
\hline 25-34 years & 1027 & 0 & 1027 \\
\hline 35-44 years & 810 & 0 & 810 \\
\hline 45-54 years & 480 & 0 & 480 \\
\hline 55-64 years & 0 & 287 & 287 \\
\hline 65-69 years & 0 & 17 & 17 \\
\hline 70 years and over & 0 & 10 & 10 \\
\hline Total & 3102 & 314 & 3416 \\
\hline
\end{tabular}
. label var A2534 "age 25 to 34 = 1; other = 0";
. label var A3544 "age 35 to 44 = 1; other = 0";
. label var A4554 "age 45 to 54 = 1; other = 0";
. label var A55 "age 55 and over = 1; other = 0";
. /*
> 6. marstat
> generate a dummy called MARRD + labelling
> */
>
> tab marstat;
\begin{tabular}{|c|c|c|c|}
\hline marital status & Freq. & Percent & Cum. \\
\hline married & 2281 & 66.77 & 66.77 \\
\hline single & 892 & 26.11 & 92.89 \\
\hline other & 243 & 7.11 & 100.00 \\
\hline Total & 3416 & 100.00 & \\
\hline
\end{tabular}
```

. tab marstat, nolabel;

```marital status```	Freq.	Percent	Cum.
1	2281	66.77	66.77
2	892	26.11	92.89
3	243	7.11	100.00
Total	3416	100.00	

. tab marstat, gen(dmarsta);

$\begin{array}{r} \text { marital } \\ \text { status } \end{array}$	Freq.	Percent	Cum.
married	2281	66.77	66.77
single	892	26.11	92.89
other	243	7.11	100.00
Total	3416	100.00	

```
. gen MARRD = dmarsta1 == 1;
. label var MARRD "married = 1; other = 0";
. /*
> 9. educ
> generate dummies for different levels of education attained + labelling
> */
>
> tab educ;
\begin{tabular}{|c|c|c|c|}
\hline education & Freq. & Percent & Cum. \\
\hline none or elementary & 381 & 11.15 & 11.15 \\
\hline high school & 1798 & 52.63 & 63.79 \\
\hline some post-secondary & 310 & 9.07 & 72.86 \\
\hline post-secondary certificate or diploma & 486 & 14.23 & 87.09 \\
\hline university degree & 441 & 12.91 & 100.00 \\
\hline Total & 3416 & 100.00 & \\
\hline
\end{tabular}
. tab educ, gen(deduc);
\begin{tabular}{|c|c|c|c|}
\hline education & Freq. & Percent & Cum. \\
\hline none or elementary & 381 & 11.15 & 11.15 \\
\hline high school & 1798 & 52.63 & 63.79 \\
\hline some post-secondary & 310 & 9.07 & 72.86 \\
\hline post-secondary certificate or diploma & 486 & 14.23 & 87.09 \\
\hline university degree & 441 & 12.91 & 100.00 \\
\hline Total & 3416 & 100.00 & \\
\hline
\end{tabular}
. gen EDHS = deduc2;
. gen EDSPS = deduc3;
. gen EDDIP = deduc4;
. gen EDDEG = deduc5;
. label var EDHS "high school completion = 1; other = 0";
. label var EDSPS "some post-secondary education = 1; other = 0";
. label var EDDIP "post-secondary diploma = 1; other = 0";
. label var EDDEG "university degree = 1; other = 0";
. /*
> 35. typjob
> generate a dummy called PTIME + labelling
> */
>
> tab typjob;
\begin{tabular}{|c|c|c|c|}
\hline type of job & Freq. & Percent & Cum. \\
\hline full-time & 2827 & 82.76 & 82.76 \\
\hline part-time & 589 & 17.24 & 100.00 \\
\hline Total & 3416 & 100.00 & \\
\hline
\end{tabular}
```

```
. tab typjob, nolabel;
\begin{tabular}{|c|c|c|c|}
\hline type of job & Freq. & Percent & Cum. \\
\hline 1 & 2827 & 82.76 & 82.76 \\
\hline 2 & 589 & 17.24 & 100.00 \\
\hline Total & 3416 & 100.00 & \\
\hline
\end{tabular}
. tab typjob, gen(dtypjob);
\begin{tabular}{|c|c|c|c|}
\hline ype of job & Freq. & Percent & Cum. \\
\hline full-time & 2827 & 82.76 & 82.76 \\
\hline part-time & 589 & 17.24 & 100.00 \\
\hline Total & 3416 & 100.00 & \\
\hline
\end{tabular}
. gen PTIME = dtypjob2 == 1;
. label var PTIME "part-time worker = 1; full-time worker = 0";
. /*
> 66. q13_20
> generate a dummy called UNION + labelling
> */
> tab q13_20;
member of a
    union or
group which
    bargain
collectivel
```



```
. tab q13_20, nolabel;
member of a
    union or
group which
    bargain
collectivel
```



```
. tab q13_20, gen(dunion);
member of a
    union or
group which
    bargain
collectivel
```

y	Freq.	Percent	Cum.
yes	1252	36.65	36.65
no	2164	63.35	100.00
Total	3416	100.00	

```
. label var UNION "union member = 1; non-union member = 0";
```

. /*
>38. ind52
> generate industry dummies
> MINES, MFG, CONS, TRANS, TRADE, COMM, PUBLIC + labelling
> */
$>$
> tab ind52;

recoded industry	Freq.	Percent	Cum.
agriculture	52	1.52	1.52
forestry	30	0.88	2.40
fishing and trapping	7	0.20	2.61
metal mines	17	0.50	3.10
mineral fuels	26	0.76	3.86
non-metal mines	13	0.38	4.24
quarries and sand pits	2	0.06	4.30
services incidental to mining	21	0.61	4.92
food and beverage industries	101	2.96	7.87
tobacco products	1	0.03	7.90
rubber and plastic products	23	0.67	8.58
leather industries	10	0.29	8.87
textile industries	14	0.41	9.28
clothing industries	25	0.73	10.01
wood industries	51	1.49	11.50
furniture and fixture industries	16	0.47	11.97
paper and allied industries	45	1.32	13.29
printing-publishing and allied industri	39	1.14	14.43
primary metal industries	32	0.94	15.37
metal fabricating industries	36	1.05	16.42
machinery industries	21	0.61	17.04
transportation equipment industries	60	1.76	18.79
electrical products industries	40	1.17	19.96
non-metallic mineral product industries	20	0.59	20.55
petroleum and coal products industries	5	0.15	20.70
chemical and chemical products industri	22	0.64	21.34
miscellaneous manufacturing industries	16	0.47	21.81
general contractors	67	1.96	23.77
special-trade contractors	76	2.22	26.00
transportation	147	4.30	30.30
storage	7	0.20	30.50
communication	86	2.52	33.02
electric power,gas and water utilities	42	1.23	34.25
wholesale trade	147	4.30	38.55
retail trade	468	13.70	52.25
finance industries	85	2.49	54.74
insurance carriers	32	0.94	55.68
insurance agencies and real estate indu	41	1.20	56.88
education and related services	300	8.78	65.66
health and welfare services	371	10.86	76.52
religious organizations	26	0.76	77.28
amusement and recreation services	33	0.97	78.25

. tab ind52, nolabel;

$\begin{aligned} & \text { recoded } \\ & \text { industry } \end{aligned}$	Freq.	Percent	Cum.
1	52	1.52	1.52
2	30	0.88	2.40
3	7	0.20	2.61
4	17	0.50	3.10
5	26	0.76	3.86
6	13	0.38	4.24
7	2	0.06	4.30
8	21	0.61	4.92
9	101	2.96	7.87
10	1	0.03	7.90
11	23	0.67	8.58
12	10	0.29	8.87
13	14	0.41	9.28
15	25	0.73	10.01
16	51	1.49	11.50
17	16	0.47	11.97
18	45	1.32	13.29
19	39	1.14	14.43
20	32	0.94	15.37
21	36	1.05	16.42
22	21	0.61	17.04
23	60	1.76	18.79
24	40	1.17	19.96
25	20	0.59	20.55
26	5	0.15	20.70
27	22	0.64	21.34
28	16	0.47	21.81
29	67	1.96	23.77
30	76	2.22	26.00
31	147	4.30	30.30
32	7	0.20	30.50
33	86	2.52	33.02
34	42	1.23	34.25
35	147	4.30	38.55
36	468	13.70	52.25
37	85	2.49	54.74
38	32	0.94	55.68
39	41	1.20	56.88
40	300	8.78	65.66
41	371	10.86	76.52
42	26	0.76	77.28
43	33	0.97	78.25
44	114	3.34	81.59
45	53	1.55	83.14
46	223	6.53	89.67
47	50	1.46	91.13
48	110	3.22	94.35
49	126	3.69	98.04

$50 \mid$	67	1.96
Total \|	3416	100.00

. tab ind52, gen(ind);

. gen MINES $=$ ind4 == $1 \mid$ ind5 $==1 \mid$ ind6 $==1 \mid$ ind7 $==1 \mid$ ind8 $==1$;

```
. gen MFG = ind9 == 1 | ind10 == 1 | ind11 == 1 | ind12 == 1 | ind13 == 1 |
ind14 == 1 |
> ind15 == 1 | ind16 == 1 | ind17 == 1 | ind18 == 1 | ind19 == 1 | ind20 == 1
| ind21 == 1 |
> ind22 == 1 | ind23 == 1 | ind24 == 1 | ind25 == 1 | ind26 == 1 | ind27 == 1
;
. gen CONS = ind28 == 1 | ind29 == 1 ;
. gen TRANS = ind30 == 1 | ind31 == 1 | ind32 == 1 | ind33 == 1 ;
. gen TRADE = ind34 == 1 | ind35 == 1 | ind36 == 1 | ind37 == 1 | ind38 == 1 ;
. gen COMM = ind39== 1 | ind40 == 1 | ind41 == 1 | ind42 == 1 | ind43 == 1 |
ind44 == 1 |
> ind45 == 1 | ind46 == 1 ;
. gen PUBLIC = ind47 == 1 | ind48 == 1 | ind49 == 1 ;
. label var MINES "mines, quarries, and oil wells = 1; other = 0";
. label var MFG "manufacturing = 1; other = 0";
. label var CONS "construction = 1; other = 0";
. label var TRANS "transportation, communication, and utilities = 1; other =
0";
. label var TRADE "wholesale and retail trade, finance, insurance, and real
estate = 1; other = 0";
. label var COMM "community, business & personal service = 1; other = 0";
. label var PUBLIC "public administration = 1; other = 0";
. /*
> check: generating the right dummies?
> */
>
> tab ind52 MINES;
```

recoded industry	mines, qua oil wells	and her 1	Total
agriculture	52	0	52
forestry	30	0	30
fishing and trapping	7	0	7
metal mines	0	17	17
mineral fuels	0	26	26
non-metal mines	0	13	13
quarries and sand pit	0	2	2
services incidental t	0	21	21
food and beverage ind	101	0	101
tobacco products	1	0	1
rubber and plastic pr	23	0	23
leather industries	10	0	10
textile industries	14	0	14
clothing industries	25	0	25
wood industries	51	0	51
furniture and fixture	16	0	16
paper and allied indu	45	0	45

printing-publishing a	39	0	39
primary metal industr	32	0	32
metal fabricating ind	36	0	36
machinery industries	21	0	21
transportation equipm	60	0	60
electrical products i	40	0	40
non-metallic mineral	20	0	20
petroleum and coal pr	5	0	5
chemical and chemical	22	0	22
miscellaneous manufac	16	0	16
general contractors	67	0	67
special-trade contrac	76	0	76
transportation	147	0	147
storage	7	0	7
communication	86	0	86
electric power,gas an	42	0	42
wholesale trade	147	0	147
retail trade	468	0	468
finance industries	85	0	85
insurance carriers	32	0	32
insurance agencies an	41	0	41
education and related	300	0	300
health and welfare se	371	0	371
religious organizatio	26	0	26
amusement and recreat	33	0	33
services to business	114	0	114
personal services	53	0	53
accommodation and foo	223	0	223
miscellaneous service	50	0	50
federal administratio	110	0	110
provincial administra	126	0	126
local administration	67	0	67
Total	3337	79	3416

. tab ind52 MFG;

recoded industry	manufact oth 0	1;	Total
agriculture	52	0	52
forestry	30	0	30
fishing and trapping	7	0	7
metal mines	17	0	17
mineral fuels	26	0	26
non-metal mines	13	0	13
quarries and sand pit	2	0	2
services incidental t	21	0	21
food and beverage ind	0	101	101
tobacco products	0	1	1
rubber and plastic pr	0	23	23
leather industries	0	10	10
textile industries	0	14	14
clothing industries	0	25	25
wood industries	0	51	51
furniture and fixture	0	16	16
paper and allied indu	0	45	45
printing-publishing a	0	39	39
primary metal industr	0	32	32
metal fabricating ind	0	36	36
machinery industries	0	21	21

transportation equipm	0	60	60
electrical products i	0	40	40
non-metallic mineral	0	20	20
petroleum and coal pr	0	5	5
chemical and chemical	0	22	22
miscellaneous manufac	0	16	16
general contractors	67	0	67
special-trade contrac	76	0	76
transportation	147	0	147
storage	7	0	7
communication	86	0	86
electric power,gas an	42	0	42
wholesale trade	147	0	147
retail trade	468	0	468
finance industries	85	0	85
insurance carriers	32	0	32
insurance agencies an	41	0	41
education and related	300	0	300
health and welfare se	371	0	371
religious organizatio	26	0	26
amusement and recreat	33	0	33
services to business	114	0	114
personal services	53	0	53
accommodation and foo	223	0	223
miscellaneous service	50	0	50
federal administratio	110	0	110
provincial administra	126	0	126
local administration	67	0	67
Total	2839	577	3416

. tab ind52 CONS;

recoded industry	constru oth 0	1	Total
agriculture	52	0	52
forestry	30	0	30
fishing and trapping	7	0	7
metal mines	17	0	17
mineral fuels	26	0	26
non-metal mines	13	0	13
quarries and sand pit	2	0	2
services incidental t	21	0	21
food and beverage ind	101	0	101
tobacco products	1	0	1
rubber and plastic pr	23	0	23
leather industries	10	0	10
textile industries	14	0	14
clothing industries	25	0	25
wood industries	51	0	51
furniture and fixture	16	0	16
paper and allied indu	45	0	45
printing-publishing a	39	0	39
primary metal industr	32	0	32
metal fabricating ind	36	0	36
machinery industries	21	0	21
transportation equipm	60	0	60
electrical products i	40	0	40
non-metallic mineral	20	0	20
petroleum and coal pr	5	0	5

chemical and chemical	22	0	22
miscellaneous manufac	16	0	16
general contractors	0	67	67
special-trade contrac	0	76	76
transportation	147	0	147
storage	7	0	7
communication	86	0	86
electric power,gas an	42	0	42
wholesale trade	147	0	147
retail trade	468	0	468
finance industries	85	0	85
insurance carriers	32	0	32
insurance agencies an	41	0	41
education and related	300	0	300
health and welfare se	371	0	371
religious organizatio	26	0	26
amusement and recreat	33	0	33
services to business	114	0	114
personal services	53	0	53
accommodation and foo	223	0	223
miscellaneous service	50	0	50
federal administratio	110	0	110
provincial administra	126	0	126
local administration	67	0	67
Total	3273	143	3416

. tab ind52 TRANS;

recoded industry	transpo communica utilities	er	Total
agriculture	52	0	52
forestry	30	0	30
fishing and trapping	7	0	7
metal mines	17	0	17
mineral fuels	26	0	26
non-metal mines	13	0	13
quarries and sand pit	2	0	2
services incidental t	21	0	21
food and beverage ind	101	0	101
tobacco products	1	0	1
rubber and plastic pr	23	0	23
leather industries	10	0	10
textile industries	14	0	14
clothing industries	25	0	25
wood industries	51	0	51
furniture and fixture	16	0	16
paper and allied indu	45	0	45
printing-publishing a	39	0	39
primary metal industr	32	0	32
metal fabricating ind	36	0	36
machinery industries	21	0	21
transportation equipm	60	0	60
electrical products i	40	0	40
non-metallic mineral	20	0	20
petroleum and coal pr	5	0	5
chemical and chemical	22	0	22
miscellaneous manufac	16	0	16

general contractors	67	0	67
special-trade contrac	76	0	76
transportation	0	147	147
storage	0	7	7
communication	0	86	86
electric power,gas an	0	42	42
wholesale trade	147	0	147
retail trade	468	0	468
finance industries	85	0	85
insurance carriers	32	0	32
insurance agencies an	41	0	41
education and related	300	0	300
health and welfare se	371	0	371
religious organizatio	26	0	26
amusement and recreat	33	0	33
services to business	114	0	114
personal services	53	0	53
accommodation and foo	223	0	223
miscellaneous service	50	0	50
federal administratio	110	0	110
provincial administra	126	0	126
local administration	67	0	67
Total	3134	282	3416

. tab ind52 TRADE;

\begin{tabular}{|c|c|c|c|}
\hline recoded industry \& \begin{tabular}{l}
wholesale \\
trade, insuranc estate =
\end{tabular} \& il

$=1$ \& Total

\hline agriculture \& 52 \& 0 \& 52

\hline forestry \& 30 \& 0 \& 30

\hline fishing and trapping \& 7 \& 0 \& 7

\hline metal mines \& 17 \& 0 \& 17

\hline mineral fuels \& 26 \& 0 \& 26

\hline non-metal mines \& 13 \& 0 \& 13

\hline quarries and sand pit \& 2 \& 0 \& 2

\hline services incidental t \& 21 \& 0 \& 21

\hline food and beverage ind \& 101 \& 0 \& 101

\hline tobacco products \& 1 \& 0 \& 1

\hline rubber and plastic pr \& 23 \& 0 \& 23

\hline leather industries \& 10 \& 0 \& 10

\hline textile industries \& 14 \& 0 \& 14

\hline clothing industries \& 25 \& 0 \& 25

\hline wood industries \& 51 \& 0 \& 51

\hline furniture and fixture \& 16 \& 0 \& 16

\hline paper and allied indu \& 45 \& 0 \& 45

\hline printing-publishing a \& 39 \& 0 \& 39

\hline primary metal industr \& 32 \& 0 \& 32

\hline metal fabricating ind \& 36 \& 0 \& 36

\hline machinery industries \& 21 \& 0 \& 21

\hline transportation equipm \& 60 \& 0 \& 60

\hline electrical products i \& 40 \& 0 \& 40

\hline non-metallic mineral \& 20 \& 0 \& 20

\hline petroleum and coal pr \& 5 \& 0 \& 5

\hline chemical and chemical \& 22 \& 0 \& 22

\hline miscellaneous manufac \& 16 \& 0 \& 16

\hline general contractors \& 67 \& 0 \& 67

\hline special-trade contrac \& 76 \& 0 \& 76

\hline
\end{tabular}

transportation	147	0	147
storage	7	0	7
communication	86	0	86
electric power,gas an	42	0	42
wholesale trade	0	147	147
retail trade	0	468	468
finance industries	0	85	85
insurance carriers	0	32	32
insurance agencies an	0	41	41
education and related	300	0	300
health and welfare se	371	0	371
religious organizatio	26	0	26
amusement and recreat	33	0	33
services to business	114	0	114
personal services	53	0	53
accommodation and foo	223	0	223
miscellaneous service	50	0	50
federal administratio	110	0	110
provincial administra	126	0	126
local administration	67	0	67
Total	2643	773	3416

. tab ind52 COMM;

recoded industry	community, personal othe 0		Total
agriculture	52	0	52
forestry	30	0	30
fishing and trapping	7	0	7
metal mines	17	0	17
mineral fuels	26	0	26
non-metal mines	13	0	13
quarries and sand pit	2	0	2
services incidental t	21	0	21
food and beverage ind	101	0	101
tobacco products	1	0	1
rubber and plastic pr	23	0	23
leather industries	10	0	10
textile industries	14	0	14
clothing industries	25	0	25
wood industries	51	0	51
furniture and fixture	16	0	16
paper and allied indu	45	0	45
printing-publishing a	39	0	39
primary metal industr	32	0	32
metal fabricating ind	36	0	36
machinery industries	21	0	21
transportation equipm	60	0	60
electrical products i	40	0	40
non-metallic mineral	20	0	20
petroleum and coal pr	5	0	5
chemical and chemical	22	0	22
miscellaneous manufac	16	0	16
general contractors	67	0	67
special-trade contrac	76	0	76
transportation	147	0	147
storage	7	0	7
communication	86	0	86

electric power, gas an	42	0	42
wholesale trade	147	0	147
retail trade	468	0	468
finance industries	85	0	85
insurance carriers	32	0	32
insurance agencies an	41	0	41
education and related	0	300	300
health and welfare se	0	371	371
religious organizatio	0	26	26
amusement and recreat	0	33	33
services to business	0	114	114
personal services	0	53	53
accommodation and foo	0	223	223
miscellaneous service	0	0	50
federal administratio	110	0	110
provincial administra	126	0	126
local administration	67	07	
$----------------------+--------------------+----------~$	1170	3416	

. tab ind52 PUBLIC;

recoded industry	$\begin{array}{r} \text { public adm } \\ =1 ; \text { ot } \\ 0 \end{array}$	1	Total
agriculture	52	0	52
forestry	30	0	30
fishing and trapping	7	0	7
metal mines	17	0	17
mineral fuels	26	0	26
non-metal mines	13	0	13
quarries and sand pit	2	0	2
services incidental t	21	0	21
food and beverage ind	101	0	101
tobacco products	1	0	1
rubber and plastic pr	23	0	23
leather industries	10	0	10
textile industries	14	0	14
clothing industries	25	0	25
wood industries	51	0	51
furniture and fixture	16	0	16
paper and allied indu	45	0	45
printing-publishing a	39	0	39
primary metal industr	32	0	32
metal fabricating ind	36	0	36
machinery industries	21	0	21
transportation equipm	60	0	60
electrical products i	40	0	40
non-metallic mineral	20	0	20
petroleum and coal pr	5	0	5
chemical and chemical	22	0	22
miscellaneous manufac	16	0	16
general contractors	67	0	67
special-trade contrac	76	0	76
transportation	147	0	147
storage	7	0	7
communication	86	0	86
electric power,gas an	42	0	42
wholesale trade	147	0	147
retail trade	468	0	468
finance industries	85	0	85

insurance carriers	32	0	32
insurance agencies an	41	0	41
education and related	300	0	300
health and welfare se	371	0	371
religious organizatio	26	0	26
amusement and recreat	33	0	33
services to business	114	0	114
personal services	53	0	53
accommodation and foo	223	0	223
miscellaneous service	50	0	50
federal administratio	0	110	110
provincial administra	0	126	126
local administration	0	67	67
Total	3113	303	3416

```
. /*
GENERATING INTERACTION VARIABLES
*/
>
> gen MA2534 = MALE*A2534;
. gen MA3544 = MALE*A3544;
. gen MA4554 = MALE*A4554;
. gen MA55 = MALE*A55;
. gen MEDHS = MALE*EDHS;
. gen MEDSPS = MALE*EDSPS;
. gen MEDDIP = MALE*EDDIP;
. gen MEDDEG = MALE*EDDEG;
. gen MMARRD = MALE*MARRD;
. gen MPTIME = MALE*PTIME;
. gen MUNION = MALE*UNION;
. gen MMINES = MALE*MINES;
. gen MMFG = MALE*MFG;
. gen MCONS = MALE*CONS;
. gen MTRANS = MALE*TRANS;
. gen MTRADE = MALE*TRADE;
. gen MCOMM = MALE*COMM;
. gen MPUBLIC = MALE*PUBLIC;
. /*
> SUMMARY STATISTICS
> */
>
```

> summarize WAGE A2534 A3544 A4554 A55 EDHS EDSPS EDDIP EDDEG MARRD PTIME UNION MINES MFG CONS
$>$ TRANS TRADE COMM PUBLIC MALE MA2534 MA3544 MA4554 MA55 MEDHS MEDSPS MEDDIP MEDDEG MMARRD MPTIME
> MUNION MMINES MMFG MCONS MTRANS MTRADE MCOMM MPUBLIC;

Variable	Obs	Mean	Std. Dev.	Min	Max
WAGE	3416	986.0872	514.178	50	4500
A2534	3416	. 300644	. 4586052	0	1
A3544	3416	. 2371194	. 4253784	0	1
A4554	3416	. 1405152	. 3475717	0	1
A55	3416	. 0919204	. 2889558	0	1
EDHS	3416	. 5263466	. 4993785	0	1
EDSPS	3416	. 0907494	. 2872945	0	1
EDDIP	3416	. 1422717	. 3493797	0	1
EDDEG	3416	. 1290984	. 3353579	0	1
MARRD	3416	. 66774	. 4710926	0	1
PTIME	3416	. 1724239	. 3778038	0	1
UNION	3416	. 3665105	. 4819217	0	1
MINES	3416	. 0231265	. 1503271	0	1
MFG	3416	. 168911	. 3747281	0	1
CONS	3416	. 0418618	. 2003027	0	1
TRANS	3416	. 0825527	. 2752452	0	1
TRADE	3416	. 2262881	. 418489	0	1
COMM	3416	. 3425059	. 4746173	0	1
PUBLIC	3416	. 0887002	. 2843522	0	1
MALE	3416	. 5336651	. 4989384	0	1
MA2534	3416	. 161007	. 3675912	0	1
MA3544	3416	. 1311475	. 3376111	0	1
MA4554	3416	. 074356	. 2623877	0	1
MA55	3416	. 0541569	. 2263602	0	1
MEDHS	3416	. 2754684	. 4468154	0	1
MEDSPS	3416	. 0471311	. 2119504	0	1
MEDDIP	3416	. 0611827	. 2397002	0	1
MEDDEG	3416	. 074356	. 2623877	0	1
MMARRD	3416	. 3744145	. 4840422	0	1
MPTIME	3416	. 0444965	. 2062256	0	1
MUNION	3416	. 2093091	. 406875	0	1
MMINES	3416	. 02137	. 1446356	0	1
MMFG	3416	. 1229508	. 3284288	0	1
MCONS	3416	. 0374707	. 1899401	0	1
MTRANS	3416	. 0626464	. 2423613	0	1
MTRADE	3416	. 1012881	. 3017539	0	1
MCOMM	3416	. 1165105	. 3208831	0	1
MPUBLIC	3416	. 0521077	. 2222768	0	1

. summarize WAGE A2534 A3544 A4554 A55 EDHS EDSPS EDDIP EDDEG MARRD PTIME UNION > MINES MFG CONS TRANS TRADE COMM PUBLIC if MALE == 1;

Variable	Obs	Mean	Std. Dev.	Min	Max
--					
WAGE	1823	1108.318	527.2083	50	4324
A2534	1823	.3017005	.4591219	0	1
A3544	1823	.2457488	.4306484	0	1
A4554	1823	.1393308	.3463864	0	1
A55	1823	.1014811	.3020475	0	1
EDHS	1823	.5161821	.4998752	0	1
EDSPS	1823	.088316	.2838317	0	1
EDDIP	1823	.1146462	.3186819	0	1
EDDEG	1823	.1393308	.3463864	0	1
MARRD	1823	.7015908	.4576856	0	1
PTIME	1823	.083379	.2765302		1

UNION	1823	.3922106	.4883772	0	1
MINES	1823	.0400439	.196116	0	1
MFG	1823	.2303895	.4211977	0	1
CONS	1823	.0702139	.2555773	0	1
TRANS	1823	.1173889	.3219715	0	1
TRADE	1823	.189797	.392248	0	1
COMM	1823	.2183214	.4132201	0	1
PUBLIC	1823	.0976413	.2969104	0	1

. summarize WAGE A2534 A3544 A4554 A55 EDHS EDSPS EDDIP EDDEG MARRD PTIME UNION > MINES MFG CONS TRANS TRADE COMM PUBLIC if MALE == 0;

Variable	Obs	Mean	Std. Dev.	Min	Max
-0 WAGE	1593	846.2084	460.7912	70	4500
A2534	1593	.299435	.4581544	0	1
A3544	1593	.2272442	.4191832	0	1
A4554	1593	.1418707	.349027	0	1
A55	1593	.0809793	.272889	0	1
EDHS	1593	.5379787	.4987121	0	1
EDSPS	1593	.0935342	.291271	0	1
EDDIP	1593	.1738858	.3791302	0	1
EDDEG	1593	.1173886	.3219838	0	1
MARRD	1593	.6290019	.4832237	0	1
PTIME	1593	.2743252	.4463137	0	1
UNION	1593	.3370998	.4728677	0	1
MINES	1593	.0037665	.0612752	0	1
MFG	1593	.0985562	.2981588	0	1
CONS	1593	.0094162	.0966095	0	1
TRANS	1593	.0426868	.2022134	0	1
TRADE	1593	.2680477	.4430817	0	1
COMM	1593	.4846202	.4999203	0	1
PUBLIC	1593	.0784683	.2689915	0	1

> ESIMATE A POOLED (INTERACTIVE) REGRESSION FUNCTION, WITH FEMALES AS THE BASE GROUP
 > */

. /*
> aside: agriculture, forestry, and fishery is the base group for industries > */
$>$
> regress WAGE A2534 A3544 A4554 A55 EDHS EDSPS EDDIP EDDEG MARRD PTIME UNION MINES MFG CONS
> TRANS TRADE COMM PUBLIC MALE MA2534 MA3544 MA4554 MA55 MEDHS MEDSPS MEDDIP MEDDEG MMARRD MPTIME
> MUNION MMINES MMFG MCONS MTRANS MTRADE MCOMM MPUBLIC;

Source	SS	df MS			$\begin{aligned} & \text { Number of obs } \\ & \mathrm{F}(37,3378) \end{aligned}$	$=3416$
						69.67
Model	390774355	37	10561469.0		Prob > F	0.0000
Residual	512080063	3378	151592.677		R -squared	0.4328
					Adj R-squared	0.4266
Total	902854418	3415	264379.039		Root MSE	389.35
WAGE	Coef.	Std.	Err.	$P>\|t\|$	[95\% Conf.	Interval]
A2534	151.7977	28.	$781 \quad 5.274$	0.000	95.36772	208.2276
A3544	258.8091	31.34	$382 \quad 8.257$	0.000	197.3543	320.2638
A4554	245.3292	35.04	$772 \quad 7.000$	0.000	176.6123	314.0461

A5 5	198.9053	42.14581	4.719	0.000	116.2714	281.5392
EDHS	152.1056	40.27967	3.776	0.000	73.13062	231.0806
EDSPS	275.65	50.42427	5.467	0.000	176.7848	374.5151
EDDIP	398.0278	45.59036	8.731	0.000	308.6404	487.4153
EDDEG	650.973	49.36549	13.187	0.000	554.1837	747.7622
MARRD	28.68707	22.32961	1.285	0.199	-15.09385	72.468
PTIME	-24.05411	22.86524	-1.052	0.293	-68.88522	20.777
UNION	235.9846	23.33026	10.115	0.000	190.2418	281.7275
MINES	-141.5771	179.1581	-0.790	0.429	-492.8464	209.6922
MFG	-329.3264	87.87035	-3.748	0.000	-501.6109	-157.042
CONS	-248.1974	129.8061	-1.912	0.056	-502.7039	6.309177
TRANS	-132.9791	95.11746	-1.398	0.162	-319.4728	53.51446
TRADE	-339.2768	83.86236	-4.046	0.000	-503.7029	-174.8507
COMM	-314.3265	83.29835	-3.774	0.000	-477.6468	-151.0062
PUBLIC	-268.7665	89.83932	-2.992	0.003	-444.9114	-92.62152
MALE	-226.69	107.683	-2.105	0.035	-437.8206	-15.55952
MA2534	31.89238	42.39426	0.752	0.452	-51.22863	115.0134
MA3544	60.12963	45.96213	1.308	0.191	-29.98678	150.246
MA4554	120.634	51.45322	2.345	0.019	19.75143	221.5166
MA55	109.4056	58.93722	1.856	0.063	-6.15059	224.9618
MEDHS	28.00126	49.52714	0.565	0.572	-69.10494	125.1075
MEDSPS	70.67227	64.92599	1.089	0.276	-56.62593	197.9705
MEDDIP	-25.63337	59.02053	-0.434	0.664	-141.3529	90.08619
MEDDEG	64.1716	61.9993	1.035	0.301	-57.38834	185.7315
MMARRD	66.68036	33.30172	2.002	0.045	1.386795	131.9739
MPTIME	-145.627	43.69666	-3.333	0.001	-231.3016	-59.95244
MUNION	-88.64374	30.96567	-2.863	0.004	-149.3571	-27.93039
MMINES	561.0432	191.2428	2.934	0.003	186.0799	936.0066
MMF G	459.7009	102.3161	4.493	0.000	259.0932	660.3085
MCONS	466.5005	142.7727	3.267	0.001	186.5709	746.43
MTRANS	372.9716	110.4725	3.376	0.001	156.3718	589.5714
MTRADE	343.0229	98.97202	3.466	0.001	148.9717	537.074
MCOMM	213.0908	98.86554	2.155	0.031	19.24849	406.9332
MPUBLIC	487.8536	107.0446	4.557	0.000	277.9748	697.7323
_cons	652.1583	91.79664	7.104	0.000	472.1757	832.1409

end of do-file
. *HYPOTHESIS TESTING
. test MALE MA2534 MA3544 MA4554 MA55 MEDHS MEDSPS MEDDIP MEDDEG MMARRD MPTIME > MUNION MMINES MMFG MCONS MTRANS MTRADE MCOMM MPUBLIC

(1)	MALE $=0.0$
(2)	MA2534 $=0.0$
(3)	MA3544 $=0.0$
(4)	MA4554 $=0.0$
(5)	MA55 $=0.0$
(6)	MEDHS $=0.0$
(7)	MEDSPS $=0.0$
(8)	MEDDIP $=0.0$
(9)	MEDDEG $=0.0$
(10)	MMARRD $=0.0$
(11)	MPTIME $=0.0$
(12)	MUNION $=0.0$
(13)	MMINES $=0.0$
(14)	MMFG $=0.0$
(15)	MCONS $=0.0$
(16)	MTRANS $=0.0$
(17)	MTRADE $=0.0$
(18)	MCOMM $=0.0$

```
    (19) \(\mathrm{MPUBLIC}=0.0\)
        \(F(19,3378)=12.71\)
        Prob \(>\mathrm{F}=0.0000\)
. test MA 2534 MA3544 MA4554 MA55
    ( 1) MA2534 \(=0.0\)
    (2) MA3544 \(=0.0\)
    (3) MA4554 \(=0.0\)
    ( 4) MA55 \(=0.0\)
        \(F(4,3378)=1.84\)
            Prob \(>\mathrm{F}=0.1188\)
. test MEDHS MEDSPS MEDDIP MEDDEG
    ( 1) MEDHS \(=0.0\)
    (2) MEDSPS \(=0.0\)
    ( 3) MEDDIP \(=0.0\)
    ( 4) MEDDEG \(=0.0\)
        \(F(4,3378)=1.08\)
            Prob \(>F=0.3660\)
. test MMINES MMFG MCONS MTRANS MTRADE MCOMM MPUBLIC
    ( 1) MMINES \(=0.0\)
    (2) MMFG \(=0.0\)
    (3) MCONS \(=0.0\)
    ( 4 ) MTRANS \(=0.0\)
    (5) MTRADE \(=0.0\)
    ( 6) \(\quad \mathrm{MCOMM}=0.0\)
    ( 7) MPUBLIC \(=0.0\)
        \(F(7,3378)=8.64\)
            Prob \(>\mathrm{F}=0.0000\)
-> . save, replace
file sum84_14.dta saved
```


Labor Income and the Disabled: A Comment on Jon Harkness' Article on the Labor Force Participation by Disabled Males in Canada

ECON 452A
and

ECON 452B

Winter, 2001

Source: QED HALS Survey, Dataset 41
Harkness, Jon. 1993. "Labor Force Participation by Disabled Males in Canada," Canadian Journal of Economics (November): 878-89.

1. INTRODUCTION

In his article entitled "Labor Force Participation by Disabled Males in Canada," Harkness (1993) argues that disability benefits discourage labor force participation by the disabled prime-age males in Canada. ${ }^{1}$ This is despite the fact that many of the disabled are still employable. Only one quarter of Canadian disabled people report that they are completely unable to work. ${ }^{2}$ Furthermore, Harkness finds that, other than health reasons, psychological, social, and economic factors also play a role in the decision of the disabled to work or not to work. Therefore, aside from a complete disability, participation in the labor force is still a matter of choice. It depends on the expected labor income of a disabled individual, his or her expected disability pension, labor-leisure substitution, and other non-wage income opportunities that affect his or her economic well-being. Based on his study on a sample of 6,892 disabled prime-age males in Canada, Harkness concludes that Canadian disability-related insurance schemes discourage the disabled from participating in the job market.

Yet the theme that disability benefits have work disincentive effects remains controversial. For example, Haveman and Wolfe (1984) contend that, in the U.S., the secular decline in labor force participation by older males cannot be adequately explained by the increases in Social Security's disability benefits. ${ }^{3}$ Their finding is consistent with that of Bound (1989), who finds that the disincentive effects of such disability insurance have been overstated. ${ }^{4}$

[^6]The purpose of this paper is to explore further the disincentive case for Canadian disability-related insurance schemes. We try to replicate some of the results of Harkness using the Health and Activity Limitation Survey conducted in 1991, as opposed to the 1986 survey used in Harkness' study. The paper is organized as follows. In Section 2, the models and results in Harkness' paper are examined in detail. In Section 3, an attempt is made to replicate Harkness' regression results for expected labor income, which is used in his logit estimate of labor force participation. We are interested in whether expected labor income differs significantly by occupations. Section 4 reports the empirical results. Conclusions are presented in Section 5.

2. MODELS AND RESULTS IN HARKNESS' PAPER

Harkness uses the Health and Activity Limitation Survey (HALS) conducted by Statistics Canada between June and October 1986. In his sample, 6,892 prime-age males are not completely prevented from working. They are also not self-employed and confined to health institutions, jails, and penitentiaries. Harkness models the decision of labor force participation using the models below:

$$
\begin{align*}
& Y=\alpha\left[A G E, O C C_{1}-O C C_{6}, Y E D, M A R, H W Y\right]+u_{1} \quad \text { for } Y>0 \tag{1}\\
& D=\beta[D I S, A G E, P Q, P R I V, I N C, A Y, F Y]+u_{2} \quad \text { for } D>0 \tag{2}\\
& P=\chi[D I S, A G E, M A R, P Q, E[Y], E[D], S W, N S E, W E, N W K, M S, N P, P C H, \\
& E T H, O W N, F Y, A Y]+v \tag{3}
\end{align*}
$$

where α, β, χ are matrices of parameters. The descriptions of the variables used in each of the above three regression equations are reported in Table 1. The equation (1)

Table 1: Variable Definitions

Variable	Definition	Mean
	Continuous Variables	
Y	Labour income	\$11,152.80
D	Pension income	\$4,765.59
AY	Asset income	\$1,945.91
FY	Rest-of-family income	\$20,858.42
DIS	Disability Status	0.065
AGE	Age in years	38.21
YED	Years of formal schooling	10.22
HWY	Hours worked per year	417.44
$N P$	Number of people in household	3.45
	Dummy Variables	
P	Labour force participation	0.445
MAR	Location $=$ MARITIMES	0.209
$P Q$	Location = QUEBEC	0.125
OCCi	Occupation	
	1. Managers	0.025
	2. Professionals	0.082
	3. Semi-profs \& technicians	0.039
	4. Supervisors \& foremen	0.020
	5. Clerical, sales \& service workers	0.334
	6. Skilled craftsmen \& tradesmen	0.007
PCH	Presence of Children	0.47
MS	Married (including comomnlaw)	0.67
OWN	Home Owener	0.56
WE	Work experience (no work in last 3 years)	0.34
ETH	Ethnicity (not British nor French)	0.34
NWK	Never worked	0.107
NSE	No suitable employment	0.104
SW	Sheltered workshop	0.013
PRIV	Private pension	0.469

Source: Harkness (p.885)
estimates the income of disabled and employed workers. This is the model estimated in
Section 3 in which an attempt is made to replicate Harkness' results. The second equation estimates the disabled pension income for workers who collect disability
pensions ${ }^{5}$. In equation (3), since the dependent variable is not continuous, probit is used to analyze the determinants of a choice between working or not working. In other words, it models the decision of labor force participation. The dependent variable, P, is equal to one if a disabled person works and zero otherwise. Presumably, the decision to participate in the labor force depends on the expected utilities received from labor income, U_{w}, and those resulting from collecting a disability pension and not working, $U_{n w}$. Therefore, $P=1$ if $U_{w}>U_{n w}$, and $P=0$ if $U_{w}<U_{n w}$. For this reason, the equations (1) and (2) are used to compute the expected labor income, $E[Y]$, and the expected disability pension income, $E[D]$. The results are then used in regression equation (3). Finally, u_{1}, u_{2}, v are random error terms.

The Ordinary Least Square (OLS) estimation is used to calculate the two income equations, (1) and (2). The first income equation that estimates the labor income of disabled working people who are not collecting pension is analyzed in this paper. Harkness finds a negative relationship between pension and participation. However, the incentive from the extra income is almost three times higher than the disincentive that the pension provides. The pension elasticity of labour force participation is -2.03 , and the income elasticity of participation is 6.33 (pp. 885, 886). The result implies that the common practice of reducing one's disability income one to one for every dollar earned in the market is a work disincentive.

Table 2 reports the logit estimates of equation (3) for selected variables. Residency in Quebec does not have an additional affect on participation rate, implying that Quebec Pension Plan and Canada Pension Plan do not affect potential workers'

[^7]Table 2: Logit Estimate of Male Labour Force Participation (Selected Variables)

Dependent Variable		$\mathrm{P}=$	
Independent Variable	Definition	Coefficient	T-value
$M A R$	Location = MARITIMES	-0.148	-1.48^{c}
$P Q$	Location = QUEBEC	0.010	0.07
$F Y$	Rest-of-family income	0.758×10^{-5}	-1.88^{b}
$A Y$	Asset income	0.557×10^{-4}	-2.38^{a}
$O W N$	Home Owener	-0.185	-2.06^{a}
$W E$	No work in last 3 years	-1.862	-20.9^{a}
$N S E$	No suitable employment	-2.149	-8.08^{a}

Source and Notes: Harkness (p. 887)
${ }^{\text {a }}$ Significant at the 99 per cent level
${ }^{\mathrm{b}}$ Significant at the 95 per cent level
${ }^{\text {c }}$ Significant at the 90 per cent level on a one-tail test
choice of participation differently. However, Maritime residency has a negative effect on participation, which is to be expected because of the physical nature of work in Atlantic Provinces, such as fishery. A negative relationship between wealth (rest of family income) and participation rate also exists. Similarly, the same negative relationship holds between asset income (or home ownership) and participation rate. Finally, it shows that if one has not worked for several years, or never, participation decreases.

3. Replicating Harkness' Results

In this section, we evaluate the robustness of Harkness' results for his labor income equation (1) using the same type of survey in a different year. The QED archive provides the Health and Activity Limitation Survey (HALS) conducted by Statistics Canada in 1991. Harkness' article uses the survey conducted in 1986. For ease of illustration, the regression equation for labor income of the disabled is reproduced below:

Table 3: Summary of the Original Variables from HALS Archive

Code	agegrp	eeocc91	hlosr	newprov	hours	empin
1	$15-34$	Senior Managers	less than grade 5	$9=$ NF, PEI Continuous	less than 0	
2	$35-54$	Middle and Other Managers	grades 5-8	$12=\mathrm{NS}$	$98,99=$	0
3	$55-64$	Professionals	grades 9-13	$13=\mathrm{NB}$	missiong values	-999
4	$65+$	Semi-professionals	secondary grad	$24=\mathrm{QC}$	$-2,999$	
5		Supervisors/Clerical	trades certificate	$35=\mathrm{ON}$	$-4,999$	
6		Foremen	non-univ w/o cert.	$46=\mathrm{MN}$	$-6,999$	
7		Administration/Service	non-univ w trade cert.	$47=\mathrm{SAS}$	$-9,999$	
8		Sales and Service	non-univ w diploma	$48=\mathrm{ALT}$	$-14,999$	
9		Skilled Craftsmen	univ w/o cert/diploma	$59=\mathrm{BC}$	$-19,999$	
10		Clearical Workers	univ w cert.	$60=$ Terr.	$-24,999$	
11		Sales and Service	univ w bachelor		$-29,999$	
12	Semi-skilled men	univ w diploma		$-34,999$		
13	Sales and Service	masters		$35000+$		
14	Other Manual Workers	Ph.D.				

$$
\begin{equation*}
Y=\alpha\left[A G E, O C C_{1}-O C C_{6}, Y E D, M A R, H W Y\right]+u_{1} \quad \text { for } Y>0 \tag{1}
\end{equation*}
$$

The equation includes occupation dummies (OCCi), location dummy (MAR - Maritime), age dummies $(A G E)$, and dummy variables for educational attainment (YED). In addition, the hours worked per year ($H W Y$) would obviously contribute to the size of one's income.

Table 3 summarizes the variable that we have used to replicate the regression, and Table 4 reports the manipulations we have made to each variable. Harkness lists age $(A G E)$, years of formal schooling (YED), and employment income (Y) as continuous variables, while agegrp, hlosr, and empin are all categorical variables, as Table 3 shows. Therefore, we assign the mean values of each category to the variable, as Table 4 illustrates. For agegrp, 70 is assigned to 65 or older, and 40,000 is assigned to $\$ 35,000$ or larger for empin.

Table 4: The Manipulations of the Corresponding Data from the HALS Survey

Harkness' Variable	Description	Corresponding Variable from HALS Dataset	Manipulations
Y	Labour Income	empin	$1,2=0,3=500$
			$\begin{aligned} & 4=2000,5=4000 \\ & 6=6000 \\ & 7=85008=12500 \\ & 9=17500 \\ & 10=22500 \end{aligned}$
			$11=27500$
			$12=32500$
			$13=40000$
$A G E$	Age in years	agegrp	$1=25,2=45$
			$3=60,4=70$
OCC ${ }_{1}$	1. Managers	eeocc91	$1=1,2$
$O C C_{2}$	2. Professionals		$2=3$
OCC_{3}	3. Semi-profs \& technicians		$3=4$
$O C C_{4}$	4. Supervisors \& foremen		$4=5,6$
$O C C_{5}$	5. Clerical, sales \& service workers		$5=7,8,10,11,13$
$O C C 6$	6. Skilled craftsmen \& tradesmen		$6=9,12$
$O C C_{7}$	(Reference Dummy)		$7=14$
$Y E D$	Years of formal schooling	$\text { Hlosr }^{\text {a }}$	$1=3.001$
			$2=7.001$
			$3=11.001$
			$4=12.501$
			$5=13.001$
			$6=14.001$
			$7,8,9=15.001$
			$10=16.001$
			$11=17.501$
			$12=17.001$
			$13=19.001$
			$14=24.001$
MAR	Location $=$ MARITIME	newprov	9,12,13 = MAR
HWY	Hours worked per year	hours	hours * $52{ }^{\text {b }}$

Sources and Notes: HALS dataset, Harkness (1993)
${ }^{\text {a }}$ Recoding category number to any whole number between 1 to 14 would cause a problem because it would be a different category number, and will eventually be modified by subsequent recoding command. Therefore, 0.001 was added to each assigned number to eliminate the problem.
${ }^{\mathrm{b}}$ No adjustment was made to correct the missing values of 98 and 99 because the numbers were already treated as missing values in the original dataset. The maximum value was 66.

Harkness also categorizes occupation into seven different brackets including the reference. This is different from the census, which reports 14 different categories. Therefore, as Table 4 summarizes, categories 1 through 13 are newly assigned to the 6 categories specified by Harkness, and 14, the manual labor category, is assigned to the seventh reference category. In addition, we categorize the provinces of NF, NB, PEI, and NS together to create the dummy variable for $M A R$, the Maritime Provinces. Finally, hours worked are weekly hours and therefore they are multiplied by 52 in order to estimate annual working hours. It is worth emphasizing that, for the present purpose, the assumption of 52 weeks per year does not change our basic results in the study.

Since Harkness only includes males who are physically able to work after being disabled and not getting any pension, an effort is made to eliminate females, people who cannot work, and pension collectors. However, because the labels for pension collectors and people who cannot work are vaguely defined in the HALS survey, we have to include them in our regression. With this in mind, we turn to the next section on empirical testing.

4. Empirical Results

Table 5 reports our regression results using the Health and Activity Limitation Survey in 1991 and those of Harkness based on the 1986 survey. There are two major discrepancies to explain. First, the results are not identical in numbers. Second, the sign of the coefficient of $O C C_{5}$ is different, while the signs for all other coefficients are identical. The Harkness estimate of the coefficient is -655.04 , whereas we obtain an

Table 5: The Comparison of Regression Results of Harkness and Kim \& Yu ${ }^{\text {a }}$

	Harkness	Kim \& Yu
Constant	$-6,065.45$	$-9,337.13$
AGE	$(6.73)^{\mathrm{b}}$	$(-14.82)^{\mathrm{b}}$
	131.19	286.39
MAR	$(7.81)^{\mathrm{b}}$	$(38.33)^{\mathrm{b}}$
	-567.33	$-2,851.22$
OCC $_{\boldsymbol{l}}$	(1.64)	$(-13.70)^{\mathrm{b}}$
	$4,293.12$	$8,723.77$
OCC $_{2}$	$(6.11)^{\mathrm{b}}$	$(20.62)^{\mathrm{b}}$
	$5,029.17$	$8,421.10$
OCC $_{3}$	$(10.22)^{\mathrm{b}}$	$(19.13)^{\mathrm{b}}$
	$1,044.67$	$6,598.17$
OCC $_{4}$	$(1.70)^{\mathrm{b}}$	$(13.58)^{\mathrm{b}}$
	$2,863.05$	$4,576.27$
OCC $_{5}$	$(3.41)^{\mathrm{b}}$	$(9.60)^{\mathrm{b}}$
	-655.04	$1,667.87$
OCC		
	$(1.93)^{\mathrm{b}}$	$(4.54)^{\mathrm{b}}$
YED	$2,551.16$	$4,729.87$
	$(1.87)^{\mathrm{b}}$	$(12.90)^{\mathrm{b}}$
HWY	648.76	785.95
	$(12.72)^{\mathrm{b}}$	$(32.48)^{\mathrm{b}}$

Sources and Notes: Harkness (p.886)
${ }^{\mathrm{a}} \mathrm{T}$-values in parentheses
${ }^{\mathrm{b}}$ Significant at the 95 per cent level or more
estimate of 1667.87 . According to Harkness' result, clerical, sales, and service workers have less income than the reference group on average. Our estimate suggests that workers in clerical, sales, and service sector have more income than workers in the manual labor sector.

The first point to explain is the general difference in numerical values; that is, the numbers are not identical. The differences may be due to the fact that we use an entirely different sample from Harkness' sample. In addition, as explained in the previous section, we estimate values in order to assign to different categories and that could have been different from the exact values Harkness used. Finally, Harkness eliminates pension

Table 6: Difference between Kim \& Yu and Harkness Estimates of the $\mathrm{OCC}_{\mathrm{i}}$ Coefficients

	Harkness (1)	Kim \& Yu (2)	Difference $(2)-(1)$	Percentage Difference $(\%)$
$O C C_{1}$	$4,293.12$	$8,723.77$	$4,430.65$	103.20
$O C C_{2}$	$5,029.17$	$8,421.10$	$3,391.93$	67.45
$O C C_{3}$	$1,044.67$	$6,598.17$	$5,553.50$	531.60
$O C C_{4}$	$2,863.05$	$4,576.27$	$1,713.22$	59.84
$O C C_{5}$	-655.04	$1,667.87$	$2,322.91$	354.62
$O C C_{6}$	$2,551.16$	$4,729.87$	$2,178.71$	85.40

collectors and people who could not work from the regression sample, whereas we include them in our sample. Our estimate of the $O C C_{5}$ coefficient is different from that of Harkness, not only in magnitude but also in their signs. Furthermore, the estimates of the $O C C_{i}, \forall i=1, \ldots, 6$, coefficients are greater than Harkness' estimates, as Table 6 indicates. This implies that the reference group in our sample has much less income than Harkness' reference group. Therefore, our assumption that only manual labor category of occupation is in the reference group of dummy variables seems to have been different from Harkness' categorization of reference group of dummy variables. To test whether expected labor income differs significantly by occupations, we conduct an F-test of the joint significance of the coefficient estimates of the $O C C_{i}, \forall i=1, \ldots, 6$. The sample value of the F-statistic is 149.67 , which is higher than the critical values of the $\mathrm{F}[6,20855]$ distribution for the $1 \%, 5 \%$, and 10% significance levels. Therefore, we have to reject the null hypothesis that expected labor income is the same for all occupations.

5. CONCLUSIONS

Harkness' deterrent argument that disability benefits discourage the disabled from working is consistent with the findings of Slade (1984). ${ }^{6}$ In particular, Harkness found that a disability pension is a significant but not an important work deterrent. Our empirical results reaffirm Harkness' findings in one important aspect: expected labor income is not the same for all occupations of the disabled prime-age males in Canada.

The replication for Harkness' regression of labor income equation using the 1991 HALS data has resulted in qualitatively similar coefficient estimates of all the explanatory variables, except for the coefficient estimate of $O C C_{5}$. Three factors may be responsible for these numerical discrepancies between the analyses. First, we used 1991 sample while Harkness used 1986 sample. Second, we estimated the values to assign to each category of variables such as labor income, age, and years of schooling, in order to change categorical variables into continuous variables. Third, we retained pension collectors and the disabled who are physically unable to work in our sample. In addition, the large differences between regression coefficients of the occupation dummies may have resulted from our preference in selecting a different reference group from that of Harkness. Overall, Table 5 illustrates that two regression results are coherent when considering the aforementioned differences in analysis.

As a concluding remark, Samuel Johnson's notion that "a decent provision for the poor is a true test of civilization" perhaps also accords to the disabled. The disability benefits may serve as a means of discouraging the disabled from working at unsuitable jobs, increasing the labor market's efficiency. Therefore, our social policies should weigh the societal gains from this increased labor-market efficiency against the
deadweight losses resulting from a disability pension based on the incentive arguments in economics.

[^8]
APPENDIX: Stata LOG File

```
/* STATA hw1.log file for Econ 452 Project 3 */
-> . Qmerge empin hlosr hours marstl, ds(41)
QEDid QEDmerge empin hlosr hours marstl
    Was observation in memory, data set
                41, or both? Freq. Percent
Cum.
----------------------------------------+----------------------------------------
obs. from both master and using data | 84845 100.00
100.00
-------------------------------------+------------------------------------------
    Total 84845 100.00
-> . recode empin 1=-500 2=0 3=500 4=2000 5=4000 6=6000 7=8500 8=12500
9=17500 10=22500 11=27500 12=32500 13=40000
(80108 changes made)
-> . Qmerge e74x i3, ds(41)
QEDid QEDmerge e74x i3
    Was observation in memory, data set
        41, or both? Freq. Percent
Cum.
```



```
-> . tab eeocc91, gen(occ)
        employment
            equity
        occupation
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
occupation \\
groups (1991)
\end{tabular} & Freq. & Percent & Cum. \\
\hline senior managers & 444 & 0.71 & 0.71 \\
\hline middle and other & 4533 & 7.22 & 7.93 \\
\hline professionals (s & 7464 & 11.89 & 19.81 \\
\hline semi-profess and & 3774 & 6.01 & 25.82 \\
\hline supervs -clercl/ & 868 & 1.38 & 27.21 \\
\hline sup -man, proc, & 1832 & 2.92 & 30.12 \\
\hline admin. and sr. c & 3631 & 5.78 & 35.91 \\
\hline sales and servic & 2642 & 4.21 & 40.11 \\
\hline skilled crafts a & 5146 & 8.20 & 48.31 \\
\hline clerical workers & 7125 & 11.35 & 59.66 \\
\hline sales and servic & 8134 & 12.95 & 72.61 \\
\hline semi-skilled man & 6918 & 11.02 & 83.63 \\
\hline sales and servic & 7121 & 11.34 & 94.97 \\
\hline other manual wor & 3158 & 5.03 & 100.00 \\
\hline
\end{tabular}
    Total 62790 100.00
```


Estimating the Union Effect Using Regression Analysis

and

"Survey of Union Membership" (374)
"Whose Wages Do Unions Raise? A Dynamic Model of Unionism and Wage Rate Determination for Young Men"

Francis Vella and Marno Verbeek
Journal of Applied Econometrics, Volume 13, Issue 2

INTRODUCTION

Vella and Verbeek estimate the union effect for men over a period of declining unionization. The data was taken from the National Longitudinal Survey, which is comprised of a sample of full-time working males who completed their schooling by 1980. These males were followed over the period 1980 to 1987. The sample consists of 545 observations. Union membership is based on the question reflecting whether or not the individual had his wage set in a collective bargaining agreement. The goal is to estimate the average increase in wages resulting from union employment. We will use a similar model to that of Verbeek and Vella to estimate the difference in workers' wages in union and non-union employment. This is known as the union effect.

Vella and Verbeek set out to answer three questions. First, what is the impact of unions on wages and how does it vary by worker characteristics? Second, which are the primary forms of worker heterogeneity generating the endogeneity of union status? Finally, with what form of economic sorting behaviour, in terms of union and non-union employment, are the data consistent? It is assumed that individuals locate in union or non-union employment on the basis of wages. Observed and unobserved characteristics and their associated prices determine these. The regression equation takes the form

$$
\mathrm{w}_{\mathrm{j}, \mathrm{it}}=\beta_{\mathrm{j}, \mathrm{t}} \mathrm{X}_{\mathrm{it}}+\alpha_{\mathrm{j}, \mathrm{t}}+\varepsilon_{\mathrm{j}, \mathrm{it}} \quad \mathrm{t}=1, \ldots, \mathrm{~T} ; \quad \mathrm{i}=1, \ldots \mathrm{~N}
$$

where $\mathrm{w}_{\mathrm{j}, \mathrm{it}}$ represents the (potential) wage of individual i in sector $\mathrm{j}(\mathrm{j}=0,1)$ in time period t, where $j=1$ corresponds to the union sector; β is an unknown parameter vector; and $X_{i t}$ is a vector of characteristics, including time dummy variables. The α and the ε represent the unobserved random components of the individual's wage. The vector of
characteristics includes the variables years of schooling, experience, wage set by collective agreement, marital status, black, hispanic, has health disability, lives in rural area, lives in North East, lives in Northern Central, lives in South, log of hourly wage, hourly wage, and a union differential. There are dummy variables for the type of industry and occupation that the individual is in.

Vella and Verbeek reported many findings. It was found that the union effect is approximately 21 percent. Many of the explanatory variables had a statistically significant impact on the probability of union membership. The time effects displayed an increasingly negative pattern consistent with the data, which indicate sizable decreases in unionization over this period. The coefficients on the time dummies indicate that the time effect on union membership is negative. An estimate of 0.611 for the coefficient on lagged union status indicates a substantial degree of positive state dependence. The estimate for σ^{2} of 0.57 indicates that 57 percent of the total variance is due to across individual variation. The coefficients on the dummy variables denoting whether the individual is black or hispanic are both positive and statistically significant, which may be due to the fact that these groups choose to bargain through union membership rather than on an individual basis. The dummy variables used to capture occupational status indicate that it does appear to influence the probability of union membership. Individuals in the blue-collar industries display a higher probability to acquire union membership.

Our paper will be organized as follows. We will begin with a description of our data set and model. This will be followed by a statement of our results and finally a conclusion.

DATA

We will consider a similar model, however our data will differ slightly. Our data was extracted from the QED Data Archive and is entitled Survey on Union Membership, reference number 374. This survey was conducted in 1984. The data set is considerably larger than that used in Vella and Verbeek's paper. The Survey on Union Membership considers 84,676 individuals. Since we are only using male observations, our data set will consist of 34,093 individuals. We extracted the variables wage, province, marital status, age, education, occupation, tenure, pension plans, sex, and union status from this data set. Refer to Table 1 for summary statistics and a description of the data.

The version of the regression equation in matrix notation that we will use is:

$$
\mathrm{w}_{\mathrm{i}}=\beta_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}+\varepsilon_{\mathrm{i}} \quad \mathrm{i}=1, \ldots \mathrm{~N}
$$

where w_{i} represents the (potential) wage of individual i ; β is an unknown parameter vector; and X_{i} is a vector of characteristics. The ε represents the unobserved random components of the individual's wage. We will only consider males from our data sample to ensure that our results will resemble those of Vella and Verbeek.

RESULTS

After using Qextract to extract the variables from the data set, we decided that it was necessary to construct dummy variables for sex and union status in order to separate males and females, and union and non-union members. The variable DSEX1 identifies a male individual and the variable DUNION1 identifies a union member. This enables us to look at the effect on wages of males who participate in unions. We then generated a
variable for the natural logarithm of the hourly wage rate as our dependent variable. We also constructed dummy variables for the different levels of education that the individuals may possess. DEDUC1 represents little or no education. DEDUC2 represents an individual who completed high school. DEDUC3 represents an individual who has some secondary education. DEDUC4 represents an individual who has a secondary school certificate or diploma. DEDUC5 represents an individual who has a university degree. It was also decided that we would generate an interaction term, UN_SEX = DSEX1*DUNION1, which is the effect on the wage rate of a male individual who is active in a union. Thus, our final regression equation is:

$$
\operatorname{lnw}_{\mathrm{i}}=\beta_{1}+\beta_{2} \mathrm{PROV}_{\mathrm{i}}+\beta_{3} \text { MARSTAT }_{\mathrm{i}}+\beta_{4} \mathrm{AGE}_{\mathrm{i}}+\beta_{5} \mathrm{DEDUC}_{i}+\beta_{6} \mathrm{DEDUC}_{i}+
$$

$$
\beta_{7} \text { DEDUC }_{i}+\beta_{8} \text { DEDUC }_{i}+\beta_{9} \text { DEDUC }_{i}+\beta_{10} \mathrm{OCC}_{i}+\beta_{11} \text { TENURE }_{i}+\beta_{12} \text { PENSION }_{i}+
$$

$$
\beta_{13} \text { DSEX }_{i}+\beta_{14} \text { DUNION }_{i}+\beta_{15} \mathrm{UN}_{-} \text {SEX }_{\mathrm{i}}+\varepsilon_{\mathrm{i}} \quad \text { for } \mathrm{i}=1 \ldots \mathrm{~N}
$$

We then ran this regression in STATA, which provided for some interesting results. The value for the coefficient on union status was 0.21 . This corresponds to a union effect of 21 percent, which is the same value that Vella and Verbeek found in their study. Although the data sets differed, both studies found a similar union effect, which proves that this result is significant. Table 2 illustrates a complete listing of the coefficients and their respective standard errors for the regression.

Many of the coefficients had differing effects on the hourly wage rate. Marital status, occupation, pension plans, and the interaction term for males and union participation all have a negative effect on the hourly wage rate. However, although these coefficients are
negative their values are considerably small. The values of the coefficients for marital status, occupation, pension plans and the interaction term are $-0.078,-0.002,-0.025$, - 0.073 respectively. Therefore, occupation has the least impact on the hourly wage rate of males. The dummy variables for level of education have the most significant effect on the dependent variable. As the education level increases, the effect on wage rate increases as well. For instance, a university degree has a 45 percent increase effect on wages, while a secondary school certificate or diploma increases the hourly wage rate by 33 percent. Males who have some secondary school education will experience a wage increase of 24 percent while males who have only completed high school will have a wage increase of 15 percent. The coefficient on the dummy variable for males was 0.267. This demonstrates the fact that the hourly wage rate for males will be 27 percent higher than that of females. The coefficient on the dummy variable for union participation was 0.212 . Therefore, males who are union members have a wage that is 21 percent higher than males who are not union members. The value on our interaction term was -0.073 . This tells us that the increase in the hourly wage rate of males in a union is less than that for females who are not in a union. The region or province in which the male union members reside has little effect on their hourly wage rate, as the value of this coefficient is only 0.004 .

We then decided to conduct an F-test to test the joint significance of the coefficients. The null and alternative hypotheses are:

$$
\begin{array}{ll}
\mathrm{H}_{0}: \beta_{\mathrm{i}}=0 & \text { for all } \mathrm{i}=2 \ldots 14 \\
\mathrm{H}_{\mathrm{A}}: \beta_{\mathrm{i}} \neq 0 & \text { for all } \mathrm{i}=2 \ldots 14
\end{array}
$$

This test reported an F-statistic of 2191.5 and a p-value of zero. The critical values recorded for the one percent, five percent and ten percent significance values were 2.13, 1.72 and 1.52 respectively. Since the F-statistic is greater than the critical value and the p-value is less than the significance level in each case, we reject the null hypothesis at all three levels of significance. We reject the null that the coefficients are jointly equal to zero and thus, our coefficients are significant and therefore valid. We also tested the significance of each coefficient separately and found the same results.

We tested the marginal effect of the variable DUNION1 on the regressand WAGE by taking the partial derivative of the regression function with respect to $\mathrm{DUNION1} 1_{\mathrm{i}}$. The null and alternative hypotheses for this test are:

$$
\begin{array}{ll}
\mathrm{H}_{0}: \beta_{\mathrm{i}}=0 & \text { for all } \mathrm{i}=12,14 \\
\mathrm{H}_{\mathrm{A}}: \beta_{\mathrm{i}} \neq 0 & \text { for all } \mathrm{i}=12,14
\end{array}
$$

We used the test command in STATA to perform a joint F-test of the two coefficient restrictions specified by the null hypothesis. This test generated an F-statistic of 576.51 and a p-value of zero. We found the one percent, five percent and ten percent critical values to be $4.606,2.996$, and 2.303 respectively. We reject the null hypothesis that the marginal effect of DUNION1 1_{i} equals zero and therefore the effect is significant on the hourly wage rate.

We then tested the marginal effect of the variable DSEX1 on the regressand WAGE by taking the partial derivative of the regression function with respect to $\mathrm{DSEX}_{\mathrm{i}}$. The null and alternative hypotheses for this test are:

$$
\begin{array}{ll}
\mathrm{H}_{0}: \beta_{i}=0 & \text { for all } \mathrm{i}=13,14 \\
\mathrm{H}_{\mathrm{A}}: \beta_{\mathrm{i}} \neq 0 & \text { for all } \mathrm{i}=13,14
\end{array}
$$

We used the test command in STATA to perform a joint F-test of the two coefficient restrictions specified by the null hypothesis. This test generated an F-statistic of 1387.65 and a p-value of zero. The critical values are the same as those of the test conducted above. We reject the null hypothesis that the marginal effect of $\operatorname{DSEX} 1_{i}$ equals zero and therefore the effect is significant on the hourly wage rate as well.

CONCLUSION

By comparing our results with those of Vella and Verbeek and by testing the significance of the values of our coefficients, we can be fairly confident that the regression we performed was significant. The regression showed that the effects of being a male and part of a union have a positive effect on the hourly wage rate. We also found the union effect to be 21 percent, which is the same as the one found by Vella and Verbeek in their regression analysis. Vella and Verbeek's paper was quite straightforward and thorough in explaining the model and the analysis used. The fact that our results were similar allowed for a clearer analysis of the regression we performed.

Table 1. Descriptive Statistics

Variable	Definition	Mean	Standard Deviation
Prov	Region and province	33.19	(15.94)
Sex	Sex	1.52	(00.49)
Marstat	Marital Status	1.47	(00.68)
Age	Age group	5.08	(02.13)
Educ	Education	2.29	(01.16)
Occ	Occupation	32.18	(15.49)
Tenure	Job tenure	3.44	(01.55)
q13_20	Member of a union	1.68	(00.47)
q15_23	Covered by pension plan	1.62	(00.49)
dv1	Hourly wage rate	923.77	(510.32)
lnw	Log of wage	6.68	(00.55)
Sex dummies	Male	0.48	(00.50)
dsex1	Female	0.52	(00.50)
dsex2			
Union dummies	Union member	0.32	(00.47)
dunion1	Non-union member	0.68	(00.47)
dunion2			
		0.23	(00.42)
Education dummies	None or elementary	0.51	(00.50)
deduc1	High School	(00.27)	
deduc2	Some post-secondary	0.08	(00.31)
deduc3	Post-secondary certificate	0.11	(00.27)
deduc4	or diploma		
deduc5	University degree	0.08	

Table 2. Coefficient estimates and standard errors

Variable	Estimate	Standard Error
Constant	6.351	(0.091)
Prov	0.004	(0.000)
Marstat	-0.078	(0.004)
Age	0.051	(0.002)
Occ	-0.002	(0.000)
Tenure	0.523	(0.005)
q15_23	-0.249	
Sex dummy		(0.006)
dsex1	0.267	
		(0.007)
Education Dummies	$($ dropped	(0.010)
deduc1	0.147	(0.010)
deduc2	0.237	(0.010)
deduc3	0.327	
deduc4	0.455	(0.007)
deduc5		
	0.212	(0.009)
Union dummy		
dunion1	-0.073	
Interaction Term	34093	
un_sex		
Number of Observations		

Appendix

1. Log File
```
-> . Qextract
getting information about file 374 ...
loading variables from 374 (sum84) only (no data yet)... done
-> . browse
-> . tab sex, nolabel
```


member of a union or group which bargain collectivel	Freq.	Percent	Cum.
1	14350	32.49	32.49
2	29816	67.51	100.00
$\begin{gathered} \text { Total } \\ ->\text {. tab q13 } \end{gathered}$	44166 n (dun	100.00	

member of a union or
group which
bargain
collectivel

y	Freq.	Percent	Cum.
yes	14350	32.49	32.49
no	29816	67.51	100.00
tal	44166	100.00	

-> . gen lnw = ln(dv1)
(40510 missing values generated)
-> . tab educ, nolabel

education	Freq.	Percent	Cum.
1	19504	23.03	23.03
2	42826	50.58	73.61
3	6720	7.94	81.55
4	8931	10.55	92.09
5	6695	7.91	100.00
Total	84676	100.00	

-> . tab educ, gen(deduc)
education | Freq. Percent

$\begin{gathered} \text { lnw } \\ \text { Interval] } \end{gathered}$	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf.
prov	. 0042486	. 0001422	29.875	0.000	. 0039699
. 0045274					
$\begin{array}{r} \text { marstat } \\ .0708798 \end{array}$	-. 0779495	. 0036069	-21.611	0.000	-. 0850192
age . 0548666	. 0513108	. 0018141	28.284	0.000	. 0477551
deduc1	(dropped)				

-> . test prov marstat age deduc1 deduc2 deduc3 deduc4 deduc5 occ tenure q15_23 dunion1 dsex1 un_sex
(1) prov = 0.0
(2) marstat $=0.0$
(3) age $=0.0$
(4) deduc1 $=0.0$
(5) deduc2 = 0.0
(6) deduc3 $=0.0$
(7) deduc4 $=0.0$
(8) deduc5 $=0.0$
(9) occ $=0.0$
(10) tenure $=0.0$
(11) q15_23 = 0.0
(12) dunion1 $=0.0$
(13) dsex1 $=0.0$
(14) un_sex $=0.0$

Constraint 4 dropped
$F(13,34079)=2191.50$
Prob $>\mathrm{F}=0.0000$
-> . display invfprob(13, 34079, 0.01)
2.1303892
-> . display invfprob(13, 34079, 0.05)
1.7204434
-> . display invfprob(13, 34079, 0.10)
1.5241913
-> . test prov
(1) prov = 0.0
F $(1,34079)=892.51$

```
        Prob > F = 0.0000
-> . display invfprob(1, 34079, 0.01)
6.6356659
-> . display invfprob(1, 34079, 0.05)
3.8417578
-> . display invfprob(1, 34079, 0.10)
2.7056932
-> . test marstat
    ( 1) marstat = 0.0
        F( 1, 34079) = 467.04
            Prob > F = 0.0000
-> . display invfprob(1, 34079, 0.01)
6.6356659
-> . display invfprob(1, 34079, 0.05)
3.8417578
-> . display invfprob(1, 34079, 0.10)
2.7056932
-> . test age
    ( 1) age = 0.0
        F( 1, 34079) = 799.99
            Prob > F = 0.0000
-> . test occ
    ( 1) occ = 0.0
        F( 1, 34079) = 101.77
                Prob > F = 0.0000
-> . test tenure
    ( 1) tenure = 0.0
        F( 1, 34079) = 887.72
            Prob > F = 0.0000
-> . test q15_23
    ( 1) q15_23 = 0.0
        F( 1, 34079) = 2133.44
            Prob > F = 0.0000
-> . test deduc1
    ( 1) deduc1 = 0.0
        Constraint 1 dropped
-> . test deduc2
    ( 1) deduc2 = 0.0
```

```
        F( 1, 34079) = 381.98
        Prob > F = 0.0000
-> . test deduc3
    ( 1) deduc3 = 0.0
        F(1, 34079) = 564.04
        Prob > F = 0.0000
-> . test deduc4
    ( 1) deduc4 = 0.0
        F( 1, 34079) = 1295.78
            Prob > F = 0.0000
-> . test deduc5
    ( 1) deduc5 = 0.0
        F( 1, 34079) = 2084.78
            Prob > F = 0.0000
-> . test un_sex
    ( 1) un_sex = 0.0
        F( 1, 34079) = 65.86
            Prob > F = 0.0000
-> . test dunion1 un_sex
    ( 1) dunion1 = 0.0
    ( 2) un_sex = 0.0
        F( 2, 34079) = 576.51
                        Prob > F = 0.0000
-> . display invfprob(2, 34079, 0.01)
4.6057701
-> . display invfprob(2, 34079, 0.05)
2.9959977
-> . display invfprob(2, 34079, 0.10)
2.302736
-> . test dsex1 un_sex
    ( 1) dsex1 = 0.0
    ( 2) un_sex = 0.0
        F( 2, 34079) = 1387.65
            Prob > F = 0.0000
-> . summarize
Variable Obs Mean Std. Dev. Min Max
```

QEDid	84676	42338.5	24444	1	84676
prov	84676	33.18678	15.9384	10	59
sex	84676	1.522651	. 4994896	1	2
marstat	84676	1.473357	. 6830946	1	3
age	84676	5.082078	2.126991	1	9
educ	84676	2.297168	1.163998	1	5
occ	84676	32.18029	15.49968	1	51
tenure	43588	3.441957	1.549411	1	6
q13_20	44166	1.675089	. 4683467	1	2
q15_23	44166	1.620477	. 4852737	1	2
dv1	44166	923.7682	510.324	13	4500
dsex1	84676	. 477349	. 4994896	0	1
dsex2	84676	. 522651	. 4994896	0	1
dunion1	44166	. 3249106	. 4683467	0	1
dunion2	44166	. 6750894	. 4683467	0	1
lnw	44166	6.684982	. 5485619	2.564949	8.411833
deduc1	84676	. 2303368	. 4210509	0	1
deduc2	84676	. 5057631	. 4999697	0	1
deduc3	84676	. 0793613	. 2703035	0	1
deduc4	84676	. 1054726	. 3071633	0	1
deduc5	84676	. 0790661	. 2698435	0	1
un_sex	44166	. 1965539	. 3973966	0	1
-> . save "D:\JBBS proj2.dta", replace $^{\text {a }}$					
file D:\JBBS \backslash proj2.dta saved					
-> . BREAK					
$* *$					

ESTIMATION OF THE ANNUAL EARNINGS EQUATION OF THE RETIREMENT MODEL

Friday March 23, 2001 •
\bullet
\bullet

ECONOMICS 452 PROJ ECTII. 1

Canada Health Survey: 1977, Data set \#12

Breslaw and Stelcner, 'The Effect of Health on the Labor Force Behavior of Elderly Men in Canada," The Journal of Human Resources, 1987. Pages 490-517.

Contents:
Introduction...... 2
Data
.3
Results.............. 5
Summary.......... 8
Appendix 1...... 10
Appendix 2...... 13

INTRODUCTION

In their paper "The Effect of Health on the Labor Force Behavior of Elderly Men in Canada", Jon A. Breslaw and Morton Stelcner attempt to prove that health is just as important as potential earnings in determining the labor force behavior of elderly men in Canada. Annual earnings is arguably the most important determinant of the labor force behavior of individuals, and public policies intended to regulate the size and composition of the labor force reflect this importance. Using data from the Canada Health Survey in 1979, this study focuses on the role of health in influencing the labor market behavior of men aged 50 and older. "We try to answer the specific question: what is the effect of health on labor supply behavior?" (p.491)

The retirement model is used to determine the labor market behavior of elderly males. The retirement model is essentially characterized by various labor options equations of the following form:

$$
\begin{equation*}
\mathbf{P L M S}_{\mathrm{ij}}=\mathbf{f}(\mathbf{X}, \mathbf{H}, \mathbf{E}, \mathbf{I}, \mathbf{R}, \mathbf{O}, \varepsilon) \tag{1}
\end{equation*}
$$

where: PLMS $_{\mathrm{ij}}$ is a binary choice probability of being in labor state (i) over market state (j); X is a vector of personal and family characteristics; H is health status; E is potential full-time labor earnings; I is non-labor income; R is region of residence; O is occupation; and ε is a random error term.

The first step in this analysis is to generate a measure of the potential full-time labor earnings across the entire sample of males aged 50 and over. This is done by OLS estimation of the annual earnings equation, where the dependent variable is the natural logarithm of a measure of annual earnings:

This estimated equation is then integrated into the retirement model as one of the labor options equations. It is this first step in the analysis that we will attempt to replicate in our paper.

DATA
Breslaw and Stelcner regressed region, age, language, education, occupation and health on the natural logarithm of annual earnings. Table 1 provides a list and description of each of the variables they used and the variables that we extracted from the QED data archive index. Breslaw and Stelcner selected a sample of 1,541 out of 31,668 observations. After retrieving all of the required variables of 31,668 observations, we began to narrow our sample size. First, we eliminated females and candidates less than 50 years of age from our sample. We then filtered out anyone not in the labor force or not employed, and reduced our sample size to males 50 years of age and older who are employed principle earners. Thus, we were left with 1,263 observations for men aged 50 and over.

We extracted the variables needed to construct the Annual Earnings Equation from the data in the Canada Health Survey. We were able to obtain data for all of the explanatory variables except health. "No single item covered in the CHS questionnaire suitably differentiates levels of health along the full length of the spectrum" (p.513). Breslaw and Stelcner used three different variables to define the independent variable health in equation (2). They used activity limitation, the number of chronic health problems, and the health opinion score. Then they ordered these variables on a scale of
poorest health to most healthy. The variables were then weighted using an age and sex specific "Relative to an Identified Distribution" (ridit) method.

We could not replicate this independent variable, so we used the subjective variable "hlthscor", which is a linear, numerical ranking of health by the respondents from the health opinion score. After researching the possibility of using activity limitation, chronic illness or an overall health variable, none of them seemed to be adequate for running regressions. There were either not enough observations, or there were too many separate variables (health problems) within. Although many other labor force behavior studies have used a similar variable to "hlthscor", Breslaw and Stelcner discourage the use of this measure for a number of reasons. First, since this measure is self-assessed, it is subjective to the psychological state of each individual. Furthermore, the so-called average healthy person is a vague measure that is applicable irrespective of sex and age. Lastly, there is an error in the measurement problem since categorical variables such as healthy/fairly healthy/not healthy are used. This is an error because the underlying health status is a continuous variable that would require more than two or three states (p.500). Despite these concerns, we used the variable "hlthscor" because it is manageable for running regressions, and many other studies have used similar variables.

Our dependent variable is the natural \log of income, where the variable we chose to use for income is called income. There were other variables we could have used as our dependent variable such as "indinc" and "efinc". We decided not to use "indinc" because it was individual income from wages and salary for self-employed individuals. We want all individuals. Similarly, we discarded "efinc" because that was economic family
income. Thus, we chose income, even though using the variable income may be problematic because it is income from all sources, not just wages and salary.

We have essentially replicated the variables Breslaw and Stelcner used, and their dummy variables where we had the data to do so. It should be mentioned that with the occupation variable, there were many components, so we recoded the variable to reduce the dummy variables within it from 12 to 3 . Essentially we combined certain dummy variables to produce three of the dummy variables they used. We were unable to obtain a measure of people with no occupation or unknown occupation, so it was left out of our regression.

RESULTS

The results of the regression run by Breslaw and Stelcner are summarized in Table 2. It can be seen from Table 2 that region has a positive effect on income, and that all four t -statistics are significant. It is interesting to note that on average, income increases from east to west. It appears that as the population ages, there is increasing negative effects on income. The coefficients on the age variables are increasing in negativity from age 55 to age 70 , which is expected, although the t statistics for ages 55 and 60 are not significant. The coefficients on the language variables suggest that on average, people who speak languages other than English make less income. However, the coefficient on the variable for French speaking individuals is not significant. From the regression data it is evident that on average, as education increases, so too does income. The data suggests that using professional occupations as a base group, on average, blue-collar workers earn more income than the other occupations, but earn less
than the professional designation. The coefficient on the health variable suggests that on average, poor health has negative effects on income.

We use the "xi" command in stata to regress all of our explanatory variables on the natural logarithm of income. This command creates dummy variables for our variables keeping one group constant. Our regression equation takes the following form:

Our regression yields very similar results to that of Breslaw and Stelcner. With a final sample of 719 observations, we test the null hypothesis that none of our explanatory variables effect the natural logarithm of income.

Out of the six explanatory variables we used, we retained the null for age group 55-60, "hlthscor" and both occupation dummies. The insignificance of the health variable we used can be explained by its subjective nature. The variable we used as a proxy for the manufactured variable found in the paper is a personal rating of an individual's perceived health and therefore may not accurately reflect the true health status of the individual. The occupation variable was also very subjective in nature. The original variable contained 12 individual observation categories divided by occupation. We narrowed down the categories to match as closely as possible those used by Breslaw and Stelcner. We were unable to find in survey data any measure for unknown occupation and thus we lack the fourth dummy used in the paper. It is possible that in the reconstruction of the occupation variable, we were unable to properly structure it in a way that mimicked the variable in the paper.

The balance of our analysis very closely reflected the findings in the paper. By using an "xi" regression in stata we regressed "Inincome" on each of the five variables requiring dummies and the variable "hlthscor". Allowing Stata to generate the dummy variables for each variable, the subsequent regression used the first dummy variable from each set as the reference group. The output and command used to generate our results can be seen in appendix B; our log file. As a result, our regression was not only clear and simple to interpret, but also employed the same format as that run by Breslaw and Stelcner.

The results of the regression discussed below are all in reference to table 3 of our appendix. Our regression found that region has a significant effect on income. Clearly, as one moves west across Canada, income increases. One interesting result in our regression was that locations in Ontario, the Prairies and British Colombia seem to increase earnings by almost exactly the same proportion relative to the Maritimes. This mildly contradicts the results found in the paper that the increase is a steady trend from east to west. One of the major topics in this paper was age, and clearly our results show, as did the paper, that age is strongly, negatively related to earnings. This effect is significantly magnified in the 65-70 and 70+ category, as demonstrated by the jump in coefficients on our "age65" and "age70" dummy variables. An interesting result found both in our regression is the negative relationship between income and those whose primary language is not English. Those who speak French earn about 13\% less than those whose primary language is English, but that result is almost double at 24% lower earnings for those who primarily speak other languages. As expected, further education has a strong positive relationship to income. It is interesting to note, that even for a group
of men over 50, those with university degrees still earn on average 50% more than those with secondary education. As mentioned, our occupation variables are possibly biased. Not only does the regression suggest that they are insignificant, but the results seem to suggest that statistically, clerical/sales/service and blue-collar workers on average earn slightly more than professionals. This is a very questionable result and in final analysis should be discarded. Similarly, our "healthscor" variable, as described, is questionable. The nature of the variable makes it very subjective and the regression shows it has an insignificant effect on income.

SUMMARY

Our results turned out to be very similar to the results obtained in the paper. Although our results are similar, there were discrepancies in the methods we used to narrow down our sample size, as well as some of the variables we used. In the paper, Breslaw and Stelcner do not specify how they obtained the dummy variable "OCCUPN". We attempted to include all unemployed persons in this variable, but due to difficulties with Stata and in running the regression, we chose to omit this variable all together. It was significant in their regression, but not overly significant with a t-statistic of (2.40). The most notable difference in our variables was the variable we chose to use for health. As previously mentioned, our health variable is a subjective measure of self-assessment, but it was found to be insignificant in our regression. In the paper Breslaw and Stelcner used a modified health variable that is beyond our comprehension to replicate. They did not specify what measure of income they used for the dependent variable, so we used a variable that included income from all sources, for lack of a better variable.

In their results, it seems that income increases moving east to west across provinces, which we thought was interesting to note. However, our results suggest that relative income is consistently greater across Ontario, the Prairies and BC, but that income in Quebec is relatively lower than the Atlantic Provinces. It appears from the data in the paper that on average there is no significant difference between the income earned by anglophone and francophone workers, however, in our paper there is a significant difference. In both sets of results there is a significant decrease in income when individuals speak a language other than English or French. The results in the paper are intuitive, and for the most part were expected, our results produced minimal deviation from the results in the paper irrespective of differences in some of our variables and a discrepancy in sample size. They had a sample size of 610 observations and we had a sample size of 719 . Our results are on par with what we expected they would be.

Table 1. Definition of Variables

Breslaw and Stelcner Variables	Description	Our Variables	Description
HEALTHRD	Ridit value of health status, age/sex corrected	HLTHSCOR	Health opinion score
LINCF	Percentile value of individual's fitted earnings	INCOME	Individual income from all
sources			

(Breslaw and Stelcner, p.499)

Table 2. Breslaw and Stelcner's OLS Estimation: Annual Earnings

Variables	Coefficients	t-statistics
Natural logarithm of Income	9.7348	134.40
REGIONQ	0.1924	2.81
REGION0	0.2455	4.13
REGIONP	0.2854	4.34
REGIONB	0.3493	5.18
AGE55	-0.0540	1.72
AGE60	-0.0831	1.70
AGE65	-0.2469	2.16
AGE70	-0.8946	4.05
LANGF	-0.0661	1.33
LANGO	-0.1771	3.43
EDUCSPS	0.0351	0.64
EDUCDIP	0.1590	2.81
EDUCDEG	0.2926	5.85
OCCUPW	-0.2355	5.62
OCCUPB	-0.1954	4.58
OCCUPN	-0.9194	2.40
HEALTHRD	-0.1625	2.25

Table 3. Our OLS Estimation: Annual Earnings

Variables	Coefficients	Standard Errors	t-statistics
Natural logarithm of Income	9.1694	0.1931	47.484
REGIONQ	0.1938	0.0703	2.755
REGION0	0.2333	0.0489	4.769
REGIONP	0.2335	0.0491	4.753
REGIONB	0.2235	0.0609	3.671
AGE55	-0.0348	0.0366	-0.951
AGE60	-0.1345	0.0445	-3.019
AGE65	-0.4066	0.0857	-4.744
AGE70	-0.5199	0.1126	-4.616
LANGF	-0.1294	0.0649	-1.993
LANGO	-0.2342	0.0782	-2.994
EDUCSPS	0.1892	0.0653	2.899
EDUCDIP	0.3067	0.0656	4.669
EDUCDEG	0.4904	0.0579	8.461
OCCUPW	0.0069	0.0675	0.103
OCCUPB	0.0533	0.0634	0.841
HLTHSCOR	0.0068	0.0042	1.631

```
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
```

This is a Stata log file for a QED session
Course: Econ 452
Students: jfc
Date and time: Sat, 24 Mar 2001, 13:09:20
At the end of the QED session, this file will be copied to:
83_222_Sat_jfc.log
These files will also be uploaded to:
http://edith.econ.queensu.ca/statausr/logfiles/Econ452
Type help QEDstata for a list of QED commands
Student work begins below this line

pause: "Type BREAK to end session started at 24 Mar 2001 13:09:20"
-> . do "A:\process.do"
. Qextract QEDid region sex agegrp marstat famsize languse lang educ occup income
indinc efinc healthp numhlprb hlthscor prinearn lfstat, dset(12)
getting information about file 12 ...
loading variables from 12 (chs77) only (no data yet)... done
. codebook sex

. drop if sex>1
(16013 observations deleted)

- codebook age

type: label:	```numeric (byte) agegrp```	
range:	[1,15]	units: 1
unique values:	15	coded missing: 0 / 15655
examples:	$310-14$	
	$5 \quad 20-24$	
	$7 \quad 30-34$	

```
. drop if agegrp<11
(12081 observations deleted)
. codebook prinearn
```

```
prinearn --------------------------------------------------------
```

prinearn --
type: numeric (byte)
type: numeric (byte)
label: prinearn
label: prinearn
range: [1,2] units: 1
range: [1,2] units: 1
unique values: 2 coded missing: 0 / 3574
unique values: 2 coded missing: 0 / 3574
tabulation: Freq. Numeric Label
tabulation: Freq. Numeric Label
2936 1 principal income earner of
2936 1 principal income earner of
economic family
economic family
6 3 8 2 ~ n o t ~ a ~ p r i n c i p a l ~ i n c o m e ~ e a r n e r ~ o f ~
6 3 8 2 ~ n o t ~ a ~ p r i n c i p a l ~ i n c o m e ~ e a r n e r ~ o f ~
eco family

```
                                    eco family
```

. drop if prinearn>1
(638 observations deleted)
. codebook lfstat

```
lfstat ---------------------------------------------------- labour force status
            type: numeric (byte)
            label: lfstat
            range: [1,3] units: 1
    unique values: 3 coded missing: 26 / 2936
            tabulation: Freq. Numeric Label
                        1771 1 employed
                83 2 unemployed
                        1056 3 not in labour force
```

. drop if lfstat>1
(1165 observations deleted)

- codebook income

```
income ------------------------------------ individual income from all sources
                        type: numeric (int)
            label: income, but 59 values are not labeled
            range: [0,30000]
                            units: 100
    unique values: 60 coded missing: 508 / 1771
        examples: 12000
            17000
            25500
```

```
. mvencode income, mv(999999999)
income: }508\mathrm{ missing values
. drop if income>999999998
(508 observations deleted)
. gen lnincome= ln(income)
(13 missing values generated)
. codebook occup
```


. gen occtwo=occup
(5 missing values generated)
-
end of do-file
-> . tab occtwo

occtwo	Freq.	Percent	Cum.
1	116	9.22	9.22
2	86	6.84	16.06
3	27	2.15	18.20
4	17	1.35	19.55
5	80	6.36	25.91
6	130	10.33	36.25
7	146	11.61	47.85
8	132	10.49	58.35
9	137	10.89	69.24
10	112	8.90	78.14
11	134	10.65	88.79
12	141	11.21	100.00
Total	1258	100.00	
tab occ			

occupation	Freq.	Percent	Cum.
managerial, administrative	116	9.22	9.22
professional	86	6.84	16.06
teaching	27	2.15	18.20
medecine-health	17	1.35	19.55
clerical	80	6.36	25.91

sales	130	10.33	36.25
services	146	11.61	47.85
primary occupations	132	10.49	58.35
mining, processing, machining	137	10.89	69.24
fabricating, assembling and repairing	112	8.90	78.14
construction	134	10.65	88.79
transportation, materials handling \& oth	141	11.21	100.00
Total	1258	100.00	

. recode occtwo $2=20$
(86 changes made)
. recode occtwo 5=21 6=21 7=21
(356 changes made)
. recode occtwo $1=22 \quad 3=22 \quad 4=22 \quad 8=22 \quad 9=22 \quad 10=22 \quad 11=22 \quad 12=22$
(816 changes made)
-
end of do-file
-> . tab occtwo

occtwo	Freq.	Percent	Cum.
20	86	6.84	6.84
21	356	28.30	35.14
22	816	64.86	100.00
Total	1258	100.00	

-> . xi: regress lnincome i.region i.agegrp i.languse i.educ i.occup hlthscor
i.region Iregi_10-50 (naturally coded; Iregi_10 omitted)
i.agegrp Iageg_11-15 (naturally coded; Iageg_11 omitted)
i.languse Ilangu_1-3 (naturally coded; Ilangu_1 omitted)
i.educ Ieduc_2-5 (naturally coded; Ieduc_2 omitted)
i.occup Ioccu_1-12 (naturally coded; Ioccu_1 omitted)

Source	SS	df	MS	Number of obs	719
				F (25, 693)	10.85
Model	45.9607315	25	1.83842926	Prob > F	0.0000
Residual	117.409215	693	. 169421667	R -squared	0.2813
				Adj R-squared	0.2554
Total	163.369947	718	. 227534745	Root MSE	. 41161

lnincome	Coef.	Std. Err.	t	$\mathrm{P}>\|\mathrm{t}\|$	[95\% Con	Interval]
Iregi_20	. 1640345	. 0692775	2.368	0.018	. 0280156	. 3000534
Iregi_30	. 214467	. 0483021	4.440	0.000	. 119631	. 309303
Iregi_40	. 2119905	. 0491463	4.313	0.000	. 115497	. 3084841
Iregi_50	. 2100479	. 0596338	3.522	0.000	. 0929633	. 3271324
Iageg_12	-. 0347583	. 0361404	-0.962	0.337	-. 1057161	. 0361995
Iageg_13	-. 1301902	. 0436781	-2.981	0.003	-. 2159475	-. 0444328
Iageg_14	-. 4031546	. 0841725	-4.790	0.000	-. 5684183	-. 2378909
Iageg_15	-. 4954667	. 1109866	-4.464	0.000	-. 713377	-. 2775563
Ilangu_2	-. 1027206	. 0636664	-1.613	0.107	-. 2277228	. 0222816

Ilangu_3	-. 1939155	. 0769744	-2.519	0.012	-. 3450466	-. 0427844
Ieduc_3	. 0964466	. 0654931	1.473	0.141	-. 0321421	. 2250353
Ieduc_4	. 2151377	. 0665552	3.232	0.001	. 0844637	. 3458117
Ieduc_5	. 3924991	. 065941	5.952	0.000	. 263031	. 5219672
Ioccu_2	-. 2093461	. 0744672	-2.811	0.005	-. 3555544	-. 0631378
Ioccu_3	-. 0822529	. 117147	-0.702	0.483	-. 3122586	. 1477527
Ioccu_4	-. 4661747	. 1938759	-2.405	0.016	-. 8468294	-. 08552
Ioccu_5	-. 2101619	. 0757038	-2.776	0.006	-. 3587982	-. 0615256
Ioccu_6	-. 126804	. 0680276	-1.864	0.063	-. 260369	. 006761
Ioccu_7	-. 4211817	. 0712454	-5.912	0.000	-. 5610644	-. 281299
Ioccu_8	-. 1658814	. 0769773	-2.155	0.032	-. 3170181	-. 0147447
Ioccu_9	-. 3278384	. 0723107	-4.534	0.000	-. 4698126	-. 1858641
Ioccu_10	-. 2395731	. 0763494	-3.138	0.002	-. 3894771	-. 0896691
Ioccu_11	-. 2396629	. 0725036	-3.306	0.001	-. 382016	-. 0973099
Ioccu_12	-. 2472346	. 0749435	-3.299	0.001	-. 3943782	-. 1000911
hlthscor	. 0067422	. 0040982	1.645	0.100	-. 0013041	. 0147885
_cons	9.457608	. 1872876	50.498	0.000	9.089888	9.825327

-> .

An analysis of - The Colour of Money:

Earnings Differentials among Ethnic Groups in Canada.
Pendakur, Pendakur CJE Aug, 1998

Data Set pumfi, 354

Introduction

Canada has always prided itself for having a diverse multicultural makeup. Citizens and foreigners have always known that Canada open its arms to many different cultures and peoples and it is this fact that makes Canada such a rich country. Throughout the past two decades laws have been introduced to give every individual the same rights regardless of race, sex, or creed. So much so that the Canadian Charter of Rights and Freedom (Canada 1981) outlines the basis in which a person's ethnic heritage should not constrain his or her labour market opportunity. These laws were enacted in order to create an environment where people would be judged on their skills not their ethnic origin. These laws should foster a culture of no wage disparities due to these factors.

Although there is a long history of research assessing whether this vision accurately reflects American labour markets, until recently, there has been comparatively little research done in Canada. However in the past five years, a surge of research has documented the wage disparities that exist amongst Canadians. The researchers Howland and Sakellariou 1993; Christofides and Swidinsky 1994; Stelcner and Kyriazis 1995; Baker and Benjamin 1997 have all conducted research in order to determine if there are wage discrepancies in Canada.

These studies all found that there were earning disparities among different ethnic groups that cannot be attributed to differences in observable individual characteristics such as age and education. Although suitably cautious, the authors concluded that discriminatory practices might be having a negative impact on the earnings of these groups. We examine this issue by looking at the paper "The colour of money: earnings differentials among ethnic groups in Canada." by Pendakur and Pendakur in the Canadian Journal of Economics Aug 1998.

The research of Pendakur and Pendakur suggests that wage disparities when looking at different ethnic groups. At the heart of the analysis is the comparison of Canadian born white individuals and Canadians who are of a visible minority.

The paper contained many different regressions exploring many different combinations of factor, such as where a person is born, the ethnic back ground, if they live in a major city. To allow use to examine a regression, we looked at the first, most simple model, which looked at the effect of being Canadian, or Non-Canadian, and being white or a visible minority, or aboriginal.

They later expanded their analysis to look at males and females as well as disparities amongst visible minorities. The analysis for empirical evaluation is derived from the 1991 PUMF for individuals, which was in the QED data archive. This represents a 3 percent sample size from the Canadian population. The
independent variable that we will be using will be the "visible minority status" where we could further define every individual as white or visible minority. We define visible minority as all individuals that are not captured in the white category. We will further break down these two categories into sub-categories where individuals are either Canadian born or immigrants. The basic dependent variable that we will be using in this paper is the log of earnings from wages and salaries. The labour market in Canada is by far the largest sector of Canada's labor force comprising of at least 87 percent for men and 93 percent for women respectively (1991 PUMF). With such a large group, we can safely agree that almost all individuals participate in the labor market not limiting to only a small population. Since visible minorities by large are self employed compared to whites, our analysis has the potential to overestimate earnings gap amongst visible minorities. To correct this problem, we will only use data series where individuals primary source of income is from wage labour sources.

The Data

The data frame for our empirical work includes the following; individuals must be a permanent resident in Canada between the ages of 20 and 64, not in school full time, living in provinces outside the Atlantic region (Quebec and Westward) whose primary source of income was from salary. They also must be employed. As the paper mentions this may shift the finding up as it may be found that one or more group has a great deal of unemployment, which effects the mean wage of the group. However, in the first model, the one we used, all personal characteristics were held constant in order to determine the effect that the independent variables would have. These were later relaxed, and other characteristics were looked.

Looking at the data we determined what variables were used in the study. To estimate our model we needed variables for; age, sex, immigrant status, ethnic group, registered Indian, wage, employment status and province. The age, sex, employment and province, variables were needed in order to obtain the correct observations for our estimation. As stated earlier we were only interested in men, who were employed and who did not live in Atlantic Canada. We then created a log of the wage variable in order to follow the paper. With this we determined the mean wage and log wage for each category of man, and the count of those who fell in to each category. This is shown in the table below. We found that the means for our data were very similar to those published in the paper.

Mean Earnings and Sample Counts
From pumf 354, 1991

Immigrant Status	Equity Status	Mean Earnings (\$)	Log of Earnings	Difference of Log	Count
Total		33992.71	10.15123		80171
Canadian	White	34075.52	10.16474	0.0135	61668
	Visible Minority	32051.71	10.0261	-0.1251	755
	Aboriginal	17617.84	9.255543	-0.8958	651
Immigrant	White	37367.22	10.25474	0.1035	10730
	Visible Minority	28801.87	9.924678	-0.2265	6304

The Regression

In order to do the regression for this model it was necessary to determine the interactions of the variables. As the immigration status variable stated if a person was born in Canada, we needed to interact this with whether the person was a visible minority or white. We assumed, as the paper did, that aboriginal people were Canadians, so we had to interact the registered Indian variable with the others. We first tried to use the xi: command. The first attempts using this were not successful do to the registered Indian variable. If this variable had been a third option of the visible minority variable it would have been, possible to just use
this command. As it was not it was determined that we should use dummy variables to represent the different groups. By determining the possible combinations we drew a matrix that showed them. We then created five dummy variables to represent these interactions, which are stated below.

Dummy Variable matrix

Canadian White	Can Visible	Can Aboriginal	Imm. White	Imm. Visible
1	0	0	0	0
0	1	0	0	0
0	0	1	0	0
0	0	0	1	0
0	0	0	0	1

By regressing these dummy variables on the log of wages and salaries we were able to estimate the effect that each of these interactions had on the log of wage that each group could earn. When the looking at the results it was important to realize that STATA would drop one of the dummy variables, which then became the constant term.

Stata Output

Variable	Coef.	Std. Err.
Canw	0.775	0.0500
Canvis	0.919	0.0368
Canind	Dropped	
Immw	.999	0.0377
Immv	.669	0.0385
Cons	9.256	0.0366

R-squared $=0.0143, \mathrm{n}=79457$
These results were for men who were employed between the ages of 24-64 in Canada except the Atlantic region. The results were fine, except for the expected effect of being a Canadian visible minority. This had a value of 0.919 , meaning that a visible minority will make an expected average log of earning 10.175. This is not the same as the expected result from the study. They found that the male visible minority Canadian would be paid 10% less than a Canadian white. However, the rest of the results were all in line with those from the paper. It stated that white immigrants were expected to have the highest salary. The result was a higher in our regression. One aspect of the paper that made it hard to compare our results was the way that the results were published. They were stated as a percent comparison of the white Canadian log of earnings. They did not actually state the results that they obtained.

One limitation of the predictive possibilities of the regression is the fact that this estimation was done based only on the facts surrounding the ethnic origin of the males. This kept all other factors that would most likely contribute to discrepancies of wage constant. The paper did continue by looking at other factors, as they wanted to explore this question further. This does leave us with a simplistic model that just states the basic trends. The results should also not be looked at as a way of determining the wage that you should be paid. It is only good at comparing the overall mean

What was interesting to see in our results and those from the paper was the fact that white immigrants had the highest average salary. By looking at the mean of the data, it was by far the highest. By the definition of the ethnic origin, these people must gave been from Western Europe or Australia, which are developed countries. People moving from these countries usually do so due to opportunities created by their education, experience or some other factor. This was examined in later regressions.

Conclusion

While the paper "The Colour of Money" explored more of the reasons for the discrepancies of wages between different groups, we only had a chance to look at the first model. While it was possible to see the same ideas it was not exactly the same result. It would have been interesting to find out what was the cause of the discrepancies in the between our model and that of the paper. Unlike many papers this did not write out the model they used so it was up to our interpretation, so their may have been some discrepancies. One aspect of the model that was positive was the fact that they used a Statistics Canada survey, which allowed us to access the same figures.

The findings of our paper and the paper we looked at were that white immigrants have the highest average earnings. However, our regression was different in the aspect of explaining the average wage of either white Canadians or Canadians of a visible minority.

Appendix

Log File

This is a Stata log file for a QED session

Course: Econ 452
Students: money
Date and time: Fri, 23 Mar 2001, 11:13:56

At the end of the QED session, this file will be copied to:
82_192_Fri_money.log
These files will also be uploaded to:
http://edith.econ.queensu.ca/statausr/logfiles/Econ452
Type help QEDstata for a list of QED commands

Student work begins below this line

[^9]pause: "Type BREAK to end session started at 23 Mar 2001 11:13:56"
-> . set mem 48000K
'48000K' found where number expected
r(198);
-> . set mem 48000k
(48000k)
->. Qextract
getting information about file 354 ...
loading variables from 354 (pumf91i) only (no data yet)... done
-> . browse
-> . drop immiagep
-> . Qmerge
varlist required
r(100);
-> . help Qextract
-> . Qmerge immpopp, dset(354)
QEDid not found
r(111);
->. Qextract
getting information about file 354 ...
loading variables from 354 (pumf91i) only (no data yet)... done
-> . browse
-> . browse
-> . gen lnwage= $=\log$ (wagesp)
(187086 missing values generated)
-> . label Inwage "Ln of Wage"
invalid syntax
r(198);
-> . name lnwage, "Ln of Wage"
unrecognized command: name
r(199);
-> . label var lnwage "Ln of Wage"
-> . tabstat lnwage if immpop==1
variable | mean

lnwage | 9.56069

---------+----------
-> . tab lnwage if immpop==1
too many values
r(134);
-> . tabsum lnwage if immpop==1
unrecognized command: tabsum
r(199);
-> . tabsum lnwage
-> . tab lnwage
too many values
r(134);
-> . tabstat lnwage
variable | mean
---------+----------
lnwage | 9.857325

-> . tabstat lnwage if immpopp==1

$$
\text { lnwage | } 9.83331
$$

-> . browse
-> . tabstat lnwage if immpopp==1, visminp==1
visminp invalid
r(198);
-> . tabstat lnwage if immpopp==1 visminp==1
invalid 'visminp'
r(198);
-> . tabstat lnwage if immpopp==1 and vismin $p==1$
invalid 'and'
r(198);
-> . tabstat lnwage if immpopp $==1$, visminp $==1$
visminp invalid
r(198);
-> . tabstat lnwage if visminp $==1$
variable | mean

Inwage | 9.619292
---------+----------
-> . browse
-> . browse
-> . tab lnwage, by (reginp==1) c(freq mean)
by() invalid
r(198);
-> . tab lnwage, if (reginp==1) c(freq mean)
if() invalid
r(198);
-> . tabstat lnwage if reginp $==1$
variable | mean
---------+------------
lnwage | 8.868345
---------+----------
-> . drop if provp==60
(532 observations deleted)
-> . tabstat lnwage if reginp==1
variable | mean
---------+----------
lnwage | 8.869129
---------+-----------
-> . tabstat wagesp
variable | mean

wagesp | 29590.32

-> . browse
-> . drop if wagsp=="-"
wagsp not found
r(111);
-> . drop if wagesp=="-"
type mismatch
r(109);
-> . drop if wagesp==-
invalid syntax
r(198);
-> . browse
-> . drop if wagesp==.
(38351 observations deleted)
-> . browse
-> . tabstat wagesp
variable | mean
---------+-----------
wagesp | 29590.32
---------+-----------
-> . browse
-> . drop if agep<=23
(16287 observations deleted)
-> . browse
-> . drop if agep>=65
(2447 observations deleted)
-> . browse
-> . tabstat wagesp
variable | mean

wagesp | 33992.71
---------+----------
-> . tabstat lnwage if reginp $==1$
variable | mean
---------+----------
lnwage | 9.244879
---------+-----------
-> . tab lnwage, by (reginp==1) c(freq mean)
by() invalid
r(198);
-> . tab lnwage, if (reginp==1) c(freq mean)
if() invalid
r(198);
-> . tabstat lnwage if visminp==1

lnwage | 9.899722
variable | mean

Inwage | 10.15123

-> . tab lnwage, by (immpopp==1) c(freq mean)
by() invalid
r(198);
-> . tab wagesp
too many values
r(134);
-> . table lnwage, c()
c() invalid
r(198);
-> . table lnwage, c(mean)
mean invalid or requires argument
r(198);
-> . tab lnwage
too many values
r(134);
-> . browse
-> . summary statistics
unrecognized command: summary
r(199);
-> . sum

Variable Obs Mean Std. Dev. Min Max

agep \|	80171	39.93952	10.63796	24		64
sexp \mid	80171	2	02	2		
immpopp	p \| 80171	11.230283	83.4416639		1	3
visminp \|	\| 80171	1.905739	. 2921933		1	2
reginp \|	80171	1.991867	. 0898141	1	1	2
wagesp \|	\| 80171	33992.71	122629.34		1	200000
lnwage \|	\| 80171	10.15123	. 9456468		0	12.20607
-> . sum lnwage if immpopp=1						
invalid syntax						
r(198) ;						
-> . sum lnwage						
Variable	- Obs	Mean S	Std. Dev.	Min		Max
lnwage \|	\| 80171	10.15123	. 9456468		0	12.20607
-> . sum lnwage by(immpopp==1)						
by: operator invalid						
r(198);						
-> . sum lnwage, if immpopp==1						
if invalid						
r(198);						
-> . sum lnwage if immpopp==1						
Variable	\| Obs	Mean S	Std. Dev.	Min		Max
Inwage	\| 62423	10.16306	. 9269535		0	12.20607
-> . browse						
-> . sum lnwage if immpopp==2						

Variable Obs Mean Std. Dev. Min Max

lnwage \|	17034	10.13259	.9915219	0	12.20607

-> . browse
-> . sum lnwage if immpopp $==1$ visminp $==2$
invalid 'visminp'
r(198);
-> . sum lnwage if immpopp $==1$, visminp $==2$
visminp invalid
r(198);
-> . sum lnwage if immpopp==1 + visminp==2

Variable Obs Mean Std. Dev. Min Max
lnwage | 0
-> . sum lnwage if immpopp==1 and vismin $p==2$
invalid 'and'
r(198);
-> . sum lnwage if immpopp==1 \& visminp==2

Variable Obs Mean Std. Dev. Min Max --
lnwage | $61668 \quad 10.16474 \quad .9255927 \quad 0 \quad 12.20607$
-> . drop if immpopp==3
(714 observations deleted)
-> . drop if immpopp $==8$
(0 observations deleted)
-> . sum lnwage \& wagesp if immpopp==2 \& visminp==2
\& invalid name
r(198);
->. sum lnwage wagesp if immpopp==2 \& visminp==2

Variable Obs Mean Std. Dev. Min Max
lnwage | $1073010.25474 \quad .9337538 \quad 0 \quad 12.20607$
wagesp | $1073037367.22 \quad 24816.64 \quad 1 \quad 200000$
-> . browse
->. sum lnwage wagesp if immpopp==1 \& visminp==2

Variable Obs Mean Std. Dev. Min Max

lnwage | $61668 \quad 10.16474 \quad .9255927 \quad 0 \quad 12.20607$
wagesp| $\begin{array}{llllll}61668 & 34075.52 & 22190.23 & 1 & 200000\end{array}$
-> . sum lnwage wagesp if immpopp==1 \& visminp==1

Variable Obs Mean Std. Dev. Min Max
\qquad

lnwage \|	755	10.0261	1.023494	4.60517	12.20607

wagesp | $\begin{array}{llllll}755 & 32051.71 & 24186.31 & 100 & 200000\end{array}$
-> . sum lnwage wagesp if immpopp==2 \& visminp==2

Variable	Obs	Mean	Std. Dev.	Min	Max
lnwage \|	10730	10.25474	. 9337538	0	12.20607
wagesp\|	10730	37367.22	24816.64	1	200000

-> . sum lnwage wagesp if immpopp==2 \& visminp==1

Variable \mid Obs Mean Std. Dev. Min Max
\qquad
lnwage | $6304 \quad 9.924678 \quad 1.0506931 .60943812 .20607$
wagesp | $6304 \quad 28801.87 \quad 21073.23 \quad 5 \quad 200000$
-> . browse
-> . sum lnwage wagesp if reginp==1

Variable Obs Mean Std. Dev. Min Max

lnwage \|	651	9.255543	1.282622	1.791759	11.26446

wagesp | $\begin{array}{llllll}651 & 17617.84 & 14666.07 & 6 & 78000\end{array}$
-> . xi: regress lnwagei..immpopp*visminp
Inwagei: operator invalid
r(198);
-> . xi: regress lnwage visminp* immpopp

-> . xi: regress lnwage visminp*immpopp

Source \mid SS df MS Number of obs $=79457$
\qquad
Model | $436.352554 \quad 2218.176277$
$F(2,79454)=247.79$

Residual| 69957.133179454 . 880473395

Prob $>F=0.0000$
R-squared $=0.0062$

Adj R-squared $=0.0062$

Total | 70393.485779456 . 885942983 Root MSE $=.93834$

lnwage \|	Coef. S	Std. Err.	$t \quad P>\|t\|$	[95\% Conf. Interval]		
visminp \|	. 2997909	. 0136625	21.943	0.000	.2730124	. 3265694
immpopp	. 0768492	92.0094719	8.113	0.000	. 0582844	. 095414
_cons	9.490256	. 0336952	281.650	0.000	9.424213	9.556298

-> . xi immpopp*visminp
-> . xi: immpopp* visminp
unrecognized command: immpopp
r(199);
-> . xi: i.immpopp*i.visminp
i.immpopp Iimmpo_1-2 (naturally coded; Iimmpo_1 omitted)
i.visminp Ivismi_1-2 (naturally coded; Ivismi_1 omitted)
i.immpopp*i.visminp $\mathrm{IiXv} \#-\#$ (coded as above)
unrecognized command: Iimmpo_
r(199);
-> . drop Iimmpo_2 Ivismi_2 IiXv_2_2
-> . xi: i.immpopp*i.visminp
i.immpopp Iimmpo_1-2 (naturally coded; Iimmpo_1 omitted)
i.visminp Ivismi_1-2 (naturally coded; Ivismi_1 omitted)
i.immpopp*i.visminp IiXv _\#-\# (coded as above)
unrecognized command: Iimmpo_
r(199);
-> . drop Iimmpo_2 Ivismi_2 IiXv_2_2
-> . xi: i.immpopp*visminp
i.immpopp Iimmpo_1-2 (naturally coded; Iimmpo_1 omitted)
i.immpopp*visminp IiXvis_\# (coded as above)
unrecognized command: Iimmpo_
r(199);
-> . drop Iimmpo_2 IiXvis_2
-> . xi: regress lnwage i.immpopp*i.visminp
i.immpopp Iimmpo_1-2 (naturally coded; Iimmpo_1 omitted)
i.visminp Ivismi_1-2 (naturally coded; Ivismi_1 omitted)
i.immpopp*i.visminp IiXv _\#-\# (coded as above)

Total| 70393.485779456 .885942983
Adj R-squared $=0.0065$
Root MSE = . 93819

Inwage | Coef. Std. Err. t $\mathrm{P}>|\mathrm{t}| \quad$ [95\% Conf. Interval]

| Iimmpo_2 | -.1014265 | .036131 | -2.807 | 0.005 | -.1722429 | -.03061 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Ivismi_2 | .1386337 | .0343525 | 4.036 | 0.000 | .071303 | .2059644 |
| IiXv_2_2 | .1914273 | .03744 | 5.113 | 0.000 | .1180452 | .2648094 |
| _cons \| | 10.0261 | .0341441 | 293.641 | 0.000 | 9.959182 | 10.09303 |

-> . xi: regress lnwage i.immpopp* visminp
varlist required
r(100);
-> . xi: regress lnwage i.immpopp*visminp
i.immpopp Iimmpo_1-2 (naturally coded; Iimmpo_1 omitted)
i.immpopp*visminp IiXvis_\# (coded as above)

Source \mid SS df MS Number of obs $=79457$
---------+--------------------------------- F 3,79453$)=173.96$

Model | $459.362516 \quad 3153.120839 \quad$ Prob $>\mathrm{F}=0.0000$
Residual | 69934.123179453 .880194872 R-squared $=0.0065$

-> . drop Iimmpo_2 IiXvis_2
-> . xi: regress lnwage reginp i.immpopp*i.visminp
i.immpopp Iimmpo_1-2 (naturally coded; Iimmpo_1 omitted) i.visminp Ivismi_1-2 (naturally coded; Ivismi_1 omitted) i.immpopp*i.visminp IiXv_\#-\# (coded as above)

Source \mid SS df MS \quad Number of obs $=79457$

				$F(4,79452)=287.15$		
Model \|	1003.14627	425	0.786567	Prob $>$ F		0.0000
Residual \|	69390.3394	9452	. 87336177	R -squa		$=0.0143$

Inwage | Coef. Std. Err. $t \quad P>|t| \quad$ [95\% Conf. Interval]

Iimmpo_2|-. 1038602 . 0359906 -2.886 0.004 -. 1744015 -. 0333189

Ivismi_2 | . 1458242 . 0342201 4.261 0.000 . 0787529 . 2128954
IiXv_2_2 | 1844937 . 03729544.9470 .000 . 111395 . 2575924

_cons	8.191053	0810254	101.092	0.000	8.032244	8.349862

-> . drop i*
-> . drop Ivismi_2 Iimmpo_2 IiXv_2_2
-> . browse
->. keep i^{*}
i not found
r(111);
->. Qmerge
varlist required
r(100);
->. un drop i^{*}
unrecognized command: un
r(199);
-> . undrop i*
unrecognized command: undrop
r(199);
->. Qextract
getting information about file 354 ...
loading variables from 354 (pumf91i) only (no data yet)... done
-> . drop if provp<14
(32997 observations deleted)
-> . drop if $\operatorname{sexp}==1$
(180569 observations deleted)
-> . drop if wagesp==0
(37625 observations deleted)
-> . drop if provp==60
(532 observations deleted)
-> . drop if wagesp==.
(38351 observations deleted)
-> . drop if agep<=23
(16287 observations deleted)
-> . drop if agep $>=65$
(2447 observations deleted)
-> . drop if immpopp==3
(714 observations deleted)
-> . drop if immpopp $==8$
(0 observations deleted)
-> . tabstat
varlist required
r(100);
-> . tabstat wage
variable | mean
---------+----------
wagesp | 34082.4

-> . sum wage

Variable Obs Mean Std. Dev. Min Max
--

wagesp	79457	34082.4	22579.02	1	200000

-> . gen lnwage=log(wagep)
wagep not found
r(111);
-> . gen lnwage= $=\log$ (wagesp)
-> . label var lnwage "Ln of Wage"
-> . browse
-> . save "pumf91i_10.dta", replace
file pumf91i_10.dta saved
-> . browse
-> . xi: regress lnwage i.immpopp*i.visminp
i.immpopp Iimmpo_1-2 (naturally coded; Iimmpo_1 omitted)
i.visminp Ivismi_1-2 (naturally coded; Ivismi_1 omitted)
i.immpopp*i.visminp $\mathrm{IiXv} \#-\#$ (coded as above)

\qquad

Iimmpo_2	$-.1014265$	5 . 036131	-2.807	0.005	-. 1722429	-. 03061
Ivismi_2\|	. 1386337	. 0343525	4.036	0.000	. 071303	. 2059644
IiXv_2_2	. 1914273	. 03744	5.113	0.000	. 1180452	. 2648094
_cons \|	10.0261 . 03	. 0341441	293.641	0.000	9.959182	10.09303

-> . browse
-> . sum reginp

Variable	Obs	Mean	Std. Dev.	Min	Max
reginp \|	79457	1.991807	. 0901448	1	2

Source \|	SS df	MS N	Number of obs $=79457$
			$\mathrm{F}(5,79451)=230.47$
Model \|	1006.39293	5201.278587	Prob > F $=0.0000$
Residual	69387.0927	79451.873331899	9 R-squared $=0.0143$
		----------	Adj R-squared $=0.0142$
Total \|	70393.485779	9456.885942983	Root MSE $=.93452$

Ivismi_2	. 1457862	. 0342195	4.260	0.000	. 0787161	. 2128562
IiXv _2_2	. 1848219	. 0372951	4.956	0.000	. 1117237	.2579201
Iimmpo_2 ${ }^{\text {(dropped) }}$						
reginp \|	. 9138873	. 0369049	24.763	0.000	. 841554	. 9862206
IiXreg_2	1.042875	. 5408826	1.928	0.054	-. 0172521	2.103001
_cons	8.20075	. 0811799	101.019	0.000	8.041638	8.359862

-> . browse
-> . drop Iimmpo_2 Ivismi_2 IiXv_2_2 IiXreg_2
-> . xi: regress lnwage i.immpopp*i.visminp i.reginp*immpopp
i.immpopp Iimmpo_1-2 (naturally coded; Iimmpo_1 omitted)
i.visminp Ivismi_1-2 (naturally coded; Ivismi_1 omitted)
i.immpopp*i.visminp IiXv _\#-\# (coded as above)
i.reginp Iregin_1-2 (naturally coded; Iregin_1 omitted)
i.reginp*immpopp IrXimm_\# (coded as above)

\qquad Adj R-squared $=0.0142$
Total| 70393.485779456 .885942983
Root MSE $=.93452$

Inwage | Coef. Std. Err. t $\quad \mathrm{P}>|\mathrm{t}| \quad$ [95\% Conf. Interval]

Iimmpo_2 \mid (dropped)
Ivismi_2 | . $1457862.0342195 \quad 4.260 \quad 0.000 \quad .0787161$. 2128562
IiXv_2_2| . 1848219 . 03729514.9560 .000 . 1117237 . 2579201
Iregin_2|-. $1289871.5446466-0.2370 .813-1.196491 \quad .9385168$

immpopp	-1.146722	.542072	-2.115	0.034	-2.20918	-.084264
IrXimm_2 \|	1.042874	.5408826	1.928	0.054	-.0172521	2.103001
_cons \| 10.26136	.5489777	18.692	0.000	9.185366	11.33735	

-> . drop Iimmpo_2 Ivismi_2 Ivismi_2 IiXv_2_2 Iregin_2 IrXimm_2 -> . xi: regress lnwage i.immpopp*i.visminp i.immpopp|reginp i.immpopp Iimmpo_1-2 (naturally coded; Iimmpo_1 omitted) i.visminp Ivismi_1-2 (naturally coded; Ivismi_1 omitted) i.immpopp*i.visminp IiXv _\#-\# (coded as above) i.immpopp|reginp IiXreg_\# (coded as above)

Source \|	SS df	MS N	Number of obs $=79457$
--------+			$F(5,79451)=230.47$
Model	1006.39293	5201.278587	Prob $>\mathrm{F}=0.0000$
Residual	69387.0927	451.873331899	9 R-squared $=0.0143$
---------	---------------	--------	Adj R-squared $=0.0142$
Total	70393.485779	456 .885942983	Root MSE $=.93452$

\qquad
Iimmpo_2 | -2.189596 1.082357 $-2.023 \quad 0.043 \quad-4.31101 \quad-.0681831$
Ivismi_2 | . $1457862.03421954 .260 \quad 0.000 \quad .0787161 \quad .2128562$ IiXv_2_2| . 1848219 . 03729514.9560 .000 . 1117237 . 2579201 reginp| . 9138873 . 0369049 24.763 0.000 . 841554 . 9862206

IiXreg_2 | 1.042875 . $5408826 \quad 1.928 \quad 0.054 \quad-.0172521 \quad 2.103001$ | _cons | 8.20075 | .0811799 | 101.019 | 0.000 | 8.041638 | 8.359862 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

-> . drop Iimmpo_2 Ivismi_2 IiXv_2_2 IiXreg_2
-> . xi: regress lnwage i.immpopp*i.visminp i.reginp| immpopp
i.immpopp Iimmpo_1-2 (naturally coded; Iimmpo_1 omitted)
i.visminp Ivismi_1-2 (naturally coded; Ivismi_1 omitted)
i.immpopp*i.visminp IiXv_\#-\# (coded as above)
varlist required
r(100);
-> . drop Iimmpo_2 Ivismi_2 IiXv_2_2
-> . xi: regress lnwage i.immpopp*i.visminp i.reginp|immpopp
i.immpopp Iimmpo_1-2 (naturally coded; Iimmpo_1 omitted)
i.visminp Ivismi_1-2 (naturally coded; Ivismi_1 omitted)
i.immpopp*i.visminp IiXv_\#-\# (coded as above)
i.reginp Iregin_1-2 (naturally coded; Iregin_1 omitted)
i.reginplimmpopp IrXimm_\# (coded as above)

Source | SS df MS Number of obs = 79457

Model| 1006.343954251 .585988

$$
\text { Prob }>\mathrm{F}=0.0000
$$

Residual | 69387.141779452 . 873321524
R-squared $=0.0143$
\qquad Adj R-squared $=0.0142$
Total | 70393.485779456 .885942983
Root MSE = . 93452

Inwage | Coef. Std. Err. t $\mathrm{P}>|\mathrm{t}| \quad$ [95\% Conf. Interval]

Iimmpo_2|-1.018922 $\begin{array}{lllllll} & .051374 & -19.833 & 0.000 & -1.119615 & -.9182296\end{array}$
Ivismi_2 | . 1457954 . 0342193 4.261 $0.000 \quad .0787258$. 212865
IiXv_2_2| . 1847772 . 0372944 4.955 $0.000 \quad .1116804$. 2578741 immpopp | (dropped)

IrXimm_2| . 9150718 .0365642 25.026 0.000 8434062 . 9867374
$\begin{array}{lllllll}\text { _cons } & 9.113456 & 0498657 & 182.760 & 0.000 & 9.01572 & 9.211193\end{array}$
-> . drop Iimmpo_2 Iimmpo_2 IiXv_2_2 Iregin_2 IrXimm_2 Ivismi_2
-> . xi: regress lnwage i.immpopp*i.visminp
i.immpopp Iimmpo_1-2 (naturally coded; Iimmpo_1 omitted)
i.visminp Ivismi_1-2 (naturally coded; Ivismi_1 omitted)
i.immpopp*i.visminp IiXv _\#-\# (coded as above)

Total| 70393.485779456 . 885942983
Adj R-squared $=0.0065$
Root MSE $=.93819$

Inwage | Coef. Std. Err. t $P>|t| \quad$ [95\% Conf. Interval]

Iimmpo_2	-. 1014265	. 036131	-2.807	0.005	-. 1722429	-. 03061
Ivismi_2	. 1386337	. 0343525	4.036	0.000	. 071303	. 2059644
IiXv_2_2	. 1914273	. 03744	5.113	0.000	. 1180452	. 2648094
_cons	10.0261 . 03	. 0341441	293.641	0.000	9.959182	10.09303

-> . xi: regress lnwage i.immpopp|reginp i.immpopp*i. visminp
i.immpopp Iimmpo_1-2 (naturally coded; Iimmpo_1 omitted) i.immpopp|reginp IiXreg_\# (coded as above)
varlist required r(100);
-> . drop Iimmpo_2 IiXreg_2
-> . xi: regress lnwage i.immpopp|reginp i.immpopp*i. visminp
i.immpopp Iimmpo_1-2 (naturally coded; Iimmpo_1 omitted)
i.immpopp|reginp IiXreg_\# (coded as above)
varlist required
r(100);
-> . xi: regress lnwage i.immpopp|reginp i.immpopp*i.visminp
i.immpopp Iimmpo_1-2 (naturally coded; Iimmpo_1 omitted) i.immpopp|reginp IiXreg_\# (coded as above)
i.visminp Ivismi_1-2 (naturally coded; Ivismi_1 omitted)
i.immpopp*i.visminp IiXv _\#-\# (coded as above)

Total	Adj R-squared $=0.0142$				
	70393.485779456 .8859	942983		Root MSE	$=.93452$
lnwage \|	\| Coef. Std. Err.	$\mathrm{P}>\|\mathrm{t}\|$	[95\%	Conf. Interv	
reginp \|	. 9138873.0369049	24.763	0.000	. 841554	.9862206
IiXreg_2	\| 1.042875 . 5408826	1.928	0.054	-. 0172521	2.103001
Iimmpo_2	$2 \mid-2.1895961 .082357$	-2.023	$3 \quad 0.043$	-4.31101	$1-.0681831$
Ivismi_2\|	\| . 1457862.0342195	4.260	0.000	. 0787161	.2128562
IiXv_2_2	\| . 1848219.0372951	4.956	0.000	. 1117237	. 2579201
_cons \|	8.20075 .0811799101	101.019	0.000	8.041638	8.359862

-> . browse
-> . xi: regress lnwage reginp|i.immpopp i.immpopp*i.visminp i.immpopp Iimmpo_1-2 (naturally coded; Iimmpo_1 omitted)
i.visminp Ivismi_1-2 (naturally coded; Ivismi_1 omitted)
i.immpopp*i.visminp IiXv _\#-\# (coded as above)
| invalid name
r(198);
-> . xi: regress lnwage i.reginp|immpopp i.immpopp*i.visminp

-> . xi: regress lnwage i.reginp|i.immpopp i.immpopp*i.visminp
I.xxx|I.yyy not allowed
r(198);
-> . xi: regress lnwage i.reginp*immpopp i.immpopp*i.visminp
i.reginp Iregin_1-2 (naturally coded; Iregin_1 omitted)
i.reginp*immpopp IrXimm_\# (coded as above)
i.immpopp Iimmpo_1-2 (naturally coded; Iimmpo_1 omitted)
i.visminp Ivismi_1-2 (naturally coded; Ivismi_1 omitted)
i.immpopp*i.visminp IiXv _\#-\# (coded as above)

Total| 70393.485779456 .885942983

Adj R-squared $=0.0142$
Root MSE $=.93452$

Inwage | Coef. Std. Err. $t \quad P>|t| \quad$ [95\% Conf. Interval]
\qquad
Iregin_2|-. 1289871 . $5446466-0.2370 .813-1.196491 \quad .9385168$ immpopp | -1.146722 . 542072 -2.115 $0.034-2.20918$-. 084264

IrXimm_2| $1.042874 \quad .5408826 \quad 1.928 \quad 0.054 \quad-.0172521 \quad 2.103001$
Iimmpo_2| (dropped)
Ivismi_2| . 1457862 . $03421954.260 \quad 0.000$. 0787161 . 2128562
IiXv_2_2| . 1848219 . 03729514.9560 .000 . 1117237 . 2579201

_cons	10.26136	.5489777	18.692	0.000	9.185366	11.33735

-> . drop IrXimm_2 IrXimm_2 Iimmpo_2 Ivismi_2 IiXv_2_2
-> . drop Iregin_2
-> . tab immpopp
immigrant status indicator \mid Freq. Percent Cum.
\qquad
perm. residents: non-immigrant $\left\lvert\, \begin{array}{llll}62423 & 78.56 & 78.56\end{array}\right.$
$\begin{array}{llll}\text { perm. residents: immigrant } \left\lvert\, \begin{array}{lll}\text { p }\end{array} 17034\right. & 21.44 & 100.00\end{array}$

-> . tab visminp
visible minority indicator \mid Freq. Percent Cum.

member of visible minority	7059	8.88	8.88
non-member of visible minority	72398	91.12	100.00
Total \| 79457	100.00		
-> . tab lnwage			
too many values			
r(134);			
-> . tab reginp			

registered indian indicator	Freq.	Percent	Cum.
registered under indian act	651	0.82	0.82
not regist. under indian act \|	78806	99.18	100.00

Total \| 79457100.00
-> . edit

- preserve
-> . edit
- preserve
-> . edit
- preserve
-> . gen dummy $1=1$ if impopp $=1$
impopp not found
r(111);
-> . gen dummy $1=1$ if immpopp=1
invalid syntax
r(198);
-> . gen dummy $1==1$ if immpopp $=1$
$==$ invalid name
r(198);
-> . gen dummy $1=1$ if immpopp $==1$
(17034 missing values generated)
-> . replace dummy $1=0$ if immpopp $=2$
invalid syntax
r(198);
-> . replace dummy $1=0$ if immpopp $==2$
(17034 real changes made)
-> . edit
- preserve
-> . gen dummy $2=1$ if vismin $p==1$
(72398 missing values generated)
-> . replace dummy $2=0$ if immpopp $==2$
(17034 real changes made)
-> . gen dummy $3=1$ if reginp $==1$
(78806 missing values generated)
-> . replace dummy $3=0$ if reginp $=2$
invalid syntax
r(198);
-> . replace dummy $3=0$ if reginp $==2$
(78806 real changes made)
-> . browse
-> . browse
-> . gen dummy $2=1$ if vismin $p==1$
dummy 2 already defined
r(110);
-> . browse
-> . replace dummy2=0 if immpopp==2
(0 real changes made)
-> . browse
-> . drop dummy2
-> . gen dummy $2=1$ if visminp $==1$
(72398 missing values generated)
-> . browse
-> . replace dummy $2=0$ if visminp $==2$
(72398 real changes made)
-> . browse
-> . tabstat visminp

visminp| 1.911159
---------+----------
-> . summ visminp

Variable	Obs	Mean	Std. Dev.	Min	Max
visminp \|	79457	1.911159	. 2845152	1	2

visible minority indicator	Percent		Cum.
member of visible minority \|	7059	8.88	8.88
non-member of visible minority	72398	91.12	100.00
Total \| 79457	100.00		

-> . regress lnwage dummy1 dummy2

Source | SS df MS Number of obs = 79457
---------+------------------------------- F 2,79454$)=247.79$

Model | $436.3525542218 .176277 \quad$ Prob $>\mathrm{F}=0.0000$
Residual| 69957.133179454 .880473395 R-squared $=0.0062$

Total| 70393.485779456 . 885942983

Adj R-squared $=0.0062$
Root MSE $=.93834$ Inwage | Coef. Std. Err. $t \quad P>|t| \quad$ [95\% Conf. Interval]

| ---------+--- | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| dummy1\| | -.0768492 | .0094719 | -8.113 | 0.000 | -.095414 | -.0582844 |
| dummy2\| | -.2997909 | .0136625 | -21.943 | 0.000 | -.3265694 | -.2730124 |
| _cons \| 10.24354 | .0087895 | 1165.430 | 0.000 | 10.22631 | 10.26076 | |

->. drop dummy1 dummy 3 dummy2
-> . browse
-> . browse
-> . gen dcan $=1$ if vismin $==1$
(72398 missing values generated)
-> . replace dcan=0 if visminp==2
(72398 real changes made)
-> . browse
-> . browse
->. drop dcan
-> . browse
-> . gen Canw=1 if immpopp==1 \& visminp==2
(17789 missing values generated)
-> . browse
-> . drop Canw
-> . gen canw=1
-> . browse
->. drop Canw
Canw not found
r(111);
-> . drop canw
-> . gen canw=1 if immpopp==1
(17034 missing values generated)
-> . replace canw=o if visminp==1
o not found
r(111);
-> . replace canw $=0$ if visminp $==1$
(7059 real changes made)
-> . browse
-> . drop canw
-> . gen canw=1 if immpopp==1
(17034 missing values generated)
-> . replace canw=0 if visminp $==2$
(72398 real changes made)
-> . browse
-> . drop canw
-> . gen canw=1 if immpopp==1 \& visminp==2 \& reginp==2
(18435 missing values generated)
-> . replace canw=0 if immpopp==2 \& visminp==1 \& reginp==1
(0 real changes made)
-> . browse
-> . drop canw
-> . gen canw=1 if immpopp==1 \& visminp==1 \& reginp==2
(78704 missing values generated)
-> . browse
-> . gen canw=0 if immpopp==.
canw already defined
r(110);
-> . replace canw=0 if canw==.
(78704 real changes made)
-> . browse
-> . gen canvis=1 if immpopp=1 \& visminp==2 \& reginp==2
invalid syntax
r(198);
-> . gen canvis=1 if immpopp==1 \& visminp==2 \& reginp==2
(18435 missing values generated)
-> . browse
-> . gen canvis=1 if immpopp==1 \& visminp==2 \& reginp==2
canvis already defined
r(110);
-> . drop canvis
-> . browse
-> . gen canvis=1 if immpopp==1 \& visminp==2 \& reginp==2
(18435 missing values generated)
-> . browse
-> . replace canvis=0 if canvis==.
(18435 real changes made)
-> . gen canind $=1$ if reginp $==1$
(78806 missing values generated)
-> . browse
-> . replace canind $=0$ if canind==.
(78806 real changes made)
-> . browse
-> . gen immw=1 if immpopp==2 \& visminp==2 \& reginp==2
(68730 missing values generated)
-> . browse
-> . replace immw $=0$ if immw==.
(68730 real changes made)
-> . browse
-> . gen immvis=1 if immpopp==2 \& visminp==1 \& reginp=2
invalid syntax
r(198);
-> . gen immvis=1 if immpopp==2 \& visminp==1 \& reginp==2
(73153 missing values generated)
-> . browse
-> . replace immvis=0 if immvis==.
(73153 real changes made)
-> . browse
-> . browse
-> . regress lnwage canw canvis canind immw immvis

Source \|	SS df	MS N	Number of obs $=79457$
---------	-----------	--------	$F(4,79452)=287.18$
Model	1003.23193	4250.807983	Prob $>\mathrm{F}=0.0000$
Residual	69390.25377	79452.873360692	2 R-squared $=0.0143$
---------+		----	Adj R-squared $=0.0142$
Total ${ }^{\text {\| }}$	70393.485779	456 .885942983	Root MSE $=.93454$

| lnwage \| | Coef. S | Std. Err. | t P>\|t| | [95\% Conf. Interval] | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| canw | . 7746228 | . 0500141 | 15.488 | 0.000 | . 6765955 | . 8726501 |
| canvis \| | . 9187477 | . 0368223 | 24.951 | 0.000 | . 8465762 | . 9909191 |
| canind \| (dropped) | | | | | | |
| immw | . 9997425 | . 0377225 | 26.503 | 0.000 | . 9258066 | 1.073678 |
| immvis | . 6691344 | . 0384722 | 17.393 | 0.000 | . 5937292 | .7445396 |
| _cons | 9.255543 | . 0366274 | 252.694 | 0.000 | 9.183754 | 9.327333 |

-> . gen immind=1 if immpopp==2 \& visminp==1 \& reginp==1 (79457 missing values generated)
-> . browse
-> . replace immind $=0$ if immind $==$.
(79457 real changes made)
-> . browse
-> . regress lnwage canw canvis canind immw immvis immind

-> . regress lnwage canw canvis canind immw immvis

Source \mid SS df MS Number of obs $=79457$
\qquad $F(4,79452)=287.18$
Model \| 1003.23193 4250.807983
Prob $>\mathrm{F}=0.0000$
Residual | 69390.253779452 . 873360692
R-squared $=0.0143$
Adj R-squared $=0.0142$

lnwage	Coef. Std. Err.		$t \quad \mathrm{P}>\|\mathrm{t}\|$	[95\% Conf. Interval]		
canw \|	. 7746228	. 0500141	15.488	0.000	. 6765955	. 8726501
canvis \|	. 9187477	. 0368223	24.951	0.000	. 8465762	. 9909191
canind \|	(dropped)					
immw	. 9997425	. 0377225	26.503	0.000	. 9258066	1.073678
immvis	. 6691344	. 0384722	17.393	0.000	. 5937292	.7445396
_cons	9.255543	. 0366274	252.694	0.000	9.183754	9.327333
-> . browse						
-> . save "C:\courses\Jan.dta"						
file C:\courses\Jan.dta saved						
-> . tab lnwage						
too many values						
r(134);						
-> . exit						

Session ended at 23 Mar 2001; 16:28:14

Econ 452 Assignment 1
 Professor: Chris Ferrell National Population Health Survey (NPHS)

Shields, Margot. 1999. "Long working hours and health." Health Reports Autumn 1999, 11(2). Ottawa: Statistics Canada.

Margot Shields hypothesizes that long hours bring about unhealthy lifestyle changes in her paper entitled "Long Working Hours and Health". The Karoshi model, developed by Japanese researchers, is examined to determine the influence of long hours on cardiovascular disease in Canada. Karoshi translates as dying from cardiovascular causes "from overwork". Shields uses data from the National Population Health Survey (1994/1995-1996/97) to determine the relationship between long working hours, coupled with work-related and socio-demographic variables, on conditions considered to be unhealthy. Such conditions focused on in the paper were depression, weight, smoking, alcohol consumption, and physical activity. These health concerns are considered to be the main underlying causes of death due to cardiovascular disease.

In regressing long hours on any one of the aforementioned health conditions, the control variables (referred to as the work-related and socio-demographic variables) were taken into account to see if long hours still maintained any statistically significant influence. The control variables are listed as follows:

Socio-demographic factors: age, marital status, educational attainment, household income, and the presence of children < 12 in the household.

Work-related factors: occupation type (e.g. White collar), self-employment, shift work, multiple jobs, high job strain, high job security, and low supervisor report. All but occupation type was given by (Yes/No) answers.

Table 1 and 2 in the paper illustrate the percentage working long hours by gender aged 25-54
who worked 35 hours or more per week throughout 1994/95 by the selected characteristics outlined above. For men only could long hours be associated to age. For both genders, marital status was not associated with long hours, while higher educational attainment and income was. The presence of young children did not effect the proportion of hours worked for women although it was related to higher levels for men. In terms of work characteristics men and women in white collar positions experienced longer work hour as with the shift-work, self-employment and multiple job holder factors. High job-strain, job insecurity and low supervisor support did not show significant influence on the proportions of hours worked.

After performing separate regression analysis for men and women (not presented in the content of the paper) the following conclusions were made regarding each of the health circumstances.

Depression: Women working long hours "had 2.2 times the odds of reporting having experienced a major depressive episode, compared with those who worked standard hours", while no incidence of depression associated with work hours was found for men. High job strain was related to depression for both sexes.

Weight: This was measured in terms of the body mass index (BMI). Men had a higher incidence of being overweight than women for the 1994/95 NPHS data (36% versus 23% in Table 4). "When factors such as age, education, smoking status, occupation, shift work, and work stress were taken into account" it was determined that men had increased odd of 1.4 in having excess body weight. In women no association was found between weight and long hours after taking the above control variables into account.

Smoking: For the 1994/95-year the percentages of male and female workers who were daily smokers were approximately 28 and 25%. In this study no relationship was found between long hours and daily smoking for either of the sexes. However, observing the longitudinal data, increased smoking did occur when a switch was made from standard to long hours. The odds ratio table D in the appendix of Margot Shield's paper is replicated at the end of this section.

Alcohol consumption: Only longitudinal conclusions are reported for this health risk. An increase in weekly hours was not associated with increased alcohol consumption for men, although women and higher odds of higher consumption when switching from standard to long hours.

Physical Activity: For both sexes, there were no significant differences in the average number of time exercising between those who worked standard and long hours. Also the paper reports that increased working hours did not decrease the odds of reported hours exercised.

Adjusted odds ratios relating selected charcteristics to increased daily smoking between 1994/95 and 1996/97 among men and women aged 25-54 who worked 35 more hours per week throughout 1994/95, Canada excluding territories. (ctd. next page)

Men	Women	
Odds ratio	95\% C.I.	Odds ratio
95\% C.I.		

Working hours $(1994 / 95-1996 / 97)$				
Long - long	1.1	0.6, 2.0	1.0	0.3, 2.9
Standard - long	2.2*	1.1, 4.5	4.1*	1.4, 11.6
Long - reduced	1.2	0.6, 2.3	1.7	0.8, 4.0
Standard- reduced	1.7	0.7, 4.2	1.3	0.6, 2.8
Standard - standard	1.0	...	1.0	...
Occupation				
White - collar	0.6	0.3, 1.0	0.4*	0.2, 0.8
Self employed	0.5*	0.3, 0.9	0.9	0.3, 2.4
shift worker	1.0	0.6, 1.9	1.3	0.5, 3.1
Multiple job holder	1.5	0.6, 3.9	1.2	0.4, 3.8
Work stress				
high job strain	1.0	0.6, 1.7	0.9	0.5, 1.6
high job insecurity	0.7	0.4, 1.1	1.4	0.8, 2.3
Low super. Support	0.9	0.5, 1.6	1.3	0.7, 2.7
Age				
25-34	1.0	...	1.0	...
35-44	0.7	0.4, 1.2	0.9	0.5, 1.8
45-54	0.6	0.3, 1.1	0.9	0.4, 2.1
Married	0.9	0.5, 1.6	0.5*	0.3, 0.9
Children <12 years	1.0	0.6, 1.7	1.2	0.6, 2.3
Education				
Sec. Grad or less	1.0	...	1.0	...
Some post-secondary	1.0	0.6, 1.7	0.5	0.3, 1.1
Post-secondary Grad	0.5*	0.3, 0.9	0.4*	0.25, 0.7
Household Income				
Lowest/ Low middle/ Middle	0.9	0.5, 1.7	0.6	0.2, 1.4
Upper-middle	0.9	0.5, 1.6	0.7	0.3, 1.6
Highest	1.0	...	1.0	...
" * " refers to a	alue $=$	5 and ".	t appr	

Data:

The National Population Health Survey (NPHS) conducted by Statistics Canada collects both cross-sectional and longitudinal data on the physical and mental health of Canadians and their use of health care services. The main objectives are to:

- Measure the health status of the population and its relationship to the use of health care services and various determinants of health;
- Collect data on the economic, social demographic, occupational and environmental
correlates of health;
- And to provide information on a selection of individuals who will be followed over time to reflect the dynamic process of health and illness;

The first cycle of data collection took place in 1994/95; and second, in 1996/97. The third cycle began in June 1998 and will continue through June 1999. This survey and its longitudinal components are expected to last 20 years.

This will be the data set used in this paper. The data set has many components. We used the 1994/95 health component of the cross sectional proportion of the data set. The health component of the survey contains detailed health questions about one randomly selected individual per household. The answers are provided by the selected individual.

In Shields' paper the data are from the household longitudinal component of the survey that includes both the 1994/95 and 1996/97 cycles. Her results are based on 3,380 adult workers aged 25 to 54 (2,181 men and 1,649 women) who worked 35 hours or more per week throughout the year before their 1994/95 interview.

In an attempt to replicate a similar data set, the same criteria were applied. The differences in the count of the actual observations stem from the differences in the components of the NPHS used. The 1994/95 cross sectional health component of the NPHS has 17,626 observations in total. The first step taken was to limit the observations to those who were between the ages of $25-54$. The age of the individual was categorized into specific age cohorts. Those observations were only kept if they were in an age cohort between 25-54 (variable agegrp). This brought the count down to 9291 . Next, only those who worked were kept as an observation. The variable used in this limitation was lfs_q1 which indicates an individual's labour force status. Only those who were working for pay/profit were kept in the data set. This lowered the count to 4610. The third step was to eliminate those who worked less than 35 hours per week. To do this, all who only had one part-time job, were eliminated (variable dvwh94). This brought us to the final number of observations used in our data set: 4,231 (2,807 males and 1424 females). This is as close as we come to Margot Shields' paper. The difficulty in replicating exactly the same data set apart from the obvious that two different data sets were being used, arise from the fact that there is no variable which specifies the number of hours per week each individuals worked. Therefore, only those who had one part-time job can be eliminated safely from the pool of survey respondents as working less than 35 hours. Part-time is defined as less than 30 hours. Potentially, there could be individuals who could hold multiple part-time jobs yet work less than 30 hours a week. This part-time workers remains in the data set due to the uncertainty. There are no questions which asks how many hours individuals are working. This serves as the best possible proxy for standard hour workers, those who worked 35-40 hours and long working hour workers who worked 41+ hours.

The remainder of the replication a similar data set required collapsing numerous levels in some variable to the specifications of the paper. The first handles the education levels of the individuals. The three resulting categories based on dwhhin94 are: somesec, high school graduation or less; somepost, some post-secondary education; and post-secondary graduation. The second transformation is of the level of the income variable. The classifications are
according to the Shields' paper: lowest income; lower-mid income; middle income; upper-middle income; and highest income. After all these modifications, the observations are similar to those used in "Long working hours and health."

Results:

"There was, however, no relationship between working hours and the propensity to be a daily smoker in 1994/95." Though this is stated in the paper, there is no data provided to back up this claim. Thus we ran a regression to see if in fact there was a relationship between working hours and the propensity to be a daily smoker. We regress the dummy variable of long working hours on the dummy variable of the daily smoker. Our null hypothesis is that the propensity to be a daily smoker, i.e., the coefficient would be $=0$. In running our regression and the corresponding F-Test that the null hypothesis is indeed true and thus we accept the null hypothesis and therefore the propensity to be a daily smoker is not associated with longer working hours using the 1994/95 data.

> Long Hours

Smoker 0.015

Standard error shown in parentheses
H_{0} : longwh $=0.0$
$\mathrm{F}(1,4229)=2.19$
Prob $>\mathrm{F}=0.1390$
The second regression we run to test the association of numbers of visits to the general practitioner on long working hours controlling for income, gender, and education level. Table 2 shows the results. The null hypothesis that we test is that the coefficient for dummy variable standard working hours is $=0.0$ The test accepts the null hypothesis thus the coefficient is insignificant. Again, either working standard hours or long hours does not affect the number of visits to the general practitioner.

Thus, we conclude that longer working hours have insignificant impact on propensity of being a smoker or the opportunity of visiting the general practitioner. The cross-sectional nature of the tests may explain these results as that it may signal that at the time of the survey, longer working hours have no significant impact. Accompanied with the longitudinal aspect of this survey, a better understanding of the effect of longer working hours can then be achieved.

Summary:

"Long working hours and health" was a very interesting read. It uses econometric methods to examine important issues like health. Work is an important aspect of life. However, like everything else, moderation is key. Overworking can lead to fatigue and higher stress levels. This could lead to complications and deteriorating health. By looking at the cross-sectional data it is possible to capture a glimpse of the current health status of individuals. By
incorporating this with longitudinal statistics, it would be possible then to measure the dynamic influences on health.

The troubles we encountered were distinguishing the differences in the cross-sectional and longitudinal aspects of the survey. Further research was necessary to understand all the concepts and definitions of the survey. "The National Population Health Survey - its longitudinal nature" written by Larry Swain, Garry Catlin and Marie Beaudet proved to be helpful in this respect. Also, we were uncertain as to graphing of our data. Due to the usage of dummy variables, it seemed the odds ratios were what our results seem to indicate. Odds should be under one and over 0 which was not what our data indicated due to the linear nature of the equations. Thus we hope to be able to incorporate this into our next project.

The national population health survey serves a need for information regarding Canadian health and how different things are affecting it. Does high socio-economic status facilitate access to conditions that promote good health, or does good health enable an individual to achieve high socio-economic status? The cross-sectional component combined with the longitudinal statistics should be able to provide the answers.

Appendix:

Link to Stata Log file.

Table:

Table 1: The Numbers of Visits to General Practicioners

Variables
 Number of visits to General practicioners

_cons
Standard
female

Coeffecients and Error terms

Educational Attainment
somepost
postsec -0.14

Income Levels

lowmid -0.41
upmid
highest -0.64
(0.39)

Standard errors shown in brackets below each coeffecient value.
Data from the National Population Health Survey - its longtitudinal nature 1994/95 Health Sample, dataset 337, nphs in the DLI

This is a Stata log file for a QED session
Course: Econ 452
Students: th
Date and time: Sun, 25 Mar 2001, 16:23:06
At the end of the QED session, this file will be copied to:
84_282_Sun_th.log
These files will also be uploaded to:
http://edith.econ.queensu.ca/statausr/logfiles/Econ452
Type help QEDstata for a list of QED commands
Student work begins below this line

pause: "Type BREAK to end session started at 25 Mar 2001 16:23:06"
-> . Qextract, ds(337)
getting information about file 337 ...
loading variables from 337 (nphs94h) only (no data yet)... done
-> . do "C:\WINDOWS\TEMP\STD0d0000.tmp"
./*summarize the variables*/

. summarize						
Variable	\mid	Obs	Mean	Std. Dev.	Min	Max
QEDid	\mid	17626	8813.5	5088.332	1	17626
agegrp	\mid	17626	7.247192	3.817422	1	15
sex	\mid	17626	1.542834	.498176	1	2
marstatg	\mid	17622	1.645557	.775166	1	3
hhsizeg	\mid	17626	2.643765	1.272117	1	5
numle5g	\mid	17626	1.851072	.3560273	1	2
num6t11g	\mid	17626	1.847044	.3599552	1	2
ut_q2a	\mid	17584	3.741413	5.193526	0	31
dvedc294	\mid	17601	5.882961	3.136378	1	12

lfs_q1	\mid	16985	3.461172	2.164576	1	8
dvwh94	\mid	10851	1.758824	1.284787	1	5
inc_q2g	\mid	17413	1.664504	1.098315	1	6
dvhhin94	\mid	16893	7.012964	2.455526	1	11
dvsmkt94	\mid	17618	3.974061	2.026519	1	6

/* keep only those between the age of 25-54*/
drop if agegrp <=3
(3242 observations deleted)
. drop if agegrp $>=10$
(5093 observations deleted)
count
9291
./* keep only those who are working*/
. drop if lfs_q1 ==1
(1497 observations deleted)
. drop if lfs_q1 >=3
(3184 observations deleted)
. /* drop those working only part time (less than 30 hours) and those who did not report their income */
. drop if dvwh94 ==2
(187 observations deleted)
. drop if dvwh94 >=6
(41 observations deleted)
. drop if dvhhin94 == .
(145 observations deleted)
. $/ *$ education is coded into 11 categories, will collapse to $3^{* /}$
tab dvedc294

Highest level of education				
attained	\mid	Freq.	Percent	Cum.
Elementary school	\mid	110	2.60	2.60

Some secondary school	\mid	574	13.56	16.16
Secondary school graduation	\mid	668	15.78	31.95
Other beyond high school	\mid	19	0.45	32.40
Some trade school etc	\mid	404	9.55	41.94
Some community college	\mid	392	9.26	51.21
Some university	\mid	229	5.41	56.62
Trade school diploma/cert.	\mid	550	13.00	69.61
Community college diploma/cert	\mid	390	9.22	78.83
Bachelor degree (incl llb)	\mid	215	16.09	94.92
master/doctorate/medicine deg.	\mid	4232	100.00	100.00
Total				

gen somesec $=\operatorname{cond}($ dvedc $294<5,1,0)$
gen somepost $=\operatorname{cond}($ dvedc $294>4 \&$ dvedc $294<11,1,0)$
->. gen postsec $=\operatorname{cond}($ dvedc $294>10,1,0)$
$->$. gen school $=$ somesec $+2 *$ somepost $+3 *$ postsec
tab school

school	Freq.	Percent	Cum.
1	1352	31.91	31.91
2	1984	46.83	78.73
3	901	21.27	100.00
Total	4237	100.00	

label define schools 1 "High school graduate or less" 2 "some post secondary edcation" 3 "post secondary graduate"
label values school schools
/* income is coded into 11 categories, will collapse to 5 based on household size*/
tab dvhhin94 hhsizeg

household	\mid	Household size		
income	\mid	1 person	2 persons	3 persons

No income	\|	6	10	4	4	26
Less than 5,000		4	8	4	1	17
5,000-9,999		44	11	8	3	68
10,000-14,999		75	39	20	10	148
15,000-19,999		80	51	25	27	201
20,000-29,999		223	146	68	71	537
30,000-39,999		226	198	115	97	699
40,000-49,999		169	194	133	134	688
50,000-59,999		99	203	110	125	594
60,000-79,999		60	229	140	176	667
80,000 or more		26	225	146	139	592
Total		1012	1314	773	787	4237

. gen lowest $=$ cond(dvhhin94 $<4 \&$ hhsizeg $<5 \mid$ dvhhin $94<5 \&$ hhsizeg $==5,1,0)$
gen lowmid $=\operatorname{cond}($ dvhhin $94==4 \&$ hhsizeg $<3 \mid$ dvhhin $94<6 \&$ dvhhin $94>3 \&$ hhsizeg $<5 \&$ hhsizeg $>2 \mid$ dvhhin $94>4 \&$ dvhhin $94<7 \&$ hhsizeg $==5,1,0)$
gen mid $=$ cond(dvhhin $94<7 \&$ dvhhin $94>4 \&$ hhsizeg $<3 \mid$ dvhhin $94<8 \&$ dvhhin $94>5 \&$ hhsizeg $<5 \&$ hhsizeg $>2 \mid$ dvhhin $94>6 \&$ dvhhin $94<10 \&$ hhsizeg $==5,1,0)$ gen upmid $=$ cond(dvhhin94<10 \& dvhhin94>6 \& hhsizeg <3 | dvhhin $94<11 \&$ dvhhin $94>7 \&$ hhsizeg < $5 \&$ hhsizeg >2 \mid dvhhin $94==10 \&$ hhsizeg $==5,1,0)$
gen highest $=\operatorname{cond}($ dvhhin $94<=11 \&$ dvhhin94 >9 \& hhsizeg <3 | dvhhin94 $==11 \&$ hhsizeg >2,1,0)
gen inc $=$ lowest $+2 *$ lowmid $+3 *$ mid $+4^{*}$ upmid $+5 *$ highest

. tab inc				
inc	\mid	Freq.	Percent	Cum.
1	\mid	115	2.71	2.71
2	\mid	243	5.74	8.45
3	\mid	1029	24.29	32.74
4	\mid	1969	46.47	79.21
5	\mid	881	20.79	100.00
Total	\mid	4237	100.00	

label define incs 1 "lowest" 2 "lower-middle" 3 "middle" 4 "upper-middle" 5 "highest"
label values inc incs
. /* working hours is coded into 4 categories, will collapse to 2 : standard hours and long hours*/
gen standard $=\operatorname{cond}($ dvwh $94==1 \mid$ dvwh $94==4,1,0)$
gen longwh $=\operatorname{cond}(\mathrm{dvwh} 94==3 \mid \mathrm{dvwh} 94==5,1,0)$
. gen hours $=$ standard $+2 *$ longwh
label define hour 1 "standard hours" 2 "long working hours"
label values hours hour
/* generate male and female dummy variables*/
gen male $=\operatorname{cond}(\operatorname{sex}==1,1,0)$
gen female $=\operatorname{cond}(\operatorname{sex}==2,1,0)$
/*tabulations for smoking*/
tab dvsmkt94 hours

	\mid	hours			
	\mid	standard	Long work	\mid	Total
Type of smoker	\mid	1053	241	\mid	1294
Daily smoker	\mid	102	30	\mid	132
Occ smoker (former daily)	\mid	64	18	\mid	82
Always an occasional	\mid	792	157	\mid	949
Former daily smoker	\mid	221	68	\mid	289
Former occasional smo	\mid	1246	244	\mid	1490
Never smoked	\mid	3478	758	\mid	4236

gen smoker $=$ cond $($ dvsmkt94 $==1,1,0)$
label define smokers 0 "non daily smoker" 1 "daily smoker
label values smoker smokers
tab smoker hours
smoker
| standard
Total

Non daily smoker	\mid	2426	517	\mid	2943
Daily smoker	\mid	1053	241	\mid	1294
Total	\mid	3479	758	\mid	4237

./*regressions*/
. regress smoker longwh

30	\mid	4	5	\mid	9
31	\mid	7	6	\mid	13
Total	\mid	2807	1424	\mid	4231

Number of \|			
Visits to			
general			
practitioner	hours		
Past year	standard	Long work	Total
0	935	180	1115
1	878	189	1067
2	580	134	714
3	334	77	411
4	208	49	257
5	106	26	132
6	150	34	184
7	26	11	37
8	54	10	64
9	7	1	8
10	49	9	58
11	2	0	2
12	66	19	85
13	1	0	1
14	4	0	4
15	21	2	23
16	5	1	6
17	0	1	1

18	\mid	2	0	\mid	2
20	\mid	15	4	\mid	19
24	\mid	7	2	\mid	9
25	\mid	6	2	\mid	8
26	\mid	2	0	\mid	2
30	\mid	6	3	\mid	9
31	\mid	10	3	\mid	13
Total	\mid	3474	757	\mid	4231

end of do-file
-> . regress ut_q2a longwh

Source	\|	SS	df	MS		Number of obs $=$		
						$\mathrm{F}(1,4229)=2.19$		
Model	\|	34.0889489	1	34.0889489		Prob > F = 0.1390		
Residual	\|	65834.5653	4229	15.5	073	R-squared $=0.0005$		
						Adj R-squared=0.0003		
Total	\|	65868.6542	4230	15.5	859	RootMSE		
ut_q2a	Coef.		Std.Err.		t	$\mathrm{P}>\|\mathrm{t}\|$	[95\%Conf.Interval]	
longwh	. 2341884		. 1582584		1.480	0.139	-. 0760811	. 544458
_cons	2.574266		. 0669412		38.456	0.000	2.443026	2.705506

-> . test longwh
(1) longwh $=0.0$
$\mathrm{F}(1,4229)=2.19$
Prob $>\mathrm{F}=0.1390$
>. summarize

Variable	\mid	Obs	Mean	Std. Dev.	Min	Max
QEDid	\mid	4237	8925.158	5111.942	12	17625
agegrp	\mid	4237	6.261034	1.659756	4	9

sex	4237	1.336795	. 4726699	1	2
marstatg	4237	1.502242	. 7162667	1	3
hhsizeg	4237	2.563606	1.261969	1	5
numle5g	4237	1.839509	. 3671041	1	2
num6t11g	4237	1.847062	. 3599706	1	2
ut_q2a	4231	2.616166	3.94611	0	31
dvedc294	4232	7.237713	3.089956	2	12
1fs_q1	4237	2	0	2	2
dvwh94	4237	1.599481	1.290932	1	5
inc_q2g	4231	1.101867	. 531534	1	6
dvhhin94	4237	8.026434	2.128821	1	11
dvsmkt94	4236	3.773607	2.078046	1	6
somesec	4237	. 3190937	. 4661804	0	1
somepost	4237	. 4682558	. 4990502	0	1
postsec	4237	. 2126505	. 4092307	0	1
school	4237	1.893557	. 7214824	1	3
lowest	4237	. 0271418	. 1625158	0	1
lowmid	4237	. 0573519	. 2325412	0	1
mid	4237	. 2428605	. 4288621	0	1
upmid	4237	. 4647156	. 4988123	0	1
highest	4237	. 2079301	. 4058745	0	1
inc	4237	3.76894	. 9334302	1	5
standard	4237	. 8210998	. 3833139	0	1
longwh	4237	. 1789002	. 3833139	0	1
hours	4237	1.1789	. 3833139	1	2
male	4237	. 6632051	. 4726699	0	1
female	4237	. 3367949	. 4726699	0	1

| smoker | 4237 | .3054048 | .460633 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

-> . regress ut_q2a somesec somepost postsec female lowest lowmid mid upmid highest standard longwh
Source | SS df MS Numberofobs=4231
$F(8,4222)=11.86$
Model | 1447.240228180 .905028 Prob $>\mathrm{F}=0.0000$
Residual | 64421.4144222 15.2585064 R-squared $=0.0220$
AdjR-squared=0.0201
Total $\mid 65868.65424230$ 15.5717859 Root MSE $=3.9062$

ut_q2a	\mid	Coef.	Std.Err.	t	$\mathrm{P}>\|\mathrm{t}\|$	[95\%Conf.Interval]	
somesec	\mid	(dropped)					
somepost	\mid	-.0279715	.1389673	-0.201	0.840	-.3004205	.2444774
postsec	\mid	-.1385647	.1757837	-0.788	0.431	-.4831933	.2060638
female	\mid	1.19053	.1279169	9.307	0.000	.9397451	1.441314
lowest	\mid	(dropped)					
lowmid	\mid	-.4089956	.4429538	-0.923	0.356	-1.277418	.4594268
mid	\mid	-.678305	.3845172	-1.764	0.078	-1.432161	.0755509
upmid	\mid	-.6003574	.3754849	-1.599	0.110	-1.336505	.1357905
highest	\mid	-.6369635	.39045	-1.631	0.103	-1.402451	.1285238
standard	\mid	-.2414124	.1578991	-1.529	0.126	-.5509778	.068153
longwh	\mid	$($ dropped $)$					
_cons	\mid	3.055879	.3984067	7.670	0.000	2.274793	3.836966

-> . exit
Session ended at 25 Mar 2001; 16:36:31
\qquad

Project 1

Queen's University
 Department of Economics

Economics 452*

Project II. 1

Age-Wage Gap Between Younger \& Older Workers: A Multiple Linear Regression Analysis on SCF(1995) data

MARCH 2001

I Introduction

Researches have shown that since the late 1970s, the real earnings among younger workers are declining. Longitudinal studies suggest that the decline of earnings among young workers is persistent. That is, younger workers will not be able to earn as much in the future, as their older cohorts are earning now (Morissette, 1997; Beaudry and Green, 1997). Hence, the gap in earnings between younger and older workers is growing.

Traditionally, younger workers enjoy an education premium over their older counterparts, while older workers benefited from greater experiences. Changes in education and experience of workers from different age groups would thus definitely affect the age-wage gap among younger and older workers. Recent observations have shown that the relative education premium enjoyed by the younger workers has largely vanished. Older male workers' education level has almost caught up with their younger counterparts during mid-90s. The relative decline in educational attainment among younger workers over the past two decades would be one of the major factors contributing to the widening of the age-wage gap.

Kapsalis, Morissette and Picot, in their paper "The Returns to Education, and the Increasing Wage Gap between Younger and Older Workers", attempted to show that changes in relative educational attainment between younger and older workers, could strongly affect the age-wage gap. They used a regression decomposition approach to study the changes in the age-wage gap over the 1981-1995 period, by employing data from various years of Surveys of Consumer Finance (SCF), Surveys of Work History (SWH) and the Labor Market Activity Surveys (LMAS). They found that during the 80s, the growth in the relative educational attainment of older workers has contributed to
about one-quarter of the increase in the age-wage gap of both male and female workers, while the gap increased to a much lesser extent in the 1990s.

In addition, they also attempted to observe the trends of the expected real wages for younger workers over the studied period. Although the educational attainment of younger workers has been rising throughout the 1981-1995 period, their real hourly wages and annual earnings have been falling. This suggests that the real expected wages for younger workers with any level of education might have been falling. Using a wage equation that controls for changes in other characteristics such as industry of employment, full-time part-time status and region, they found that during the 1980s, the expected weekly wages associated with all levels of education fell for younger workers of both genders.

This project reviews the work done by Kapsalis, Morissette and Garnett (1999), and attempts to use a similar set of data to perform a multiple linear regression for the agewage gap for both female and male workers. In Section II, we describe the data and variables employed in our regression, and compare that with data used in the paper. We briefly describe our model and methodology in Section III. In Section IV, we report and interpret our results and compare them to the paper. Section V is a concluding section where summary of our work and additional, final remarks will be addressed.

II The Data -- SCF (1995)

Kapsalis, Morissette and Picot (1999) used two sets of data in their research. They used a series of the Survey of Consumer Finance (SCF) to examine weekly earnings (wagsal) over the 1981-95 period. They also used a combination of resources obtained from the Survey of Work History (SWH) and the Labor Market Activity Survey (LMAS)
to examine both weekly earnings and hourly wages over the 1981-1988 period. Kapsalis, Morissette and Picot used the SCF to carry out analysis for two separate periods: 1981-88 and 1989-1995. When they used the SCF data, they restricted their sample to workers with positive weekly earnings and no self-employment income.

Age is one of the major variables in the regression. The authors of the paper restrict their attention to two age groups: individuals aged $25-34$ and $45-54$, in order to keep the wage comparisons tractable. They excluded workers in the age group of $18-24$ to avoid problems associated with shifting patterns over time in the rates of school attendance and part-time employment. Furthermore, at any point in time, a significant proportion of 18 24 years olds are still in school and therefore a very small portion of them are strongly attached to the labor market. Individuals aged 45-54 was selected because changing patterns of early retirements among the 55-64 year old population may also influence the results by changing in the composition of workers in the sample over time.

Since education is highly correlated to earnings, summary of education level (receduc) was included in the regression. Moreover, in order to obtain the expected real wages, the authors control for changes in characteristics like industry of employment (occ13), full-time part-time status (wrkft_pt) and region (prov) in their wage equation.

Since the main objective of our project is to pursue the work done in the paper, we attempted to follow the authors' sample selection criteria closely. Unfortunately, due to limited resources from the QED DLI data archive, we could only obtain SCF data for year 1995. The SWH-LMAS data was not available for this project. We carefully picked the variables used in the paper from the 1995 "SCF - economic families" dataset for our regression. Variables used in our regression are almost the same as those employed in the paper. A comparison \boldsymbol{f} the variables used in this project and the paper was stated in

Table 1 of Appendix II. However, selections of dummy variables like occ13 and prov were not strictly followed, further details will be explained in the following section.

III The Multiple Linear Regression Model

The main objective of this project is to construct a multiple linear regression model that is similar to the regression performed by Kapsalis, Morissette and Picot (1999). In the paper, they tried to determine the extent to which the improvement in the relative educational attainment of older workers accounts for the growth in their relative wages. To do so, they used a regression decomposition technique. This allows them to decompose the change in the wage gap between young and older workers into two components: 1) changes in the characteristics of workers employed in the two age groups and, 2) changes in the expected returns to these characteristics.

In the paper, the authors setup log wage (n w) equations for the younger and dder workers (25-34 \& 45-54) with education, province, occupation and full-/part-time work status as the control variables. The wage equation for age group j is in the form of:

$$
\begin{equation*}
Y_{i t}^{j}=X_{i t}^{j} \beta^{j}+X_{i t}^{j} \mathrm{D}_{95} \delta^{j}+u_{i t}^{j} \tag{1}
\end{equation*}
$$

where $Y_{i t}^{j}$ is the log earnings of the $i^{\text {th }}$ individual of age group j in year 1995, $X_{i t}^{j}$ are control variables, D_{55} is a dummy variable which equals one in 1995, zero otherwise, and $u_{i t}^{j}$ is a random term. Our controls consist of dummy variables for seven education levels, five regions, five industrial groups and full-time/part-time status. This is exactly what the authors have done in their paper. On top of that, they also used a method of decomposition suggested by Blinder (1973) and Oaxaca (1973), to obtain the difference
in mean \log earnings across for periods 1981-1988 and 1989-1995 ${ }^{1}$. However, we cannot replicate their work, as there is only one survey dataset (SCF 1995) available in the QED DLI data archive.

Yet, their regression (Equation (1)) is inefficient in a way that they constructed 2 separate regressions the 2 age groups for each gender and all together 4 regressions for both sexes. We improved their work by pooling the data for the two age groups and obtain one wage model for each gender. The pooled full-interaction regression wage equation for age group j and k would be in the form of:

$$
\begin{equation*}
Y_{i}^{j}=X_{i}^{j} \beta^{j}+Z_{i}^{j} \gamma^{j}+u_{i}^{j} \tag{2}
\end{equation*}
$$

where Y_{i}^{j} is the log earnings of the $t^{\text {h }}$ individual of age group j in year 1995, $\boldsymbol{\beta}^{j}$ is the coefficient for the control variables X_{i}^{j}, and γ^{j} is the coefficient for the interaction terms Z_{i}^{j}. The difference between analyzing two age groups separately and making them into one regression is that we have now constrained the variance of u for both age groups to be equal. We used STATA, software for statistical analysis, to perform the regression and the results are reported and interpreted in the following section.

IV Results

We started our regression by generating dummy variables from the raw data (SCF 1995). The variable sex was generated into 2 dummy variables, male and female. Out of these two gender groups, we created three dummy age groups (24-34, 45 - 54 and all others) for both sexes. Other required dummy variables (receduc, wrkft_pt, occ13, prov) are

[^10]also generated from the raw data in the same way, and weekly earnings (wagsal) is the dependent variable with all the negative values removed from the data.

First of all, we perform the analysis for male workers only, by creating a dataset for \log wages restricted to observations in the two age groups. The dataset consists of 4583 observations for age 25-34 and 4843 observations for age 45-54. We set age group 25-34 as the base group and run a pooled regression as illustrated in Eq. (2) by constraining the variances (u). Results are shown in Table 2 of Appendix II.

By simply looking at the pairwise coefficient differences (or, interaction terms) between the two age groups (γ), we discovered that there is an age-wage gap since these coefficient estimates do not equal to zero. Moreover, we can observe, to what extent, does each of the coefficients contribute to the gap. A negative estimated coefficient of an interaction term represents an age premium that the variable favors the younger age group over the old, and vice versa. For example, the coefficient for Old*no_school is negative for both sexes. This indicates that no school contributes more to the decrease in older male workers' earnings than younger workers.

We confirm our conjecture by performing a hypothesis test. We test for full coefficient equality by stating the hypothesis,

$$
\begin{array}{lr}
\mathrm{H}_{0}: \gamma_{\mathrm{j}}=\beta_{j}^{25-34}-\beta_{j}^{45-54}=0 & \forall j=1,2,3, \ldots, \mathrm{k} \\
\mathrm{H}_{\mathrm{A}}: \gamma_{\mathrm{j}}=\beta_{j}^{25-34}-\beta_{j}^{45-54} \neq 0 & j=1,2,3, \ldots, \mathrm{k}
\end{array}
$$

where β is the coefficient estimate for the corresponding age group and k is the total number of regression coefficients in the unrestricted model, which equals to 17 for the male regression. We reject the null since the F -value was 23.90 with a p -value of 0 . Hence, we conclude that there is an age-wage gap between younger and older male workers in year 1995, and decided to keep our model unrestricted, which was implied by
the alternative hypothesis. Hence, we rejected the restricted model where all interactive coefficients equal 0 . Our final unrestricted pooled full-interaction regression equation for 1995 male:

```
ln w
    .2856605 University +.1806115 Quebec +.3412613 Ontario + .1661092 Manitoba/Saskatchewan + .2561718
    Alberta + .2168915 B.C. + .1700787 Occ-Manager/Admin. + .0022088 Occ-Sales - . }2255549\mathrm{ Occ-Services -
    .08568 Occ-Construction + .0410144 Occ-Transport + 1.111473 Full Time + .5192982 Old*Young - .077381
    Old*no_school - . 0275861 Old*Gr.9-10 +.0294106 Old*Gr.11-13 - .0636513 Old*PostSec. diploma +
    .09858\overline{61 Old*University - . 1158353 Old*Quebec - .0461316 Old*Ont - . }1359847
    Old*Manitoba/Saskatchewan -. }2404863\mathrm{ Old*Alberta -. }039621 Old*B.C. + . 1863668 Old*Manager/Admin. -
    .01372 Old*Sales .0103647 Old*Services + .0957005 Old*Construction + .107952Old*Transport -
    .1575084Old*FT
```

The regression model suggests that the young has an age premium over their older counterparts, since most of the values of the pairwise coefficient difference $(\hat{\gamma})$ are negative. We also observed that education plays an important role in affecting the size of the gap since the coefficient estimate for the interaction term for university education suggests that older males enjoy higher rewards from university education than younger male workers. This matches with the paper's conclusion.

In order to test for the linear coefficient restrictions, we perform a general Fstatistics for the significance of the restricted and unrestricted model:

$$
\begin{equation*}
\mathrm{F}=\frac{\left(\mathrm{RU}^{2}-\mathrm{R}^{2}{ }^{2}\right) /\left(\mathrm{k}-\mathrm{k}_{0}\right)}{\left(1-\mathrm{R}_{\mathrm{U}}^{2}\right) /(\mathrm{N}-\mathrm{k})} \tag{3}
\end{equation*}
$$

where:
$\mathrm{R}_{\mathrm{U}}{ }^{2}=$ the R -squared for the unrestricted model $=0.2087$;
$\mathrm{R}_{\mathrm{R}}{ }^{2}=$ the R -squared for the restricted model $=0.0 .1682$;
$\mathrm{k}_{0}=$ the number of free regression coefficients in the restricted model $=17$;
$\mathrm{k}=$ the number of free regression coefficients in the unrestricted model $=34$;
$\mathrm{k}-\mathrm{k}_{0}=$ the number of independent linear coefficient restrictions specified by the null hypothesis $\mathrm{H}_{0}=17$;
$\mathrm{N}-\mathrm{k}=$ the degrees of freedom for RSS_{1}, the unrestricted $\mathrm{RSS}=9392$.
The unrestricted R^{2} is greater than the restricted R^{2}. The F -value calculated is 28.27^{2} with a p-value of 0 . The Fstatistic in effect determines whether imposing the coefficient

[^11]restrictions specified by the null hypothesis H_{0} significantly reduces the coefficient of determination, R^{2}. Due to the p value for the F -test is 0 , we reject the null, which means the unrestricted model is more significant than the restricted model.

We regressed our model with the assumption that the variances (u) for both age groups are equal (constrained variances). If u is known to have the same variance in the two groups, the standard errors obtained from the pooled regression are better -- they are more efficient. However, if the variances are actually different, then the standard errors obtained from the pooled regression are wrong! Therefore, we pooled the data again without constraining the residual variance and observe the difference between the two models. Identical results were obtained for our regression, which indicates that the variances for both age groups are the same. The Fvalue for the unconstrained variance model is $23.99(\mathrm{p}$-value $=0)$, which is slightly larger than that for the constrained variance model (23.90 with a p -value $=0$). However, the values are close enough to conclude that there is an age-wage gap between young and old workers, no matter the variances are constrained or not.

Similar work was done to the data for female workers (see Table 3 in Appendix II for regression results). 1006 female workers at age 25-34 and 829 females at age $45-54$ were being tested. Results show that there is an age-wage gap among female workers between the two age groups as well, since the null hypothesis for full coefficient equality was rejected (F -value is 3.22^{3} and p -value $=0$). Thus, implied by the alternative hypothesis, we use the unrestricted model for our female group. The final restricted regression model for women with a base age group of 25-34 in year 1995:

[^12]```
ln w
 Diploma + .529994University + .2944867Quebec + .3906155Ontario .121286 Manitoba/Saskatchewan +
 .3609925Alberta + .4615904B.C. + .1613444Occ-Manager/Admin. -.1464164Occ-Sales - .5164822Occ-
 Services -.2654534Occ-Transport + .9360749Full-time + .3953911Old*Young + .055615Old*no_schooling -
 .4546646Old*Gr.9-10-.2653172Old*Gr.11-13-.3931499Old*Post-Sec. diploma - .2842871Old*University
 .1587404Old*Quebec - . . }0977524\mathrm{ Old*Ont + .105598Manitoba/Saskatchewan - .1051346Old*B.C. +
 .1938023Old*Manager/Admin. - .0948978Old*Sales + .2757955Old*Services - .0531885Old*Transportation
 + .2836946 Old*Transport
```

It was found that Education favors workers in the younger age group since the interaction terms for almost all education levels are negative. We also performed Ftests for the significance of the constrained and unconstrained variance models, and the F values are close enough to conclude that it does not matter whether the variance are constrained or not (F-values: 4.89 vs 4.94 ).

It is difficult to compare our results with those generated by the authors owing to the limited resource of data. They obtained the percentage changes in the log wage gap by comparing the $\ln$ weekly wages of the two age groups between 2 time periods (1981-88 \& 1989-95), this is what we cannot do since we only have one year of SCF data.

## V Conclusion

In this project, we ran a multiple linear regression model by tightly following the sample selection criteria of the paper "The Returns to Education, and the Increasing Wage Gap Between Younger and Older Workers" by Kapsalis, Morissette and Picot (1999). The main purpose of the paper was to observe the change in the age-wage gap throughout two time periods: 1981-1988 and 1989-1995 using series of SCF data, and results were confirmed by performing a similar test using different set of data (SWHLMAS). Due to limited sources of data, we only construct a wage model for male and female workers in year 1995 for this project. Special attention should be paid to the big differences in sample sizes between the two genders since sample size affects accuracy of
estimation and the larger the sample size, the more closer the estimated results to the real value.

We improve the regression in the paper by setting up one single pooled fullinteraction regression wage equation instead of 2 separate multiple linear regression equations for the two age groups. The interaction terms reveal whether an age-wage gap exists and the effect of each variable in the pooled regression on the gap.

We set up a hypothesis to test whether the gap exists between older and younger workers by assuming all interaction terms $(\gamma)$ being zero. We rejected the null ( $p$-value $=$ 0 ) and concluded that there is a wage gap between the two age groups of both genders. We also found that younger workers enjoy an education premium over older workers. This is in particularly reflected in the data for female workers since the $\gamma$ 's for almost all education levels are negative. As mentioned in the introduction section, the paper declares that the education premium for younger male workers is disappearing. This matches with our regression results since the $\gamma$ for male with university education is positive (.0985861) which means that university education does a positive effect to the wage of older male workers over their younger cohorts.

We found that the work done by Kapsalis, Morissette and Picot was imprudent, inefficient and unprofessional. Some of their simple additions and subtractions in the decomposition were miscalculated, which led to their misinterpretation of results for the expected earnings of young workers. Fortunately, we did not replicate this part of their work and thus our results do not contradict with the paper. However, this kind of careless mistake should not be found in a professional research paper. Moreover, their work was inefficient and confusing as they could have simplify their methodology by reducing the chunky tables of results into several more effective and representable charts. In addition,
the variable for wage and salary in the 1995 SCF data was ambiguously defined. One of the observations in the wage/salary data has a value of negative billion, which seems impossible and hard to explain.

## Bibliography

Abbott, M. 2000. Notes for Economics 351*- Introductory Econometrics, Queen's University.

Gujarati, Damodar N. 1995. Basic Econometrics, 3rd Edition. McGraw Hill.

Kapsalis, C, R. Morissette, Garnett Picot. 1999. "The Returns to Education, and the Increasing Wage Gap Between Young and Older Workers", Analytical Studies Branch - Research Paper Series, Catalogue No. 11F0019MPE-131, Ottawa Statistical Canada.

## Appendices

## Appendix I - Log Files

do "C:\WINDOWS \TEMP \STD010000.tmp"
. /*project 1 Ferrall*/
. set more off
. use wagsal age sex receduc wrkft_pt occ13 prov using c:\ass1.dta (363 : scfef95 : survey of consumer finance - economic families)
. gen lnw = ln(wagsal)
(10137 missing values generated)
. tab sex, gen(dsex)

| sex | Freq. | Percent | Cum. |
| :---: | :---: | :---: | :---: |
| male | 25877 | 75.45 | 75.45 |
| female | 8419 | 24.55 | 100.00 |
| Total | 34296 | 100.00 |  |

. tab receduc, gen(deduc)

| summary education level | Freq. | Percent | Cum. |
| :---: | :---: | :---: | :---: |
| no schooling or grade 8 or lower | 5773 | 16.83 | 16.83 |
| grade 9-10 | 4257 | 12.41 | 29.25 |
| grade 11-13 not graduate | 2004 | 5.84 | 35.09 |
| grade 11-13 garaduate | 5923 | 17.27 | 52.36 |
| some post-secondary no dipl,deg, cert | 2421 | 7.06 | 59.42 |
| post-secondary cert or dipl | 9375 | 27.34 | 86.75 |
| university degree | 4543 | 13.25 | 100.00 |
| Total | 34296 | 100.00 |  |

. tab wrkft_pt, gen(dftpt)

. tab occ13, gen (docc)

| 1980 occupational classification - 13 groups | Freq. | Percent | Cum. |
| :---: | :---: | :---: | :---: |
| managerial and administrative | 3353 | 9.78 | 9.78 |
| natural sciences | 2986 | 8.71 | 18.48 |
| teaching | 1010 | 2.94 | 21.43 |
| clerical | 1868 | 5.45 | 26.87 |
| sales | 2210 | 6.44 | 33.32 |
| services | 3269 | 9.53 | 42.85 |
| farming,fishing, forestry and logging op | 1845 | 5.38 | 48.23 |
| mining, processing and machining | 1883 | 5.49 | 53.72 |
| product fabricating,assembling and repa | 2547 | 7.43 | 61.15 |
| construction trades | 2446 | 7.13 | 68.28 |
| transport, material handling, other craft | 2669 | 7.78 | 76.06 |
| never worked before | 947 | 2.76 | 78.82 |
| last worked more than 5 years ago | 7263 | 21.18 | 100.00 |
| Total | 34296 | 100.00 |  |

. tab prov, gen(dprov)

| province | Freq. | Percent | Cum. |
| :---: | :---: | :---: | :---: |
| special family unit | 8 | 0.02 | 0.02 |
| newfoundland | 1213 | 3.55 | 3.57 |
| prince edward island | 881 | 2.58 | 6.15 |
| nova scotia | 2254 | 6.60 | 12.75 |
| new brunswick | 2072 | 6.06 | 18.81 |
| quebec | 6868 | 20.10 | 38.92 |
| ontario | 10414 | 30.48 | 69.40 |
| manitoba | 2436 | 7.13 | 76.53 |
| saskatchewan | 2205 | 6.45 | 82.98 |
| alberta | 2649 | 7.75 | 90.74 |
| british columbia | 3165 | 9.26 | 100.00 |
| Total | 34165 | 100.00 |  |

. gen dprov12 = 0
. replace dprov12 = 1 if prov $==46 \mid$ prov==47
(4641 real changes made)
. label var dprov12 "Man/Sask"
. drop if wagsal < 0
(4 observations deleted)
. /*create dummy age group*/

- gen ageg $=0$
. replace ageg $=1$ if age > 24 \& age <35
(6314 real changes made)
. replace ageg $=2$ if age $>44$ \& age < 55
(6459 real changes made)
. tab ageg, gen(dageg)

| ageg | Freq. | Percent | Cum. |
| :---: | :---: | :---: | :---: |
| 0 | 21519 | 62.75 | 62.75 |
| 1 | 6314 | 18.41 | 81.16 |
| 2 | 6459 | 18.84 | 100.00 |
| Total | 34292 | 100.00 |  |

. /*pool*/
. gen $g 2=($ ageg==2)
. /*for men*/
. drop if sex ==2
(8418 observations deleted)
. /*for education group 2*/

- gen g2deduc1 = g2 * deduc1
- gen $g 2$ deduc2 $=$ g2 * deduc2
. gen 92 deduc3 $=$ g2 * deduc3
- gen $g 2$ deduc $4=$ g2 * deduc4
- gen 92 deduc5 $=$ g2 * deduc5
- gen $g 2$ deduc6 $=g 2$ * deduc6
. gen 92 deduc7 $=$ g2 * deduc7
. /*for prov group 2*/
. gen g2dprov6 = g2 * dprov6
(101 missing values generated)
. gen g2dprov7 = g2 * dprov7
(101 missing values generated)
. gen g2dpro10 = g2 * dprov10
(101 missing values generated)
. gen g2dpro11 = g2 * dprov11
(101 missing values generated)
. gen g2dpro12 = g2 * dprov12
. /*occupation for group 2*/
- gen 92 docc1 $=g 2$ *docc1
. gen g2docc5 $=$ g2 *docc5
. gen g2docc6 = g2 *docc6
. gen g2docc10 = g2 *docc10
. gen 92 docc11 $=$ g2 *docc11
. /*group 2 for full-time part-time*/
. gen g2ftpt $=g 2$ * dftpt1
. /*TRY separately*/
. regress lnw deduc1 deduc2 deduc4 deduc6 deduc7 dprov6 dprov7 dprov12 dprov1 > 0 dprov11 docc1 docc5 docc6 docc10 docc11 dftpt1 if ageg ==1

| Source | SS | df | MS | Number of obs = | 4583 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | F ( 16, 4566) | 57.71 |
| Model | 622.340189 | 16 | 38.8962618 | Prob > F | 0.0000 |
| Residual | 3077.60238 | 4566 | . 674025927 | R-squared | 0.1682 |
|  |  |  |  | Adj R-squared $=$ | 0.1653 |
| Total | 3699.94257 | 4582 | . 807495105 | Root MSE = | . 82099 |


| lnw | Coef. | Std. Err. | t | $P>\|t\|$ | [95\% Con | Interval] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| deduc1 | -. 3040725 | . 0795197 | -3.824 | 0.000 | -. 4599695 | -. 1481754 |
| deduc2 | -. 1233848 | . 0534782 | -2.307 | 0.021 | -. 228228 | -. 0185416 |
| deduc4 | . 0825255 | . 0413013 | 1.998 | 0.046 | . 001555 | . 1634959 |
| deduc6 | . 2023544 | . 0380835 | 5.313 | 0.000 | . 1276924 | . 2770164 |
| deduc 7 | . 2856605 | . 0448405 | 6.371 | 0.000 | . 1977515 | . 3735694 |
| dprov6 | . 1806115 | . 0395862 | 4.562 | 0.000 | . 1030034 | . 2582196 |
| dprov7 | . 3412613 | . 0368503 | 9.261 | 0.000 | . 2690169 | . 4135057 |
| dprov12 | . 1661092 | . 0441241 | 3.765 | 0.000 | . 0796047 | . 2526137 |
| dprov10 | . 2561718 | . 0502085 | 5.102 | 0.000 | . 157739 | . 3546047 |
| dprov11 | . 2168915 | . 0496179 | 4.371 | 0.000 | . 1196165 | . 3141665 |
| docc1 | . 1700787 | . 0405803 | 4.191 | 0.000 | . 0905217 | . 2496357 |
| docc5 | . 0022088 | . 0468683 | 0.047 | 0.962 | -. 0896758 | . 0940934 |
| docc6 | -. 0255549 | . 0416638 | -0.613 | 0.540 | -. 1072361 | . 0561262 |
| docc10 | -. 08568 | . 0409866 | -2.090 | 0.037 | -. 1660335 | -. 0053264 |
| docc11 | . 0410144 | . 0399842 | 1.026 | 0.305 | -. 0373739 | . 1194028 |
| dftpt1 | 1.111473 | . 045351 | 24.508 | 0.000 | 1.022563 | 1.200383 |
| _cons | 8.983557 | . 0609666 | 147.352 | 0.000 | 8.864033 | 9.103081 |

. regress lnw deduc1 deduc2 deduc4 deduc6 deduc7 dprov6 dprov7 dprov12 dprov1 > 0 dprov11 docc1 docc5 docc6 docc10 docc11 dftpt1 if ageg ==2

| Source | SS | df | MS |
| :---: | :---: | :---: | :---: |
| Model | 951.097295 | 16 | 59.4435809 |
| Residual | 3603.69954 | 4826 | . 746725972 |
| Total | 4554.79684 | 4842 | . 940685014 |

Number of obs $=4843$ $F(16,4826)=79.61$ Prob > F $=0.0000$ R -squared $=0.2088$ Adj R-squared $=0.2062$ Root MSE $=.86413$

| lnw | Coef. | Std. Err. | t | $P>\|t\|$ | [95\% Con | Interval] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| deduc1 | -. 3814534 | . 0525549 | -7.258 | 0.000 | -. 4844849 | -. 2784219 |
| deduc2 | -. 1509709 | . 0519265 | -2.907 | 0.004 | -. 2527704 | -. 0491714 |
| deduc4 | . 1119361 | . 0490953 | 2.280 | 0.023 | . 015687 | . 2081852 |
| deduc6 | . 1387031 | . 0436016 | 3.181 | 0.001 | . 0532241 | . 2241821 |
| deduc 7 | . 3842466 | . 0484108 | 7.937 | 0.000 | . 2893394 | . 4791538 |
| dprov6 | . 0647762 | . 0390343 | 1.659 | 0.097 | -. 0117487 | . 1413012 |
| dprov7 | . 2951297 | . 0360458 | 8.188 | 0.000 | . 2244636 | . 3657959 |
| dprov12 | . 0301245 | . 0444138 | 0.678 | 0.498 | -. 0569468 | . 1171958 |
| dprov10 | . 0156856 | . 0530767 | 0.296 | 0.768 | -. 0883689 | . 1197401 |
| dprov11 | . 1772705 | . 0516807 | 3.430 | 0.001 | . 0759527 | . 2785883 |
| docc1 | . 3564455 | . 0369045 | 9.659 | 0.000 | . 2840959 | . 4287952 |
| docc5 | -. 0115112 | . 0489788 | -0.235 | 0.814 | -. 107532 | . 0845097 |
| docc6 | -. 0151903 | . 0456884 | -0.332 | 0.740 | -. 1047603 | . 0743798 |
| docc10 | . 0100205 | . 0433385 | 0.231 | 0.817 | -. 0749428 | . 0949837 |
| docc11 | . 1489664 | . 0422807 | 3.523 | 0.000 | . 0660769 | . 2318559 |
| dftpt1 | . 9539645 | . 0429423 | 22.215 | 0.000 | . 869778 | 1.038151 |
| _cons | 9.502856 | . 0594369 | 159.881 | 0.000 | 9.386332 | 9.619379 |

. /*pool*/
. regress lnw deduc1 deduc2 deduc4 deduc6 deduc7 dprov6 dprov7 dprov12 dprov10 > dprov11 docc1 docc5 docc6 docc10 docc11 dftpt1 g2 g2deduc1 g2deduc2 g2deduc4 > g2deduc6 g2deduc7 g2dprov6 g2dprov7 g2dpro12 g2dpro10 g2dpro11 g2docc1 g2docc $>5$ g2docc6 g2docc10 g2docc11 g2ftpt if ageg ==1 |ageg==2

. /*Hypothese Test*/
. /*test whether or not there is a wage-age gap*/
. test g2 g2deduc1 g2deduc2 g2deduc4 g2deduc6 g2deduc7 g2dprov6 g2dprov7 g2dpr
> o12 g2dpro10 g2dpro11 g2docc1 g2docc5 g2docc6 g2docc10 g2docc11 g2ftpt
(1) $g 2=0.0$
(2) $\quad$ g2deduc1 $=0.0$
( 3) 92 deduc2 $=0.0$
( 4) $\quad$ g2deduc4 $=0.0$
( 5) g2deduc6 $=0.0$
( 6) $\quad$ g2deduc7 $=0.0$
( 7) g2dprov6 $=0.0$
( 8) $\quad$ g2dprov7 $=0.0$
( 9) $92 d p r o 12=0.0$
(10) $92 d p r o 10=0.0$
(11) $\quad$ g2dpro11 $=0.0$
(12) $\quad$ g2docc1 $=0.0$
(13) $\quad$ g2docc5 $=0.0$
(14) $\quad$ g2docc $6=0.0$
(15) $\quad$ g2docc10 $=0.0$
(16) $\quad$ g2docc11 $=0.0$
(17) g2ftpt $=0.0$
$F(17,9392)=23.90$
Prob $>\mathrm{F}=0.0000$
. /*for prediction which may not present in the paper*/
. /*contain the standard error of linear prediction X_j*b */

- predict stdp
(option xb assumed; fitted values)
(101 missing values generated)
. predict yhatmun, stdp
(101 missing values generated)
- sum yhatmun

| Variable | Obs | Mean | Std. Dev. | Min | Max |
| :---: | :---: | :---: | :---: | :---: | :---: |
| yhatmun | 25773 | . 0566266 | . 0156076 | . 0309614 | . 1049903 |

. /*Restricted model*/
. Hence the age group ==1
. /*Run the same process again for women*/
. use wagsal age sex receduc wrkft_pt occ13 prov using c: \ass1.dta
(363 : scfef95 : survey of consumer finance - economic families)
. gen lnw = ln(wagsal)
(10137 missing values generated)
. tab sex, gen(dsex)

| sex | Freq. | Percent | Cum. |
| :---: | :---: | :---: | :---: |
| male | 25877 | 75.45 | 75.45 |
| female | 8419 | 24.55 | 100.00 |
| Total | 34296 | 100.00 |  |

. tab receduc, gen(deduc)

| summary education level | Freq. | Percent | Cum. |
| :---: | :---: | :---: | :---: |
| no schooling or grade 8 or lower | 5773 | 16.83 | 16.83 |
| grade 9-10 | 4257 | 12.41 | 29.25 |
| grade 11-13 not graduate | 2004 | 5.84 | 35.09 |
| grade 11-13 garaduate | 5923 | 17.27 | 52.36 |
| some post-secondary no dipl,deg,cert | 2421 | 7.06 | 59.42 |
| post-secondary cert or dipl | 9375 | 27.34 | 86.75 |
| university degree | 4543 | 13.25 | 100.00 |
| Total | 34296 | 100.00 |  |

. tab wrkft_pt, gen(dftpt)

| worked mostly full or part time in reference year | Freq. | Percent | Cum. |
| :---: | :---: | :---: | :---: |
| full-time | 21053 | 61.39 | 61.39 |
| part-time | 2506 | 7.31 | 68.69 |
| did not work in reference year | 10732 | 31.29 | 99.99 |
| 7 | 1 | 0.00 | 99.99 |
| 20 | 1 | 0.00 | 99.99 |
| 27 | 1 | 0.00 | 99.99 |
| 40 | 1 | 0.00 | 100.00 |
| 41 | 1 | 0.00 | 100.00 |
| Total | 34296 | 100.00 |  |

. tab occ13, gen (docc)

| 1980 occupational classification - 13 groups | Freq. | Percent | Cum. |
| :---: | :---: | :---: | :---: |
| managerial and administrative | 3353 | 9.78 | 9.78 |
| natural sciences | 2986 | 8.71 | 18.48 |
| teaching | 1010 | 2.94 | 21.43 |
| clerical | 1868 | 5.45 | 26.87 |
| sales | 2210 | 6.44 | 33.32 |
| services | 3269 | 9.53 | 42.85 |
| farming,fishing, forestry and logging op | 1845 | 5.38 | 48.23 |
| mining, processing and machining | 1883 | 5.49 | 53.72 |
| product fabricating,assembling and repa | 2547 | 7.43 | 61.15 |
| construction trades | 2446 | 7.13 | 68.28 |
| transport, material handling, other craft | 2669 | 7.78 | 76.06 |
| never worked before | 947 | 2.76 | 78.82 |
| last worked more than 5 years ago | 7263 | 21.18 | 100.00 |
| Total | 34296 | 100.00 |  |

. tab prov, gen(dprov)

| province | Freq. | Percent | Cum. |
| :---: | :---: | :---: | :---: |
| special family unit | 8 | 0.02 | 0.02 |
| newfoundland | 1213 | 3.55 | 3.57 |
| prince edward island | 881 | 2.58 | 6.15 |
| nova scotia | 2254 | 6.60 | 12.75 |
| new brunswick | 2072 | 6.06 | 18.81 |
| quebec | 6868 | 20.10 | 38.92 |
| ontario | 10414 | 30.48 | 69.40 |
| manitoba | 2436 | 7.13 | 76.53 |


| saskatchewan | 2205 | 6.45 | 82.98 |
| ---: | ---: | ---: | ---: |
| alberta | 2649 | 7.75 | 90.74 |
| british columbia | 3165 | 9.26 | 100.00 |
| Total | 34165 | 100.00 |  |

. gen dprov12 = 0
. replace dprov12 = 1 if prov == 46| prov==47
(4641 real changes made)
. label var dprov12 "Man/Sask"
. drop if wagsal < 0
(4 observations deleted)
. /*create dummy age group*/
. gen ageg $=0$
. replace ageg $=1$ if age $>24$ \& age $<35$
(6314 real changes made)
. replace ageg = 2 if age >44 \& age < 55
(6459 real changes made)
. tab ageg, gen(dageg)

| ageg | Freq. | Percent | Cum. |
| :---: | :---: | :---: | :---: |
| 0 | 21519 | 62.75 | 62.75 |
| 1 | 6314 | 18.41 | 81.16 |
| 2 | 6459 | 18.84 | 100.00 |
| Total | 34292 | 100.00 |  |

. /*pool*/
. gen g2 = (ageg==2)
. /*for women*/
. drop if sex ==1
(25874 observations deleted)
. /*for education group 2*/
. gen g2deduc1 = g2 * deduc1

- gen $g 2$ deduc2 $=$ g2 * deduc2
. gen $g 2$ deduc3 $=g 2$ * deduc3
- gen g2deduc4 = g2 * deduc4
- gen 92 deduc5 $=$ g2 * deduc5
- gen 92 deduc6 $=g 2$ * deduc6
. gen 92 deduc7 $=$ g2 * deduc7
. /*for prov group 2*/

```
. gen g2dprov6 = g2 * dprov6
```

(30 missing values generated)
. gen g2dprov7 = g2 * dprov7
(30 missing values generated)
. gen g2dpro10 = g2 * dprov10
(30 missing values generated)
. gen g2dpro11 = g2 * dprov11
(30 missing values generated)

- gen 92 dpro12 = g2 * dprov12
. /*occupation for group 2*/
. gen g2docc1 = g2 *docc1
. gen 92 docc5 $=$ g2 *docc5
. gen 92 docc6 $=$ g2 *docc6
. gen 92 docc10 $=$ g2 *docc10
. gen 92 docc11 = g2 *docc11
. /*group 2 for full-time part-time*/
- gen g2ftpt $=$ g2 * dftpt1
. /*TRY separately*/
. regress lnw deduc1 deduc2 deduc4 deduc6 deduc7 dprov6 dprov7 dprov12 dprov1
> 0 dprov11 docc1 docc5 docc6 docc11 dftpt1 if ageg ==1

| Source | SS | df | MS | Number of obs $=$ | 1006 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | F ( 15, 990) | 28.02 |
| Model | 351.878833 | 15 | 23.4585888 | Prob > F | 0.0000 |
| Residual | 828.730313 | 990 | . 837101327 | R -squared | 0.2980 |
|  |  |  | ---------- | Adj R-squared | 0.2874 |
| Total | 1180.60915 | 1005 | 1.17473547 | Root MSE = | . 91493 |


| lnw | Coef. | Std. Err. | t | $\mathrm{P}>\|\mathrm{t}\|$ | [95\% Con | Interval] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| deduc1 | -. 4165621 | . 2248779 | -1.852 | 0.064 | -. 8578542 | . 0247299 |
| deduc2 | . 0569279 | . 1510604 | 0.377 | 0.706 | -. 2395075 | . 3533633 |
| deduc4 | . 2257894 | . 0991555 | 2.277 | 0.023 | . 0312104 | . 4203684 |
| deduc6 | . 4069217 | . 0917855 | 4.433 | 0.000 | . 2268052 | . 5870383 |
| deduc7 | . 529994 | . 0992403 | 5.341 | 0.000 | . 3352486 | . 7247394 |
| dprov6 | . 2944867 | . 1014777 | 2.902 | 0.004 | . 0953506 | . 4936228 |
| dprov7 | . 3906155 | . 0878886 | 4.444 | 0.000 | . 2181461 | . 5630849 |
| dprov12 | . 121286 | . 1049884 | 1.155 | 0.248 | -. 0847394 | . 3273114 |
| dprov10 | . 3609925 | . 1165852 | 3.096 | 0.002 | . 1322101 | . 5897749 |
| dprov11 | . 4615904 | . 1139551 | 4.051 | 0.000 | . 2379692 | . 6852116 |
| docc1 | . 1613444 | . 0852017 | 1.894 | 0.059 | -. 0058522 | . 3285411 |
| docc5 | -. 1464164 | . 1164095 | -1.258 | 0.209 | -. 374854 | . 0820213 |
| docc6 | -. 5164822 | . 0789152 | -6.545 | 0.000 | -. 6713425 | -. 3616218 |
| docc11 | -. 2654534 | . 1775983 | -1.495 | 0.135 | -. 6139657 | . 0830589 |
| dftpt1 | . 9360749 | . 075359 | 12.422 | 0.000 | . 7881932 | 1.083957 |
| _cons | 8.428428 | . 1202296 | 70.103 | 0.000 | 8.192494 | 8.664362 |

. regress lnw deduc1 deduc2 deduc4 deduc6 deduc7 dprov6 dprov7 dprov12 dprov1 > 0 dprov11 docc1 docc5 docc6 docc11 dftpt1 if ageg ==2

| Source | SS | df | MS |
| :---: | :---: | :---: | :---: |
| Model | 337.647643 | 15 | 22.5098429 |
| Residual | 736.309866 | 813 | . 905670192 |
| Total | 1073.95751 | 828 | 1.29705013 |


| Number of obs | $=829$ |
| :--- | ---: | ---: |
| $\mathrm{~F}(15, ~ 813)$ | $=24.85$ |
| Prob $>\mathrm{F}$ | $=0.0000$ |
| R-squared | $=0.3144$ |
| Adj R-squared | $=0.3017$ |
| Root MSE | $=.95167$ |


| lnw | Coef. | Std. Err. | t | $P>\|t\|$ | [95\% Conf | Interval] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| deduc1 | -. 3609471 | . 1638745 | -2.203 | 0.028 | -. 6826141 | -. 0392801 |
| deduc2 | -. 3977368 | . 1490945 | -2.668 | 0.008 | -. 6903923 | -. 1050812 |
| deduc4 | -. 0395279 | . 1226837 | -0.322 | 0.747 | -. 280342 | . 2012862 |
| deduc6 | . 0137719 | . 1127509 | 0.122 | 0.903 | -. 2075454 | . 2350891 |
| deduc 7 | . 245707 | . 1261139 | 1.948 | 0.052 | -. 0018403 | . 4932542 |
| dprov6 | . 1357463 | . 1138358 | 1.192 | 0.233 | -. 0877005 | . 359193 |
| dprov7 | . 2928631 | . 1097151 | 2.669 | 0.008 | . 0775049 | . 5082213 |
| dprov12 | . 226884 | . 1391614 | 1.630 | 0.103 | -. 0462739 | . 500042 |
| dprov10 | . 2558579 | . 1563971 | 1.636 | 0.102 | -. 0511318 | . 5628477 |
| dprov11 | . 2409352 | . 1363009 | 1.768 | 0.077 | -. 026608 | . 5084784 |
| docc1 | . 3551467 | . 0986264 | 3.601 | 0.000 | . 1615543 | . 5487392 |
| docc5 | -. 2413141 | . 1274525 | -1.893 | 0.059 | -. 4914889 | . 0088607 |
| docc6 | -. 2406866 | . 1020735 | -2.358 | 0.019 | -. 4410453 | -. 040328 |
| docc11 | -. 3186418 | . 2090391 | -1.524 | 0.128 | -. 7289619 | . 0916782 |
| dftpt1 | 1.219769 | . 0825975 | 14.768 | 0.000 | 1.05764 | 1.381899 |
| _cons | 8.823819 | . 1466059 | 60.187 | 0.000 | 8.536048 | 9.11159 |

. /*pool*/
. regress lnw deduc1 deduc2 deduc4 deduc6 deduc7 dprov6 dprov7 dprov12 dprov10 > dprov11 docc1 docc5 docc6 docc11 dftpt1 g2 g2deduc1 g2deduc2 g2deduc4 g2dedu > c6 g2deduc7 g2dprov6 g2dprov7 g2dpro12 g2dpro10 g2dpro11 g2docc1 g2docc5 g2do $>$ cc6 g2docc11 g2ftpt if ageg ==1 |ageg==2


| lnw | Coef. | Std. Err. | t | $P>\|t\|$ | [95\% Con | Interval] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| deduc1 | -. 4165621 | . 2289932 | -1.819 | 0.069 | -. 865682 | . 0325578 |
| deduc2 | . 0569279 | . 1538249 | 0.370 | 0.711 | -. 2447659 | . 3586216 |
| deduc4 | . 2257894 | . 10097 | 2.236 | 0.025 | . 0277588 | . 4238199 |
| deduc6 | . 4069217 | . 0934652 | 4.354 | 0.000 | . 2236102 | . 5902333 |
| deduc7 | . 529994 | . 1010564 | 5.245 | 0.000 | . 3317941 | . 7281939 |
| dprov6 | . 2944867 | . 1033348 | 2.850 | 0.004 | . 0918182 | . 4971552 |
| dprov7 | . 3906155 | . 089497 | 4.365 | 0.000 | . 2150867 | . 5661442 |
| dprov12 | . 121286 | . 1069098 | 1.134 | 0.257 | -. 088394 | . 330966 |
| dprov10 | . 3609925 | . 1187187 | 3.041 | 0.002 | . 1281518 | . 5938332 |
| dprov11 | . 4615904 | . 1160405 | 3.978 | 0.000 | . 2340025 | . 6891783 |
| docc1 | . 1613444 | . 0867609 | 1.860 | 0.063 | -. 0088181 | . 3315069 |
| docc5 | -. 1464164 | . 1185398 | -1.235 | 0.217 | -. 3789062 | . 0860735 |
| docc 6 | -. 5164822 | . 0803594 | -6.427 | 0.000 | -. 6740895 | -. 3588748 |
| docc11 | -. 2654534 | . 1808484 | -1.468 | 0.142 | -. 6201478 | . 089241 |
| dftpt1 | . 9360749 | . 0767381 | 12.198 | 0.000 | . 78557 | 1.08658 |
| g2 | . 3953911 | . 1886501 | 2.096 | 0.036 | . 0253953 | . 7653869 |


| g2deduc1 | . 055615 | . 2796003 | 0.199 | 0.842 | -. 4927597 | . 6039897 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| g2deduc2 | -. 4546646 | . 2120546 | -2.144 | 0.032 | -. 8705632 | -. 038766 |
| g2deduc4 | -. 2653172 | . 1569093 | -1.691 | 0.091 | -. 5730604 | . 0424259 |
| g2deduc6 | -. 3931499 | . 1446376 | -2.718 | 0.007 | -. 6768248 | -. 109475 |
| g2deduc7 | -. 2842871 | . 1595492 | -1.782 | 0.075 | -. 5972077 | . 0286336 |
| g2dprov6 | -. 1587404 | . 1519801 | -1.044 | 0.296 | -. 4568161 | . 1393352 |
| g2dprov7 | -. 0977524 | . 1398095 | -0.699 | 0.485 | -. 371958 | . 1764533 |
| g2dpro12 | . 105598 | . 1731777 | 0.610 | 0.542 | -. 234052 | . 4452481 |
| g2dpro10 | -. 1051346 | . 1937456 | -0.543 | 0.587 | -. 485124 | . 2748549 |
| g2dpro11 | -. 2206552 | . 1768361 | -1.248 | 0.212 | -. 5674805 | . 1261701 |
| g2docc1 | . 1938023 | . 1298085 | 1.493 | 0.136 | -. 0607886 | . 4483933 |
| g2docc5 | -. 0948978 | . 1721062 | -0.551 | 0.581 | -. 4324463 | . 2426507 |
| g2docc6 | . 2757955 | . 1282322 | 2.151 | 0.032 | . 0242962 | . 5272948 |
| g2docc11 | -. 0531885 | . 2731061 | -0.195 | 0.846 | -. 5888261 | . 4824492 |
| g2ftpt | . 2836946 | . 1114785 | 2.545 | 0.011 | . 0650539 | . 5023352 |
| _cons | 8.428428 | . 1224299 | 68.843 | 0.000 | 8.188309 | 8.668547 |

. /*Hypothese Test*/
. /*test whether or not there is a wage-age gap*/
. test g2 g2deduc1 g2deduc2 g2deduc4 g2deduc6 g2deduc7 g2dprov6 g2dprov7 g2dpr
> o12 g2dpro10 g2dpro11 g2docc1 g2docc5 g2docc6 g2docc11 g2ftpt
(1) $g 2=0.0$
(2) $\quad$ g2deduc1 $=0.0$
( 3) $\quad$ g2deduc2 $=0.0$
( 4) 92 deduc $4=0.0$
( 5) g2deduc6 $=0.0$
( 6) $\quad$ g2deduc $7=0.0$
( 7) g2dprov6 $=0.0$
( 8) $\quad$ g2dprov7 $=0.0$
( 9) $\quad$ g2dpro12 $=0.0$
(10) $\quad$ g2dpro10 $=0.0$
(11) $\quad$ g2dpro11 $=0.0$
(12) 92 docc1 $=0.0$
(13) $92 d o c c 5=0.0$
(14) $92 \operatorname{docc} 6=0.0$
(15) $\quad$ g2docc11 $=0.0$
(16) g2ftpt $=0.0$

| $F(16,1803)$ | $=$ | 4.94 |
| ---: | :--- | :--- |
| Prob $>F$ | $=$ | 0.0000 |

. /*for prediction which may not present in the paper*/
. /*contain the standard error of linear prediction X_j*b */

- predict stdp
(option xb assumed; fitted values)
(30 missing values generated)
. predict yhatfun, stdp
(30 missing values generated)
. sum yhatfun

| Variable | Obs | Mean | Std. Dev. | Min | Max |
| :---: | :---: | :---: | :---: | :---: | :---: |
| yhatfun | 8388 | . 1444209 | . 0511473 | . 072206 | . 2845741 |

. /*Restricted model*/
Hence the age group $==1$
. /*end project, but the following is for unconstraint variance model
> summary of constraint v.s unconstranint is discusssed at the end*/
. /*First begin with men*/
. use wagsal age sex receduc wrkft_pt occ13 prov using c: \ass1.dta
(363 : scfef95 : survey of consumer finance - economic families)
. gen lnw = ln(wagsal)
(10137 missing values generated)
. tab sex, gen(dsex)

| sex | Freq. | Percent | Cum. |
| :---: | :---: | :---: | :---: |
| male | 25877 | 75.45 | 75.45 |
| female | 8419 | 24.55 | 100.00 |
| Total | 34296 | 100.00 |  |

. tab receduc, gen(deduc)

. tab wrkft_pt, gen(dftpt)

. tab occ13, gen(docc)

| 1980 occupational classification - 13 groups | Freq. | Percent | Cum. |
| :---: | :---: | :---: | :---: |
| managerial and administrative | 3353 | 9.78 | 9.78 |
| natural sciences | 2986 | 8.71 | 18.48 |
| teaching | 1010 | 2.94 | 21.43 |
| clerical | 1868 | 5.45 | 26.87 |
| sales | 2210 | 6.44 | 33.32 |
| services | 3269 | 9.53 | 42.85 |


| farming,fishing,forestry and logging op | 1845 | 5.38 | 48.23 |
| :---: | :---: | :---: | :---: |
| mining, processing and machining | 1883 | 5.49 | 53.72 |
| product fabricating, assembling and repa | 2547 | 7.43 | 61.15 |
| construction trades | 2446 | 7.13 | 68.28 |
| transport, material handling, other craft | 2669 | 7.78 | 76.06 |
| never worked before | 947 | 2.76 | 78.82 |
| last worked more than 5 years ago | 7263 | 21.18 | 100.00 |
| Total | 34296 | 100.00 |  |

. tab prov, gen (dprov)

| province | Freq. | Percent | Cum. |
| :---: | :---: | :---: | :---: |
| special family unit | 8 | 0.02 | 0.02 |
| newfoundland | 1213 | 3.55 | 3.57 |
| prince edward island | 881 | 2.58 | 6.15 |
| nova scotia | 2254 | 6.60 | 12.75 |
| new brunswick | 2072 | 6.06 | 18.81 |
| quebec | 6868 | 20.10 | 38.92 |
| ontario | 10414 | 30.48 | 69.40 |
| manitoba | 2436 | 7.13 | 76.53 |
| saskatchewan | 2205 | 6.45 | 82.98 |
| alberta | 2649 | 7.75 | 90.74 |
| british columbia | 3165 | 9.26 | 100.00 |
| Total | 34165 | 100.00 |  |

. gen dprov12 = 0
. replace dprov12 = 1 if prov == 46| prov==47
(4641 real changes made)
. label var dprov12 "Man/Sask"
. drop if wagsal < 0
(4 observations deleted)
. /*create dummy age group*/

- gen ageg $=0$
. replace ageg $=1$ if age $>24$ \& age <35
(6314 real changes made)
. replace ageg $=2$ if age $>44$ \& age < 55
(6459 real changes made)
. tab ageg, gen(dageg)

| ageg | Freq. | Percent | Cum. |
| ---: | :---: | :---: | ---: |
| 0 | 21519 | 62.75 | 62.75 |
| 1 | 6314 | 18.41 | 81.16 |
| 2 | 6459 | 18.84 | 100.00 |
| Total | 34292 | 100.00 |  |

- /*pool*/
. gen $\mathrm{g} 2=($ ageg==2)
. /*for men*/
. drop if sex $==2$
(8418 observations deleted)
. /*for education group $2 * /$
. gen g2deduc1 = g2 * deduc1
. gen g2deduc2 = g2 * deduc2
. gen g2deduc3 = g2 * deduc3
. gen g2deduc4 $=$ g2 * deduc4
. gen g2deduc5 = g2 * deduc5
. gen g2deduc6 = g2 * deduc6
. gen g2deduc7 = g2 * deduc7
. /*for prov group 2*/
. gen $g 2$ dprov6 $=$ g2 * dprov6
(101 missing values generated)
. gen g2dprov7 = g2 * dprov7
(101 missing values generated)
. gen g2dpro10 = g2 * dprov10
(101 missing values generated)
. gen g2dpro11 = g2 * dprov11
(101 missing values generated)
. gen $\mathrm{g} 2 \mathrm{dpro12}=\mathrm{g} 2$ * dprov12
. /*occupation for group 2*/
. gen 92 docc1 $=$ g2 *docc1
. gen 92 docc5 $=$ g2 *docc5
. gen $g 2$ docc $6=g 2 * \operatorname{docc} 6$
. gen $\mathrm{g} 2 \mathrm{docc} 10=\mathrm{g} 2 *$ docc10
. gen $g 2$ docc11 $=\mathrm{g} 2 *$ docc11
. /*group 2 for full-time part-time*/
- gen g2ftpt $=g 2$ * dftpt1
. /*pool*/
. regress lnw deduc1 deduc2 deduc4 deduc6 deduc7 dprov6 dprov7 dprov12 dprov10
> dprov11 docc1 docc5 docc6 docc10 docc11 dftpt1 g2 g2deduc1 g2deduc2 g2deduc4
> g2deduc6 g2deduc7 g2dprov6 g2dprov7 g2dpro12 g2dpro10 g2dpro11 g2docc1 g2docc
> 5 g2docc6 g2docc10 g2docc11 g2ftpt if ageg ==1 |ageg==2

| Source | SS | df | MS |
| :---: | :---: | :---: | :---: |
| Model | 1762.54059 | 33 | 53.4103209 |
| Residual | 6681.30192 | 9392 | . 711382232 |


| Number of obs | $=9426$ |
| :--- | ---: |
| $\mathrm{~F}(33$, 9392) | $=75.08$ |
| Prob $>\mathrm{F}$ | $=0.0000$ |
| R-squared | $=0.2087$ |


| Total | 8443.84251 | 9425.8 | 89841 |  | Adj R-squared Root MSE | $\begin{aligned} & =0.2060 \\ & =.84343 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| lnw | Coef. | Std. Err. | t | $P>\|t\|$ | [95\% Conf. | Interval] |
| deduc1 | -. 3040725 | . 0816936 | -3.722 | 0.000 | -. 4642096 | -. 1439353 |
| deduc2 | -. 1233848 | . 0549402 | -2.246 | 0.025 | -. 2310795 | -. 0156901 |
| deduc4 | . 0825255 | . 0424303 | 1.945 | 0.052 | -. 0006472 | . 1656982 |
| deduc6 | . 2023544 | . 0391246 | 5.172 | 0.000 | . 1256618 | . 2790471 |
| deduc 7 | . 2856605 | . 0460663 | 6.201 | 0.000 | . 1953606 | . 3759604 |
| dprov6 | . 1806115 | . 0406684 | 4.441 | 0.000 | . 1008926 | . 2603304 |
| dprov7 | . 3412613 | . 0378577 | 9.014 | 0.000 | . 267052 | . 4154705 |
| dprov12 | . 1661092 | . 0453303 | 3.664 | 0.000 | . 077252 | . 2549664 |
| dprov10 | . 2561718 | . 0515811 | 4.966 | 0.000 | . 1550618 | . 3572819 |
| dprov11 | . 2168915 | . 0509743 | 4.255 | 0.000 | . 1169708 | . 3168121 |
| docc1 | . 1700787 | . 0416896 | 4.080 | 0.000 | . 088358 | . 2517994 |
| docc5 | . 0022088 | . 0481496 | 0.046 | 0.963 | -. 0921748 | . 0965925 |
| docc6 | -. 0255549 | . 0428028 | -0.597 | 0.550 | -. 1094576 | . 0583478 |
| docc10 | -. 08568 | . 0421071 | -2.035 | 0.042 | -. 168219 | -. 003141 |
| docc11 | . 0410144 | . 0410773 | 0.998 | 0.318 | -. 0395059 | . 1215348 |
| dftpt1 | 1.111473 | . 0465908 | 23.856 | 0.000 | 1.020145 | 1.202801 |
| g2 | . 5192982 | . 0853725 | 6.083 | 0.000 | . 3519497 | . 6866467 |
| g2deduc1 | -. 077381 | . 0964631 | -0.802 | 0.422 | -. 2664695 | . 1117076 |
| g2deduc2 | -. 0275861 | . 0747473 | -0.369 | 0.712 | -. 174107 | . 1189348 |
| g2deduc4 | . 0294106 | . 0640046 | 0.460 | 0.646 | -. 0960524 | . 1548736 |
| g2deduc6 | -. 0636513 | . 0578087 | -1.101 | 0.271 | -. 1769689 | . 0496664 |
| g2deduc7 | . 0985861 | . 0659908 | 1.494 | 0.135 | -. 0307701 | . 2279423 |
| g2dprov6 | -. 1158353 | . 0557268 | -2.079 | 0.038 | -. 2250719 | -. 0065987 |
| g2dprov7 | -. 0461316 | . 0516818 | -0.893 | 0.372 | -. 147439 | . 0551759 |
| g2dpro12 | -. 1359847 | . 0627221 | -2.168 | 0.030 | -. 2589335 | -. 0130359 |
| g2dpro10 | -. 2404863 | . 0731054 | -3.290 | 0.001 | -. 3837887 | -. 0971839 |
| g2dpro11 | -. 039621 | . 0717137 | -0.552 | 0.581 | -. 1801955 | . 1009534 |
| g2docc1 | . 1863668 | . 0550954 | 3.383 | 0.001 | . 0783678 | . 2943658 |
| 92docc5 | -. 01372 | . 0678511 | -0.202 | 0.840 | -. 1467228 | . 1192827 |
| g2docc6 | . 0103647 | . 0618119 | 0.168 | 0.867 | -. 1108 | . 1315293 |
| g2docc10 | . 0957005 | . 0596853 | 1.603 | 0.109 | -. 0212956 | . 2126966 |
| g2docc11 | . 107952 | . 058227 | 1.854 | 0.064 | -. 0061857 | . 2220896 |
| g2ftpt | -. 1575084 | . 0626695 | -2.513 | 0.012 | -. 2803541 | -. 0346626 |
| _cons | 8.983557 | . 0626332 | 143.431 | 0.000 | 8.860783 | 9.106332 |

[^13]. sum $r$ if ageg==1

| Variable | Obs | Mean | Std. Dev. | Min | Max |
| ---: | :---: | :---: | :---: | :---: | :---: |
| r | 4583 | $2.18 e^{2}-10$ | .8195561 | -9.945498 | 2.294081 |

- gen $w=r(\operatorname{Var})^{*}(r(N)-1) /(r(N)-17)$ if ageg==1
(20915 missing values generated)
. sum $r$ if $a g e g==2$

| Variable | Obs | Mean | Std. Dev. | Min | Max |
| :---: | :---: | :---: | :---: | :---: | :---: |
| r | 4843 | -2.12e-11 | . 8627042 | -10.32154 | 9.877984 |

. replace $w=r(\operatorname{Var}) *(r(N)-1) /(r(N)-17)$ if ageg==2
(5367 real changes made)
. regress lnw deduc1 deduc2 deduc4 deduc6 deduc7 dprov6 dprov7 dprov12 dprov10 $>$ dprov11 docc1 docc5 docc6 docc10 docc11 dftpt1 g2 g2deduc1 g2deduc2 g2deduc4 > g2deduc6 g2deduc7 g2dprov6 g2dprov7 g2dpro12 g2dpro10 g2dpro11 g2docc1 g2docc $>5$ g2docc6 g2docc10 g2docc11 g2ftpt if ageg ==1 |ageg==2 [aw=1/w]
(sum of wgt is 1.3285e+004)

| Source | SS | df | MS |
| :---: | :---: | :---: | :---: |
| Model | 1747.95662 | 33 | 52.9683824 |
| Residual | 6663.78699 | 9392 | . 709517355 |
| Total | 8411.74361 | 9425 | . 892492691 |

Number of obs $=9426$
$F(33,9392)=74.65$
Prob > F $=0.0000$
R -squared $=0.2078$ Adj R-squared $=0.2050$
Root MSE $=.84233$

| lnw | Coef. | Std. Err. | t | $P>\|t\|$ | [95\% Conf. Interval] |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| deduc1 | -. 3040725 | . 0795197 | -3.824 | 0.000 | -. 4599483 | -. 1481966 |
| deduc2 | -. 1233848 | . 0534782 | -2.307 | 0.021 | -. 2282137 | -. 0185559 |
| deduc4 | . 0825255 | . 0413013 | 1.998 | 0.046 | . 0015661 | . 1634849 |
| deduc6 | . 2023544 | . 0380835 | 5.313 | 0.000 | . 1277026 | . 2770063 |
| deduc7 | . 2856605 | . 0448405 | 6.371 | 0.000 | . 1977635 | . 3735575 |
| dprov6 | . 1806115 | . 0395862 | 4.562 | 0.000 | . 103014 | . 258209 |
| dprov7 | . 3412613 | . 0368503 | 9.261 | 0.000 | . 2690268 | . 4134958 |
| dprov12 | . 1661092 | . 044124 | 3.765 | 0.000 | . 0796165 | . 2526019 |
| dprov10 | . 2561718 | . 0502085 | 5.102 | 0.000 | . 1577524 | . 3545913 |
| dprov11 | . 2168915 | . 0496179 | 4.371 | 0.000 | . 1196298 | . 3141532 |
| docc1 | . 1700787 | . 0405803 | 4.191 | 0.000 | . 0905326 | . 2496248 |
| docc5 | . 0022088 | . 0468683 | 0.047 | 0.962 | -. 0896632 | . 0940809 |
| docc6 | -. 0255549 | . 0416638 | -0.613 | 0.540 | -. 107225 | . 0561151 |
| docc10 | -. 08568 | . 0409866 | -2.090 | 0.037 | -. 1660226 | -. 0053374 |
| docc11 | . 0410144 | . 0399842 | 1.026 | 0.305 | -. 0373632 | . 1193921 |
| dftpt1 | 1.111473 | . 045351 | 24.508 | 0.000 | 1.022575 | 1.200371 |
| g2 | . 5192982 | . 085145 | 6.099 | 0.000 | . 3523957 | . 6862008 |
| g2deduc1 | -. 077381 | . 0953174 | -0.812 | 0.417 | -. 2642236 | . 1094617 |
| g2deduc2 | -. 0275861 | . 0745404 | -0.370 | 0.711 | -. 1737015 | . 1185293 |
| g2deduc4 | . 0294106 | . 0641572 | 0.458 | 0.647 | -. 0963513 | . 1551725 |
| g2deduc6 | -. 0636513 | . 0578917 | -1.099 | 0.272 | -. 1771316 | . 049829 |
| g2deduc7 | . 0985861 | . 0659869 | 1.494 | 0.135 | -. 0307625 | . 2279348 |
| g2dprov6 | -. 1158353 | . 0555944 | -2.084 | 0.037 | -. 2248124 | -. 0068582 |
| g2dprov7 | -. 0461316 | . 0515484 | -0.895 | 0.371 | -. 1471777 | . 0549145 |
| g2dpro12 | -. 1359847 | . 062606 | -2.172 | 0.030 | -. 2587061 | -. 0132633 |
| g2dpro10 | -. 2404863 | . 0730618 | -3.292 | 0.001 | -. 3837032 | -. 0972693 |
| g2dpro11 | -. 039621 | . 0716438 | -0.553 | 0.580 | -. 1800584 | . 1008163 |
| g2docc1 | . 1863668 | . 0548516 | 3.398 | 0.001 | . 0788457 | . 2938879 |
| g2docc5 | -. 01372 | . 0677906 | -0.202 | 0.840 | -. 1466043 | . 1191642 |
| g2docc6 | . 0103647 | . 0618328 | 0.168 | 0.867 | -. 1108411 | . 1315704 |
| g2docc10 | . 0957005 | . 0596501 | 1.604 | 0.109 | -. 0212266 | . 2126275 |
| g2docc11 | . 107952 | . 0581927 | 1.855 | 0.064 | -. 0061184 | . 2220223 |
| g2ftpt | -. 1575084 | . 062456 | -2.522 | 0.012 | -. 2799357 | -. 035081 |
| _cons | 8.983557 | . 0609666 | 147.352 | 0.000 | 8.86405 | 9.103065 |

. /*F-statistics for unconstraint variance model*/
. test g2 g2deduc1 g2deduc2 g2deduc4 g2deduc6 g2deduc7 g2dprov6 g2dprov7 g2dpro
$>12$ g2dpro10 g2dpro11 g2docc1 g2docc5 g2docc6 g2docc10 g2docc11 g2ftpt
( 1 ) $\mathrm{g} 2=0.0$
( 2) $\quad$ g2deduc1 $=0.0$
( 3) $\quad$ g2deduc2 $=0.0$
( 4) $\quad$ g2deduc4 $=0.0$
( 5) $\quad$ g2deduc6 $=0.0$

```
(6) g2deduc7 \(=0.0\)
(7) 92 dprov6 \(=0.0\)
(8) g2dprov7 \(=0.0\)
(9) \(\quad\) g2dpro12 \(=0.0\)
(10) g2dpro10 = 0.0
(11) \(\quad\) g2dpro11 \(=0.0\)
(12) g2docc1 \(=0.0\)
(13) \(\quad\) g2docc5 \(=0.0\)
(14) \(92 d o c c 6=0.0\)
(15) \(\mathrm{g} 2 \mathrm{docc} 10=0.0\)
(16) \(\quad\) g2docc11 \(=0.0\)
(17) g2ftpt \(=0.0\)
\(F(17,9392)=23.99\)
 Prob \(>\mathrm{F}=0.0000\)
```

. drop _all
. /*do the same for women*/
. use wagsal age sex receduc wrkft_pt occ13 prov using c: \ass1.dta
(363 : scfef95 : survey of consumer finance - economic families)
. gen lnw = ln(wagsal)
(10137 missing values generated)
. tab sex, gen(dsex)

| sex | Freq. | Percent | Cum. |
| :---: | :---: | :---: | :---: |
| male | 25877 | 75.45 | 75.45 |
| female | 8419 | 24.55 | 100.00 |
| Total | 34296 | 100.00 |  |

. tab receduc, gen (deduc)

| summary education level | Freq. | Percent | Cum. |
| :---: | :---: | :---: | :---: |
| no schooling or grade 8 or lower | 5773 | 16.83 | 16.83 |
| grade 9-10 | 4257 | 12.41 | 29.25 |
| grade 11-13 not graduate | 2004 | 5.84 | 35.09 |
| grade 11-13 garaduate | 5923 | 17.27 | 52.36 |
| some post-secondary no dipl, deg,cert | 2421 | 7.06 | 59.42 |
| post-secondary cert or dipl | 9375 | 27.34 | 86.75 |
| university degree | 4543 | 13.25 | 100.00 |
| Total | 34296 | 100.00 |  |

. tab wrkft_pt, gen (dftpt)

| worked mostly full or part |
| ---: | ---: | ---: | ---: |
| time in reference year |$\quad$ Freq. $\quad$ Percent $\quad$ Cum.

. tab occ13, gen (docc)

| groups | Freq. | Percent | Cum. |
| :---: | :---: | :---: | :---: |
| managerial and administrative | 3353 | 9.78 | 9.78 |
| natural sciences | 2986 | 8.71 | 18.48 |
| teaching | 1010 | 2.94 | 21.43 |
| clerical | 1868 | 5.45 | 26.87 |
| sales | 2210 | 6.44 | 33.32 |
| services | 3269 | 9.53 | 42.85 |
| farming,fishing, forestry and logging op | 1845 | 5.38 | 48.23 |
| mining,processing and machining | 1883 | 5.49 | 53.72 |
| product fabricating,assembling and repa | 2547 | 7.43 | 61.15 |
| construction trades | 2446 | 7.13 | 68.28 |
| transport, material handling, other craft | 2669 | 7.78 | 76.06 |
| never worked before | 947 | 2.76 | 78.82 |
| last worked more than 5 years ago | 7263 | 21.18 | 100.00 |
| Total | 34296 | 100.00 |  |

. tab prov, gen(dprov)

| province | Freq. | Percent | Cum. |
| :---: | :---: | :---: | :---: |
| special family unit | 8 | 0.02 | 0.02 |
| newfoundland | 1213 | 3.55 | 3.57 |
| prince edward island | 881 | 2.58 | 6.15 |
| nova scotia | 2254 | 6.60 | 12.75 |
| new brunswick | 2072 | 6.06 | 18.81 |
| quebec | 6868 | 20.10 | 38.92 |
| ontario | 10414 | 30.48 | 69.40 |
| manitoba | 2436 | 7.13 | 76.53 |
| saskatchewan | 2205 | 6.45 | 82.98 |
| alberta | 2649 | 7.75 | 90.74 |
| british columbia | 3165 | 9.26 | 100.00 |
| Total | 34165 | 100.00 |  |

. gen dprov12 = 0
. replace dprov12 = 1 if prov $==46 \mid$ prov==47
(4641 real changes made)
. label var dprov12 "Man/Sask"
. drop if wagsal < 0
(4 observations deleted)
. /*create dummy age group*/
. gen ageg $=0$
. replace ageg $=1$ if age > 24 \& age <35
(6314 real changes made)
. replace ageg $=2$ if age $>44$ \& age $<55$
(6459 real changes made)
. tab ageg, gen(dageg)

| ageg | Freq. | Percent | Cum. |
| :---: | :---: | :---: | :---: |
| 0 | 21519 | 62.75 | 62.75 |
| 1 | 6314 | 18.41 | 81.16 |
| 2 | 6459 | 18.84 | 100.00 |
| Total | 34292 | 100.00 |  |

. /*pool*/
. gen $g 2=($ ageg==2)
. /*for men*/
. drop if sex ==1
(25874 observations deleted)
. /*for education group 2*/
. gen g2deduc1 = g2 * deduc1

- gen $g 2$ deduc2 $=$ g2 * deduc2
- gen 92 deduc3 $=$ g2 * deduc3
. gen 92 deduc $4=g 2$ * deduc 4
- gen 92 deduc5 $=$ g2 * deduc5
. gen 92 deduc6 $=$ g2 * deduc6
- gen 92 deduc7 $=$ g2 * deduc7
. /*for prov group 2*/
. gen g2dprov6 = g2 * dprov6
(30 missing values generated)
. gen g2dprov7 = g2 * dprov7
(30 missing values generated)
- gen 92 dpro10 = g2 * dprov10
(30 missing values generated)
. gen g2dpro11 = g2 * dprov11
(30 missing values generated)
. gen 92 dpro12 = g2 * dprov12
- /*occupation for group 2*/
. gen $g 2$ docc1 $=g 2 *$ docc1
- gen 92 docc5 $=g 2 * \operatorname{docc} 5$
. gen $\mathrm{g} 2 \mathrm{docc} 6=\mathrm{g} 2 * \operatorname{docc} 6$
. gen $\mathrm{g} 2 \mathrm{docc} 10=\mathrm{g} 2 *$ docc10
. gen $\operatorname{g2docc} 11=g 2 *$ docc11
. /*group 2 for full-time part-time*/
. gen g2ftpt $=$ g2 * dftpt1
. /*pool*/
. regress lnw deduc1 deduc2 deduc4 deduc6 deduc7 dprov6 dprov7 dprov12 dprov10
$>$ dprov11 docc1 docc5 docc6 docc11 dftpt1 g2 g2deduc1 g2deduc2 g2deduc4 g2dedu
> c6 g2deduc7 g2dprov6 g2dprov7 g2dpro12 g2dpro10 g2dpro11 g2docc1 g2docc5 g2do
$>\operatorname{cc} 6$ g2docc11 g2ftpt if ageg ==1 |ageg==2

| Source | SS | df | MS |
| :---: | :---: | :---: | :---: |
| Model | 728.07756 | 31 | 23.4863729 |
| Residual | 1565.04018 | 1803 | . 868020066 |
| Total | 2293.11774 | 1834 | 1.25033683 |

Number of obs $=1835$ $\mathrm{F}(31,1803)=27.06$ Prob $>\mathrm{F}=0.0000$ R -squared $=0.3175$ Adj R-squared $=0.3058$ Root MSE $=.93168$

| lnw | Coef. | Std. Err. | t | $P>\|t\|$ | [95\% Con | Interval] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| deduc1 | -. 4165621 | . 2289932 | -1.819 | 0.069 | -. 865682 | . 0325578 |
| deduc2 | . 0569279 | . 1538249 | 0.370 | 0.711 | -. 2447659 | . 3586216 |
| deduc4 | . 2257894 | . 10097 | 2.236 | 0.025 | . 0277588 | . 4238199 |
| deduc6 | . 4069217 | . 0934652 | 4.354 | 0.000 | . 2236102 | . 5902333 |
| deduc7 | . 529994 | . 1010564 | 5.245 | 0.000 | . 3317941 | . 7281939 |
| dprov6 | . 2944867 | . 1033348 | 2.850 | 0.004 | . 0918182 | . 4971552 |
| dprov7 | . 3906155 | . 089497 | 4.365 | 0.000 | . 2150867 | . 5661442 |
| dprov12 | . 121286 | .1069098 | 1.134 | 0.257 | -. 088394 | . 330966 |
| dprov10 | . 3609925 | . 1187187 | 3.041 | 0.002 | . 1281518 | . 5938332 |
| dprov11 | . 4615904 | . 1160405 | 3.978 | 0.000 | . 2340025 | . 6891783 |
| docc1 | . 1613444 | . 0867609 | 1.860 | 0.063 | -. 0088181 | . 3315069 |
| docc5 | -. 1464164 | . 1185398 | -1.235 | 0.217 | -. 3789062 | . 0860735 |
| docc6 | -. 5164822 | . 0803594 | -6.427 | 0.000 | -. 6740895 | -. 3588748 |
| docc11 | -. 2654534 | . 1808484 | -1.468 | 0.142 | -. 6201478 | . 089241 |
| dftpt1 | . 9360749 | . 0767381 | 12.198 | 0.000 | . 78557 | 1.08658 |
| g2 | . 3953911 | . 1886501 | 2.096 | 0.036 | . 0253953 | . 7653869 |
| g2deduc1 | . 055615 | . 2796003 | 0.199 | 0.842 | -. 4927597 | . 6039897 |
| g2deduc2 | -. 4546646 | . 2120546 | -2.144 | 0.032 | -. 8705632 | -. 038766 |
| g2deduc4 | -. 2653172 | . 1569093 | -1.691 | 0.091 | -. 5730604 | . 0424259 |
| g2deduc6 | -. 3931499 | . 1446376 | -2.718 | 0.007 | -. 6768248 | -. 109475 |
| g2deduc 7 | -. 2842871 | . 1595492 | -1.782 | 0.075 | -. 5972077 | . 0286336 |
| g2dprov6 | -. 1587404 | . 1519801 | -1.044 | 0.296 | -. 4568161 | . 1393352 |
| g2dprov7 | -. 0977524 | . 1398095 | -0.699 | 0.485 | -. 371958 | . 1764533 |
| g2dpro12 | . 105598 | . 1731777 | 0.610 | 0.542 | -. 234052 | . 4452481 |
| g2dpro10 | -. 1051346 | .1937456 | -0.543 | 0.587 | -. 485124 | . 2748549 |
| g2dpro11 | -. 2206552 | . 1768361 | -1.248 | 0.212 | -. 5674805 | . 1261701 |
| g2docc1 | . 1938023 | . 1298085 | 1.493 | 0.136 | -. 0607886 | . 4483933 |
| g2docc5 | -. 0948978 | . 1721062 | -0.551 | 0.581 | -. 4324463 | . 2426507 |
| g2docc6 | . 2757955 | . 1282322 | 2.151 | 0.032 | . 0242962 | . 5272948 |
| g2docc11 | -. 0531885 | . 2731061 | -0.195 | 0.846 | -. 5888261 | . 4824492 |
| g2ftpt | . 2836946 | . 1114785 | 2.545 | 0.011 | . 0650539 | . 5023352 |
| _cons | 8.428428 | . 1224299 | 68.843 | 0.000 | 8.188309 | 8.668547 |

. /*Notes: the number 17 stands for the number of coefficents to estimate for e > ach group*/

- predict r, resid
(4196 missing values generated)
. sum $r$ if $a g e g==1$

| Variable | Obs | Mean | Std. Dev. | Min | Max |
| :---: | :---: | :---: | :---: | :---: | :---: |
| r | 1006 | -1.74e-09 | . 9080789 | -6.130455 | 2.58335 |

. gen $w=r(\operatorname{Var})^{*}(r(N)-1) /(r(N)-17)$ if ageg==1
(7063 missing values generated)
. sum r if ageg==2

| Variable | Obs | Mean | Std. Dev. | Min | Max |
| ---: | :---: | :---: | :---: | :---: | :---: |
| r | 829 | $8.14 \mathrm{e}-10$ | .9430075 | -9.025227 | 2.477489 |

. replace $w=r(\operatorname{Var}) *(r(N)-1) /(r(N)-17)$ if ageg==2
(1092 real changes made)
. regress lnw deduc1 deduc2 deduc4 deduc6 deduc7 dprov6 dprov7 dprov12 dprov10 $>$ dprov11 docc1 docc5 docc6 docc11 dftpt1 g2 g2deduc1 g2deduc2 g2deduc4 g2dedu > c6 g2deduc7 g2dprov6 g2dprov7 g2dpro12 g2dpro10 g2dpro11 g2docc1 g2docc5 g2do $>$ cc6 g2docc11 g2ftpt if ageg ==1 |ageg==2 [aw=1/w]
(sum of wgt is 2.1148e+003)

| Source | SS | df | MS |
| :---: | :---: | :---: | :---: |
| Model | 725.671413 | 31 | 23.4087553 |
| Residual | 1562.73927 | 1803 | . 866743909 |
| Total | 2288.41068 | 1834 | 1.24777027 |


| Number of obs | $=1835$ |
| :--- | ---: |
| $\mathrm{~F}(31,1803)$ | $=27.01$ |
| Prob $>\mathrm{F}$ | $=0.0000$ |
| R-squared | $=0.3171$ |
| Adj R-squared | $=0.3054$ |
| Root MSE | $=.93099$ |


| lnw | Coef. | Std. Err. | t | $P>\|t\|$ | [95\% Con | Interval] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| deduc1 | -. 4165621 | . 2248667 | -1.852 | 0.064 | -. 8575888 | . 0244646 |
| deduc2 | . 0569279 | . 1510529 | 0.377 | 0.706 | -. 2393293 | . 353185 |
| deduc4 | . 2257894 | . 0991505 | 2.277 | 0.023 | . 0313273 | . 4202514 |
| deduc6 | . 4069217 | . 091781 | 4.434 | 0.000 | . 2269135 | . 58693 |
| deduc7 | . 529994 | . 0992353 | 5.341 | 0.000 | . 3353657 | . 7246223 |
| dprov6 | . 2944867 | . 1014727 | 2.902 | 0.004 | . 0954703 | . 4935031 |
| dprov7 | . 3906155 | . 0878843 | 4.445 | 0.000 | . 2182498 | . 5629812 |
| dprov12 | . 121286 | . 1049832 | 1.155 | 0.248 | -. 0846156 | . 3271875 |
| dprov10 | . 3609925 | . 1165794 | 3.097 | 0.002 | . 1323477 | . 5896374 |
| dprov11 | . 4615904 | . 1139494 | 4.051 | 0.000 | . 2381037 | . 6850772 |
| docc1 | . 1613444 | . 0851975 | 1.894 | 0.058 | -. 0057517 | . 3284405 |
| docc5 | -. 1464164 | . 1164037 | -1.258 | 0.209 | -. 3747167 | . 0818839 |
| docc6 | -. 5164822 | . 0789113 | -6.545 | 0.000 | -. 6712494 | -. 3617149 |
| docc11 | -. 2654534 | . 1775894 | -1.495 | 0.135 | -. 6137561 | . 0828493 |
| dftpt1 | . 9360749 | . 0753552 | 12.422 | 0.000 | . 7882821 | 1.083868 |
| g2 | . 3953911 | . 1896039 | 2.085 | 0.037 | . 0235247 | . 7672575 |
| g2deduc1 | . 055615 | . 2782501 | 0.200 | 0.842 | -. 4901116 | . 6013416 |
| g2deduc2 | -. 4546646 | . 2122471 | -2.142 | 0.032 | -. 8709408 | -. 0383885 |
| g2deduc4 | -. 2653172 | . 1577464 | -1.682 | 0.093 | -. 5747022 | . 0440678 |
| g2deduc6 | -. 3931499 | . 1453893 | -2.704 | 0.007 | -. 6782991 | -. 1080006 |
| g2deduc7 | -. 2842871 | . 1604815 | -1.771 | 0.077 | -. 5990362 | . 0304621 |
| g2dprov6 | -. 1587404 | . 152502 | -1.041 | 0.298 | -. 4578396 | . 1403588 |
| g2dprov7 | -. 0977524 | . 1405791 | -0.695 | 0.487 | -. 3734675 | . 1779628 |
| g2dpro12 | . 105598 | . 1743264 | 0.606 | 0.545 | -. 236305 | . 4475011 |
| g2dpro10 | -. 1051346 | . 1950738 | -0.539 | 0.590 | -. 4877289 | . 2774598 |
| g2dpro11 | -. 2206552 | . 1776645 | -1.242 | 0.214 | -. 569105 | . 1277946 |
| g2docc1 | . 1938023 | . 130334 | 1.487 | 0.137 | -. 0618192 | . 4494239 |
| g2docc5 | -. 0948978 | . 172615 | -0.550 | 0.583 | -. 4334442 | . 2436486 |
| g2docc6 | . 2757955 | . 1290242 | 2.138 | 0.033 | . 0227428 | . 5288482 |
| g2docc11 | -. 0531885 | . 2743003 | -0.194 | 0.846 | -. 5911683 | . 4847914 |
| g2ftpt | . 2836946 | . 1118105 | 2.537 | 0.011 | . 0644029 | . 5029863 |
| _cons | 8.428428 | . 1202237 | 70.106 | 0.000 | 8.192636 | 8.66422 |

. /*F-statistics for unconstraint variance model*/
. test g2 g2deduc1 g2deduc2 g2deduc4 g2deduc6 g2deduc7 g2dprov6 g2dprov7 g2dpro
> 12 g2dpro10 g2dpro11 g2docc1 g2docc5 g2docc6 g2docc11 g2ftpt

```
(1) g2 = 0.0
(2) g2deduc1 = 0.0
(3) g2deduc2 = 0.0
(4) g2deduc4 = 0.0
(5) g2deduc6 = 0.0
(6) g2deduc7 = 0.0
(7) g2dprov6 = 0.0
(8) g2dprov7 = 0.0
(9) g2dpro12 = 0.0
(10) g2dpro10 = 0.0
(11) g2dpro11 = 0.0
(12) g2docc1 = 0.0
(13) g2docc5 = 0.0
(14) g2docc6 = 0.0
(15) g2docc11 = 0.0
(16) g2ftpt = 0.0
F(16, 1803) = 4.89
 Prob > F = 0.0000
. /*Conclusion: it does not matter much
> If there were more groups, and the variance differences were great among
> the groups, this could become more important. */
. /*end project 3*/
end of do-file
```


## Appendix II - Tables

Table 1. Comparison of Variables used by Kapsalis, Morissette, Picot (1999) with those used in this project.

|  | Variable | Kapsalis, <br> Morissette, <br> Picot (1999) | ECON452 <br> Project II.1 <br> (2001) |
| :--- | :--- | :---: | :---: |
| Summary | No schooling or grade 8 or lower |  | $*$ |
| Education | Grade 9-10 | $*$ | $*$ |
| Level | Grade 11-13 not graduate | $*$ | $*$ |
| (receduc) | Grade 11-13 graduate | $*$ | $*$ |
|  | Some post-secondary not graduate | $*$ | $*$ |
|  | Post-secondary cert/diploma | $*$ | $*$ |
|  | University degree | $*$ | $*$ |
| Region | Quebec | $*$ | $*$ |
| (prov) | Ontario | $*$ | $*$ |
|  | Manitoba/Saskatchewan | $*$ | $*$ |
|  | Alberta | $*$ | $*$ |
| Occupation | British Columbia | Manufacturing durables | $*$ |

Table 2. Regression Results: For Males, base age group 25-34, 1995, Dependent Variable: In Weekly Wages (SCF)

| Variable |  | Coefficient (Std Error) |  |
| :---: | :---: | :---: | :---: |
| Base Age Group 25-34 |  |  |  |
|  | Constant | 8.983557 | (.0626332) |
| Education Level | No school or < Gr. 8 | -. 3040725 | (.0816936) |
|  | Gr. 9-10 | -. 1233848 | (.0549402) |
|  | Gr. 11-13 Graduate | . 0825255 | (.0424303) |
|  | Post-secondary diploma | . 2023544 | (.0391246) |
|  | University Degree | . 2856605 | (.0460663) |
| Region | Quebec | . 1806115 | (.0406684) |
|  | Ontario | . 3412613 | (.0378577) |
|  | Manitoba/Saskatchewan | . 1661092 | (.0453303) |
|  | Alberta | . 2561718 | (.0515811) |
|  | British Columbia | . 2168915 | (.0509743) |
| Occupation | Managerial \& Administrative | . 1700787 | (.0416896) |
|  | Sales | . 0022088 | (.0481496) |
|  | Services | -.0255549 | (.0428028) |
|  | Construction Trades | -. 08568 | (.0421071) |
|  | Transportation/communication | . 0410144 | (.0410773) |
| Work Status | Full-time | 1.111473 | (.0465908) |
| Pairwise coefficient differences: $\left(\gamma=\beta_{45-54}-\beta_{25-34}\right)$ |  |  |  |
|  | Old*Constant | . 5192982 | (.0853725) |
| Education Level | Old*no_school (or < Gr. 8) | -.077381 | (.0964631) |
|  | Old*Gr. 9-10 | -.0275861 | (.0747473) |
|  | Old* ${ }^{\text {Gr. }}$ 11-13 | . 0294106 | (.0640046) |
|  | Old*Post-Sec. Diploma | -.0636513 | (.578087) |
|  | Old*University | . 0985861 | (.0659908) |
| Region | Old*Quebec | -. 1158353 | (.0557268) |
|  | Old*Ontario | -.0461316 | (.0516818) |
|  | Old*Manitoba/Saskatchewan | -. 1359847 | (.0627221) |
|  | Old*Alberta | -. 2404863 | (.0731054) |
|  | Old*British Columbia | -. 039621 | (.0717137) |
| Occupation | Old*Managerial/Administrative | . 1863668 | (.0550954) |
|  | Old*Sales | -. 01372 | (.0678511) |
|  | Old*Services | . 0103647 | (.0618119) |
|  | Old*Construction | . 0957005 | (.0596853) |
|  | Old*Transportation | . 107952 | (.058227) |
| Work Status | Old*FT | -. 1575084 | (.0626695) |
| Number of Observations: $\quad \begin{aligned} & \text { Age 24-35 } \\ & \text { Age 45-54 }\end{aligned}$ |  |  |  |
|  |  |  |  |
| $\mathrm{R}_{\mathrm{U}}{ }^{2}=0.2087 ; \mathrm{R}_{\mathrm{R}}{ }^{2}=0.1682$ |  |  |  |

Table 3. Regression Results: For Females, base age group 25-34, 1995, Dependent Variable: In Weekly Wages (SCF)

| Variable |  | Coefficient (Std Error) |  |
| :---: | :---: | :---: | :---: |
| Base Age Group 25-34 |  |  |  |
|  | Constant | 8.428428 | (.1224299) |
| Education Level | No school or < Gr. 8 | -. 4165621 | (.2289932) |
|  | Gr. 9-10 | . 0569279 | (.1538249) |
|  | Gr. 11-13 Graduate | . 2257894 | (.10097) |
|  | Post-secondary diploma | . 4069217 | (.0934652) |
|  | University Degree | . 529994 | (.1010564) |
| Region | Quebec | . 2944867 | (.1033348) |
|  | Ontario | . 3906155 | (.089497) |
|  | Manitoba/Saskatchewan | . 121286 | (.1069098) |
|  | Alberta | . 3609925 | (.1187187) |
|  | British Columbia | . 4615904 | (.1160405) |
| Occupation | Managerial \& Administrative | . 1613444 | (.0867609) |
|  | Sales | -. 1464164 | (.1185398) |
|  | Services | -. 5164822 | (.0803594) |
|  | Transportation/communication | -. 2654534 | (.1808484) |
| Work Status | Full-time | . 9360749 | (.0767381) |
| Pairwise coefficient differences: $\quad\left(\gamma=\beta_{45-54}-\beta_{25-34}\right)$ |  |  |  |
|  | Old*Constant | . 3953911 | (.1886501) |
| Education Level | Old*no_school (or < Gr. 8) | . 055615 | (.2796003) |
|  | Old*Gr. 9-10 | -. 4546646 | (.2120546) |
|  | Old*Gr. 11-13 | -. 2653172 | (.1569093) |
|  | Old*Post-Sec. Diploma | -. 3931499 | (.1446376) |
|  | Old*University | -. 2842871 | (.1595492) |
| Region | Old*Quebec | -. 1587404 | (.1519801) |
|  | Old*Ontario | -. 0977524 | (.1398095) |
|  | Old*Manitoba/Saskatchewan | . 105598 | (.1731777) |
|  | Old*Alberta | -. 1051346 | (.1937456) |
|  | Old*British Columbia | -. 2206552 | (.1768361) |
| Occupation | Old*Managerial/Administrative | . 1938023 | (.1298085) |
|  | Old*Sales | -. 0948978 | (.1721062) |
|  | Old*Services | . 2757955 | (.1282322) |
|  | Old*Transportation | -. 0531885 | (.2731061) |
| Work Status | Old*FT | . 2836946 | (.1114785) |
| Number of Observations: Age 24-35 |  |  |  |
| $\mathrm{R}_{\mathrm{U}}{ }^{2}=0.3175 ; \mathrm{R}_{\mathrm{R}}^{2}=0.2980 \quad$ ( |  |  |  |

## Economics 452, Part II, Project 1:

Modeling "The Effect of Illicit Drug Use on the Labor Supply of Young Adults" by Robert Kaestner

[^14]Data Set:
Canadian Alcohol and Drugs Survey, 1995
Data Set \#6

## Introduction

When discussing the negative repercussions of substance abuse, one of the most important considerations from an economic perspective is the effect on the labor supply. In terms of empirical research, the bulk of academic analysis has focussed on the relationship between alcohol abuse and the labor market, while the relative effects of illicit drug use have been virtually ignored. In his paper "The Effect of Illicit Drug Use on the Labor Supply of Young Adults," Robert Kaestner investigates whether the frequency and timing of marijuana and cocaine use are systematically related to labor supply decisions in young adults. Through this study, Kaestner becomes one of the first researchers to apply economic theory to the relationship between illicit drug use and labor market participation.

## Economic Theory and Analytical Model

In order to construct a reflective economic model, Kaestner decides to treat illicit drugs as a consumption good and, using Becker and Murphy's (1988) formulation, derives an age-specific utility function;

$$
\begin{equation*}
\mathrm{U}_{\mathrm{t}}=u\left(\mathrm{~L}_{\mathrm{t}}, \mathrm{D}_{\mathrm{t}}, \mathrm{~S}_{\mathrm{t}}, \mathrm{X}_{\mathrm{t}}\right) \tag{1}
\end{equation*}
$$

Where L is the amount of leisure, D is the quantity of illicit drugs consumed, S ids the stock of drug consumption capital, X is a composite good representing all other consumption choices, and $\mathrm{t}=1 \ldots \mathrm{~T}$ indexes age.

The corresponding utility-dependent cost function is defined as
(2) $\mathrm{C}_{\mathrm{t}}=\mathrm{c}\left(\mathrm{W}_{\mathrm{t}}, \mathrm{V}_{\mathrm{t}}, \mathrm{P}_{\mathrm{xt}}: \mathrm{U}_{\mathrm{t}}=u\left(\mathrm{~L}_{\mathrm{t}}, \mathrm{D}_{\mathrm{t}}, \mathrm{S}_{\mathrm{t}}, \mathrm{X}_{\mathrm{t}}\right)\right)$
in which W represents the wage, V is the price of drug consumption (as a function of both the market price of drugs and the user costs of drug consumption capital) and $\mathrm{P}_{\mathrm{x}}$ is the price of all other consumption. Equations isolating for the optimal supply of labour and other variables are arrived at by partially differentiating equation (2) with respect to the variable in question. Thus, the demand for leisure can be represented by:

$$
\text { (3) } \mathrm{L}_{\mathrm{t}}=\mathrm{g}\left(\mathrm{~W}_{\mathrm{t}}, \mathrm{D}_{\mathrm{t}}, \mathrm{P}_{\mathrm{xt}}, \mathrm{U}\right)
$$

Using this framework, the choice amount of leisure is dependent on the amount of drug use. Assuming that leisure and drug use are complimentary goods, Kaestner hypothesizes that increasing levels of drug use also increase the demand for leisure, thus decreasing the quantity of labour supplied. As such, Kaestner uses a modified version of equation (3) as the basis for his OLS estimation, arriving at the model:
(3a) $\mathrm{H}_{\mathrm{t}}=\mathrm{a}+\mathrm{a}_{1} \ln \mathrm{OW}_{\mathrm{t}}+\mathrm{a}_{2} \mathrm{OW}_{\mathrm{t}} \cdot 5 \mathrm{SW}_{\mathrm{t}} \cdot .5+\mathrm{a}_{3} \mathrm{D}_{\mathrm{t}}+\mathrm{a}_{4} \mathrm{Z}_{\mathrm{t}}+\mathrm{a}_{5} \ln \mathrm{U}+e_{\mathrm{t}}$
in which, $H_{t}=T-L_{t}$ is hours of work, $\mathrm{OW}_{\mathrm{t}}$ is respondent's wage, $\mathrm{SW}_{\mathrm{t}}$ is the spouse's wage, Z is a vector of other exogenous variables such as age and education, and $e$ is the stochastic error term. Since drug use is determined endogenously, Kaestner utilizes an instrumental variables approach in his estimation. Wages are estimated through personal characteristics of the respondent, such as age, education and past labor force participation. Each respondent's level of drug use is estimated through measures of self-esteem, religious attendance, family characteristics, in addition to age and education.

## Description of Data

Building on this theoretical framework, Kaestner moves into building appropriate regressions to estimate his hypothesis. The cross-sectional data set used for empirical analysis is the National Longitudinal Survey of Youth (NLSY), 1984 and 1988. This survey describes experiences of young persons including their labor market exposure, personal background and history of illicit drug use.

Kaestner's regressions focus on the effects of historical and current consumption of marijuana and cocaine on labor supply. The individuals chosen for the sample had to be 21 years old in 1984, either
living independently or with their parents, could not be in school, could not have served in the military, and could not be in prison over the period between 1984 and 1988. All analyses of the relevant data were done separately for gender and marital status. In the case of gender, previous articles have shown a significant difference between the illicit drug use of male and that of females. With respect to marital status, the expected impact of other family members on the respondent's labor supply is analyzed.

Two issues of concern discussed in the article were the degree of underreporting that occurred between the 1984 and 1988 surveys the lack of a variable indicating quantity of illicit drug use, rather than just one indicating frequency of use. This first issue is particularly the case with cocaine use, and is more common among light users than heavy user of the drug. The second had to do with the fact that even though quantity used and frequency of use, are highly correlated, they are not the same. The level of drug use is a stronger indicator of heavy users relative to light users.

Concern for the inconsistency in the survey data due to underreporting led the authors to estimate their models twice, once using the original drug variables and once using "internally consistent" variables. Internally consistent variables refer to where an individual reports previous use of an illicit drug in 1984, but not in 1988, and the 1988 value is replaced with the 1984 value. These estimates were essentially identical, but the results discussed in the article are those pertaining to internally consistent variables.

The dependent variable used in the estimates was hours of work, referring to the number of hours worked per week multiplied by the number of weeks worked at a job, and represents the variable used to measure labour supply in the model. The one problem indicated with their variable is that it ignores the loss of work due to absenteeism. Labour Force participation depends on whether the individual worked at all over the past year.

When estimating drug use in the model, a number of dummy variables were used to measure the frequency of lifetime use of illicit drugs. For marijuana, the coding was categorized by no use, 1-39 times, and 40 times or greater. For cocaine, the categorization was no use, 1-9 times and 10 times or more of use. In addition, a variable was used to indicate use within the past year, where a dummy variable was coded as either use or no use.

Additional variables include experience and several personal and family background variables. Experience refers to the actual sum of weeks worked since 1975. The personal and family background variables were taken from scores respondents received in questionnaires relating to self-esteem, an individuals feeling of control over the world, frequency of religious attendance, and criminal record prior to 1980 .

In the article Kaestner discusses the cross-sectional estimates obtained from his model. He finds that in 1984 married men who use marijuana 40 or more times over their lifetime work between 503 and 587 hours less than do those individuals who have not used any illicit substances. Estimates were similar for 1988, with a decrease of between 342 and 339 hours less per year for men who have used marijuana
than for those who have not.

For cocaine, the impact does not appear to be significant for 1984, but in 1988, cocaine use is found to be associated with less hours worked per year for both married and single men. A married man who has used cocaine 20 times is expected to work 230 hours less than a comparable male non-user. For single men, the pattern is similar with an expected decline of 112 hours.

Among females, marijuana use is only found to be significant for single females in the 1988 survey. A single woman who uses marijuana 40 or more times in her life is expected to work between 518 and 587 hours less per year than female non-users. In the case of cocaine use over the past year, the results are only found to be significant for single females in 1988, and even then it is barely significant at 10 percent.

## Our Data, Model and Results

Because the survey data Kaestner used was unavailable to us, we tried to replicate his findings using the 1994 Canadian Alcohol and Drugs survey. Considerable differences existed between these two sources of data. Enough variables could be extracted, however, to attempt a test of the hypothesized negative relationship between labor supply and drug use. A full list of these variables can be found in the appendix.

The dependent variable used in our estimation, e5, is the reported number of hours an individual works on average per week. Among the independent variables chosen were province (prov), marital status (stat2) and four variables regarding the extent of cocaine and marijuana consumption. Once these variables were extracted, every effort was made to duplicate Kaestner's sample characteristics as closely as possible. All unemployed individuals were deleted along with any individuals who did not provide full drug-use information. Other adjustments were made for missing observations and coding problems. Unfortunately, age variables in the survey were not helpful. For some reason, every individual had a recorded age of 0 . As a result, we were unable to limit the sample to young adults.

Once the data had been edited to a suitable level, every independent variable chosen in our sample, with the exception of "number of children under 15 in household" needed to be transformed into a dummy variable due to the nature of the survey answers. Furthermore, transformations on some variables were required in order to achieve uniform spread in subcategories (i.e. 15-20, 20-25).

When working with the data, careful consideration was given to the problems of underreporting and misrepresentation. Dealing with a sensitive issue such as drug use can induce people to either provide no information or incorrect information regarding their habits. Consequently, any results calculated from this data must be inspected closely.

In order to mimic Kaestner's relation between labor supply and drug use for males and females, we used a pooled regression in the following form:

$$
\begin{aligned}
& H=b_{1}+b_{i 2} \operatorname{Prov}+b_{i 3} m 5 a+b_{i 4} m 5 b 2+b_{i 5} m 5 d m+b_{i 6} m 5 d n+b_{i 7} b 4+b_{i 8} \text { hsdinc }+b_{9} \text { dvtotur }+a_{1}+
\end{aligned}
$$

where prov is province, $m 5 a$ is whether the subject has tried marijuana, $m 5 b 2$ is how often marijuana has been smoked in the last twelve months, $m 5 d m$ is whether the subject has tried cocaine, m5dn is how often cocaine has been used in the last 12 months, hsdinc is household income and dvtotur is number of children under fifteen in household for men. The remaining variables are simply the female equivalents. This regression was run over 3771 observations and the outcome scrutinized.

Looking solely at the beta and alpha coefficients, it appears that the results obtained are inconsistent with Kaestner's. Historical marijuana and cocaine use (not in the last 12 months) do not seem to have a determinable effect on labor supply. Coefficients fluctuate positively and negatively with no apparent pattern. Analyzing the difference between men and women, it is difficult to identify any trend. Wild fluctuations in the coefficient terms made it nearly impossible to compare.

Due to the erratic nature of the coefficients that did not coincide with Kaestner's findings, we performed t -tests for individual coefficient restrictions to determine the statistical significance of the drug-use terms. Of the numerous variables in question, only one was significant at the $10 \%$ level. Incidentally, this coefficient was positive, suggesting a positive relationship between drug use and labor supply. In other words, our findings were almost entirely statistically insignificant, and conflicted with Kaestner's.

## Conclusion

In an effort to mimic the statistical results from Robert Kaestner's paper "The Effect of Illicit Drug Use on The Labor Supply of Young Adults," we extracted data from the Canadian Alcohol and Drugs survey of 1994. After running a multiple linear regression model similar to the one used by Kaestner, we were unable to achieve our goal. Our results conflicted greatly with his, producing no significant statistical relationship.

The inability to produce outcomes that resemble Kaestner's most likely results from the difference in the
data sets utilized. It was our mistaken conclusion that these differences were not great enough to skew our results. The availability of relevant information was significantly limited by the Canadian survey, leaving us with data that most likely did not allow us to draw an accurate comparison.
$\square$
(
$\square$
$\square$

## References

Becker, Gary S., and Murphy, Kevin M. 1988. "A Theory of Rational Addition." Journal of Political Economy 96(4): 675-700.

Kaestner, Robert. 1993. "The Effect of Illicit Drug Use on The Labor Supply of Young Adults", The Journal of Human Resources 29(1): 127-151.

## Log File

***********************************************************************

This is a Stata log file for a QED session

Course: Econ 452
Students: colin
Date and time: Sun, 25 Mar 2001, 12:20:17

At the end of the QED session, this file will be copied to:
84_213_Sun_colin.log
These files will also be uploaded to:
http://edith.econ.queensu.ca/statausr/logfiles/Econ452
Type help QEDstata for a list of QED commands

Student work begins below this line
***********************************************************************
pause: "Type BREAK to end session started at 25 Mar 2001 12:20:17"
->. Qextract
getting information about file 6 ...
loading variables from 6 (cads94) only (no data yet)... done
-> . drop if m5a>5
(359 observations deleted)
-> . drop if m5dm>5
(22 observations deleted)
-> . mvencode e5, mv(1000)
e5: 5111 missing values
-> . drop if e5>995
(5177 observations deleted)
-> . mvencode m5b2, mv(-1)
m5b2: 6037 missing values
-> . drop if m5b2>6
(1 observation deleted)
-> . drop if b4>95
(0 observations deleted)
-> . drop if hsdinc>95
(1537 observations deleted)
-> . mvencode m5dn, $\operatorname{mv}(0)$
m5dn: 4754 missing values
-> . mvencode stat $2, \operatorname{mv}(0)$
stat2: 1281 missing values
-> . drop if stat $2<1$
(1281 observations deleted)
-> . drop if stat2>6
(5 observations deleted)
-> . browse
-> . browse
-> . browse
-> . drop if e5<2
(2 observations deleted)
-> . browse

| i.prov | Iprov_10-59 (naturally coded; Iprov_10 omitted) |
| :---: | :---: |
| i.m5a | Im5a_0-2 (naturally coded; Im5a_0 omitted) |
| i.m5b2 | Im5b2_1-6 (Im5b2_1 for m5b2==-1 omitted) |
| i.m5dm | Im5dm_1-2 (naturally coded; Im5dm_1 omitted) |
| i.m5dn | Im5dn_0-2 (naturally coded; $\operatorname{Im} 5 \mathrm{dn} 00$ omitted) |
| i.b4 | Ib4_1-8 (naturally coded; Ib4_1 omitted) |
| i.hsdinc | Ihsdin_0-9 (naturally coded; Ihsdin_0 omitted) |
| i.fm5a | Ifm5a_0-2 (naturally coded; Ifm5a_0 omitted) |
| i.fm5b2 | Ifm5b2_1-6 (Ifm5b2_1 for fm5b2==-1 omitted) |
| i.fm5dm | Ifm5dm_0-2 (naturally coded; Ifm5dm_0 omitted) |
| i.fm5dn | Ifm5dn_0-2 (naturally coded; Ifm5dn_0 omitted) |
| i.fb4 | Ifb4_0-2 (naturally coded; Ifb4_0 omitted) |
| i.fhsdinc | Ifhsdi_0-9 (naturally coded; Ifhsdi_0 omitted) |
| i.fprov | Ifpro_0-59 (naturally coded; Ifpro_0 omitted) |


| Source | SS df | MS | Number of obs $=3771$ |
| :---: | :---: | :---: | :---: |
| --------+ |  | --------- | $F(60,3710)=11.09$ |
| Model | 101262.849 | 601687.71416 | Prob $>\mathrm{F}=0.0000$ |
| Residual | 564770.334 | 3710152.229201 | R-squared $=0.1520$ |
| --------+ |  | -- | Adj R-squared $=0.1383$ |
| Total | 666033.18437 | 3770176.666627 | Root MSE $=12.338$ |

e5 | Coef. Std. Err. t $P>|t| \quad$ [95\% Conf. Interval]

| ------------------------------------------------------------------------------ |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Iprov_11\| -.6672941 | 2.02012 | -0.330 | 0.741 | -4.627948 | 3.29336 |  |
| Iprov_12\| | -2.739607 | 1.420942 | -1.928 | 0.054 | -5.52551 | .0462973 |


| Iprov_13 | -3.976192 | 1.550634 | -2.564 | 0.010 | -7.01637 | -. 936014 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Iprov_24 | $-4.323061$ | 1.259247 | -3.433 | 0.001 | -6.791944 | -1.854178 |
| Iprov_35 | -3.832577 | 1.337729 | -2.86 | 0.004 | -6.455333 | -1.20982 |
| Iprov_46 | -. 8311719 | 1.45564 | -0.571 | 0.568 | -3.685105 | 2.022761 |
| Iprov_47 | -. 9695665 | 1.480 | -0.65 | 0.513 | -3.872384 | 1.933251 |
| Ip | . 0297464 | 1.29603 | 0.023 | 0.982 | -2.511268 | 2.570761 |
| Iprov_59 | -3.764268 | 1.374835 | -2.73 | 0.006 | -6.459774 | -1.068762 |
| 1 | -. 2 | 1.21059 | -0.188 | 0.85 | -2.601021 | 2.14598 |
| Im5a_2 | . 3668031 | 1.157169 | 0.317 | 0.751 | -1.901946 | 2.635552 |
| In | -. 1133867 | 3.244568 | -0.035 | 50. | -6.474698 | 6.247925 |
| Im5b2_3 | -. 4408187 | 2.33363 | -0.189 | 0.850 | -5.016156 | 4.13 |
| Im5b2 | . 1161507 | 2. | 0.04 | 0.967 | -5.339136 | 8 |
| Im | -2.490759 | 2.28301 | -1.091 | 10.275 | -6.966841 | 1.985322 |
| Im5b2_ | -1 | 1. | -1 | 0.269 | -4.647952 | 2 |
| Im5dm_2 | . 6394686 | 1.324878 | 0.483 | 30.629 | -1.958093 | 3.23703 |
| Im5dn_ | -2.090115 | 2.966548 | -0.705 | 0.481 | 9 | 9 |
| Ib4_2 | . 172275 | . 8566791 | 0.201 | 0.841 | -1.507332 | 1.851884 |
| Ib4_8 | 1.61829 | 12.3678 | 0.131 | 0.89 | -22.63007 | 25.86667 |
| Ihsdin_1 | -7.473059 | 5.879016 | -1.271 | 0.204 | -18.99948 | 4.05336 |
| Ihsdin_2 | . 9921548 | 4.993618 | 0.199 | 0.843 | -8.79835 | 10.78266 |
| Ihsdin_3 | -. 6169043 | 4.61269 | -0.134 | 0.894 | -9.66056 | 8.426752 |
| Ihsdin_4 | -. 9429658 | 4.548781 | -0.207 | 0.836 | -9.861322 | 7.97539 |
| Ihsdin_5 | . 4493167 | 4.454385 | 0.101 | 0.920 | -8.283966 | 9.1826 |
| Ihsdin_6 | 1.874545 | 4.429219 | 0.423 | 0.672 | -6.809398 | 10.55849 |
| Ihsdin_7\| | 2.168682 | 4.410919 | 0.492 | 0.623 | -6.47938 | 10.81674 |
| Ihsdin_8 | 3.645411 | 4.430105 | 0.823 | 0.411 | -5.040267 | 12.33109 |
| Ihsdin_9 | 4.116367 | 4.448535 | 0.925 | 0.355 | -4.605445 | 12.83818 |
| dvtotur | . 8590618 | . 2648241 | 3.244 | 0.001 | . 3398468 | 1.378277 |
| female $2 \mid$ | 3.592138 | 8.912541 | 0.403 | 0.687 | -13.88182 | 21.0661 |
| Ifm5a_1 | 1.086544 | 1.817354 | 0.598 | 0.550 | -2.476567 | 4.649656 |


| Ifm5a_2 | -. 9928594 | 1.714376 | -0.579 | 0.563 | -4.354071 | 2.368352 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ifm5b2_2 | 1.418523 | 5.50726 | 0.258 | 0.797 | -9.37903 | 12.21608 |
| Ifm5b2_3 | -2.787442 | 4.582989 | -0.608 | 0.543 | -11.77287 | 76.197983 |
| Ifm5b2_4 | -8.770969 | 5.239445 | -1.674 | 0.094 | -19.04344 | 41.501506 |
| Ifm5b2_5 | 5.304625 | 4.833837 | 1.097 | 0.273 | -4.172612 | 14.78186 |
| Ifm5b2_ | -. 7778761 | 2.588612 | -0.300 | 0.764 | -5.853118 | 84.297366 |
| Ifm5dm_1 | . 2780151 | 16.041076 | 0.046 | 60.963 | -11.56614 | $4 \quad 12.12217$ |
| Ifm5dm_2 | \| -1.233912 | 22.260466 | -0.546 | $6 \quad 0.585$ | -5.665788 | $88 \quad 3.197965$ |
| Ifb4_1 | -1.14704 1 | 1.329778 | -0.863 0 | 0.388 | -3.754208 | 1.460128 |
| Ifhsdi_1\| | .7833322 | 7.69216 | 0.1020 | 0.919 | -14.29794 | 15.86461 |
| Ifhsdi_2 | -14.98264 | 6.893923 | -2.173 | 0.030 | -28.49889 | -1.466391 |
| Ifhsdi_3 | -4.565209 | 6.528082 | -0.699 | 0.484 | -17.36419 | 8.233771 |
| Ifhsdi_4 | -3.255471 | 6.444997 | -0.505 | 0.614 | -15.89155 | 9.380611 |
| Ifhsdi_5 | -5.704255 | 6.31327 | -0.904 | 0.366 | -18.08208 | 6.673565 |
| Ifhsdi_6 | -6.079304 | 6.28835 | -0.967 | 0.334 | -18.40827 | 6.249658 |
| Ifhsdi_7 | -6.067593 | 6.256519 | -0.970 | 0.332 | -18.33415 | 6.198961 |
| Ifhsdi_8 | $-7.622131$ | 6.288864 | -1.212 | 0.226 | -19.9521 | 4.707839 |
| Ifhsdi_9 | -5.406892 | 6.314176 | -0.856 | 0.392 | -17.78649 | 6.972704 |
| fdvtotur | -2.411882 | . 4076475 | -5.917 | 0.000 | -3.211117 | -1.612647 |
| Ifpro_10\| | -1.447279 | 3.079106 | -0.470 | 0.638 | -7.484184 | 4.589627 |
| Ifpro_12 | -. 3351006 | 3.001655 | -0.112 | 0.911 | -6.220156 | 5.549955 |
| Ifpro_13 | . 871759 | 3.059343 | 0.2850 | 0.776 | -5.1264 6. | 6.869918 |
| Ifpro_24 | -. 690217 | 2.797671 | -0.247 | 0.805 | -6.17534 | 4.794906 |
| Ifpro_35 | -1.458304 | 2.84973 | -0.512 | 0.609 | -7.045494 | 4.128887 |
| Ifpro_46\| | -3.535761 | 2.983931 | -1.185 | 0.236 | -9.386067 | 2.314544 |
| Ifpro_47\| | -2.122482 | 3.026039 | -0.701 | 0.483 | -8.055345 | 3.810381 |
| Ifpro_48 | \| -1.092135 | 2.851329 | -0.383 | 0.702 | -6.682461 | 4.498191 |
| Ifpro_59\| | -1.161995 | 2.902064 | -0.400 | 0.689 | -6.851791 | 4.527802 |
| _cons | 42.899427 | 7.278301 | 5.8940 | 0.000 | 28.62955 | 57.16928 |

r(699);
-> . log close

# THE EFFECTS OF ALCOHOL CONSUMPTION ON EARNINGS 

The data set used for this paper is from the General Social Survey, 1985, found in the Queen's Economics Data Archive, (file number 28)

The reference paper is:
Hamilton, Vivian and Barton Hamilton (1997) "Alcohol and earnings: does drinking yield a wage premium?" Canadian Journal of Economics, Vol. 30, No.1, pp.135-151

## I INTRODUCTION

The effects of alcohol consumption on wage earnings have been analyzed for many years. Berger and Leigh (1988) determined that those who have the minimum of one drink per week would earn a higher wage than non-drinkers. Kaestner (1991), Gill and Michaels (1992) and Register and Williams (1992), find that heavy substance among young adults may lead to higher earnings compared to those of non-users. Contrary to these previous findings, Mullahy and Sindelar (1991) established that alcoholism has a negative effect on earnings.

In Vivian and Barton Hamilton's paper, entitled "Alcohol and earnings: does drinking yield a wage premium?" the relationship between alcohol consumption and earnings for prime age males is examined. Hamilton and Hamilton also examined how earnings differed for different drinking types across age groups. They identify the positive effects of income on alcohol consumption, alcohol use effecting earnings and earnings effecting alcohol use. The testing conducted on these two relationships identifies drinking as an endogenous variable in the determination of earnings. Hamilton and Hamilton define heavy drinker according to medical literature and tests to see whether there is a threshold point at which heavy drinking has a negative impact on wages. For the purpose of this paper, an individual's drinker status will be defined by one of three types: non-, moderate or heavy drinker. The model used in this article is a "polychotomous choice model to estimate the wage differentials between drinker types, while accounting for the possible correlation between unobserved factors affecting both alcohol use and earnings".

The data used in this article was from the 1985 General Social Survey (GSS), which consists of a sample of Canadians, randomly collected during the period of September 25 to October 18, 1985. The sample was restricted to males between the ages of twenty-five and fifty-nine years and has reported positive earnings. The sample was also restricted to those who have worked at some employment in the past week and that the main activity in that week was work. The data set used was not optimal in capturing the possibility that alcohol abuse will have an additional negative impact on earnings through its effect on employment status as there is only data regarding heavy drinking, which is a less severe problem then alcoholism or alcohol dependence. Hamilton and Hamilton defined non-drinkers as those who never drank over the course of the past year or less than once a month; moderate drinkers as those who drink once a month, once a week or every day, yet never consumed eight or more drinks on any given day; and, heavy drinkers as those who drank at least once a week in the previous twelve months and drank eight or more drinks on one or more days in the previous week. The chosen cut-off between moderate and heavy drinkers is based on findings by Knupfer (1984) who observes that those individuals who consume at least eight drinks a day one or more times a week, face a risk of social disapproval or personal concern of their drinking habits.

Hamilton and Hamilton estimated an OLS wage regression, keeping moderate drinkers as a base and using dummy variables for non-drinker and heavy drinker, They determined that non-drinkers earn 7.4 percent less than moderate drinkers and heavy drinkers earn 6.6 percent more than moderate drinkers. These results are significantly different than previous tests that show no drop off in earnings for heavy versus moderate
drinkers. Finally, the results show that heavy drinkers earn 14 per cent more than nondrinkers, the difference being significant at the 0.01 confidence level. The following attempts to duplicate the findings of Hamilton and Hamilton, using a similar data set. This paper will have the following format: Section II will be an overview of the data that is used similar to that utilized in the article, Section III includes our results, and the summary and conclusions stated in Section IV.

## II. DATA

In accordance with Hamilton and Hamilton, the data used is from the GSS 1985. The survey questions Canadians about the frequency of their alcohol consumption over the past year as well as the quantity of drinks consumed in the past week. One drink is considered one pint of beer, one glass of wine or 1.5 ounces of spirits. Of the 2,648 males aged twenty-five to fifty-nine in the GSS, 495 were dropped because of missing data, 124 were dropped because salary equalled 0,282 were excluded because they didn't work at a job last week that was their main activity, and six were excluded because (age-school-6) was negative. The final survey sample used consisted of 1741 males. The data set is comprised of variables to test against annual earnings as income, before taxes, from wages accumulated in the year 1984. The variables used to affect these earnings included age, education, martial status and regional dummy variables, as well as a dummy variable showing whether the individual was born outside Canada. Health status was measured by an individual's ability to perform activities such as walking, climbing stairs, standing for extended periods, etc; and, the number of chronic diseases an individual has reported.

We placed the same restrictions on the survey sample as Hamilton and Hamilton. We limited our sample to males between the ages of twenty-five and fifty-nine, who did earn over three hundred dollars in the previous year, and whose main activity that week was working at their job. We were unable to replicate the exact sample number used in the Hamilton and Hamilton article because we had difficulties identifying all of the 495 individuals with missing data and the 6 people whose (age-school-6) was negative. Our sample consisted of 1,823 males, 17.7 per cent were non-drinkers, 72.2 per cent were moderate-drinkers and 10.1 per cent were heavy-drinkers.

We generated a dummy variable for moderate drinkers and heavy drinkers using non-drinkers as the base case. We also generated dummy variables for marital status, six different age groups, for four regions of Canada (omitting Ontario, Yukon and the N.W.T), three education variables (high-school dropouts, some college excluding a B.A, and university degree or higher). We generated a dummy variable for whether the individual was born outside of Canada; those having difficulties with daily activities; and a variable for chronic diseases (any of high-blood pressure, heart problems, arthritis, rheumatism, bursitis and respiratory problems). Table 1 displays the dummy variables used for our regression, their definitions and their corresponding means and standard deviations.

## III RESULTS

When conducting the regression, we regressed log wage against all the dummy variables interacted with both the moderate drinker and heavy drinker variable. Table 2 displays definitions of the interaction terms used in the regression. Table 3 shows the regression results of the dummy variables against log wage and Table 4 displays the
results of running three separate regressions of each drinker type. In accordance with the article, we regressed each drinker type separately and achieved numbers very close to that of the article. This is seen in Table 4. The results provided show that for both non- and moderate drinkers, we find that older individuals, as well as those who possess a college diploma, and are married tend to earn more. The results for heavy drinkers however are somewhat different, there is a small increase associated with earnings as one's age increases. Also, there is very little indication of a valuable pay-off for having a college degree or being married as is for the other types of drinkers. Lower earnings for heavy drinkers are attributable to both lower mean characteristics and lower returns to these characteristics relative to moderate drinkers.

Although using somewhat of a larger sample size than that of Hamilton and Hamilton, our regression yielded similar results when testing for three separate drinker types. However, when regressing with only one equation we found numerous difficulties. Our first attempt using interaction variables proved to be a failure, no numbers of use were generated. In the second attempt we took a different approach and set non-drinkers as a base case and regressed moderate and heavy drinkers against this base. This provided us with numbers, however to not achieve perfect collinearity, STATA set all variables for heavy drinkers equal to zero thus cancelling them out. Finally, we were left with one regression yielding different results than the article as they compared moderate drinkers to heavy drinkers and disregarded the non-drinker status. These results were only for moderate drinkers and thus proved to be of little use once again. Therefore, we are forced to use the numbers provided from the three separate regressions of each drinker type and the numbers generated for moderate drinkers.

After conducting a regression for all drinker types, we were able to reject the null hypothesis. An F-test generated to determine whether the coefficients on our explanatory variables in the regression yielded 8.04 . This shows that the coefficients for the variables between moderate and heavy drinkers were statistically different and thus implies lower relative returns for heavy versus moderate drinkers. This conclusion was consistent with that of Hamilton and Hamilton, in that they rejected that there is not a difference in earnings pending on drinking types.

## IV CONCLUSION

After analyzing the regression results, we find that moderate alcohol consumption leads to increased earnings relative to heavy drinking. Heavy drinking also generates negative returns. These results are not surprising, in that an individual consuming at least eight drinks on any given day would, for example be less productive and thus yield lower earnings. This outcome is in contrast to previous research on the relationship between alcohol and earnings where no negative correlation is found, but is juxtaposed with the chosen article. Berger and Leigh (1988) have previously researched the positive correlation between moderate drinkers and earnings to conclude the beneficial effects of moderate consumption on health and in turn an increase in labor productivity and thus income. In conclusion, we find that heavy drinking leads to reduced earnings relative that of moderate and non-drinking.

## APPENDIX A

TABLE 1:
VARIABLE DEFINITIONS, MEANS AND STANDARD DEVIATIONS

| Variable Name | Description | Mean | Std. <br> Deviation |
| :---: | :---: | :---: | :---: |
| lwage | Log earnings |  |  |
| AGE Dummy Variables (excluded category age 25) |  |  |  |
| age 30 | age $30=1$ if age>=30 \& age <=35; 0 otherwise | . 22092 | . 41498 |
| age 35 | age $35=1$ if age>=35 \& age <=39; 0 otherwise | . 19056 | . 39828 |
| age 40 | age 40 = 1 if age>=40 \& age <=45; 0 otherwise | . 12931 | . 33561 |
| age 45 | age 45 = 1 if age>=45 \& age <=49; 0 otherwise | . 09074 | . 28731 |
| age 50 | age $50=1$ if age>= 50 \& age <=55; 0 otherwise | . 08384 | . 27667 |
| age 55 | age $55=1$ if age>=55 \& age <=59; 0 otherwise | . 06397 | . 24476 |
| EDUCATION Dummy Variables |  |  |  |
| Hsdrop | Hsdrop $=1$ if never graduated from high school; 0 if otherwise | . 28176 | . 44999 |
| Coll Inc | CollInc=1 if some college experience but no B.A. degree; 0 otherwise | . 09754 | . 29677 |
| Cgrad | Cgrad=1 if Bachelor's degree or higher; 0 otherwise | . 14927 | . 35643 |
| REGIONAL Dummy Variables (excluded categories- Ontario) |  |  |  |
| Atlantic | Atlantic=1 if lives in specified provinces; 0 otherwise | . 21007 | . 40745 |
| Quebec | Quebec=1 if lives in specified province; 0 otherwise | . 15335 | . 36041 |
| Prairie | Prairie $=1$ if lives in specified provinces; 0 otherwise | . 52359 | . 49955 |
| BritCol | BritCol=1 if lives in specified province; 0 otherwise | . 11297 | . 31663 |
| married | married = 1 if married; 0 otherwise | . 73956 | . 43897 |
| Forborn | Forborn=1 if born outside Canada; 0 otherwise | . 16197 | . 36851 |
| Hasadl | Hasadl=1 if has problem with activity of daily living; 0 otherwise | . 18239 | . 38625 |
| Numchron | Numchron=1 if has any of the following chronic diseases: high blood pressure, heart trouble, arthritis, rheumatism, bursitis, respiratory diseases; 0 otherwise | . 30989 | . 46255 |

TABLE 2:
VARIABLE INTERACTION TERM DEFINITIONS

| Interaction Term | Description |
| :--- | :--- |
| mod30 | age30 interacted with moderate drinker |
| heavy30 | age30 interacted with heavy drinker |
| mod35 | age35 interacted with moderate drinker |
| heavy35 | age35 interacted with heavy drinker |
| mod40 | age40 interacted with moderate drinker |
| heavy40 | age40 interacted with heavy drinker |
| mod45 | age45 interacted with moderate drinker |
| heavy45 | age45 interacted with heavy drinker |
| mod50 | age50 interacted with moderate drinker |
| heavy50 | age50 interacted with heavy drinker |
| mod55 | age55 interacted with moderate drinker |
| heavy55 | age55 interacted with heavy drinker |
| modhsdp | Hsdrop interacted with moderate drinker |
| hvhsdp | Hsdrop interacted with heavy drinker |
| modclinc | Collinc interacted with moderate drinker |
| hvcolinc | Collinc interacted with heavy drinker |
| modcgrad | Cgrad interacted with moderate drinker |
| hvcgrad | Cgrad interacted with heavy drinker |
| modatl | Atlantic interacted with moderate drinker |
| heavyatl | Atlantic interacted with heavy drinker |
| modque | Quebec interacted with moderate drinker |
| heavyque | Quebec interacted with heavy drinker |
| modprai | Prairie interacted with moderate drinker |
| hvprai | Prairie interacted with heavy drinker |
| modbrit | BritCol interacted with moderate drinker |
| hvbrit | BritCol interacted with heavy drinker |
| modmarry | married interacted with moderate drinker |
| hvmarry | married interacted with heavy drinker |
| moddforb | Forborn interacted with moderate drinker |
| hvdforb | Forborn interacted with heavy drinker |
| moddadl | Hasadl interacted with moderate drinker |
| hvdadl | Hasadl interacted with heavy drinker |
| moddnum | Numchron interacted with moderate drinker |
| hvdnum | Numchron interacted with heavy drinker |
|  |  |

TABLE 3
WAGE REGRESSIONS

| Variable | Coefficient | t-statistic |
| :---: | :---: | :---: |
| age30 | -. 017 | -0.161 |
| age35 | . 187 | 1.825 |
| age40 | . 149 | 1.281 |
| age45 | . 214 | 1.696 |
| age50 | . 165 | 1.254 |
| age55 | . 032 | 0.249 |
| hsdrop | -. 247 | -3.345 |
| collinc | -. 287 | -2.692 |
| cgrad | . 226 | 2.263 |
| Atlantic | -. 153 | -1.227 |
| Quebec | . 001 | 0.015 |
| Prairie | . 115 | 1.029 |
| BritCol |  |  |
| married | . 158 | 2.072 |
| Forborn | -. 192 | -2.347 |
| Hasadl | -. 097 | -1.253 |
| Numchron | -. 048 | -0.704 |
| mod30 | . 146 | 1.259 |
| heavy30 | dropped |  |
| $\bmod 35$ | . 064 | 0.578 |
| heavy35 | dropped |  |
| mod40 | . 175 | 1.377 |
| heavy40 | dropped |  |
| $\bmod 45$ | . 076 | 0.547 |
| heavy45 | dropped |  |
| $\bmod 50$ | . 104 | 0.718 |
| heavy50 | dropped |  |
| mod55 | . 108 | 0.726 |
| heavy55 | dropped |  |
| modhsdp | . 002 | 0.036 |
| hvhsdp | dropped |  |
| modclinc | . 292 | 2.476 |
| hvclinic | dropped |  |
| modcgrad | -. 125 | -1.153 |
| hvcgrad | dropped |  |
| modmarry | . 025 | 0.309 |
| hvmarry | dropped |  |


| modatl | -.065 | -0.512 |
| :--- | :---: | :---: |
| heavyatl | dropped |  |
| modque | -.117 | -0.909 |
| heavyque | dropped |  |
| modprai | -.112 | -0.984 |
| hvprai | dropped |  |
| modbrit | .017 | 0.121 |
| hvbrit | dropped |  |
| moddforb | .128 | 1.398 |
| hvdforb | dropped |  |
| moddadl | .024 | 0.283 |
| hvdadl | dropped |  |
| moddnum | .071 | 0.928 |
| hvdnum | dropped |  |
| _cons | 9.925 | 73.752 |

TABLE 4
WAGE REGRESSIONS WITH SELECTIVITY CORRECTIONS

| Variable | Non-Drinkers |  | Moderate Drinkers |  | Heavy Drinkers |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Coefficient | t-statistic | Coefficient | t-statistic | Coefficient | t-statistic |
| cons | 9.926 | 81.872 | 9.645 | 168.496 | 9.652 | 72.339 |
| age30 | -.017 | -0.159 | .140 | 3.017 | .146 | 1.521 |
| age35 | .187 | 1.801 | .266 | 5.456 | .231 | 1.975 |
| age40 | .149 | 1.264 | .356 | 6.381 | .207 | 1.278 |
| age45 | .214 | 1.673 | .335 | 5.169 | .284 | 0.592 |
| age50 | .165 | 1.238 | .288 | 4.467 | .464 | 1.700 |
| age55 | .032 | 0.245 | .172 | 2.288 | .006 | 0.027 |
| Hsdrop | -.247 | -3.300 | -.251 | -6.331 | -.251 | -2.794 |
| Collinc | -.287 | -2.656 | -.009 | -0.177 | .109 | 0.960 |
| Cgrad | .226 | 2.233 | .108 | 2.433 | .101 | 0.693 |
| married | .158 | 2.045 | .203 | 5.525 | .134 | 1.686 |
| Atlantic | -.155 | -1.557 | -.226 | -4.370 | .257 | 1.865 |
| Quebec | -.108 | -2.080 | .155 | 2.915 | -.111 | -2.132 |
| Prairie | .114 | 1.316 | .245 | 5.624 | .360 | 3.018 |
| BritCol | -.001 | -0.014 | .240 | 3.899 | .545 | 3.241 |
| ForBorn | .192 | -2.315 | -.081 | -1.896 | .185 | 1.232 |
| Hasadl | -.097 | -1.236 | -.082 | -1.973 | -.028 | -0.295 |
| NumChron | -.048 | -0.695 | .038 | 1.097 | -.077 | -0.887 |
| $\mathrm{R}^{2}$ | 0.1624 |  | 0.1253 |  | 0.1612 |  |
| No. of Obs | 335 |  |  | 1289 |  | 199 |

## APPENDIX B

## LOG FILE

. drop if var383>1
(6105 observations deleted)
./* sex variable. restricted to males.*/
. drop if var $389<3$
(763 observations deleted)
./* drop if age less than 25 years.*/
. drop if var389>9
(1684 observations deleted)
./* drop if age is greater than 60 years*/
. drop if var377<300
(129 observations deleted)
./* drop if income is less than 300*/
. drop if var362<2
(101 observations deleted)
. /* drop if have a job but didn't work in reference week.*/
. drop if var361>1
(214 observations deleted)
./* drop if didn't work in reference week.*/
. gen nond=0
. replace nond $=1$ if var87 $==4 \mid$ var86==2
(437 real changes made)
./*generated the non-drinking dummy variable*/
. gen heavyd=0
./*generated the heavy drinking dummy variable*/
. gen modd=0
. replace modd $=1$ if nond $==0$ \& heavyd==0
(1767 real changes made)
./*generated the moderate drinking dummy variable*/
. gen Atlantic=0
. replace Atlantic=1 if var382<4
(463 real changes made)
./*generated Atlantic dummy variable*/
. gen Quebec=0
. replace Quebec $=1$ if var382==4
(338 real changes made)
./*generated Quebec dummy variable*/
. gen Prairie=0
. replace Prairie=1 if var $382>4 \& \operatorname{var} 382<9$
(1154 real changes made)
./*generated Prairie dummy variable*/
. gen BritCol=0
. replace BritCol=1 if var382==9
(249 real changes made)
./*generated British Columbia (BritCol) dummy variable*/
. gen Forborn=0
. replace Forborn=1 if var343==13
(357 real changes made)
./*generated foreign born (Forborn) dummy variable*/
. gen Hasadl=0
. replace Hasadl=1 if var29==1 |var30==1 | var31==1 |var32==1 | var33==1 |var34==1|
var35==1 |var36==1 |var37==1 |var38==1 | var39==1 |var40==1 |var41==1|
$\operatorname{var} 42==1|\operatorname{var} 43==1| \operatorname{var} 44==1|\operatorname{var} 17==1| \operatorname{var} 18==1$
(402 real changes made)
./*generated having problems doing daily activities (Hasadl) dummy variable*/ . gen Numchron=0
. replace Numchron=1 if var4==1 | var6==1 |var8==1 |var10==1 | var11==1 (683 real changes made)
./*generated number of chronic diseases (Numchron) dummy variable*/
. gen age $30=0$
. replace age $30=1$ if $\operatorname{var} 389==4$
(487 real changes made)
./* generate age dummy variable*/
. gen age $35=0$
. replace age $35=1$ if $\operatorname{var} 389==5$
(420 real changes made)
. gen age $40=0$
. replace age $40=1$ if $\operatorname{var} 389=6$
(285 real changes made)
. gen age $45=0$
. replace age $45=1$ if $\operatorname{var} 389==7$
(200 real changes made)
. gen age $50=0$
. replace age $50=1$ if $\operatorname{var} 389==8$
(184 real changes made)
. gen age $55=0$
. replace age55 $=1$ if $\operatorname{var} 389==9$
(141 real changes made)
. gen married=0
. replace married $=1$ if var390==1
(1630 real changes made)
. gen hsdrop=0
. replace hsdrop=1 if var419==1
(621 real changes made)
./*generated high school drop out dummy variable*/
. gen collinc=0
. replace collinc=1 if var337==1
(215 real changes made)
./*generated some college but no BA degree dummy variable*/
. gen cgrad=0
. replace cgrad=1 if $\operatorname{var} 340==1$
(329 real changes made)
./*generated B.A. degree dummy variable*/
. rename var87 DrinkingFrequency
. rename var343 ForeignBorn
. rename var29 TroubleWalking
. rename var30 UnableWalk
. rename var31 StairTrouble
. rename var32 UnclimbStair
. rename var88 AgeBeganDrinking
. rename var4 HighBlood
. rename var6 HeartTrouble
. rename var8 Diabetes

```
.rename var11 Arthritis
.rename var17 Slowdown
. rename var18 CutdownMain
. rename var20 NumDays
.rename var361 WorkRefWeek
.rename var33 Trouble5kg
. rename var34 No5kg
.rename var35 TroubleStandingLong
.rename var36 NoStandLong
. rename var37 TroublePickup
. rename var38 NoPickup
.rename var39 TroubleToenails
. rename var382 Prov
. rename var383 Sex
.rename var389 AgeGroup
. rename var390 MartialStat
.rename var419 Education
.rename var40 Anya
./* Rename variables*/
.gen drink=modd +2*heavy
-> . rename var377 Wage
-> . edit
- preserve
-> . gen lwage=log(Wage)
(381 missing values generated)
```

-> . regress lwage nond age30 age35 age40 age45 age50 age55 hsdrop collinc cgrad married Atlantic Quebec Prairie BritCol Forborn Hasadl Numchron


| lwage | Coef. Std. Err. |  | [95\% Conf. Interval] |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| nond \| (dropped) |  |  |  |  |  |
| age30 | -. 0175859 . 1104111 | -0.159 | 0.874 | -. 23 | 1996427 |
| age35 | . 1879179.1043599 | 1.801 | 0.073 | -. 0174051 | . 3932409 |
| age40 | . 149245.1180513 | 1.264 | 0.207 | -. 0830153 | . 3815053 |
| age45 | . 2147938.1283762 | 1.673 | 0.095 | -. 0377802 | . 4673677 |
| age50 | . 1652286 . 1334971 | 1.238 | 0.217 | -. 0974205 | . 4278778 |
| age55 | . 0325002.132536 | 0.245 | 0.806 | -. 228258 | . 2932585 |
| hsdrop | -. 2478545.075099 | -3.300 | 0.001 | -. 3956081 | -. 1001009 |
| collinc | -. 2875194 . 1082574 | -2.656 | 0.008 | -. 5005106 | -. 0745281 |
| cgrad | . 2262632.1013468 | 2.233 | 0.026 | . 0268681 | . 4256582 |
| married | . 1587477 . 0776353 | 2.045 | 0.042 | . 0060039 | . 3114915 |
| Atlantic | -. 1553606.0997827 | -1.557 | 0.120 | -. 3516782 | . 040957 |
| Quebec \| (dropped) |  |  |  |  |  |
| Prairie \| | . 114088.0867231 | 1.316 | 0.189 | -. 0565356 | . 2847116 |
| BritCol | -. 0018317 . 1278331 | -0.014 | 0.989 | -. 2533373 | . 2496738 |
| Forborn \| | -. 1928535.0832882 | -2.315 | 0.021 | -. 3567191 | -. 028988 |
| Hasadl | -. 0978583 . 0791416 | -1.236 | 0.217 | -. 2535657 | . 057849 |
| Numchron | \| -. 0486508 . 0700369 | -0.69 | 950.488 | 8 -. 18644 | 5 . 0891435 |
|  | 9.926882 . 1212495 | 81.872 | 0.000 | 9.688329 | 10.16543 |

-> . regress lwage modd age30 age35 age40 age45 age50 age55 hsdrop collinc cgrad married Atlantic Quebec Prairie BritCol Forborn Hasadl Numchron


Adj R-squared $=0.1143$
Root MSE $=.55778$
lwage | Coef. Std. Err. $\mathrm{t} \quad \mathrm{P}>|\mathrm{t}| \quad$ [95\% Conf. Interval]

| modd | (dropped) |  |  |  |  |  |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| age30 | .1400242 | .0464169 | 3.017 | 0.003 | .048962 | .2310863 |
| age35 | .2668131 | .0489026 | 5.456 | 0.000 | .1708745 | .3627517 |
| age40 | .3562437 | .0558328 | 6.381 | 0.000 | .2467092 | .4657783 |
| age45 | .3358475 | .0649772 | 5.169 | 0.000 | .2083731 | .4633218 |
| age50 | .288303 | .0645424 | 4.467 | 0.000 | .1616817 | .4149244 |
| age55 | .1725517 | .0754315 | 2.288 | 0.022 | .0245679 | .3205354 |
| hsdrop \| | -.2517987 | .0397692 | -6.331 | 0.000 | -.3298191 | -.1737782 |
| collinc $\mid$ | -.0098637 | .0557576 | -0.177 | 0.860 | -.1192507 | .0995233 |
| cgrad \| | .1080163 | .0443915 | 2.433 | 0.015 | .0209276 | .195105 |
| married | .2037237 | .0368753 | 5.525 | 0.000 | .1313806 | .2760668 |
| Atlantic \| | $($ dropped) |  |  |  |  |  |
| Quebec \| | .1557527 | .0534276 | 2.915 | 0.004 | .0509367 | .2605687 |
| Prairie \| | .2451456 | .0435921 | 5.624 | 0.000 | .1596253 | .330666 |
| BritCol \| | .2409912 | .0618148 | 3.899 | 0.000 | .1197211 | .3622613 |
| Forborn \| | -.0810919 | .0427653 | -1.896 | 0.058 | -.1649901 | .0028063 |
| Hasadl \| | -.0823904 | .0417563 | -1.973 | 0.049 | -.1643092 | -.0004715 |
| Numchron \| | .0389979 | .0355423 | 1.097 | 0.273 | -.0307301 | .1087258 |
| _cons \| | 9.645908 | .057247 | 168.496 | 0.000 | 9.533599 | 9.758217 |

-> . regress lwage heavyd age30 age35 age40 age45 age50 age55 hsdrop collinc cgrad married Atlantic Quebec Prairie BritCol Forborn Hasadl Numchron

| Source | SS | df | MS | Number of obs $=$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| --------+ |  |  |  | $\mathrm{F}(16,182)=2$ | 2.19 |
| Model | 9.4748 |  | 16.592177715 | Prob > F | $=0.0069$ |
| Residual | 49.286 |  | 182.27080754 | R-squared | = 0.1612 |



Adj R-squared $=0.0875$
Root MSE $=.52039$

| lwage | Coef. S | Std. Err. | $\mathrm{P}>\|\mathrm{t}\|$ | [95\% Conf. Interval] |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| heavyd | (dropped) |  |  |  |  |  |
| age30\| | . 1463849 | . 0962543 | 1.521 | 0.130 | -. 0435331 | . 3363028 |
| age35 | . 231766 | . 1173413 | 1.975 | 0.050 | . 0002417 | . 4632903 |
| age40 | . 2076696 | . 1624902 | 1.278 | 0.203 | -. 1129373 | . 5282765 |
| age45 | . 099064 | . 1673178 | 0.592 | 0.555 | -. 2310681 | . 4291962 |
| age50\| | . 4643928 | . 2732189 | 1.700 | 0.091 | -. 074691 | 1.003477 |
| age55 | . 006355 | . 2336667 | 0.027 | 0.978 | -. 4546891 | . 467399 |
| hsdrop \| | -. 2515439 | . 0900409 | -2.794 | 0.006 | -. 4292021 | -. 0738857 |
| collinc | . 1093947 | . 1139983 | 0.960 | 0.339 | -. 1155337 | . 334323 |
| cgrad | . 1016991 | . 146855 | 0.693 | 0.489 | -. 1880581 | . 3914563 |
| married | . 134393 | . 0797034 | 1.686 | 0.093 | -. 0228685 | . 2916544 |
| Atlantic | . 2575978 | . 1381544 | 1.865 | 0.064 | -. 0149924 | . 530188 |
| Quebec | (dropped) |  |  |  |  |  |


| Prairie $\mid .3607328$ | .1195374 | 3.018 | 0.003 | .1248755 | .59659 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BritCol \| | .5458372 | .1684046 | 3.241 | 0.001 | .2135608 | .8781135 |
| Forborn | .1851681 | .1502817 | 1.232 | 0.219 | -.1113504 | .4816866 |
| Hasadl\| | -.0284356 | .0965523 | -0.295 | 0.769 | -.2189413 | .1620702 |
| Numchron $\mid$ | -.0770195 | .0868196 | -0.887 | 0.376 | -.2483217 | .0942828 |
| $\quad$ _cons \| | 9.652593 | .1334348 | 72.339 | 0.000 | 9.389315 | 9.915871 |

-> . gen $\bmod 30=$ age $30 *$ modd
-> . gen heavy $30=$ age $30^{*}$ heavyd
-> . gen mod35=age $35 *$ modd
-> . gen heavy $35=$ age $35^{*}$ heavyd
-> . gen $\bmod 40=$ age $40 *$ modd
-> . gen heavy $40=$ age $40^{*}$ heavyd
$->$. gen $\bmod 45=$ age $45 *$ modd
-> . gen heavy45=age45*heavyd
-> . gen mod50=age50*modd
-> . gen heavy $50=$ age $50 *$ heavyd
-> . gen mod55=age55* modd
-> . gen heavy $55=$ age $55^{*}$ heavyd
-> . gen modhsdp=hsdrop* modd
-> . gen hvhsdp=hsdrop*heavyd
$->$. gen modclinc=collinc*modd
-> . gen hvcolinc=collinc*heavyd
-> . gen modcgrad=cgrad* modd
-> . gen hvcgrad=cgrad*heavyd
-> . gen modmarry=married*modd
-> . gen hvmarry=married*heavyd
$->$. gen modatl=Atlantic*modd
-> . gen heavyatl=Atlantic*heavyd
-> . gen modque=Quebec* modd
-> . gen heavyque=Quebec*heavyd
-> . gen modprai=Prairie*modd
-> . gen hvprai=Prairie*heavyd
-> . gen modbrit=BritCol* modd
-> . gen hvbrit=BritCol*heavyd
-> . gen moddforb=Forborn*modd
-> . gen hvdforb=Forborn*heavyd
-> . gen moddadl=Hasadl*modd
-> . gen hvdadl=Hasadl*heavyd
-> . gen moddnum=Numchron*modd
-> . gen hvdnum=Numchron*heavyd
->. set matsize 150
-> . regress lwage age30 age35 age40 age45 age50 age55 hsdrop collinc cgrad married Atlantic Quebec Prairie BritCol Forborn Hasadl Numchron mod30 heavy30 mod35 heavy 35 mod40 heavy 40 mod45 heavy 45 mod50 heavy50 mod55 heavy55 modhsdp hvhsdp modclinc modcgrad hvcgrad modmarry hvmarry modatl heavyatl modque
heavyque modprai hvprai modbrit hvbrit moddforb hvdforb moddadl hvdadl moddnum hvdnum

| Source | SS df | MS | Number of obs $=1823$ |
| :---: | :---: | :---: | :---: |
|  |  |  | $F(33,1789)=8.04$ |
| Model | 81.951781 | 332.4833873 | Prob $>$ F $=0.0000$ |
| Residual | 552.709242 | 1789.30894871 | R-squared $=0.1291$ |
|  |  | --------- | Adj R-squared $=0.1131$ |
| Total | 634.661023 | 822.348332065 | Root MSE $=.55583$ |


| lwage \| | Coef. Std | td. Err. | $\mathrm{P}>\|\mathrm{t}\|$ | [95\% Conf. Interval] |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| age30 | -. 0175859 | . 1089453 | -0.161 | 0.872 | -. 2312594 | . 1960876 |
| age35 | . 1879179 | . 1029744 | 1.825 | 0.068 | -. 0140448 | . 3898807 |
| age40 | . 149245.116 | . 1164841 | 1.281 | 0.200 | -. 0792143 | . 3777042 |
| age45 | . 2147938 | . 1266719 | 1.696 | 0.090 | -. 0336467 | . 4632342 |
| age50 | . 1652286 | . 1317248 | 1.254 | 0.210 | -. 0931221 | . 4235793 |
| age55 | . 0325002 | . 1307765 | 0.249 | 0.804 | -. 2239905 | . 288991 |
| hsdrop | -. 2478545 | . 074102 | -3.345 | 0.001 | -. 39319 | -. 102519 |
| collinc | -. 2875194 | . 1068202 | -2.692 | 0.007 | -. 4970249 | -. 0780139 |
| cgrad | . 2262632 . | . 1000014 | 2.263 | 0.024 | . 0301314 | . 422395 |
| married | . 1587477 | . 0766047 | 2.072 | 0.038 | . 0085037 | . 3089917 |
| Atlantic | -. 1535289 | . 1251704 | -1.227 | 0.220 | -. 3990244 | . 0919666 |
| Quebec \| | . 0018317 | . 126136 | 0.015 | 0.988 | -. 2455578 | . 2492212 |
| Prairie \| | . 1159197 . 1 | . 1126149 | 1.029 | 0.303 | -. 1049509 | . 3367904 |
| BritCol | (dropped) |  |  |  |  |  |
| Forborn \| | -. 1928535 | . 0821825 | -2.347 | 0.019 | -. 3540373 | -. 0316697 |
| Hasadl | -. 0978583 | . 078091 | -1.253 | 0.210 | -. 2510174 | . 0553007 |
| Numchron | \| -. 0486508 | . 0691071 | $1-0.70$ | 040.482 | -. 1841899 | 99.0868884 |
| $\bmod 30 \mid$ | . 1469242 | . 1167169 | 1.259 | 0.208 | -. 0819915 | . 3758399 |
| heavy30 \| | (dropped) |  |  |  |  |  |
| $\bmod 35$ | . 0649295 | . 1123094 | 0.578 | 0.563 | -. 1553419 | . 2852009 |
| heavy35 | (dropped) |  |  |  |  |  |
| $\bmod 40 \mid$ | . 1757567 | . 1276507 | 1.377 | 0.169 | -. 0746035 | . 4261168 |
| heavy40 | (dropped) |  |  |  |  |  |
| $\bmod 45$ \| | . 0767092 | . 1402949 | 0.547 | 0.585 | -. 19845 | . 3518684 |
| heavy45 | (dropped) |  |  |  |  |  |
| $\bmod 50 \mid$ | . 1043079 | . 1453213 | 0.718 | 0.473 | -. 1807094 | . 3893252 |
| heavy50 | (dropped) |  |  |  |  |  |
| mod55 | . 1081055 | . 1489344 | 0.726 | 0.468 | -. 1839982 | . 4002093 |
| heavy55 | (dropped) |  |  |  |  |  |
| modhsdp | \| . 0029969 | . 082519 | 0.036 | 0.971 | -. 158847 | . 1648407 |
| hvhsdp \| | \| (dropped) |  |  |  |  |  |
| modclinc | \| . 2921562 | . 1180147 | 2.476 | 0.013 | . 060695 | . 5236173 |
| modcgrad | \| -. 1252628 | 8. 1085992 | -1.153 | 30.249 | -. 3382573 | 3 . 0877317 |

```
hvcgrad | (dropped)
modmarry| .0257815 .0835148 0.309 0.758 -.1380152 .1895783
hvmarry | (dropped)
 modatl - -.0650721 . 1270059 -0.512 0.608 -. 3141676 . }184023
heavyatl | (dropped)
 modque| -.1178476 .1297156 -0.909 0.364 -. 3722576 . }136562
heavyque | (dropped)
modprai |-.1126564 .1145084 -0.984 0.325 -. 3372408 . .1119279
 hvprai| (dropped)
modbrit | .0176178 . 1462023 0.121 0.904 -.2691274 . 3043629
 hvbrit | (dropped)
moddforb | .1283598 .0918084 1.398 0.162 -.0517032 . 3084229
hvdforb | (dropped)
moddadl | .0246497 .086988 0.283 0.777 -.145959 . 1952585
 hvdadl | (dropped)
moddnum | .0710525 .0765409 0.928 0.353 -.0790665 . 2211715
hvdnum | (dropped)
_cons| 9.92505 .1345733 73.752 0.000 9.661113 10.18899
```

-> . test age30 age35 age40 age45 age50 age55 hsdrop collinc cgrad married Atlantic Quebec Prairie BritCol Forborn Hasadl Numchron mod30 heavy30 mod35 heavy35 mod40 heavy 40 mod45 heavy 45 mod50 heavy50 mod55 heavy55 modhsdp hvhsdp modclinc modcgrad hvcgrad modmarry hvmarry modatl heavyatl modque heavyque modprai hvprai modbrit hvbrit moddforb hvdforb moddadl hvdadl moddnum hvdnum
(1) age30 $=0.0$
(2) age $35=0.0$
(3) age $40=0.0$
(4) age $45=0.0$
(5) age50 $=0.0$
(6) age55 $=0.0$
(7) hsdrop $=0.0$
(8) collinc $=0.0$
(9) cgrad $=0.0$
(10) married $=0.0$
(11) Atlantic $=0.0$
(12) Quebec $=0.0$
(13) Prairie $=0.0$
(14) $\mathrm{BritCol}=0.0$
(15) Forborn $=0.0$
(16) Hasadl $=0.0$
(17) Numchron $=0.0$
(18) $\bmod 30=0.0$
(19) heavy $30=0.0$
(20) $\bmod 35=0.0$
(21) heavy35 $=0.0$
(22) $\bmod 40=0.0$
(23) heavy $40=0.0$
(24) $\bmod 45=0.0$
(25) heavy $45=0.0$
(26) $\bmod 50=0.0$
(27) heavy50 $=0.0$
(28) $\bmod 55=0.0$
(29) heavy $55=0.0$
(30) modhsdp $=0.0$
(31) hvhsdp $=0.0$
(32) modclinc $=0.0$
(33) modcgrad $=0.0$
(34) hvcgrad $=0.0$
(35) modmarry $=0.0$
(36) hvmarry $=0.0$
(37) modatl $=0.0$
(38) heavyatl $=0.0$
(39) modque $=0.0$
(40) heavyque $=0.0$
(41) modprai $=0.0$
(42) hvprai $=0.0$
(43) modbrit $=0.0$
(44) hvbrit $=0.0$
(45) moddforb $=0.0$
(46) hvdforb $=0.0$
(47) moddadl $=0.0$
(48) hvdadl $=0.0$
(49) moddnum $=0.0$
(50) hvdnum $=0.0$

Constraint 14 dropped Constraint 19 dropped Constraint 21 dropped Constraint 23 dropped Constraint 25 dropped Constraint 27 dropped Constraint 29 dropped Constraint 31 dropped Constraint 34 dropped Constraint 36 dropped Constraint 38 dropped Constraint 40 dropped Constraint 42 dropped Constraint 44 dropped Constraint 46 dropped Constraint 48 dropped Constraint 50 dropped
$F(33,1789)=8.04$
Prob $>\mathrm{F}=0.0000$

# Volunteer Works 

 inEstimating

## Males and Females

## Earnings Gap

Survey of Volunteer Activity (VAS) - Volunteer File

Model Paper: Can volunteer work help explain the male-female earnings gap? By Kathleen M. Day and Rose Anne Devlin.

Applied Economics, 1997, 29, 707-721

## Introduction

For many years, researchers have tried to identify the causes of male-female wage differential, yet the goal of researchers is not achieved. A significant portion of the gap still remains unexplained. One difficulty that researchers might encounter while conducting a research on male-female wage differential is unavailability of sufficient information of individual's experience. Thus, instead of using inadequate information of individual's experience, Day and Devlin use another component of experience, volunteer work, to test if it is the cause the wage differential gap. Before doing that, three possible ways through which volunteering may affect earnings are introduced: first, volunteer work may provide individuals with an alternative means of acquiring skills and experience that make them more productive (the human capital hypothesis). Secondly, volunteering may influence earnings by providing a signal to employers of otherwise unobservable ability (the screening hypothesis). Finally, volunteering may provide access to informal networks of contacts (the networking hypothesis). Combining all three hypotheses, Day and Devlin wish to find some evidence that can explain male-female wage differential gap. In their paper, they examine the differential returns to volunteer work in the paid labor market and use the finding to explain whether the volunteer work affects the male-female earnings gap or not. As the result, one third of the male-female earnings gap may be caused by the different rewards to male-female volunteers.

Day and Devlin followed two approaches. The first was to add dummy variable representing volunteer experience to the male and female earnings equations; the second was to estimate separate earnings equations for male volunteers and non-volunteers, and female volunteers and non-volunteers. To explore the earnings gap, Day and Devlin use
the earnings equation as follows:

$$
\overline{\ln W^{j}}-\overline{\ln W^{k}}=\hat{\beta}^{j}\left(\bar{X}^{j}-\bar{X}^{k}\right)+\left(\hat{\beta}^{j}-\hat{\beta}^{k}\right) \bar{X}^{k}
$$

where $\hat{\beta}^{j}$ is a row vector containing the estimated coefficients of the earnings equation for group j and $\overline{\mathrm{X}}^{\mathrm{j}}$ is a column vector containing the sample means of the explanatory variables for group j . The first term in the equation represents that portion of the differential in earnings between the groups j and k arising from differences in their stock of characteristics, while the second term of the differential is attributable to differences in the returns to those characteristics.

The data are drawn from the 1987 Survey of Volunteer Activity (VAS). Day and Devlin draw two subsamples of the VAS data set. The first sample was taken from the VAS Screening File. The subsample contains 5057 individuals, of whom 3374 were volunteers, 1683 were non-volunteers, 1956 were females and 3101 were males. The second sample was drawn from the VAS Volunteer File. The subsample consisted of 3687 individuals, of whom 2004 were volunteers, 1683 were non-volunteers, 1397 were females, and 2290 were males.

In their wage differential analysis, they first test married, education, family size, children, experience, city size, occupation, province, and constant as for human capital hypothesis. Two results are found. The first result is that the differential in log earnings between male volunteers and non-volunteers is 0.1950 or $21.53 \%$. In other words, male volunteers earn $21.53 \%$ higher incomes than non-volunteers. The second result, a positive value of return effect (0.0976), which is derived from the calculation as well, indicates that male volunteers earn higher returns than male non-volunteers. On the other hand, the earnings differential between female volunteers and non-volunteers is smaller compared
to the range between male volunteer and non-volunteer. The finding is only 0.1063 or $11.22 \%$. This implies that female volunteers earn $11.22 \%$ higher incomes than nonvolunteers. Nevertheless, a negative value of return effect ( -0.0054 ) means that female rewarded is offset by a large and negative effect associated with the family size variable. This effect is that females receive almost no return to volunteering on the labour market. The findings for both male and female suggest that volunteering enhances males employment earnings but not to females.

Next, they use 4 variables, recreation, economy, religious, and multi-domain to test their screening hypothesis. By using screening hypothesis, four of the organizations have statistically significant coefficients in one or both equations. The result reports that women's returns to participating in recreational organizations are only slightly lower than those of men ( 0.087308 vs. 0.089966 ), their participation in recreational organization is significantly lower for women (16.43\%) than for men (28.57\%). These results suggest that the treatment of women who volunteer for recreational organizations is the same as that of their male counterparts on the labour market.

Furthermore, the statistics values of participation in a multi-domain type of organization show that more men are involved than women (15.13\% compared to 9.55\%). This appears to be some discrimination against women who participate in certain types of organizations and activities. When taking the type of volunteer organization into account, men receive a return to volunteering of about half of the total mean differential between volunteers and non-volunteers $(0.0528+0.0472)$, while the return to women is once again negative $(-0.0033+0.00004)$. This means that women' participation in recreational and economy related organizations are cancelled out by the
negative effects of religious volunteering. When taking activities into account, about $60 \%$ of the mean earnings differential between volunteers and no-volunteers constitutes a return to volunteering for men, as compared to only $4 \%$ for women.

Lastly, using the standard decomposition of the male-female earnings gap, results indicate that the mean earnings differential (in logs) between males and females is 0.2613 or $29.90 \%$. Of this differential, $68 \%$ is attributable to labour market discrimination ('the return' effect), which means that the discrimination is captured by the constant term.

When adding a dummy variable to the male and female earnings equations, the share of the earnings differential due to discrimination remains unchanged. The differential returns to volunteering ( 0.0651 ) account for $36 \%$ of discrimination against women. In other words, if the labour market returns to volunteer work were the same for men and women, the earnings gap would be reduced from $29.90 \%$ to $19.14 \%$.

We choose Day and Devlin's paper for our model paper, because we want to know whether volunteer experience affects earnings or not. Wage differentials between males and females exist in Canada. Can volunteer experience reduce or narrow the wage gap? We will find the answer through our estimation in this paper.

This paper contains five sections which are introduction, data, model, result and conclusion. The data section of the paper describes data set that we use in this paper. The data set is drawn from the one that Day and Devlin use in their paper. However, we only use the VAS Volunteer File. The sample size in our paper is different from Day and Devlin's. As Day and Devlin, we focus on the sole wage earner in households and volunteers who volunteered during the year of survey and had volunteered in the past.

The model section will present the model or earnings equation we use in this paper. Our earnings equation is similar to Day and Devlin's. However, we just run one pooled regression equation to get the result. The equation contains four groups of individuals: male non-volunteers, male volunteers, female volunteers, and female nonvolunteers. The result is shown in table B in the appendix section.

The fourth section will present the result of our estimation. The results of hypothesis tests shows that wage differentials between these four groups exist. Male volunteers benefit more with their volunteer experience than female volunteers. Due to different sample and earnings equation, our result is slightly different from Day and Devlin's paper.

The last part of the paper concludes our result and our difficulties. We learn that it is hard to get the similar result to the model paper. The data we drawn, the equation we use, and the result we get are different from the model paper.

## Data

The date are drawn from the 1987 Survey of Volunteer Activity (VAS) conducted by Statistics Canada in conjunction with its November 1987 Labour Force Survey (LFS). The VAS contains data on the labour force characteristics as well as volunteer activities of individuals. In this paper, we choose to include volunteers who volunteered during the year of the survey and had volunteered at some time in the past. Although the VAS provides some information on both the type of volunteer organization and the type of volunteering activities which Day and Devlin use, we are not going to use those variables in order to simplify our estimation in our paper.

In their paper, Day and Devlin derive results from two subsamples of the VAS

Screening File and VAS Volunteer File. In this paper, we only use the sample that was drawn from the VAS Volunteer File. The VAS Volunteer File contains the responses of all non-volunteers to the VAS screening questionnaire, as well as the responses of those volunteers who returned the more detailed follow-up questionnaire. This file also provides variables, which state whether individuals volunteered during the year of survey and had volunteered in the past, so we choose this file to be used in our paper.

After excluding individuals who were not the sole wage earner in their households, we were left with a sample of 6878 individuals, of whom 1258 were male volunteers, 1816 were female volunteers, 1884 were male non-volunteers, and 1920 were female non-volunteers.

## Model

The regression equation is similar to the one that Day and Devlin use in their paper, but we just generate one pooled regression equation to estimate wage differentials between four groups of individuals. They are male non-volunteers, male volunteers, female non-volunteers, and female volunteers. We use male non-volunteers as a base group in the pooled regression equation. The earnings equation is in log shown as follows:

$$
\begin{aligned}
\text { Inwage }= & \beta_{1}+\beta_{2} \text { EXP }+\beta_{3} \text { EXP }^{2}+\beta_{4} \text { EDUCATION }+\beta_{5} \text { LANGUAGE }+\beta_{6} \text { FAMSIZE }+\beta_{7} \text { KIDSOWN } \\
& +\beta_{8} \text { KIDSADSCH }+\beta_{9} \text { PROVINCES }+\beta_{10} \text { MV }+\beta_{11} \text { MVEXP }+\beta_{12} \text { MVEXP }{ }^{2} \\
& +\beta_{13} \text { MVEDUCATION }+\beta_{14} \text { MVLANGUAGE }+\beta_{15} \text { MVFAMSIZE }+\beta_{16} \text { MVKIDSOWN } \\
& +\beta_{17} \text { MVKIDSADSCH }+\beta_{86} \text { MVPROVINCES }+\beta_{19} \mathrm{FV}+\beta_{20} \mathrm{FVEXP}+\beta_{21} \mathrm{FVEXP}^{2} \\
& +\beta_{22} \text { FVEDUCATION }+\beta_{23} \text { FVLANGUAGE }+\beta_{24} \mathrm{FAMSIZE}+\beta_{25} \text { FVKIDSOWN } \\
& +\beta_{26} \text { FVKIDSADSCH }+\beta_{27} \text { FVPROVINCES }+\beta_{28} \text { FNV }+\beta_{29} \mathrm{FNVEXP}+\beta_{30} \mathrm{FNVEXP}^{2} \\
& +\beta_{31} \text { FNVEDUCATION }+\beta_{32} \text { FNVLANGUAGE }+\beta_{33} \text { FAMSIZE }+\beta_{34} \text { FNVKIDSOWN } \\
& +\beta_{35} \text { FNVKIDSADSCH }+\beta_{36} \text { FNVPROVINCES }+\mu_{1}
\end{aligned}
$$

where education, language, kidsown, and provinces are dummy variables. Moreover,
these dummy variables contain four levels of education, three types of language, the number of children in four different age groups, and province of residence. Experience is calculated by 'age - schooling -6 '. The pooled equation includes three interaction terms, which are male volunteers, female volunteers, and female non-volunteers. Those interaction terms are to show the wage differentials between male non-volunteers and volunteers, male non-volunteers and female volunteers, and male non-volunteers and female non-volunteers. Table A shows all variables that include in the regression equation.

## Result

To see whether volunteer experience affects the earnings differential between male and female, we use a pooled regression equation which contains four groups of individuals to calculate the earnings gap. The result is reported in table B , Appendix.

First, we look at the wage gap between male volunteers and non-volunteer. The initial earnings gap between these two groups is given by the MV coefficient and the MV-interaction terms. The result shows that male volunteers generally earn more than male non-volunteers. However, according to our result, male volunteers who are English speakers and have kids aged 0 to 5 years earn less than male non-volunteers. English speaking volunteers earn 4\% less than English speaking non-volunteers, and volunteers with kids aged 0 to 5 years earn 15 to $17 \%$ less than non-volunteers. Volunteer experience seems to have less impact on English speakers than non-English speakers. On the other hand, the wage differential between male volunteers and non-volunteers who are other language speakers is 0.2777 . In other words, if individuals are other language speakers, their earnings will increase by $27.77 \%$ with volunteer experience. Volunteers
who have kids aged from 6 to 24 years earn 2 to $5 \%$ more than non-volunteers. This situation happens because if volunteers who have kids under aged 5, they have to arrange time among working, volunteering, and caring for their infants. They do not have extra time to devote themselves on working in order to earn more income. As their children get older and more independent, individuals will have extra time to work and volunteer; thus, volunteers will earn more. Although volunteer experience has positive impact on individuals, those individuals who live in far-east provinces, such as Newfoundland and PEI, earn less than those individuals who live in far-west provinces, such as Alberta and B.C. In larger provinces, due to a strong competition between individuals, volunteer experience is important to individuals when they seek for jobs. More volunteer experience means more working experience, so that volunteers tend to acquire higher wages than non-volunteers. However, in small provinces, less competition between individuals leads to less advantages of volunteer experience. Thus, volunteers who live in large provinces will earn much more than those who live in small provinces. In general, male volunteers tend to earn more than male non-volunteers, because they are better educated compared to non-volunteers. Hence, there is a positive wage gap between male volunteers and male non-volunteers.

We, then look at the wage differential among male non-volunteers, female nonvolunteers, and female volunteers. The initial gap is indicated by the FV and FNV coefficients and the FV and FNV interaction terms. We have found that volunteer work do not benefit females. Females with volunteer works still earn less than male nonvolunteers. Female volunteers with high education still obtain fewer wages than male non-volunteers and female non-volunteers. The possible reason is that female volunteers
are less educated than female non-volunteers and male non-volunteers in our sample, so the wage differential between male non-volunteers and female volunteers is larger than the wage gap between male non-volunteers and female non-volunteers.

Females who speak English, French, or other language earn more than male nonvolunteers regardless volunteer experience. In some occupations, females with or without volunteer experience will still earn 1 to $20 \%$ more than male non-volunteers, such as salesperson and receptionists. For females who have kids aged 0 to 24 years, they still earn less than male non-volunteers, regardless of their volunteer experience. In tradition, females have to stay at home and are responsible for caring for their kids and their husbands. Even though their kids are getting independent, females still have to take care of their daily needs, such as meals and housework. Hence, females do not have extra time to devote on working or volunteering; their earnings are 2 to $8 \%$ lower than male nonvolunteers' earnings. The results are different from male volunteers. When children are getting older, males can devote more time on working and volunteering than females. Although female non-volunteers and volunteers generally earn less than males nonvolunteers, volunteer experience has positive impacts on the provinces of residence of females. Living in far-east provinces has larger positive effects on earnings than living in far-west provinces.

Although the experience and languages of female volunteers is rewarded more highly than that of non-volunteers, they are offset by a large and negative effect associated with the number of kids and education variables. The net effect is that females receive almost no return to volunteering on the labour market. Hence, volunteer
experience has similar negative effects on females, which means that female volunteers and female non-volunteers earn less than male volunteers.

We have done the hypothesis tests to test that whether volunteer works can affect the male and female wage gap.
$\mathrm{H}_{0}$ : the coefficients of the interaction terms are all equal to zero $\mathrm{H}_{1}$ : at least one of the coefficients of the interaction terms is not equal zero The result shows that the coefficients of the interaction terms are statistically significant from zero ( p -value is 0.000 ). That means that there are wage differentials between male non-volunteers, male volunteers, female non-volunteers and female volunteers. Volunteer experience does not benefit female in the labour market. Also, we have tested separately whether there are wage differential between male non-volunteers and volunteers, between male non-volunteers and female volunteers, and male non-volunteers and female nonvolunteers. We have found that three null hypothesis are rejected. The coefficients of the MV interaction terms, the FV interaction terms, and the FNV interaction terms are all statistically different from zero. Hence, volunteer experience does not change the wage gaps between males and females.

## Conclusion

In our paper, we find that volunteer experience cannot narrow wage differential between males and females. Our results are consistent with Day and Devlin's. Volunteer works has a positive return on the labour market for men but not for women. Males will earn more if they have participated in volunteer works, compared with male nonvolunteers; yet, volunteer works have no return on females. Hence, the wage gap between males and female get larger in account for volunteer works. Also, we have found that the effects on female non-volunteers and volunteer are similar. The possible reason is that
female volunteers posses the same or even worse quality characteristics than female nonvolunteers, so we have found that volunteer works contribute the same effect on female non-volunteers and volunteers.

We have learned that it was hard to find the same number of observation as the model paper, because Day and Devlin did not state clearly where those variables came from. We took similar variables, but we got different sample size. The result we found was slightly different from the model paper. Although we got different result from the model paper, we are interested in trying to find similar data and result to the model paper.

In their paper, Day and Devlin selected three estimations. However, in our paper, we just focus on estimating whether volunteer works narrow the wage gap between males and females. We did not include types of voluntary organization and types of volunteer activity. If we include those variables, we will make the earning equation more complicate. Hence, we only simply run a pooled regression equation and see whether volunteer works affect males and females wage gaps.

## Appendix

| Variables | Description | Sample Mean |
| :---: | :---: | :---: |
| Wage | Midpoint of range of seven reported income classes | 28616.2 |
| Female | Dummy variable: 1 if female, 0 otherwise | 0.5431812 |
| MV | Dummy variable: 1 if male volunteer, 0 otherwise | 0.182902 |
| MNV | Dummy variable: 1 if male non-volunteer, 0 otherwise | 0.2739168 |
| FV | Dummy variable: 1 if female volunteer, 0 otherwise | 0.2640302 |
| FNV | Dummy variable: 1 if female non-volunteer, 0 otherwise | 0.2791509 |
| Exp | Experience | 25.88674 |
| Expsq | Experience square | 876.2526 |
| Education: |  |  |
| HIGHSH | Dummy variable: 1 if high school (some or complete), 0 otherwise | 0.6304158 |
| POSTSE | Dummy variable: 1 if some post-secondary education, 0 otherwise | 0.0933411 |
| DIPLO | Dummy variable: 1 if post-secondary diploma, 0 otherwise | 0.1443734 |
| UNIVER | Dummy variable: 1 if university degree, 0 otherwise | 0.1318697 |
| Language: |  |  |
| ENGLIS | Dummy variable: 1 if language spoken at home is English, 0 otherwise | 1.216924 |
| FRENCH | Dummy variable: 1 if language spoken at home is Frence, 0 otherwise | 1.805757 |
| OTHLAN | Dummy variable: 1 if neither English nor French is spoken at home, 0 otherwise | 1.96467 |
| FAMSIZ | Number of individuals residing in the household | 2.69686 |
| Kids Own: |  |  |
| KIDS1 | Number of own children aged 0-2 years | 0.1788311 |
| KIDS2 | Number of own children aged 3-5 years | 0.1738878 |
| KIDS3 | Number of own children aged 6-15 years | 0.5231172 |
| KIDSAT | Number of children aged 16-24 attending school | 0.1420471 |
| Provinces: |  |  |
| PROV1 | Dummy variable: 1 if the province is Newfoundland, 0 otherwise | 0.074731 |
| PROV2 | Dummy variable: 1 if the province is P.E.I., 0 otherwise | 0.0191916 |
| PROV3 | Dummy variable: 1 if the province is Nova Scotia, 0 otherwise | 0.0681884 |
| PROV4 | Dummy variable: 1 if the province is New Brunswick, 0 otherwise | 0.0734225 |
| PROV5 | Dummy variable: 1 if the province is Quebec, 0 otherwise | 0.1703984 |
| PROV6 | Dummy variable: 1 if the province is Ontario, 0 otherwise | 0.1766502 |
| PROV7 | Dummy variable: 1 if the province is Manitoba, 0 otherwise | 0.0738587 |
| PROV8 | Dummy variable: 1 if the province is Saskatchewan, 0 otherwise | 0.0905787 |
| PROV9 | Dummy variable: 1 if the province is Alberta, 0 otherwise | 0.1388485 |
| PROV10 | Dummy variable: 1 if the province is B.C., 0 otherwise | 0.114132 |

Table B. Pooled Regression Equations for Earnings Equation for Male and Female Volunteers and Non-volunteers in $\log$

| Variables <br> Male non-volunteer |  | Coefficient | Standard Error |
| :---: | :---: | :---: | :---: |
|  | Experience | 0.0172714* | 0.0036864 |
|  | Experience square | -0.0002314* | 0.0000602 |
|  | with high schools education only | -0.7930283 | 1.028375 |
|  | with some post-secondary education | -0.6085904 | 1.029336 |
|  | with post-secondary diploma | $-0.5724835$ | 1.029609 |
|  | with university degree | -0.3827609 | 1.029367 |
|  | English speaker | 0.201768** | 0.1063885 |
|  | French speaker | 0.1830338 | 0.1165685 |
|  | Other language speaker | 0.3829137* | 0.0996634 |
|  | Size of family | 0.0906728* | 0.0170922 |
|  | Number of own children age 0-2 | -0.0420437 | 0.0361049 |
|  | Number of own children age 3-5 | -0.0296613 | 0.376273 |
|  | Number of own children age 6-15 | -0.0015329 | 0.0208106 |
|  | Number of children 16-24 attending school | 0.0069882 | 0.347504 |
|  | In province of Newfoundland | $-0.0733663$ | 0.967958 |
|  | In province of P.E.I. | Dropped | Dropped |
|  | In province of Nova Scotia | 0.1294816 | 0.0993639 |
|  | In province of New Brunswick | 0.0218783 | 0.0989384 |
|  | In province of Quebec | 0.2073272** | 0.1063007 |
|  | In province of Ontario | $0.3572267 *$ | 0.0916138 |
|  | In province of Manitoba | 0.2103777* | 0.0989447 |
|  | In province of Saskatchewan | 0.2490585* | 0.0978077 |
|  | In province of Alberta | 0.2100216* | 0.0941095 |
|  | In province of British Columbia | 0.3197017* | 0.0938421 |
| Male volunteer |  | Dropped | Dropped |
|  | Experience | 0.0196792* | 0.0051142 |
|  | Experience square | -0.0002673* | 0.0000834 |
|  | with high schools education only | 0.0705353 | 0.052935 |
|  | with some post-secondary education | Dropped | Dropped |
|  | with post-secondary diploma | 0.1688454* | 0.0612862 |
|  | with university degree | 0.3627873* | 0.0566985 |
|  | English speaker | -0.0453145 | 0.1882461 |
|  | French speaker | 0.0115812 | 0.1923823 |
|  | Other language speaker | 0.2776568 | 0.1809811 |
|  | Size of family | 0.607735* | 0.239789 |
|  | Number of own children age 0-2 | -0172733 | 0.0429104 |
|  | Number of own children age 3-5 | -0.146204 | 0.0403437 |
|  | Number of own children age 6-15 | 0.0456517** | 0.0246749 |
|  | Number of children 16-24 attending school | 0.0209774 | 0.045667 |
|  | In province of Newfoundland | 0.0998154 | 0.1506925 |
|  | In province of P.E.I. | Dropped | Dropped |
|  | In province of Nova Scotia | 0.2515977** | 0.1488522 |
|  | In province of New Brunswick | 0.3173755* | 0.1513647 |
|  | In province of Quebec | 0.3388386* | 0.160607 |
|  | In province of Ontario | 0.468882* | 0.1420137 |
|  | In province of Manitoba | 0.38559* | 0.146004 |
|  | In province of Saskatchewan | 0.2389253** | 0.1439889 |
|  | In province of Alberta | 0.3273247* | 0.1412649 |
|  | In province of British Columbia | 0.4435922* | 0.1427984 |
| Female volunteer |  | -0.0380826 | 1.0884 |
|  | Experience | 0.0313845* | 0.0045586 |
|  | Experience square | -0.0004589* | 0.0000765 |
|  | with high schools education only | -0.3343738* | 0.380135 |
|  | with some post-secondary education | -0.2598206* | 0.0504793 |
|  | with post-secondary diploma | -0.1906531* | 0.043263 |


|  | with university degree | Dropped | Dropped |
| :---: | :---: | :---: | :---: |
|  | English speaker | 0.1337197 | 0.1356852 |
|  | French speaker | 0.1126686 | 0.1350572 |
|  | Other language speaker | 0.1936609 | 0.1374526 |
|  | Size of family | 0.1810094* | 0.020187 |
|  | Number of own children age 0-2 | -0.0212367 | 0.0368781 |
|  | Number of own children age 3-5 | -0.0528429 | 0.0327745 |
|  | Number of own children age 6-15 | -0.040641** | 0.208445 |
|  | Number of children 16-24 attending school | -0.0764488* | 0.035714 |
|  | In province of Newfoundland | -0.1168016 | 0.1015597 |
|  | In province of P.E.I. | Dropped | Dropped |
|  | In province of Nova Scotia | 0.0732168 | 0.099495 |
|  | In province of New Brunswick | 0.0154526 | 0.1030586 |
|  | In province of Quebec | 0.0572507 | 0.113699 |
|  | In province of Ontario | 0.2140672* | 0.0941572 |
|  | In province of Manitoba | 0.0416957 | 0.0994003 |
|  | In province of Saskatchewan | 0.0069937 | 0.0967014 |
|  | In province of Alberta | 0.0770842 | 0.0939189 |
|  | In province of British Columbia | 0.069854 | 0.0960784 |
| Female non- |  | -0.1263828 | 1.035858 |
|  | Experience | 0.0172368* | 0.0036432 |
|  | Experience square | -0.0002349* | 0.0000593 |
|  | with high schools education only | -0.0965939* | 0.0466376 |
|  | with some post-secondary education | Dropped | Dropped |
|  | with post-secondary diploma | 0.1145373* | 0.055643 |
|  | with university degree | 0.2681002* | 0.064838 |
|  | English speaker | 0.0196446 | 0.1105807 |
|  | French speaker | 0.1593518 | 0.1152824 |
|  | Other language speaker | 0.1144466 | 0.1059502 |
|  | Size of family | 0.1763353* | 0.0185183 |
|  | Number of own children age 0-2 | -0.0548205 | 0.0346519 |
|  | Number of own children age 3-5 | -0.0783378* | 0.0350914 |
|  | Number of own children age 6-15 | -0.0803781* | 0.0209758 |
|  | Number of children 16-24 attending school | -0.0118494 | 0.0331356 |
|  | In province of Newfoundland | 0.0223841 | 0.0991462 |
|  | In province of P.E.I. | Dropped | Dropped |
|  | In province of Nova Scotia | 0.0968844 | 0.1019728 |
|  | In province of New Brunswick | 0.0226228 | 0.1008827 |
|  | In province of Quebec | 0.3140238* | 0.1047993 |
|  | In province of Ontario | 0.3275003* | 0.0932092 |
|  | In province of Manitoba | 0.0499093 | 0.1019962 |
|  | In province of Saskatchewan | 0.1247453 | 0.1000367 |
|  | In province of Alberta | 0.199237* | 0.0965336 |
|  | In province of British Columbia | 0.286456* | 0.0976632 |
| Constant |  | 8.785488 | 0.8912568 |

* Significant at the $5 \%$ level.
** Significant at the $10 \%$ level.


## Log File

```
. Qextract
getting information about file 378 ...
loading variables from 378 (vas87vol) only (no data yet)... done
```

. drop if empfam~=1
(18073 observations deleted)
. drop if f06_q30a>2
(168 observations deleted)
. drop if f06_q35c == .
(1638 observations deleted)

- rename f03q34 sex
. rename f03q33 age
. rename f03q38 edu
- rename f06_q30a english
. rename f06_q30b french
. rename f06_q30c othlang
. rename f06_q35c wage
. recode wage $1=2499.52=7499.53=12499.5 \quad 4=17499.5 \quad 5=24999.56=34999.5$ $7=50000 \quad 8=50000$
(6878 changes made)
. recode age $1=15.52=183=224=29.5 \quad 5=39.56=49.5 \quad 7=59.58=67 \quad 9=70$ (6878 changes made)
. recode edu $1=6 \quad 2=6 \quad 3=7 \quad 4=8 \quad 5=9$
(6878 changes made)
. gen exp $=$ age - edu - 6
- gen expsq = exp*exp
. gen lnwage $=\ln ($ wage $)$
. gen voluntee $=0$
- replace voluntee=1 if f08_q23a ==1
(1956 real changes made)
. replace voluntee=1 if f08_q23b ==1
(167 real changes made)
. replace voluntee=1 if f08_q23c ==1
(110 real changes made)
. replace voluntee=1 if $f 08$ _q23d ==1
(96 real changes made)
. replace voluntee=1 if f08_q23e ==1
(103 real changes made)
. replace voluntee=1 if f08_q23f ==1
(120 real changes made)
. replace voluntee=1 if f08_q23g ==1
(115 real changes made)
. replace voluntee=1 if f08_q23h ==1
(84 real changes made)
- replace voluntee=1 if f08_q23i ==1
(57 real changes made)
. replace voluntee=1 if f08_q23j ==1
(57 real changes made)
- replace voluntee=1 if $f 08$ _q $23 k==1$
(150 real changes made)
. replace voluntee=1 if f08_q231 ==1
(59 real changes made)
. /*create dummy variables for age , education and provinces*/ . tab age, gen(da)

| age group | Freq. | Percent | Cum. |
| ---: | ---: | ---: | ---: |
| 15.5 | 196 | 2.85 | 2.85 |
| 18 | 206 | 3.00 | 5.84 |
| 22 | 650 | 9.45 | 15.30 |
| 29.5 | 2234 | 32.48 | 47.78 |


| 39.5 | 1518 | 22.07 | 69.85 |
| :---: | :---: | :---: | :---: |
| 49.5 | 815 | 11.85 | 81.70 |
| 59.5 | 843 | 12.26 | 93.95 |
| 67 | 199 | 2.89 | 96.85 |
| 70 | 217 | 3.15 | 100.00 |
| Total | 6878 | 100.00 |  |
| . /*drop if age == 1 |  |  |  |
| > drop if age $==2$ |  |  |  |
| $>$ drop if age $==8$ |  |  |  |
| > drop if age == 9 |  |  |  |
| > drop da3 da4 da8 da |  |  |  |
| > gen young = 0 |  |  |  |
| > replace young = 1 if | == 3 |  |  |
| > replace young = 1 i | = $=4$ |  |  |
| > rename da5 mid1 |  |  |  |
| > rename da6 mid2 |  |  |  |
| > rename da7 mid3 |  |  |  |
| > */ |  |  |  |
| . tab province, gen (dp) |  |  |  |
| region and province | Freq. | Percent | Cum. |
| newfoundland | 514 | 7.47 | 7.47 |
| prince edward island | 132 | 1.92 | 9.39 |
| nova scotia | 469 | 6.82 | 16.21 |
| new brunswick | 505 | 7.34 | 23.55 |
| quebec | 1172 | 17.04 | 40.59 |
| ontario | 1215 | 17.67 | 58.26 |
| manitoba | 508 | 7.39 | 65.64 |
| saskatchewan | 623 | 9.06 | 74.70 |
| alberta | 955 | 13.88 | 88.59 |
| british columbia | 785 | 11.41 | 100.00 |
| Total | 6878 | 100.00 |  |

. tab edu, gen(de)

. gen nonvol $=0$
. replace nonvol = 1 if volunt $==0$
(3804 real changes made)
. /*create interaction terms for male and female*/

- gen male $=0$
- replace male=1 if sex ==1
(3142 real changes made)
. gen mv=male*voluntee
- gen mvexp=male*exp*voluntee
. gen mvexpsq=male*expsq*voluntee
. gen mvhighsh=male*de1*voluntee
. gen mvpostse=male*de2*voluntee
. gen mvdiplo=male*de3*voluntee
. gen mvuniver=male*de4*voluntee
- gen mvfamsiz=male*famsize*voluntee
. gen mvkids1=male* ownkids1*voluntee
. gen mvkids2=male* ownkids2*voluntee
. gen mvkids3=male* ownkids3*voluntee
- gen mvkidsat=male* kidsatsh*voluntee
. gen mvenglis=male*english*voluntee
- gen mvfrench=male*french*voluntee
. gen mvothlan=male*othlang*voluntee
. gen mvprov1=male*dp1*voluntee
. gen mvprov2=male*dp2*voluntee
. gen mvprov3=male*dp3*voluntee
. gen mvprov4=male*dp4*voluntee
- gen mvprov5=male*dp5*voluntee
. gen mvprov6=male*dp6*voluntee
. gen mvprov7=male*dp7*voluntee
- gen mvprov8=male*dp8*voluntee
. gen mvprov9=male*dp9*voluntee
. gen mvprov10=male*dp10*voluntee
. gen mnv=male*nonvol
. gen mnvexp=male*exp*nonvol
. gen mnvexpsq=male*expsq*nonvol
. gen mnvhighs=male*de1*nonvol
. gen mnvposts=male*de2*nonvol
. gen mnvdiplo=male*de3*nonvol
- gen mnvuniv=male*de4*nonvol
. gen mnvfamsi=male*famsize*nonvol
- gen mnvkids1=male* ownkids1*nonvol
- gen mnvkids2=male* ownkids2*nonvol
. gen mnvkids3=male* ownkids3*nonvol
. gen mnvkiats=male* kidsatsh*nonvol
. gen mnvengli=male*english*nonvol
. gen mnvfrenc=male*french*nonvol
- gen mnvothla=male*othlang*nonvol
. gen mnvprov1=male*dp1*nonvol
. gen mnvprov2=male*dp2*nonvol
- gen mnvprov3=male*dp3*nonvol
. gen mnvprov4=male*dp4*nonvol
. gen mnvprov5=male*dp5*nonvol
. gen mnvprov6=male*dp6*nonvol
. gen mnvprov7=male*dp7*nonvol
. gen mnvprov8=male*dp8*nonvol
. gen mnvprov9=male*dp9*nonvol
. gen mnvprov0=male*dp10*nonvol
. gen female $=0$
. replace female $=1$ if sex $==2$
(3736 real changes made)
- gen fv = female*voluntee
. gen fvexp $=$ female*exp*voluntee
. gen fvexpsq $=$ female*expsq*voluntee
- gen fvhighsh $=$ female*de1*voluntee
- gen fvpostse $=$ female*de2*voluntee
. gen fvdiplo $=$ female*de3*voluntee
. gen fvuniver $=$ female*de $4 *$ voluntee
- gen fvfamsiz=female*famsize*voluntee
. gen fvkids1 = female* ownkids1*voluntee
. gen fvkids2 = female* ownkids2*voluntee
. gen fvkids3 = female* ownkids3*voluntee
. gen fvkidsat $=$ female* kidsatsh*voluntee
. gen fvenglis=female*english*voluntee
- gen fvfrench=female*french*voluntee
. gen fvothlan=female*othlang*voluntee
. gen fvprov1=female*dp1*voluntee
. gen fvprov2=female*dp2*voluntee
- gen fvprov3=female*dp3*voluntee
. gen fvprov4=female*dp4*voluntee
. gen fvprov5=female*dp5*voluntee
- gen fvprov6=female*dp6*voluntee
. gen fvprov7=female*dp7*voluntee
- gen fvprov8=female*dp8*voluntee
- gen fvprov9=female*dp9*voluntee
. gen fvprov10=female*dp10*voluntee
- gen fnv=female *nonvol
. gen fnvexp=female*exp*nonvol
. gen fnvexpsq=female*expsq*nonvol
- gen fnvhighs=female*de1*nonvol
. gen fnvposts=female*de2*nonvol

```
. gen fnvdiplo=female*de3*nonvol
```

. gen fnvuniv=female*de4*nonvol

- gen fnvfamsi=female*famsize*nonvol
. gen fnvkids1=female*ownkids1*nonvol
. gen fnvkids2=female*ownkids2*nonvol
. gen fnvkids3=female*ownkids3*nonvol
. gen fnvkiats=female*kidsatsh*nonvol
. gen fnvengli=female*english*nonvol
. gen fnvfrenc=female*french*nonvol
. gen fnvothla=female*othlang*nonvol
. gen fnvprov1=female*dp1*nonvol
. gen fnvprov2=female*dp2*nonvol
. gen fnvprov3=female*dp3*nonvol
- gen fnvprov4=female*dp4*nonvol
. gen fnvprov5=female*dp5*nonvol
. gen fnvprov6=female*dp6*nonvol
. gen fnvprov7=female*dp7*nonvol
. gen fnvprov8=female*dp8*nonvol
. gen fnvprov9=female*dp9*nonvol
. gen fnvprov0=female*dp10*nonvol
. set matsiz 120
. /*regression*/
. /*pooled regression for 4 groups*/
. regress lnwage mnvexp mnvexpsq mnvhighs mnvposts mnvdiplo mnvuniv
mnvengli mnvfrenc mnvothla mnvfamsi mnvkids1 mnvkids2 mnvkids3 mnvkiats
mnvprov1 mnvprov2 mnvprov3 mnvprov4 mnvprov5 mnvprov6 mnvprov7 mnvprov8
mnvprov9 mnvprov0 mv mvexp mvexpsq mvhighsh mvpostse mvdiplo mvuniver
mvenglis mvfrench mvothlan mvfamsiz mvkids1 mvkids2 mvkids3 mvkidsat
mvprov1 mvprov2 mvprov3 mvprov4 mvprov5 mvprov6 mvprov7 mvprov8 mvprov9
mvprov10 fv fvexp fvexpsq fvhighsh fvpostse fvdiplo fvuniver fvenglis
fvfrench fvothlan fvfamsiz fvkids1 fvkids2 fvkids3 fvkidsat fvprov1
fvprov2 fvprov3 fvprov4 fvprov5 fvprov6 fvprov7 fvprov8 fvprov9
fvprov10 fnv fnvexp fnvexpsq fnvhighs fnvposts fnvdiplo fnvuniv
fnvengli fnvfrenc fnvothla fnvfamsi fnvkids1 fnvkids2 fnvkids3 fnvkiats
fnvprov1 fnvprov2 fnvprov3 fnvprov4 fnvprov5 fnvprov6 fnvprov7 fnvprov8 fnvprov9 fnvprov0

| Source | SS | df | MS |
| :---: | :---: | :---: | :---: |
| Model | 389.999929 | 91 | 4.28571351 |
| Residual | 2008.88559 | 6786 | . 296033834 |
| Total | 2398.88552 | 6877 | . 348827326 |


| Number of obs | $=$ | 6878 |
| :--- | ---: | ---: |
| F $(91,6786)$ | $=$ | 14.48 |
| Prob $>$ F | $=$ | 0.0000 |
| R-squared | $=$ | 0.1626 |
| Adj R-squared | $=0.1513$ |  |
| Root MSE | $=.54409$ |  |


| lnwage | Coef. | Std. Err | t | $\mathrm{P}>\|\mathrm{t}\|$ | [95\% Co | Interval] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| mnvexp | . 0172714 | . 0036864 | 4.685 | 0.000 | . 010045 | . 0244978 |
| mnvexpsq | -. 0002314 | . 0000602 | -3.842 | 0.000 | -. 0003494 | -. 0001133 |
| mnvhighs | -. 7930283 | 1.028375 | -0.771 | 0.441 | -2.808966 | 1.222909 |
| mnvposts | -. 6085904 | 1.029336 | -0.591 | 0.554 | -2.626411 | 1.40923 |
| mnvdiplo | -. 5724835 | 1.029609 | -0.556 | 0.578 | -2.59084 | 1.445873 |
| mnvuniv | -. 3827609 | 1.029367 | -0.372 | 0.710 | -2.400643 | 1.635121 |
| mnvengli | . 201768 | . 1063885 | 1.897 | 0.058 | -. 0067868 | . 4103228 |
| mnvfrenc | . 1830338 | . 1165685 | 1.570 | 0.116 | -. 0454771 | . 4115447 |
| mnvothla | . 3829137 | . 0996634 | 3.842 | 0.000 | . 1875422 | . 5782852 |
| mnvfamsi | . 0906728 | . 0170922 | 5.305 | 0.000 | . 0571666 | . 1241789 |
| mnvkids1 | -. 0420437 | . 0361049 | -1.164 | 0.244 | -. 1128208 | . 0287333 |
| mnvkids2 | -. 0296613 | . 0376273 | -0.788 | 0.431 | -. 1034225 | . 0440999 |
| mnvkids3 | -. 0015329 | . 0208106 | -0.074 | 0.941 | -. 0423283 | . 0392625 |
| mnvkiats | . 0069882 | . 0347504 | 0.201 | 0.841 | -. 0611336 | . 07511 |
| mnvprov1 | -. 0733663 | . 0967958 | -0.758 | 0.449 | -. 2631163 | . 1163838 |
| mnvprov2 | (dropped) |  |  |  |  |  |
| mnvprov3 | . 1294816 | . 0993639 | 1.303 | 0.193 | -. 0653028 | . 324266 |
| mnvprov4 | . 0218783 | . 0989384 | 0.221 | 0.825 | -. 1720719 | . 2158286 |
| mnvprov5 | . 2073272 | . 1063007 | 1.950 | 0.051 | -. 0010556 | . 41571 |
| mnvprov6 | . 3572267 | . 0916138 | 3.899 | 0.000 | . 177635 | . 5368184 |
| mnvprov7 | . 2103777 | . 0989447 | 2.126 | 0.034 | . 016415 | . 4043404 |
| mnvprov8 | . 2490585 | . 0978077 | 2.546 | 0.011 | . 0573247 | . 4407923 |
| mnvprov9 | . 2100216 | . 0941095 | 2.232 | 0.026 | . 0255376 | . 3945057 |
| mnvprov0 | . 3197017 | . 0938421 | 3.407 | 0.001 | . 1357419 | . 5036616 |
| mv | (dropped) |  |  |  |  |  |
| mvexp | . 0196792 | . 0051142 | 3.848 | 0.000 | . 0096539 | . 0297046 |
| mvexpsq | -. 0002673 | . 0000834 | -3.205 | 0.001 | -. 0004308 | -. 0001038 |
| mvhighsh | . 0705353 | . 052935 | 1.332 | 0.183 | -. 0332338 | . 1743045 |
| mvpostse | (dropped) |  |  |  |  |  |
| mvdiplo | . 1688454 | . 0612862 | 2.755 | 0.006 | . 0487052 | . 2889856 |
| mvuniver | . 3627873 | . 0566985 | 6.399 | 0.000 | . 2516405 | . 473934 |
| mvenglis | -. 0453145 | . 1882461 | -0.241 | 0.810 | -. 4143358 | . 3237068 |
| mvfrench | . 0115812 | . 1923823 | 0.060 | 0.952 | -. 3655484 | . 3887109 |
| mvothlan | . 2776568 | . 1809811 | 1.534 | 0.125 | -. 0771229 | . 6324365 |
| mvfamsiz | . 0607735 | . 0239789 | 2.534 | 0.011 | . 0137673 | . 1077796 |
| mvkids1 | -. 0172733 | . 0429104 | -0.403 | 0.687 | -. 1013912 | . 0668446 |
| mvkids2 | -. 0146204 | . 0403437 | -0.362 | 0.717 | -. 0937066 | . 0644658 |
| mvkids3 | . 0456517 | . 0246749 | 1.850 | 0.064 | -. 0027189 | . 0940223 |
| mvkidsat | . 0209774 | . 045667 | 0.459 | 0.646 | -. 0685443 | . 1104991 |
| mvprov1 | . 0998154 | . 1506925 | 0.662 | 0.508 | -. 1955893 | . 39522 |
| mvprov2 | (dropped) |  |  |  |  |  |
| mvprov3 | . 2515977 | . 1488522 | 1.690 | 0.091 | -. 0401993 | . 5433948 |
| mvprov4 | . 3173755 | . 1513647 | 2.097 | 0.036 | . 0206533 | . 6140977 |
| mvprov5 | . 3388386 | . 160607 | 2.110 | 0.035 | . 0239985 | . 6536786 |
| mvprov6 | . 468882 | . 1420137 | 3.302 | 0.001 | . 1904906 | . 7472735 |
| mvprov7 | . 38559 | . 146004 | 2.641 | 0.008 | . 0993764 | . 6718036 |
| mvprov8 | . 2389253 | . 1439889 | 1.659 | 0.097 | -. 0433381 | . 5211887 |
| mvprov9 | . 3273247 | . 1412649 | 2.317 | 0.021 | . 0504013 | . 6042481 |
| mvprov10 | . 4435922 | . 1427984 | 3.106 | 0.002 | . 1636626 | . 7235219 |
| fv | -. 0380826 | 1.0884 | -0.035 | 0.972 | -2.171689 | 2.095524 |


| fvexp | . 0313845 | . 0045586 | 6.885 | 0.000 | . 0224483 | . 0403208 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| fvexpsq | -. 0004589 | . 0000765 | -5.999 | 0.000 | -. 0006089 | -. 000309 |
| fvhighsh | -. 3343738 | . 0380135 | -8.796 | 0.000 | -. 4088923 | -. 2598553 |
| fvpostse | -. 2598206 | . 0504793 | -5.147 | 0.000 | -. 3587759 | -. 1608653 |
| fvdiplo | -. 1906531 | . 043263 | -4.407 | 0.000 | -. 2754623 | -. 105844 |
| fvuniver | (dropped) |  |  |  |  |  |
| fvenglis | . 1337197 | . 1356852 | 0.986 | 0.324 | -. 1322657 | . 3997051 |
| fvfrench | . 1126686 | . 1350572 | 0.834 | 0.404 | -. 1520858 | . 3774231 |
| fvothlan | . 1936609 | . 1374526 | 1.409 | 0.159 | -. 0757892 | . 4631111 |
| fvfamsiz | . 1810094 | . 020187 | 8.967 | 0.000 | . 1414365 | . 2205824 |
| fvkids1 | -. 0212367 | . 0368781 | -0.576 | 0.565 | -. 0935293 | . 0510558 |
| fvkids2 | -. 0528429 | . 0327745 | -1.612 | 0.107 | -. 1170912 | . 0114055 |
| fvkids3 | -. 040641 | . 0208445 | -1.950 | 0.051 | -. 0815027 | . 0002208 |
| fvkidsat | -. 0764488 | . 035714 | -2.141 | 0.032 | -. 1464595 | -. 0064382 |
| fvprov1 | -. 1168016 | . 1015597 | -1.150 | 0.250 | -. 3158905 | . 0822873 |
| fvprov2 | (dropped) |  |  |  |  |  |
| fvprov3 | . 0732168 | . 099495 | 0.736 | 0.462 | -. 1218246 | . 2682582 |
| fvprov4 | . 0154526 | . 1030586 | 0.150 | 0.881 | -. 1865746 | . 2174798 |
| fvprov5 | . 0572507 | . 113699 | 0.504 | 0.615 | -. 1656349 | . 2801363 |
| fvprov6 | . 2140672 | . 0941572 | 2.274 | 0.023 | . 0294896 | . 3986448 |
| fvprov7 | . 0416957 | . 0994003 | 0.419 | 0.675 | -. 1531601 | . 2365515 |
| fvprov8 | . 0069937 | . 0967014 | 0.072 | 0.942 | -. 1825713 | . 1965587 |
| fvprov9 | . 0770842 | . 0939189 | 0.821 | 0.412 | -. 1070262 | . 2611946 |
| fvprov10 | . 069854 | . 0960784 | 0.727 | 0.467 | -. 1184898 | . 2581979 |
| fnv | -. 1263828 | 1.035858 | -0.122 | 0.903 | -2.156989 | 1.904223 |
| fnvexp | . 0172368 | . 0036432 | 4.731 | 0.000 | . 010095 | . 0243787 |
| fnvexpsq | -. 0002349 | . 0000593 | -3.959 | 0.000 | -. 0003512 | -. 0001186 |
| fnvhighs | -. 0965939 | . 0466376 | -2.071 | 0.038 | -. 1880181 | -. 0051697 |
| fnvposts | (dropped) |  |  |  |  |  |
| fnvdiplo | . 1145373 | . 055643 | 2.058 | 0.040 | . 0054595 | . 2236151 |
| fnvuniv | . 2681002 | . 064838 | 4.135 | 0.000 | . 1409975 | . 395203 |
| fnvengli | . 0196446 | . 1105807 | 0.178 | 0.859 | -. 1971283 | . 2364176 |
| fnvfrenc | . 1593518 | . 1152824 | 1.382 | 0.167 | -. 0666379 | . 3853414 |
| fnvothla | . 1144466 | . 1059502 | 1.080 | 0.280 | -. 093249 | . 3221422 |
| fnvfamsi | . 1763353 | . 0185183 | 9.522 | 0.000 | . 1400337 | . 212637 |
| fnvkids1 | -. 0548205 | . 0346519 | -1.582 | 0.114 | -. 1227491 | . 0131081 |
| fnvkids2 | -. 0783378 | . 0350914 | -2.232 | 0.026 | -. 1471279 | -. 0095478 |
| fnvkids3 | -. 0803781 | . 0209758 | -3.832 | 0.000 | -. 1214973 | -. 0392589 |
| fnvkiats | -. 0118494 | . 0331356 | -0.358 | 0.721 | -. 0768055 | . 0531068 |
| fnvprov1 | . 0223841 | . 0991462 | 0.226 | 0.821 | -. 1719736 | . 2167417 |
| fnvprov2 | (dropped) |  |  |  |  |  |
| fnvprov3 | . 0968844 | . 1019728 | 0.950 | 0.342 | -. 1030144 | . 2967831 |
| fnvprov4 | . 0226228 | . 1008827 | 0.224 | 0.823 | -. 1751391 | . 2203846 |
| fnvprov5 | . 3140238 | . 1047993 | 2.996 | 0.003 | . 1085844 | . 5194632 |
| fnvprov6 | . 3275003 | . 0932092 | 3.514 | 0.000 | . 1447811 | . 5102195 |
| fnvprov7 | . 0499093 | . 1019962 | 0.489 | 0.625 | -. 1500353 | . 2498538 |
| fnvprov8 | . 1247453 | . 1000367 | 1.247 | 0.212 | -. 071358 | . 3208486 |
| fnvprov9 | . 199237 | . 0965336 | 2.064 | 0.039 | . 0100008 | . 3884732 |
| fnvprov0 | . 286458 | . 0976632 | 2.933 | 0.003 | . 0950075 | . 4779085 |
| _cons | 8.785488 | . 8912568 | 9.857 | 0.000 | 7.038346 | 10.53263 |

```
. /*hypothesis tests*/
```

. test mv mvexp mvexpsq mvhighsh mvpostse mvdiplo mvuniver mvenglis mvfrench mvothlan mvfamsiz mvkids1 mvkids2 mvkids3 mvkidsat mvprov1 mvprov2 mvprov3 mvprov4 mvprov5 mvprov6 mvprov7 mvprov8 mvprov9 mvprov10 fv fvexp fvexpsq fvhighsh fvpostse fvdiplo fvuniver fvenglis fvfrench fvothlan fvfamsiz fvkids1 fvkids2 fvkids3 fvkidsat fvprov1 fvprov2 fvprov3 fvprov4 fvprov5 fvprov6 fvprov7 fvprov8 fvprov9
fvprov10 fnv fnvexp fnvhighs fnvposts fnvdiplo fnvuniv fnvengli fnvfrenc fnvothla fnvfamsi fnvkids1 fnvkids2 fnvkids3 fnvkiats fnvprov1 fnvprov2 fnvprov3 fnvprov4 fnvprov5 fnvprov6 fnvprov7 fnvprov8 fnvprov9 fnvprov0

| 1) | $m v=0.0$ |
| :---: | :---: |
| 2) | mvexp $=0.0$ |
| ( 3) | mvexpsq $=0.0$ |
| ( 4) | mvhighsh $=0.0$ |
| ( 5) | mvpostse $=0.0$ |
| 6) | mvdiplo $=0.0$ |
| ( 7) | mvuniver $=0.0$ |
| ( 8) | mvenglis $=0.0$ |
| 9) | mvfrench $=0.0$ |
| (10) | mvothlan $=0.0$ |
| (11) | mvfamsiz $=0.0$ |
| (12) | mvkids1 $=0.0$ |
| (13) | mvkids2 $=0.0$ |
| (14) | mvkids3 $=0.0$ |
| (15) | mvkidsat $=0.0$ |
| (16) | mvprov1 $=0.0$ |
| (17) | mvprov2 $=0.0$ |
| (18) | mvprov3 $=0.0$ |
| (19) | mvprov4 $=0.0$ |
| (20) | mvprov5 $=0.0$ |
| (21) | mvprov6 $=0.0$ |
| (22) | mvprov7 $=0.0$ |
| (23) | mvprov8 $=0.0$ |
| (24) | mvprov9 $=0.0$ |
| (25) | mvprov10 $=0.0$ |
| (26) | $\mathrm{fv}=0.0$ |
| (27) | fvexp $=0.0$ |
| (28) | fvexpsq $=0.0$ |
| (29) | fvhighsh $=0.0$ |
| (30) | fvpostse $=0.0$ |
| (31) | fvdiplo = 0.0 |
| (32) | fvuniver $=0.0$ |
| (33) | fvenglis $=0.0$ |
| (34) | fvfrench $=0.0$ |
| (35) | fvothlan $=0.0$ |
| (36) | fvfamsiz $=0.0$ |
| (37) | fvkids1 $=0.0$ |
| (38) | fvkids2 $=0.0$ |
| (39) | fvkids3 = 0.0 |
| (40) | fvkidsat $=0.0$ |
| (41) | fvprov1 $=0.0$ |
| (42) | fvprov2 = 0.0 |
| (43) | fvprov3 $=0.0$ |
| (44) | fvprov4 $=0.0$ |
| (45) | fvprov5 $=0.0$ |
| (46) | fvprov6 = 0.0 |
| (47) | fvprov7 $=0.0$ |
| (48) | fvprov8 $=0.0$ |
| (49) | fvprov9 $=0.0$ |
| (50) | fvprov10 $=0.0$ |
| (51) | fnv $=0.0$ |
| (52) | fnvexp $=0.0$ |

```
(53) fnvhighs = 0.0
(54) fnvposts = 0.0
(55) fnvdiplo = 0.0
(56) fnvuniv = 0.0
(57) fnvengli = 0.0
(58) fnvfrenc = 0.0
(59) fnvothla = 0.0
(60) fnvfamsi = 0.0
(61) fnvkids1 = 0.0
(62) fnvkids2 = 0.0
(63) fnvkids3 = 0.0
(64) fnvkiats = 0.0
(65) fnvprov1 = 0.0
(66) fnvprov2 = 0.0
(67) fnvprov3 = 0.0
(68) fnvprov4 = 0.0
(69) fnvprov5 = 0.0
(70) fnvprov6 = 0.0
(71) fnvprov7 = 0.0
(72) fnvprov8 = 0.0
(73) fnvprov9 = 0.0
(74) fnvprov0 = 0.0
Constraint 1 dropped
Constraint 5 dropped
Constraint 17 dropped
Constraint 32 dropped
Constraint 42 dropped
Constraint 54 dropped
Constraint 66 dropped
F(67, 6786) = 14.13
 Prob > F = 0.0000
```

. test mv mvexp mvexpsq mvhighsh mvpostse mvdiplo mvuniver mvenglis mvfrench mvothlan mvfamsiz mvkids1 mvkids2 mvkids3 mvkidsat mvprov1 mvprov2 mvprov3 mvprov4 mvprov5 mvprov6 mvprov7 mvprov8 mvprov9 mvprov10

```
(1) mv = 0.0
(2) mvexp = 0.0
(3) mvexpsq = 0.0
(4) mvhighsh = 0.0
(5) mvpostse = 0.0
(6) mvdiplo = 0.0
(7) mvuniver = 0.0
(8) mvenglis = 0.0
(9) mvfrench = 0.0
(10) mvothlan = 0.0
(11) mvfamsiz = 0.0
(12) mvkids1 = 0.0
(13) mvkids2 = 0.0
(14) mvkids3 = 0.0
(15) mvkidsat = 0.0
(16) mvprov1 = 0.0
(17) mvprov2 = 0.0
```

```
(18) mvprov3 = 0.0
(19) mvprov4 = 0.0
(20) mvprov5 = 0.0
(21) mvprov6 = 0.0
(22) mvprov7 = 0.0
(23) mvprov8 = 0.0
(24) mvprov9 = 0.0
(25) mvprov10 = 0.0
 Constraint 1 dropped
 Constraint 5 dropped
Constraint 17 dropped
F(22, 6786)= 8.68
 Prob > F = 0.0000
```

```
. test fv fvexp fvexpsq fvhighsh fvpostse fvdiplo fvuniver fvenglis
fvfrench fvothlan fvfamsiz fvkids1 fvkids2 fvkids3 fvkidsat fvprov1
fvprov2 fvprov3 fvprov4 fvprov5 fvprov6 fvprov7 fvprov8 fvprov9
fvprov10
```

    ( 1) fv \(=0.0\)
    (2) fvexp \(=0.0\)
    (3) fvexpsq \(=0.0\)
    ( 4) fvhighsh \(=0.0\)
    ( 5) fvpostse \(=0.0\)
    ( 6\()\) fvdiplo \(=0.0\)
    ( 7) fvuniver \(=0.0\)
    ( 8) fvenglis \(=0.0\)
    ( 9) fvfrench \(=0.0\)
    (10) fvothlan \(=0.0\)
    (11) fvfamsiz \(=0.0\)
    (12) fvkids1 \(=0.0\)
    (13) fvkids2 \(=0.0\)
    (14) fvkids3 \(=0.0\)
    (15) fvkidsat \(=0.0\)
    (16) fvprov1 \(=0.0\)
    (17) fvprov2 \(=0.0\)
    (18) fvprov3 \(=0.0\)
    (19) fvprov4 \(=0.0\)
    (20) fvprov5 \(=0.0\)
    (21) fvprov6 \(=0.0\)
    (22) fvprov7 \(=0.0\)
    (23) fvprov8 \(=0.0\)
    (24) fvprov9 \(=0.0\)
    (25) fvprov10 \(=0.0\)
        Constraint 7 dropped
        Constraint 17 dropped
        \(F(23,6786)=14.27\)
        Prob \(>\mathrm{F}=0.0000\)
    ```
. test fnv fnvexp fnvhighs fnvposts fnvdiplo fnvuniv fnvengli fnvfrenc
fnvothla fnvfamsi fnvkids1 fnvkids2 fnvkids3 fnvkiats fnvprov1 fnvprov2
fnvprov3 fnvprov4 fnvprov5 fnvprov6 fnvprov7 fnvprov8 fnvprov9 fnvprov0
```

    ( 1) fnv \(=0.0\)
    ( 2) fnvexp \(=0.0\)
    ( 3) fnvhighs \(=0.0\)
    ( 4) fnvposts \(=0.0\)
    ( 5) fnvdiplo \(=0.0\)
    ( 6) fnvuniv \(=0.0\)
    ( 7) fnvengli \(=0.0\)
    ( 8) fnvfrenc \(=0.0\)
    ( 9) fnvothla \(=0.0\)
    (10) fnvfamsi \(=0.0\)
    (11) fnvkids1 \(=0.0\)
    (12) fnvkids2 = 0.0
    (13) fnvkids3 \(=0.0\)
    (14) fnvkiats \(=0.0\)
    (15) fnvprov1 \(=0.0\)
    (16) fnvprov2 \(=0.0\)
    (17) fnvprov3 \(=0.0\)
    (18) fnvprov4 \(=0.0\)
    (19) fnvprov5 \(=0.0\)
    (20) fnvprov6 \(=0.0\)
    (21) fnvprov7 \(=0.0\)
    (22) fnvprov8 \(=0.0\)
    (23) fnvprov9 \(=0.0\)
    (24) fnvprov0 \(=0.0\)
        Constraint 4 dropped
        Constraint 16 dropped
        \(F(22,6786)=12.15\)
        Prob > \(\mathrm{F}=0.0000\)
    . /*prediction*/
.

- predict yhat
(option xb assumed; fitted values)
- summ lnwage yhat

Variable	Obs	Mean	Std. Dev.	Min	Max
lnwage	6878	10.11653	. 5906161	7.823846	10.81978
yhat	6878	10.11653	. 2381402	9.283969	10.98948

. predict uhat
(option xb assumed; fitted values)
. summ lnwage yhat uhat

Variable	Obs	Mean	Std. Dev.	Min	Max
lnwage	6878	10.11653	. 5906161	7.823846	10.81978


yhat	6878	10.11653	.2381402	9.283969	10.98948
uhat	6878	10.11653	.2381402	9.283969	10.98948

. summ wage province sex female mv mnv fv fnv age de1 de2 de3 de4 famsize ownkids1 ownkids2 ownkids3 kidsatsh english french othlang exp expsq dp1 dp2 dp3 dp4 dp5 dp6 dp7 dp8 dp9 dp10

Variable	Obs	Mean	Std. Dev.	Min	Max
wage	6878	28616.2	13680.14	2499.5	50000
province	6878	34.0567	16.13448	10	59
sex	6878	1.543181	. 4981681	1	2
female	6878	. 5431812	. 4981681	0	1
mv	6878	. 182902	. 3866143	0	1
$m \mathrm{~m}$	6878	. 2739168	. 4459992	0	1
fv	6878	. 2640302	. 4408475	0	1
fnv	6878	. 2791509	. 4486145	0	1
age	6878	38.66444	14.25192	15.5	70
de1	6878	. 6304158	. 4827272	0	1
de2	6878	. 0933411	. 290931	0	1
de3	6878	. 1443734	. 3514935	0	1
de4	6878	. 1318697	. 3383737	0	1
famsize	6878	2.69686	1.162583	1	4
ownkids1	6878	. 1788311	. 4420855	0	3
ownkids2	6878	. 1738878	. 4331122	0	3
ownkids3	6878	. 5231172	. 8818385	0	5
kidsatsh	6878	. 1420471	. 4219201	0	3
english	6878	1.216924	. 4121801	1	2
french	6878	1.805757	. 3956452	1	2
othlang	6878	1.96467	. 1846261	1	2
exp	6878	25.88674	14.35825	3.5	58
expsq	6878	876.2526	887.6157	12.25	3364
dp1	6878	. 074731	. 262976	0	1
dp2	6878	. 0191916	. 137208	0	1
dp3	6878	. 0681884	. 2520873	0	1
dp4	6878	. 0734225	. 2608477	0	1
dp5	6878	. 1703984	. 3760097	0	1
dp6	6878	. 1766502	. 3814001	0	1
dp7	6878	. 0738587	. 2615598	0	1
dp8	6878	. 0905787	. 2870299	0	1
dp9	6878	. 1388485	. 3458135	0	1
dp10	6878	. 114132	. 3179947	0	1

```
. count if sex == 1
```

    3142
    - count if sex == 2
3736
- count if voluntee $==1$
3074
. count if voluntee $==0$
3804

```
. count if sex == 1 & voluntee == 1
1258
. count if sex == 2 & voluntee == 1
1816
 . count if sex == 1 & voluntee == 0
 1884
 . count if sex == 2 & voluntee == 0
 1920
 . count if de1 ==1
 4336
 . count if de2 ==1
 642
 . count if de3 ==1
 993
 . count if de4 ==1
 907
 . count if de1==1 & voluntee ==1
 1572
 . count if de2==1 & voluntee ==1
 330
 . count if de3==1 & voluntee ==1
 547
 . count if de4==1 & voluntee ==1
 625
 . count if de1==1 & voluntee ==0
 2764
 . count if de2==1 & voluntee ==0
 312
 . count if de3==1 & voluntee ==0
 446
 . count if de4==1 & voluntee ==0
 282
```


[^0]:    ${ }^{1}$ Donations was chosen due to it's ease of aggregation, which reduces the probability of deviation from Phipps and Burton's results.

[^1]:    ${ }^{2}$ The definition of married couple includes both married and common-law couples.
    ${ }^{3}$ Regression observations number 893 , due to lack of sufficient donation of some households in the restricted set.

[^2]:    ${ }^{4}$ The authors do state that figures are available upon request. At the current time the authors have not responded.
    ${ }_{6}^{5}$ Income is calculated on a pre-tax basis.
    ${ }^{6} 8$ sub-categories do not include possible receipts categories.
    ${ }^{7}$ The survey defines living in an urban area as residing in one of the 15 major Canadian cities.

[^3]:    ${ }^{8}$ For complete description of this analysis, see Phipps and Burton p. 604.
    ${ }^{9}$ At the $10 \%$ significance level, Phipps and Larkin find pooling is only evident for 'big-ticket' expenditures, or 6 of the 14 categories.

[^4]:    ${ }^{10}$ Phipps and Burton note this significance of a low adjusted $R^{2}$ on p. 603

[^5]:    1) Sex
    2) Age
    3) Education
[^6]:    ${ }^{1}$ Harkness, Jon. 1993. "Labor Force Participation by Disabled Males in Canada," Canadian Journal of Economics (November): 878-89.
    ${ }^{2} 13$ percent or 1.6 million of working-age Canadian males experienced disability in 1986.
    ${ }^{3}$ Haveman, R. H. and B. L. Wolfe. 1984. "Disability Transfers and Early Retirement: A Causal Relationship?" Journal of Public Economics (24): 47-66.
    ${ }^{4}$ Bound, John. 1989. "The Health and Earnings of Rejected Disability Insurance Applicants," American Economic Review (79): 482-503.

[^7]:    ${ }^{5}$ Part time workers who collect disability pensions was eliminated from the first income equation, and were included in the other set of the sample which used the second equation for the estimation of its income.

[^8]:    ${ }^{6}$ Slade, F. P. 1984. "Older Men: Disability Insurance and the Incentives to Work," Industrial Relations.

[^9]:    *******************************************************************************

[^10]:    ${ }^{1}$ Sample formula for Difference in Mean Log Earnings between 1981-1988 for workers of age group j :
    

[^11]:    ${ }^{2}$ The corresponding F-value is calculated using Equation (3).

[^12]:    ${ }^{3}$ The corresponding F-value is calculated using Equation (3). The required values for the calculations are stated in Table 3 of Appendix II.

[^13]:    . /*Notes: the number 17 stands for the number of coefficents to estimate for e
    $>$ ach group*/
    . predict r, resid
    (6028 missing values generated)

[^14]:    Authors:

