Mathematics for Economists with Applications

James Bergin

This edition published 2015 by Routledge 2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN and by Routledge 711 Third Avenue, New York, NY 10017

Routledge is an imprint of the Taylor & Francis Group, an informa business

© 2015 James Bergin

Typeset in NewCenturySchlbk by Cenveo Publisher Services

Printed and bound in Great Britain by XXXXX

All rights reserved. [The purchase of this copyright material confers the right on the purchasing institution to photocopy pages which bear the photocopy icon and copyright line at the bottom of the page. No other] [No] part of this book may be reprinted or reproduced or utilized in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying and recording, or in any information storage or retrieval system, without permission in writing from the publishers.

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data

Bergin, James.

Mathematics for economists with applications / by James Bergin. - 1 Edition. pages cm ISBN 978-0-415-63828-9 (pbk.) - ISBN 978-0-415-63827-2 (hardback) - ISBN 978-1-315-81953-2 (ebook) 1. Economics, Mathematical. I. Title. HB135.B47 2015 510-dc23 2014020372

ISBN13: 978-0-415-63827-2 (hbk) ISBN13: 978-0-415-63828-9 (pbk) ISBN13: 978-1-315-81953-2 (ebk)

Contents

	List of Figures			
	Pref	xxi		
1	Inti	roduct	ion	1
	1.1	Introd	luction	1
	1.2	A brie	ef summary by chapter	1
2	Mat	trices	and systems of equations	19
	2.1	Intro	luction	19
		2.1.1	Some motivating examples	20
	2.2	Vector	rs	23
	2.3	Matri	ces	24
		2.3.1	Matrix addition and subtraction	25
		2.3.2	Matrix multiplication	26
		2.3.3	Matrix transpose	29
		2.3.4	Matrix inversion	30
		2.3.5	Additional remarks on determinants	40
		2.3.6	Cramer's rule	43
		2.3.7	Gaussian elimination	44
	2.4	Linea	r dependence and independence	50
		2.4.1	Matrix rank and linear independence	55
	2.5	Soluti	ions of systems of equations	57

		2.5.1	Solving systems of equations: a geometric view	57
		2.5.2	Solutions of equation systems: rank and linear	
			independence	61
	2.6	Specia	al matrices	64
	Exe	rcises f	for Chapter 2	71
3	Lin	ear al	gebra: applications	77
	3.1	Intro	duction	77
	3.2	The n	narket model	77
	3.3	Adjac	ency matrices	78
	3.4	Input	–output analysis	81
	3.5	Inflat	ion and unemployment dynamics	88
	3.6	Static	onary (invariant) distributions	89
		3.6.1	Convergence to a stationary distribution	91
		3.6.2	Computation of the invariant distribution	93
	3.7	Econo	ometrics	94
		3.7.1	Derivation of the least squares estimator	97
	Exe	rcises f	for Chapter 3	101
4	Lin	ear pr	ogramming	105
	4.1	Intro	duction	105
		4.1.1	Formulation	106
		4.1.2	The feasible region	109
		4.1.3	Finding an optimal solution	110
		4.1.4	Dual prices and slack variables	113
		4.1.5	Some examples	116
		4.1.6	Duality reconsidered	120
	4.2	Basic	solutions	123
		4.2.1	Equality-constrained programs	123
		4.2.2	Definition and identification of basic solutions	125
	4.3	Duali	ty principles	131
		4.3.1	Duality and dual prices	134
	Exe	rcises f	for Chapter 4	137
5	Fur	nction	s of one variable	145
	5.1	Intro	duction	145

vi

		5.2.1	Demand functions	146
		5.2.2	Present value and the interest rate	147
		5.2.3	Taxation	148
		5.2.4	Options	149
	5.3	Conti	nuity and differentiability	151
		5.3.1	Preliminaries	151
		5.3.2	Inequalities and absolute value	153
		5.3.3	Continuity	154
		5.3.4	Differentiability	156
	5.4	Types	of function	158
		5.4.1	Plots of various functions	159
		5.4.2	The log and exponential functions	161
	5.5	Grow	th rates	163
		5.5.1	Additivity of continuous growth rates	164
		5.5.2	The functions $\ln x$ ($\log_e x$) and e^{kx}	165
	5.6	Some	rules of calculus	166
		5.6.1	l'Hospital's rule	169
		5.6.2	Higher derivatives	170
	Exe	rcises f	for Chapter 5	171
6	Fur	octions	s of one variable: applications	175
	6.1	Intro	luction	175
	6.2	Optin	nization	176
		6.2.1	The first-order condition: issues	177
		6.2.2	The second-order condition	181
		6.2.3	Applications: profit maximization and related	
			problems	183
	6.3	Conca	avity and optimization	187
		6.3.1	Summary	193
	6.4	Exter	nalities	193
		6.4.1	The free-rider problem	193
	6.5	Comp	arative statics	196
	6.6	Elasti	icity of demand	200
		6.6.1	Elasticity, revenue and profit maximization	202
	6.7	Taxat	ion and monopoly	203

		6.8.1	A unit tax	206
		6.8.2	An ad-valorem tax	207
		6.8.3	Elasticities and taxation	209
	6.9	Rams	ey pricing	211
	Exe	rcises f	for Chapter 6	215
7	Sys	tems o	of equations, differentials and derivatives	219
	7.1	Intro	duction	219
	7.2	Partia	al derivatives	223
	7.3	Level	contours	225
	7.4	The e	lasticity of substitution	227
	7.5	Mark	et equilibrium: an application	230
		7.5.1	Oligopoly: linear demand	232
		7.5.2	Oligopoly: non-linear demand	233
		7.5.3	Industry concentration indices	234
	7.6	Total	differentials	235
		7.6.1	The impact of parameter changes	240
	7.7	Soluti	ions to systems of equations	242
		7.7.1	Existence and properties of solutions	244
	7.8	The in	mplicit function theorem	247
		7.8.1	General systems of equations	253
	Exe	rcises f	for Chapter 7	263
8	Тау	lor se	ries	269
	8.1	Intro	duction	269
		8.1.1	Taylor series approximations: an example	270
		8.1.2	Taylor series expansions	272
		8.1.3	Approximations and accuracy	275
	8.2	Appli	cations of Taylor series expansions	276
		8.2.1	Concavity and the second derivative	277
		8.2.2	Roots of a function	278
		8.2.3	Numerical optimization	279
	8.3	Expec	cted utility theory and behavior towards risk	285
		8.3.1	Expected utility theory	285
		8.3.2	Risk-averse preferences and welfare loss	287
		8.3.3	Risk aversion and the cost of small risk	290
	8.4	Diver	sification and portfolio selection	293

viii

		8.4.1 Di	versification	293
		8.4.2 Po	rtfolio selection	294
	8.5	The mult	ivariate version of Taylor's theorem	296
	8.6	Proof of T	aylor's theorem	297
	Exe	cises for C	Chapter 8	301
9	Vec	tors		307
	9.1	Introduct	ion	307
	9.2	Vectors: l	ength and distance	307
	9.3	Vectors: d	irection and angles	310
	9.4	Hyperpla	nes and direction of increase	313
	9.5	Farkas' le	emma	316
	Exe	cises for C	Chapter 9	319
10	Qua	dratic Fo	orms	321
	10.1	Introduct	ion	321
	10.2	Quadration	c forms	322
	10.3	Positive a	nd negative definite matrices	325
		10.3.1 Sy	mmetric matrices	327
		10.3.2 Cr	iteria for positive and negative definiteness	328
		10.3.3 Po	sitive and negative semi-definiteness	329
	10.4	Definiten	ess with equality constraints	330
	Exe	cises for C	Chapter 10	333
11	Mu	tivariate	optimization	335
	11.1	Introduct	ion	335
	11.2	The two-v	variable case	335
		11.2.1 Mo	otivation for the second-order conditions	339
		11.2.2 Fa	ilure of the second-order conditions	347
		11.2.3 Th	e envelope theorem	349
	11.3	Optimiza	tion: n variables	357
		11.3.1 Mo	otivation for the Hessian conditions	360
		11.3.2 De	finiteness and second-order conditions	361
	11.4	Concavity	, convexity and the Hessian matrix	367
	Exe	cises for C	Chapter 11	369
12	Equ	ality-con	strained optimization	375
	12.1	Introduct	ion	375

ix

Contents

12.1.1 A motivating example	376
12.2 The two-variable case	378
12.3 Motivation for first- and second-order conditions	384
12.3.1 The first-order condition	385
12.3.2 The second-order condition	385
12.3.3 A geometric perspective	387
12.4 The <i>n</i> -variable case	390
12.4.1 Quadratic forms and bordered matrices	391
12.4.2 Bordered Hessians and optimization	392
12.4.3 The second-order condition reconsidered	395
12.5 Interpretation of the Lagrange multiplier	396
12.6 Optimization: concavity and convexity	402
12.6.1 Quasiconcavity and bordered hessians	409
12.7 Optimization with many constraints	411
Exercises for Chapter 12	415
13 Inequality constrained optimization	419
13.1 Introduction	419
13.1.1 A motivating example	420
13.1.2 Overview	422
13.2 Optimization	423
13.2.1 The constraint qualification	430
13.2.2 Complementary slackness	434
13.2.3 Minimization and maximization	436
13.2.4 Global and local optima	436
13.2.5 Non-negativity constraints	437
13.2.6 Necessary conditions and non-convexities	442
13.2.7 The Lagrange multiplier	444
13.2.8 Equality and inequality constraints	444
Exercises for Chapter 13	447
14 Integration	449
14.1 Introduction	449
14.2 The integral	450
14.3 Common integrals and rules of integration	452
14.4 Measuring welfare: surplus	452
14.4.1 Consumer surplus	452

x

Contents

14.4.2 Producer surplus	453		
14.4.3 Consumer surplus and welfare	454		
14.5 Cost, supply and profit	456		
14.5.1 Average and marginal cost	458		
14.6 Taxation and consumer surplus	461		
14.7 Present value	465		
14.8 Leibnitz's rule	467		
14.9 Inequality measures	469		
14.10Ramsey pricing	471		
14.11 Welfare measures	474		
14.11.1 Consumer surplus	474		
14.11.2 Compensating variation	476		
14.11.3 Equivalent variation	482		
14.11.4 Comparison of welfare measures	485		
Exercises for Chapter 14	491		
15 Eigenvalues and eigenvectors			
15.1 Introduction	493		
15.2 Definitions and basic properties	494		
15.3 An application: dynamic models	500		
15.3.1 Supply and demand dynamics	502		
15.3.2 A model of population growth	504		
15.4 The Perron–Frobenius theorem	508		
15.5 Some applications	511		
15.5.1 Webpage ranking	511		
15.5.2 Leslie matrices	515		
15.6 Eigenvalues and eigenvectors of symmetric matrices	519		
15.7 Real and complex eigenvalues and			
eigenvectors	523		
15.8 Diagonalization	529		
15.9 Properties of eigenvalues and eigenvectors	530		
15.9.1 Largest eigenvalues and eigenvalue multiplicity	534		
Exercises for Chapter 15	537		
16 Differential Equations	541		
16.1 Introduction	541		
16.1.1 Preliminary discussion	542		

xi

	16.2 First-order linear differential equations	544
	16.2.1 Constant coefficients	544
	16.2.2 Variable coefficients	548
	16.3 Some non-linear first-order differential equations	552
	16.3.1 The logistic model	552
	16.3.2 The Bernoulli equation	554
	16.4 First-order differential equations: existence of solutions	557
	16.5 Second and higher-order differential equations	558
	16.5.1 Constant coefficients	558
	16.5.2 Derivation of solution	559
	16.6 Systems of differential equations	563
	16.7 Stability	566
	Exercises for Chapter 16	569
17	Linear difference equations	573
	17.1 Introduction	573
	17.2 Motivating examples	574
	17.3 First-order linear difference equations	576
	17.3.1 Solving first-order linear difference equations	577
	17.3.2 The constant forcing function	577
	17.3.3 The cobweb model	579
	17.3.4 Equations with variable forcing function	581
	17.4 Second-order linear difference equations	582
	17.4.1 The inhomogeneous equation	583
	17.4.2 The homogeneous equation	583
	17.4.3 The general solution	584
	17.4.4 Stability	585
	17.4.5 Examples	585
	17.4.6 The Samuelson multiplier-accelerator model	586
	17.5 Vector difference equations	589
	17.5.1 The particular solution	589
	17.5.2 The complementary solution	590
	17.6 The \boldsymbol{n} -variable case	592
	17.7 Miscellaneous calculations	593
	17.7.1 Various forcing functions: solutions	593
	17.7.2 Roots of the characteristic equation	595

xii

kiii		Contents
	1779 Stability	500
	Environ for Chapter 17	599
	Exercises for Chapter 17	603
18	Probability and distributions	605
	18.1 Introduction	605
	18.2 Random variables	606
	18.3 The distribution function and density	608
	18.3.1 The conditional distribution	610
	18.3.2 Joint distributions	611
	18.4 Discrete distributions	613
	18.4.1 The Bernoulli distribution	613
	18.4.2 The binomial distribution	613
	18.4.3 The Poisson distribution	616
	18.4.4 The Poisson process	617
	18.5 Continuous distributions	619
	18.5.1 The uniform distribution	619
	18.5.2 The exponential distribution	620
	18.5.3 The normal distribution	620
	18.5.4 Moment-generating functions	623
	18.5.5 The chi-square distribution	623
	18.5.6 The <i>t</i> -distribution	625
	18.5.7 The \boldsymbol{F} distribution	631
	Exercises for Chapter 18	633
19	Estimation and hypothesis testing	639
	19.1 Introduction	639
	19.2 Estimation	639
	19.2.1 Unbiasedness and efficiency	640
	19.3 Large-sample behavior	642
	19.3.1 Law of large numbers	642
	19.3.2 The central limit theorem	645
	19.4 Hypothesis testing	647
	19.4.1 A hypothesis test	648
	19.4.2 Types of error	648
	19.4.3 Simple null and alternative hypotheses	652
	19.4.4 Uniformly most powerful tests	654
	1945 Two-sided tests	660

19.4.6 Unbiased tests	662
19.4.7 Use of chi-square and $m{F}$ tests	663
19.5 Econometric applications	664
19.5.1 Matrix computations	664
19.5.2 Ordinary least squares	666
19.5.3 Distributions and hypothesis testing	669
19.5.4 Test statistics	671
19.5.5 Hypothesis testing for the linear model	672
Exercises for Chapter 19	677
Bibliography	681
Index	683

xiv