ECON 452* -- NOTE 10: Statistical Inference: The Fundamentals M.G. Abbott

ECON 452* -- The Skinny on NOTE 10

Testing Linear Coefficient Restrictions in Linear Reqgression Models: The Fundamentals

This note outlines the fundamentals of statistical inference in linear regression models.

e Inscalar notation, the population regression equation, or PRE, for the linear regression model is written in
general as:

Y =8,+BX,+ B, X, + -+ BX,+ u, Vi (1.1)
or
Y, = BO+J‘Z“kBinj+ui Vi (1.2)
or i
Y, = fzﬁjxij+ui, X, =1Vi Vi (1.3)
e
where

Y; = the i-th population value of the regressand, or dependent variable;
Xij = the i-th population value of the j-th regressor, j =1, ..., k;
Bj = the partial slope coefficient of Xj;,j =1, ..., k;

u; = the i-th population value of the unobservable random error term.

ECON 452* -- Note 10: Filename 452note10skinny_slides.doc ... Page 1 of 37 pages



ECON 452* -- NOTE 10: Statistical Inference: The Fundamentals M.G. Abbott

e In vector-matrix notation, the population regression equation, or PRE, for a sample of N observations on a
linear regression model can be written as:

y=XB+u (2)

where

y=| Y, | = the Nx1 regressand vector

= the Nx1 column vector of observed sample values of the regressand, or dependent variable, Y; (i=1, ...,
N);

u=|u, | = the NxI error vector

= the Nx1 column vector of unobserved random error terms u; (i =1, ..., N) corresponding to each of the
N sample observations.
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XlT 1 Xn X12 Xlk
XzT 1 le Xzz sz

X=x1|=|1 X; X; - X, |= the NxK regressor matrix
_XTI:I_ 1 Xy X o X

= the NxK matrix of observed sample values of the K =k + 1 regressors X;o, Xj1, Xip, ..., Xix 1=1, ...,
N), where the first regressor is a constant equal to 1 for all observations (X;p=1Vi=1, ..., N).

Bo
P,

B =B, | = the Kx1 regression coefficient vector

Bi_

= the Kx1 or (k+1)x1column vector of unknown partial regression coefficients 3;,j =0, 1, ..., k.

« Statistical inference consists of both
1. testing hypotheses on the regression coefficient vector 3 and

2. constructing confidence intervals for the individual elements of f3.
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1. Assumption A6: The Error Normality Assumption
In order to perform statistical inference in the linear regression model, it is necessary to specify the form of the
probability distribution of the error vector u in population regression equation (1). The normality assumption does
this.
O Scalar Formulation of the Error Normality Assumption A6
The random error terms u; are independently and identically distributed as the normal distribution with
1. zero conditional means

E(ui‘XiT): E(u,) =0 Vi1

2. constant conditional variances

vVar(u|x!) = B(u?[x7) = E(0)[ LX,, XX, )= 0 >0 Vi
3. zero conditional covariances
Cov(ui,uS XiT,XST): E(uiuS xiT,xsT): 0 Vi#s
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e A compact way of stating error normality assumption A6 is:
conditional on X, the u; are iid as N(0, ¢°) (A6.1)

where

"iid" means "independently and identically distributed"

) .. . . . 2
N(0, 6°) denotes a normal distribution with zero mean and variance G°.

Even more briefly, we can say that

x; are iid as N(0, 6°). (A6.2)

U,
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O Matrix Formulation of the Error Normality Assumption A6
The Nx1 error vector u has a multivariate normal distribution with
1. azero conditional mean vector
E(u ‘ X) =0 where 0 is an Nx1 vector of zeros
2. aconstant scalar diagonal covariance matrix V(u)
V(u‘ X) = E(uuT‘ X) = o’I, where Iy is the NxN identity matrix
e A compact way of stating the error normality assumption in matrix terms is:
u|X ~ N(0,6°1,) (A6)

where N(-,-) here denotes the N-variate normal distribution.
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Q Implications of Assumption A6 for the Distribution of the Regressand Vector y

e Linearity Property of Normal Distribution: Any linear function of a normally distributed random variable is
itself normally distributed.

o yisalinear function of u: The PRE y = X3 + u states that the regressand vector y is a linear function of the

error vector u.

o Implication: Since u is normally distributed by assumption A6 and y is a linear function of u by assumption Al,
the linearity property of the normal distribution implies that

y|X ~ N(XB, 6?1 ).
That is, the regressand vector y has an N-variate normal distribution with

(1) conditional mean vector equal to E(y\X) = X
and

(2) conditional covariance matrix equal to V(y\X) = o’ly.
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a Implications of Assumption A6 for the Distribution of the OLS Coefficient Estimator B

« P isalinear function of y. Conditional on the regressors X, the OLS coefficient estimator P is a linear
function of the regressand vector y:

A

BOLS =P = (XTX)%XTY

e Implication: Since y is normally distributed by implication of assumption A6 and f’) is a linear function of y,
the linearity property of the normal distribution implies that

Blx ~ N(p.o*x™X)"). ©
That is, the OLS coefficient estimator B has a K-variate normal distribution with

(1) conditional mean vector equal to E(B‘X) =B
and

(2) conditional covariance matrix equal to V(B\X) = o’ (X"X)".
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2. Formulation of Linear Equality Restrictions on 3

The general hypothesis to be tested is that the coefficient vector B3 satisfies a set of q independent linear restrictions,
where q < K. We formulate this general hypothesis in vector-matrix form, since this corresponds to the way in
which econometric software such as Stata is written.
The null hypothesis Hy is written in general as:

Hp: RB=r < RB-r=0
The alternative hypothesis H; is written in general as:

Hi: RB#r < RB-r=0
In Hy, and H; above:

R = a gxK matrix of specified constants;
B = the Kx1 coefficient vector;
r = a qx1 vector of specified constants;

0 =a gx1 null vector, i.e., a qx1 vector of zeros.
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e The gxK restrictions matrix R takes the form

i rl 0 I.l 1 rl 2 I.1 k |
R _ I'20 r21 I'2.2 I'2k
_rqO I‘ql I.q2 qu
where

I'mj = the constant on coefficient f3; in the m-th linear restriction, m=1, ..., q.

e The gx1 restrictions vector r takes the form

rl
I‘2
r=1|.
| Tq
where

rm = the constant term in the m-th linear restriction, m=1, ..., q.
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e The matrix-vector product R is a qx1 vector of linear functions of the regression coefficients B¢, B1, B2, ... , Pk:

] .1 - ]
Ly Ty T 0 Ly 1oBo + 1,8, + 1,8, +-- + 1, B,
B,
Ly Ly T o0 Iy 1‘20[30 + I.21[31 + 1'22[32 teeet erBk
Rp=1. "+ 7 . |B= :
Too T T 7 Ty | B _rqOBO + rqlBl + quBZ teeet quBk )
LMk _|
(qxK) (Kx1) (qx1)

e The null and alternative hypotheses can therefore be written as follows:

_r10[30+r11[31 +1,B, + 1, By 7] r

Hp:RB=r = IoPo + 1) + rz'sz +oo 1,y _ r.z
_rqOBO +rql[31 "‘fquz +...+qu[3k_ T,
(1 B+ B, AT B, B ][]

H:RB#r = B + 15,8, + rz‘zﬁz 4+ 41, B, ) r.z
_rqOBO +r,B, +r,B, ++ quBk_ T, |
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Some Specific Examples

Consider the linear regression model given by the PRE

Y =B, + BX, + B, X, + B, X;+ B, X, + u, a=1,...,N) 4)
Test 1
The null and alternative hypotheses are:

Hyo: pB>=0 one linear restriction on coefficient vector 3

H;: Bz #0
e The restrictions matrix R in this case 1s the 1x5 row vector:
R=1[ 01 0 0]

e The restrictions vector r is in this case the scalar 0 since there is only one restriction specified by the null
hypothesis H:

r = 0.
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e The matrix-vector product R in this case is:

By
B,
RB=1[0 0 1 0 O]B,|= 0Bo+0B;+1B,+0PBs+0Bs = Bs
Bs
B, ]

e The null hypothesis Hy: R =r 1s therefore the single equation:

H(): Bz =0
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Test 2
The PRE is again

Y =By + BX; + B X, + Xy + B X+ v i=1,..,N) 4)
The null and alternative hypotheses are:

Hyo: PB;=0 and B,=0 two linear restrictions on coefficient vector 3

Hi: B;#0 and/or B, #0

e The restrictions matrix R in this case is the 2x5 row vector:
01 0 0 O
R =
O 01 0 O
e The restrictions vector r is in this case the 2x1 column vector of zeros:

I
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e The matrix-vector product R in this case is:

B, |
6 = 01000 b, _[0B, +1B, +0B, +0B, +0B, ] [B,
b= {o 0100 gz “ | 0B, +0B, +1B, +0B, +0B, | |B,
B,

e The null hypothesis Hy: R = r 1s therefore the matrix equation:

0
Hy: {Bl} = { } which says "B; =0 and ,=0"
P, 0

ECON 452* -- Note 10: Filename 452note10skinny_slides.doc

... Page 15 of 37 pages



ECON 452* -- NOTE 10: Statistical Inference: The Fundamentals M.G. Abbott
Test 3
The PRE is again

Y, = B, + B X, + B, X, + By Xy + BX, + u i=1,...,N) 4)

The null and alternative hypotheses are:

Hy: 61263 and BzZ—B4 or BI_B3:O and B2+B4:O (q:2)
Hy;: B;#P; and/or B, #=P4 oOr Bi—Ps;#0 and/or B+ Ps#0

e The restrictions matrix R in this case is the 2x5 row vector:
01 0 -1 0
R =
O 01 0 1
e The restrictions vector r is in this case the 2x1 column vector of zeros:

I
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e The matrix-vector product Rf3 in this case is:

Bo

R_010—1o[31

B_00101[;2
B

_ OB0+1B1+062_1B3+OB4 _ Bl_B3
| OB, +0B, +1B, +0B, +1B, | | B, +B,

e The null hypothesis Hy: R = r is therefore the matrix equation:

B, +B,

Ho: {B‘_ﬂ:m which says "B, — B3 =0 and B, + Bs=0"
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Test 4
The PRE is again

Y, = B, + B X, + B, X, + By Xy + BX, + u i=1,...,N) 4)

The null and alternative hypotheses are:

Hy: Bl + 262 = B3 + 2B4 or Bl + 262 — B3 — 2[34 =0
HIZ B1+2B2¢B3+2B4 or B1+2B2—B3—2B4¢0

e The restrictions matrix R in this case is the 1x5 row vector:
R=1[ 12 -1 -2
e The restrictions vector r is in this case the 1x1 scalar O:

r=20

(q=1)
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e The matrix-vector product R in this case is the 1x1 scalar:

B,
B,
RB=1[0 12 -1 -2]B,|=[0B,+1B, +2B, 1B, —2B,]
B
B, |

= Bi+2B2— B3 — 2P,
e The null hypothesis Hy: R = r is therefore the equation:

Ho: Bi+t2B2—P3—2B4=0
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3. The Three Principles of Hypothesis Testing

e Given the null hypothesis Hy: R —r =0 and the alternative hypothesis H;: RB—r # 0, there are two
alternative sets of parameter estimates of the PRE y = X[3 + u that one might use to compute a test statistic.

1. The restricted parameter estimates computed under Hy: R —r =0, which are denoted as follows:
B = the restricted OLS estimator of f;
i = y—XPB = the restricted OLS residual vector;
~ N
RSS, =RSS, =RSS(B)=u"ti =Y u’
i=1
= the restricted residual sum of squares;

df, =N—-(K—-q)=N-K+q = the degrees of freedom for RSS,;
&° =RSS,/df, =RSS,/N—(K —q) = the restricted OLS estimator of ¢°;

R; =ESS,/TSS=1-(RSS,/TSS) = the restricted R-squared.
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2. The unrestricted parameter estimates computed under H;: R —r # 0, which are denoted as follows:

A

B = the unrestricted OLS estimator of f3;
i = y— XP = the unrestricted residual vector;
A N
RSS, =RSS, =RSS(P)=0"0 =Y G’
i=1
= the unrestricted residual sum of squares;

df, = N-K = the degrees of freedom for RSS;;
6° =RSS, /N —K = the unrestricted OLS estimator of c°.

R? =ESS,/TSS=1-(RSS, /TSS) = the unrestricted R-squared.

ECON 452* -- Note 10: Filename 452note10skinny_slides.doc ... Page 21 of 37 pages



ECON 452* -- NOTE 10: Statistical Inference: The Fundamentals M.G. Abbott

e The computation of hypothesis tests of linear coefficient restrictions can be performed in general in three
different ways:

1. using only the unrestricted parameter estimates of the model;
2. using only the restricted parameter estimates of the model;
3. using both the restricted and unrestricted parameter estimates of the model.

e These three options correspond to the three fundamental principles of hypothesis testing.

1. The Wald principle of hypothesis testing computes hypothesis tests using only the unrestricted parameter
estimates of the model computed under the alternative hypothesis H;.

2. The Lagrange Multiplier (LM) principle of hypothesis testing computes hypothesis tests using only the
restricted parameter estimates of the model computed under the null hypothesis Hy.

3. The Likelihood Ratio (LR) principle of hypothesis testing computes hypothesis tests using both the
restricted parameter estimates of the model computed under the null hypothesis H, and the unrestricted
parameter estimates of the model computed under the alternative hypothesis H;.
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4. Likelihood Ratio F-Tests of Linear Coefficient Restrictions
Q Null and Alternative Hypotheses

o The null hypothesis is that the regression coefficient vector 3 satisfies a set of q independent linear coefficient
restrictions:

Hy: RB=r < RB-r=0

o The alternative hypothesis is that the regression coefficient vector B does not satisfy the set of q independent
linear coefficient restrictions specified by Hy:

Hi: RB#r < RB-r=0
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O The Likelihood Ratio F-Statistic: can be written in either of two equivalent forms.

1. Form 1 of the LR F-statistic is expressed in terms of the restricted and unrestricted residual sums of squares,
RSS, and RSS;:

_ (RSS, —RSS,)/(df, —df;) (RSS,—RSS,) df,

F .= F1
tR RSS, /df, RSS,  (df, —df)) (F1)
_ (RSS, —RSS,)/q _ (RSS, —RSS,) (N-K) (F1)
O RSS, /((N=K) RSS, q
where:

RSS, = the residual sum of squares for the restricted OLS-SRE;
dfy, = N - K, = the degrees of freedom for RSS,, the restricted RSS;
Ko = K —q = the number of free regression coefficients in the restricted model;

RSS; = the residual sum of squares for the unrestricted OLS-SRE;
df; = N—K = the degrees of freedom for RSS;, the unrestricted RSS;
K = k+ 1 = the number of free regression coefficients in the unrestricted model,

q = dfy — df; = K — K, = the number of independent linear coefficient restrictions specified by the null
hypothesis Hy.

Note: The value of q is calculated as follows:

q= dfy—df; = N-Ky—-(N-K) = N-K,-N+K = K-K,.
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2. Form 2 of the LR F-statistic is expressed in terms of the restricted and unrestricted R-squared values, R and
R} :

F. = (R%J —Ré)/(dfo _dfl) _ (Rfj _RzR) dfl (FZ)
a (1-R)/df, (1-R}) (df, —df)

_ RL-RY)/g _ (RY-R}) (N-K)
O (1-RY)/(N-K) (I-R}) q

(F2)

where:

R; = the R-squared value for the restricted OLS-SRE;

Ko = K —q = the number of free regression coefficients in the restricted model;
dfp =N-K¢(=N-(K-q)=N-K+q = the degrees of freedom for RSS,, the restricted RSS;

R} = the R-squared value for the unrestricted OLS-SRE;

K = k+ 1 = the number of free regression coefficients in the unrestricted model;
df; = N—K = the degrees of freedom for RSS;, the unrestricted RSS;

q = dfy — df; = K — K, = the number of independent linear coefficient restrictions specified by the null
hypothesis Hy.
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O Null distribution of the LR F-statistic

Under error normality assumption A6, the LR F-statistic Fiy is distributed under Hy (i.e., assuming the null
hypothesis Hy is true) as F[q, N-K], the F distribution with q numerator degrees of freedom and N-K
denominator degrees of freedom:

F: ~F[q,N—K] under Hy: RB=r.
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5. Wald F-Tests of Linear Coefficient Restrictions
O The Wald F-Test is Based on the Wald Principle of Hypothesis Testing

The Wald principle of hypothesis testing computes hypothesis tests using only the unrestricted parameter
estimates of the model computed under the alternative hypothesis Hi: R} # r. These unrestricted parameter

estimates can be denoted as 0 = (ﬁ, 5%).

O General Wald F-statistic. The general Wald F-statistic is obtained by simply dividing the general Wald
statistic W in (10) by g, the number of independent linear coefficient restrictions specified by the null
hypothesis Hy: RB =

. (RB-r) (RV, RT)"'(RB-1)
q q

)

WALD

where:

W = the general Wald statistic given below;

B = a consistent unrestricted estimator of B, such as the OLS estimator;

A

Vﬁ = a consistent estimator of Vﬁ.
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The general Wald test statistic W for testing the null hypothesis Hy: R = r against the alternative hypothesis
Hi: RB # r takes the form

W = (Rﬁ—r)T(RVB RT)_I(RB—r) ~ %’[q] under H, (10)
where

B = aconsistent unrestricted estimator of B, such as the OLS estimator;

VB = a consistent estimator of Vﬁ;

v’[q] = the chi-square distribution with g degrees of freedom.

Note: Both the coefficient estimator p and the coefficient covariance matrix estimator \73 used in the general

Wald statistic W must be consistent, and are computed using only unrestricted estimates of the linear
regression model under the alternative hypothesis Hy: R # 1.
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e Null distribution of Wald-F Statistic: With the error normality assumption A6, the null distribution of the
general Wald-F statistic -- that is, the distribution of the Wald-F statistic if the null hypothesis Hj is true -- is
F[q, N —K], the central F distribution with q numerator degrees of freedom and N-K denominator degrees of

freedom.
The short way of saying this is:

Fyaip = éW ~ F[q, N-K] wunder Hy: RB=r (11)

where

F[q, N—-K] = the F-distribution with q numerator degrees of freedom and N-K denominator degrees of
freedom.
Notes:

1. The null distribution of the Fwa p statistic is exactly F[q, N—K] only if the error normality assumption A6 is
true.

2. However, even if the normality assumption A6 is not true, the null distribution of the Fyy p statistic is still
approximately F[q, N—K] under fairly general conditions.
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QO Common Form of the Wald F-statistic. In practice, the most common form of the Wald F-statistic is that
obtained by using the OLS coefficient covariance matrix estimator in place of \A/B in (9) and (10):

Fy = éWoLs = (RB_r)T(R\A/OCLIS RT)_l(RB—I')

VOLS(A) = Vos = 6 (XTX)_1 = the OLS estimator of Vj;

= = the unrestricted OLS estimator of 02;

Wois = (RB — r)T (R\AfoLS R” )71 (RB — r) - v’[q]  under H,.

(12)
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e Null distribution of the Fy Statistic: With the error normality assumption A6, the null distribution of the Fy
statistic (12) — that is, the distribution of the Wald-F statistic if the null hypothesis Hy is true —is F[q, N — K],

the F distribution with q numerator degrees of freedom and N—K denominator degrees of freedom.
The short way of saying this is:

Fy = éWOLS ~ F[q, N-K] under Hy: RB=r (13)

where F[q, N-K] = the F-distribution with q numerator degrees of freedom and N-K denominator degrees of
freedom.

o Notes on Computation of Fy,

. The Wald F-statistic Fy in (12) is computed using only the unrestricted OLS coefficient estimates  and the

OLS estimate V4 of the variance-covariance matrix of 3.

. Both the unrestricted OLS coefficient estimator 3 and the OLS covariance matrix estimator V,, ¢ are
unbiased and consistent under the assumptions of the classical linear regression model.
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6. Relationship Between Wald and LR F-Tests

O The Wald and LR F-Statistics

A T A T Y! i
F, - lWOLS _ (RB I‘) (RVOLSR ) (RB I‘) ~ F[q, N—-K] under Hy
q
_ (RSS, —RSS,)/q _ (RSS, —RSS,) (N-K)
LR RSS,/(N-K) RSS,

~ F[q, N—-K] under H,

O Key Result

The key to understanding the relationship between the Wald F-statistic Fy and the LR F-statistic Fiy is the
following important result (given without the tedious proof):

The quadratic form CD(B) defined as
A A T _ 1 A
o) = (Rp-1) (RX"X)"R")"(RB-1)
can be shown to equal the difference between the restricted and unrestricted residual sums of squares

RSS,-RSS, = d'u-d'a.
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That is,
o) = (Rp-1) (R(X"X)"R")"(Rp-1) = T - "4 = RSS, —RSS, (14)
O Rewrite the Fyy Statistic
o Use the result (14) and the formula for 6§, ¢ to rewrite the Wald F-statistic Fy.
1. Rewrite the Wald F-statistic Fy as follows

Substitute for V,, ¢ in the formula for Fy the expression

-1

Vors = 62(X"X)
This gives

- (Rp-1) (RV,, R")'(R-1)
q

(Rp-1) (R62,(X"X)"'RT) " (RB 1)
q

(Rp-r) (62, RX™X)'R") ' (RB-1)
q
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(Rp-1) (RX™X)"R")"(RB-1)

~2
4G oLs

(Rp-1) (RX"%)"R")"(RB-1)/q

~2
OoLs

2. Now substitute for 64, ¢ in (15) the expression

This allows us to rewrite the Fyy statistic as

P (R - r)T(R(XT)A()‘l R (RE-r)/q

cYOLS

(RE-1) (RX™X)"R")'(RB-1)/q
"0/(N -K) '

(15)
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3. Finally, use result (14) above to replace the quadratic form in the numerator of Fy, namely

(RB — r)T ( R(X'X)"'R" )_1 (RB - r), with the equivalent difference between the restricted residual sum of squares

U'4 and the unrestricted residual sum of squares 0" . This permits the Fy statistic to be written as:

o Re=1) (RX™)RT)'(RB-1) g
v 0"0/(N-K)

~T~ AT A
B (u -1 u)q

-~ aTa/(N-K) (16.1)

(RSS, — RSS,)/q (162)
RSS, /(N-K) '

where RSS, =1"# = the restricted residual sum of squares and RSS, =" 0 = the unrestricted residual sum of
squares.

Result: The Wald F-statistic Fyw can be written in terms of the restricted and unrestricted residual sums of
squares as

Fy = (RB - r)T(RVOLS R' )_I(Rﬁ - f) (RSS, —RSS,)/q

q RSS,/(N-K) (17)
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O The Fy and F_r Statistics are Equal

F. = (RB—r)T(RVOLS RT)_I(RB_r) (RSS, —RSS,)/q _
" q RSS /((N-K) X

O Tests Based on the F\y and F_r Statistics are Equivalent

The Wald F-statistic Fyw and the LR F-statistic Fy r yield equivalent or identical tests of Hy: R = r against H;:
RB #r.

This equivalence follows from two facts:

1. The two test statistics F\, and F g are equal; that is, they yield identical calculated sample values of the F-
statistic.

Fy = Fr
2. The two test statistics Fy and F_r have identical null distributions, namely the F[q, N-K] distribution.

Fy ~ Flg, N-K] under HpgRB=r
and

Fr ~ Flg, N=K] under HpRB=r.
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e Result:

Fy = Fr ~ Flg, N=K] under HpRB=r.
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