
ECON 452* -- NOTE 10: Statistical Inference: The Fundamentals M.G. Abbott 
 

ECON 452* -- The Skinny on NOTE 10 
 

Testing Linear Coefficient Restrictions in Linear Regression Models: The Fundamentals 
 
This note outlines the fundamentals of statistical inference in linear regression models.  
 
• In scalar notation, the population regression equation, or PRE, for the linear regression model is written in 

general as: 
 

iikk2i21i10i uXXXY +β++β+β+β= L   ∀ i                 (1.1)  

or 

         ∀ i                 (1.2) ∑
=

=
+β+β=

kj

1j
iijj0i uXY

or 

∑
=

=
+β=

kj

0j
iijji uXY ,  i   1Xi0 ∀=      ∀ i                 (1.3) 

 
where  
 
Yi  ≡  the i-th population value of the regressand, or dependent variable;   
 

Xij  ≡  the i-th population value of the j-th regressor, j = 1, …, k;   
 

βj  ≡  the partial slope coefficient of Xij, j = 1, …, k;   
 

ui  ≡  the i-th population value of the unobservable random error term.   
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• In vector-matrix notation, the population regression equation, or PRE, for a sample of N observations on a 
linear regression model can be written as: 

 
y X= +β u                              (2) 

 
where  
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 =  the N×1 regressand vector  

 

   =  the N×1 column vector of observed sample values of the regressand, or dependent variable, Yi (i = 1, ...,  
 N);   

 

  =  the N×1 error vector  u
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     =  the N×1 column vector of unobserved random error terms ui (i = 1, ..., N) corresponding to each of the  
  N sample observations.   
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 =  the N×K regressor matrix  

 

  =  the N×K matrix of observed sample values of the K = k + 1 regressors Xi0, Xi1, Xi2, ..., Xik (i = 1, ...,  
N), where the first regressor is a constant equal to 1 for all observations (Xi0 = 1 ∀ i = 1, ..., N).  
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 =  the K×1 regression coefficient vector  

 

   =  the K×1 or (k+1)×1column vector of unknown partial regression coefficients βj, j = 0, 1, ..., k.  
 
• Statistical inference consists of both  
 

1. testing hypotheses on the regression coefficient vector β and  
 

2. constructing confidence intervals for the individual elements of β.  
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1.  Assumption A6: The Error Normality Assumption 
 
In order to perform statistical inference in the linear regression model, it is necessary to specify the form of the 
probability distribution of the error vector u in population regression equation (1). The normality assumption does 
this.   
 

 Scalar Formulation of the Error Normality Assumption A6 
 

The random error terms ui are independently and identically distributed as the normal distribution with  
 
1. zero conditional means 

 

( ) ( ) 0uExuE i
T
ii ==   ∀ i 

 
2. constant conditional variances 

 

( ) ( ) ( ) 2
ik2i1i

2
i

T
i

2
i

T
ii X,,X,X,1uExuExuVar σ=== K  > 0  ∀ i  

 
3. zero conditional covariances 

 

( ) ( ) 0x,xuuEx,xu,uCov T
s

T
isi

T
s

T
isi ==   ∀ i ≠ s 
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• A compact way of stating error normality assumption A6 is:   
 

conditional on , the ui are iid as N(0, σ2)                     (A6.1) T
ix

 
where   
 

"iid" means "independently and identically distributed" 
 

N(0, σ2) denotes a normal distribution with zero mean and variance σ2.  
 

Even more briefly, we can say that  
 

T
ii xu  are iid as N(0, σ2).                           (A6.2) 
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 Matrix Formulation of the Error Normality Assumption A6 

 
The N×1 error vector u has a multivariate normal distribution with  
 
1. a zero conditional mean vector 

 
( ) 0XuE =  where 0  is an N×1 vector of zeros 

 
2. a constant scalar diagonal covariance matrix V(u) 

 
( ) ( ) N

2T IXuuEXuV σ==  where IN is the N×N identity matrix 
 

• A compact way of stating the error normality assumption in matrix terms is:   
 

( )N
2I,0N~Xu σ                           (A6) 

 
where  here denotes the N-variate normal distribution.   ( )⋅⋅ ,N
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 Implications of Assumption A6 for the Distribution of the Regressand Vector y  
 
• Linearity Property of Normal Distribution: Any linear function of a normally distributed random variable is 

itself normally distributed.  
 
• y is a linear function of u: The PRE uXy +β=  states that the regressand vector y is a linear function of the 

error vector u.  
 
• Implication: Since u is normally distributed by assumption A6 and y is a linear function of u by assumption A1, 

the linearity property of the normal distribution implies that  
 

( )N
2I,XN~Xy σβ .  

 
That is, the regressand vector y has an N-variate normal distribution with 
 
(1) conditional mean vector equal to ( ) β= XXyE   

and 

(2) conditional covariance matrix equal to ( ) N
2IXyV σ= .  
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 Implications of Assumption A6 for the Distribution of the OLS Coefficient Estimator   β̂

• β̂  is a linear function of y.  Conditional on the regressors X, the OLS coefficient estimator  is a linear 
function of the regressand vector y:   

 
β̂

 
( ) yXXXβ̂β̂ T1T

OLS
−

==  
 
• Implication: Since y is normally distributed by implication of assumption A6 and  is a linear function of y, 

the linearity property of the normal distribution implies that  
β̂

 
( )1T2 )XX(,N~Xˆ −σββ .               (3) 

 
That is, the OLS coefficient estimator  has a K-variate normal distribution with β̂
 
(1) conditional mean vector equal to ( ) β=β XˆE   

and 
 

(2)  conditional covariance matrix equal to ( ) 1T2 )XX(XˆV −σ=β .  
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2.  Formulation of Linear Equality Restrictions on β 

 
The general hypothesis to be tested is that the coefficient vector β satisfies a set of q independent linear restrictions, 
where q < K. We formulate this general hypothesis in vector-matrix form, since this corresponds to the way in 
which econometric software such as Stata is written.  
 
The null hypothesis H0 is written in general as:   
 

H0: Rβ = r ⇔  Rβ − r = 0 
 
The alternative hypothesis H1 is written in general as:   
 

H1: Rβ ≠ r ⇔  Rβ − r ≠ 0   
 
In H0 and H1 above:   

 
R = a q×K matrix of specified constants;  
 

β = the K×1 coefficient vector; 
 

r = a q×1 vector of specified constants;   
 

0 = a q×1 null vector, i.e., a q×1 vector of zeros.  
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• The q×K restrictions matrix R takes the form  
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⎥
⎥
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where  

 
rmj = the constant on coefficient βj in the m-th linear restriction, m = 1, …, q.   

 

• The q×1 restrictions vector r takes the form  
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⎦
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where   
 

rm = the constant term in the m-th linear restriction, m = 1, …, q.  
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• The matrix-vector product Rβ is a q×1 vector of linear functions of the regression coefficients β0, β1, β2, … , βk:   
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(q×K)      (K×1)        (q×1) 
 
• The null and alternative hypotheses can therefore be written as follows:   
 

H0: Rβ = r  ⇒  
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H1: Rβ ≠ r  ⇒  
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Some Specific Examples 
 
Consider the linear regression model given by the PRE  
 

i4i43i32i21i10i uXXXXY +β+β+β+β+β=   (i = 1, …, N)             (4) 
 
Test 1   
 
The null and alternative hypotheses are:   
 

H0: β2 = 0   one linear restriction on coefficient vector β 
 

H1: β2 ≠ 0 
 
• The restrictions matrix R in this case is the 1×5 row vector:   
 

R  =  0 . [ ]0010

• The restrictions vector r is in this case the scalar 0 since there is only one restriction specified by the null 
hypothesis H0:   

 

 
r  =  0. 
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• The matrix-vector product Rβ in this case is:   
 

Rβ  =   =  0β0 + 0β1 + 1β2 + 0β3 + 0β4  =  β2 [ ]
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• The null hypothesis H0: Rβ = r is therefore the single equation: 
 

H0: β2 = 0    
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Test 2   
 
The PRE is again 
 

i4i43i32i21i10i uXXXXY +β+β+β+β+β=   (i = 1, …, N)             (4) 
 
The null and alternative hypotheses are:   
 

H0: β1 = 0  and  β2 = 0   two linear restrictions on coefficient vector β 
 

H1: β1 ≠ 0  and/or  β2 ≠ 0 
 
• The restrictions matrix R in this case is the 2×5 row vector:   
 

R  =   ⎥
⎦

• The restrictions vector r is in this case the 2×1 column vector of zeros:   

⎤
⎢
⎣

⎡
00100
00010

 

 

r  =   ⎥
⎦

⎤
⎢
⎣

⎡
0
0
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• The matrix-vector product Rβ in this case is:   
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• The null hypothesis H0: Rβ = r is therefore the matrix equation: 
 

H0:   which says "β1 = 0  and  β2 = 0" ⎥
⎦

⎤
⎢
⎣

⎡
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Test 3   
 
The PRE is again 
 

i4i43i32i21i10i uXXXXY +β+β+β+β+β=   (i = 1, …, N)             (4) 
 
The null and alternative hypotheses are:   
 

H0: β1 = β3  and  β2 = − β4  or  β1 − β3 = 0  and  β2 + β4 = 0    (q = 2) 
 

H1: β1 ≠ β3  and/or  β2 ≠ β4  or  β1 − β3 ≠ 0  and/or  β2 + β4 ≠ 0 
 
• The restrictions matrix R in this case is the 2×5 row vector:   
 

R  =   ⎥
⎦

• The restrictions vector r is in this case the 2×1 column vector of zeros:   

⎤
⎢
⎣

⎡ −
10100
01010

 

 

r  =   ⎥
⎦

⎤
⎢
⎣

⎡
0
0
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• The matrix-vector product Rβ in this case is:   
 

Rβ  =   ⎥
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• The null hypothesis H0: Rβ = r is therefore the matrix equation: 
 

H0:  which says "β1 − β3 = 0  and  β2 + β4 = 0" ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
β+β
β−β

0
0

42

31
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Test 4   
 
The PRE is again 
 

i4i43i32i21i10i uXXXXY +β+β+β+β+β=   (i = 1, …, N)             (4) 
 
The null and alternative hypotheses are:   
 

H0: β1 + 2β2 = β3 + 2β4  or  β1 + 2β2 − β3 − 2β4 = 0   (q = 1) 
 

H1: β1 + 2β2 ≠ β3 + 2β4  or  β1 + 2β2 − β3 − 2β4 ≠ 0  
 
• The restrictions matrix R in this case is the 1×5 row vector:   
 

R  =   [ ]21210 −−

• The restrictions vector r is in this case the 1×1 scalar 0:   
 

 
r  =  0 
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• The matrix-vector product Rβ in this case is the 1×1 scalar:   
 

Rβ  =   [ ] [ ]43210

4

3

2

1

0

2121021210 β−β−β+β+β=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

β
β
β
β
β

−−

 =  β1 + 2β2 − β3 − 2β4 
 
• The null hypothesis H0: Rβ = r is therefore the equation: 
 

H0: β1 + 2β2 − β3 − 2β4 = 0   
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3.  The Three Principles of Hypothesis Testing 

 
• Given the null hypothesis H0: 0rR =−β  and the alternative hypothesis H1: 0rR ≠−β , there are two 

alternative sets of parameter estimates of the PRE y X u= +β  that one might use to compute a test statistic.     
 

1. The restricted parameter estimates computed under H0: 0rR =−β , which are denoted as follows:   
 

β~  = the restricted OLS estimator of β;  
 

β−= ~Xyu~  = the restricted OLS residual vector;  
 

∑
=

==β==
N

1i

2
i

T
R0 u~u~u~)~(RSSRSSRSS   

= the restricted residual sum of squares;   
 

qKN)qK(Ndf0 +−=−−=  = the degrees of freedom for RSS0;  
 

)qK(NRSSdfRSS~
000

2 −−==σ  = the restricted OLS estimator of 2σ ;  
 

)TSSRSS(1TSSESSR 00
2
R −==  = the restricted R-squared. 
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2. The unrestricted parameter estimates computed under H1: 0rR ≠−β , which are denoted as follows:   

 

β̂  = the unrestricted OLS estimator of β;  
 

β−= ˆXyû  = the unrestricted residual vector;  
 

∑
=

==β==
N

1i

2
i

T
U1 ûûû)ˆ(RSSRSSRSS   

= the unrestricted residual sum of squares;   
 

KNdf1 −=  = the degrees of freedom for RSS1; 
 

KNRSSˆ 1
2 −=σ  = the unrestricted OLS estimator of 2σ .  

 

)TSSRSS(1TSSESSR 11
2
U −==  = the unrestricted R-squared. 
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• The computation of hypothesis tests of linear coefficient restrictions can be performed in general in three 

different ways:   
 

1. using only the unrestricted parameter estimates of the model; 
2. using only the restricted parameter estimates of the model; 
3. using both the restricted and unrestricted parameter estimates of the model.  

 
• These three options correspond to the three fundamental principles of hypothesis testing.  
 

1. The Wald principle of hypothesis testing computes hypothesis tests using only the unrestricted parameter 
estimates of the model computed under the alternative hypothesis H1.  

 
2. The Lagrange Multiplier (LM) principle of hypothesis testing computes hypothesis tests using only the 

restricted parameter estimates of the model computed under the null hypothesis H0.   
 

3. The Likelihood Ratio (LR) principle of hypothesis testing computes hypothesis tests using both the 
restricted parameter estimates of the model computed under the null hypothesis H0 and the unrestricted 
parameter estimates of the model computed under the alternative hypothesis H1.  
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4.  Likelihood Ratio F-Tests of Linear Coefficient Restrictions 

 
 Null and Alternative Hypotheses 

 
• The null hypothesis is that the regression coefficient vector β satisfies a set of q independent linear coefficient 

restrictions:   
 

H0: Rβ = r ⇔  Rβ − r = 0 
 
• The alternative hypothesis is that the regression coefficient vector β does not satisfy the set of q independent 

linear coefficient restrictions specified by H0:   
 

H1: Rβ ≠ r ⇔  Rβ − r ≠ 0 
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 The Likelihood Ratio F-Statistic:  can be written in either of two equivalent forms.   
 
1. Form 1 of the LR F-statistic is expressed in terms of the restricted and unrestricted residual sums of squares, 

RSS0 and RSS1:  
 

 
)dfdf(

df
RSS

)RSSRSS(
dfRSS

)dfdf()RSSRSS(F
10

1

1

10

11

1010
LR −

−
=

−−
=               (F1) 

 

q
)KN(

RSS
)RSSRSS(

)KN(RSS
q)RSSRSS(F

1

10

1

10
LR

−−
=

−
−

=                  (F1) 

 
where:    

 
RSS0  =  the residual sum of squares for the restricted OLS-SRE; 
df0  =  N − K0  =  the degrees of freedom for RSS0, the restricted RSS; 
K0  =  K − q  =  the number of free regression coefficients in the restricted model;  
 

RSS1  =  the residual sum of squares for the unrestricted OLS-SRE; 
df1  =  N − K  =  the degrees of freedom for RSS1, the unrestricted RSS; 
K  =  k + 1  =  the number of free regression coefficients in the unrestricted model;  
 

q = df0 − df1 = K − K0 =  the number of independent linear coefficient restrictions specified by the null 
hypothesis H0.  

 

Note: The value of q is calculated as follows:  
 

q =  df0 − df1  =  N − K0 − (N − K)  =  N − K0 − N + K  =  K − K0.   
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2. Form 2 of the LR F-statistic is expressed in terms of the restricted and unrestricted R-squared values,  and 

:  

2
RR

2
UR

 

)dfdf(
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df)R1(
)dfdf()RR(F

10

1
2
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2
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2
U

1
2
U

10
2
R

2
U

LR −−
−

=
−

−−
=               (F2) 

 

  
q

)KN(
)R1(

)RR(
)KN()R1(

q)RR(F 2
U

2
R

2
U

2
U

2
R

2
U

LR
−

−
−

=
−−

−
=                  (F2) 

 
where:    

 
2
RR  =  the R-squared value for the restricted OLS-SRE; 

K0  =  K − q  =  the number of free regression coefficients in the restricted model;  
df0  = N − K0 = N − (K − q) = N − K + q  =  the degrees of freedom for RSS0, the restricted RSS; 
 

2
UR  =  the R-squared value for the unrestricted OLS-SRE; 

K  =  k + 1  =  the number of free regression coefficients in the unrestricted model; 
df1  =  N − K  =  the degrees of freedom for RSS1, the unrestricted RSS; 
 

q = df0 − df1 = K − K0 =  the number of independent linear coefficient restrictions specified by the null  
hypothesis H0.  
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 Null distribution of the LR F-statistic  

 
Under error normality assumption A6, the LR F-statistic FLR is distributed under H0 (i.e., assuming the null 
hypothesis H0 is true) as F[q, N−K], the F distribution with q numerator degrees of freedom and N−K 
denominator degrees of freedom:   
 

]KN,q[F~FLR −  under H0: Rβ = r. 
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5.  Wald F-Tests of Linear Coefficient Restrictions 
 

 The Wald F-Test is Based on the Wald Principle of Hypothesis Testing 
 

The Wald principle of hypothesis testing computes hypothesis tests using only the unrestricted parameter 
estimates of the model computed under the alternative hypothesis H1: Rβ ≠ r. These unrestricted parameter 
estimates can be denoted as )ˆ,ˆ(ˆ 2σ= .  βθ

 General Wald F-statistic
 

.  The general Wald F-statistic is obtained by simply dividing the general Wald 
statistic W in (10) by q, the number of independent linear coefficient restrictions specified by the null 
hypothesis H0: Rβ = r:      

 
( ) ( ) ( )

q
rˆRRV̂RrˆR

W
q
1F

1T
ˆ

T

WALD

−β−β
==

−

β                    (9) 

 
where:   

 
W  =  the general Wald statistic given below; 
 

β̂   =  a consistent unrestricted estimator of β, such as the OLS estimator;  
 

β̂V̂  =  a consistent estimator of .     β̂V
 

 
ECON 452* -- Note 10: Filename 452note10skinny_slides.doc … Page 27 of 37 pages 
 



ECON 452* -- NOTE 10: Statistical Inference: The Fundamentals M.G. Abbott 
 

 
The general Wald test statistic W for testing the null hypothesis H0: Rβ = r against the alternative hypothesis 
H1: Rβ ≠ r takes the form 
 

( ) ( ) ( ) ]q[~rˆRRV̂RrˆRW 2
a1T

ˆ

T
χ−β−β=

−

β
 under H0                 (10) 

 
where   
 

β̂   =  a consistent unrestricted estimator of β, such as the OLS estimator;  
 

β̂V̂  =  a consistent estimator of ;   β̂V
 

]q[2χ  = the chi-square distribution with q degrees of freedom.  
 
Note: Both the coefficient estimator  and the coefficient covariance matrix estimator  used in the general 
Wald statistic W must be consistent, and are computed using only unrestricted estimates of the linear 
regression model under the alternative hypothesis H1: Rβ ≠ r.   

β̂ β̂V̂
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• Null distribution of Wald-F Statistic: With the error normality assumption A6, the null distribution of the 

general Wald-F statistic -- that is, the distribution of the Wald-F statistic if the null hypothesis H0 is true -- is 
]KN,q[F − , the central F distribution with q numerator degrees of freedom and N−K denominator degrees of 

freedom.   
 

The short way of saying this is: 
 

]KN,q[F~W
q
1FWALD −=  under H0: Rβ = r                   (11) 

 
where   
 

]KN,q[F −   =  the F-distribution with q numerator degrees of freedom and N−K denominator degrees of  
freedom.  

 
Notes:   
 

1. The null distribution of the FWALD statistic is exactly F[q, N−K] only if the error normality assumption A6 is 
true.   

 

2. However, even if the normality assumption A6 is not true, the null distribution of the FWALD statistic is still 
approximately F[q, N−K] under fairly general conditions.    
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 Common Form of the Wald F-statistic.  In practice, the most common form of the Wald F-statistic is that 

obtained by using the OLS coefficient covariance matrix estimator in place of  in (9) and (10):  β̂V̂
 

( ) ( ) ( )
q

rˆRRV̂RrˆRW
q
1F

1T
OLS

T

OLSW
−β−β

==
−

                 (12) 

 
where 
 

( ) yXXXβ̂β̂ T1T
OLS

−
==  =  the unrestricted OLS estimator of β; 

 
( ) ( ) 1T2

OLSOLS XXˆV̂ˆV̂ −
σ==β  =  the OLS estimator of ;  β̂V

 

KN

û

KN
ûû

KN
RSSˆ

N

1i

2
iT

12

−
=

−
=

−
=σ

∑
=  =  the unrestricted OLS estimator of σ2;  

 

( ) ( ) ( ) ]q[~rˆRRV̂RrˆRW 2
a1T

OLS

T

OLS χ−β−β=
−

  under H0.     
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• Null distribution of the FW Statistic: With the error normality assumption A6, the null distribution of the FW 

statistic (12) – that is, the distribution of the Wald-F statistic if the null hypothesis H0 is true – is ]KN,q[F − , 
the F distribution with q numerator degrees of freedom and N−K denominator degrees of freedom.   

 
The short way of saying this is: 
 

]KN,q[F~W
q
1F OLSW −=  under H0: Rβ = r                 (13) 

 
where ]KN,q[F −   =  the F-distribution with q numerator degrees of freedom and N−K denominator degrees of 
freedom.  

 
• Notes on Computation of FW    

 
• The Wald F-statistic FW in (12) is computed using only the unrestricted OLS coefficient estimates  and the 

OLS estimate ˆ  of the variance-covariance matrix of ˆ .     
β̂

OLSV β

• Both the unrestricted OLS coefficient estimator β̂  and the OLS covariance matrix estimator  are 
unbiased and consistent under the assumptions of the classical linear regression model.   

 

OLSV̂
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6.  Relationship Between Wald and LR F-Tests 
 

 The Wald and LR F-Statistics 
 

( ) ( ) ( ) ]KN,q[F~
q

rˆRRV̂RrˆRW
q
1F

1T
OLS

T

OLSW −
−β−β

==
−

 under H0  

 

]KN,q[F~
q

)KN(
RSS

)RSSRSS(
)KN(RSS
q)RSSRSS(F

1

10

1

10
LR −

−−
=

−
−

=  under H0  

 
 Key Result 

 
The key to understanding the relationship between the Wald F-statistic FW and the LR F-statistic FLR is the 
following important result (given without the tedious proof):   
 
The quadratic form  defined as  )ˆ(βΦ
 

( ) ( ) ( )rˆRR)XX(RrˆR)ˆ( 1T1TT
−β−β=βΦ

−−  
 
can be shown to equal the difference between the restricted and unrestricted residual sums of squares  
 

ûûu~u~RSSRSS TT
10 −=− . 
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That is,  
 

( ) ( ) ( ) 10
TT1T1TT

RSSRSSûûu~u~rˆRR)XX(RrˆR)ˆ( −=−=−β−β=βΦ
−−           (14) 

 
 Rewrite the FW Statistic  

 
• Use the result (14) and the formula for  to rewrite the Wald F-statistic FW.   2

OL

1. Rewrite the Wald F-statistic FW as follows 

Sσ̂
 

 
Substitute for  in the formula for FW the expression   OLSV̂
 

( ) 1T2
OLS XXˆV̂

−
σ=   

 
This gives  
 

( ) ( ) ( )
q

rˆRRV̂RrˆRF
1T

OLS

T

W
−β−β

=
−

      

 

( ) ( ) ( )
q

rˆRR)XX(ˆRrˆR 1T1T2
OLS

T
−βσ−β
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−−

  

 

( ) ( ) ( )
q
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OLS

T
−βσ−β
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( ) ( ) ( )

2
OLS

1T1TT

ˆq
rˆRR)XX(RrˆR

σ
−β−β

=
−−

  

 

( ) ( ) ( )
2
OLS

1T1TT

ˆ
qrˆRR)XX(RrˆR

σ
−β−β

=
−−

                    (15) 

 
 

2. Now substitute for  in (15) the expression  2
OLSσ̂

 

.
KN
ûû

KN
RSSˆ

T
12

OLS −
=

−
=σ  

 
This allows us to rewrite the FW statistic as  
 

( ) ( ) ( )

( ) ( ) ( ) .
)KN(ûû

qrˆRR)XX(RrˆR

ˆ
qrˆRR)XX(RrˆRF

T

1T1TT

2
OLS

1T1TT

W

−
−β−β

=

σ
−β−β

=

−−

−−
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3. Finally, use result (14) above to replace the quadratic form in the numerator of FW, namely 

( ) ( ) ( )rˆRR)XX(Rr , with the equivalent difference between the restricted residual sum of squares 
 and the unrestricted residual sum of squares . This permits the FW statistic to be written as:   

ˆR 1T1TT
−β−β

−−

u~u~T ûûT

 
( ) ( ) ( )

)KN(ûû
qrˆRR)XX(RrˆRF T

1T1TT

W −
−β−β

=
−−

 

 

  ( )
)KN(ûû
qûûu~u~

T

TT

−
−

=                          (16.1) 

 

  ( )
)KN(RSS

qRSSRSS

1

10

−
−

=                         (16.2) 

 
where u~u~RSS T

0 =  = the restricted residual sum of squares and  = the unrestricted residual sum of 
squares.   

ûûRSS T
1 =

 
• Result: The Wald F-statistic FW can be written in terms of the restricted and unrestricted residual sums of 

squares as 
 

( ) ( ) ( ) ( )
)KN(RSS
qRSSRSS

q
rˆRRV̂RrˆRF

1

10
1T

OLS
T

W −
−

=
−β−β

=
−

.              (17) 
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 The FW and FLR Statistics are Equal 

 
( ) ( ) ( ) ( )

LR
1

10

1T
OLS

T

W F
)KN(RSS
qRSSRSS

q
rˆRRV̂RrˆRF =

−
−

=
−β−β

=
−

.  

 
 Tests Based on the FW and FLR Statistics are Equivalent  

 
The Wald F-statistic FW and the LR F-statistic FLR yield equivalent or identical tests of H0: Rβ = r against H1: 
Rβ ≠ r. 
 
This equivalence follows from two facts:   
 
1. The two test statistics FW and FLR are equal; that is, they yield identical calculated sample values of the F-

statistic.   
 

LRW FF =

2. The two test statistics FW and FLR have identical null distributions, namely the F[q, N−K] distribution.   

  
 

 
]KN,q[F~FW −   under 0: Rβ = r  H

and  

]KN,q[F~FLR −   under  H0: Rβ = r. 
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]KN,q[F~FF LRW −=   under  H0: Rβ = r. 

 

• Result:   
 

 
 
 
 
 
 
 


