ECON 452* -- Introduction to Notes 5 to 8

A Linear Regression Model with Both Continuous and Categorical Explanatory Variables

Consider a multiple linear regression equation that has a *continuous* regressand Y; two *continuous* explanatory variables, X_1 and X_2 ; and two *categorical* explanatory variables, gender and industry.

- $Y_i = a$ continuous regressand.
- X_{i1} = a *continuous* explanatory variable.
- X_{i2} = a second *continuous* explanatory variable.
- The *categorical* explanatory variable **gender** is represented by the binary female indicator (dummy) variable F_i , where by definition $F_i = 1$ if observation i is female, and $F_i = 0$ if observation i is male. The **base group** for gender is **males**.
- The *categorical* explanatory variable **industry** is a four-category categorical explanatory variable identifying which of industries 1, 2, 3 and 4 an individual observation is in. The categorical variable industry is completely represented by the following three industry indicator (dummy) variables, where the **base group industry** is arbitrarily chosen to be **industry 1**:
 - $IN2_i = 1$ if observation i is in industry 2, = 0 otherwise (meaning observation i is in industry 1, 3 or 4)
 - $IN3_i = 1$ if observation i is in industry 3, = 0 otherwise (meaning observation i is in industry 1, 2 or 4)
 - $IN4_i = 1$ if observation i is in industry 4, = 0 otherwise (meaning observation i is in industry 1, 2 or 3)

Research Objective: To investigate *whether* and *how* a population regression function differs between females and males.

• The **population regression function for** f*emales*, for whom the female indicator $F_i = 1$, is:

$$E(Y_{i} | F_{i} = 1, X_{i1}, X_{i2}, IN2_{i}, IN3_{i}, IN4_{i})$$

$$= \alpha_{0} + \alpha_{1}X_{i1} + \alpha_{2}X_{i2} + \alpha_{3}X_{i1}^{2} + \alpha_{4}X_{i2}^{2} + \alpha_{5}X_{i1}X_{i2} + \alpha_{6}IN2_{i} + \alpha_{7}IN3_{i} + \alpha_{8}IN4_{i}$$
(1f)

The corresponding **population regression equation for** *females* can be written as:

$$Y_{1} = \alpha_{0} + \alpha_{1}X_{i1} + \alpha_{2}X_{i2} + \alpha_{3}X_{i1}^{2} + \alpha_{4}X_{i2}^{2} + \alpha_{5}X_{i1}X_{i2} + \alpha_{6}IN2_{i} + \alpha_{7}IN3_{i} + \alpha_{8}IN4_{i} + u_{i}$$
 for $F_{i} = 1$

Estimate the female PRE on the subsample of female observations with the following *Stata* regress command:

• The **population regression function for males**, for whom the female indicator $F_i = 0$, is:

$$E(Y_{i} | F_{i} = 0, X_{i1}, X_{i2}, IN2_{i}, IN3_{i}, IN4_{i})$$

$$= \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \beta_{3}X_{i1}^{2} + \beta_{4}X_{i2}^{2} + \beta_{5}X_{i1}X_{i2} + \beta_{6}IN2_{i} + \beta_{7}IN3_{i} + \beta_{8}IN4_{i}$$
(1m)

The corresponding **population regression equation for** *males* can be written as:

$$Y_{1} = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \beta_{3}X_{i1}^{2} + \beta_{4}X_{i2}^{2} + \beta_{5}X_{i1}X_{i2} + \beta_{6}IN2_{i} + \beta_{7}IN3_{i} + \beta_{8}IN4_{i} + u_{i}$$
 for $F_{i} = 0$

Estimate the male PRE on the subsample of male observations with the following *Stata* **regress** command:

regress y x1 x2 x1sq x2sq x1x2 in2 in3 in4 if f == 0

• The *female-male difference* in the conditional mean value of Y is obtained by subtracting the male population regression function (1m) from the female population regression function (1f):

$$\begin{split} &E(Y_{i} | F_{i} = 1, X_{i1}, X_{i2}, IN2_{i}, IN3_{i}, IN4_{i}) - E(Y_{i} | F_{i} = 0, X_{i1}, X_{i2}, IN2_{i}, IN3_{i}, IN4_{i}) \\ &= \alpha_{0} + \alpha_{1}X_{i1} + \alpha_{2}X_{i2} + \alpha_{3}X_{i1}^{2} + \alpha_{4}X_{i2}^{2} + \alpha_{5}X_{i1}X_{i2} + \alpha_{6}IN2_{i} + \alpha_{7}IN3_{i} + \alpha_{8}IN4_{i} \\ &- (\beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \beta_{3}X_{i1}^{2} + \beta_{4}X_{i2}^{2} + \beta_{5}X_{i1}X_{i2} + \beta_{6}IN2_{i} + \beta_{7}IN3_{i} + \beta_{8}IN4_{i}) \\ &= \alpha_{0} + \alpha_{1}X_{i1} + \alpha_{2}X_{i2} + \alpha_{3}X_{i1}^{2} + \alpha_{4}X_{i2}^{2} + \alpha_{5}X_{i1}X_{i2} + \alpha_{6}IN2_{i} + \alpha_{7}IN3_{i} + \alpha_{8}IN4_{i} \\ &- \beta_{0} - \beta_{1}X_{i1} - \beta_{2}X_{i2} - \beta_{3}X_{i1}^{2} - \beta_{4}X_{i2}^{2} - \beta_{5}X_{i1}X_{i2} - \beta_{6}IN2_{i} - \beta_{7}IN3_{i} - \beta_{8}IN4_{i} \\ &= (\alpha_{0} - \beta_{0}) + (\alpha_{1} - \beta_{1})X_{i1} + (\alpha_{2} - \beta_{2})X_{i2} + (\alpha_{3} - \beta_{3})X_{i1}^{2} + (\alpha_{4} - \beta_{4})X_{i2}^{2} + (\alpha_{5} - \beta_{5})X_{i1}X_{i2} \\ &+ (\alpha_{6} - \beta_{6})IN2_{i} + (\alpha_{7} - \beta_{7})IN3_{i} + (\alpha_{8} - \beta_{8})IN4_{i} \end{split}$$

where each $(\alpha_j - \beta_j)$, j = 0, 1, 2, ..., 8, is a **female-male coefficient difference**.

Limitations of the Separate Regressions Approach

Question: Why not just separately estimate the male and female regression equations on their respective subsamples of male and female observations, as we have done on the previous slide?

Reasons:

1. Separate estimation of the female and male population regression equations on the subsamples of female and male observations does not allow us to *test* for female-male coefficient differences.

Example 1: To test that **industry effects are** *equal* **for females and males**, we want to perform the following joint hypothesis test:

H₀:
$$\alpha_6 = \beta_6$$
 and $\alpha_7 = \beta_7$ and $\alpha_8 = \beta_8$
 $\alpha_6 - \beta_6 = 0$ and $\alpha_7 - \beta_7 = 0$ and $\alpha_8 - \beta_8 = 0$

H₁:
$$\alpha_6 \neq \beta_6$$
 and/or $\alpha_7 \neq \beta_7$ and/or $\alpha_8 \neq \beta_8$
 $\alpha_6 - \beta_6 \neq 0$ and/or $\alpha_7 - \beta_7 \neq 0$ and/or $\alpha_8 - \beta_8 \neq 0$

Example 2: To test that the marginal effect of the continuous explanatory variable X_1 is the same for females and males for any given values of X_{i1} and X_{i2} , we must perform the following joint hypothesis test:

H₀:
$$\alpha_1 = \beta_1$$
 and $\alpha_3 = \beta_3$ and $\alpha_5 = \beta_5$
 $\alpha_1 - \beta_1 = 0$ and $\alpha_3 - \beta_3 = 0$ and $\alpha_5 - \beta_5 = 0$

H₁:
$$\alpha_1 \neq \beta_1$$
 and/or $\alpha_3 \neq \beta_3$ and/or $\alpha_5 \neq \beta_5$
 $\alpha_1 - \beta_1 \neq 0$ and/or $\alpha_3 - \beta_3 \neq 0$ and/or $\alpha_5 - \beta_5 \neq 0$

2. Separate estimation of the female and male population regression equations does not allow us to constrain some or all of the regression coefficients to be equal for females and males.

Example: Suppose we retain the null hypothesis that industry effects are equal for females and males. We then might want to impose the coefficient restrictions $\alpha_6 = \beta_6$ and $\alpha_7 = \beta_7$ and $\alpha_8 = \beta_8$ in estimating the female and male regression functions. But the separate regressions approach does not provide a way of doing this.

What's Ahead in Notes 5 to 8?

We will learn that the foregoing limitations of the separate regressions approach to investigating female-male differences in regression functions can be overcome by formulating a **pooled full-interaction regression equation** in the female indicator variable F_i , and then estimating this pooled regression equation on the combined (or pooled) sample of male and female observations.

• The pooled full-interaction regression equation in the female indicator F_i takes the form:

$$Y_{1} = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \beta_{3}X_{i1}^{2} + \beta_{4}X_{i2}^{2} + \beta_{5}X_{i1}X_{i2} + \beta_{6}IN2_{i} + \beta_{7}IN3_{i} + \beta_{8}IN4_{i} + \delta_{0}F_{i} + \delta_{1}F_{i}X_{i1} + \delta_{2}F_{i}X_{i2} + \delta_{3}F_{i}X_{i1}^{2} + \delta_{4}F_{i}X_{i2}^{2} + \delta_{5}F_{i}X_{i1}X_{i2} + \delta_{6}F_{i}IN2_{i} + \delta_{7}F_{i}IN3_{i} + \delta_{8}F_{i}IN4_{i} + u_{i}$$
 where $i = 1, ..., N = N_{m} + N_{f}$. (2)

The β_i coefficients are the *male* regression coefficients for all j = 0, 1, ..., 8.

The δ_j coefficients are the *female-male* coefficient differences, i.e., $\delta_j = \alpha_j - \beta_j$ for all j = 0, 1, ..., 8.

The *female* regression coefficients are estimated indirectly as $\alpha_j = \beta_j + \delta_j$ for all j = 0, 1, ..., 8.

$$Y_{1} = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \beta_{3}X_{i1}^{2} + \beta_{4}X_{i2}^{2} + \beta_{5}X_{i1}X_{i2} + \beta_{6}IN2_{i} + \beta_{7}IN3_{i} + \beta_{8}IN4_{i} + \delta_{0}F_{i} + \delta_{1}F_{i}X_{i1} + \delta_{2}F_{i}X_{i2} + \delta_{3}F_{i}X_{i1}^{2} + \delta_{4}F_{i}X_{i2}^{2} + \delta_{5}F_{i}X_{i1}X_{i2} + \delta_{6}F_{i}IN2_{i} + \delta_{7}F_{i}IN3_{i} + \delta_{8}F_{i}IN4_{i} + u_{i}$$
(2)

• The pooled full-interaction regression equation (2) **facilitates testing for female-male differences in regression functions**.

Example 1: To test that **industry effects are** *equal* **for females and males**, we perform the following joint hypothesis test on the pooled regression equation (2):

$$H_0$$
: $\delta_6 = 0$ and $\delta_7 = 0$ and $\delta_8 = 0$

OR
$$\delta_i = 0$$
 for all $j = 6, 7, 8$

$$H_1$$
: $\delta_6 \neq 0$ and/or $\delta_7 \neq 0$ and/or $\delta_8 \neq 0$

OR
$$\delta_i \neq 0$$
 for $j = 6, 7, 8$

Example 2: To test that the marginal effect of the continuous explanatory variable X_1 is the same for females and males for any given values of X_{i1} and X_{i2} , we perform the following joint hypothesis test on pooled regression equation (2):

$$H_0$$
: $\delta_1 = 0$ and $\delta_3 = 0$ and $\delta_5 = 0$

OR
$$\delta_i = 0$$
 for all $j = 1, 3, 5$

$$H_1$$
: $\delta_1 \neq 0$ and/or $\delta_3 \neq 0$ and/or $\delta_5 \neq 0$

OR
$$\delta_i \neq 0$$
 for $j = 1, 3, 5$

$$Y_{1} = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \beta_{3}X_{i1}^{2} + \beta_{4}X_{i2}^{2} + \beta_{5}X_{i1}X_{i2} + \beta_{6}IN2_{i} + \beta_{7}IN3_{i} + \beta_{8}IN4_{i} + \delta_{0}F_{i} + \delta_{1}F_{i}X_{i1} + \delta_{2}F_{i}X_{i2} + \delta_{3}F_{i}X_{i1}^{2} + \delta_{4}F_{i}X_{i2}^{2} + \delta_{5}F_{i}X_{i1}X_{i2} + \delta_{6}F_{i}IN2_{i} + \delta_{7}F_{i}IN3_{i} + \delta_{8}F_{i}IN4_{i} + u_{i}$$
(2)

• The pooled full-interaction regression equation (2) **enables us to constrain some of the regression coefficients to be equal for females and males.**

Example: Suppose we *retain* the null hypothesis that industry effects are equal for females and males. We can then impose these restrictions in estimating the female and male regression functions by simply imposing on the pooled regression equation (2) the coefficient restrictions $\delta_6 = 0$ and $\delta_7 = 0$ and $\delta_8 = 0$.

The resulting *restricted* pooled regression equation is:

$$Y_{1} = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \beta_{3}X_{i1}^{2} + \beta_{4}X_{i2}^{2} + \beta_{5}X_{i1}X_{i2} + \beta_{6}IN2_{i} + \beta_{7}IN3_{i} + \beta_{8}IN4_{i} + \delta_{0}F_{i} + \delta_{1}F_{i}X_{i1} + \delta_{2}F_{i}X_{i2} + \delta_{3}F_{i}X_{i1}^{2} + \delta_{4}F_{i}X_{i2}^{2} + \delta_{5}F_{i}X_{i1}X_{i2} + u_{i}$$
(3)

• Table formats for reporting coefficient estimates of Model 5.5:

Table 2: OLS Estimates of Model 5.5 on Pooled Sample of Females and Males

	Females		Males		Female-Male Differences	
Regressor Name	Coef. Estimate	t-ratio	Coef. Estimate	t-ratio	Coef. Estimate	t-ratio
Intercept						
X_1						
X_2						
X_3						
X_1 -sq						
X_2 -sq						
X_1X_2						
IN2						
IN3						
IN4						
No. of obs =						
RSS =						
R-squared =						
ANOVA F =						
p-value of F =						

Table 2: OLS Estimates of Model 5.5 on Pooled Sample of Females and Males

	Females		Males		Female-Male Differences	
Regressor	$\hat{\beta}_{j} + \hat{\delta}_{j}$	t-ratio	\hat{eta}_{j}	t-ratio	$\hat{\delta}_{j}$	t-ratio
Intercept			-		-	
X_1						
X_2						
X_3						
X_1 -sq						
X_2 -sq						
X_1X_2						
IN2						
IN3						
IN4						
No. of obs =						
RSS =						
R-squared =						
ANOVA F =						
p-value of F =						

Table 5: Hypothesis Test Results for Model 5.5

#	Null Hypothesis H ₀	Interpretation of H ₀	q ^{1/}	p-value ^{2/}
1	$\beta_1 + \delta_1 = 0 \& \beta_4 + \delta_4 = 0 \& \beta_6 + \delta_6 = 0$	ME of X_1 is zero for females	3	0.0000
2	$\beta_4 + \delta_4 = 0 \& \beta_6 + \delta_6 = 0$	ME of X_1 is constant for females	2	0.0274
3	$\beta_1 = 0 \& \beta_4 = 0 \& \beta_6 = 0$	ME of X_1 is zero for males	3	0.0014
4	$\beta_4 = 0 \& \beta_6 = 0$	ME of X_1 is constant for males	2	0.0083
5	$\delta_1 = 0 \& \delta_4 = 0 \& \delta_6 = 0$	ME of X ₁ equal for females & males	3	0.0038
6	$\delta_4 = 0 \& \delta_6 = 0$	F-M difference in ME of X ₁ a constant	2	0.1494
7	$\beta_2 + \delta_2 = 0 \& \beta_5 + \delta_5 = 0 \& \beta_6 + \delta_6 = 0$	ME of X ₂ is zero for females	3	0.0000
8	$\beta_5 + \delta_5 = 0 \& \beta_6 + \delta_6 = 0$	ME of X_2 is constant for females	2	0.0000
9	$\beta_2 = 0 \& \beta_5 = 0 \& \beta_6 = 0$	ME of X ₂ is zero for males	3	0.0741
10	$\beta_5 = 0 \& \beta_6 = 0$	ME of X_2 is constant for males	2	0.3185
11	$\delta_2 = 0 \& \delta_5 = 0 \& \delta_6 = 0$	ME of X ₂ equal for females & males	3	0.0063
12	$\delta_5 = 0 \& \delta_6 = 0$	F-M difference in ME of X ₂ a constant	2	0.03119
13	$\beta_3 + \delta_3 = 0$	ME of X ₃ is zero for females	1	0.0372
14	$\beta_3 = 0$	ME of X ₃ is zero for males	1	0.2461
15	$\delta_3 = 0$	ME of X ₃ equal for females & males	1	0.0000
16	$\beta_7 + \delta_7 = 0 \& \beta_8 + \delta_8 = 0 \& \beta_9 + \delta_9 = 0$	No industry effects for females	3	0.0000
17	$\beta_7 = 0 \& \beta_8 = 0 \& \beta_9 = 0$	No industry effects for males	3	0.0000
18	$\delta_7 = 0 \& \delta_8 = 0 \& \delta_9 = 0$	Industry effects equal, females & males	3	0.0083
19	$\delta_{j} = 0 \text{ for all } j = 0, 1,, 9$	F-M mean Y difference = 0	10	0.0000
20	$\delta_j = 0$ for all $j = 1,, 9$	F-M mean Y difference is constant	9	0.0000

Notes: 1/. q denotes the number of coefficient restrictions specified by the null hypothesis H_0 . 2/. The p-values are two-tail p-values for the calculated sample value of the test statistic.