QUEEN'S UNIVERSITY AT KINGSTON
Department of Economics

ECONOMICS 351* - Section A

Introductory Econometrics

Fall Term 2001

DATE:

TIME: 80 minutes; 2:30 p.m. - 3:50 p.m.

INSTRUCTIONS: The exam consists of FIVE (5) questions. Students are required to answer ALL FIVE (5) questions.

Answer all questions in the exam booklets provided. Be sure your name and student number are printed clearly on the front of all exam booklets used.

Do not write answers to questions on the front page of the first exam booklet.

Please label clearly each of your answers in the exam booklets with the appropriate number and letter.

Please write legibly.

MARKING: \quad The marks for each question are indicated in parentheses immediately above each question. Total marks for the exam equal 100.

QUESTIONS: Answer ALL FIVE questions.
All questions pertain to the simple (two-variable) linear regression model for which the population regression equation can be written in conventional notation as:

$$
\begin{equation*}
Y_{i}=\beta_{1}+\beta_{2} X_{i}+u_{i} \tag{1}
\end{equation*}
$$

where Y_{i} and X_{i} are observable variables, β_{1} and β_{2} are unknown (constant) regression coefficients, and u_{i} is an unobservable random error term. The Ordinary Least Squares (OLS) sample regression equation corresponding to regression equation (1) is

$$
\begin{equation*}
\mathrm{Y}_{\mathrm{i}}=\hat{\beta}_{1}+\hat{\beta}_{2} \mathrm{X}_{\mathrm{i}}+\hat{\mathrm{u}}_{\mathrm{i}} \quad(\mathrm{i}=1, \ldots, \mathrm{~N}) \tag{2}
\end{equation*}
$$

where $\hat{\beta}_{1}$ is the OLS estimator of the intercept coefficient $\beta_{1}, \hat{\beta}_{2}$ is the OLS estimator of the slope coefficient $\beta_{2}, \hat{\mathrm{u}}_{\mathrm{i}}$ is the OLS residual for the i -th sample observation, and N is sample size (the number of observations in the sample).

(15 marks)

1. State the Ordinary Least Squares (OLS) estimation criterion. State the OLS normal equations. Derive the OLS normal equations from the OLS estimation criterion.

ANSWER:

(3 marks)

- State the Ordinary Least Squares (OLS) estimation criterion.

The OLS coefficient estimators are those formulas or expressions for $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$ that minimize the sum of squared residuals RSS for any given sample of size N .

The OLS estimation criterion is therefore:

$$
\begin{aligned}
& \operatorname{Minimize} \operatorname{RSS}\left(\hat{\beta}_{1}, \hat{\beta}_{2}\right)=\sum_{\mathrm{i}=1}^{\mathrm{N}} \hat{\mathrm{u}}_{\mathrm{i}}^{2}=\sum_{\mathrm{i}=1}^{\mathrm{N}}\left(\mathrm{Y}_{\mathrm{i}}-\hat{\beta}_{1}-\hat{\beta}_{2} \mathrm{X}_{\mathrm{i}}\right)^{2} \\
& \quad\left\{\hat{\beta}_{\mathrm{j}}\right\}
\end{aligned}
$$

(4 marks)

- State the OLS normal equations.

The first OLS normal equation can be written in any one of the following forms:

$$
\begin{align*}
\sum_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}}-\mathrm{N} \hat{\beta}_{1}-\hat{\beta}_{2} \sum_{\mathrm{i}} \mathrm{X}_{\mathrm{i}} & =0 \\
-\mathrm{N} \hat{\beta}_{1}-\hat{\beta}_{2} \sum_{\mathrm{i}} \mathrm{X}_{\mathrm{i}} & =-\sum_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}} \tag{N1}\\
\mathrm{~N} \hat{\beta}_{1}+\hat{\beta}_{2} \sum_{\mathrm{i}} \mathrm{X}_{\mathrm{i}} & =\sum_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}}
\end{align*}
$$

The second OLS normal equation can be written in any one of the following forms:

$$
\begin{align*}
\sum_{\mathrm{i}} \mathrm{X}_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}}-\hat{\beta}_{1} \sum_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}-\hat{\beta}_{2} \sum_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}^{2} & =0 \\
-\hat{\beta}_{1} \sum_{\mathrm{i}} X_{\mathrm{i}}-\hat{\beta}_{2} \sum_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}^{2} & =-\sum_{\mathrm{i}} X_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}} \tag{N2}\\
\hat{\beta}_{1} \sum_{\mathrm{i}} X_{\mathrm{i}}+\hat{\beta}_{2} \sum_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}^{2} & =\sum_{\mathrm{i}} X_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}}
\end{align*}
$$

Question 1 (continued)

(8 marks)

- Show how the OLS normal equations are derived from the OLS estimation criterion.

(4 marks)

Step 1: Partially differentiate the $\operatorname{RSS}\left(\hat{\beta}_{1}, \hat{\beta}_{2}\right)$ function with respect to $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$, using

$$
\begin{align*}
& \hat{u}_{i}=Y_{i}-\hat{\beta}_{1}-\hat{\beta}_{2} X_{i} \quad \Rightarrow \quad \frac{\partial \hat{u}_{i}}{\partial \hat{\beta}_{1}}=-1 \quad \text { and } \quad \frac{\partial \hat{u}_{i}}{\partial \hat{\beta}_{2}}=-X_{i} . \\
& \begin{aligned}
\frac{\partial R S S}{\partial \hat{\beta}_{1}} & =\sum_{i=1}^{N} 2 \hat{u}_{i}\left(\frac{\partial \hat{u}_{i}}{\partial \hat{\beta}_{1}}\right)=\sum_{i=1}^{N} 2 \hat{u}_{i}(-1)=-2 \sum_{i=1}^{N} \hat{u}_{i}=-2 \sum_{i=1}^{N}\left(Y_{i}-\hat{\beta}_{1}-\hat{\beta}_{2} X_{i}\right) \\
\frac{\partial R S S}{\partial \hat{\beta}_{2}} & =\sum_{i=1}^{N} 2 \hat{u}_{i}\left(\frac{\partial \hat{u}_{i}}{\partial \hat{\beta}_{2}}\right)=\sum_{i=1}^{N} 2 \hat{u}_{i}\left(-X_{i}\right)=-2 \sum_{i=1}^{N} X_{i} \hat{u}_{i} \\
& =-2 \sum_{i=1}^{N} X_{i}\left(Y_{i}-\hat{\beta}_{1}-\hat{\beta}_{2} X_{i}\right) \quad \text { since } \hat{u}_{i}=Y_{i}-\hat{\beta}_{1}-\hat{\beta}_{2} X_{i} \\
& =-2 \sum_{i=1}^{N}\left(X_{i} Y_{i}-\hat{\beta}_{1} X_{i}-\hat{\beta}_{2} X_{i}^{2}\right) .
\end{aligned} \tag{1}
\end{align*}
$$

(4 marks)

Step 2: Obtain the first-order conditions (FOCs) for a minimum of the RSS function by setting the partial derivatives (1) and (2) equal to zero and then dividing each equation by -2 and re-arranging:

$$
\begin{align*}
\frac{\partial \mathrm{RSS}}{\partial \hat{\beta}_{1}}=0 \Rightarrow-2 \sum_{\mathrm{i}} \hat{\mathrm{u}}_{\mathrm{i}}=0 & \Rightarrow-2 \sum_{\mathrm{i}}\left(\mathrm{Y}_{\mathrm{i}}-\hat{\beta}_{1}-\hat{\beta}_{2} \mathrm{X}_{\mathrm{i}}\right)=0 \\
& \Rightarrow \sum_{\mathrm{i}}\left(\mathrm{Y}_{\mathrm{i}}-\hat{\beta}_{1}-\hat{\beta}_{2} \mathrm{X}_{\mathrm{i}}\right)=0 \\
& \Rightarrow \sum_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}}-\mathrm{N} \hat{\beta}_{1}-\hat{\beta}_{2} \sum_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}=0 \\
& \Rightarrow \sum_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}}=\mathrm{N} \hat{\beta}_{1}+\hat{\beta}_{2} \sum_{\mathrm{i}} \mathrm{X}_{\mathrm{i}} \tag{N1}\\
\frac{\partial \mathrm{RSS}}{\partial \hat{\beta}_{2}}=0 \Rightarrow-2 \sum_{\mathrm{i}} \mathrm{X}_{\mathrm{i}} \hat{\mathrm{u}}_{\mathrm{i}}=0 & \Rightarrow-2 \sum_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}\left(\mathrm{Y}_{\mathrm{i}}-\hat{\beta}_{1}-\hat{\beta}_{2} \mathrm{X}_{\mathrm{i}}\right)=0 \\
& \Rightarrow \sum_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}\left(\mathrm{Y}_{\mathrm{i}}-\hat{\beta}_{1}-\hat{\beta}_{2} \mathrm{X}_{\mathrm{i}}\right)=0 \\
& \Rightarrow \sum_{\mathrm{i}}\left(\mathrm{X}_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}}-\hat{\beta}_{1} \mathrm{X}_{\mathrm{i}}-\hat{\beta}_{2} \mathrm{X}_{\mathrm{i}}^{2}\right)=0 \\
& \Rightarrow \sum_{\mathrm{i}} \mathrm{X}_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}}-\hat{\beta}_{1} \sum_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}-\hat{\beta}_{2} \sum_{\mathrm{i}} X_{\mathrm{i}}^{2}=0 \\
& \Rightarrow \sum_{\mathrm{i}} \mathrm{X}_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}}=\hat{\beta}_{1} \sum_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}+\hat{\beta}_{2} \Sigma_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}^{2} \tag{N2}
\end{align*}
$$

(15 marks)
2. Give a general definition of the t-distribution. Starting from this definition, derive the t statistic for the OLS slope coefficient estimator $\hat{\beta}_{2}$. State all assumptions required for the derivation.

ANSWER:

(2 marks)

- General Definition of the t-Distribution

A random variable has the \mathbf{t}-distribution with \boldsymbol{m} degrees of freedom if it can be constructed by dividing
(1) a standard normal random variable $Z \sim N(0,1)$
by
(2) the square root of an independent chi-square random variable \mathbf{V} that has been divided by its degrees of freedom m.

Formally: Consider the two random variables Z and V .

If $\quad(1) \quad \mathrm{Z} \sim \mathrm{N}(0,1)$
(2) $\quad V \sim \chi^{2}[m]$
(3) Z and V are independent,
then the random variable

$$
\mathrm{t}=\frac{\mathrm{Z}}{\sqrt{\mathrm{~V} / \mathrm{m}}} \sim \mathrm{t}[\mathrm{~m}], \text { the } \mathrm{t} \text {-distribution with } \boldsymbol{m} \text { degrees of freedom. }
$$

(2 marks)

- Error Normality Assumption (A9): The random error terms u_{i} are independently and identically distributed (iid) as the normal distribution with zero mean and constant variance σ^{2}.
the u_{i} are iid as $N\left(0, \sigma^{2}\right)$ for all i.

Question 2 (continued)

(2 marks)

- Two implications of error normality assumption (A9): (follow from linearity property of the normal distribution whereby any linear function of a normally distributed random variable is itself normally distributed).
(1 mark)
(1) The $\mathbf{Y}_{\mathbf{i}}$ values are normally distributed: Y_{i} are NID $\left(\beta_{1}+\beta_{2} X_{i}, \sigma^{2}\right)$

Why? Because the PRE states that the $\mathbf{Y}_{\mathbf{i}}$ values are linear functions of the $\mathbf{u}_{\mathbf{i}}$:

$$
\mathrm{Y}_{\mathrm{i}}=\beta_{1}+\beta_{2} \mathrm{X}_{\mathrm{i}}+\mathrm{u}_{\mathrm{i}} .
$$

(1 mark)

(2) The OLS slope coefficient estimator $\hat{\boldsymbol{\beta}}_{2}$ is normally distributed: $\hat{\beta}_{2} \sim \mathbf{N}\left(\boldsymbol{\beta}_{2}, \operatorname{Var}\left(\hat{\beta}_{2}\right)\right)$ Why? Because $\hat{\boldsymbol{\beta}}_{2}$ can be written as a linear function of the $\mathbf{Y}_{\mathbf{i}}$ values: $\hat{\boldsymbol{\beta}}_{2}=\sum_{\mathrm{i}} \mathrm{k}_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}}$.

(3 marks)

- Numerator of the \mathbf{t}-statistic for $\hat{\boldsymbol{\beta}}_{\mathbf{2}}$: the $\mathrm{Z}\left(\hat{\boldsymbol{\beta}}_{2}\right)$ statistic.

The normality of the sampling distribution of $\hat{\beta}_{2}$ implies that $\hat{\beta}_{2}$ can be written in the form of a standard normal variable with mean zero and variance one, denoted as $\mathrm{N}(0,1)$.

$$
\hat{\beta}_{2} \sim N\left(\beta_{2}, \frac{\sigma^{2}}{\sum_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2}}\right) \Rightarrow \mathrm{Z}\left(\hat{\beta}_{2}\right)=\frac{\hat{\beta}_{2}-\beta_{2}}{\sqrt{\operatorname{Var}\left(\hat{\beta}_{2}\right)}}=\frac{\hat{\beta}_{2}-\beta_{2}}{\operatorname{se}\left(\hat{\beta}_{2}\right)} \sim \mathrm{N}(0,1)
$$

where the \mathbf{Z}-statistic for $\hat{\boldsymbol{\beta}}_{\mathbf{2}}$ can be written as

$$
\begin{equation*}
\mathrm{Z}\left(\hat{\beta}_{2}\right)=\frac{\hat{\beta}_{2}-\beta_{2}}{\sqrt{\operatorname{Var}\left(\hat{\beta}_{2}\right)}}=\frac{\hat{\beta}_{2}-\beta_{2}}{\operatorname{se}\left(\hat{\beta}_{2}\right)}=\frac{\hat{\beta}_{2}-\beta_{2}}{\sigma / \sqrt{\sum_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2}}}=\frac{\left(\hat{\beta}_{2}-\beta_{2}\right) \sqrt{\sum_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2}}}{\sigma} . \tag{1}
\end{equation*}
$$

(2 marks)

- Denominator of the \mathbf{t}-statistic for $\hat{\boldsymbol{\beta}}_{\mathbf{2}}$:

The error normality assumption implies that the statistic $\hat{\sigma}^{2} / \sigma^{2}$ has a degrees-of-freedomadjusted chi-square distribution with $(\mathrm{N}-2)$ degrees of freedom; that is

$$
\begin{equation*}
\frac{(\mathrm{N}-2) \hat{\sigma}^{2}}{\sigma^{2}} \sim \chi^{2}[\mathrm{~N}-2] \Rightarrow \frac{\hat{\sigma}^{2}}{\sigma^{2}} \sim \frac{\chi^{2}[\mathrm{~N}-2]}{(\mathrm{N}-2)} \Rightarrow \frac{\hat{\sigma}}{\sigma} \sim \sqrt{\frac{\chi^{2}[\mathrm{~N}-2]}{(\mathrm{N}-2)}} \tag{2}
\end{equation*}
$$

The last term $\hat{\sigma} / \sigma$ in (2) is the denominator of the t-statistic for $\hat{\beta}_{2}$: it is distributed as the square root of a degrees-of-freedom-adjusted chi-square variable with $(\mathrm{N}-2)$ degrees of freedom:

Question 2 (continued)

(4 marks)

- The \mathbf{t}-statistic for $\hat{\boldsymbol{\beta}}_{\mathbf{2}}$.

The t-statistic for $\hat{\beta}_{2}$ is the ratio of (1) to (2): i.e.,

$$
\begin{equation*}
\mathrm{t}\left(\hat{\beta}_{2}\right)=\frac{\mathrm{Z}\left(\hat{\beta}_{2}\right)}{\hat{\sigma} / \sigma}=\frac{\left(\hat{\beta}_{2}-\beta_{2}\right) \sqrt{\sum_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2}} / \sigma}{\hat{\sigma} / \sigma}=\frac{\left(\hat{\beta}_{2}-\beta_{2}\right) \sqrt{\sum_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2}}}{\hat{\sigma}} \tag{3}
\end{equation*}
$$

- Dividing the numerator and denominator of (3) by $\sqrt{\sum_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2}}$ yields

$$
\begin{equation*}
\mathrm{t}\left(\hat{\beta}_{2}\right)=\frac{\left(\hat{\beta}_{2}-\beta_{2}\right)}{\hat{\sigma} / \sqrt{\sum_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2}}} . \tag{4}
\end{equation*}
$$

- But the denominator of (4) is simply the estimated standard error of $\hat{\boldsymbol{\beta}}_{\mathbf{2}}$; i.e.,

$$
\frac{\hat{\sigma}}{\sqrt{\sum_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2}}}=\sqrt{\operatorname{Vâr}\left(\hat{\beta}_{2}\right)}=\operatorname{se}\left(\hat{\boldsymbol{\beta}}_{2}\right)
$$

- Result: The \mathbf{t}-statistic for $\hat{\boldsymbol{\beta}}_{\mathbf{2}}$ thus takes the form

$$
\begin{equation*}
\mathrm{t}\left(\hat{\beta}_{2}\right)=\frac{\left(\hat{\beta}_{2}-\beta_{2}\right)}{\hat{\sigma} / \sqrt{\sum_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2}}}=\frac{\left(\hat{\beta}_{2}-\beta_{2}\right)}{\sqrt{\operatorname{Var}\left(\hat{\beta}_{2}\right)}}=\frac{\left(\hat{\beta}_{2}-\beta_{2}\right)}{\operatorname{se}\left(\hat{\beta}_{2}\right)} \sim \mathrm{t}[\mathrm{~N}-2] . \tag{5}
\end{equation*}
$$

(10 marks)
3. Explain what is meant by each of the following statements about the estimator $\hat{\theta}$ of the population parameter θ.
(a) $\hat{\theta}$ is an unbiased estimator of θ.
(b) $\hat{\theta}$ is a consistent estimator of θ.

For $\hat{\theta}$ to be a consistent estimator of θ, must it be an unbiased estimator of θ, yes or no?

ANSWER:

(4 marks)

- (a) $\hat{\theta}$ is an unbiased estimator of θ.

The mean, or expectation, of the estimator $\hat{\theta}$ equals the true parameter value θ for any finite sample size. Unbiasedness is a small sample property that holds for a sample of any finite size $\mathrm{n}<\infty$.

$$
\mathrm{E}(\hat{\theta})=\theta \quad \Rightarrow \quad \operatorname{Bias}(\hat{\theta}) \equiv \mathrm{E}(\hat{\theta})-\theta=0
$$

(5 marks)

- (b) $\hat{\theta}$ is a consistent estimator of θ.

The estimator $\hat{\theta}$ is a consistent estimator if its sampling distribution converges to, or collapses on, the parameter θ as sample size becomes indefinitely large (as $n \rightarrow \infty$); if $\hat{\theta}$ gets closer and closer to θ as sample size gets larger and larger. Consistency is a large sample property.

More formally, $\hat{\theta}$ is a consistent estimator of θ if (1) its probability limit equals θ, i.e., if $\operatorname{plim}(\hat{\theta})=\theta$; or (2) if $\hat{\theta}$ converges in probability to θ as $n \rightarrow \infty$. The probability that $\hat{\theta}$ is arbitrarily close to θ approaches 1 as same size increases without limit.

(1 mark)

- For $\hat{\theta}$ to be a consistent estimator of θ, must it be an unbiased estimator of θ, yes or no?

No.
(10 marks)
4. State the Gauss-Markov theorem. Explain fully what it means.

ANSWER:
(5 marks)

- Statement of Gauss-Markov theorem:

Under assumptions A1-A8 of the Classical Linear Regression Model (CLRM), the OLS coefficient estimators $\hat{\beta}_{j}(j=1,2)$ are the minimum variance estimators of the regression coefficients $\boldsymbol{\beta}_{\mathrm{j}}(\mathrm{j}=1,2)$ in the class of all linear unbiased estimators of $\boldsymbol{\beta}_{\mathrm{j}}$.

That is, under assumptions A1-A8, the OLS coefficient estimators $\hat{\beta}_{j}$ are the Best Linear Unbiased Estimators -- or BLUE -- of $\boldsymbol{\beta}_{\mathbf{j}}(\mathrm{j}=1,2)$, where

1) BLUE \equiv Best Linear Unbiased Estimator
2) "Best" means "minimum variance" or "smallest variance" (in the class of all linear unbiased estimators).

(5 marks)

- Explanation of Gauss-Markov theorem:

1. Let $\widetilde{\beta}_{j}$ be any other linear unbiased estimator of β_{j}.

Let $\hat{\beta}_{\mathrm{j}}$ be the $\boldsymbol{O L S}$ estimator of β_{j}; it too is linear and unbiased.
2. Both estimators $\widetilde{\beta}_{\mathrm{j}}$ and $\hat{\beta}_{\mathrm{j}}$ are unbiased estimators of β_{j} :

$$
E\left(\hat{\beta}_{j}\right)=\beta_{j} \quad \text { and } \quad E\left(\widetilde{\beta}_{j}\right)=\beta_{j} .
$$

3. But the OLS estimator $\hat{\beta}_{\mathrm{j}}$ has a smaller variance than $\widetilde{\beta}_{\mathrm{j}}$:

$$
\operatorname{Var}\left(\hat{\beta}_{\mathrm{j}}\right) \leq \operatorname{Var}\left(\widetilde{\beta}_{\mathrm{j}}\right) \quad \Rightarrow \quad \hat{\beta}_{\mathrm{j}} \text { is efficient relative to } \widetilde{\beta}_{\mathrm{j}} .
$$

This means that the OLS estimator $\hat{\beta}_{j}$ is statistically more precise than $\tilde{\beta}_{j}$, any other linear unbiased estimator of $\boldsymbol{\beta}_{\mathrm{j}}$.

Alternatively, the Gauss-Markov theorem says that the OLS coefficient estimators $\hat{\beta}_{\mathrm{j}}$ are the best of all linear unbiased estimators of β_{j}, where "best" means "minimum variance".

(50 marks)

5. A researcher is using data for a sample of 88 houses sold in an urban area during a recent year to investigate the relationship between house prices Y_{i} (measured in thousands of dollars) and house size X_{i} (measured in square meters). Preliminary analysis of the sample data produces the following sample information:

$$
\begin{aligned}
& \mathrm{N}=88 \quad \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{Y}_{\mathrm{i}}=25,832.05 \quad \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{X}_{\mathrm{i}}=16,462.34 \quad \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{Y}_{\mathrm{i}}^{2}=8,500,750.6 \\
& \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{X}_{\mathrm{i}}^{2}=3,329,789.6 \quad \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{X}_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}}=5,209,990.7 \quad \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{x}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}=377,534.76 \\
& \sum_{i=1}^{N} y_{i}^{2}=917,854.51 \quad \sum_{i=1}^{N} x_{i}^{2}=250,144.32 \quad \sum_{i=1}^{N} \hat{u}_{i}^{2}=348,053.43
\end{aligned}
$$

where $x_{i} \equiv X_{i}-\bar{X}$ and $y_{i} \equiv Y_{i}-\bar{Y}$ for $i=1, \ldots, N$. Use the above sample information to answer all the following questions. Show explicitly all formulas and calculations.

(10 marks)

(a) Use the above information to compute OLS estimates of the intercept coefficient β_{1} and the slope coefficient β_{2}.

- $\hat{\beta}_{2}=\frac{\sum_{i} x_{i} y_{i}}{\sum_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2}}=\frac{377,534.76}{250,144.32}=1.509268=\underline{\mathbf{1 . 5 0 9 3}}$
- $\hat{\beta}_{1}=\overline{\mathrm{Y}}-\hat{\boldsymbol{\beta}}_{2} \overline{\mathrm{X}}$
$\bar{Y}=\frac{\sum_{i=1}^{N} Y_{i}}{N}=\frac{25,832.05}{88}=293.546 \quad$ and $\quad \bar{X}=\frac{\sum_{i=1}^{N} X_{i}}{N}=\frac{16,462.34}{88}=187.072$
Therefore
$\hat{\beta}_{1}=\overline{\mathrm{Y}}-\beta_{2} \overline{\mathrm{X}}=293.546-(1.509268)(187.072)=293.546-282.342=\underline{\mathbf{1 1 . 2 0 4}}$

(5 marks)

(b) Interpret the slope coefficient estimate you calculated in part (a) -- i.e., explain what the numeric value you calculated for $\hat{\beta}_{2}$ means.

Note: $\hat{\beta}_{2}=$ 1.50927. Y_{i} is measured in thousands of dollars, and X_{i} is measured in square meters.

The estimate $\mathbf{1 . 5 0 9 2 7}$ of β_{2} means that an increase (decrease) in house size X_{i} of 1 square meter is associated on average with an increase (decrease) in house price of 1.50927 thousands of dollars, or 1,509.27 dollars.
(5 marks)
(c) Calculate an estimate of σ^{2}, the error variance.

$$
\hat{\sigma}^{2}=\frac{\mathrm{RSS}}{\mathrm{~N}-2}=\frac{\sum_{\mathrm{i}=1}^{\mathrm{N}} \hat{\mathrm{u}}_{\mathrm{i}}^{2}}{\mathrm{~N}-2}=\frac{348,053.43}{88-2}=\frac{348,053.43}{86}=\underline{\mathbf{4 , 0 4 7 . 1 3 3}}
$$

(6 marks)

(d) Compute the value of R^{2}, the coefficient of determination for the estimated OLS sample regression equation. Briefly explain what the calculated value of R^{2} means.
(1) ESS $=\mathrm{TSS}-\mathrm{RSS}=\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{y}_{\mathrm{i}}^{2}-\sum_{\mathrm{i}=1}^{\mathrm{N}} \hat{\mathrm{u}}_{\mathrm{i}}^{2}=917,854.51-348,053.43=569,801.08$

$$
\mathrm{R}^{2}=\frac{\mathrm{ESS}}{\mathrm{TSS}}=\frac{\sum_{\mathrm{i}=1}^{\mathrm{N}} \hat{\mathrm{y}}_{\mathrm{i}}^{2}}{\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{y}_{\mathrm{i}}^{2}}=\frac{569,801.08}{917,854.51}=\underline{\mathbf{0 . 6 2 0 8}}
$$

or
(4 marks)
(2) $\mathrm{R}^{2}=1-\frac{\mathrm{RSS}}{\mathrm{TSS}}=1-\frac{\sum_{\mathrm{i}=1}^{\mathrm{N}} \hat{\mathrm{u}}_{\mathrm{i}}^{2}}{\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{y}_{\mathrm{i}}^{2}}=1-\frac{348,053.43}{917,854.51}=1-0.3792=\underline{\mathbf{0 . 6 2 0 8}}$

Interpretation of $\mathbf{R}^{\mathbf{2}}=\mathbf{0 . 6 2 0 8}$: The value of 0.6208 indicates that $\mathbf{6 2 . 0 8}$ percent of the total sample (or observed) variation in $\mathbf{Y}_{\mathbf{i}}$ (house prices) is attributable to, or explained by, the regressor $\mathbf{X}_{\mathbf{i}}$ (house size, measured in square meters). (2 marks)

(6 marks)

(e) What are the values of $\sum_{i=1}^{N} \hat{u}_{i}$ and $\sum_{i=1}^{N} X_{i} \hat{u}_{i}$ for the sample regression equation you have estimated? Explain briefly how you obtained your answer.

$$
\begin{array}{lr}
\sum_{i=1}^{N} \hat{u}_{i}=\mathbf{0} & \text { from normal equation } N 1 \\
\sum_{i=1}^{N} X_{i} \hat{u}_{i}=\mathbf{0} & \text { from normal equation } N 2
\end{array}
$$

These computational properties of the OLS sample regression equation follow from the first-order conditions for the OLS coefficient estimators, which are called the OLS normal equations.
(12 marks)
(f) Perform a test of the null hypothesis $\mathrm{H}_{0}: \beta_{2}=0$ against the alternative hypothesis H_{1} : $\beta_{2} \neq 0$ at the 5% significance level (i.e., for significance level $\alpha=0.05$). Show how you calculated the test statistic. State the decision rule you use, and the inference you would draw from the test. Briefly explain what the test outcome means.

$$
\begin{aligned}
& \mathrm{H}_{0}: \boldsymbol{\beta}_{2}=0 \\
& \mathrm{H}_{1}: \beta_{2} \neq 0 \quad \text { a two-sided alternative hypothesis } \Rightarrow \text { a two-tailed test }
\end{aligned}
$$

- Test statistic is $\mathrm{t}\left(\hat{\boldsymbol{\beta}}_{2}\right)=\frac{\hat{\boldsymbol{\beta}}_{2}-\beta_{2}}{\operatorname{se}\left(\hat{\boldsymbol{\beta}}_{2}\right)} \sim \mathrm{t}[\mathrm{N}-2]$.
- Calculate the estimated standard error of $\hat{\beta}_{2}$:

$$
\begin{align*}
& \operatorname{Vâ}\left(\hat{\beta}_{2}\right)=\frac{\hat{\sigma}^{2}}{\sum_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2}}=\frac{4047.133}{250,144.32}=0.0161792 \\
& \operatorname{sê}\left(\hat{\beta}_{2}\right)=\sqrt{\operatorname{Vâr}\left(\hat{\beta}_{2}\right)}=\sqrt{0.0161792}=\mathbf{0 . 1 2 7 1 9 7 5}=\underline{\mathbf{0 . 1 2 7 2 0}} . \tag{1mark}
\end{align*}
$$

- Calculate the sample value of the \mathbf{t}-statistic (1) under H_{0} : set $\beta_{2}=0$ in (1).

$$
\begin{equation*}
\mathrm{t}_{0}\left(\hat{\beta}_{2}\right)=\frac{\hat{\beta}_{2}-\beta_{2}}{\operatorname{se}\left(\hat{\beta}_{2}\right)}=\frac{1.509268-0.0}{0.12720}=\frac{1.509268}{0.12720}=11.865=\underline{\mathbf{1 1 . 8 7}} \tag{3marks}
\end{equation*}
$$

- Null distribution of $\mathrm{t}_{0}\left(\hat{\boldsymbol{\beta}}_{2}\right)$ is $\mathbf{t}[\mathbf{N} \mathbf{- 2]}=\mathbf{t}[86]$.

Decision Rule: At significance level α,

- reject $\mathbf{H}_{\mathbf{0}}$ if $\left|\mathrm{t}_{0}\left(\hat{\beta}_{2}\right)\right|>\mathrm{t}_{\alpha / 2}$ [86],
i.e., if either (1) $t_{0}\left(\hat{\beta}_{2}\right)>t_{\alpha / 2}$ [86] or (2) $t_{0}\left(\hat{\beta}_{2}\right)<-t_{\alpha / 2}$ [86];
- retain \mathbf{H}_{0} if $\mathrm{t}_{0}\left(\hat{\beta}_{2}\right) \mid \leq \mathrm{t}_{\alpha / 2}[86]$, i.e., if $-\mathrm{t}_{\alpha / 2}[86] \leq \mathrm{t}_{0}\left(\hat{\boldsymbol{\beta}}_{2}\right) \leq \mathrm{t}_{\alpha / 2}[86]$.

Critical value of $\mathrm{t}[\mathbf{8 6}]$-distribution: from t-table, use $\mathbf{d f}=\mathbf{8 6}, 60<86<120$.

- two-tailed 5 percent critical value $=t_{\alpha / 2}[86]=t_{0.025}[86]=\underline{\mathbf{1 . 9 8 8}} \quad$ (1 mark)
(any value between $\mathbf{2 . 0 0}$ and $\mathbf{1 . 9 8}$ is acceptable)

Question 5(f) -- continued

Inference:

- At 5 percent significance level, i.e., for $\alpha=0.05$,

$$
\left|\mathrm{t}_{0}\left(\hat{\beta}_{2}\right)\right|=11.87>1.988=\mathrm{t}_{0.025}[86] \Rightarrow \text { reject } \mathbf{H}_{0} \text { vs. } \mathrm{H}_{1} \text { at } 5 \text { percent level. }
$$

- Inference: At the 5\% significance level, the null hypothesis $\beta_{2}=0$ is rejected in favour of the alternative hypothesis $\beta_{2} \neq 0$.

Meaning of test outcome: Rejection of the null hypothesis $\beta_{2}=0$ against the alternative hypothesis $\beta_{2} \neq 0$ means that the sample evidence favours the existence of a relationship between house prices and house size.

Question 5(g)

(6 marks)
(g) Compute the two-sided 95% confidence interval for the slope coefficient β_{2}.

The two-sided $(1-\alpha)$-level, or $\mathbf{1 0 0}(1-\alpha)$ percent, confidence interval for $\boldsymbol{\beta}_{\mathbf{2}}$ is computed as

$$
\begin{equation*}
\hat{\boldsymbol{\beta}}_{2}-\mathrm{t}_{\alpha / 2}[\mathrm{~N}-2] \operatorname{se}\left(\hat{\boldsymbol{\beta}}_{2}\right) \leq \beta_{2} \leq \hat{\boldsymbol{\beta}}_{2}+\mathrm{t}_{\alpha / 2}[\mathrm{~N}-2] \operatorname{se}\left(\hat{\boldsymbol{\beta}}_{2}\right) \tag{2marks}
\end{equation*}
$$

where

- $\hat{\beta}_{2 L}=\hat{\beta}_{2}-t_{\alpha / 2}[\mathrm{~N}-2] \operatorname{se}\left(\hat{\boldsymbol{\beta}}_{2}\right)=$ the lower $\mathbf{1 0 0}(\mathbf{1}-\boldsymbol{\alpha}) \%$ confidence limit for $\boldsymbol{\beta}_{2}$
- $\hat{\beta}_{2 \mathrm{U}}=\hat{\beta}_{2}+\mathrm{t}_{\alpha / 2}[\mathrm{~N}-2]$ se $\left(\hat{\beta}_{2}\right)=$ the upper $\mathbf{1 0 0}(1-\alpha) \%$ confidence limit for $\boldsymbol{\beta}_{2}$
- $t_{\alpha / 2}[\mathrm{~N}-2]=$ the $\boldsymbol{\alpha} / \mathbf{2}$ critical value of the \mathbf{t}-distribution with $\mathbf{N}-\mathbf{2}$ degrees of freedom.
- Required results and intermediate calculations:

$$
\begin{aligned}
& \hat{\boldsymbol{\beta}}_{2}=\mathbf{1 . 5 0 9 2 7} \quad \operatorname{se}\left(\hat{\boldsymbol{\beta}}_{2}\right)=\sqrt{\operatorname{Vâ}\left(\hat{\boldsymbol{\beta}}_{2}\right)}=\sqrt{0.0161792}=\mathbf{0 . 1 2 7 2 0} \\
& 1-\alpha=0.95 \Rightarrow \alpha=0.05 \Rightarrow \boldsymbol{\alpha} / \mathbf{2}=\mathbf{0 . 0 2 5}: \quad \mathrm{t}_{\alpha / 2}[\mathrm{~N}-2]=\mathrm{t}_{0.025}[86]=\mathbf{1 . 9 8 8} \\
& \mathrm{t}_{\alpha / 2}[\mathrm{~N}-2] \operatorname{se}\left(\hat{\boldsymbol{\beta}}_{2}\right)=\mathrm{t}_{0.025}[86] \operatorname{se}\left(\hat{\boldsymbol{\beta}}_{2}\right)=1.988(0.12720)=\mathbf{0 . 2 5 2 8 7 4}
\end{aligned}
$$

- Lower 95\% confidence limit for β_{2} is:
(4 marks)

$$
\begin{aligned}
\hat{\beta}_{2 \mathrm{~L}} & =\hat{\beta}_{2}-\mathrm{t}_{\alpha / 2}[\mathrm{~N}-2] \operatorname{se}\left(\hat{\boldsymbol{\beta}}_{2}\right)=\hat{\beta}_{2}-\mathrm{t}_{0.025}[86] \mathrm{se}\left(\hat{\boldsymbol{\beta}}_{2}\right) \\
& =1.50927-1.988(0.12720)=1.50927-0.252874=1.2564=\underline{\mathbf{1 . 2 5 6}}
\end{aligned}
$$

- Upper $\mathbf{9 5 \%}$ confidence limit for $\boldsymbol{\beta}_{2}$ is:
(4 marks)

$$
\begin{aligned}
\hat{\boldsymbol{\beta}}_{2 \mathrm{U}} & =\hat{\boldsymbol{\beta}}_{2}+\mathrm{t}_{\alpha / 2}[\mathrm{~N}-2] \mathrm{s} \hat{\mathrm{e}}\left(\hat{\beta}_{2}\right)=\hat{\beta}_{2}+\mathrm{t}_{0.025}[86] \mathrm{se}\left(\hat{\beta}_{2}\right) \\
& =1.50927+1.988(0.12720)=1.50927+0.252874=1.7621=\underline{\mathbf{1 . 7 6 2}}
\end{aligned}
$$

- Result: The two-sided 95\% confidence interval for $\boldsymbol{\beta}_{\mathbf{2}}$ is:
[1.256, 1.762] or
[1.26, 1.76]

Percentage Points of the t-Distribution

TABLE D. 2
Percentage points of the t distribution

Example
$\operatorname{Pr}(t>2.086)=0.025$
$\operatorname{Pr}(t>1.725)=0.05 \quad$ for $\mathrm{df}=20$

$\operatorname{Pr}(|t|>1.725)=0.10$

dfr	0.25	0.10	0.05	0.025	0.01	0.005	0.001
1	0.50	0.20	0.10	0.05	0.02	0.010	0.002
2	0.816	1.886	2.920	4.303	6.965	9.925	22.327
3	0.765	1.638	2.353	3.182	4.541	5.841	10.214
4	0.741	1.533	2.132	2.776	3.747	4.604	7.173
5	0.727	1.476	2.015	2.571	3.365	4.032	5.893
6	0.718	1.440	1.943	2.447	3.143	3.707	5.208
7	0.711	1.415	1.895	2.365	2.998	3.499	4.785
8	0.706	1.397	1.860	2.306	2.896	3.355	4.501
9	0.703	1.383	1.833	2.262	2.821	3.250	4.297
10	0.700	1.372	1.812	2.228	2.764	3.169	4.144
11	0.697	1.363	1.796	2.201	2.718	3.106	4.025
12	0.695	1.356	1.782	2.179	2.681	3.055	3.930
13	0.694	1.350	1.771	2.160	2.650	3.012	3.852
14	0.692	1.345	1.761	2.145	2.624	2.977	3.787
15	0.691	1.341	1.753	2.131	2.602	2.947	3.733
16	0.690	1.337	1.746	2.120	2.583	2.921	3.686
17	0.689	1.333	1.740	2.110	2.567	2.898	3.646
18	0.688	1.330	1.734	2.101	2.552	2.878	3.610
19	0.688	1.328	1.729	2.093	2.539	2.861	3.579
20	0.687	1.325	1.725	2.086	2.528	2.845	3.552
21	0.686	1.323	1.721	2.080	2.518	2.831	3.527
22	0.686	1.321	1.717	2.074	2.508	2.819	3.505
23	0.685	1.319	1.714	2.069	2.500	2.807	3.485
24	0.685	1.318	1.711	2.064	2.492	2.797	3.467
25	0.684	1.316	1.708	2.060	2.485	2.787	3.450
26	0.684	1.315	1.706	2.056	2.479	2.779	3.435
27	0.684	1.314	1.703	2.052	2.473	2.771	3.421
28	0.683	1.313	1.701	2.048	2.467	2.763	3.408
29	0.683	1.311	1.699	2.045	2.462	2.756	3.396
30	0.683	1.310	1.697	2.042	2.457	2.750	3.385
40	0.681	1.303	1.684	2.021	2.423	2.704	3.307
60	0.679	1.296	1.671	2.000	2.390	2.660	3.232
120	0.677	1.289	1.658	1.980	2.358	2.617	3.160
∞	0.674	1.282	1.645	1.960	2.326	2.576	3.090
1							

Note: The smaller probability shown at the head of each column is the area in one tail: the larger probabitity is the area in both tails.
Source: From E. S. Pearson and H. O. Hartley. eds., Biomerrika Tables for Statisticians, vol. 1. 3d ed., table 12. Cambridge University Press, New York, 1966. Reproduced by permission of the editors and irustees of Biometrika.

