QUEEN'S UNIVERSITY AT KINGSTON
Department of Economics

ECONOMICS 351* - Section A
Introductory Econometrics

Fall Term 2000

DATE:

TIME:

INSTRUCTIONS:

MARKING:

QUESTIONS: Answer ALL FIVE questions.

All questions pertain to the simple (two-variable) linear regression model for which the population regression equation can be written in conventional notation as:

$$
\begin{equation*}
Y_{i}=\beta_{1}+\beta_{2} X_{i}+u_{i} \tag{1}
\end{equation*}
$$

where Y_{i} and X_{i} are observable variables, β_{1} and β_{2} are unknown (constant) regression coefficients, and u_{i} is an unobservable random error term. The Ordinary Least Squares (OLS) sample regression equation corresponding to regression equation (1) is

$$
\begin{equation*}
\mathrm{Y}_{\mathrm{i}}=\hat{\beta}_{1}+\hat{\beta}_{2} \mathrm{X}_{\mathrm{i}}+\hat{\mathrm{u}}_{\mathrm{i}} \quad(\mathrm{i}=1, \ldots, \mathrm{~N}) \tag{2}
\end{equation*}
$$

where $\hat{\beta}_{1}$ is the OLS estimator of the intercept coefficient $\beta_{1}, \hat{\beta}_{2}$ is the OLS estimator of the slope coefficient β_{2}, \hat{u}_{i} is the OLS residual for the i -th sample observation, and N is sample size (the number of observations in the sample).

(15 marks)

1. State the Ordinary Least Squares (OLS) estimation criterion. State the OLS normal equations. Derive the OLS normal equations from the OLS estimation criterion.

ANSWER:

(3 marks)

- State the Ordinary Least Squares (OLS) estimation criterion.

The OLS coefficient estimators are those formulas or expressions for $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$ that minimize the sum of squared residuals RSS for any given sample of size N .

The OLS estimation criterion is therefore:

$$
\begin{aligned}
& \operatorname{Minimize} \operatorname{RSS}\left(\hat{\beta}_{1}, \hat{\beta}_{2}\right)=\sum_{\mathrm{i}=1}^{\mathrm{N}} \hat{\mathrm{u}}_{\mathrm{i}}^{2}=\sum_{\mathrm{i}=1}^{\mathrm{N}}\left(\mathrm{Y}_{\mathrm{i}}-\hat{\beta}_{1}-\hat{\beta}_{2} \mathrm{X}_{\mathrm{i}}\right)^{2} \\
& \left\{\hat{\beta}_{\mathrm{j}}\right\}
\end{aligned}
$$

(4 marks)

- State the OLS normal equations.

The first OLS normal equation can be written in any one of the following forms:

$$
\begin{align*}
\sum_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}}-\mathrm{N} \hat{\beta}_{1}-\hat{\beta}_{2} \sum_{\mathrm{i}} X_{\mathrm{i}} & =0 \\
-\mathrm{N} \hat{\beta}_{1}-\hat{\beta}_{2} \sum_{\mathrm{i}} X_{\mathrm{i}} & =-\sum_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}} \tag{N1}\\
\mathrm{~N} \hat{\beta}_{1}+\hat{\beta}_{2} \sum_{\mathrm{i}} X_{\mathrm{i}} & =\sum_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}}
\end{align*}
$$

The second OLS normal equation can be written in any one of the following forms:

$$
\begin{align*}
\sum_{\mathrm{i}} \mathrm{X}_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}}-\hat{\beta}_{1} \sum_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}-\hat{\beta}_{2} \sum_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}^{2} & =0 \\
-\hat{\beta}_{1} \sum_{\mathrm{i}} X_{\mathrm{i}}-\hat{\beta}_{2} \sum_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}^{2} & =-\sum_{\mathrm{i}} X_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}} \tag{N2}\\
\hat{\beta}_{1} \sum_{\mathrm{i}} X_{\mathrm{i}}+\hat{\beta}_{2} \sum_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}^{2} & =\sum_{\mathrm{i}} X_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}}
\end{align*}
$$

Question 1 (continued)

(8 marks)

- Show how the OLS normal equations are derived from the OLS estimation criterion.

(4 marks)

Step 1: Partially differentiate the $\operatorname{RSS}\left(\hat{\beta}_{1}, \hat{\beta}_{2}\right)$ function with respect to $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$, using

$$
\begin{align*}
& \hat{u}_{i}=Y_{i}-\hat{\beta}_{1}-\hat{\beta}_{2} X_{i} \quad \Rightarrow \quad \frac{\partial \hat{u}_{i}}{\partial \hat{\beta}_{1}}=-1 \quad \text { and } \quad \frac{\partial \hat{u}_{i}}{\partial \hat{\beta}_{2}}=-X_{i} . \\
& \begin{aligned}
\frac{\partial R S S}{\partial \hat{\beta}_{1}} & =\sum_{i=1}^{N} 2 \hat{u}_{i}\left(\frac{\partial \hat{u}_{i}}{\partial \hat{\beta}_{1}}\right)=\sum_{i=1}^{N} 2 \hat{u}_{i}(-1)=-2 \sum_{i=1}^{N} \hat{u}_{i}=-2 \sum_{i=1}^{N}\left(Y_{i}-\hat{\beta}_{1}-\hat{\beta}_{2} X_{i}\right) \\
& \begin{aligned}
\frac{\partial R S S}{\partial \hat{\beta}_{2}} & =\sum_{i=1}^{N} 2 \hat{u}_{i}\left(\frac{\partial \hat{u}_{i}}{\partial \hat{\beta}_{2}}\right)=\sum_{i=1}^{N} 2 \hat{u}_{i}\left(-X_{i}\right)=-2 \sum_{i=1}^{N} X_{i} \hat{u}_{i} \\
& \left.=-2 \sum_{i=1}^{N} X_{i}\left(Y_{i}-\hat{\beta}_{1}-\hat{\beta}_{2} X_{i}\right) \quad \text { since } \hat{u}_{i}=Y_{i}-\hat{\beta}_{1}-\hat{\beta}_{2} X_{i} X_{i}-\hat{\beta}_{2} X_{i}^{2}\right) .
\end{aligned}
\end{aligned} . \tag{1}
\end{align*}
$$

(4 marks)

Step 2: Obtain the first-order conditions (FOCs) for a minimum of the RSS function by setting the partial derivatives (1) and (2) equal to zero and then dividing each equation by -2 and re-arranging:

$$
\begin{align*}
\frac{\partial \mathrm{RSS}}{\partial \hat{\beta}_{1}}=0 \Rightarrow-2 \sum_{\mathrm{i}} \hat{\mathrm{u}}_{\mathrm{i}}=0 & \Rightarrow-2 \sum_{\mathrm{i}}\left(\mathrm{Y}_{\mathrm{i}}-\hat{\beta}_{1}-\hat{\beta}_{2} \mathrm{X}_{\mathrm{i}}\right)=0 \\
& \Rightarrow \sum_{\mathrm{i}}\left(\mathrm{Y}_{\mathrm{i}}-\hat{\beta}_{1}-\hat{\beta}_{2} \mathrm{X}_{\mathrm{i}}\right)=0 \\
& \Rightarrow \sum_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}}-\mathrm{N} \hat{\beta}_{1}-\hat{\beta}_{2} \sum_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}=0 \\
& \Rightarrow \sum_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}}=\mathrm{N} \hat{\beta}_{1}+\hat{\beta}_{2} \sum_{\mathrm{i}} \mathrm{X}_{\mathrm{i}} \tag{N1}\\
\frac{\partial \mathrm{RSS}}{\partial \hat{\beta}_{2}}=0 \Rightarrow-2 \sum_{\mathrm{i}} \mathrm{X}_{\mathrm{i}} \hat{\mathrm{u}}_{\mathrm{i}}=0 & \Rightarrow-2 \sum_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}\left(\mathrm{Y}_{\mathrm{i}}-\hat{\beta}_{1}-\hat{\beta}_{2} \mathrm{X}_{\mathrm{i}}\right)=0 \\
& \Rightarrow \sum_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}\left(\mathrm{Y}_{\mathrm{i}}-\hat{\beta}_{1}-\hat{\beta}_{2} \mathrm{X}_{\mathrm{i}}\right)=0 \\
& \Rightarrow \sum_{\mathrm{i}}\left(\mathrm{X}_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}}-\hat{\beta}_{1} \mathrm{X}_{\mathrm{i}}-\hat{\beta}_{2} \mathrm{X}_{\mathrm{i}}^{2}\right)=0 \\
& \Rightarrow \sum_{\mathrm{i}} X_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}}-\hat{\beta}_{1} \sum_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}-\hat{\beta}_{2} \sum_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}^{2}=0 \\
& \Rightarrow \sum_{\mathrm{i}} \mathrm{X}_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}}=\hat{\beta}_{1} \Sigma_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}+\hat{\beta}_{2} \Sigma_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}^{2} \tag{N2}
\end{align*}
$$

(15 marks)

2. Answer parts (a), (b) and (c) below.
(3 marks)
(a) Explain the meaning of the following statement: The estimator $\hat{\beta}_{2}$ is an unbiased estimator of the slope coefficient β_{2}.
(3 marks)
The mean of the sampling distribution of $\hat{\beta}_{2}$ is equal to $\beta_{2}: \mathrm{E}\left(\hat{\beta}_{2}\right)=\beta_{2}$.
(An appropriate diagram would also be sufficient.)

(4 marks)

(b) Show that the OLS slope coefficient estimator $\hat{\beta}_{2}$ is a linear function of the Y_{i} sample values.

$$
\begin{align*}
\hat{\beta}_{2} & =\frac{\sum_{i} x_{i} y_{i}}{\sum_{i} x_{i}^{2}}=\frac{\sum_{i} x_{i}\left(Y_{i}-\bar{Y}\right)}{\sum_{i} x_{i}^{2}}=\frac{\sum_{i} x_{i} Y_{i}}{\sum_{i} x_{i}^{2}}-\frac{\bar{Y} \sum_{i} x_{i}}{\sum_{i} x_{i}^{2}} \\
& =\frac{\sum_{i} x_{i} Y_{i}}{\sum_{i} x_{i}^{2}} \tag{4marks}\\
& =\sum_{i} k_{i} Y_{i}
\end{align*} \quad \text { because } \sum_{i} x_{i}=0 . ~ \text { where } \mathrm{k}_{\mathrm{i}} \equiv \frac{x_{i}}{\sum_{i} x_{i}^{2}} . \quad l l
$$

(8 marks)

(c) Stating explicitly all required assumptions, prove that the OLS slope coefficient estimator $\hat{\beta}_{2}$ is an unbiased estimator of the slope coefficient β_{2}.
(1) Substitute for Y_{i} the expression $Y_{i}=\beta_{1}+\beta_{2} X_{i}+u_{i}$ from the population regression equation (or PRE).
(4 marks)

$$
\begin{array}{rlr}
\hat{\beta}_{2} & =\sum_{\mathrm{i}} \mathrm{k}_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}} & \\
& =\sum_{\mathrm{i}} \mathrm{k}_{\mathrm{i}}\left(\beta_{1}+\beta_{2} \mathrm{X}_{\mathrm{i}}+\mathrm{u}_{\mathrm{i}}\right) & \text { since } \mathrm{Y}_{\mathrm{i}}=\beta_{1}+\beta_{2} \mathrm{X}_{\mathrm{i}}+\mathrm{u}_{\mathrm{i}} \text { by assumption (A1) } \\
& =\sum_{\mathrm{i}}\left(\beta_{1} \mathrm{k}_{\mathrm{i}}+\beta_{2} \mathrm{k}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}+\mathrm{k}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}\right) & \\
& =\beta_{1} \sum_{\mathrm{i}} \mathrm{k}_{\mathrm{i}}+\beta_{2} \sum_{\mathrm{i}} \mathrm{k}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}+\sum_{\mathrm{i}} \mathrm{k}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}} & \\
& =\beta_{2}+\sum_{\mathrm{i}} \mathrm{k}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}, \quad \text { since } \sum_{\mathrm{i}} \mathrm{k}_{\mathrm{i}}=0 \text { and } \sum_{\mathrm{i}} \mathrm{k}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}=1
\end{array}
$$

(2) Now take expectations of the above expression for $\hat{\beta}_{2}$:
(4 marks)

$$
\begin{aligned}
\mathrm{E}\left(\hat{\beta}_{2}\right) & =\mathrm{E}\left(\beta_{2}\right)+\mathrm{E}\left[\sum_{\mathrm{i}} \mathrm{k}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}\right] \\
& =\beta_{2}+\sum_{\mathrm{i}} \mathrm{k}_{\mathrm{i}} \mathrm{E}\left(\mathrm{u}_{\mathrm{i}}\right) \quad \text { since } \beta_{2} \text { is a constant and the } \mathrm{k}_{\mathrm{i}} \text { are nonstochastic } \\
& =\beta_{2}+\sum_{\mathrm{i}} \mathrm{k}_{\mathrm{i}} 0 \\
& =\beta_{2} .
\end{aligned}
$$

(10 marks)
3. Explain what is meant by each of the following statements about the estimator $\hat{\theta}$ of the population parameter θ, and explain the difference between the two statements.
(a) $\hat{\theta}$ is a minimum variance estimator of θ.
(b) $\hat{\theta}$ is an efficient estimator of θ.

ANSWER:

(4 marks)

- (a) $\hat{\theta}$ is a minimum variance estimator of θ.

The variance of the estimator $\hat{\theta}$ is smaller than the variance of any other estimator of the parameter θ.

If $\tilde{\theta}$ is any other estimator of θ, then $\hat{\theta}$ is a minimum variance estimator of θ if

$$
\operatorname{Var}(\hat{\theta}) \leq \operatorname{Var}(\tilde{\theta})
$$

(4 marks)

- (b) $\hat{\theta}$ is an efficient estimator of θ.

The estimator $\hat{\theta}$ is an efficient estimator if it is unbiased and has smaller variance than any other unbiased estimator of the parameter θ.

If $\tilde{\theta}$ is any other unbiased estimator of θ, then $\hat{\theta}$ is an efficient estimator of θ if

$$
\operatorname{Var}(\hat{\theta}) \leq \operatorname{Var}(\tilde{\theta}) \quad \text { where } \mathrm{E}(\hat{\theta})=\theta \text { and } \mathrm{E}(\tilde{\theta})=\theta .
$$

(2 marks)

- The important difference between statements (a) and (b) is that an efficient estimator must be unbiased whereas a minimum variance estimator may be biased or unbiased.

An efficient estimator is the minimum variance estimator in the class of all unbiased estimators of the parameter θ.
(10 marks)
4. State the error normality assumption. State and explain the implications of the error normality assumption for (1) the distribution of the Y_{i} sample values and (2) the sampling distribution of the OLS slope coefficient estimator $\hat{\beta}_{2}$.

ANSWER:

(3 marks)

- Statement of Error Normality Assumption (A9): The random error terms u_{i} are independently and identically distributed (iid) as the normal distribution with zero mean and constant variance σ^{2}. OR The random error terms u_{i} are normally and independently distributed (NID) with zero mean and constant variance $\boldsymbol{\sigma}^{2}$.
the u_{i} are iid as $\mathrm{N}\left(0, \sigma^{2}\right)$ for all i. $O R \quad$ the u_{i} are $\operatorname{NID}\left(0, \sigma^{2}\right)$.

(7 marks)

- Two Implications of (A9): Follow from the linearity property of the normal distribution.
- Linearity property of the normal distribution: any linear function of a normally distributed random variable is itself normally distributed.
(1 mark)
- Two implications of error normality assumption (A9):
(3 marks each)
(3 marks)
(1) The $\mathbf{Y}_{\mathbf{i}}$ values are normally distributed: Y_{i} are $\operatorname{NID}\left(\beta_{1}+\beta_{2} X_{i}, \sigma^{2}\right)$
(2 marks)

Why? Because the PRE states that the $\mathbf{Y}_{\mathbf{i}}$ values are linear functions of the $\mathbf{u}_{\mathbf{i}}$: $Y_{i}=\beta_{1}+\beta_{2} X_{i}+u_{i}$.
(1 mark)
(3 marks)
(2) The OLS slope coefficient estimator $\hat{\boldsymbol{\beta}}_{2}$ is normally distributed: $\hat{\beta}_{2} \sim \mathbf{N}\left(\boldsymbol{\beta}_{2}, \operatorname{Var}\left(\hat{\boldsymbol{\beta}}_{2}\right)\right)$ where $\operatorname{Var}\left(\hat{\beta}_{2}\right)=\frac{\sigma^{2}}{\sum_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2}}$.

Why? Because $\hat{\boldsymbol{\beta}}_{\mathbf{2}}$ can be written as a linear function of the $\mathbf{Y}_{\mathbf{i}}$ values: $\hat{\boldsymbol{\beta}}_{2}=\sum_{i} \mathrm{k}_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}}$.
(1 mark)

(50 marks)

5. A researcher is using data for a sample of 526 paid workers to investigate the relationship between hourly wage rates Y_{i} (measured in dollars per hour) and years of formal education X_{i} (measured in years). Preliminary analysis of the sample data produces the following sample information:

$$
\begin{array}{lll}
N=526 & \sum_{i=1}^{N} Y_{i}=3101.35 & \sum_{i=1}^{N} X_{i}=6608.0 \quad \sum_{i=1}^{N} Y_{i}^{2}=25446.29 \\
\sum_{i=1}^{N} X_{i}^{2}=87040.0 & \sum_{i=1}^{N} X_{i} Y_{i}=41140.65 & \sum_{i=1}^{N} x_{i} y_{i}=2179.204 \\
\sum_{i=1}^{N} y_{i}^{2}=7160.414 & \sum_{i=1}^{N} x_{i}^{2}=4025.43 & \sum_{i=1}^{N} \hat{u}_{i}^{2}=5980.682
\end{array}
$$

where $x_{i} \equiv X_{i}-\bar{X}$ and $y_{i} \equiv Y_{i}-\bar{Y}$ for $i=1, \ldots, N$. Use the above sample information to answer all the following questions. Show explicitly all formulas and calculations.

(10 marks)

(a) Use the above information to compute OLS estimates of the intercept coefficient β_{1} and the slope coefficient β_{2}.

- $\hat{\beta}_{2}=\frac{\sum_{\mathrm{i}} \mathrm{x}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}}{\sum_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2}}=\frac{2179.204}{4025.43}=0.5413593=\underline{\mathbf{0 . 5 4 1 3 6}}$
- $\hat{\beta}_{1}=\overline{\mathrm{Y}}-\hat{\beta}_{2} \overline{\mathrm{X}}$

$$
\bar{Y}=\frac{\sum_{i=1}^{N} Y_{i}}{N}=\frac{3101.35}{526}=5.896103 \quad \text { and } \quad \bar{X}=\frac{\sum_{i=1}^{N} X_{i}}{N}=\frac{6608.0}{526}=12.56274
$$

Therefore

$$
\begin{equation*}
\hat{\beta}_{1}=\bar{Y}-\beta_{2} \bar{X}=5.896103-(0.54136)(12.56274)=5.896103-6.800965=-\mathbf{0 . 9 0 4 8 6} \tag{5marks}
\end{equation*}
$$

(5 marks)

(b) Interpret the slope coefficient estimate you calculated in part (a) -- i.e., explain what the numeric value you calculated for $\hat{\beta}_{2}$ means.

Note: $\hat{\beta}_{2}=\mathbf{0 . 5 4 1 3 6} . Y_{i}$ is measured in dollars per hour, and X_{i} is measured in years.
The estimate $\mathbf{0 . 5 4 1 3 6}$ of β_{2} means that a one-year increase (decrease) in years of formal education X_{i} is associated on average with an increase (decrease) in hourly wage rate of 0.54136 dollars per hour, or 54.136 cents per hour.
(5 marks)
(c) Calculate an estimate of σ^{2}, the error variance.

$$
\hat{\sigma}^{2}=\frac{\operatorname{RSS}}{\mathrm{N}-2}=\frac{\sum_{\mathrm{i}=1}^{\mathrm{N}} \hat{\mathrm{u}}_{\mathrm{i}}^{2}}{\mathrm{~N}-2}=\frac{5980.682}{526-2}=\frac{5980.682}{524}=11.413515=\underline{\mathbf{1 1 . 4 1 3 5}}
$$

(6 marks)

(d) Compute the value of R^{2}, the coefficient of determination for the estimated OLS sample regression equation. Briefly explain what the calculated value of R^{2} means.
(1) ESS $=\mathrm{TSS}-\operatorname{RSS}=\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{y}_{\mathrm{i}}^{2}-\sum_{\mathrm{i}=1}^{\mathrm{N}} \hat{\mathrm{u}}_{\mathrm{i}}^{2}=7160.414-5980.682=1179.732$

$$
\mathrm{R}^{2}=\frac{\mathrm{ESS}}{\mathrm{TSS}}=\frac{\sum_{\mathrm{i}=1}^{\mathrm{N}} \hat{\mathrm{y}}_{\mathrm{i}}^{2}}{\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{y}_{\mathrm{i}}^{2}}=\frac{1179.732}{7160.414}=0.1647575=\underline{\mathbf{0 . 1 6 4 8}}
$$

or
(2) $\mathrm{R}^{2}=1-\frac{\mathrm{RSS}}{\mathrm{TSS}}=1-\frac{\sum_{\mathrm{i}=1}^{\mathrm{N}} \hat{\mathrm{u}}_{\mathrm{i}}^{2}}{\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{y}_{\mathrm{i}}^{2}}=1-\frac{5980.682}{7160.414}=1-0.8352=\underline{\mathbf{0 . 1 6 4 8}}$

Interpretation of $\mathbf{R}^{\mathbf{2}}=\mathbf{0 . 1 6 4 8}$: The value of 0.1648 indicates that $\mathbf{1 6 . 4 8}$ percent of the total sample (or observed) variation in $\mathbf{Y}_{\mathbf{i}}$ (hourly wage rates) is attributable to, or explained by, the regressor \mathbf{X}_{i} (years of formal education).
(2 marks)
(12 marks)
(e) Perform a test of the null hypothesis $\mathrm{H}_{0}: \beta_{2}=0$ against the alternative hypothesis H_{1} : $\beta_{2} \neq 0$ at the 5\% significance level (i.e., for significance level $\alpha=0.05$). Show how you calculated the test statistic. State the decision rule you use, and the inference you would draw from the test. Briefly explain what the test outcome means.

$$
\begin{aligned}
& H_{0}: \beta_{2}=0 \\
& H_{1}: \beta_{2} \neq 0 \quad \text { a two-sided alternative hypothesis } \Rightarrow \text { a two-tailed test }
\end{aligned}
$$

- Test statistic is $\mathrm{t}\left(\hat{\boldsymbol{\beta}}_{2}\right)=\frac{\hat{\boldsymbol{\beta}}_{2}-\beta_{2}}{\operatorname{se}\left(\hat{\boldsymbol{\beta}}_{2}\right)} \sim \mathrm{t}[\mathrm{N}-2]$.
- Calculate the estimated standard error of $\hat{\beta}_{2}$:

$$
\begin{aligned}
& \operatorname{Vâ}\left(\hat{\boldsymbol{\beta}}_{2}\right)=\frac{\hat{\sigma}^{2}}{\sum_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2}}=\frac{11.413515}{4025.43}=0.002835352 \\
& \operatorname{se}\left(\hat{\boldsymbol{\beta}}_{2}\right)=\sqrt{\operatorname{Vâr}\left(\hat{\beta}_{2}\right)}=\sqrt{0.002835352}=\mathbf{0 . 0 5 3 2 4 8} .
\end{aligned}
$$

- Calculate the sample value of the t-statistic (1) under H_{0} : set $\beta_{2}=0$ in (1).

$$
\begin{equation*}
\mathrm{t}_{0}\left(\hat{\beta}_{2}\right)=\frac{\hat{\beta}_{2}-\beta_{2}}{\operatorname{sê}\left(\hat{\beta}_{2}\right)}=\frac{0.54136-0.0}{0.053248}=\frac{0.54136}{0.053248}=10.16676=\underline{\mathbf{1 0 . 1 6 7}} \tag{3marks}
\end{equation*}
$$

- Null distribution of $\mathrm{t}_{0}\left(\hat{\beta}_{2}\right)$ is $\mathbf{t}[\mathbf{N} \mathbf{- 2}]=\mathbf{t}[524]$.

Decision Rule -- Formulation 1: At significance level α,

- reject \mathbf{H}_{0} if $\left|\mathrm{t}_{0}\left(\hat{\beta}_{2}\right)\right|>\mathrm{t}_{\alpha / 2}[524]$,
i.e., if either (1) $t_{0}\left(\hat{\beta}_{2}\right)>t_{\alpha / 2}[524]$ or (2) $t_{0}\left(\hat{\beta}_{2}\right)<-t_{\alpha / 2}[524]$;
- retain $\mathbf{H}_{\mathbf{0}}$ if $\left|\mathrm{t}_{0}\left(\hat{\boldsymbol{\beta}}_{2}\right)\right| \leq \mathrm{t}_{\alpha / 2}[524]$, i.e., if $-\mathrm{t}_{\alpha / 2}[524] \leq \mathrm{t}_{0}\left(\hat{\boldsymbol{\beta}}_{2}\right) \leq \mathrm{t}_{\alpha / 2}[524]$.

Critical value of $\mathbf{t}[524]$-distribution: from t-table, use $\mathbf{d f}=\boldsymbol{\infty}$

- two-tailed 5 percent critical value $=\mathfrak{t}_{\alpha / 2}[524]=\mathfrak{t}_{0.025}[\infty]=1.960 . \quad$ (1 mark)

Question 5(e) -- continued

Inference:

- At 5 percent significance level, i.e., for $\alpha=0.05$,
$\left|\mathrm{t}_{0}\left(\hat{\beta}_{2}\right)\right|=10.167>1.960=\mathrm{t}_{0.025}[\infty] \quad \Rightarrow \operatorname{reject} H_{0}$ vs. H_{1} at 5 percent level.
- Inference: At the 5\% significance level, the null hypothesis $\beta_{2}=0$ is rejected in favour of the alternative hypothesis $\beta_{2} \neq 0$.

Meaning of test outcome: Rejection of the null hypothesis $\beta_{2}=0$ in favour of the alternative hypothesis $\beta_{2} \neq 0$ means that the sample evidence favours the existence of a relationship between wage rates and years of education.
(1 mark)
(12 marks)
(f) Compute the two-sided 95% confidence interval for the slope coefficient β_{2}. Would the two-sided 99% confidence interval be wider or narrower than the two-sided 95% confidence interval for β_{2} ? Why?

The two-sided ($\mathbf{1}-\boldsymbol{\alpha}$)-level, or $\mathbf{1 0 0}(\mathbf{1}-\boldsymbol{\alpha})$ percent, confidence interval for $\boldsymbol{\beta}_{\mathbf{2}}$ is computed as

$$
\begin{equation*}
\hat{\beta}_{2}-\mathrm{t}_{\alpha / 2}[\mathrm{~N}-2] \operatorname{se}\left(\hat{\boldsymbol{\beta}}_{2}\right) \leq \beta_{2} \leq \hat{\beta}_{2}+\mathrm{t}_{\alpha / 2}[\mathrm{~N}-2] \operatorname{se}\left(\hat{\boldsymbol{\beta}}_{2}\right) \tag{2marks}
\end{equation*}
$$

where

- $\hat{\beta}_{2 L}=\hat{\beta}_{2}-t_{\alpha / 2}[N-2] \operatorname{se}\left(\hat{\beta}_{2}\right)=$ the lower $\mathbf{1 0 0}(\mathbf{1}-\boldsymbol{\alpha}) \%$ confidence limit for $\boldsymbol{\beta}_{2}$
- $\hat{\beta}_{2 \mathrm{U}}=\hat{\beta}_{2}+\mathrm{t}_{\alpha / 2}[\mathrm{~N}-2]$ sê$\left(\hat{\beta}_{2}\right)=$ the upper $\mathbf{1 0 0}(\mathbf{1}-\boldsymbol{\alpha}) \%$ confidence limit for $\boldsymbol{\beta}_{2}$
- $t_{\alpha / 2}[\mathrm{~N}-2]=$ the $\boldsymbol{\alpha} / \mathbf{2}$ critical value of the \mathbf{t}-distribution with $\mathbf{N}-\mathbf{2}$ degrees of freedom.

$$
\begin{aligned}
& \hat{\boldsymbol{\beta}}_{2}=\mathbf{0 . 5 4 1 3 6} \quad \operatorname{se}\left(\hat{\boldsymbol{\beta}}_{2}\right)=\sqrt{\operatorname{Vâr}\left(\hat{\boldsymbol{\beta}}_{2}\right)}=\sqrt{0.002835352}=\mathbf{0 . 0 5 3 2 4 8} \\
& 1-\alpha=0.95 \Rightarrow \alpha=0.05 \Rightarrow \boldsymbol{\alpha} / \mathbf{2}=\mathbf{0 . 0 2 5}: \quad \mathrm{t}_{\alpha / 2}[\mathrm{~N}-2]=\mathrm{t}_{0.025}[524]=\mathbf{1 . 9 6 0} \\
& \\
& \begin{aligned}
\mathrm{t}_{\alpha / 2}[\mathrm{~N}-2] \operatorname{se}\left(\hat{\boldsymbol{\beta}}_{2}\right)=\mathrm{t}_{0.025}[524] \operatorname{se}\left(\hat{\boldsymbol{\beta}}_{2}\right)=\mathrm{t}_{0.025}[\infty] \operatorname{se}\left(\hat{\boldsymbol{\beta}}_{2}\right) & =1.960(0.053248) \\
& =\mathbf{0 . 1 0 4 3 6 6}
\end{aligned}
\end{aligned}
$$

- Lower 95\% confidence limit for $\boldsymbol{\beta}_{2}$ is:
(4 marks)

$$
\begin{aligned}
\hat{\boldsymbol{\beta}}_{2 L} & =\hat{\beta}_{2}-\mathrm{t}_{\alpha / 2}[\mathrm{~N}-2] \mathrm{s} \hat{e}\left(\hat{\beta}_{2}\right)=\hat{\beta}_{2}-\mathrm{t}_{0.025}[\infty] \mathrm{s} \hat{\mathrm{e}}\left(\hat{\boldsymbol{\beta}}_{2}\right) \\
& =0.54136-1.960(0.053248)=0.54136-0.104366=0.436994=\underline{\mathbf{0 . 4 3 7 0}}
\end{aligned}
$$

- Upper 95\% confidence limit for $\boldsymbol{\beta}_{\mathbf{2}}$ is:
(4 marks)

$$
\begin{aligned}
\hat{\beta}_{2 U} & =\hat{\beta}_{2}+\mathrm{t}_{\alpha / 2}[\mathrm{~N}-2] \mathrm{se}\left(\hat{\boldsymbol{\beta}}_{2}\right)=\hat{\boldsymbol{\beta}}_{2}+\mathrm{t}_{0.025}[25] \mathrm{s} \hat{\mathrm{e}}\left(\hat{\boldsymbol{\beta}}_{2}\right) \\
& =0.54136+1.960(0.053248)=0.54136+0.104366=0.645726=\underline{\mathbf{0 . 6 4 5 7}}
\end{aligned}
$$

- Result: The two-sided 95% confidence interval for $\boldsymbol{\beta}_{\mathbf{2}}$ is:
[0.4370, 0.6457].

Question 5(f) -- continued

(2 marks)

- The two-sided $\mathbf{9 9 \%}$ confidence interval for β_{2} would be wider than the two-sided $\mathbf{9 5 \%}$ confidence interval.

Reason: The critical value of the $\mathrm{t}[524]=\mathrm{t}[\infty]$ distribution is greater for the confidence level $1-\alpha=0.99$ than for the confidence level $1-\alpha=0.95$.

For the two-sided $\mathbf{9 5 \%}$ confidence interval:

$$
\mathbf{1}-\boldsymbol{\alpha}=\mathbf{0 . 9 5} \Rightarrow \alpha=0.05 \Rightarrow \alpha / 2=0.025: \mathrm{t}_{\alpha / 2}[\mathrm{~N}-2]=\mathrm{t}_{0.025}[524]=\mathbf{t}_{0.025}[\infty]=\mathbf{1 . 9 6 0}
$$

For the two-sided $\mathbf{9 9 \%}$ confidence interval:

$$
\mathbf{1}-\boldsymbol{\alpha}=\mathbf{0 . 9 9} \Rightarrow \alpha=0.01 \Rightarrow \alpha / 2=0.005: \mathrm{t}_{\alpha / 2}[\mathrm{~N}-2]=\mathrm{t}_{0.005}[524]=\mathbf{t}_{0.005}[\infty]=\mathbf{2 . 5 7 6}
$$

Percentage Points of the t-Distribution

TABLE D. 2
Percentage points of the t distribution

Example

$\operatorname{Pr}(t>2.086)=0.025$
$\operatorname{Pr}(t>1.725)=0.05 \quad$ for $\mathrm{df}=20$

$\operatorname{Pr}(|t|>1.725)=0.10$

$\mathbf{P r}$	0.25	0.10	0.05	0.025	0.01	0.005	0.001
df	0.50	0.20	0.10	0.05	0.02	0.010	0.002
1	1.000	.3 .078	6.314	12.706	31.821	63.657	318.31
2	0.816	1.886	2.920	4.303	6.965	9.925	22.327
3	0.765	1.638	2.353	3.182	4.541	5.841	10.214
4	0.741	1.533	2.132	2.776	3.747	4.604	7.173
5	0.727	1.476	2.015	2.571	3.365	4.032	5.893
6	0.718	1.440	1.943	2.447	3.143	3.707	5.208
7	0.71	1.415	1.895	2.365	2.998	3.499	4.785
8	0.706	1.397	1.860	2.306	2.896	3.355	4.501
9	0.703	1.383	1.833	2.262	2.821	3.250	4.297
10	0.700	1.372	1.812	2.228	2.764	3.169	4.144
11	0.697	1.363	1.796	2.201	2.718	3.106	4.025
12	0.695	1.356	1.782	2.179	2.681	3.055	3.930
13	0.694	1.350	1.771	2.160	2.650	3.012	3.852
14	0.692	1.345	1.761	2.145	2.624	2.977	3.787
15	0.691	1.341	1.753	2.131	2.602	2.947	3.733
16	0.690	1.337	1.746	2.120	2.583	2.921	3.686
17	0.689	1.333	1.740	2.110	2.567	2.898	3.646
18	0.688	1.330	1.734	2.101	2.552	2.878	3.610
19	0.688	1.328	1.729	2.093	2.539	2.861	3.579
20	0.687	1.325	1.725	2.086	2.528	2.845	3.552
21	0.686	1.323	1.721	2.080	2.518	2.831	3.527
22	0.686	1.321	1.717	2.074	2.508	2.819	3.505
23	0.685	1.319	1.714	2.069	2.500	2.807	3.485
24	0.685	1.318	1.711	2.064	2.492	2.797	3.467
25	0.684	1.316	1.708	2.060	2.485	2.787	3.450
26	0.684	1.315	1.706	2.056	2.479	2.779	3.435
27	0.684	1.314	1.703	2.052	2.473	2.771	3.421
28	0.683	1.313	1.701	2.048	2.467	2.763	3.408
29	0.683	1.311	1.699	2.045	2.462	2.756	3.396
30	0.683	1.310	1.697	2.042	2.457	2.750	3.385
40	0.681	1.303	1.684	2.021	2.423	2.704	3.307
60	0.679	1.296	1.671	2.000	2.390	2.660	3.232
120	0.677	1.289	1.658	1.980	2.358	2.617	3.160
∞	0.674	1.282	1.645	1.960	2.326	2.576	3.090

Note: The smaller probability shown at the head of each column is the area in one tail; the larger probabitity is the area in both tails.
Source: From E. S. Pearson and H. O. Hartley. eds., Biomerrika Tables for Statisticians, vot. 1. 3d ed., table 12. Cambridge University Press, New York, 1966. Reproduced by permission of the editors and trustees of Biomerrika.

