QUEEN'S UNIVERSITY AT KINGSTON
 Department of Economics

ECONOMICS 351* - Winter Term 2008

Introductory Econometrics

MID-TERM EXAM: ANSWERS

M.G. Abbott

Winter Term 2008
DATE: \quad Monday March 3, 2008.
TIME: $\quad 80$ minutes; 2:30 p.m. - 3:50 p.m.
INSTRUCTIONS: The exam consists of FIVE (5) questions. Students are required to answer ALL FIVE (5) questions.
Answer all questions in the exam booklets provided. Be sure your student number is printed clearly on the front of all exam booklets used.
Do not write answers to questions on the front page of the first exam booklet.
Please label clearly each of your answers in the exam booklets with the appropriate number and letter.
Please write legibly.
Tables of percentage points of the t-distribution and F-distribution are given on the last two pages of the exam.
MARKING: The marks for each question are indicated in parentheses immediately above each question. Total marks for the exam equal 100.
GOOD LUCK!
All questions pertain to the simple (two-variable) linear regression model for which the population regression equation can be written in conventional notation as:

$$
\begin{equation*}
Y_{i}=\beta_{0}+\beta_{1} X_{i}+u_{i} \tag{1}
\end{equation*}
$$

where Y_{i} and X_{i} are observable variables, β_{0} and β_{1} are unknown (constant) regression coefficients, and u_{i} is an unobservable random error term. The Ordinary Least Squares (OLS) sample regression equation corresponding to regression equation (1) is

$$
\begin{equation*}
\mathrm{Y}_{\mathrm{i}}=\hat{\beta}_{0}+\hat{\beta}_{1} \mathrm{X}_{\mathrm{i}}+\hat{\mathrm{u}}_{\mathrm{i}} \quad(\mathrm{i}=1, \ldots, \mathrm{~N}) \tag{2}
\end{equation*}
$$

where $\hat{\beta}_{0}$ is the OLS estimator of the intercept coefficient $\beta_{0}, \hat{\beta}_{1}$ is the OLS estimator of the slope coefficient β_{1}, \hat{u}_{i} is the OLS residual for the i-th sample observation, and N is sample size (the number of observations in the sample).

QUESTIONS: Answer ALL FIVE questions.

(14 marks)

1. State the Ordinary Least Squares (OLS) estimation criterion. State the OLS normal equations. Derive the OLS normal equations from the OLS estimation criterion.

ANSWER to Question 1:

(2 marks)

- State the Ordinary Least Squares (OLS) estimation criterion.
(2 marks)
The OLS coefficient estimators are those formulas or expressions for $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ that minimize the sum of squared residuals RSS for any given sample of size N .

The OLS estimation criterion is therefore:

$$
\begin{aligned}
& \operatorname{Minimize} \operatorname{RSS}\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)=\sum_{\mathrm{i}=1}^{\mathrm{N}} \hat{\mathrm{u}}_{\mathrm{i}}^{2}=\sum_{\mathrm{i}=1}^{\mathrm{N}}\left(\mathrm{Y}_{\mathrm{i}}-\hat{\beta}_{0}-\hat{\beta}_{1} \mathrm{X}_{\mathrm{i}}\right)^{2} \\
& \left\{\hat{\beta}_{\mathrm{j}}\right\}
\end{aligned}
$$

(4 marks)

- State the OLS normal equations.
(4 marks)

The first OLS normal equation can be written in any one of the following forms:

$$
\begin{align*}
\sum_{i=1}^{N} Y_{i}-N \hat{\beta}_{0}-\hat{\beta}_{1} \sum_{i=1}^{N} X_{i} & =0 \\
-N \hat{\beta}_{0}-\hat{\beta}_{1} \sum_{i=1}^{N} X_{i} & =-\sum_{i=1}^{N} Y_{i} \tag{N1}\\
N \hat{\beta}_{0}+\hat{\beta}_{1} \sum_{i=1}^{N} X_{i} & =\sum_{i=1}^{N} Y_{i}
\end{align*}
$$

The second OLS normal equation can be written in any one of the following forms:

$$
\begin{align*}
\sum_{i=1}^{N} X_{i} Y_{i}-\hat{\beta}_{0} \sum_{i=1}^{N} X_{i}-\hat{\beta}_{1} \sum_{i=1}^{N} X_{i}^{2} & =0 \\
-\hat{\beta}_{0} \sum_{i=1}^{N} X_{i}-\hat{\beta}_{1} \sum_{i=1}^{N} X_{i}^{2} & =-\sum_{i=1}^{N} X_{i} Y_{i} \tag{N2}\\
\hat{\beta}_{0} \sum_{i=1}^{N} X_{i}+\hat{\beta}_{1} \sum_{i=1}^{N} X_{i}^{2} & =\sum_{i=1}^{N} X_{i} Y_{i}
\end{align*}
$$

Question 1 (continued)

(8 marks)

- Show how the OLS normal equations are derived from the OLS estimation criterion.

(4 marks)

Step 1: Partially differentiate the $\operatorname{RSS}\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)$ function with respect to $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$, using

$$
\begin{align*}
& \hat{u}_{i}=Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{i} \quad \Rightarrow \quad \frac{\partial \hat{u}_{i}}{\partial \hat{\beta}_{0}}=-1 \quad \text { and } \quad \frac{\partial \hat{u}_{i}}{\partial \hat{\beta}_{1}}=-X_{i} . \\
& \frac{\partial \mathrm{RSS}}{\partial \hat{\beta}_{0}}=\sum_{\mathrm{i}=1}^{\mathrm{N}} 2 \hat{\mathrm{u}}_{\mathrm{i}}\left(\frac{\partial \hat{\mathrm{u}}_{\mathrm{i}}}{\partial \hat{\beta}_{0}}\right)=\sum_{\mathrm{i}=1}^{\mathrm{N}} 2 \hat{\mathrm{u}}_{\mathrm{i}}(-1)=-2 \sum_{\mathrm{i}=1}^{\mathrm{N}} \hat{\mathrm{u}}_{\mathrm{i}}=-2 \sum_{\mathrm{i}=1}^{\mathrm{N}}\left(\mathrm{Y}_{\mathrm{i}}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{i}\right) \tag{2marks}\\
& \frac{\partial \text { RSS }}{\partial \hat{\beta}_{1}}=\sum_{i=1}^{N} 2 \hat{\mathbf{u}}_{\mathrm{i}}\left(\frac{\partial \hat{\mathbf{u}}_{i}}{\partial \hat{\beta}_{1}}\right)=\sum_{\mathrm{i}=1}^{\mathrm{N}} 2 \hat{\mathbf{u}}_{\mathrm{i}}\left(-\mathrm{X}_{\mathrm{i}}\right)=-2 \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{X}_{\mathrm{i}} \hat{\mathbf{u}}_{\mathrm{i}} \\
& =-2 \sum_{i=1}^{N} X_{i}\left(Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{i}\right) \quad \text { since } \hat{u}_{i}=Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{i} \tag{2}\\
& =-2 \sum_{i=1}^{N}\left(X_{i} Y_{i}-\hat{\beta}_{0} X_{i}-\hat{\beta}_{1} X_{i}^{2}\right) \text {. }
\end{align*}
$$

(2 marks)

(4 marks)

Step 2: Obtain the first-order conditions (FOCs) for a minimum of the RSS function by setting the partial derivatives (1) and (2) equal to zero and then dividing each equation by -2 and re-arranging:

$$
\begin{align*}
\frac{\partial \mathrm{RSS}}{\partial \hat{\beta}_{0}}=0 \Rightarrow-2 \sum_{i=1}^{\mathrm{N}} \hat{\mathrm{u}}_{\mathrm{i}}=0 & \Rightarrow-2 \sum_{\mathrm{i}=1}^{\mathrm{N}}\left(\mathrm{Y}_{\mathrm{i}}-\hat{\beta}_{0}-\hat{\beta}_{1} \mathrm{X}_{\mathrm{i}}\right)=0 \\
& \Rightarrow \sum_{\mathrm{i}=1}^{\mathrm{N}}\left(\mathrm{Y}_{\mathrm{i}}-\hat{\beta}_{0}-\hat{\beta}_{1} \mathrm{X}_{\mathrm{i}}\right)=0 \\
& \Rightarrow \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{Y}_{\mathrm{i}}-\mathrm{N} \hat{\beta}_{0}-\hat{\beta}_{1} \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{X}_{\mathrm{i}}=0 \\
& \Rightarrow \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{Y}_{\mathrm{i}}=\mathrm{N} \hat{\beta}_{0}+\hat{\beta}_{1} \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{X}_{\mathrm{i}} \tag{N1}\\
\frac{\partial \mathrm{RSS}}{\partial \hat{\beta}_{1}}=0 \Rightarrow-2 \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{X}_{\mathrm{i}} \hat{\mathrm{u}}_{\mathrm{i}}=0 & \Rightarrow-2 \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{X}_{\mathrm{i}}\left(\mathrm{Y}_{\mathrm{i}}-\hat{\beta}_{0}-\hat{\beta}_{1} \mathrm{X}_{\mathrm{i}}\right)=0 \\
& \Rightarrow \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{X}_{\mathrm{i}}\left(\mathrm{Y}_{\mathrm{i}}-\hat{\beta}_{0}-\hat{\beta}_{1} \mathrm{X}_{\mathrm{i}}\right)=0 \\
& \Rightarrow \sum_{\mathrm{i}=1}^{\mathrm{N}}\left(\mathrm{X}_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}}-\hat{\beta}_{0} \mathrm{X}_{\mathrm{i}}-\hat{\beta}_{1} X_{i}^{2}\right)=0 \\
& \Rightarrow \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{X}_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}}-\hat{\beta}_{0} \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{X}_{\mathrm{i}}-\hat{\beta}_{1} \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{X}_{\mathrm{i}}^{2}=0 \\
& \Rightarrow \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{X}_{\mathrm{i}} Y_{\mathrm{i}}=\hat{\beta}_{0} \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{X}_{\mathrm{i}}+\hat{\beta}_{1} \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{X}_{\mathrm{i}}^{2}
\end{align*}
$$

(12 marks)

2. Answer parts (a), (b) and (c) below.
(6 marks)
(a) Write the expression (or formula) for $\operatorname{Var}\left(\hat{\beta}_{1}\right)$, the variance of $\hat{\beta}_{1}$. Define all terms that enter the formula for $\operatorname{Var}\left(\hat{\beta}_{1}\right)$.

ANSWER:

$\operatorname{Var}\left(\hat{\beta}_{1}\right)=\frac{\sigma^{2}}{\sum_{i=1}^{N} x_{i}^{2}}=\frac{\sigma^{2}}{\sum_{i=1}^{N}\left(X_{i}-\bar{X}\right)^{2}} \quad$ where $x_{i} \equiv X_{i}-\bar{X}, \quad i=1, \ldots, N$
and $\sigma^{2}=\operatorname{Var}\left(\mathrm{u}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i}}\right)=\mathrm{E}\left(\mathrm{u}_{\mathrm{i}}^{2} \mid \mathrm{X}_{\mathrm{i}}\right)$ is the constant error variance.

(3 marks)

(b) Which of the following factors makes $\operatorname{Var}\left(\hat{\beta}_{1}\right)$ smaller?

ANSWER: Correct answers are highlighted in bold.
(1) a smaller sample
(2) less sample variation of the X_{i} values around their sample mean \bar{X}
(3) a larger value of the error variance
(4) a smaller value of the error variance
(5) a larger sample
(6) more sample variation of the X_{i} values around their sample mean \bar{X}

(3 marks)

(c) How do you compute an unbiased estimator of $\operatorname{Var}\left(\hat{\beta}_{1}\right)$?

ANSWER: An unbiased estimator of $\operatorname{Var}\left(\hat{\beta}_{1}\right)$ is

$$
\operatorname{Vâr}\left(\hat{\beta}_{1}\right)=\frac{\hat{\sigma}^{2}}{\sum_{i=1}^{N} x_{i}^{2}}=\frac{\hat{\sigma}^{2}}{\sum_{i=1}^{N}\left(X_{i}-\bar{X}\right)^{2}}
$$

where $\quad \hat{\sigma}^{2}=\frac{R S S}{N-2}=\frac{\sum_{i=1}^{N} \hat{u}_{i}^{2}}{N-2}$ is an unbiased estimator of the error variance σ^{2}.

(10 marks)

3. Explain what is meant by each of the following statements about the estimator $\hat{\theta}$ of the population parameter θ.
(a) $\hat{\theta}$ is an unbiased estimator of θ.
(b) $\hat{\theta}$ is an efficient estimator of θ.

What is the difference between the minimum variance and efficiency properties of the estimator $\hat{\theta}$?

ANSWER to Question 3:

(5 marks)

- (a) $\hat{\theta}$ is an unbiased estimator of θ.
$\hat{\theta}$ is an unbiased estimator of θ if the mean of the sampling (probability) distribution of $\hat{\theta}$ is equal to θ, i.e., to the true population value of θ :
$\hat{\theta}$ is an unbiased estimator of θ if $\mathrm{E}(\hat{\theta})=\theta$.

(5 marks)

- (b) $\hat{\theta}$ is an efficient estimator of θ.

The estimator $\hat{\theta}$ is an efficient estimator if it is unbiased and has smaller variance than any other unbiased estimator of the parameter θ.

If $\widetilde{\theta}$ is any other unbiased estimator of θ, then $\hat{\theta}$ is an efficient estimator of θ if

$$
\operatorname{Var}(\hat{\theta}) \leq \operatorname{Var}(\tilde{\theta}) \quad \text { where } E(\hat{\theta})=\theta \text { and } E(\tilde{\theta})=\theta .
$$

(32 marks)

4. A researcher is using data for a sample of 274 male employees to investigate the relationship between employees' hourly wage rates Y_{i} (measured in dollars per hour) and their years of formal education X_{i} (measured in years). The population regression equation takes the form of equation (1): $Y_{i}=\beta_{0}+\beta_{1} X_{i}+u_{i}$. Preliminary analysis of the sample data produces the following sample information:

$$
\begin{aligned}
& \mathrm{N}=274 \quad \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{Y}_{\mathrm{i}}=1945.26 \quad \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{X}_{\mathrm{i}}=3504.00 \quad \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{Y}_{\mathrm{i}}^{2}=18536.73 \\
& \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{X}_{\mathrm{i}}^{2}=47272.00 \quad \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{X}_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}}=26204.65 \quad \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{x}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}=1328.04 \\
& \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{y}_{\mathrm{i}}^{2}=4726.38 \quad \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{x}_{\mathrm{i}}^{2}=2461.72 \quad \sum_{\mathrm{i}=1}^{\mathrm{N}} \hat{\mathrm{u}}_{\mathrm{i}}^{2}=4009.93
\end{aligned}
$$

where $x_{i} \equiv X_{i}-\bar{X}$ and $y_{i} \equiv Y_{i}-\bar{Y}$ for $i=1, \ldots, N$. Use the above sample information to answer all the following questions. Show explicitly all formulas and calculations.

ANSWERS to Question 4:

(12 marks)
(a) Use the above information to compute OLS estimates of the intercept coefficient β_{0} and the slope coefficient β_{1}.

- $\hat{\beta}_{1}=\frac{\sum_{\mathrm{i}} \mathrm{x}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}}{\sum_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2}}=\frac{1328.04}{2461.72}=\mathbf{0 . 5 3 9 4 8}=\underline{\mathbf{0 . 5 3 9}}$
- $\hat{\beta}_{0}=\overline{\mathrm{Y}}-\hat{\beta}_{1} \overline{\mathrm{X}}$
$\bar{Y}=\frac{\sum_{i=1}^{N} Y_{i}}{N}=\frac{1945.26}{274}=7.09949$ and $\bar{X}=\frac{\sum_{i=1}^{N} X_{i}}{N}=\frac{3504.00}{274}=12.7883$

Therefore

$$
\hat{\beta}_{0}=\bar{Y}-\hat{\beta}_{1} \bar{X}=7.09949-(0.53948)(12.7883)=7.09949-6.89903=\underline{\mathbf{0 . 2 0 0 4 6}}
$$

(6 marks)

ANSWERS to Question 4 (continued):

(4 marks)
(b) Interpret the slope coefficient estimate you calculated in part (a) - i.e., explain in words what the numeric value you calculated for $\hat{\beta}_{1}$ means.

Note: $\hat{\beta}_{1}=\mathbf{0 . 5 3 9 4 8} . \mathrm{Y}_{\mathrm{i}}$ is measured in dollars per hour, and X_{i} is measured in years.
The estimate $\mathbf{0 . 5 3 9 4 8}$ of β_{1} means that a 1-year increase (decrease) in years of education X_{i} is associated on average with an increase (decrease) in hourly wage rate equal to 0.53948 dollars per hour, or 53.95 cents per hour.

(4 marks)

(c) Calculate an estimate of σ^{2}, the error variance.

$$
\begin{align*}
& \mathrm{RSS}=\sum_{\mathrm{i}=1}^{\mathrm{N}} \hat{\mathrm{u}}_{\mathrm{i}}^{2}=4009.93 ; \quad \mathrm{N}-2=274-2=272 \\
& \hat{\sigma}^{2}=\frac{\mathrm{RSS}}{\mathrm{~N}-2}=\frac{\sum_{\mathrm{i}=1}^{\mathrm{N}} \hat{\mathrm{u}}_{\mathrm{i}}^{2}}{\mathrm{~N}-2}=\frac{4009.93}{274-2}=\frac{4009.93}{272}=\underline{\mathbf{1 4 . 7 4 2 4}} \tag{4marks}
\end{align*}
$$

(6 marks)

(d) Compute the value of R^{2}, the coefficient of determination for the estimated OLS sample regression equation. Briefly explain what the calculated value of R^{2} means.

(4 marks)

$$
R^{2}=\frac{E S S}{T S S}=\frac{\sum_{i=1}^{N} y_{i}^{2}-\sum_{i=1}^{N} \hat{u}_{i}^{2}}{\sum_{i=1}^{N} y_{i}^{2}}=\frac{4726.38-4009.93}{4726.38}=\frac{716.45}{4726.38}=\underline{\mathbf{0 . 1 5 1 6}}
$$

OR
$R^{2}=1-\frac{\operatorname{RSS}}{T S S}=1-\frac{\sum_{i=1}^{N} \hat{u}_{i}^{2}}{\sum_{i=1}^{N} y_{i}^{2}}=1-\frac{4009.93}{4726.38}=1-0.8484=\underline{\mathbf{0 . 1 5 1 6}}$

(2 marks)

Interpretation of $\mathbf{R}^{2}=\mathbf{0 . 1 5 1 6}$: The value of 0.1516 indicates that $\mathbf{1 5 . 1 6}$ percent of the total sample (or observed) variation in $\mathbf{Y}_{\mathbf{i}}$ (hourly wage rates) is attributable to, or explained by, the sample regression function or the regressor $\mathbf{X}_{\mathbf{i}}$ (years of formal education).

(6 marks)

(e) Calculate the sample value of the F -statistic for testing the null hypothesis $\mathrm{H}_{0}: \beta_{1}=0$ against the alternative hypothesis $\mathrm{H}_{1}: \beta_{1} \neq 0$. (Note: You are not required to obtain or state the inference of this test.)

- F-statistic for $\hat{\beta}_{1}$ is $F\left(\hat{\beta}_{1}\right)=\frac{\left(\hat{\beta}_{1}-\beta_{1}\right)^{2}}{\operatorname{Var}\left(\hat{\beta}_{1}\right)}$
(2 marks)
- From part (a), $\hat{\beta}_{1}=0.53948 ; \operatorname{Vâr}\left(\hat{\beta}_{1}\right)=\frac{\hat{\sigma}^{2}}{\sum_{i=1}^{N} x_{i}^{2}}=\frac{14.7424}{2461.72}=0.0059887$.
- Calculate the sample value of the F-statistic (1) under H_{0} : set $\beta_{1}=0, \hat{\beta}_{1}=0.53948$ and $\operatorname{Vâr}\left(\hat{\beta}_{1}\right)=0.0059887$ in (1).

$$
F_{0}\left(\hat{\beta}_{1}\right)=\frac{\left(\hat{\beta}_{1}-\beta_{1}\right)^{2}}{\operatorname{Vâr}\left(\hat{\beta}_{1}\right)}=\frac{(0.53948-0)^{2}}{0.0059887}=\frac{0.291039}{0.0059887}=\underline{\mathbf{4 8 . 6 0}}
$$

Alternative Answer to 4(e): use the ANOVA F-statistic

- ANOVA F-statistic is: ANOVA $-\mathrm{F}_{0}=\frac{\mathrm{ESS} / 1}{\operatorname{RSS} / \mathrm{N}-2}=\frac{\sum_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}^{2}-\sum_{\mathrm{i}} \hat{\mathrm{u}}_{\mathrm{i}}^{2}}{\hat{\sigma}^{2}}$
- $\quad \sum_{i=1}^{N} y_{i}^{2}=4726.38 ; \sum_{i=1}^{N} \hat{u}_{i}^{2}=4009.93$; from part (c), $\hat{\sigma}^{2}=\sum_{i=1}^{N} \hat{\mathrm{u}}_{i}^{2} /(\mathrm{N}-2)=\underline{\mathbf{1 4 . 7 4 2 4}}$
- Calculate the sample value of the ANOVA F-statistic.

$$
\text { ANOVA }-\mathrm{F}_{0}=\frac{\sum_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}^{2}-\sum_{\mathrm{i}} \hat{\mathrm{u}}_{\mathrm{i}}^{2}}{\hat{\sigma}^{2}}=\frac{4726.38-4009.93}{14.7424}=\frac{716.45}{14.7424}=\underline{48.60} \quad \text { (4 marks) }
$$

(32 marks)

5. You have been commissioned to investigate the relationship between the annual salaries of Chief Executive Officers (CEOs) of firms and the annual profits of their firms. The dependent variable is salary, the annual salary of the CEO of the i-th firm, measured in thousands of dollars per year. The explanatory variable is profits ${ }_{i}$, the annual profits of the i-th firm, measured in millions of dollars per year. The model you propose to estimate is given by the population regression equation

$$
\text { salary }_{i}=\beta_{0}+\beta_{1} \text { profits }_{i}+u_{i}
$$

Your research assistant has used observations on salary $_{i}$ and profits $_{\boldsymbol{i}}$ for a sample of 177 corporations to estimate the following OLS sample regression equation, where the figures in parentheses below the coefficient estimates are the estimated standard errors of the coefficient estimates:

$$
\begin{equation*}
\text { salary }_{i}=746.92+0.57230 \text { profits }_{i}+\hat{\mathrm{u}}_{\mathrm{i}} \quad(\mathrm{i}=1, \ldots, \mathrm{~N}) \quad \mathrm{N}=177 \tag{3}
\end{equation*}
$$

$$
(45.798)(0.10094) \quad \leftarrow \text { (standard errors) }
$$

ANSWERS to Question 5:

(8 marks)

(a) Perform a test of the null hypothesis $\mathrm{H}_{0}: \beta_{1}=0$ against the alternative hypothesis H_{1} : $\beta_{1} \neq 0$ at the 1% significance level (i.e., for significance level $\alpha=0.01$). Show how you calculated the test statistic. State the decision rule you use, and the inference you would draw from the test. Briefly state the conclusion you would draw from the test.
$\mathrm{H}_{0}: \beta_{1}=0$
$H_{1}: \beta_{1} \neq 0 \quad$ a two-sided alternative hypothesis \Rightarrow a two-tailed test

- Test statistic is either $\mathrm{t}\left(\hat{\beta}_{1}\right)=\frac{\hat{\beta}_{1}-\beta_{1}}{\operatorname{sê}\left(\hat{\beta}_{1}\right)} \sim \mathrm{t}[\mathrm{N}-2]$ or $\mathrm{F}\left(\hat{\beta}_{1}\right)=\frac{\left(\hat{\beta}_{1}-\beta_{1}\right)^{2}}{\operatorname{Vâr}\left(\hat{\beta}_{1}\right)} \sim \mathrm{F}[1, \mathrm{~N}-2]$.
- $\hat{\beta}_{1}=\mathbf{0 . 5 7 2 3 0} ; \quad \operatorname{sê}\left(\hat{\beta}_{1}\right)=\mathbf{0 . 1 0 0 9 4} ; \quad \operatorname{Vâ}\left(\hat{\beta}_{1}\right)=\left(\operatorname{se}\left(\hat{\beta}_{1}\right)\right)^{2}=\mathbf{0 . 0 1 0 1 8 8 9}$
- Calculate the sample value of either the t-statistic or the F-statistic under H_{0} : set $\beta_{1}=0, \hat{\beta}_{1}=\mathbf{0 . 5 7 2 3 0}$, $\operatorname{se}\left(\hat{\beta}_{1}\right)=\mathbf{0 . 1 0 0 9 4}$, and $\operatorname{Vâ}\left(\hat{\beta}_{1}\right)=\mathbf{0 . 0 1 0 1 8 8 9}$.

$$
\mathrm{t}_{0}\left(\hat{\beta}_{1}\right)=\frac{\hat{\beta}_{1}-\beta_{1}}{\operatorname{se}\left(\hat{\beta}_{1}\right)}=\frac{0.57230-0.0}{0.10094}=\frac{0.57230}{0.10094}=5.6697=\underline{5.67}
$$

ANSWER to Question 5(a) -- continued:

$$
F_{0}\left(\hat{\beta}_{1}\right)=\frac{\left(\hat{\beta}_{1}-\beta_{1}\right)^{2}}{\operatorname{Vâr}\left(\hat{\beta}_{1}\right)}=\frac{(0.57230-0.0)^{2}}{0.0101889}=\frac{0.327527}{0.0101889}=32.14550=\underline{\mathbf{3 2 . 1 5}}
$$

- Null distribution of $\mathrm{t}_{0}\left(\hat{\beta}_{1}\right)$ is $\mathbf{t}[\mathbf{N}-2]=\mathbf{t}[177-2]=\mathbf{t}[175]$
- Null distribution of $\mathrm{F}_{0}\left(\hat{\beta}_{1}\right)$ is $\mathbf{F}[1, \mathbf{N}-2]=\mathbf{F}[1,177-2]=\mathbf{F}[1,175]$

Decision Rule: At significance level α,
(2 marks)

- reject \mathbf{H}_{0} if $\mathrm{F}_{0}\left(\hat{\beta}_{1}\right)>\mathrm{F}_{\alpha}[1,175]$ or $\left|\mathrm{t}_{0}\left(\hat{\beta}_{1}\right)\right|>\mathrm{t}_{\alpha / 2}[175]$, i.e., if either (1) $\mathrm{t}_{0}\left(\hat{\beta}_{1}\right)>\mathrm{t}_{\alpha / 2}[175]$ or (2) $\mathrm{t}_{0}\left(\hat{\beta}_{1}\right)<-\mathrm{t}_{\alpha / 2}[175]$;
- retain H_{0} if $\mathrm{F}_{0}\left(\hat{\beta}_{1}\right) \leq \mathrm{F}_{\alpha}[1,175]$ or $\left|\mathrm{t}_{0}\left(\hat{\beta}_{1}\right)\right| \leq \mathrm{t}_{\alpha / 2}$ [175],

$$
\text { i.e., if }-\mathrm{t}_{\alpha / 2}[175] \leq \mathrm{t}_{0}\left(\hat{\beta}_{1}\right) \leq \mathrm{t}_{\alpha / 2}[175] \text {. }
$$

Critical values of t[175]-distribution or $\mathbf{F}[1,175]$-distribution: in t-table, use $\mathbf{d f}=\mathbf{1 2 0}$ or $\mathbf{d f}=\infty$ or any number between.

- two-tailed 1 percent critical value $=\mathrm{t}_{\alpha / 2}[175]=\mathrm{t}_{0.005}[175]=2.604=\underline{\mathbf{2 . 6 0}}$
(1 mark)

$$
\begin{aligned}
& =\mathrm{t}_{0.005}[120]=2.617=\underline{\mathbf{2 . 6 2}} \\
& =\mathrm{t}_{0.005}[\infty]=2.576=\underline{\mathbf{2} .58}
\end{aligned}
$$

Critical values of $\mathbf{F}[1,175]$-distribution: in F-table, use denominator $\mathbf{d f}=\mathbf{1 2 0}$ or $\mathbf{d f}=$ 200 or any number between.

- $\underline{1}$ percent critical value $=F_{\alpha}[1,175]=\mathrm{F}_{0.01}[1,175]=6.782=\underline{\mathbf{6 . 7 8}}$

$$
\begin{aligned}
& =F_{0.01}[1,120]=\underline{\mathbf{6 . 8 5}} \\
& =F_{0.01}[1,200]=\underline{\mathbf{6 . 7 6}}
\end{aligned}
$$

Inference:

- At 1 percent significance level, i.e., for $\alpha=0.01$,

$$
\begin{array}{ll}
\left|\mathrm{t}_{0}\left(\hat{\beta}_{1}\right)\right|=5.67>2.60=\mathrm{t}_{0.005}[175] \Rightarrow & \text { reject } \mathrm{H}_{\mathbf{0}} \text { vs. } \mathrm{H}_{1} \text { at } 1 \text { percent level. } \\
\mathrm{F}_{0}\left(\hat{\beta}_{1}\right)=32.15>6.78=\mathrm{F}_{0.01}[1,175] \Rightarrow & \text { reject } H_{0} \text { vs. } H_{1} \text { at } 1 \text { percent level. }
\end{array}
$$

ANSWER to Question 5(a) -- continued:

- Inference: At the $\mathbf{1 \%}$ significance level, the null hypothesis $\beta_{1}=0$ is rejected in favour of the alternative hypothesis $\beta_{1} \neq 0$.

Conclusion implied by test outcome:

(1 mark)
Rejection of the null hypothesis $\beta_{1}=0$ against the alternative hypothesis $\beta_{1} \neq 0$ means that the sample evidence favours the existence of a relationship between CEOs' salaries and their firms' profits.

Question 5(a) - Alternative Answer -- uses confidence interval approach

- The two-sided $(1-\alpha)$-level, or $\mathbf{1 0 0}(1-\alpha)$ percent, confidence interval for β_{1} is:

$$
\begin{gathered}
\hat{\beta}_{1}-\mathrm{t}_{\alpha / 2}[\mathrm{~N}-2] \operatorname{se}\left(\hat{\beta}_{1}\right) \leq \beta_{1} \leq \hat{\beta}_{1}+\mathrm{t}_{\alpha / 2}[\mathrm{~N}-2] \operatorname{se}\left(\hat{\beta}_{1}\right) \\
\hat{\beta}_{1 \mathrm{~L}} \leq \beta_{1} \leq \hat{\beta}_{1 \mathrm{U}}
\end{gathered}
$$

- Required results and intermediate calculations:

$$
\begin{aligned}
& \mathrm{N}-\mathrm{K}=177-2=175 ; \quad \hat{\beta}_{1}=\mathbf{0 . 5 7 2 3 0} ; \quad \mathrm{se}\left(\hat{\beta}_{1}\right)=\mathbf{0 . 1 0 0 9 4} \\
& 1-\alpha=0.99 \Rightarrow \alpha=0.01 \Rightarrow \alpha / \mathbf{2}=\mathbf{0 . 0 0 5} ; \quad \mathrm{t}_{\alpha / 2}[\mathrm{~N}-2]=\mathbf{t}_{0.005}[\mathbf{1 7 5]}=\underline{\mathbf{2 . 6 0 4}} \quad \text { (1 mark) } \\
& \mathrm{t}_{\alpha / 2}[\mathrm{~N}-2] \operatorname{se}\left(\hat{\beta}_{1}\right)=\mathrm{t}_{0.005}[175] \mathrm{s} \hat{e}\left(\hat{\beta}_{1}\right)=2.604(0.10094)=\mathbf{0 . 2 6 2 8 4 8}
\end{aligned}
$$

- Lower 99\% confidence limit for $\boldsymbol{\beta}_{1}$ is:
(2 marks)

$$
\begin{aligned}
\hat{\beta}_{1 \mathrm{~L}} & =\hat{\beta}_{1}-\mathrm{t}_{\alpha / 2}[\mathrm{~N}-2] \operatorname{se}\left(\hat{\beta}_{1}\right)=\hat{\beta}_{1}-\mathrm{t}_{0.005}[1720] \operatorname{se}\left(\hat{\beta}_{1}\right) \\
& =0.57230-\mathbf{2 . 6 0 4}(0.10094)=0.57230-0.262848=0.309452=\underline{\mathbf{0 . 3 0 9 5}} \\
& =0.57230-\mathbf{2 . 6 2}(0.10094)=0.57230-0.264463=0.307837=\underline{\mathbf{0 . 3 0 7 8}} \\
& =0.57230-2.58(0.10094)=0.57230-0.260425=0.311875=\underline{\mathbf{0 . 3 1 1 9}}
\end{aligned}
$$

- Upper 99\% confidence limit for β_{1} is:
(2 marks)

$$
\begin{aligned}
\hat{\beta}_{1 U} & =\hat{\beta}_{1}+\mathrm{t}_{\alpha / 2}[\mathrm{~N}-2] \operatorname{se}\left(\hat{\beta}_{1}\right)=\hat{\beta}_{1}+\mathrm{t}_{0.005}[1720] \operatorname{se}\left(\hat{\beta}_{1}\right) \\
& =0.57230+\mathbf{2 . 6 0 4}(0.10094)=0.57230+0.262848=0.835148=\underline{\mathbf{0 . 8 3 5 1}} \\
& =0.57230+\mathbf{2 . 6 2}(0.10094)=0.57230+0.264463=0.836763=\underline{\mathbf{0 . 8 3 6 8}} \\
& =0.57230+\mathbf{2 . 5 8}(0.10094)=0.57230+0.260425=0.832725=\underline{\mathbf{0 . 8 3 2 7}}
\end{aligned}
$$

Question 5(a) - Alternative Answer (continued)

- Two-sided 99\% confidence interval for $\boldsymbol{\beta}_{1}$ is therefore:

$$
0.3095 \leq \beta_{1} \leq 0.8351 \text { or } 0.3078 \leq \beta_{1} \leq 0.8368 \text { or } 0.3119 \leq \beta_{1} \leq 0.8327
$$

- Decision Rule: At significance level α,
- reject $\mathbf{H}_{\mathbf{0}}$ if the hypothesized value $\mathbf{b}_{\mathbf{1}}$ of β_{1} specified by H_{0} lies outside the two-sided $(1-\alpha)$-level confidence interval for β_{1}, i.e., if either

$$
\text { (1) } \mathrm{b}_{1}<\hat{\beta}_{1}-\mathrm{t}_{\alpha / 2}[175] \operatorname{se}\left(\hat{\beta}_{1}\right) \quad \text { or }(2) \mathrm{b}_{1}>\hat{\beta}_{1}+\mathrm{t}_{\alpha / 2}[175] \operatorname{se}\left(\hat{\beta}_{1}\right) .
$$

- retain $\mathbf{H}_{\mathbf{0}}$ if the hypothesized value $\mathbf{b}_{\mathbf{1}}$ of $\boldsymbol{\beta}_{\mathbf{1}}$ specified by H_{0} lies inside the two-sided $(1-\alpha)$-level confidence interval for β_{1}, i.e., if $\hat{\beta}_{1}-t_{\alpha / 2}[175] \operatorname{se}\left(\hat{\beta}_{1}\right) \leq b_{1} \leq \hat{\beta}_{1}+t_{\alpha / 2}[175] \operatorname{se}\left(\hat{\beta}_{1}\right)$.

Inference:

- At 1 percent significance level, i.e., for $\alpha=0.01$,

$$
\begin{aligned}
& \mathrm{b}_{1}=\mathbf{0}<\mathbf{0 . 3 0 9 4}=\hat{\beta}_{1 \mathrm{~L}}=\hat{\beta}_{1}-\mathrm{t}_{0.005}[175] \operatorname{se}\left(\hat{\beta}_{1}\right) \\
& \Rightarrow \text { reject } H_{0} \text { vs. } H_{1} \text { at } 1 \text { percent level. }
\end{aligned}
$$

- Inference: At the 1\% significance level, the null hypothesis $\beta_{1}=0$ is rejected in favour of the alternative hypothesis $\beta_{1} \neq 0$.

Conclusion implied by test outcome:

Rejection of the null hypothesis $\beta_{1}=0$ against the alternative hypothesis $\beta_{1} \neq 0$ means that the sample evidence favours the existence of a relationship between CEOs' salaries and their firms' profits.

(8 marks)

(b) Perform a test of the proposition that CEOs' annual salaries are positively related to their firms' profits, i.e., that an increase in firms' profits increases the annual salaries of their CEOs. Use the 1 percent significance level (i.e., $\alpha=0.01$). State the null hypothesis H_{0} and the alternative hypothesis H_{1}. Show how you calculated the test statistic. State the decision rule you use, and the inference you would draw from the test.

ANSWER to Question 5(b):

Null and Alternative Hypotheses:

$\mathrm{H}_{0}: \beta_{1}=0$
$\mathrm{H}_{1}: \beta_{1}>0 \quad \Rightarrow$ a right-tailed t-test
(1 mark)

- Test statistic is $\mathrm{t}\left(\hat{\beta}_{1}\right)=\frac{\hat{\beta}_{1}-\beta_{1}}{\operatorname{se}\left(\hat{\beta}_{1}\right)} \sim \mathrm{t}[\mathrm{N}-2] ; \hat{\beta}_{1}=\mathbf{0 . 5 7 2 3 0}$ and $\operatorname{se}\left(\hat{\beta}_{1}\right)=\mathbf{0 . 1 0 0 9 4}$
- Calculate the sample value of the \mathbf{t}-statistic under H_{0} :
set $\beta_{1}=0, \hat{\beta}_{1}=\mathbf{0 . 5 7 2 3 0}$, $\operatorname{sê}\left(\hat{\beta}_{1}\right)=\mathbf{0 . 1 0 0 9 4}$ in (1).

$$
\mathrm{t}_{0}\left(\hat{\beta}_{1}\right)=\frac{\hat{\beta}_{1}-\beta_{1}}{\operatorname{sê}\left(\hat{\beta}_{1}\right)}=\frac{0.57230-0.0}{0.10094}=\frac{0.57230}{0.10094}=5.6697=\underline{\mathbf{5 . 6 7}}
$$

- Null distribution of $\mathrm{t}_{0}\left(\hat{\beta}_{1}\right)$ is $\mathbf{t}[\mathbf{N}-2]=\mathbf{t}[177-2]=\mathbf{t}[175]$

Decision Rule: At significance level α,

- reject H_{0} if $t_{0}\left(\hat{\beta}_{1}\right)>t_{\alpha}$ [175],
- retain \mathbf{H}_{0} if $\mathrm{t}_{0}\left(\hat{\beta}_{1}\right) \leq \mathrm{t}_{\alpha}[175]$.

Critical value of $\mathbf{t}[175]$-distribution: from t-table, use $\mathbf{d f}=\mathbf{1 2 0}$ or $\mathbf{d f}=\infty$ or any number in between.

- right-tail 1 percent critical value $=\mathfrak{t}_{0.01}[175]=\underline{2.348}=\underline{\mathbf{2 . 3 5}}$
(1 mark)

$$
\begin{aligned}
& =t_{0.01}[120]=\underline{2.358}=\underline{\mathbf{2 . 3 6}} \\
& =\mathrm{t}_{0.01}[\infty]=\underline{\mathbf{2 . 3 2 6}}=\underline{2.33}
\end{aligned}
$$

ANSWER to Question 5(b) -- continued:

Inference:

- At 1 percent significance level, i.e., for $\alpha=0.01$,

$$
\mathrm{t}_{0}\left(\hat{\beta}_{1}\right)=5.67>2.348=\mathrm{t}_{0.01}[175] \quad \Rightarrow \quad \text { reject } H_{0} \text { vs. } H_{1} \text { at } 1 \text { percent level. }
$$

- Inference: At the $\mathbf{1 \%}$ significance level, the null hypothesis $\beta_{1}=0$ is rejected in favour of the alternative hypothesis $\beta_{\mathbf{1}}>\mathbf{0}$.

(8 marks)

(c) Compute the two-sided 95% confidence interval for the slope coefficient β_{1}.

ANSWER to Question 5(c):

- The two-sided $(1-\alpha)$-level, or $\mathbf{1 0 0}(1-\alpha)$ percent, confidence interval for β_{1} is computed as

$$
\hat{\beta}_{1}-\mathrm{t}_{\alpha / 2}[\mathrm{~N}-2] \operatorname{se}\left(\hat{\beta}_{1}\right) \leq \beta_{1} \leq \hat{\beta}_{1}+\mathrm{t}_{\alpha / 2}[\mathrm{~N}-2] \operatorname{se}\left(\hat{\boldsymbol{\beta}}_{1}\right)
$$

(2 marks)
where

- $\hat{\beta}_{1 L}=\hat{\beta}_{1}-t_{\alpha / 2}[N-2] \operatorname{se}\left(\hat{\beta}_{1}\right)=$ the lower $\mathbf{1 0 0}(1-\alpha) \%$ confidence limit for β_{1}
- $\hat{\beta}_{1 \mathrm{U}}=\hat{\beta}_{1}+\mathrm{t}_{\alpha / 2}[\mathrm{~N}-2] \operatorname{se}\left(\hat{\beta}_{1}\right)=$ the upper $\mathbf{1 0 0}(1-\alpha) \%$ confidence limit for β_{1} - $t_{\alpha / 2}[\mathrm{~N}-2]=$ the $\alpha / 2$ critical value of the t-distribution with $N-2$ degrees of freedom.
- Required results and intermediate calculations:

$$
\begin{aligned}
& \mathrm{N}-\mathrm{K}=177-2=175 ; \quad \hat{\beta}_{1}=\mathbf{0 . 5 7 2 3 0} ; \quad \mathrm{se}\left(\hat{\beta}_{1}\right)=\mathbf{0 . 1 0 0 9 4} \\
& 1-\alpha=0.95 \Rightarrow \alpha=0.05 \Rightarrow \alpha / \mathbf{2}=\mathbf{0 . 0 2 5 :} \begin{aligned}
\mathrm{t}_{\alpha / 2}[\mathrm{~N}-2] & =\mathbf{t}_{0.025}[\mathbf{1 7 5]}=\mathbf{1 . 9 7 4} \\
& =\mathbf{t}_{0.025}[\mathbf{1 2 0]}=\mathbf{1 . 9 8 0} \\
& =\mathbf{t}_{0.025}[\infty]=\mathbf{1 . 9 6 0}
\end{aligned} \\
&
\end{aligned}
$$

- Lower 95\% confidence limit for $\boldsymbol{\beta}_{1}$ is:
(3 marks)

$$
\begin{aligned}
\hat{\beta}_{1 L} & =\hat{\beta}_{1}-\mathrm{t}_{\alpha / 2}[\mathrm{~N}-2] \operatorname{se}\left(\hat{\beta}_{1}\right)=\hat{\beta}_{1}-\mathrm{t}_{0.025}[175] \operatorname{se}\left(\hat{\beta}_{1}\right) \\
& =0.57230-\mathbf{1 . 9 7 4}(0.10094)=0.57230-0.199256=0.373044=\underline{\mathbf{0 . 3 7 3 0}} \\
& =0.57230-\mathbf{1 . 9 8 0}(0.10094)=0.57230-0.199861=0.372439=\underline{\mathbf{0 . 3 7 2 4}} \\
& =0.57230-\mathbf{1 . 9 6 0}(0.10094)=0.57230-0.197842=0.374458=\underline{\mathbf{0 . 3 7 4 5}}
\end{aligned}
$$

ANSWER to Question 5(c) -- continued:

- Upper $\mathbf{9 5 \%}$ confidence limit for $\boldsymbol{\beta}_{1}$ is:
(3 marks)

$$
\begin{aligned}
\hat{\beta}_{1 U} & =\hat{\beta}_{1}+\mathrm{t}_{\alpha / 2}[\mathrm{~N}-2] \operatorname{se}\left(\hat{\beta}_{1}\right)=\hat{\beta}_{1}+\mathrm{t}_{0.025}[175] \operatorname{se}\left(\hat{\beta}_{1}\right) \\
& =0.57230+\mathbf{1 . 9 7 4}(0.10094)=0.57230+0.199256=0.771556=\underline{\mathbf{0 . 7 7 1 6}} \\
& =0.57230+\mathbf{1 . 9 8 0}(0.10094)=0.57230+0.199861=0.772161=\underline{\mathbf{0 . 7 7 2 2}} \\
& =0.57230+\mathbf{1 . 9 6 0}(0.10094)=0.57230+0.197842=0.770142=\underline{\mathbf{0 . 7 7 0 1}}
\end{aligned}
$$

- Two-sided 95\% confidence interval for β_{1} is therefore:

$$
0.373 \leq \beta_{1} \leq 0.772 \quad \text { or } \quad 0.372 \leq \beta_{1} \leq 0.772 \quad \text { or } \quad 0.375 \leq \beta_{1} \leq 0.770
$$

- Result: The two-sided 95\% confidence interval for $\boldsymbol{\beta}_{1}$ is: [0.373, 0.772]

(8 marks)

(d) Perform a test of the proposition that an increase in profits of 1 million dollars per year is associated on average with an increase in CEO salary of 500 dollars per year. Use the 5 percent significance level (i.e., $\alpha=0.05$). State the null hypothesis H_{0} and the alternative hypothesis H_{1}. Show how you calculated the test statistic. State the decision rule you use, and the inference you would draw from the test.

ANSWER to Question 5(d):

$\mathrm{H}_{0}: \beta_{1}=0.500$
$\mathrm{H}_{1}: \beta_{1} \neq 0.500 \quad \Rightarrow$ a two-tailed test
(1 mark)

- Test statistic is either $\mathrm{t}\left(\hat{\beta}_{1}\right)=\frac{\hat{\beta}_{1}-\beta_{1}}{\operatorname{sê}\left(\hat{\beta}_{1}\right)} \sim \mathrm{t}[\mathrm{N}-2]$ or $\mathrm{F}\left(\hat{\beta}_{1}\right)=\frac{\left(\hat{\beta}_{1}-\beta_{1}\right)^{2}}{\operatorname{Vâr}\left(\hat{\beta}_{1}\right)} \sim \mathrm{F}[1, \mathrm{~N}-2]$.
- $\hat{\beta}_{1}=\mathbf{0 . 5 7 2 3 0} ; \quad \operatorname{se}\left(\hat{\beta}_{1}\right)=\mathbf{0 . 1 0 0 9 4} ; \quad \operatorname{Vâr}\left(\hat{\beta}_{1}\right)=\left(\operatorname{se}\left(\hat{\beta}_{1}\right)\right)^{2}=0.0101889$
- Calculate the sample value of either the t-statistic or the F-statistic under H_{0} : set $\beta_{1}=0, \hat{\beta}_{1}=\mathbf{0 . 5 7 2 3 0}$, $\operatorname{se}\left(\hat{\beta}_{1}\right)=\mathbf{0 . 1 0 0 9 4}$, and $\operatorname{Vâ}\left(\hat{\beta}_{1}\right)=\mathbf{0 . 0 1 0 1 8 8 9}$.

$$
\mathrm{t}_{0}\left(\hat{\beta}_{1}\right)=\frac{\hat{\beta}_{1}-\beta_{1}}{\operatorname{se}\left(\hat{\beta}_{1}\right)}=\frac{0.57230-0.500}{0.10094}=\frac{0.07230}{0.10094}=0.716267=\underline{\mathbf{0 . 7 1 6}}
$$

or

$$
\mathrm{F}_{0}\left(\hat{\beta}_{1}\right)=\frac{\left(\hat{\beta}_{1}-\beta_{1}\right)^{2}}{\operatorname{Vâr}\left(\hat{\beta}_{1}\right)}=\frac{(0.57230-0.500)^{2}}{0.0101889}=\frac{0.00522729}{0.0101889}=0.513039=\underline{\mathbf{0 . 5 1 3}}
$$

- Null distribution of $\mathrm{t}_{0}\left(\hat{\beta}_{1}\right)$ is $\mathbf{t}[\mathbf{N}-2]=\mathbf{t}[177-2]=\mathbf{t}[175]$
- Null distribution of $\mathrm{F}_{0}\left(\hat{\beta}_{1}\right)$ is $\mathbf{F}[1, \mathbf{N}-2]=\mathbf{F}[1,177-2]=\mathbf{F}[1,175]$

Decision Rule: At significance level α,
(2 marks)

- reject \mathbf{H}_{0} if $\mathrm{F}_{0}\left(\hat{\beta}_{1}\right)>\mathrm{F}_{\alpha}[1,175]$ or $\left|\mathrm{t}_{0}\left(\hat{\beta}_{1}\right)\right|>\mathrm{t}_{\alpha / 2}[175]$,
i.e., if either (1) $t_{0}\left(\hat{\beta}_{1}\right)>t_{\alpha / 2}[175]$ or (2) $t_{0}\left(\hat{\beta}_{1}\right)<-t_{\alpha / 2}[175]$;
- retain H_{0} if $\mathrm{F}_{0}\left(\hat{\beta}_{1}\right) \leq \mathrm{F}_{\alpha}[1,175]$ or $\left|\mathrm{t}_{0}\left(\hat{\beta}_{1}\right)\right| \leq \mathrm{t}_{\alpha / 2}[175]$, i.e., if $-\mathrm{t}_{\alpha / 2}[175] \leq \mathrm{t}_{0}\left(\hat{\beta}_{1}\right) \leq \mathrm{t}_{\alpha / 2}[175]$.

ANSWER to Question 5(d) -- continued:
Critical values of $\mathbf{t}[175]$-distribution or $\mathbf{F}[1,175]$-distribution: in t-table, use $\mathbf{d f}=\mathbf{1 2 0}$ or $\mathbf{d f}=\infty$ or any number between.

$$
\begin{aligned}
& =\mathrm{t}_{0.025}[120]=1.980=\underline{\mathbf{1 . 9 8}} \\
& =\mathrm{t}_{0.025}[\infty]=1.960=\underline{\mathbf{1 . 9 6}}
\end{aligned}
$$

$$
\begin{aligned}
& =\mathrm{F}_{0.05}[1,120]=\underline{\mathbf{3 . 9 2}} \\
& =\mathrm{F}_{0.05}[1,200]=\underline{\mathbf{3 . 8 9}}
\end{aligned}
$$

Inference:

- At 5 percent significance level, i.e., for $\alpha=0.05$,
$\left|\mathrm{t}_{0}\left(\hat{\beta}_{1}\right)\right|=\mathbf{0 . 7 1 6}<\mathbf{1 . 9 7}=\mathrm{t}_{0.025}[175] \quad \Rightarrow \quad$ retain $\mathrm{H}_{\mathbf{0}}$ vs. H_{1} at $\mathbf{5}$ percent level.
$\mathrm{F}_{0}\left(\hat{\beta}_{1}\right)=\mathbf{0 . 5 1 3}<\mathbf{3 . 9 0}=\mathrm{F}_{0.05}[1,175] \quad \Rightarrow \quad$ retain $\mathrm{H}_{\mathbf{0}}$ vs. H_{1} at 5 percent level.
- Inference: At the 5\% significance level, the null hypothesis $\beta_{1}=0.500$ is retained (not rejected) against the alternative hypothesis $\beta_{1} \neq 0500$.

Question 5(d) - ALTERNATIVE ANSWER -- uses confidence interval approach
$\mathrm{H}_{0}: \beta_{1}=0.500$
$\mathrm{H}_{1}: \beta_{1} \neq 0.500 \quad \Rightarrow$ a two-tailed test
(1 mark)

- The two-sided $(1-\alpha)$-level, or $\mathbf{1 0 0}(1-\alpha)$ percent, confidence interval for β_{1} is:

$$
\begin{gathered}
\hat{\beta}_{1}-\mathrm{t}_{\alpha / 2}[\mathrm{~N}-2] \mathrm{s} \hat{\mathrm{e}}\left(\hat{\beta}_{1}\right) \leq \beta_{1} \leq \hat{\beta}_{1}+\mathrm{t}_{\alpha / 2}[\mathrm{~N}-2] \operatorname{se}\left(\hat{\beta}_{1}\right) \\
\hat{\beta}_{1 \mathrm{~L}} \leq \beta_{1} \leq \hat{\beta}_{1 \mathrm{U}}
\end{gathered}
$$

- Required results and intermediate calculations:

$$
\begin{aligned}
& \mathrm{N}-\mathrm{K}=177-2=175 ; \quad \hat{\beta}_{1}=\mathbf{0 . 5 7 2 3 0} ; \quad \mathrm{se}\left(\hat{\beta}_{1}\right)=\mathbf{0 . 1 0 0 9 4} \\
& 1-\alpha=0.95 \Rightarrow \alpha=0.05 \Rightarrow \alpha / \mathbf{2}=\mathbf{0 . 0 2 5 ;} \begin{aligned}
\mathrm{t}_{\alpha / 2}[\mathrm{~N}-2] & =\mathbf{t}_{0.025}[\mathbf{1 7 5]}=\mathbf{1 . 9 7 4} \\
& =\mathbf{t}_{0.025}[\mathbf{1 2 0]}=\mathbf{1 . 9 8 0} \\
& =\mathbf{t}_{0.025}[\infty]=\mathbf{1 . 9 6 0}
\end{aligned} \\
&
\end{aligned}
$$

- Lower 95\% confidence limit for $\boldsymbol{\beta}_{1}$ is:
(2 marks)

$$
\begin{aligned}
\hat{\beta}_{1 \mathrm{~L}} & =\hat{\beta}_{1}-\mathrm{t}_{\alpha / 2}[\mathrm{~N}-2] \operatorname{se}\left(\hat{\beta}_{1}\right)=\hat{\beta}_{1}-\mathrm{t}_{0.025}[175] \operatorname{se}\left(\hat{\beta}_{1}\right) \\
& =0.57230-\mathbf{1 . 9 7 4}(0.10094)=0.57230-0.199256=0.373044=\underline{\mathbf{0 . 3 7 3 0}} \\
& =0.57230-\mathbf{1 . 9 8 0}(0.10094)=0.57230-0.199861=0.372439=\underline{\mathbf{0 . 3 7 2 4}} \\
& =0.57230-\mathbf{1 . 9 6 0}(0.10094)=0.57230-0.197842=0.374458=\underline{\mathbf{0 . 3 7 5}}
\end{aligned}
$$

- Upper 95\% confidence limit for β_{1} is:
(2 marks)

$$
\begin{aligned}
\hat{\beta}_{1 U} & =\hat{\beta}_{1}+\mathrm{t}_{\alpha / 2}[\mathrm{~N}-2] \operatorname{se}\left(\hat{\beta}_{1}\right)=\hat{\beta}_{1}+\mathrm{t}_{0.025}[175] \operatorname{se}\left(\hat{\beta}_{1}\right) \\
& =0.57230+\mathbf{1 . 9 7 4}(0.10094)=0.57230+0.199256=0.771556=\underline{\mathbf{0 . 7 7 1 6}} \\
& =0.57230+\mathbf{1 . 9 8 0}(0.10094)=0.57230+0.199861=0.772161=\underline{\mathbf{0 . 7 7 2 2}} \\
& =0.57230+\mathbf{1 . 9 6 0}(0.10094)=0.57230+0.197842=0.770142=\underline{\mathbf{0 . 7 7 0 1}}
\end{aligned}
$$

- Two-sided 95\% confidence interval for $\boldsymbol{\beta}_{1}$ is therefore:
$0.373 \leq \beta_{1} \leq 0.772$ or $0.372 \leq \beta_{1} \leq 0.772$ or $0.375 \leq \beta_{1} \leq 0.770$
- Result: The two-sided 95\% confidence interval for β_{1} is: [0.373, 0.772]

ALTERNATIVE ANSWER to Question 5(d) -- continued:

- Decision Rule: At significance level α,
- reject $\mathbf{H}_{\mathbf{0}}$ if the hypothesized value $\mathbf{b}_{\mathbf{1}}$ of β_{1} specified by H_{0} lies outside the two-sided $(1-\alpha)$-level confidence interval for β_{1}, i.e., if either
(1) $\mathrm{b}_{1}<\hat{\beta}_{1}-\mathrm{t}_{\alpha / 2}[175] \operatorname{se}\left(\hat{\beta}_{1}\right) \quad$ or $(2) \mathrm{b}_{1}>\hat{\beta}_{1}+\mathrm{t}_{\alpha / 2}[175] \operatorname{se}\left(\hat{\beta}_{1}\right)$.
- retain $\mathbf{H}_{\mathbf{0}}$ if the hypothesized value $\mathbf{b}_{\mathbf{1}}$ of $\boldsymbol{\beta}_{\mathbf{1}}$ specified by H_{0} lies inside the two-sided $(1-\alpha)$-level confidence interval for β_{1}, i.e., if $\hat{\beta}_{1}-\mathrm{t}_{\alpha / 2}[175] \operatorname{se}\left(\hat{\beta}_{1}\right) \leq \mathrm{b}_{1} \leq \hat{\beta}_{1}+\mathrm{t}_{\alpha / 2}[175] \operatorname{se}\left(\hat{\beta}_{1}\right)$.

Inference:

- At 5 percent significance level, i.e., for $\alpha=0.05$, the hypothesized value of $\beta_{1}, b_{1}=$ $\mathbf{0 . 5 0 0}$, lies inside the two-sided $\mathbf{9 5 \%}$ confidence interval for $\boldsymbol{\beta}_{1}$:

$$
0.3730 \leq 0.500 \leq 0.7716 \Rightarrow \text { retain } H_{0} \text { vs. } H_{1} \text { at } 5 \text { percent level. }
$$

- Inference: At the $\mathbf{5 \%}$ significance level, the null hypothesis $\beta_{1}=0.500$ is retained (not rejected) against the alternative hypothesis $\beta_{1} \neq 0500$.

Percentage Points of the t-Distribution

TABLE D. 2
Percentage points of the t distribution

Note: The smaller probability shown at the head of each column is the area in one tail: the larger probability is the area in both tails.
Source: From E. S. Pearson and H. O. Hartley, eds., Biometrika Tables for Statisticians, vol. 1, 3d ed., table 12. Cambridge University Press. New York. 1966. Reproduced by permission of the editors and irustees of Biorrerrika.

Source: Damodar N. Gujarati, Basic Econometrics, Third Edition. New York: McGraw-Hill, 1995, p. 809.

Selected Upper Percentage Points of the F-Distribution

TABLE D. 3
Upper percentage points of the F distribution (continued)

df for denorninntor \boldsymbol{N}_{2}	df Cor numerator $\mathbf{N}_{\mathbf{1}}$												
	Pr	1	2	3	4	5	6	7	8	9	10	11	12
22	. 25	1.40	1.48	1.47	1.45	1.44	1.42	1.41	1.40	$t .39$	1.39	1.38	1.37
	. 10	2.95	2.56	2.35	2.22	2.13	2.06	2.01	1.97	1.93	1.90	1.88	1.86
	. 05	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.34	2.30	2.26	2.23
	. 01	7.95	5.72	4.82	4.31	3.99	3.76	3.59	3.45	3.35	3.26	3.18	3.12
24	. 25	1.39	1.47	1.46	1.44	1.43	1.41	1.40	1.39	1.38	1.38	1.37	1.36
	. 10	2.93	2.54	2.33	2.19	2.10	2.04	1.98	1.94	1.91	1.88	1.85	1.83
	. 05	. 4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30	2.25	2.21	2.18
	. 01	- 7.82	5.61	4.72	4.22	3.90	3.67	3.50	3.36	3.26	3.17	3.09	3.03
26	. 25	1.38	1.46	1.45	1.44	1.42	1.41	1.39	1.38	1.37	1.37	1.36	1.35
	. 10	2.91	2.52	2.31	2.17	2.08	2.01	1.96	1.92	1.88	1.86	1.84	1.81
	. 05	4.23	3.37	2.98	2.74	2.59	2.47	2.39	2.32	2.27	2.22	2.18	2.15
	. 01	7.72	5.53	4.64	4.14	3.82	3.59	3.42	3.29	3.18	3.09	3.02	2.96
28	. 25	1.38	1.46	1.45	1.43	1.41	1.40	1.39	1.38	1.37	1.36	1.35	1.34
	. 10	2.89	2.50	2.29	2.16	2.06	2.00	1.94	1.90	1.87	1.84	1.81	1.79
	. 05	4.20	3.34	2.95	2.71	2.56	2.45	2.36	2.29	2.24	2.19	2.15	2.12
	. 01	7.64	5.45	4.57	4.07	3.75	3.53	3.36	3.23	3.12	3.03	2.96	2.90
30	. 25	1.38	1.45	1.44	1.42	1.41	1.39	1.38	1.37	1.36	1.35	1.35	1.34
	. 10	2.88	2.49	2.28	2.14	2.05	1.98	1.93	1.88	1.85	1.82	1.79	1.77
	. 05	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21	2.16	2.13	2.09
	. 01	7.56	5.39	4.51	4.02	3.70	3.47	3.30	3.17	3.07	2.98	2.91	2.84
40	. 25	1.36	1.44	1.42	1.40	1.39	1.37	1.36	1.35	1.34	1.33	1.32	1.31
	. 10	2.84	2.44	2.23	2.09	2.00	1.93	1.87	1.83	1.79	1.76	1.73	1.71 :
	. 05	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12	2.08	2.04	2.00
	. 01	7.31	5.18	4.31	3.83	3.51	3.29	3.12	2.99	2.89	2.80	2.73	266
60	. 25	1.35	1.42	1.41	1.38	1.37	1.35	1.33	1.32	1.31	1.30	$1.29{ }^{\circ}$	1.29
	. 10	2.79	2.39	2.18	2.04	1.95	1.87	1.82	1.77	1.74	1.71	1.68	1.66
	. 05	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	2.04	1.99	1.95	1.92
	. 01	7.08	4.98	4.13	3.65	3.34	3.12	2.95	2.82	2.72	2.63	2.56	2.50
120	. 25	1.34	1.40	1.39	1.37	1.35	1.33	1.31	1.30	1.29	1.28	1.27	1.26
	. 10	2.75	2.35	2.13	1.99	1.90	1.82	1.77	1.72	1.68	1.65	1.62	1.60
	. 05	3.92	3.07	2.68	2.45	2.29	2.17	2.09	2.02	1.96	1.91	1.87	1.83
	. 01	6.85	4.79	3.95	3.48	3.17	2.96	2.79	2.66	2.56	2.47	2.40	2.34
200	. 25	1.33	1.39	1.38	1.36	1.34	1.32	1.31	1.29	1.28	1.27	1.26	1.25
	. 10	2.73	2.33	2.11	1.97	1.88	1.80	1.75	1.70	1.66	1.63	1.60	1.57
	. 05	3.89	3.04	2.65	2.42	2.26	2.14	2.06	1.98	1.93	1.88	1.84	1.80
	. 01	6.76	4.71	3.88	3.41	3.11	2.89	2.73	2.60	2.50	2.41	2.34	2.27
∞	. 25	1.32	1.39	1.37	1.35	1.33	1.31	1.29	1.28	1.27	1.25	1.24	1.24
	. 10	2.71	2.30	2.08	1.94	1.85	1.77	1.72	1.67	1.63	1.60	1.57	1.55
	. 05	3.84	3.00	2.60	2.37	2.21	2.10	2.01	1.94	1.88	1.83	1.79	1.75
	. 01	6.63	4.61	3.78	3.32	3.02	2.80	2.64	2.51	2.41	2.32	2.25	2.18

Source: Damodar N. Gujarati, Basic Econometrics, Third Edition. New York: McGraw-Hill, 1995, p. 814.

