QUEEN'S UNIVERSITY AT KINGSTON
Department of Economics
CONFIDENTIAL
turn in exam
question paper

ECONOMICS 351* - Winter Term 2009

Introductory Econometrics

Winter Term 2009

DATE: Monday March 2, 2009.
TIME: $\quad \mathbf{8 0}$ minutes; 11:30 a.m. - 12:50 p.m.

INSTRUCTIONS: The exam consists of THREE (3) questions. Students are required to answer ALL THREE (3) questions.

Answer all questions in the exam booklets provided. Be sure your student number is printed clearly on the front of all exam booklets used. Your name is optional.

Do not write answers to questions on the front page of the first exam booklet.

Please label clearly each of your answers in the exam booklets with the appropriate number and letter.

Please write legibly.

Tables of percentage points of the t-distribution and F-distribution are given on the last two pages of the exam.

This exam is CONFIDENTIAL. This question paper must be submitted in its entirety with your answer booklet(s); otherwise your exam will not be marked.

MARKING: The marks for each question are indicated in parentheses immediately above each question. Total marks for the exam equal 100.

GOOD LUCK!

QUESTIONS: Answer ALL FOUR questions.

All questions pertain to the simple (two-variable) linear regression model for which the population regression equation can be written in conventional notation as:

$$
\begin{equation*}
Y_{i}=\beta_{0}+\beta_{1} X_{i}+u_{i} \tag{1}
\end{equation*}
$$

where Y_{i} and X_{i} are observable variables, β_{0} and β_{1} are unknown (constant) regression coefficients, and u_{i} is an unobservable random error term. The Ordinary Least Squares (OLS) sample regression equation corresponding to regression equation (1) is

$$
\begin{equation*}
\mathrm{Y}_{\mathrm{i}}=\hat{\beta}_{0}+\hat{\beta}_{1} \mathrm{X}_{\mathrm{i}}+\hat{\mathrm{u}}_{\mathrm{i}} \quad(\mathrm{i}=1, \ldots, \mathrm{~N}) \tag{2}
\end{equation*}
$$

where $\hat{\beta}_{0}$ is the OLS estimator of the intercept coefficient $\beta_{0}, \hat{\beta}_{1}$ is the OLS estimator of the slope coefficient β_{1}, \hat{u}_{i} is the OLS residual for the i -th sample observation, and N is sample size (the number of observations in the sample).

(15 marks)

1. State the Ordinary Least Squares (OLS) estimation criterion. State the OLS normal equations. Derive the OLS normal equations from the OLS estimation criterion.

ANSWER to Question 1:

(3 marks)

- State the Ordinary Least Squares (OLS) estimation criterion.

The OLS coefficient estimators are those formulas or expressions for $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ that minimize the sum of squared residuals RSS for any given sample of size N .

The OLS estimation criterion is therefore:

$$
\begin{aligned}
& \operatorname{Minimize} \operatorname{RSS}\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)=\sum_{i=1}^{\mathrm{N}} \hat{\mathrm{u}}_{\mathrm{i}}^{2}=\sum_{\mathrm{i}=1}^{\mathrm{N}}\left(\mathrm{Y}_{\mathrm{i}}-\hat{\beta}_{0}-\hat{\beta}_{1} \mathrm{X}_{\mathrm{i}}\right)^{2} \\
& \quad\left\{\hat{\beta}_{\mathrm{j}}\right\}
\end{aligned}
$$

Question 1 (continued)

(4 marks)

- State the OLS normal equations.
(4 marks)

The first OLS normal equation can be written in any one of the following forms:

$$
\begin{align*}
\sum_{i=1}^{N} Y_{i}-N \hat{\beta}_{0}-\hat{\beta}_{1} \sum_{i=1}^{N} X_{i} & =0 \\
-N \hat{\beta}_{0}-\hat{\beta}_{1} \sum_{i=1}^{N} X_{i} & =-\sum_{i=1}^{N} Y_{i} \tag{N1}\\
N \hat{\beta}_{0}+\hat{\beta}_{1} \sum_{i=1}^{N} X_{i} & =\sum_{i=1}^{N} Y_{i}
\end{align*}
$$

The second OLS normal equation can be written in any one of the following forms:

$$
\begin{align*}
\sum_{i=1}^{N} X_{i} Y_{i}-\hat{\beta}_{0} \sum_{i=1}^{N} X_{i}-\hat{\beta}_{1} \sum_{i=1}^{N} X_{i}^{2} & =0 \\
-\hat{\beta}_{0} \sum_{i=1}^{N} X_{i}-\hat{\beta}_{1} \sum_{i=1}^{N} X_{i}^{2} & =-\sum_{i=1}^{N} X_{i} Y_{i} \tag{N2}\\
\hat{\beta}_{0} \sum_{i=1}^{N} X_{i}+\hat{\beta}_{1} \sum_{i=1}^{N} X_{i}^{2} & =\sum_{i=1}^{N} X_{i} Y_{i}
\end{align*}
$$

(8 marks)

- Derive the OLS normal equations from the OLS estimation criterion.

(4 marks)

Step 1: Partially differentiate the $\operatorname{RSS}\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)$ function with respect to $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$, using

$$
\begin{align*}
& \hat{\mathrm{u}}_{\mathrm{i}}=\mathrm{Y}_{\mathrm{i}}-\hat{\beta}_{0}-\hat{\beta}_{1} \mathrm{X}_{\mathrm{i}} \quad \Rightarrow \quad \frac{\partial \hat{\mathrm{u}}_{\mathrm{i}}}{\partial \hat{\beta}_{0}}=-1 \quad \text { and } \quad \frac{\partial \hat{\mathrm{u}}_{\mathrm{i}}}{\partial \hat{\beta}_{1}}=-\mathrm{X}_{\mathrm{i}} \\
& \frac{\partial R S S}{\partial \hat{\beta}_{0}}=\sum_{\mathrm{i}=1}^{\mathrm{N}} 2 \hat{\mathrm{u}}_{\mathrm{i}}\left(\frac{\partial \hat{\mathrm{u}}_{\mathrm{i}}}{\partial \hat{\beta}_{0}}\right)=\sum_{\mathrm{i}=1}^{\mathrm{N}} 2 \hat{\mathrm{u}}_{\mathrm{i}}(-1)=-2 \sum_{\mathrm{i}=1}^{\mathrm{N}} \hat{\mathrm{u}}_{\mathrm{i}}=-2 \sum_{\mathrm{i}=1}^{\mathrm{N}}\left(\mathrm{Y}_{\mathrm{i}}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{\mathrm{i}}\right) \tag{2marks}
\end{align*}
$$

Question 1 (continued)

$$
\begin{align*}
\frac{\partial R S S}{\partial \hat{\beta}_{1}} & =\sum_{i=1}^{N} 2 \hat{u}_{i}\left(\frac{\partial \hat{u}_{i}}{\partial \hat{\beta}_{1}}\right)=\sum_{i=1}^{N} 2 \hat{u}_{i}\left(-X_{i}\right)=-2 \sum_{i=1}^{N} X_{i} \hat{u}_{i} \\
& =-2 \sum_{i=1}^{N} X_{i}\left(Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{i}\right) \quad \text { since } \hat{u}_{i}=Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{i} \tag{2marks}\\
& =-2 \sum_{i=1}^{N}\left(X_{i} Y_{i}-\hat{\beta}_{0} X_{i}-\hat{\beta}_{1} X_{i}^{2}\right) . \tag{2}
\end{align*}
$$

(4 marks)

Step 2: Obtain the first-order conditions (FOCs) for a minimum of the RSS function by setting the partial derivatives (1) and (2) equal to zero and then dividing each equation by -2 and re-arranging:

$$
\begin{align*}
\frac{\partial \mathrm{RSS}}{\partial \hat{\beta}_{0}}=0 \Rightarrow-2 \sum_{\mathrm{i}=1}^{\mathrm{N}} \hat{\mathrm{u}}_{\mathrm{i}}=0 & \Rightarrow-2 \sum_{\mathrm{i}=1}^{\mathrm{N}}\left(\mathrm{Y}_{\mathrm{i}}-\hat{\beta}_{0}-\hat{\beta}_{1} \mathrm{X}_{\mathrm{i}}\right)=0 \\
& \Rightarrow \sum_{\mathrm{i}=1}^{\mathrm{N}}\left(\mathrm{Y}_{\mathrm{i}}-\hat{\beta}_{0}-\hat{\beta}_{1} \mathrm{X}_{\mathrm{i}}\right)=0 \\
& \Rightarrow \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{Y}_{\mathrm{i}}-\mathrm{N} \hat{\beta}_{0}-\hat{\beta}_{1} \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{X}_{\mathrm{i}}=0 \\
& \Rightarrow \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{Y}_{\mathrm{i}}=\mathrm{N} \hat{\beta}_{0}+\hat{\beta}_{1} \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{X}_{\mathrm{i}} \tag{N1}\\
\frac{\partial \mathrm{RSS}}{\partial \hat{\beta}_{1}}=0 \Rightarrow-2 \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{X}_{\mathrm{i}} \hat{\mathrm{u}}_{\mathrm{i}}=0 & \Rightarrow-2 \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{X}_{\mathrm{i}}\left(\mathrm{Y}_{\mathrm{i}}-\hat{\beta}_{0}-\hat{\beta}_{1} \mathrm{X}_{\mathrm{i}}\right)=0 \\
& \Rightarrow \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{X}_{\mathrm{i}}\left(\mathrm{Y}_{\mathrm{i}}-\hat{\beta}_{0}-\hat{\beta}_{1} \mathrm{X}_{\mathrm{i}}\right)=0 \\
& \Rightarrow \sum_{\mathrm{i}=1}^{\mathrm{N}}\left(\mathrm{X}_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}}-\hat{\beta}_{0} \mathrm{X}_{\mathrm{i}}-\hat{\beta}_{1} \mathrm{X}_{\mathrm{i}}^{2}\right)=0 \\
& \Rightarrow \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{X}_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}}-\hat{\beta}_{0} \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{X}_{\mathrm{i}}-\hat{\beta}_{1} \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{X}_{\mathrm{i}}^{2}=0 \\
& \Rightarrow \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{X}_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}}=\hat{\beta}_{0} \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{X}_{\mathrm{i}}+\hat{\beta}_{1} \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{X}_{\mathrm{i}}^{2} \quad \mathbf{(N 2}
\end{align*}
$$

(15 marks)
2. Give a general definition of the t-distribution. Starting from this definition, derive the t statistic for the OLS slope coefficient estimator $\hat{\beta}_{1}$. State all assumptions required for the derivation.

ANSWER to Question 2:

(2 marks)

- General Definition of the t-Distribution

A random variable has the \mathbf{t}-distribution with \boldsymbol{m} degrees of freedom if it can be constructed by dividing
(1) a standard normal random variable $Z \sim N(0,1)$
by
(2) the square root of an independent chi-square random variable \mathbf{V} that has been divided by its degrees of freedom \boldsymbol{m}.

Formally: Consider the two random variables Z and V .
If
(1) $\quad Z \sim N(0,1)$
(2) $\quad V \sim \chi^{2}[\mathrm{~m}]$
(3) $\quad \mathrm{Z}$ and V are independent,
then the random variable

$$
\mathrm{t}=\frac{\mathrm{Z}}{\sqrt{\mathrm{~V} / \mathrm{m}}} \sim \mathrm{t}[\mathrm{~m}], \text { the } \mathbf{t} \text {-distribution with } \boldsymbol{m} \text { degrees of freedom. }
$$

(1 mark)

- Error Normality Assumption: The random error terms u_{i} are independently and identically distributed (iid) as the normal distribution with zero mean and constant variance σ^{2} :

$$
u_{i} \mid X_{i} \sim N\left(0, \sigma^{2}\right) \text { for all } i \quad \text { OR } \quad u_{i} \text { is iid as } N\left(0, \sigma^{2}\right)
$$

(3 marks) - one for each of the three implications

- Three implications of error normality assumption (A9): (follow from linearity property of the normal distribution whereby any linear function of a normally distributed random variable is itself normally distributed).

ANSWER to Question 2 (continued)

(1 mark)

1. The OLS slope coefficient estimator $\hat{\beta}_{1}$ is normally distributed:

$$
\hat{\beta}_{1} \sim \mathrm{~N}\left(\beta_{1}, \operatorname{Var}\left(\hat{\beta}_{1}\right)\right) .
$$

Why? Because $\hat{\beta}_{1}$ can be written as a linear function of the $\mathbf{Y}_{\mathbf{i}}$ values $\hat{\beta}_{1}=\sum_{\mathrm{i}} \mathrm{k}_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}}$; and the \mathbf{Y}_{i} values are normally distributed because they are linear functions of the random error terms u_{i}.

(1 mark)

2. The statistic $(\mathrm{N}-2) \hat{\sigma}^{2} / \sigma^{2}$ has a chi-square distribution with $(\mathrm{N}-2)$ degrees of freedom:

$$
\frac{(\mathrm{N}-2) \hat{\sigma}^{2}}{\sigma^{2}} \sim \chi^{2}[\mathrm{~N}-2] .
$$

(1 mark)

3. The estimators $\hat{\beta}_{1}$ and $\hat{\sigma}^{2}$ are statistically independent.

(2 marks)

- Numerator of the \mathbf{t}-statistic for $\hat{\beta}_{1}$: the $\mathrm{Z}\left(\hat{\beta}_{1}\right)$ statistic.

The normality of the sampling distribution of $\hat{\beta}_{1}$ implies that $\hat{\beta}_{1}$ can be written in the form of a standard normal variable with mean zero and variance one, denoted as $\mathrm{N}(0,1)$.

$$
\hat{\beta}_{1} \sim N\left(\beta_{1}, \frac{\sigma^{2}}{\sum_{i} x_{i}^{2}}\right) \Rightarrow \quad Z\left(\hat{\beta}_{1}\right)=\frac{\hat{\beta}_{1}-\beta_{1}}{\sqrt{\operatorname{Var}\left(\hat{\beta}_{1}\right)}}=\frac{\hat{\beta}_{1}-\beta_{1}}{\operatorname{se}\left(\hat{\beta}_{1}\right)} \sim N(0,1)
$$

where the \mathbf{Z}-statistic for $\hat{\beta}_{1}$ can be written as

$$
\begin{equation*}
Z\left(\hat{\beta}_{1}\right)=\frac{\hat{\beta}_{1}-\beta_{1}}{\sqrt{\operatorname{Var}\left(\hat{\beta}_{1}\right)}}=\frac{\hat{\beta}_{1}-\beta_{1}}{\operatorname{se}\left(\hat{\beta}_{1}\right)}=\frac{\hat{\beta}_{1}-\beta_{1}}{\sigma / \sqrt{\sum_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2}}}=\frac{\left(\hat{\beta}_{1}-\beta_{1}\right) \sqrt{\sum_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2}}}{\sigma} . \tag{1}
\end{equation*}
$$

ANSWER to Question 2 (continued)

(2 marks)

- Denominator of the \mathbf{t}-statistic for $\hat{\beta}_{1}$:

The error normality assumption implies that the statistic $\hat{\sigma}^{2} / \sigma^{2}$ has a degrees-of-freedom-adjusted chi-square distribution with $(\mathrm{N}-2)$ degrees of freedom; that is

$$
\begin{equation*}
\frac{(\mathrm{N}-2) \hat{\sigma}^{2}}{\sigma^{2}} \sim \chi^{2}[\mathrm{~N}-2] \Rightarrow \frac{\hat{\sigma}^{2}}{\sigma^{2}} \sim \frac{\chi^{2}[\mathrm{~N}-2]}{(\mathrm{N}-2)} \Rightarrow \frac{\hat{\sigma}}{\sigma} \sim \sqrt{\frac{\chi^{2}[\mathrm{~N}-2]}{(\mathrm{N}-2)}} \tag{2}
\end{equation*}
$$

The last term $\hat{\sigma} / \sigma$ in (2) is the denominator of the t-statistic for $\hat{\beta}_{1}$: it is distributed as the square root of a degrees-of-freedom-adjusted chi-square variable with $(\mathrm{N}-2)$ degrees of freedom.

(5 marks)

- The \mathbf{t}-statistic for $\hat{\boldsymbol{\beta}}_{1}$.

Since $\hat{\beta}_{1}$ and $\hat{\sigma}^{2}$ are statistically independent, the t-statistic for $\hat{\beta}_{1}$ is the ratio of (1) to (2): i.e.,

$$
\begin{equation*}
\mathrm{t}\left(\hat{\beta}_{1}\right)=\frac{\mathrm{Z}\left(\hat{\beta}_{1}\right)}{\hat{\sigma} / \sigma}=\frac{\left(\hat{\beta}_{1}-\beta_{1}\right) \sqrt{\sum_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2}} / \sigma}{\hat{\sigma} / \sigma}=\frac{\left(\hat{\beta}_{1}-\beta_{1}\right) \sqrt{\sum_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2}}}{\hat{\sigma}} . \tag{3}
\end{equation*}
$$

- Dividing the numerator and denominator of (3) by $\sqrt{\sum_{i} x_{i}^{2}}$ yields

$$
\begin{equation*}
\mathrm{t}\left(\hat{\beta}_{1}\right)=\frac{\left(\hat{\beta}_{1}-\beta_{1}\right)}{\hat{\sigma} / \sqrt{\sum_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2}}} . \tag{4}
\end{equation*}
$$

- But the denominator of (4) is simply the estimated standard error of $\hat{\beta}_{1}$; i.e.,

$$
\frac{\hat{\sigma}}{\sqrt{\sum_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2}}}=\sqrt{\operatorname{Vâ}\left(\hat{\beta}_{1}\right)}=\operatorname{se}\left(\hat{\beta}_{1}\right)
$$

- Result: The t-statistic for $\hat{\beta}_{1}$ thus takes the form

$$
\begin{equation*}
\mathrm{t}\left(\hat{\beta}_{1}\right)=\frac{\left(\hat{\beta}_{1}-\beta_{1}\right)}{\hat{\sigma} / \sqrt{\sum_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2}}}=\frac{\left(\hat{\beta}_{1}-\beta_{1}\right)}{\sqrt{\operatorname{Var}\left(\hat{\beta}_{1}\right)}}=\frac{\left(\hat{\beta}_{1}-\beta_{1}\right)}{\operatorname{se}\left(\hat{\beta}_{1}\right)} \sim \mathrm{t}[\mathrm{~N}-2] . \tag{5}
\end{equation*}
$$

(70 marks)

3. You have been commissioned to investigate the relationship between the net financial wealth of single adults 25-64 years of age and their annual income. The dependent variable is netfa $\boldsymbol{i}_{\text {i }}$, the net financial wealth (or net financial assets) of the i-th single adult person, measured in thousands of dollars. The explanatory variable is income ${ }_{i}$, the annual income of the i-th single adult person, measured in thousands of dollars per years. The model you propose to estimate is given by the population regression equation

$$
\text { netfa }_{i}=\beta_{0}+\beta_{1} \text { income }_{i}+u_{i} .
$$

Your research assistant has used 2017 sample observations on netfa $\boldsymbol{a}_{\boldsymbol{i}}$ and income $\boldsymbol{i}_{\boldsymbol{i}}$ to estimate the following OLS sample regression equation, where the figures in parentheses below the coefficient estimates are the estimated standard errors of the coefficient estimates:

$$
\begin{align*}
\text { netfa }_{\mathrm{i}}=-10.571+0.82068 \text { income }_{\mathrm{i}}+\hat{\mathrm{u}}_{\mathrm{i}} & & (\mathrm{i}=1, \ldots, \mathrm{~N}) \quad \mathrm{N}=2017 \tag{3}\\
(2.0607)(0.060900) & & \leftarrow \text { (standard errors })
\end{align*}
$$

sample mean of $\boldsymbol{n e t f} \boldsymbol{a}_{\boldsymbol{i}}=\overline{\text { netfa }}=13.595$
sample mean of income $_{i}=\overline{\text { income }}=29.446$

$$
\mathrm{TSS}=\sum_{\mathrm{i}=1}^{\mathrm{N}}\left(\text { netfa }_{\mathrm{i}}-\overline{\text { netfa }}\right)^{2}=4,565,965.05 \quad \text { RSS }=\sum_{i=1}^{N} \hat{\mathrm{u}}_{\mathrm{i}}^{2}=4,188,482.98
$$

(4 marks)

(a) State the formula used to compute the OLS estimate of the slope coefficient on income $\boldsymbol{i}_{\boldsymbol{i}}$ in sample regression equation (3), i.e., give the formula for computing the OLS estimate $\hat{\beta}_{1}$ of β_{1}.

- $\hat{\beta}_{1}=\frac{\sum_{i=1}^{N} x_{i} y_{i}}{\sum_{i=1}^{N} x_{i}^{2}}=\frac{\sum_{i=1}^{N}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{N}\left(X_{i}-\bar{X}\right)^{2}}$
where $X_{i} \equiv$ income $_{i}, \quad Y_{i} \equiv$ netfa $_{i}$,
$\overline{\mathrm{X}} \equiv \overline{\mathrm{income}}=$ the sample mean of the $\mathrm{X}_{\mathrm{i}} \equiv$ income $_{\mathrm{i}}$ values,
and $\overline{\mathrm{Y}} \equiv \overline{\mathrm{netfa}}=$ the sample mean of the $\mathrm{Y}_{\mathrm{i}} \equiv$ netfa a_{i} values.
(4 marks)
OR
- $\hat{\beta}_{1}=\frac{\sum_{i=1}^{N}\left(\text { income }_{i}-\overline{\left.\text { income }^{\prime}\right)\left(\text { netfa }_{i}-\overline{\text { netfa }}\right)}\right.}{\sum_{i=1}^{N}\left(\text { income }_{i}-\overline{\text { income }^{2}}\right)^{2}}$
$\overline{\text { income }}=$ the sample mean of the $X_{i} \equiv$ income $_{i}$ values;
$\overline{\text { netfa }}=$ the sample mean of the $Y_{i} \equiv$ netfa $_{i}$ values.
(4 marks)

(4 marks)

(b) State the formula used to compute the OLS estimate of the intercept coefficient in sample regression equation (3), i.e., give the formula for computing the OLS estimate $\hat{\beta}_{0}$ of β_{0}.

- $\hat{\beta}_{0}=\overline{\mathrm{Y}}-\hat{\beta}_{1} \bar{X}=\overline{\text { netfa }}-\hat{\beta}_{1} \overline{\text { income }}$
(4 marks)

(4 marks)

(c) Interpret the slope coefficient estimate on $\boldsymbol{i n c o m e}_{i}$ in sample regression equation (3)i.e., explain in words what the numeric value of $\hat{\beta}_{1}$ means.

Note: $\hat{\beta}_{1}=\mathbf{0 . 8 2 0 6 8}$. netfa a_{i} is measured in thousands of dollars, and income $\boldsymbol{i}_{\boldsymbol{i}}$ is measured in thousands of dollars per year.
The estimate $\mathbf{0 . 8 2 0 6 8}$ of β_{1} means that a $\mathbf{\$ 1 , 0 0 0}$ per year increase (decrease) in annual income is associated on average with an increase (decrease) in net financial wealth equal to $\$ 820.68$ (or 0.82068 thousands of dollars).

(4 marks)

(d) Use the above estimation results for sample regression equation (3) to calculate an estimate of σ^{2}, the error variance.

$$
\begin{aligned}
& \operatorname{RSS}=\sum_{i=1}^{\mathrm{N}} \hat{\mathrm{u}}_{\mathrm{i}}^{2}=4,188,482.98 ; \quad \mathrm{N}-2=2017-2=2015 \\
& \hat{\sigma}^{2}=\frac{\operatorname{RSS}}{\mathrm{N}-2}=\frac{\sum_{\mathrm{i}=1}^{\mathrm{N}} \hat{\mathrm{u}}_{\mathrm{i}}^{2}}{\mathrm{~N}-2}=\frac{4188482.98}{2017-2}=\frac{4188482.98}{2015}=\underline{\mathbf{2 0 7 8 . 6 5 1 6}}
\end{aligned}
$$

$$
=\underline{2078.65}
$$

(6 marks)

(e) Compute the value of R^{2}, the coefficient of determination for the estimated OLS sample regression equation (3). Briefly explain in words what the value you have calculated for R^{2} means.
(4 marks)
$\mathrm{R}^{2}=\frac{\mathrm{ESS}}{\mathrm{TSS}}=\frac{4565965.05-4188482.98}{4565965.05}=\frac{377482.07}{4565965.05}=\underline{\mathbf{0 . 0 8 2 6 7 3}}=\underline{\mathbf{0 . 0 8 2 7}}$
OR

$$
\mathrm{R}^{2}=1-\frac{\mathrm{RSS}}{\mathrm{TSS}}=1-\frac{4188482.98}{4565965.05}=1-0.917327=\underline{\mathbf{0 . 0 8 2 6 7 3}}=\underline{\mathbf{0 . 0 8 2 7}}
$$

(2 marks)

Interpretation of $\mathbf{R}^{2}=\mathbf{0 . 0 8 2 7}$: The value of 0.0827 indicates that $\mathbf{8 . 2 7}$ percent of the total sample (or observed) variation in netfa (net financial wealth) is attributable to, or explained by, the regressor income \boldsymbol{i}_{i} (annual income) or the sample regression function.
(8 marks)
(f) Perform a t-test of the null hypothesis $\mathrm{H}_{0}: \beta_{1}=0$ against the alternative hypothesis H_{1} : $\beta_{1} \neq 0$ at the 1% significance level (i.e., for significance level $\alpha=0.01$). Show how you calculated the test statistic. State the decision rule you use, and the inference you would draw from the test. What would you conclude from the results of the test?

$$
\begin{aligned}
& H_{0}: \beta_{1}=0 \\
& H_{1}: \beta_{1} \neq 0 \quad \text { a two-sided alternative hypothesis } \Rightarrow \text { a two-tailed t-test }
\end{aligned}
$$

- Test statistic is $\mathrm{t}\left(\hat{\beta}_{1}\right)=\frac{\hat{\beta}_{1}-\beta_{1}}{\operatorname{se}\left(\hat{\beta}_{1}\right)} \sim \mathrm{t}[\mathrm{N}-2]$.
- $\hat{\beta}_{1}=\mathbf{0 . 8 2 0 6 8} ; \quad \operatorname{se}\left(\hat{\beta}_{1}\right)=\mathbf{0 . 0 6 0 9 0 0}$
- Calculate the sample value of the t-statistic under H_{0} : set $\beta_{1}=0, \hat{\beta}_{1}=\mathbf{0 . 8 2 0 6 8}$, and $\operatorname{se}\left(\hat{\beta}_{1}\right)=\mathbf{0 . 0 6 0 9 0 0}$.

$$
\mathrm{t}_{0}\left(\hat{\beta}_{1}\right)=\frac{\hat{\beta}_{1}-\beta_{1}}{\operatorname{se}\left(\hat{\beta}_{1}\right)}=\frac{0.82068-0.0}{0.060900}=\frac{0.82068}{0.060900}=\mathbf{1 3 . 4 7 5 9}=\underline{\mathbf{1 3} .48}
$$

ANSWER to Question 4(f) -- continued:

- Null distribution of $\mathrm{t}_{0}\left(\hat{\beta}_{1}\right)$ is $\mathbf{t}[\mathbf{N}-2]=\mathbf{t}[2017-2]=\mathbf{t}[2015]$

Decision Rule: At significance level α,

- reject \mathbf{H}_{0} if $\left|t_{0}\left(\hat{\beta}_{1}\right)\right|>t_{\alpha / 2}$ [2015],
i.e., if either (1) $t_{0}\left(\hat{\beta}_{1}\right)>t_{\alpha / 2}[2015]$ or (2) $t_{0}\left(\hat{\beta}_{1}\right)<-t_{\alpha / 2}$ [2015];
- retain \mathbf{H}_{0} if $\left|t_{0}\left(\hat{\beta}_{1}\right)\right| \leq t_{\alpha / 2}[2015]$,

$$
\text { i.e., if }-\mathrm{t}_{\alpha / 2}[2015] \leq \mathrm{t}_{0}\left(\hat{\beta}_{1}\right) \leq \mathrm{t}_{\alpha / 2}[2015] \text {. }
$$

Critical values of $\mathbf{t}[2015]$-distribution: in t-table, use $\mathbf{d f}=\infty$.

- two-tailed $\underline{1}$ percent critical value $=\mathrm{t}_{\alpha / 2}[2015]=\mathrm{t}_{0.005}[\infty]=\underline{\mathbf{2 . 5 7 6}}$
- Inference:
- At 1 percent significance level, i.e., for $\alpha=0.01$,

$$
\left|\mathrm{t}_{0}\left(\hat{\beta}_{1}\right)\right|=13.48>2.576=\mathrm{t}_{0.005}[2015] \Rightarrow \operatorname{reject} H_{0} \text { vs. } \mathrm{H}_{1} \text { at } 1 \text { percent level. }
$$

- Inference: At the $\mathbf{1 \%}$ significance level, the null hypothesis $\mathrm{H}_{0}: \beta_{1}=0$ is rejected in favour of the alternative hypothesis $\mathrm{H}_{1}: \beta_{1} \neq 0$.

Conclusion implied by test outcome:

(1 mark)
Rejection of the null hypothesis $\beta_{1}=0$ against the alternative hypothesis $\beta_{1} \neq 0$ means that the sample evidence favours the existence of a relationship between the net financial wealth and annual income for single adults.

(8 marks)

(g) Perform an F-test of the proposition that annual income is unrelated to net financial wealth for single persons. Use the 1 percent significance level (i.e., $\alpha=0.01$). State the null hypothesis H_{0} and the alternative hypothesis H_{1}. Show how you calculated the test statistic. State the decision rule you use, and the inference you would draw from the test.

- State the null hypothesis H_{0} and the alternative hypothesis H_{1}.
(2 marks)

$$
\begin{aligned}
& H_{0}: \beta_{1}=0 \\
& H_{1}: \beta_{1} \neq 0 \quad \text { a two-sided alternative hypothesis } \Rightarrow \text { a two-tailed t-test }
\end{aligned}
$$

- Test statistic is $F\left(\hat{\beta}_{1}\right)=\frac{\left(\hat{\beta}_{1}-\beta_{1}\right)^{2}}{\operatorname{Vâr}\left(\hat{\beta}_{1}\right)} \sim \mathrm{F}[1, \mathrm{~N}-2]$.
- $\hat{\beta}_{1}=\mathbf{0 . 8 2 0 6 8} ; \quad \operatorname{se}\left(\hat{\beta}_{1}\right)=\mathbf{0 . 0 6 0 9 0 0} ; \quad \operatorname{Var}\left(\hat{\beta}_{1}\right)=\left(\operatorname{se}\left(\hat{\beta}_{1}\right)\right)^{2}=(0.0609)^{2}=\mathbf{0 . 0 0 3 7 0 8 8 1}$
- Calculate the sample value of the F-statistic under H_{0} : set $\beta_{1}=0, \hat{\beta}_{1}=\mathbf{0 . 8 2 0 6 8}$, and $\operatorname{Vâ}\left(\hat{\beta}_{1}\right)=0.00370881$.

$$
F_{0}\left(\hat{\beta}_{1}\right)=\frac{\left(\hat{\beta}_{1}-\beta_{1}\right)^{2}}{\operatorname{Vâr}\left(\hat{\beta}_{1}\right)}=\frac{(0.82068-0.0)^{2}}{0.00370881}=\frac{0.6735157}{0.00370881}=\mathbf{1 8 1 . 5 9 8 9}=\underline{\mathbf{1 8 1 . 6 0}}
$$

(3 marks)

- Null distribution of $\mathrm{F}_{0}\left(\hat{\beta}_{1}\right)$ is $\mathbf{F}[1, \mathbf{N}-2]=\mathbf{F}[1,2017-2]=\mathbf{F}[1,2015]$

Decision Rule: At significance level α,
(1 mark)

- reject H_{0} if $F_{0}\left(\hat{\beta}_{1}\right)>F_{\alpha}[1,2015]$;
- retain \mathbf{H}_{0} if $\mathrm{F}_{0}\left(\hat{\beta}_{1}\right) \leq \mathrm{F}_{\alpha}[1,2015]$.

Critical values of $\mathbf{F}[1,2015]$-distribution: in F-table, use denominator $\mathbf{d f}=\infty$.

- $\underline{\mathbf{1}}$ percent critical value $=\mathrm{F}_{\alpha}[1,2015]=\mathrm{F}_{0.01}[1,2015]=\mathrm{F}_{0.01}[1, \infty]=\underline{\mathbf{6 . 6 3}}$ (1 mark)
- Inference: At 1 percent significance level, i.e., for $\alpha=0.01$,

$$
\mathrm{F}_{0}\left(\hat{\beta}_{1}\right)=\mathbf{1 8 1 . 6 0}>\mathbf{6 . 6 3}=\mathrm{F}_{0.01}[1,2015] \quad \Rightarrow \text { reject } \mathrm{H}_{0} \text { vs. } \mathrm{H}_{1} \text { at } \mathbf{1} \text { percent level. }
$$

Inference: At the $\mathbf{1 \%}$ significance level, the null hypothesis $H_{0}: \beta_{1}=0$ is rejected in favour of the alternative hypothesis $\mathrm{H}_{1}: \beta_{1} \neq 0$.

(8 marks)

(h) Perform a test of the proposition that single persons' net financial wealth is positively related to their annual income, i.e., that an increase in annual income increases the net financial wealth of single persons. Use the 1 percent significance level (i.e., $\alpha=0.01$). State the null hypothesis H_{0} and the alternative hypothesis H_{1}. Show how you calculated the test statistic. State the decision rule you use, and the inference you would draw from the test.

ANSWER to Question 4(h):

Null and Alternative Hypotheses:

$\mathrm{H}_{0}: \beta_{1}=0$
$\mathrm{H}_{1}: \beta_{1}>0 \quad \Rightarrow$ a right-tailed t-test

- Test statistic is $\mathrm{t}\left(\hat{\beta}_{1}\right)=\frac{\hat{\beta}_{1}-\beta_{1}}{\operatorname{se}\left(\hat{\beta}_{1}\right)} \sim \mathrm{t}[\mathrm{N}-2] ; \hat{\beta}_{1}=14.1219 ; \operatorname{se}\left(\hat{\beta}_{1}\right)=5.36347$.
- Calculate the sample value of the t-statistic under H_{0} : set $\beta_{1}=0, \hat{\beta}_{1}=\mathbf{0 . 8 2 0 6 8}$, and $\operatorname{se}\left(\hat{\beta}_{1}\right)=0.060900$.

$$
\mathrm{t}_{0}\left(\hat{\beta}_{1}\right)=\frac{\hat{\beta}_{1}-\beta_{1}}{\operatorname{se}\left(\hat{\beta}_{1}\right)}=\frac{0.82068-0.0}{0.060900}=\frac{0.82068}{0.060900}=\mathbf{1 3 . 4 7 5 9}=\underline{\mathbf{1 3} .48} \quad \quad \text { (2 marks) }
$$

- Null distribution of $\mathrm{t}_{0}\left(\hat{\beta}_{1}\right)$ is $\mathbf{t}[\mathbf{N}-2]=\mathbf{t}[2017-2]=\mathbf{t}[2015]$

Decision Rule: At significance level α,

- reject \mathbf{H}_{0} if $\mathrm{t}_{0}\left(\hat{\beta}_{1}\right)>\mathrm{t}_{\alpha}$ [2015],
- retain \mathbf{H}_{0} if $\mathrm{t}_{0}\left(\hat{\beta}_{1}\right) \leq \mathrm{t}_{\alpha}$ [2015].

Critical value of $\mathbf{t}[2015]$-distribution: from t-table, use $\mathbf{d f}=\infty$.

- right-tail $\underline{1}$ percent critical value $=\mathrm{t}_{0.01}[2015]=\mathrm{t}_{0.01}[\infty]=\underline{\mathbf{2 . 3 2 6}}$

Inference: At $\mathbf{1}$ percent significance level, i.e., for $\alpha=0.01$,

$$
\mathrm{t}_{0}\left(\hat{\beta}_{1}\right)=\mathbf{1 3 . 4 8}>2.326=\mathrm{t}_{0.01}[2015] \Rightarrow \text { reject } \mathrm{H}_{0} \text { vs. } \mathrm{H}_{1} \text { at } 1 \text { percent level. }
$$

- Inference: At the $\mathbf{1 \%}$ significance level, the null hypothesis $H_{0}: \beta_{1}=0$ is rejected in favour of the alternative hypothesis $\mathbf{H}_{\mathbf{1}}: \boldsymbol{\beta}_{\mathbf{1}}>\mathbf{0}$.

(12 marks)

(i) Compute the two-sided 95% confidence interval for the intercept coefficient β_{0}. Use this two-sided 95% confidence interval for β_{0} to test the hypothesis that the mean net financial wealth of single adults whose annual income is zero dollars per year equals zero. State the null hypothesis H_{0} and the alternative hypothesis H_{1}. State the decision rule you use, and the inference you would draw from the test.

ANSWER to Question 4(i):

- The two-sided $(1-\alpha)$-level, or $\mathbf{1 0 0}(1-\alpha)$ percent, confidence interval for β_{1} is computed as

$$
\hat{\beta}_{0}-\mathrm{t}_{\alpha / 2}[\mathrm{~N}-2] \operatorname{se}\left(\hat{\beta}_{0}\right) \leq \beta_{0} \leq \hat{\beta}_{0}+\mathrm{t}_{\alpha / 2}[\mathrm{~N}-2] \operatorname{se}\left(\hat{\boldsymbol{\beta}}_{0}\right)
$$

(2 marks)
where

- $\hat{\beta}_{0 L}=\hat{\beta}_{0}-t_{\alpha / 2}[\mathrm{~N}-2] \operatorname{se}\left(\hat{\beta}_{0}\right)=$ the lower $\mathbf{1 0 0}(1-\alpha) \%$ confidence limit for $\boldsymbol{\beta}_{0}$
- $\hat{\beta}_{0 U}=\hat{\beta}_{0}+t_{\alpha / 2}[\mathrm{~N}-2] \operatorname{se}\left(\hat{\beta}_{0}\right)=$ the upper $100(1-\alpha) \%$ confidence limit for β_{0} - $t_{\alpha / 2}[\mathrm{~N}-2]=$ the $\alpha / \mathbf{2}$ critical value of the \mathbf{t}-distribution with $\mathrm{N}-\mathbf{2}$ degrees of freedom.
- Required results and intermediate calculations:

$$
\begin{aligned}
& \mathrm{N}-2=2017-2=2015 ; \quad \quad \hat{\beta}_{0}=-10.571 ; \quad \operatorname{se}\left(\hat{\beta}_{0}\right)=2.0607 \\
& 1-\alpha=0.95 \Rightarrow \alpha=0.05 \Rightarrow \alpha / 2=\mathbf{0 . 0 2 5} ; \quad \mathrm{t}_{\alpha / 2}[\mathrm{~N}-2]=\mathbf{t}_{\mathbf{0 . 0 2 5}}[\mathbf{2 0 1 5]}=\mathbf{1 . 9 6 0} \\
& =\mathbf{t}_{0.025}[\infty]=\mathbf{1 . 9 6 0}
\end{aligned} \quad \begin{aligned}
& \mathrm{t}_{\alpha / 2}[\mathrm{~N}-2] \operatorname{se}\left(\hat{\boldsymbol{\beta}}_{0}\right)=\mathrm{t}_{0.025}[855] \operatorname{se}\left(\hat{\beta}_{0}\right)=1.960(2.0607)=\mathbf{4 . 0 3 8 9 7 2}
\end{aligned}
$$

- Lower 95\% confidence limit for β_{0} is:

$$
\begin{aligned}
\hat{\beta}_{0 L} & =\hat{\beta}_{0}-\mathrm{t}_{\alpha / 2}[\mathrm{~N}-2] \operatorname{se}\left(\hat{\beta}_{0}\right)=\hat{\beta}_{0}-\mathrm{t}_{0.025}[2015] \operatorname{se}\left(\hat{\beta}_{0}\right) \\
& =-10.571-\mathbf{1 . 9 6 0}(2.0607)=-10.571-4.038972=-14.609972=\underline{\mathbf{- 1 4 . 6 1 0}}
\end{aligned}
$$

- Upper 95% confidence limit for β_{0} is:

$$
\begin{aligned}
\hat{\beta}_{0 U} & =\hat{\beta}_{0}+\mathrm{t}_{\alpha / 2}[\mathrm{~N}-2] \operatorname{se}\left(\hat{\beta}_{0}\right)=\hat{\beta}_{0}+\mathrm{t}_{0.025}[2015] \operatorname{se}\left(\hat{\beta}_{0}\right) \\
& =-10.571+\mathbf{1 . 9 6 0}(2.0607)=-10.571+4.038972=-6.532028=\underline{\mathbf{- 6 . 5 3 2 0}}
\end{aligned}
$$

ANSWER to Question 4(i) -- continued:

- Result: The two-sided 95\% confidence interval for β_{0} is: $[-14.610,-6.5320]$
$-14.610 \leq \beta_{0} \leq-6.5320$
- Null and Alternative Hypotheses:
(2 marks)

$$
\begin{aligned}
& \mathrm{H}_{0}: \beta_{0}=0 \\
& \mathrm{H}_{1}: \beta_{0} \neq 0
\end{aligned} \quad \text { a two-sided alternative hypothesis } \Rightarrow \text { a two-tailed test }
$$

- Decision Rule: At significance level α,
- reject \mathbf{H}_{0} if the hypothesized value \mathbf{b}_{0} of β_{0} specified by H_{0} lies outside the two-sided $(1-\alpha)$-level confidence interval for β_{0}, i.e., if either
(1) $b_{0}<\hat{\beta}_{0}-t_{\alpha / 2}[2015] \operatorname{se}\left(\hat{\beta}_{0}\right)$ or
(2) $b_{0}>\hat{\beta}_{0}+t_{\alpha / 2}[2015] \operatorname{se}\left(\hat{\beta}_{0}\right)$.
- retain $\mathbf{H}_{\mathbf{0}}$ if the hypothesized value $\mathbf{b}_{\mathbf{0}}$ of β_{0} specified by H_{0} lies inside the two-sided $(1-\alpha)$-level confidence interval for β_{0}, i.e., if $\hat{\beta}_{0}-\mathrm{t}_{\alpha / 2}[2015] \operatorname{se}\left(\hat{\beta}_{0}\right) \leq \mathrm{b}_{0} \leq \hat{\boldsymbol{\beta}}_{0}+\mathrm{t}_{\alpha / 2}[2015] \operatorname{se}\left(\hat{\beta}_{0}\right)$.

Inference:

- At 5 percent significance level, i.e., for $\alpha=0.05$,

$$
\begin{aligned}
& \mathrm{b}_{0}=\mathbf{0}>-\mathbf{6 . 5 3 2 0}=\hat{\beta}_{0 \mathrm{U}}=\hat{\beta}_{0}+\mathrm{t}_{0.025}[2015] \operatorname{se}\left(\hat{\beta}_{0}\right) \\
& \Rightarrow \quad \text { reject } H_{0} \text { vs. } \mathrm{H}_{1} \text { at } 5 \text { percent level. }
\end{aligned}
$$

- Inference: At the 5\% significance level, the null hypothesis $\mathbf{H}_{0}: \boldsymbol{\beta}_{\mathbf{0}}=\mathbf{0}$ is rejected in favour of the alternative hypothesis $\mathrm{H}_{1}: \beta_{0} \neq 0$.

(8 marks)

(j) Perform a test of the proposition that an increase in annual income of $\$ 1,000$ per year is associated on average with an increase in net financial wealth of less than $\$ 1,000$. Use the 5 percent significance level (i.e., $\alpha=0.05$). State the null hypothesis H_{0} and the alternative hypothesis H_{1}. Show how you calculated the test statistic. State the decision rule you use, and the inference you would draw from the test.

ANSWER to Question 4(i):

Null and Alternative Hypotheses:

$$
\begin{aligned}
& \mathrm{H}_{0}: \beta_{1}=1 \\
& \mathrm{H}_{1}: \beta_{1}<1
\end{aligned} \quad \Rightarrow \text { a left-tailed t-test }
$$

- Test statistic is $\mathrm{t}\left(\hat{\beta}_{1}\right)=\frac{\hat{\beta}_{1}-\beta_{1}}{\operatorname{se}\left(\hat{\beta}_{1}\right)} \sim \mathrm{t}[\mathrm{N}-2] ; \hat{\beta}_{1}=\mathbf{1 4 . 1 2 1 9} ; \operatorname{se}\left(\hat{\boldsymbol{\beta}}_{1}\right)=5.36347$.
- Calculate the sample value of the t-statistic under H_{0} : set $\beta_{1}=1, \hat{\beta}_{1}=\mathbf{0 . 8 2 0 6 8}$, and $\operatorname{se}\left(\hat{\beta}_{1}\right)=\mathbf{0 . 0 6 0 9 0 0}$.

$$
\mathrm{t}_{0}\left(\hat{\beta}_{1}\right)=\frac{\hat{\beta}_{1}-\beta_{1}}{\operatorname{se}\left(\hat{\beta}_{1}\right)}=\frac{0.82068-1.0}{0.0609}=\frac{-0.17932}{0.0609}=-\mathbf{2 . 9 4 4 5 0}=\underline{-2.945}
$$

- Null distribution of $\mathrm{t}_{0}\left(\hat{\beta}_{1}\right)$ is $\mathbf{t}[\mathbf{N}-2]=\mathbf{t}[2017-2]=\mathbf{t}[2015]$

Decision Rule: At significance level $\boldsymbol{\alpha}$,
(2 marks)

- reject \mathbf{H}_{0} if $\mathrm{t}_{0}\left(\hat{\beta}_{1}\right)<-\mathrm{t}_{\alpha}$ [2015],
- retain \mathbf{H}_{0} if $\mathrm{t}_{0}\left(\hat{\beta}_{1}\right) \geq-\mathrm{t}_{\alpha}$ [2015].

Critical value of $\mathbf{t}[2015]$-distribution: from t-table, use $\mathbf{d f}=\infty$.

- left-tail $\underline{1}$ percent critical value $=-\mathfrak{t}_{0.05}[2015]=-\mathrm{t}_{0.05}[\infty]=\underline{\mathbf{- 1 . 6 4 5}}$

Inference: At 5 percent significance level, i.e., for $\alpha=0.05$,
At 5 percent significance level, i.e., for $\alpha=0.05$,

$$
\mathrm{t}_{0}\left(\hat{\beta}_{1}\right)=-2.03<-1.65=-\mathrm{t}_{0.05}[855] \Rightarrow \text { reject } \mathrm{H}_{0} \text { vs. } \mathrm{H}_{1} \text { at } 5 \text { percent level. }
$$

- Inference: At the $\mathbf{5 \%}$ significance level, the null hypothesis $\mathbf{H}_{\mathbf{0}}: \beta_{1}=\mathbf{1}$ is rejected in favour of the alternative hypothesis $\mathbf{H}_{1}: \beta_{1}<\mathbf{1}$.

(4 marks)

(k) Use the estimation results given above for sample regression equation (3) to an estimate of the mean net financial wealth of single adults whose annual income is $\$ 50,000$ per year. Show how you computed your estimate.

ANSWER to Question 3(k):

For income $\boldsymbol{i}_{i}=50$, estimated mean net financial wealth is:

$$
\hat{\mathrm{E}}\left(\text { netfa }_{\mathrm{i}} \mid \text { income }_{\mathrm{i}}=50\right)=-10.571+0.82068(50)=-10.571+41.034=\mathbf{3 0 . 4 6 3}
$$

Estimated mean net financial wealth of single adults whose annual income is $\$ 50,000$ per year equals $\mathbf{\$ 3 0 , 4 6 3}$.
(2 marks)

Percentage Points of the t-Distribution

TABLE D. 2
Percentage points of the t distribution

$\operatorname{Pr}(|r|>1.725)=0.10$

Pr	0.25	0.10	0.05	0.025	0.01	0.005	0.001
df	0.50	0.20	0.10	0.05	0.02	0.010	$\mathbf{0 . 0 0 2}$
1	1.000	.3 .078	6.314	12.706	31.821	63.657	318.31
2	0.816	1.886	2.920	4.303	6.965	9.925	22.327
3	0.765	1.638	2.353	3.182	4.541	5.841	10.214
4	0.741	1.533	2.132	2.776	3.747	4.604	7.173
5	0.727	1.476	2.015	2.571	3.365	4.032	5.893
6	0.718	1.440	1.943	2.447	3.143	3.707	5.208
7	0.711	1.415	1.895	2.365	2.998	3.499	4.785
8	0.706	1.397	1.860	2.306	2.896	3.355	4.501
9	0.703	1.383	1.833	2.262	2.821	3.250	4.297
10	0.700	1.372	1.812	2.228	2.764	3.169	4.144
11	0.697	1.363	1.796	2.201	2.718	3.106	4.025
12	0.695	1.356	1.782	2.179	2.681	3.055	3.930
13	0.694	1.350	1.771	2.160	2.650	3.012	3.852
14	0.692	1.345	1.761	2.145	2.624	2.977	3.787
15	0.691	1.341	1.753	2.131	2.602	2.947	3.733
16	0.690	1.337	1.746	2.120	2.583	2.921	3.686
17	0.689	1.333	1.740	2.110	2.567	2.898	3.646
18	0.688	1.330	1.734	2.101	2.552	2.878	3.610
19	0.688	1.328	1.729	2.093	2.539	2.861	3.579
20	0.687	1.325	1.725	2.086	2.528	2.845	3.552
21	0.686	1.323	1.721	2.080	2.518	2.831	3.527
22	0.686	1.321	1.717	2.074	2.508	2.819	3.505
23	0.685	1.319	1.714	2.069	2.500	2.807	3.485
24	0.685	1.318	1.711	2.064	2.492	2.797	3.467
25	0.684	1.316	1.708	2.060	2.485	2.787	3.450
26	0.684	1.315	1.706	2.056	2.479	2.779	3.435
27	0.684	1.314	1.703	2.052	2.473	2.771	3.421
28	0.683	1.313	1.701	2.048	2.467	2.763	3.408
29	0.683	1.311	1.699	2.045	2.462	2.756	3.396
30	0.683	1.310	1.697	2.042	2.457	2.750	3.385
40	0.681	1.303	1.684	2.021	2.423	2.704	3.307
60	0.679	1.296	1.671	2.000	2.390	2.660	3.232
120	0.677	1.289	1.658	1.980	2.358	2.617	3.160
∞	0.674	1.282	1.645	1.960	2.326	2.576	3.090

Note: The smaller probability shown at the head of each column is the area in one tail: the larger probability is the area in both tails.
Source: From E. S. Pearson and H. O. Hartley. eds., Biometrika Tables for Statisticians, vol. 1. 3d ed., lable 12. Cambridge University Press. New York. 1966. Reproduced by permission of the editors and irustees of Biomerrika.

Source: Damodar N. Gujarati, Basic Econometrics, Third Edition. New York: McGraw-Hill, 1995, p. 809.

Selected Upper Percentage Points of the F-Distribution
table D. 3
Upper percentage points of the F distribution (continued)

df for denorninntor \boldsymbol{N}_{2}	df for nurnerator \boldsymbol{N}_{1}												
	Pr	1	2	3	4	5	6	7	8	9	10	11	12
22	. 25	1.40	1.48	1.47	1.45	1.44	1.42	1.41	1.40	$t .39$	1.39	1.38	1.37
	. 10	2.95	2.56	2.35	2.22	2.13	2.06	2.01	1.97	1.93	1.90	1.88	1.86
	. 05	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.34	2.30	2.26	2.23
	. 01	7.95	5.72	4.82	4.31	3.99	3.76	3.59	3.45	3.35	3.26	3.18	3.12
24	. 25	1.39	1.47	1.46	1.44	1.43	1.41	1.40	1.39	1.38	1.38	1.37	1.36
	. 10	2.93	2.54	2.33	2.19	2.10	2.04	1.98	1.94	1.91	1.88	1.85	1.83
	. 05	. 4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30	2.25	2.21	2.18
	. 01	. 7.82	5.61	4.72	4.22	3.90	3.67	3.50	3.36	3.26	3.17	3.09	3.03
26	. 25	1.38	1.46	1.45	1.44	1.42	1.41	1.39	1.38	1.37	1.37	1.36	1.35
	. 10	2.91	2.52	2.31	2.17	2.08	2.01	1.96	1.92	1.88	1.86	1.84	1.81
	. 05	4.23	3.37	2.98	2.74	2.59	2.47	2.39	2.32	2.27	2.22	2.18	2.15
	. 01	7.72	5.53	4.64	4.14	3.82	3.59	3.42	3.29	3.18	3.09	3.02	2.96
28	. 25	1.38	1.46	1.45	1.43	1.41	1.40	1.39	1.38	1.37	1.36	1.35	1.34
	. 10	2.89	2.50	2.29	2.16	2.06	2.00	1.94	1.90	1.87	1.84	1.81	1.79
	. 05	4.20	3.34	2.95	2.71	2.56	2.45	2.36	2.29	2.24	2.19	2.15	2.12
	. 01	7.64	5.45	4.57	4.07	3.75	3.53	3.36	3.23	3.12	3.03	2.96	2.90
30	. 25	1.38	1.45	1.44	1.42	1.41	1.39	1.38	1.37	1.36	1.35	1.35	1.34
	. 10	2.88	2.49	2.28	2.14	2.05	1.98	1.93	1.88	1.85	1.82	1.79	1.77
	. 05	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21	2.16	2.13	2.09
	. 01	7.56	5.39	4.51	4.02	3.70	3.47	3.30	3.17	3.07	2.98	2.91	2.84
40	. 25	1.36	1.44	1.42	1.40	1.39	1.37	1.36	1.35	1.34	1.33	1.32	1.31
	. 10	2.84	2.44	2.23	2.09	2.00	1.93	1.87	1.83	1.79	1.76	1.73	1.71
	. 05	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12	2.08	2.04	2.00
	. 01	7.31	5.18	4.31	3.83	3.51	3.29	3.12	2.99	2.89	2.80	2.73	266
60	. 25	1.35	1.42	1.41	1.38	1.37	1.35	1.33	1.32	1.31	1.30	1.29	1.29
	. 10	2.79	2.39	2.18	2.04	1.95	1.87	1.82	1.77	1.74	1.71	1.68	1.66
	. 05	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	2.04	1.99	1.95	1.92
	. 01	7.08	4.98	4.13	3.65	3.34	3.12	2.95	2.82	2.72	2.63	2.56	2.50
120	. 25	1.34	1.40	1.39	1.37	1.35	1.33	1.31	1.30	1.29	1.28	1.27	1.26
	. 10	2.75	2.35	2.13	1.99	1.90	1.82	1.77	1.72	1.68	1.65	1.62	1.60
	. 05	3.92	3.07	2.68	2.45	2.29	2.17	2.09	2.02	1.96	1.91	1.87	1.83
	. 01	6.85	4.79	3.95	3.48	3.17	2.96	2.79	2.66	2.56	2.47	2.40	2.34
200	. 25	1.33	1.39	1.38	1.36	1.34	1.32	1.31	1.29	1.28	1.27	1.26	1.25
	. 10	2.73	2.33	2.11	1.97	1.88	1.80	1.75	1.70	1.66	1.63	1.60	1.57
	. 05	3.89	3.04	2.65	2.42	2.26	2.14	2.06	1.98	1.93	1.88	1.84	1.80
	. 01	6.76	4.71	3.88	3.41	3.11	2.89	2.73	2.60	2.50	2.41	2.34	2.27
∞	. 25	1.32	1.39	1.37	1.35	1.33	1.31	1.29	1.28	1.27	1.25	1.24	1.24
	. 10	2.71	2.30	2.08	1.94	1.85	1.77	1.72	1.67	1.63	1.60	1.57	1.55
	. 05	3.84	3.00	2.60	2.37	2.21	2.10	2.01	1.94	1.88	1.83	1.79	1.75
	. 01	6.63	4.61	3.78	3.32	3.02	2.80	2.64	2.51	2.41	2.32	2.25	2.18

Source: Damodar N. Gujarati, Basic Econometrics, Third Edition. New York: McGraw-Hill, 1995, p. 814.

