QUEEN'S UNIVERSITY AT KINGSTON
Department of Economics
CONFIDENTIAL
turn in exam
question paper

ECONOMICS 351* - Fall Term 2008

Introductory Econometrics

Fall Term 2008

DATE: Monday October 27, 2008.
TIME: 80 minutes; 1:00 p.m. - 2:20 p.m.

INSTRUCTIONS: The exam consists of FOUR (4) questions. Students are required to answer ALL FOUR (4) questions.

Answer all questions in the exam booklets provided. Be sure your student number is printed clearly on the front of all exam booklets used. Your name is optional.

Do not write answers to questions on the front page of the first exam booklet.

Please label clearly each of your answers in the exam booklets with the appropriate number and letter.

Please write legibly.

Tables of percentage points of the t-distribution and F-distribution are given on the last two pages of the exam.

This exam is CONFIDENTIAL. This question paper must be submitted in its entirety with your answer booklet(s); otherwise your exam will not be marked.

MARKING: The marks for each question are indicated in parentheses immediately above each question. Total marks for the exam equal 100.

GOOD LUCK!

QUESTIONS: Answer ALL FOUR questions.

All questions pertain to the simple (two-variable) linear regression model for which the population regression equation can be written in conventional notation as:

$$
\begin{equation*}
\mathrm{Y}_{\mathrm{i}}=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i}}+\mathrm{u}_{\mathrm{i}} \tag{1}
\end{equation*}
$$

where Y_{i} and X_{i} are observable variables, β_{0} and β_{1} are unknown (constant) regression coefficients, and u_{i} is an unobservable random error term. The Ordinary Least Squares (OLS) sample regression equation corresponding to regression equation (1) is

$$
\begin{equation*}
\mathrm{Y}_{\mathrm{i}}=\hat{\beta}_{0}+\hat{\beta}_{1} \mathrm{X}_{\mathrm{i}}+\hat{\mathrm{u}}_{\mathrm{i}} \quad(\mathrm{i}=1, \ldots, \mathrm{~N}) \tag{2}
\end{equation*}
$$

where $\hat{\beta}_{0}$ is the OLS estimator of the intercept coefficient $\beta_{0}, \hat{\beta}_{1}$ is the OLS estimator of the slope coefficient β_{1}, \hat{u}_{i} is the OLS residual for the i-th sample observation, and N is sample size (the number of observations in the sample).

(15 marks)

1. Show that the OLS slope coefficient estimator $\hat{\beta}_{1}$ is a linear function of the Y_{i} sample values. Stating explicitly all required assumptions, prove that the OLS slope coefficient estimator $\hat{\beta}_{1}$ is an unbiased estimator of the slope coefficient β_{1}.

ANSWER to Question 1:

(5 marks)

- Show that the OLS slope coefficient estimator $\hat{\beta}_{1}$ is a linear function of the Y_{i} sample values.

$$
\begin{array}{rlr}
\hat{\beta}_{1} & =\frac{\sum_{i} x_{i} y_{i}}{\sum_{i} x_{i}^{2}}=\frac{\sum_{i} x_{i}\left(Y_{i}-\bar{Y}\right)}{\sum_{i} x_{i}^{2}}=\frac{\sum_{i} x_{i} Y_{i}}{\sum_{i} x_{i}^{2}}-\frac{\bar{Y} \sum_{i} x_{i}}{\sum_{i} x_{i}^{2}} \\
& =\frac{\sum_{i} x_{i} Y_{i}}{\sum_{i} x_{i}^{2}} & \text { because } \sum_{i} x_{i}=0 \\
& =\sum_{i} k_{i} Y_{i} & \text { where } \mathrm{k}_{\mathrm{i}} \equiv \frac{\mathrm{x}_{\mathrm{i}}}{\sum_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2}} .
\end{array}
$$

ANSWER to Question 1 -- continued:

(10 marks)

- Stating explicitly all required assumptions, prove that the OLS slope coefficient estimator $\hat{\beta}_{1}$ is an unbiased estimator of the slope coefficient β_{1}.
(1) Substitute for \mathbf{Y}_{i} the expression $Y_{i}=\beta_{0}+\beta_{1} X_{i}+u_{i}$ from the population regression equation (or PRE).

$$
\begin{array}{rlr}
\hat{\beta}_{1} & =\sum_{\mathrm{i}} \mathrm{k}_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}} & \\
& =\sum_{\mathrm{i}} \mathrm{k}_{\mathrm{i}}\left(\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i}}+\mathrm{u}_{\mathrm{i}}\right) \quad \text { since } \mathrm{Y}_{\mathrm{i}}=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i}}+\mathrm{u}_{\mathrm{i}} \text { by assumption (A1) } \\
& =\sum_{\mathrm{i}}\left(\beta_{0} \mathrm{k}_{\mathrm{i}}+\beta_{1} \mathrm{k}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}+\mathrm{k}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}\right) \\
& =\beta_{0} \sum_{\mathrm{i}} \mathrm{k}_{\mathrm{i}}+\beta_{1} \sum_{\mathrm{i}} \mathrm{k}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}+\sum_{\mathrm{i}} \mathrm{k}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}} & \\
& =\beta_{1}+\sum_{\mathrm{i}} \mathrm{k}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}, \quad \text { since } \sum_{\mathrm{i}} \mathrm{k}_{\mathrm{i}}=0 \text { and } \sum_{\mathrm{i}} \mathrm{k}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}=1
\end{array}
$$

(2) Now take expectations of the above expression for $\hat{\beta}_{1}$ conditional on the value X_{i} of X:

$$
\begin{aligned}
\mathrm{E}\left(\hat{\beta}_{1}\right) & =\mathrm{E}\left(\beta_{1}\right)+\mathrm{E}\left[\sum_{\mathrm{i}} \mathrm{k}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}\right] & & \\
& =\beta_{1}+\sum_{\mathrm{i}} \mathrm{k}_{\mathrm{i}} \mathrm{E}\left(\mathrm{u}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i}}\right) & & \text { since } \beta_{1} \mathrm{is} \text { a constant and the } \mathrm{k}_{\mathrm{i}} \text { are nonstochastic } \\
& =\beta_{1}+\sum_{\mathrm{i}} \mathrm{k}_{\mathrm{i}} 0 & & \text { since } \mathrm{E}\left(\mathrm{u}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i}}\right)=\mathrm{E}\left(\mathrm{u}_{\mathrm{i}}\right)=0 \text { by assumption (A2) } \\
& =\beta_{1} & &
\end{aligned}
$$

(15 marks)

2. Give a general definition of the F-distribution. Starting from this definition, derive the Fstatistic for the OLS slope coefficient estimator $\hat{\beta}_{1}$. State all assumptions required for the derivation.

ANSWER to Question 2:

- General definition of the F-distribution: Consider the two random variables V_{1} and V_{2} such that
(1) $\quad V_{1} \sim \chi^{2}\left[m_{1}\right]$
(2) $\quad \mathrm{V}_{2} \sim \chi^{2}\left[\mathrm{~m}_{2}\right]$
(3) $\quad \mathrm{V}_{1}$ and V_{2} are independent.

Then the random variable

$$
\mathrm{F}=\frac{\mathrm{V}_{1} / \mathrm{m}_{1}}{\mathrm{~V}_{2} / \mathrm{m}_{2}} \sim \mathrm{~F}\left[\mathrm{~m}_{1}, \mathrm{~m}_{2}\right]
$$

where $F\left[m_{1}, m_{2}\right]$ denotes the \mathbf{F}-distribution with \boldsymbol{m}_{1} numerator degrees of freedom and $\boldsymbol{m}_{\boldsymbol{2}}$ denominator degrees of freedom.
(2 marks)

- Error Normality Assumption: The random error term u_{i} is normally distributed with mean 0 and variance σ^{2}; that is,

$$
\mathrm{u}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i}} \sim \mathrm{~N}\left[0, \sigma^{2}\right] \text { for all } \mathrm{i} \quad \text { OR } \quad \mathrm{u}_{\mathrm{i}} \text { is iid as } \mathrm{N}\left[0, \sigma^{2}\right]
$$

- Use three implications of the error normality assumption to derive $\mathrm{F}\left(\hat{\beta}_{1}\right)$:

1. $\hat{\beta}_{1} \sim N\left[\beta_{1}, \operatorname{Var}\left(\hat{\beta}_{1}\right)\right]$ where $\operatorname{Var}\left(\hat{\beta}_{1}\right)=\frac{\sigma^{2}}{\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{x}_{\mathrm{i}}^{2}}=\frac{\sigma^{2}}{\sum_{\mathrm{i}=1}^{\mathrm{N}}\left(\mathrm{X}_{\mathrm{i}}-\overline{\mathrm{X}}\right)^{2}}$

Implications of normality of $\hat{\beta}_{1}$:

$$
\mathrm{Z}\left(\hat{\beta}_{1}\right)=\frac{\hat{\beta}_{1}-\beta_{1}}{\operatorname{se}\left(\hat{\beta}_{1}\right)} \sim \mathrm{N}[0,1]
$$

ANSWER to Question 2 -- continued:

$$
\begin{align*}
& \quad\left[\mathrm{Z}\left(\hat{\beta}_{1}\right)\right]^{2}=\frac{\left(\hat{\beta}_{1}-\beta_{1}\right)^{2}}{\operatorname{Var}\left(\hat{\beta}_{1}\right)}=\frac{\left(\hat{\beta}_{1}-\beta_{1}\right)^{2}}{\sigma^{2} / \sum_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2}}=\frac{\left(\hat{\beta}_{1}-\beta_{1}\right)^{2} \sum_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2}}{\sigma^{2}} \sim \chi^{2}[1] \tag{1}\\
& \text { 2. } \frac{(\mathrm{N}-2) \hat{\sigma}^{2}}{\sigma^{2}} \sim \chi^{2}[\mathrm{~N}-2] \Rightarrow \Rightarrow \quad \frac{\hat{\sigma}^{2}}{\sigma^{2}} \sim \frac{\chi^{2}[\mathrm{~N}-2]}{(\mathrm{N}-2)} \tag{2}
\end{align*}
$$

3. The estimators $\hat{\beta}_{1}$ and $\hat{\sigma}^{2}$ are statistically independent OR
The statistics $\mathrm{Z}\left(\hat{\beta}_{1}\right)$ and $\hat{\sigma}^{2} / \sigma^{2}$ are statistically independent.

- The \boldsymbol{F}-statistic for $\hat{\beta}_{1}$. The F-statistic for $\hat{\beta}_{1}$ is therefore the ratio of (1) to (2):

$$
\begin{aligned}
F\left(\hat{\beta}_{1}\right) & =\frac{\left(Z\left(\hat{\beta}_{1}\right)\right)^{2}}{\hat{\sigma}^{2} / \sigma^{2}} \\
& =\frac{\left(\hat{\beta}_{1}-\beta_{1}\right)^{2}\left(\sum_{i} x_{i}^{2}\right) / \sigma^{2}}{\hat{\sigma}^{2} / \sigma^{2}} \\
& =\frac{\left(\hat{\beta}_{1}-\beta_{1}\right)^{2}\left(\sum_{i} x_{i}^{2}\right)}{\hat{\sigma}^{2}} \\
& =\frac{\left(\hat{\beta}_{1}-\beta_{1}\right)^{2}}{\hat{\sigma}^{2} / \sum_{i} x_{i}^{2}} \\
& =\frac{\left(\hat{\beta}_{1}-\beta_{1}\right)^{2}}{\operatorname{Vâr}\left(\hat{\beta}_{1}\right)} \quad \text { since } \hat{\sigma}^{2} / \sum_{i} x_{i}^{2}=\operatorname{Vâr}\left(\hat{\beta}_{1}\right) .
\end{aligned}
$$

- Result: The F-statistic for $\hat{\beta}_{1}$ takes the form

$$
\mathrm{F}\left(\hat{\beta}_{1}\right)=\frac{\left(\hat{\beta}_{1}-\beta_{1}\right)^{2}}{\hat{\sigma}^{2} /\left(\sum_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2}\right)}=\frac{\left(\hat{\beta}_{1}-\beta_{1}\right)^{2}}{\operatorname{Vâr}\left(\hat{\beta}_{1}\right)} \sim \mathrm{F}[1, \mathrm{~N}-2]
$$

(32 marks)

3. A researcher is using data for a sample of 3240 female employees 25 years of age and over to investigate the relationship between employees' hourly wage rates Y_{i} (measured in dollars per hour) and their age X_{i} (measured in years). The population regression equation takes the form of equation (1): $Y_{i}=\beta_{0}+\beta_{1} X_{i}+u_{i}$. Preliminary analysis of the sample data produces the following sample information:

$$
\begin{array}{lll}
\mathrm{N}=3240 \quad \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{y}_{\mathrm{i}}^{2}=78434.97 & \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{x}_{\mathrm{i}}^{2}=25526.17 & \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{x}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}=3666.426 \\
\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{Y}_{\mathrm{i}}=34379.16 & \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{X}_{\mathrm{i}}=96143.00 & \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{Y}_{\mathrm{i}}^{2}=443227.1 \\
\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{X}_{\mathrm{i}}^{2}=2878451.0 & \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{X}_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}}=1023825.0 & \sum_{\mathrm{i}=1}^{\mathrm{N}} \hat{\mathrm{u}}_{\mathrm{i}}^{2}=77908.35
\end{array}
$$

where $x_{i} \equiv X_{i}-\bar{X}$ and $y_{i} \equiv Y_{i}-\bar{Y}$ for $i=1, \ldots, N$. Use the above sample information to answer all the following questions. Show explicitly all formulas and calculations.

(10 marks)

(a) Use the above information to compute OLS estimates of the intercept coefficient β_{0} and the slope coefficient β_{1}.

- $\hat{\beta}_{1}=\frac{\sum_{i} x_{i} y_{i}}{\sum_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2}}=\frac{3666.426}{25526.17}=\mathbf{0 . 1 4 3 6 3 4}=\underline{\mathbf{0 . 1 4 3 6}}$
- $\hat{\beta}_{0}=\overline{\mathrm{Y}}-\hat{\beta}_{1} \overline{\mathrm{X}}$

$$
\bar{Y}=\frac{\sum_{i=1}^{N} Y_{i}}{N}=\frac{34379.16}{3240}=10.61085 \quad \text { and } \quad \bar{X}=\frac{\sum_{i=1}^{N} X_{i}}{N}=\frac{96143.00}{3240}=29.67377
$$

Therefore

$$
\begin{aligned}
& \hat{\beta}_{0}=\overline{\mathrm{Y}}-\hat{\beta}_{1} \overline{\mathrm{X}}=10.610852-(0.143634)(29.67377)=10.610852-4.262162=\underline{\mathbf{6 . 3 4 8 6 9}} \\
&=\underline{\mathbf{6 . 3 4 9}} \\
&(5 \text { marks })
\end{aligned}
$$

(4 marks)

(b) Interpret the slope coefficient estimate you calculated in part (a) - i.e., explain in words what the numeric value you calculated for $\hat{\beta}_{1}$ means.

Note: $\hat{\beta}_{1}=\mathbf{0 . 1 4 3 6}$. Y_{i} is measured in dollars per hour, and X_{i} is measured in years.
The estimate $\mathbf{0 . 1 4 3 6 3 4}$ of β_{1} means that a 1-year increase (decrease) in age X_{i} is associated on average with an increase (decrease) in hourly wage rate equal to 0.1436 dollars per hour, or 14.36 cents per hour.

(4 marks)

(c) Calculate an estimate of σ^{2}, the error variance.

$$
\begin{aligned}
& \text { RSS }=\sum_{i=1}^{\mathrm{N}} \hat{\mathrm{u}}_{\mathrm{i}}^{2}=77908.35 ; \quad \mathrm{N}-2=3240-2=3238 \\
& \hat{\sigma}^{2}=\frac{\mathrm{RSS}}{\mathrm{~N}-2}=\frac{\sum_{\mathrm{i}=1}^{\mathrm{N}} \hat{\mathrm{u}}_{\mathrm{i}}^{2}}{\mathrm{~N}-2}=\frac{77908.35}{3240-2}=\frac{77908.35}{3238}=\underline{\mathbf{2 4 . 0 6 0 6 3 9}}=\underline{\mathbf{2 4 . 0 6 0 6}} \quad \text { (4 marks) }
\end{aligned}
$$

(6 marks)

(d) Compute the value of R^{2}, the coefficient of determination for the estimated OLS sample regression equation. Briefly explain what the value you have calculated for R^{2} means.

(4 marks)

$$
R^{2}=\frac{E S S}{T S S}=\frac{\sum_{i=1}^{N} y_{i}^{2}-\sum_{i=1}^{N} \hat{u}_{i}^{2}}{\sum_{i=1}^{N} y_{i}^{2}}=\frac{78434.97-77908.35}{78434.97}=\frac{526.62}{78434.97}=\underline{\mathbf{0 . 0 0 6 7 1 4}}
$$

OR
$R^{2}=1-\frac{\operatorname{RSS}}{\operatorname{TSS}}=1-\frac{\sum_{i=1}^{N} \hat{u}_{i}^{2}}{\sum_{i=1}^{N} y_{i}^{2}}=1-\frac{77908.35}{78434.97}=1-0.993286=\underline{\mathbf{0 . 0 0 6 7 1 4}}$

(2 marks)

Interpretation of $\mathbf{R}^{2}=\mathbf{0 . 0 0 6 7 1 4}$: The value of 0.006714 indicates that $\mathbf{0 . 6 7}$ percent of the total sample (or observed) variation in $\mathbf{Y}_{\mathbf{i}}$ (hourly wage rates) is attributable to, or explained by, the regressor $\mathbf{X}_{\mathbf{i}}$ (age) or the sample regression function.

(8 marks)

(e) Calculate the sample value of the t-statistic for testing the null hypothesis $\mathrm{H}_{0}: \beta_{1}=0$ against the alternative hypothesis $\mathrm{H}_{1}: \beta_{1} \neq 0$. (Note: You are not required to obtain or state the inference of this test.)

- t-statistic for $\hat{\beta}_{1}$ is $t\left(\hat{\beta}_{1}\right)=\frac{\left(\hat{\beta}_{1}-\beta_{1}\right)}{\operatorname{se}\left(\hat{\beta}_{1}\right)}$
(2 marks)
- From part (a), $\hat{\beta}_{1}=\mathbf{0 . 1 4 3 6 3 4} ; \operatorname{Vâr}\left(\hat{\beta}_{1}\right)=\frac{\hat{\sigma}^{2}}{\sum_{i=1}^{N} x_{i}^{2}}=\frac{24.060639}{25526.17}=0.000942587$.
- The estimated standard error of $\hat{\beta}_{1}$ is:

$$
\operatorname{se}\left(\hat{\beta}_{1}\right)=\sqrt{\operatorname{Var}\left(\hat{\beta}_{1}\right)}=\sqrt{0.000942587}=0.03070158=0.0307016
$$

- Calculate the sample value of the \mathbf{t}-statistic (1) under H_{0} : set $\beta_{1}=0, \hat{\beta}_{1}=\mathbf{0 . 1 4 3 6 3 4}$ and sê($\left(\hat{\beta}_{1}\right)=0.0307016$ in (1) above.

$$
\mathrm{t}_{0}\left(\hat{\beta}_{1}\right)=\frac{\left(\hat{\beta}_{1}-\beta_{1}\right)}{\operatorname{se}\left(\hat{\beta}_{1}\right)}=\frac{0.143634-0}{0.0307016}=\frac{0.143634}{0.0307016}=\underline{4.678388}=\underline{4.68}
$$

(6 marks)

(38 marks)

4. You have been commissioned to investigate the relationship between the birth weights of newborn females and the number of prenatal visits to a physician or midwife that their mothers made during pregnancy. The dependent variable is $\boldsymbol{b} \boldsymbol{w g} \boldsymbol{h t}_{\boldsymbol{i}}$, the birth weight of the ith newborn female, measured in grams. The explanatory variable is pnvisits ${ }_{i}$, the number of prenatal visits of the i-th newborn's mother during pregnancy, measured in number of visits. The model you propose to estimate is given by the population regression equation

$$
\text { bwght }_{i}=\beta_{0}+\beta_{1} \text { pnvisits }_{i}+u_{i}
$$

Your research assistant has used 857 sample observations on $\boldsymbol{b} \boldsymbol{w g h} \boldsymbol{t}_{\boldsymbol{i}}$ and $\boldsymbol{p n v i s i t s} \boldsymbol{s}_{\boldsymbol{i}}$ to estimate the following OLS sample regression equation, where the figures in parentheses below the coefficient estimates are the estimated standard errors of the coefficient estimates:

$$
\begin{align*}
\text { bwght }_{\mathrm{i}}= & 3199.02+14.1219 \text { pnvisits }_{\mathrm{i}}+\hat{\mathrm{u}}_{\mathrm{i}} & & (\mathrm{i}=1, \ldots, \mathrm{~N}) \quad \mathrm{N}=857 \tag{3}\\
& (65.6909)(5.36347) & & \leftarrow \text { (standard errors) }
\end{align*}
$$

(8 marks)

(a) Perform a test of the null hypothesis $\mathrm{H}_{0}: \beta_{1}=0$ against the alternative hypothesis H_{1} : $\beta_{1} \neq 0$ at the 1% significance level (i.e., for significance level $\alpha=0.01$). Show how you calculated the test statistic. State the decision rule you use, and the inference you would draw from the test. What would you conclude from the results of the test?

$$
\begin{aligned}
& \mathrm{H}_{0}: \beta_{1}=0 \\
& \mathrm{H}_{1}: \beta_{1} \neq 0 \quad \text { a two-sided alternative hypothesis } \Rightarrow \text { a two-tailed test }
\end{aligned}
$$

- Test statistic is either $\mathrm{t}\left(\hat{\beta}_{1}\right)=\frac{\hat{\beta}_{1}-\beta_{1}}{\operatorname{sê}\left(\hat{\beta}_{1}\right)} \sim \mathrm{t}[\mathrm{N}-2]$ or $\mathrm{F}\left(\hat{\beta}_{1}\right)=\frac{\left(\hat{\beta}_{1}-\beta_{1}\right)^{2}}{\operatorname{Var}\left(\hat{\beta}_{1}\right)} \sim \mathrm{F}[1, \mathrm{~N}-2]$.
- $\hat{\beta}_{1}=\mathbf{1 4 . 1 2 1 9 ; ~} \quad \operatorname{se}\left(\hat{\beta}_{1}\right)=$ 5.36347; $\quad \operatorname{Vâr}\left(\hat{\beta}_{1}\right)=\left(\operatorname{se}\left(\hat{\beta}_{1}\right)\right)^{2}=\mathbf{2 8 . 7 6 6 8 1}$
- Calculate the sample value of either the \mathbf{t}-statistic or the \mathbf{F}-statistic under H_{0} :

$$
\begin{aligned}
& \text { set } \beta_{1}=0, \hat{\beta}_{1}=\mathbf{1 4 . 1 2 1 9}, \operatorname{se}\left(\hat{\beta}_{1}\right)=5.36347 \text {, and } \operatorname{Vâ}\left(\hat{\beta}_{1}\right)=28.76681 \text {. } \\
& \mathrm{t}_{0}\left(\hat{\beta}_{1}\right)=\frac{\hat{\beta}_{1}-\beta_{1}}{\operatorname{sê}\left(\hat{\beta}_{1}\right)}=\frac{14.1219-0.0}{5.36347}=\frac{14.1219}{5.36347}=2.63298=\underline{\mathbf{2 . 6 3}} \\
& \text { or }
\end{aligned}
$$

(3 marks)

ANSWER to Question 4(a) -- continued:

$$
\mathrm{F}_{0}\left(\hat{\beta}_{1}\right)=\frac{\left(\hat{\beta}_{1}-\beta_{1}\right)^{2}}{\operatorname{Vâr}\left(\hat{\beta}_{1}\right)}=\frac{(14.1219-0.0)^{2}}{28.76681}=\frac{199.42806}{28.76681}=\mathbf{6 . 9 3 2 6}=\underline{\mathbf{6 . 9 3}}
$$

- Null distribution of $\mathrm{t}_{0}\left(\hat{\beta}_{1}\right)$ is $\mathbf{t}[\mathbf{N}-2]=\mathbf{t}[857-2]=\mathbf{t}[855]$
- Null distribution of $F_{0}\left(\hat{\beta}_{1}\right)$ is $\mathbf{F}[1, \mathbf{N}-2]=\mathbf{F}[1,857-2]=\mathbf{F}[1,855]$

Decision Rule: At significance level α,
(2 marks)

- reject \mathbf{H}_{0} if $\mathrm{F}_{0}\left(\hat{\beta}_{1}\right)>\mathrm{F}_{\alpha}[1,855]$ or $\left|\mathrm{t}_{0}\left(\hat{\beta}_{1}\right)\right|>\mathrm{t}_{\alpha / 2}$ [855] ,
i.e., if either (1) $t_{0}\left(\hat{\beta}_{1}\right)>t_{\alpha / 2}$ [855] or (2) $t_{0}\left(\hat{\beta}_{1}\right)<-t_{\alpha / 2}$ [855];
- retain H_{0} if $F_{0}\left(\hat{\beta}_{1}\right) \leq F_{\alpha}[1,855]$ or $\left|t_{0}\left(\hat{\beta}_{1}\right)\right| \leq t_{\alpha / 2}$ [855],

$$
\text { i.e., if }-\mathrm{t}_{\alpha / 2}[855] \leq \mathrm{t}_{0}\left(\hat{\beta}_{1}\right) \leq \mathrm{t}_{\alpha / 2}[855] \text {. }
$$

Critical values of $\mathbf{t}[855]$-distribution or $F[1,855]$-distribution: in t-table, use $\mathbf{d f}=\infty$.

- two-tailed $\underline{1}$ percent critical value $=\mathrm{t}_{\alpha / 2}[855]=\mathrm{t}_{0.005}[855]=2.5816=\underline{\mathbf{2} .58}$ (1 mark)

$$
=\mathrm{t}_{0.005}[\infty]=2.576=\underline{\mathbf{2} .58}
$$

Critical values of $\mathbf{F}[1,855]$-distribution: in F-table, use denominator $\mathbf{d f}=\infty$.

- $\underline{\mathbf{1}}$ percent critical value $=\mathrm{F}_{\alpha}[1,855]=\mathrm{F}_{0.01}[1,855]=6.6646=\underline{\mathbf{6 . 6 6}}$

$$
=F_{0.01}[1, \infty]=\underline{\mathbf{6 . 6 3}}
$$

Inference:

- At 1 percent significance level, i.e., for $\alpha=0.01$,

$$
\begin{aligned}
& \left|t_{0}\left(\hat{\beta}_{1}\right)\right|=2.63>2.58=t_{0.005}[855] \quad \Rightarrow \quad \text { reject } H_{0} \text { vs. } H_{1} \text { at } 1 \text { percent level. } \\
& \mathrm{F}_{0}\left(\hat{\beta}_{1}\right)=6.93>6.63=\mathrm{F}_{0.01}[1,855] \quad \Rightarrow \quad \text { reject } H_{0} \text { vs. } H_{1} \text { at } 1 \text { percent level. }
\end{aligned}
$$

ANSWER to Question 4(a) -- continued:

- Inference: At the $\mathbf{1 \%}$ significance level, the null hypothesis $\mathrm{H}_{0}: \beta_{1}=0$ is rejected in favour of the alternative hypothesis H_{1} : $\beta_{1} \neq 0$.

Conclusion implied by test outcome:

(1 mark)
Rejection of the null hypothesis $\beta_{1}=0$ against the alternative hypothesis $\beta_{1} \neq 0$ means that the sample evidence favours the existence of a relationship between the number of prenatal visits of mothers and the birth weights of their female newborns.

Question 4(a) - Alternative Answer -- uses confidence interval approach

- The two-sided $(1-\alpha)$-level, or $\mathbf{1 0 0}(1-\alpha)$ percent, confidence interval for β_{1} is:

$$
\begin{gathered}
\hat{\beta}_{1}-\mathrm{t}_{\alpha / 2}[\mathrm{~N}-2] \operatorname{se}\left(\hat{\beta}_{1}\right) \leq \beta_{1} \leq \hat{\beta}_{1}+\mathrm{t}_{\alpha / 2}[\mathrm{~N}-2] \operatorname{se}\left(\hat{\beta}_{1}\right) \\
\hat{\beta}_{1 \mathrm{~L}} \leq \beta_{1} \leq \hat{\beta}_{1 \mathrm{U}}
\end{gathered}
$$

- Required results and intermediate calculations:

$$
\begin{aligned}
& \mathrm{N}-\mathrm{K}=857-2=855 ; \quad \hat{\beta}_{1}=\mathbf{1 4 . 1 2 1 9 ;} \quad \operatorname{se}\left(\hat{\beta}_{1}\right)=\mathbf{5 . 3 6 3 4 7} \\
& 1-\alpha=0.99 \Rightarrow \alpha=0.01 \Rightarrow \alpha / \mathbf{2}=\mathbf{0 . 0 0 5}: \mathrm{t}_{\alpha / 2}[\mathrm{~N}-2]=\mathbf{t}_{0.005}[855]=\underline{\mathbf{2 . 5 7 6}} \text { (1 mark) } \\
& \mathrm{t}_{\alpha / 2}[\mathrm{~N}-2] \operatorname{se}\left(\hat{\beta}_{1}\right)=\mathrm{t}_{0.005}[855] \operatorname{se}\left(\hat{\beta}_{1}\right)=2.576(5.36347)=\mathbf{1 3 . 8 1 6 2 9 9}
\end{aligned}
$$

- Lower 99\% confidence limit for β_{1} is:

$$
\begin{aligned}
\hat{\beta}_{1 L} & =\hat{\beta}_{1}-\mathrm{t}_{\alpha / 2}[\mathrm{~N}-2] \operatorname{se}\left(\hat{\beta}_{1}\right)=\hat{\beta}_{1}-\mathrm{t}_{0.005}[855] \operatorname{se}\left(\hat{\beta}_{1}\right) \\
& =14.1219-\mathbf{2 . 5 7 6}(5.36347)=14.1219-13.816299=0.305601=\underline{\mathbf{0 . 3 0 5 6}} \\
& =14.1219-\mathbf{2 . 6 1 7}(5.36347)=14.1219-14.036201=0.0696086=\underline{\mathbf{0 . 0 8 5 7 0}} \\
& =14.1219-2.58(5.36347)=14.1219-13.837753=0.284147=\underline{\mathbf{0 . 2 8 4 1}}
\end{aligned}
$$

- Upper 99\% confidence limit for β_{1} is:

$$
\begin{aligned}
\hat{\beta}_{1 U} & =\hat{\beta}_{1}+\mathrm{t}_{\alpha / 2}[\mathrm{~N}-2] \operatorname{se}\left(\hat{\beta}_{1}\right)=\hat{\beta}_{1}+\mathrm{t}_{0.005}[855] \mathrm{se}\left(\hat{\beta}_{1}\right) \\
& =14.1219+\mathbf{2 . 5 7 6}(5.36347)=14.1219+13.816299=27.938199=\underline{\mathbf{2 7 . 9 3 8 2}} \\
& =14.1219+\mathbf{2 . 6 1 7}(5.36347)=14.1219+14.036201=28.158101=\underline{\mathbf{2 8 . 1 5 8 1}} \\
& =14.1219+\mathbf{2 . 5 8}(5.36347)=14.1219+13.837753=27.959653=\underline{\mathbf{2 7 . 9 5 9 7}}
\end{aligned}
$$

Question 4(a) - Alternative Answer (continued)

- Two-sided 99\% confidence interval for $\boldsymbol{\beta}_{1}$ is therefore:

$$
0.3056 \leq \beta_{1} \leq 27.9382 \text { or } 0.08570 \leq \beta_{1} \leq 28.1581 \text { or } 0.2841 \leq \beta_{1} \leq 27.9597
$$

- Decision Rule: At significance level α,
- reject $\mathbf{H}_{\mathbf{0}}$ if the hypothesized value $\mathbf{b}_{\mathbf{1}}$ of $\boldsymbol{\beta}_{\mathbf{1}}$ specified by H_{0} lies outside the two-sided $(1-\alpha)$-level confidence interval for β_{1}, i.e., if either
(1) $\mathrm{b}_{1}<\hat{\beta}_{1}-\mathrm{t}_{\alpha / 2}$ [855]sê($\hat{\beta}_{1}$)
or
(2) $b_{1}>\hat{\beta}_{1}+t_{\alpha / 2}[855] \operatorname{se}\left(\hat{\beta}_{1}\right)$.
- retain $\mathbf{H}_{\mathbf{0}}$ if the hypothesized value $\mathbf{b}_{\mathbf{1}}$ of $\boldsymbol{\beta}_{1}$ specified by H_{0} lies inside the two-sided $(1-\alpha)$-level confidence interval for β_{1}, i.e., if $\hat{\beta}_{1}-\mathrm{t}_{\alpha / 2}[855] \operatorname{se}\left(\hat{\beta}_{1}\right) \leq \mathrm{b}_{1} \leq \hat{\beta}_{1}+\mathrm{t}_{\alpha / 2}[855] \operatorname{se}\left(\hat{\beta}_{1}\right)$.

Inference:

- At 1 percent significance level, i.e., for $\alpha=0.01$,

$$
\begin{aligned}
& \mathbf{b}_{\mathbf{1}}=\mathbf{0}<\mathbf{0 . 3 0 5 6}=\hat{\beta}_{1 \mathrm{~L}}=\hat{\beta}_{1}-\mathrm{t}_{0.005}[855] \mathrm{se}\left(\hat{\beta}_{1}\right) \\
& \Rightarrow \text { reject } H_{0} \text { vs. } \mathrm{H}_{1} \text { at } 1 \text { percent level. }
\end{aligned}
$$

- Inference: At the $\mathbf{1 \%}$ significance level, the null hypothesis $\mathrm{H}_{0}: \beta_{1}=0$ is rejected in favour of the alternative hypothesis $\mathrm{H}_{1}: \beta_{1} \neq 0$.

Conclusion implied by test outcome:

(1 mark)
Rejection of the null hypothesis $\beta_{1}=0$ against the alternative hypothesis $\beta_{1} \neq 0$ means that the sample evidence favours the existence of a relationship between the number of prenatal visits of mothers and the birth weights of their female newborns.

(8 marks)

(b) Perform a test of the proposition that newborn females' birth weights are positively related to their mother's number of prenatal visits during pregnancy, i.e., that an increase in the number of prenatal visits increases the birth weights of newborn females. Use the 1 percent significance level (i.e., $\alpha=0.01$). State the null hypothesis H_{0} and the alternative hypothesis H_{1}. Show how you calculated the test statistic. State the decision rule you use, and the inference you would draw from the test.

ANSWER to Question 4(b):

Null and Alternative Hypotheses:

$H_{0}: \beta_{1}=0$
(1 mark)
$\mathrm{H}_{1}: \beta_{1}>0 \quad \Rightarrow$ a right-tailed t-test

- Test statistic is $\mathrm{t}\left(\hat{\beta}_{1}\right)=\frac{\hat{\beta}_{1}-\beta_{1}}{\operatorname{se}\left(\hat{\beta}_{1}\right)} \sim \mathrm{t}[\mathrm{N}-2] ; \hat{\beta}_{1}=14.1219 ; \operatorname{se}\left(\hat{\beta}_{1}\right)=5.36347$.
- Calculate the sample value of the \mathbf{t}-statistic under H_{0} :
set $\beta_{1}=0, \hat{\beta}_{1}=\mathbf{1 4 . 1 2 1 9}$, and $\operatorname{sê}\left(\hat{\beta}_{1}\right)=5.36347$.

$$
\mathrm{t}_{0}\left(\hat{\beta}_{1}\right)=\frac{\hat{\beta}_{1}-\beta_{1}}{\operatorname{se}\left(\hat{\beta}_{1}\right)}=\frac{14.1219-0.0}{5.36347}=\frac{14.1219}{5.36347}=\mathbf{2 . 6 3 2 9 8}=\underline{\mathbf{2 . 6 3}}
$$

- Null distribution of $\mathrm{t}_{0}\left(\hat{\beta}_{1}\right)$ is $\mathbf{t}[\mathbf{N}-2]=\mathbf{t}[857-2]=\mathbf{t}[855]$

Decision Rule: At significance level α,

> (2 marks)

- reject \mathbf{H}_{0} if $\mathrm{t}_{0}\left(\hat{\beta}_{1}\right)>\mathrm{t}_{\alpha}[855]$,
- retain \mathbf{H}_{0} if $\mathrm{t}_{0}\left(\hat{\beta}_{1}\right) \leq \mathrm{t}_{\alpha}$ [855].

Critical value of t[855]-distribution: from t-table, use $\mathbf{d f}=\mathbf{1 2 0}$ or $\mathbf{d f}=\infty$ or any number in between.

- right-tail $\underline{1}$ percent critical value $=t_{0.01}[855]=\underline{2.331}=\underline{2.33}$

$$
\begin{aligned}
& =\mathrm{t}_{0.01}[855]=\underline{2.358}=\underline{2.36} \\
& =\mathrm{t}_{0.01}[\infty]=\underline{2.326}=\underline{2.33}
\end{aligned}
$$

ANSWER to Question 4(b) -- continued:

Inference:

- At 1 percent significance level, i.e., for $\alpha=0.01$,
$t_{0}\left(\hat{\beta}_{1}\right)=2.63>2.33=t_{0.01}[855] \quad \Rightarrow \quad$ reject H_{0} vs. H_{1} at 1 percent level.
- Inference: At the $\mathbf{1 \%}$ significance level, the null hypothesis $\mathbf{H}_{0}: \beta_{1}=0$ is rejected in favour of the alternative hypothesis $\mathbf{H}_{\mathbf{1}}: \boldsymbol{\beta}_{\mathbf{1}}>\mathbf{0}$.

(14 marks)

(c) Compute the two-sided 95\% confidence interval for the intercept coefficient β_{0}. Use this two-sided 95% confidence interval for β_{0} to test the hypothesis that the mean birth weight of newborn females whose mothers made no prenatal visits to a physician or midwife equals 3,000 grams. State the null hypothesis H_{0} and the alternative hypothesis H_{1}. State the decision rule you use, and the inference you would draw from the test.

ANSWER to Question 4(c):

- The two-sided $(1-\alpha)$-level, or $\mathbf{1 0 0}(1-\alpha)$ percent, confidence interval for β_{1} is computed as

$$
\hat{\beta}_{0}-\mathrm{t}_{\alpha / 2}[\mathrm{~N}-2] \operatorname{se}\left(\hat{\beta}_{0}\right) \leq \beta_{0} \leq \hat{\beta}_{0}+\mathrm{t}_{\alpha / 2}[\mathrm{~N}-2] \operatorname{se}\left(\hat{\beta}_{0}\right)
$$

(2 marks)
where

- $\hat{\beta}_{0 L}=\hat{\beta}_{0}-t_{\alpha / 2}[\mathrm{~N}-2] \operatorname{se}\left(\hat{\beta}_{0}\right)=$ the lower $\mathbf{1 0 0}(\mathbf{1}-\alpha) \%$ confidence limit for β_{0}
- $\hat{\beta}_{0 U}=\hat{\beta}_{0}+t_{\alpha / 2}[N-2] \operatorname{se}\left(\hat{\beta}_{0}\right)=$ the upper $100(1-\alpha) \%$ confidence limit for β_{0} - $\mathrm{t}_{\alpha / 2}[\mathrm{~N}-2]=$ the $\alpha / \mathbf{2}$ critical value of the \mathbf{t}-distribution with N -2 degrees of freedom.
- Required results and intermediate calculations:

$$
\mathrm{N}-\mathrm{K}=857-2=855 ; \quad \hat{\beta}_{0}=3199.02 ; \quad \operatorname{se}\left(\hat{\beta}_{0}\right)=65.6909
$$

$$
1-\alpha=0.95 \Rightarrow \alpha=0.05 \Rightarrow \alpha / \mathbf{2}=\mathbf{0 . 0 2 5 :} \quad \mathrm{t}_{\alpha / 2}[\mathrm{~N}-2]=\mathbf{t}_{\mathbf{0 . 0 2 5}}[\mathbf{8 5 5}]=\mathbf{1 . 9 6 3}
$$

$$
=\mathrm{t}_{0.025}[855]=1.980
$$

$$
=\mathbf{t}_{0.025}[\infty]=1.960
$$

$\mathrm{t}_{\alpha / 2}[\mathrm{~N}-2] \operatorname{se}\left(\hat{\beta}_{0}\right)=\mathrm{t}_{0.025}[855] \operatorname{se}\left(\hat{\beta}_{0}\right)=1.963(65.6909)=\mathbf{1 2 8 . 9 5 1 2 4}$

- Lower 95% confidence limit for β_{0} is:

$$
\begin{aligned}
\hat{\beta}_{0 L} & =\hat{\beta}_{0}-\mathrm{t}_{\alpha / 2}[\mathrm{~N}-2] \operatorname{se}\left(\hat{\beta}_{0}\right)=\hat{\beta}_{0}-\mathrm{t}_{0.025}[855] \operatorname{se}\left(\hat{\beta}_{0}\right) \\
& =3199.02-\mathbf{1 . 9 6 3}(65.6909)=3199.02-128.95124=3070.069=\underline{\mathbf{3 0 7 0 . 0 7}} \\
& =3199.02-\mathbf{1 . 9 8 0}(65.6909)=3199.02-130.06798=3068.952=\underline{\mathbf{3 0 6 8 . 9 5}} \\
& =3199.02-\mathbf{1 . 9 6 0}(65.6909)=3199.02-128.75416=3070.266=\underline{\mathbf{3 0 7 0 . 2 7}}
\end{aligned}
$$

ANSWER to Question 4(c) -- continued:

- Upper 95% confidence limit for β_{0} is:
(3 marks)

$$
\begin{aligned}
\hat{\beta}_{0 U} & =\hat{\beta}_{0}+\mathrm{t}_{\alpha / 2}[\mathrm{~N}-2] \operatorname{se}\left(\hat{\boldsymbol{\beta}}_{0}\right)=\hat{\beta}_{0}+\mathrm{t}_{0.025}[855] \operatorname{se}\left(\hat{\beta}_{0}\right) \\
& =3199.02+\mathbf{1 . 9 6 3}(65.6909)=3199.02+128.95124=3327.971=\underline{\mathbf{3 3 2 7 . 9 7}} \\
& =3199.02+\mathbf{1 . 9 8 0}(65.6909)=3199.02+130.06798=3329.088=\underline{\mathbf{3 3 2 9 . 0 9}} \\
& =3199.02+\mathbf{1 . 9 6 0}(65.6909)=3199.02+128.75416=3327.774=\underline{\mathbf{3 3 2 7 . 7 7}}
\end{aligned}
$$

- Result: The two-sided 95\% confidence interval for β_{0} is: [3070.07, 3327.97]

$$
\begin{aligned}
& 3070.07 \leq \beta_{0} \leq 3327.97 \text { or } \\
& 3068.95 \leq \beta_{0} \leq 3329.09 \text { or } \\
& 3070.27 \leq \beta_{0} \leq 3327.77
\end{aligned}
$$

- Null and Alternative Hypotheses:

```
\(\mathrm{H}_{0}: \beta_{0}=3000\)
\(\mathrm{H}_{1}: \beta_{0} \neq 3000 \quad\) a two-sided alternative hypothesis \(\Rightarrow\) a two-tailed test
```

- Decision Rule: At significance level α,
- reject $\mathbf{H}_{\mathbf{0}}$ if the hypothesized value $\mathbf{b}_{\mathbf{0}}$ of β_{0} specified by H_{0} lies outside the two-sided ($1-\alpha$)-level confidence interval for β_{0}, i.e., if either
(1) $\mathrm{b}_{0}<\hat{\beta}_{0}-\mathrm{t}_{\alpha / 2}[855] s e ̂\left(\hat{\beta}_{0}\right)$
or
(2) $b_{0}>\hat{\beta}_{0}+t_{\alpha / 2}[855] s \hat{e}\left(\hat{\beta}_{0}\right)$.
- retain $\mathbf{H}_{\mathbf{0}}$ if the hypothesized value $\mathbf{b}_{\mathbf{0}}$ of $\boldsymbol{\beta}_{\mathbf{0}}$ specified by H_{0} lies inside the two-sided ($1-\alpha$)-level confidence interval for β_{0}, i.e., if $\hat{\beta}_{0}-\mathrm{t}_{\alpha / 2}[855] \operatorname{se}\left(\hat{\beta}_{0}\right) \leq \mathrm{b}_{0} \leq \hat{\beta}_{0}+\mathrm{t}_{\alpha / 2}[855] s \hat{\mathrm{e}}\left(\hat{\beta}_{0}\right)$.

Inference:

(2 marks)

- At 5 percent significance level, i.e., for $\alpha=0.05$,

$$
\begin{aligned}
& \mathrm{b}_{0}=3000<3070.07=\hat{\beta}_{0 \mathrm{~L}}=\hat{\beta}_{0}-\mathrm{t}_{0.025}[855] \mathrm{se}\left(\hat{\beta}_{0}\right) \\
& \Rightarrow \text { reject } H_{0} \text { vs. } \mathrm{H}_{1} \text { at } 5 \text { percent level. }
\end{aligned}
$$

- Inference: At the $\mathbf{5 \%}$ significance level, the null hypothesis $\mathbf{H}_{\mathbf{0}}: \boldsymbol{\beta}_{\mathbf{0}}=\mathbf{3 0 0 0}$ is rejected in favour of the alternative hypothesis $\mathrm{H}_{1}: \beta_{0} \neq 3000$.

(8 marks)

(d) Perform a test of the proposition that each additional prenatal visit made by the mother is associated on average with an increase in their newborn females' birth weight of less than 25 grams. Use the 5 percent significance level (i.e., $\alpha=0.05$). State the null hypothesis H_{0} and the alternative hypothesis H_{1}. Show how you calculated the test statistic. State the decision rule you use, and the inference you would draw from the test.

ANSWER to Question 4(d):

Null and Alternative Hypotheses:

$$
\begin{aligned}
& \mathrm{H}_{0}: \beta_{1}=25 \\
& \mathrm{H}_{1}: \beta_{1}<25 \quad \Rightarrow \text { a left-tailed t-test }
\end{aligned}
$$

- Test statistic is $\mathrm{t}\left(\hat{\beta}_{1}\right)=\frac{\hat{\beta}_{1}-\beta_{1}}{\operatorname{se}\left(\hat{\beta}_{1}\right)} \sim \mathrm{t}[\mathrm{N}-2] ; \hat{\beta}_{1}=14.1219 ; \operatorname{se}\left(\hat{\beta}_{1}\right)=5.36347$.
- Calculate the sample value of the \mathbf{t}-statistic under H_{0} : set $\beta_{1}=25, \hat{\beta}_{1}=\mathbf{1 4 . 1 2 1 9}$, and $\operatorname{se}\left(\hat{\beta}_{1}\right)=5.36347$.

$$
\begin{equation*}
\mathrm{t}_{0}\left(\hat{\beta}_{1}\right)=\frac{\hat{\beta}_{1}-\beta_{1}}{\operatorname{se}\left(\hat{\beta}_{1}\right)}=\frac{14.1219-25.0}{5.36347}=\frac{-10.8781}{5.36347}=\mathbf{- 2 . 0 2 8 1 8}=\underline{-\mathbf{2 . 0 3}} \tag{2marks}
\end{equation*}
$$

- Null distribution of $\mathrm{t}_{0}\left(\hat{\beta}_{1}\right)$ is $\mathbf{t}[\mathbf{N}-2]=\mathbf{t}[857-2]=\mathbf{t}[855]$

Decision Rule: At significance level $\boldsymbol{\alpha}$,

- reject \mathbf{H}_{0} if $\mathrm{t}_{0}\left(\hat{\beta}_{1}\right)<-\mathrm{t}_{\alpha}$ [855],
- retain \mathbf{H}_{0} if $\mathrm{t}_{0}\left(\hat{\beta}_{1}\right) \geq-\mathrm{t}_{\alpha}$ [855].

Critical value of t[855]-distribution: from t-table, use $\mathbf{d f}=\mathbf{1 2 0}$ or $\mathbf{d f}=\infty$ or any number in between.

- left-tail 1 percent critical value $=-\mathrm{t}_{0.05}[855]=-\underline{\mathbf{1 . 6 4 6}}=-\underline{\mathbf{1 . 6 5}}$
(1 mark)

$$
\begin{aligned}
& =-\mathrm{t}_{0.05}[855]=\underline{-\mathbf{1 . 6 5 8}}=\underline{-\mathbf{1 . 6 6}} \\
& =-\mathrm{t}_{0.05}[\infty]=\underline{\mathbf{- 1 . 6 4 5}}=\underline{\mathbf{- 1 . 6 5}}
\end{aligned}
$$

ANSWER to Question 4(d) -- continued:

Inference:

- At 5 percent significance level, i.e., for $\alpha=0.05$,
$\mathrm{t}_{0}\left(\hat{\beta}_{1}\right)=-2.03<-\mathbf{1 . 6 5}=-\mathrm{t}_{0.05}[855] \Rightarrow$ reject H_{0} vs. H_{1} at 5 percent level.
- Inference: At the 5\% significance level, the null hypothesis $H_{0}: \beta_{1}=\mathbf{2 5}$ is rejected in favour of the alternative hypothesis $\mathbf{H}_{\mathbf{1}}: \beta_{\mathbf{1}}<\mathbf{2 5}$.

Percentage Points of the t-Distribution

TABLE D. 2
Percentage points of the t distribution

$\operatorname{Pr}(|t|>1.725)=0.10$

$\mathbf{P r}$	0.25	0.10	0.05	0.025	0.01	0.005	0.001
df	0.50	0.20	0.10	0.05	0.02	0.010	0.002
1	1.000	.3 .078	6.314	12.706	31.821	63.657	318.31
2	0.816	1.886	2.920	4.303	6.965	9.925	22.327
3	0.765	1.638	2.353	3.182	4.541	5.841	10.214
4	0.741	1.533	2.132	2.776	3.747	4.604	7.173
5	0.727	1.476	2.015	2.571	3.365	4.032	5.893
6	0.718	1.440	1.943	2.447	3.143	3.707	5.208
7	0.711	1.415	1.895	2.365	2.998	3.499	4.785
8	0.706	1.397	1.860	2.306	2.896	3.355	4.501
9	0.703	1.383	1.833	2.262	2.821	3.250	4.297
10	0.700	1.372	1.812	2.228	2.764	3.169	4.144
11	0.697	1.363	1.796	2.201	2.718	3.106	4.025
12	0.695	1.356	1.782	2.179	2.681	3.055	3.930
13	0.694	1.350	1.771	2.160	2.650	3.012	3.852
14	0.692	1.345	1.761	2.145	2.624	2.977	3.787
15	0.691	1.341	1.753	2.131	2.602	2.947	3.733
16	0.690	1.337	1.746	2.120	2.583	2.921	3.686
17	0.689	1.333	1.740	2.110	2.567	2.898	3.646
18	0.688	1.330	1.734	2.101	2.552	2.878	3.610
19	0.688	1.328	1.729	2.093	2.539	2.861	3.579
20	0.687	1.325	1.725	2.086	2.528	2.845	3.552
21	0.686	1.323	1.721	2.080	2.518	2.831	3.527
22	0.686	1.321	1.717	2.074	2.508	2.819	3.505
23	0.685	1.319	1.714	2.069	2.500	2.807	3.485
24	0.685	1.318	1.711	2.064	2.492	2.797	3.467
25	0.684	1.316	1.708	2.060	2.485	2.787	3.450
26	0.684	1.315	1.706	2.056	2.479	2.779	3.435
27	0.884	1.314	1.703	2.052	2.473	2.771	3.421
28	0.883	1.313	1.701	2.048	2.467	2.763	3.408
29	0.683	1.311	1.699	2.045	2.462	2.756	3.396
30	0.683	1.310	1.697	2.042	2.457	2.750	3.385
40	0.681	1.303	1.684	2.021	2.423	2.704	3.307
60	0.679	1.296	1.671	2.000	2.390	2.660	3.232
120	0.677	1.289	1.658	1.980	2.358	2.617	3.160
∞	0.674	1.282	1.645	1.960	2.326	2.576	3.090

Note: The smaller probability shown at the head of each column is the area in one tail: the larger probability is the area in both tails.
Source: From E. S. Pearson and H. O. Hartley, eds.. Biometrika Tables for Statisticians, vol. 1, 3d ed., lable 12. Cam. bridge University Press. New York. 1966. Reproduced by permission of the editors and irusteez of Biorretrika.

Source: Damodar N. Gujarati, Basic Econometrics, Third Edition. New York: McGraw-Hill, 1995, p. 809.

Selected Upper Percentage Points of the F-Distribution
table D. 3
Upper percentage points of the F distribution (continued)

df for denorninntor $\boldsymbol{N}_{\mathbf{2}}$	df Cor numerator $\mathbf{N}_{\mathbf{1}}$												
	Pr	1	2	3	4	5	6	7	8	9	10	11	12
22	. 25	1.40	1.48	1.47	1.45	1.44	1.42	1.41	1.40	$t .39$	1.39	1.38	1.37
	. 10	2.95	2.56	2.35	2.22	2.13	2.06	2.01	1.97	1.93	1.90	1.88	1.86
	. 05	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.34	2.30	2.26	2.23
	. 01	7.95	5.72	4.82	4.31	3.99	3.76	3.59	3.45	3.35	3.26	3.18	3.12
24	. 25	1.39	1.47	1.46	1.44	1.43	1.41	1.40	1.39	1.38	1.38	1.37	1.36
	. 10	2.93	2.54	2.33	2.19	2.10	2.04	1.98	1.94	1.91	1.88	1.85	1.83
	. 05	. 4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30	2.25	2.21	2.18
	. 01	. 7.82	5.61	4.72	4.22	3.90	3.67	3.50	3.36	3.26	3.17	3.09	3.03
26	. 25	1.38	1.46	1.45	1.44	1.42	1.41	1.39	1.38	1.37	1.37	1.36	1.35
	. 10	2.91	2.52	2.31	2.17	2.08	2.01	1.96	1.92	1.88	1.86	1.84	1.81
	. 05	4.23	3.37	2.98	2.74	2.59	2.47	2.39	2.32	2.27	2.22	2.18	2.15
	. 01	7.72	5.53	4.64	4.14	3.82	3.59	3.42	3.29	3.18	3.09	3.02	2.96
28	. 25	1.38	1.46	1.45	1.43	1.41	1.40	1.39	1.38	1.37	1.36	1.35	1.34
	. 10	2.89	2.50	2.29	2.16	2.06	2.00	1.94	1.90	1.87	1.84	1.81	1.79
	. 05	4.20	3.34	2.95	2.71	2.56	2.45	2.36	2.29	2.24	2.19	2.15	2.12
	. 01	7.64	5.45	4.57	4.07	3.75	3.53	3.36	3.23	3.12	3.03	2.96	2.90
30	. 25	1.38	1.45	1.44	1.42	1.41	1.39	1.38	1.37	1.36	1.35	1.35	1.34
	. 10	2.88	2.49	2.28	2.14	2.05	1.98	1.93	1.88	1.85	1.82	1.79	1.77
	. 05	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21	2.16	2.13	2.09
	. 01	7.56	5.39	4.51	4.02	3.70	3.47	3.30	3.17	3.07	2.98	2.91	2.84
40	. 25	1.36	1.44	1.42	1.40	1.39	1.37	1.36	1.35	1.34	1.33	1.32	1.31
	. 10	2.84	2.44	2.23	2.09	2.00	1.93	1.87	1.83	1.79	1.76	1.73	1.71
	. 05	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12	2.08	2.04	2.00
	. 01	7.31	5.18	4.31	3.83	3.51	3.29	3.12	2.99	2.89	2.80	2.73	$2{ }^{\circ} 66^{\prime}$
60	. 25	1.35	1.42	1.41	1.38	1.37	1.35	1.33	1.32	1.31	1.30	$1.29{ }^{\circ}$	1.29
	. 10	2.79	2.39	2.18	2.04	1.95	1.87	1.82	1.77	1.74	1.71	1.68	1.66
	. 05	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	2.04	1.99	1.95	1.92
	. 01	7.08	4.98	4.13	3.65	3.34	3.12	2.95	2.82	2.72	2.63	2.56	2.50
120	. 25	1.34	1.40	1.39	1.37	1.35	1.33	1.31	1.30	1.29	1.28	1.27	1.26
	. 10	2.75	2.35	2.13	1.99	1.90	1.82	1.77	1.72	1.68	1.65	1.62	1.60
	. 05	3.92	3.07	2.68	2.45	2.29	2.17	2.09	2.02	1.96	1.91	1.87	1.83
	. 01	6.85	4.79	3.95	3.48	3.17	2.96	2.79	2.66	2.56	2.47	2.40	2.34
200	. 25	1.33	1.39	1.38	1.36	1.34	1.32	1.31	1.29	1.28	1.27	1.26	1.25
	. 10	2.73	2.33	2.11	1.97	1.88	1.80	1.75	1.70	1.66	1.63	1.60	1.57
	. 05	3.89	3.04	2.65	2.42	2.26	2.14	2.06	1.98	1.93	1.88	1.84	1.80
	. 01	6.76	4.71	3.88	3.41	3.11	2.89	2.73	2.60	2.50	2.41	2.34	2.27
∞	. 25	1.32	1.39	1.37	1.35	1.33	1.31	1.29	1.28	1.27	1.25	1.24	1.24
	. 10	2.71	2.30	2.08	1.94	1.85	1.77	1.72	1.67	1.63	1.60	1.57	1.55
	. 05	3.84	3.00	2.60	2.37	2.21	2.10	2.01	1.94	1.88	1.83	1.79	1.75
	. 01	6.63	4.61	3.78	3.32	3.02	2.80	2.64	2.51	2.41	2.32	2.25	2.18

Source: Damodar N. Gujarati, Basic Econometrics, Third Edition. New York: McGraw-Hill, 1995, p. 814.

