Queen's University
 Department of Economics

 ECON 351* -- Introductory Econometrics

 ECON 351* -- Introductory Econometrics
 ASSIGNMENT 3 - ANSWERS

Winter Term 2009

M.G. Abbott

TOPIC: OLS Estimation and Inference in the Multiple Linear Regression Model

INSTRUCTIONS:

- Answer all questions on standard-sized 8.5×11-inch paper.
- Answers need not be typewritten (document processed), but if hand-written must be legible. Illegible assignments will be returned unmarked.
- Please label clearly each answer with the appropriate question number and letter. Securely staple all answer sheets together, and make certain that your name(s) and student number(s) are printed clearly at the top of each answer sheet.
- Students submitting joint assignments must ensure that each student's name and student number are printed clearly at the top of each answer sheet. Submit only one copy of the assignment.

MARKING: Marks for each question are indicated in parentheses. Total marks for the assignment equal 132. Marks are given for both content and presentation.

SOFT DUE DATE: \quad Tuesday March 31, 2009 by 4:00 p.m.

HARD DUE DATE: \quad Friday April 3, 2009 by 4:00 p.m.

- Assignments submitted on or before the soft due date will receive a bonus of 5 points to a maximum total mark of 132.
- Assignments submitted after the hard due date will be penalized 20 points per day.
- Please submit your assignments either to me in class, or by depositing them in the ECON 351 slot of the Assignment Collection Box located immediately inside the double doors on the second floor of Dunning Hall (opposite the elevator).

DATA FILE: 351assn3w09.raw (a text-format, or ASCII-format, data file)

- Data Description: A random sample of 321 houses that were sold in a single metropolitan area in the years 1978 and 1981.
- Objective of the Analysis: The primary objective of the research project for which this dataset was originally assembled was to estimate empirically the effect on house prices of proximity to an incinerator, which presumably generates negative externalities for homeowners and others located close to it. Keep this objective in mind as you work your way through the questions in this assignment.
- Variable Definitions:

PRICE $_{i} \equiv$ selling price of house i , in dollars.
HSIZE $_{i} \equiv$ living area of house i, in square metres.
LSIZE $_{i} \equiv$ area of the lot of house i, in square metres.
ROOMS $_{i} \equiv$ number of rooms in house i.
BATHS $_{i} \equiv$ number of bathrooms in house i.
AGE $_{i} \quad \equiv$ age of house i , in years.
Y81 \equiv an indicator variable defined to equal 1 if house i was sold in 1981, and 0 if house i was sold in 1978.
$\mathrm{CBD}_{\mathrm{i}} \equiv$ distance of house i from central business district, in metres.
$\mathrm{DIST}_{\mathrm{i}} \equiv$ distance of house i from incinerator, in metres.

- Stata Infile Statement: Use the following Stata infile statement to read the text-format data file 351assn3w09.raw:
infile price hsize lsize rooms baths age y81 cbd dist using 351assn3w09.raw

QUESTIONS AND ANSWERS

(48 marks)

1. Compute and present OLS estimates of the following population regression equation for the full sample of 321 houses:

$$
\begin{align*}
\text { PRICE }_{i}=\beta_{0} & +\beta_{1} \text { HSIZE }_{i}+\beta_{2} \text { LSIZE }_{i}+\beta_{3} \text { HSIZE }_{i} \text { LSIZE }_{i}+\beta_{4} \text { ROOMS }_{i}+\beta_{5} \text { BATHS }_{i} \\
& +\beta_{6} \text { AGE }_{i}+\beta_{7} \text { AGE }_{\mathrm{i}}^{2}+\beta_{8} \text { DIST }_{i}+\beta_{9} \text { DIST }_{\mathrm{i}}^{2}+\beta_{10} \text { CBD }_{i}+\beta_{11} \mathrm{Y81}_{\mathrm{i}}+\mathrm{u}_{\mathrm{i}} \tag{1}
\end{align*}
$$

(12 marks)
(a) Compute and report OLS estimates of regression equation (3) for the full sample of 321 houses. Present the estimation results in an appropriate table.

ANSWER Question 1(a)

. regress price hsize lsize hsizelsize rooms baths age agesq dist distsq cbd y81

Source \|	SS	df MS			Number of obs $=321$	
					F(11, 309)	$=86.42$
Model \|	$4.5119 \mathrm{e}+11$	114.1	8e+10		Prob > F	$=0.0000$
Residual \|	$1.4666 e+11$	30947	26870		R-squared	0.7547
					Adj R-squared	0.7460
Total \|	$5.9785 \mathrm{e}+11$	3201.8	$3 \mathrm{e}+09$		Root MSE	$=21786$
price \|	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf.	Interval]
hsize \|	93.80356	34.6208	2.71	0.007	25.68122	161.9259
lsize	-3.410538	. 8284851	-4.12	0.000	-5.040724	-1.780352
hsizelsize	. 0270578	. 004151	6.52	0.000	. 0188899	. 0352257
rooms	3343.379	1839.101	1.82	0.070	-275.3674	6962.125
baths	11453.16	2860.263	4.00	0.000	5825.102	17081.22
age	-584.915	149.3339	-3.92	0.000	-878.755	-291.0749
agesq	2.120924	. 9216408	2.30	0.022	. 3074383	3.93441
dist	8.0328	2.712159	2.96	0.003	2.696163	13.36944
distsq	-. 0004487	. 0002048	-2.19	0.029	-. 0008517	-. 0000457
cbd	-2.833553	1.896985	-1.49	0.136	-6.566196	. 8990891
y81 \|	37509.43	2574.096	14.57	0.000	32444.46	42574.41
_cons \|	-4241.35	13134.38	-0.32	0.747	-30085.49	21602.79

ANSWER Question 1(a) - continued

Note: The OLS estimates of equation (1) must be presented in a tabular format similar to the one below in Table 1. Deduct 4 marks if only some version of the Stata output from the regress command is given.

Table 1: OLS Estimates of Equation (1)

Regressor	$\hat{\beta}_{\mathrm{j}}$	$\mathrm{se}\left(\hat{\boldsymbol{\beta}}_{\mathrm{j}}\right)$	$\mathrm{t}\left(\hat{\beta}_{\mathrm{j}}\right)$	Lower 95\% limit	Upper 95\% limit
Constant	$\mathbf{- 4 2 4 1 . 3 5}$	$\mathbf{1 3 1 3 4 . 3 8}$	$\mathbf{- 0 . 3 2}$	-30085.49	21602.79
HSIZE $_{\mathrm{i}}$	$\mathbf{9 3 . 8 0 3 5 6}$	$\mathbf{3 4 . 6 2 0 8 0}$	$\mathbf{2 . 7 1}$	25.68122	161.9259
LSIZE $_{\mathrm{i}}$	$\mathbf{- 3 . 4 1 0 5 3 8}$	$\mathbf{0 . 8 2 8 4 8 5 1}$	$\mathbf{- 4 . 1 2}$	-5.040724	-1.780352
HSIZE $_{\mathrm{i}} \mathrm{LSIZE}$	$\mathbf{0 . 0 2 7 0 5 7 8}$	$\mathbf{0 . 0 0 4 1 5 1}$	$\mathbf{6 . 5 2}$	0.0188899	0.0352257
ROOMS $_{\mathrm{i}}$	$\mathbf{3 3 4 3 . 3 7 9}$	$\mathbf{1 8 3 9 . 5 0 7}$	$\mathbf{1 . 8 2}$	-275.3674	6962.125
BATHS $_{\mathrm{i}}$	$\mathbf{1 1 4 5 3 . 1 6}$	$\mathbf{2 8 6 0 . 2 6 3}$	$\mathbf{4 . 0 0}$	5825.102	17081.22
AGE $_{\mathrm{i}}$	$\mathbf{- 5 8 4 . 9 1 5}$	$\mathbf{1 4 9 . 3 3 3 9}$	$\mathbf{- 3 . 9 2}$	-878.755	-291.0749
AGE $_{\mathrm{i}}$-sq	$\mathbf{2 . 1 2 0 9 2 4}$	$\mathbf{. 9 2 1 6 4 0 8}$	$\mathbf{2 . 3 0}$.3074383	3.93441
DIST $_{\mathrm{i}}$	$\mathbf{8 . 0 3 2 8 0 0}$	$\mathbf{2 . 7 1 2 1 5 9}$	$\mathbf{2 . 9 6}$	2.696163	13.36944
DIST $_{\mathrm{i}}$-sq	$\mathbf{- 0 . 0 0 0 4 4 8 7}$	$\mathbf{0 . 0 0 0 2 0 4 8}$	$\mathbf{- 2 . 1 9}$	-0.0008517	-0.0000457
$\mathrm{CBD}_{\mathrm{i}}$	$\mathbf{- 2 . 8 3 3 5 5 3}$	$\mathbf{1 . 8 9 6 9 8 5}$	$\mathbf{- 1 . 4 9}$	-6.566196	0.8990891
$\mathrm{Y81}_{\mathrm{i}}$	$\mathbf{3 7 5 0 9 . 4 3}$	$\mathbf{2 5 7 4 . 0 9 6}$	$\mathbf{1 4 . 5 7}$	32444.46	42574.41

(12 marks)

(b) Write the expression implied by equation (1) for the partial marginal effect of $\mathrm{DIST}_{\mathrm{i}}$ on house prices. Use the OLS estimation results for equation (1) to test the proposition that distance from the incinerator has no effect on mean house prices for all values of DIST $_{i}$. State the null and alternative hypotheses, and show how the sample value of the test statistic is calculated (give its formula). Report the sample value of the test statistic and its p-value. State the decision rule you use, and the inference you would draw from the test. Does the sample evidence favour the proposition?

ANSWER Question 1(b)

(total marks = 12)

- The partial marginal effect of DIST $_{\mathrm{i}}$ on house prices is:

$$
\begin{equation*}
\frac{\partial \mathrm{PRICE}_{\mathrm{i}}}{\partial \mathrm{DIST}_{\mathrm{i}}}=\frac{\partial \mathrm{E}\left(\mathrm{PRICE}_{\mathrm{i}} \mid \bullet\right)}{\partial \mathrm{DIST}_{\mathrm{i}}}=\beta_{8}+2 \beta_{9} \mathrm{DIST}_{\mathrm{i}} \tag{2marks}
\end{equation*}
$$

Null hypothesis: $\quad \mathrm{H}_{0}: \beta_{8}=0$ and $\beta_{9}=0$
Alternative hypothesis: $\mathrm{H}_{1}: \beta_{8} \neq 0$ and/or $\beta_{9} \neq 0$

- Formula for general F-test statistic is:
$\mathrm{F}=\frac{\left(\mathrm{RSS}_{0}-\mathrm{RSS}_{1}\right) /\left(\mathrm{df}_{0}-\mathrm{df}_{1}\right)}{\mathrm{RSS}_{1} / \mathrm{df}_{1}}=\frac{\left(\mathrm{RSS}_{0}-\mathrm{RSS}_{1}\right) /\left(\mathrm{K}-\mathrm{K}_{0}\right)}{\mathrm{RSS}_{1} /(\mathrm{N}-\mathrm{K})}$
$\underline{\text { or }}$
$F=\frac{\left(R_{U}^{2}-R_{R}^{2}\right) /\left(d f_{0}-d f_{1}\right)}{\left(1-R_{U}^{2}\right) / d f_{1}}=\frac{\left(R_{U}^{2}-R_{R}^{2}\right) /\left(K-K_{0}\right)}{\left(1-R_{U}^{2}\right) /(N-K)}$
where:
$\mathrm{df}_{0}=\mathrm{N}-\mathrm{K}_{0}=$ degrees-of-freedom for $\mathrm{RSS}_{0}=321-10=311 ;$
$\mathrm{df}_{1}=\mathrm{N}-\mathrm{K}=$ degrees-of-freedom for $\mathrm{RSS}_{1}=321-12=\mathbf{3 0 9}$;
number of restrictions specified by $\mathrm{H}_{0}=\mathrm{q}=\mathrm{df}_{0}-\mathrm{df}_{1}=\mathrm{K}-\mathrm{K}_{0}=12-10=\mathbf{2}$
- Sample value $\mathbf{F}_{\mathbf{0}}$ of the general F -test statistic and \mathbf{p}-value under H_{0} is:
$\mathrm{F}_{0}=\mathbf{4 . 3 9 5 2 = \underline { 4 . 4 0 }}$
(2 marks)
p-value of $\mathrm{F}_{\mathbf{0}}=\mathbf{0 . 0 1 3 1 2 = \underline { 0 . 0 1 3 1 }}$
(1 mark)
- Decision rule and inference: either formulation 1 or 2
(1) Decision Rule -- Formulation 1: This a two-tail test. Compare the sample value F_{0} with the α-level critical value of the $\mathrm{F}[2, \mathrm{~N}-12]=\mathrm{F}[2,309]$ distribution.

1. If $\mathrm{F}_{0} \leq \mathrm{F}_{\alpha}[2, \mathrm{~N}-12]$, retain (do not reject) $\mathbf{H}_{\mathbf{0}}$ at the 100α percent significance level.
2. If $\mathrm{F}_{0}>\mathrm{F}_{\alpha}[2, \mathrm{~N}-12]$, reject $\mathbf{H}_{\mathbf{0}}$ at the 100α percent significance level.

Inference:

Since $F_{0}=\underline{4.40}>\underline{3.025}=\mathbf{F}_{0.05}[2,309]$, reject H_{0} at the 5% significance level.
Since $F_{0}=\underline{4.40}<\underline{4.674}=F_{0.01}[2,309]$, retain H_{0} at the 1% significance level.
(2) Decision Rule -- Formulation 2: This a two-tail test. Compare the \mathbf{p}-value for $\mathbf{F}_{\mathbf{0}}$ with the chosen significance level α.

1. If p-value for $\mathrm{F}_{0} \geq \alpha$, retain (do not reject) $\mathbf{H}_{\mathbf{0}}$ at significance level α.
2. If \mathbf{p}-value for $\mathrm{F}_{0}<\alpha$, $\boldsymbol{r e j e c t} \mathbf{H}_{\mathbf{0}}$ at significance level α.

Inference:

Since p-value for $\mathbf{F}_{\mathbf{0}}=\mathbf{0 . 0 1 3 1}<\mathbf{0 . 0 5}$, reject $\mathbf{H}_{\mathbf{0}}$ at the $\mathbf{5} \%$ significance level.
Since p-value for $\mathbf{F}_{\mathbf{0}}=\mathbf{0 . 0 1 3 1}>\mathbf{0 . 0 1}$, retain $\mathbf{H}_{\mathbf{0}}$ at the $\mathbf{1 \%}$ significance level.

- Result:

(1 mark)

The sample evidence favours the alternative hypothesis $\mathbf{H}_{\mathbf{1}}$ that distance from the incinerator has a non-zero effect on mean house prices at the 5% significance level, but favours the null hypothesis $\mathbf{H}_{\mathbf{0}}$ that distance from the incinerator has no effect on mean house prices at the $\mathbf{1 \%}$ significance level. It thus provides moderately strong evidence against the null hypothesis $\mathbf{H}_{\mathbf{0}}$ that distance from the incinerator has no marginal effect on mean house prices.

1. (continued)

(12 marks)

(c) Use the OLS estimation results for equation (1) to test a real estate broker's conjecture that the partial marginal effect on house prices of DIST $_{i}$, distance from the incinerator, is smaller for homes located further from the incinerator than for homes located close to the incinerator. State the null and alternative hypotheses, and show how the sample value of the test statistic is calculated (give its formula). Report the sample value of the test statistic and its p-value. State the appropriate critical values of the null distribution of the test statistic for both the 5 percent and 1 percent significance levels. State the decision rule you use, and the inference you would draw from the test. Does the sample evidence favour the real estate broker's conjecture?

Null hypothesis: $\quad \mathrm{H}_{0}: \beta_{9}=0 \quad\left(\right.$ or $\left.\beta_{9} \geq 0\right)$
(1 mark)
Alternative hypothesis: $\mathrm{H}_{1}: \beta_{9}<0 \quad$ a left-tail t-test

- Calculation of \mathbf{t}-test statistic: The sample value \mathbf{t}_{0} under the null hypothesis H_{0} is

$$
\begin{equation*}
\mathrm{t}_{0}\left(\hat{\beta}_{9}\right)=\frac{\hat{\beta}_{9}-\mathrm{b}_{9}}{\operatorname{se\hat {e}}\left(\hat{\beta}_{9}\right)}=\frac{\hat{\beta}_{9}-0}{\operatorname{sê}\left(\hat{\beta}_{9}\right)}=\frac{\hat{\beta}_{9}}{\operatorname{sê}\left(\hat{\beta}_{9}\right)}=\frac{-0.000448674}{0.000204801}=\underline{\mathbf{- 2 . 1 9 0 8}}=\underline{\mathbf{- 2 . 1 9}} \tag{2marks}
\end{equation*}
$$

- Left-tail p-value of $\mathbf{t}_{\mathbf{0}}=\operatorname{Pr}\left(\mathrm{t}<-\mathrm{t}_{0}\right)=\operatorname{Pr}(\mathrm{t}<-2.191)=\underline{\mathbf{0 . 0 1 4 6 0 7 2}}=\underline{\mathbf{0 . 0 1 4 6}}$
- Left-tail critical values of the $\mathbf{t}[\mathbf{N}-12]=\mathbf{t}[309]$ distribution are:
$-\mathrm{t}_{\alpha}[\mathrm{N}-12]=-\mathrm{t}_{0.05}[309]=\underline{\mathbf{- 1 . 6 5 0}}$ at the 5\% significance level $(\alpha=0.05)$
$-\mathrm{t}_{\alpha}[\mathrm{N}-12]=-\mathrm{t}_{0.01}[309]=\underline{\mathbf{- 2 . 3 3 8}}$ at the $\mathbf{1 \%}$ significance level $(\alpha=0.01)$
- Decision rule and inference: either formulation 1 or 2
(3 marks)
(1) Decision Rule -- Formulation 1: This a left-tail test. Compare the sample value t_{0} with the lower α-level critical value of the $\mathbf{t}[\mathrm{N}-12]=\mathbf{t}[309]$ distribution.

1. If $\mathrm{t}_{0}<-\mathrm{t}_{\alpha}[\mathrm{N}-12]$, reject $\mathbf{H}_{\mathbf{0}}$ at the 100α percent significance level.
2. If $t_{0} \geq-t_{\alpha}[\mathrm{N}-12]$, retain (do not reject) $\mathbf{H}_{\mathbf{0}}$ at the 100α percent significance level.

Inference:

Since $\mathrm{t}_{0}\left(\hat{\boldsymbol{\beta}}_{9}\right)=\mathbf{- 2 . 1 9}<\mathbf{- 1 . 6 5 0}=\mathbf{-} \mathbf{t}_{0.05}$ [309], reject $\mathbf{H}_{\mathbf{0}}$ at the $\mathbf{5} \%$ significance level.
Since $t_{0}\left(\hat{\beta}_{9}\right)=-2.19>-2.338=-\mathbf{t}_{0.01}[309]$, retain $\mathbf{H}_{\mathbf{0}}$ at the $\mathbf{1} \%$ significance level.
(2) Decision Rule -- Formulation 2: This a right-tail test. Compare the right-tail p-value for \mathbf{t}_{0} with the chosen significance level α.

1. If left-tail \mathbf{p}-value for $\mathbf{t}_{0} \geq \alpha$, retain (do not reject) $\mathbf{H}_{\mathbf{0}}$ at significance level α.
2. If left-tail p-value for $t_{0}<\alpha$, reject $\mathbf{H}_{\mathbf{0}}$ at significance level α.

Inference:

Since left-tail p-value for $\mathbf{t}_{\mathbf{0}}=\mathbf{0 . 0 1 4 6}<\mathbf{0 . 0 5}$, reject $\mathbf{H}_{\mathbf{0}}$ at the $\mathbf{5} \%$ significance level.
Since left-tail p-value for $\mathbf{t}_{\mathbf{0}}=\underline{\mathbf{0 . 0 1 4 6}}>\mathbf{0 . 0 1}, \boldsymbol{r e t a i n} \mathbf{H}_{\mathbf{0}}$ at the $\mathbf{1} \%$ significance level.

Result:

(1 mark)
The sample evidence favours the alternative hypothesis that $\beta_{9}<0$ at the 5% significance level, but not at the $\mathbf{1 \%}$ significance level. It thus provides only moderately strong evidence that the partial marginal effect on house prices of DIST $_{i}$ is decreasing in DIST $_{i}$.

(12 marks)

(d) Use the OLS estimation results for equation (1) to test the conjecture that distance from the incinerator has no marginal effect on mean prices for houses located 4,000 metres (4 kilometres) from the incinerator. State the null and alternative hypotheses, and show how the sample value of the test statistic is calculated (give its formula). Report the sample value of the test statistic and its p-value. State the decision rule you use, and the inference you would draw from the test. Does the sample evidence favour the conjecture?

- Null hypothesis: $\quad \mathrm{H}_{0}: \beta_{8}+2 \beta_{9} 4000=0$

Alternative hypothesis: $\mathrm{H}_{1}: \beta_{8}+2 \beta_{9} 4000 \neq 0$
a two-tail test
(3 marks)

- Calculation of \mathbf{t}-test statistic: The sample value \mathbf{t}_{0} under the null hypothesis H_{0} is

$$
\mathrm{t}_{0}\left(\hat{\beta}_{8}+8000 \hat{\beta}_{9}\right)=\frac{\hat{\beta}_{8}+8000 \hat{\beta}_{9}}{\operatorname{se}\left(\hat{\beta}_{8}+8000 \hat{\beta}_{9}\right)}=\frac{4.443406}{1.790786}=\underline{\mathbf{2 . 4 8 1 3}}=\underline{\mathbf{2 . 4 8}}
$$

- Two-tail p-value for $\mathrm{t}_{\mathbf{0}}=\underline{\mathbf{0 . 0 1 3 6 2 4}}=\underline{\mathbf{0 . 0 1 3 6}}$
- Decision rule and inference: either formulation 1 or 2
(1) Decision Rule -- Formulation 1: This a two-tail test. Compare the sample value t_{0} with the $\alpha / 2$-level critical value of the $\mathrm{t}[\mathrm{N}-12]=\mathrm{t}[309]$ distribution.

1. If $\left|t_{0}\right| \leq t_{\alpha / 2}[N-12]$, retain (do not reject) H_{0} at the 100α percent significance level.
2. If $\left|t_{0}\right|>t_{\alpha / 2}[\mathrm{~N}-12]$, reject \mathbf{H}_{0} at the 100α percent significance level.

Inference:

Since $\left|\mathrm{t}_{0}\left(\hat{\beta}_{8}+8000 \hat{\beta}_{9}\right)\right|=\mathbf{2 . 4 8}>\underline{\mathbf{1 . 9 6 8}}=\mathbf{t}_{\mathbf{0 . 0 2 5}}$ [309], reject $\mathbf{H}_{\mathbf{0}}$ at $\mathbf{5 \%}$ significance level.
Since $\left|\mathrm{t}_{0}\left(\hat{\beta}_{8}+8000 \hat{\beta}_{9}\right)\right|=\mathbf{2 . 4 8}<\underline{\mathbf{2 . 5 9 2}}=\mathbf{t}_{\mathbf{0 . 0 0 5}}$ [309], retain $\mathbf{H}_{\mathbf{0}}$ at $\mathbf{1} \%$ significance level.
(2) Decision Rule -- Formulation 2: This a two-tail test. Compare the two-tail p-value for $\mathbf{t}_{\mathbf{0}}$ with the chosen significance level α.

1. If two-tail p-value for $t_{0} \geq \alpha$, retain (do not reject) $\mathbf{H}_{\mathbf{0}}$ at significance level α.
2. If two-tail p-value for $\mathrm{t}_{0}<\alpha$, reject $\mathbf{H}_{\mathbf{0}}$ at significance level α.

Inference:

Since two-tail p-value for $\mathbf{t}_{\mathbf{0}}=\underline{\mathbf{0 . 0 1 3 6}}<\mathbf{0 . 0 5}$, reject $\mathbf{H}_{\mathbf{0}}$ at the $\mathbf{5} \%$ significance level. Since $\boldsymbol{t w o}$-tail p-value for $\mathbf{t}_{\mathbf{0}}=\underline{\mathbf{0 . 0 1 3 6}}>\mathbf{0 . 0 1}$, retain $\mathbf{H}_{\mathbf{0}}$ at the $\mathbf{1 \%}$ significance level.

- Result:
(1 mark)
The sample evidence favours the alternative hypothesis \mathbf{H}_{1} that $\beta_{8}+2 \beta_{11} 4000 \neq 0$ at the $\mathbf{5 \%}$ significance level but not at the $\mathbf{1 \%}$ significance level; it provides moderately strong evidence that distance from the incinerator has a non-zero marginal effect on mean prices for houses located 4,000 metres (4 kilometres) from the incinerator.

Alternative ANSWER 1 to Question 1(d): two-sided confidence intervals (total marks = 12)

- Null hypothesis: $\quad \mathrm{H}_{0}: \beta_{8}+2 \beta_{9} 4000=0$

Alternative hypothesis: $\mathrm{H}_{1}: \beta_{8}+2 \beta_{9} 4000 \neq 0$ a two-tail test
(3 marks)

- Two-sided 100(1- α) percent confidence interval for $\beta_{8}+2 \beta_{9} \mathbf{4 0 0 0}=\boldsymbol{\beta}_{\mathbf{8}}+\mathbf{8 0 0 0} \beta_{9}$ is:

Lower 100(1- α) percent confidence limit for $\boldsymbol{\beta}_{\mathbf{8}}+\mathbf{2} \boldsymbol{\beta}_{\mathbf{9}} \mathbf{4 0 0 0}$
$=\hat{\beta}_{8}+8000 \hat{\beta}_{9}-\mathrm{t}_{\alpha / 2}[\mathrm{~N}-12]$ sê $\left(\hat{\beta}_{8}+8000 \hat{\beta}_{9}\right)$
Upper 100(1- α) percent confidence limit for $\boldsymbol{\beta}_{\mathbf{8}}+\mathbf{2} \boldsymbol{\beta}_{\mathbf{9}} \mathbf{4 0 0 0}$
$=\hat{\beta}_{8}+8000 \hat{\beta}_{9}+\mathrm{t}_{\alpha / 2}[\mathrm{~N}-12] \operatorname{se}\left(\hat{\beta}_{8}+8000 \hat{\beta}_{9}\right)$

- Compute two-sided 95 percent confidence interval for $\beta_{8}+2 \beta_{9} 4000$

Lower 95 percent confidence limit for $\beta_{8}+2 \beta_{9} 4000=\underline{0.9197292}=\underline{0.9197}$
(1 mark)
Upper 95 percent confidence limit for $\beta_{8}+2 \beta_{9} 4000=\underline{7.967083}=\underline{7.967}$
(1 mark)

- Compute two-sided 99 percent confidence interval for $\boldsymbol{\beta}_{8}+\mathbf{2} \boldsymbol{\beta}_{9} \mathbf{4 0 0 0}$

Lower 99 percent confidence limit for $\beta_{8}+2 \beta_{9} 4000=\underline{-0.1980122}=\underline{-0.1980} \quad$ (1 mark)
Upper 99 percent confidence limit for $\beta_{8}+2 \beta_{9} 4000=\underline{9.084825}=\underline{9.085}$
(1 mark)

- Decision rule and inference:
(2 marks)

1. If hypothesized value of $\beta_{8}+2 \beta_{9} 4000$ lies inside the two-sided $100(1-\alpha)$ percent confidence interval for $\beta_{8}+2 \beta_{9} 4000$, retain (do not reject) \mathbf{H}_{0} at significance level α.
2. If hypothesized value of $\beta_{8}+2 \beta_{9} 4000$ lies outside the two-sided $100(1-\alpha)$ percent confidence interval for $\beta_{8}+2 \beta_{9} 4000$, reject \mathbf{H}_{0} at significance level α.

Inference:

(2 marks)
Since 0 lies outside the two-sided 95 percent confidence interval for $\beta_{8}+2 \beta_{9} 4000$, which is [0.9197, 7.967], reject $\mathbf{H}_{\mathbf{0}}$ at the 5\% significance level.

Since 0 lies inside the two-sided 99 percent confidence interval for $\beta_{8}+\mathbf{2} \beta_{9} \mathbf{4 0 0 0}$, which is [$\mathbf{- 0 . 1 9 8 0}, 9.085$], retain H_{0} at the $\mathbf{1 \%}$ significance level.

- Result:
(1 mark)
The sample evidence favours the alternative hypothesis \mathbf{H}_{1} that $\beta_{8}+2 \beta_{9} 4000 \neq 0$ at the $\mathbf{5 \%}$ significance level but not at the $\mathbf{1 \%}$ significance level; it provides moderately strong evidence that distance from the incinerator has a non-zero marginal effect on mean prices for houses located 4,000 metres (4 kilometres) from the incinerator.
- Null hypothesis: $\quad \mathrm{H}_{0}: \beta_{8}+2 \beta_{9} 4000=0$

Alternative hypothesis: $\mathrm{H}_{1}: \beta_{8}+2 \beta_{9} 4000 \neq 0$
a two-tail F-test
(3 marks)

- Calculation of F-test statistic: The sample value $\mathbf{F}_{\mathbf{0}}$ under the null hypothesis H_{0} is

$$
\left.\mathrm{F}_{0}\left(\hat{\beta}_{8}+2 \hat{\beta}_{9} 4000\right)=\frac{\left(\hat{\beta}_{8}+8000 \hat{\beta}_{9}\right)^{2}}{\operatorname{Vâ}\left(\hat{\beta}_{8}+8000 \hat{\beta}_{9}\right.}\right)=\frac{9179.4649}{764.7256}=\underline{\mathbf{6 . 1 5 6 7}}=\underline{\mathbf{6 . 1 6}}
$$

- (right-tail) p-value for $F_{0}=\underline{0.013624}=\underline{0.0136}$
- Decision rule and inference: either formulation 1 or 2
(1) Decision Rule -- Formulation 1: This a two-tail test. Compare the sample value F_{0} with the α-level critical value of the $F[1, N-12]=F[1,309]$ distribution.

1. If $\mathrm{F}_{0} \leq \mathrm{F}_{\alpha}[1, \mathrm{~N}-12]$, retain (do not reject) $\mathbf{H}_{\mathbf{0}}$ at the 100α percent significance level.
2. If $\mathrm{F}_{0}>\mathrm{F}_{\alpha}[1, \mathrm{~N}-12]$, reject \mathbf{H}_{0} at the 100α percent significance level.

Inference:

Since $F_{0}=6.16>\underline{3.872}=F_{0.05}[1,309]$, reject H_{0} at the 5% significance level.
Since $F_{0}=6.16<\underline{6.718}=F_{0.01}[1,309]$, retain H_{0} at the $\mathbf{1 \%}$ significance level.
(2) Decision Rule -- Formulation 2: This a two-tail test. Compare the \mathbf{p}-value for $\mathbf{F}_{\mathbf{0}}$ with the chosen significance level α.

1. If \mathbf{p}-value for $\mathrm{F}_{0} \geq \alpha$, retain (do not reject) $\mathbf{H}_{\mathbf{0}}$ at significance level α.
2. If \mathbf{p}-value for $\mathrm{F}_{0}<\alpha$, reject $\mathbf{H}_{\mathbf{0}}$ at significance level α.

Inference:

Since p-value for $\mathbf{F}_{\mathbf{0}}=\underline{\mathbf{0 . 0 1 3 6}}<\mathbf{0 . 0 5}$, reject $\mathbf{H}_{\mathbf{0}}$ at the $\mathbf{5} \%$ significance level.
Since p-value for $\mathbf{F}_{\mathbf{0}}=\underline{\mathbf{0 . 0 1 3 6}}>\mathbf{0 . 0 1}$, retain $\mathbf{H}_{\mathbf{0}}$ at the $\mathbf{1 \%}$ significance level.

- Result:
(1 mark)
The sample evidence favours the alternative hypothesis $\mathbf{H}_{\mathbf{1}}$ that $\beta_{8}+2 \beta_{9} 4000 \neq 0$ at the $\mathbf{5 \%}$ significance level but not at the $\mathbf{1 \%}$ significance level; it provides moderately strong evidence that distance from the incinerator has a non-zero marginal effect on mean prices for houses located 4,000 metres (4 kilometres) from the incinerator.

(84 marks)

2. An economics graduate suggests that the partial marginal effect on house prices of distance from the incinerator was different in 1981 that it was in 1978. To account for this possibility, she proposes that the interaction terms $\mathrm{Y} 81_{\mathrm{i}} \mathrm{DIST}_{\mathrm{i}}$ and $\mathrm{Y} 81_{\mathrm{i}} \mathrm{DIST}_{\mathrm{i}}^{2}$ be added to the set of regressors in equation (1) of question 3 . The resulting population regression equation can be written as

$$
\begin{align*}
\text { PRICE }_{\mathrm{i}}=\beta_{0} & +\beta_{1} \text { HSIZE }_{\mathrm{i}}+\beta_{2} \text { LSIZE }_{\mathrm{i}}+\beta_{3} \text { HSIZE }_{\mathrm{i}} \mathrm{LSIZE}_{\mathrm{i}}+\beta_{4} \text { ROOMS }_{\mathrm{i}}+\beta_{5} \text { BATHS }_{\mathrm{i}} \\
& +\beta_{6} \mathrm{AGE}_{\mathrm{i}}+\beta_{7} \mathrm{AGE}_{\mathrm{i}}^{2}+\beta_{8} \mathrm{DIST}_{\mathrm{i}}+\beta_{9} \mathrm{DIST}_{\mathrm{i}}^{2}+\beta_{10} \mathrm{CBD}_{\mathrm{i}}+\beta_{11} \mathrm{Y81}_{\mathrm{i}} \\
& +\beta_{12} \mathrm{Y81}_{\mathrm{i}} \mathrm{DIST}_{\mathrm{i}}+\beta_{13} \mathrm{Y81}_{\mathrm{i}} \mathrm{DIST}_{\mathrm{i}}^{2}+\mathrm{u}_{\mathrm{i}} \tag{2}
\end{align*}
$$

(12 marks)
(a) Compute and report OLS estimates of regression equation (2) for the full sample of 321 houses. Present the estimation results in an appropriate table.

ANSWER Question 2(a)

. regress price hsize lsize hsizelsize rooms baths age agesq dist distsq cbd y81 y81dist y81distsq

ANSWER Question 2(a) -- continued

Table 2: OLS Estimates of Equation (2)

Regressor	$\hat{\beta}_{\mathrm{j}}$	$\operatorname{se}\left(\hat{\beta}_{\mathrm{j}}\right)$	$\mathrm{t}\left(\hat{\beta}_{\mathrm{j}}\right)$	Lower 95\% limit	Upper 95\% limit
Constant	-4241.35	13134.38	-0.32	-11515.99	44867.01
HSIZE $_{i}$	93.1551	34.0963	2.73	26.0631	160.2471
LSIZE $_{i}$	-3.27069	0.818727	-3.99	-4.881712	-1.659658
$\mathrm{HSIZE}_{\mathrm{i}} \mathrm{LSI}$ IZE	0.026907	0.0040954	6.54	0.0187321	0.0348494
ROOMS_{i}	3547.094	1812.854	1.96	-20.09611	7114.287
BATHS ${ }_{\text {i }}$	10942.8	2835.757	3.86	5362.838	16522.76
$\mathrm{AGE}_{\mathrm{i}}$	-628.954	148.691	-4.23	-921.5366	-336.371
$\mathrm{AGE}_{\mathrm{i}}$-sq	2.41538	0.916566	2.64	0.6118334	4.218926
$\mathrm{DIST}_{\mathrm{i}}$	1.07342	3.40895	0.31	-5.634432	7.781275
$\mathrm{DIST}_{\mathrm{i}}$-sq	-0.0000138	0.0002479	-0.06	-0.0005017	0.0004741
$\mathrm{CBD}_{\mathrm{i}}$	-2.28621	1.87569	-1.22	-5.977049	1.404631
Y81 ${ }_{\text {i }}$	-9376.65	14060.95	-0.67	-37044.68	18291.38
${\mathrm{Y} 81{ }_{\mathrm{i}} \mathrm{DIST}_{\mathrm{i}} \text { }}^{\text {d }}$	15.2034	4.73166	3.21	5.892829	24.51402
Y81 $1_{\mathrm{i}} \mathrm{DIST}_{\mathrm{i}}$-sq	-0.0010536	0.0003615	-2.91	-0.001765	-0.0003423

$\mathrm{N}=321 ; \quad \hat{\sigma}^{2}=\mathbf{4 6 0 , 3 4 0 , 2 7 3 . 0} ; \quad \mathrm{R}^{2}=\mathbf{0 . 7 6 3 6} ; \quad \mathrm{F}(13,307)=76.29(\mathbf{0 . 0 0 0 0})$

2. (continued)

(12 marks)
(b) Write the expression implied by regression equation (2) for the partial marginal effect of $\mathrm{DIST}_{\mathrm{i}}$ on the prices of houses sold in 1978. Use the OLS estimation results for equation (2) to test the proposition that distance from the incinerator had no effect on mean prices for all houses sold in 1978. State the null and alternative hypotheses, and show how the sample value of the test statistic is calculated (give its formula). Report the sample value of the test statistic and its p-value. State the decision rule you use, and the inference you would draw from the test. Does the sample evidence favour the proposition that the partial marginal effect of distance from the incinerator had no effect on mean prices for all houses sold in 1978 ?

ANSWER Question 2(b)

- The partial marginal effect of DIST $_{i}$ on house prices in 1978 is:

$$
\begin{equation*}
\frac{\partial \text { PRICE }_{\mathrm{i}}}{\partial \mathrm{DIST}_{\mathrm{i}}}=\frac{\partial \mathrm{E}\left(\text { PRICE }_{\mathrm{i}} \mid \bullet\right)}{\partial \mathrm{DIST}_{\mathrm{i}}}=\beta_{8}+2 \beta_{9} \mathrm{DIST}_{\mathrm{i}} \tag{2marks}
\end{equation*}
$$

Null hypothesis: $\quad \mathrm{H}_{0}: \beta_{8}=0$ and $\beta_{9}=0$
Alternative hypothesis: $\mathrm{H}_{1}: \beta_{8} \neq 0$ and/or $\beta_{9} \neq 0$

- Formula for general F-test statistic is:

$$
\mathrm{F}=\frac{\left(\mathrm{RSS}_{0}-\mathrm{RSS}_{1}\right) /\left(\mathrm{df}_{0}-\mathrm{df}_{1}\right)}{\mathrm{RSS}_{1} / \mathrm{df}_{1}}=\frac{\left(\mathrm{RSS}_{0}-\mathrm{RSS}_{1}\right) /\left(\mathrm{K}-\mathrm{K}_{0}\right)}{\mathrm{RSS}_{1} /(\mathrm{N}-\mathrm{K})}
$$

or

$$
F=\frac{\left(R_{U}^{2}-R_{R}^{2}\right) /\left(d f_{0}-d f_{1}\right)}{\left(1-R_{U}^{2}\right) / d f_{1}}=\frac{\left(R_{U}^{2}-R_{R}^{2}\right) /\left(K-K_{0}\right)}{\left(1-R_{U}^{2}\right) /(N-K)}
$$

where:
$\mathrm{df}_{0}=\mathrm{N}-\mathrm{K}_{0}=$ degrees-of-freedom for $\mathrm{RSS}_{0}=321-12=309 ;$
$\mathrm{df}_{1}=\mathrm{N}-\mathrm{K}=$ degrees-of-freedom for $\mathrm{RSS}_{1}=321-14=\mathbf{3 0 7}$;
number of restrictions specified by $\mathrm{H}_{0}=\mathrm{q}=\mathrm{df}_{0}-\mathrm{df}_{1}=\mathrm{K}-\mathrm{K}_{0}=14-12=\mathbf{2}$

- Sample value $\mathbf{F}_{\mathbf{0}}$ of the general F -test statistic and \mathbf{p}-value under H_{0} is:
$\mathrm{F}_{0}=\mathbf{0 . 1 2 5 5 4} \mathbf{=} \underline{\mathbf{0 . 1 3}}$
(2 marks)
p-value of $\mathrm{F}_{\mathbf{0}}=\underline{\mathbf{0 . 8 8 2 1}}$
(1 mark)
- Decision rule and inference: either formulation 1 or 2
(1) Decision Rule -- Formulation 1: This a two-tail test. Compare the sample value F_{0} with the α-level critical value of the $F[2, N-14]=F[2,307]$ distribution.

1. If $\mathrm{F}_{0} \leq \mathrm{F}_{\alpha}[2, \mathrm{~N}-14]$, retain (do not reject) $\mathbf{H}_{\mathbf{0}}$ at the 100α percent significance level.
2. If $\mathrm{F}_{0}>\mathrm{F}_{\alpha}[2, \mathrm{~N}-14]$, reject $\mathbf{H}_{\mathbf{0}}$ at the 100α percent significance level.

Inference:

Since $\mathbf{F}_{\mathbf{0}}=\underline{\mathbf{0 . 1 3}}<\underline{3.025}=\mathbf{F}_{0.05}[2,307]$, retain $\mathbf{H}_{\mathbf{0}}$ at the 5% significance level.
Since $F_{0}=\underline{0.13}<\underline{2.320}=F_{0.10}[2,307]$, retain H_{0} at the 10% significance level.
(2) Decision Rule -- Formulation 2: This a two-tail test. Compare the \mathbf{p}-value for $\mathbf{F}_{\mathbf{0}}$ with the chosen significance level α.

1. If \mathbf{p}-value for $\mathrm{F}_{0} \geq \alpha$, retain (do not reject) $\mathbf{H}_{\mathbf{0}}$ at significance level α.
2. If \mathbf{p}-value for $\mathrm{F}_{0}<\alpha$, reject $\mathbf{H}_{\mathbf{0}}$ at significance level α.

Inference:

Since p-value for $\mathbf{F}_{\mathbf{0}}=\mathbf{0 . 8 8 2 1}>\mathbf{0 . 0 5}$, retain $\mathbf{H}_{\mathbf{0}}$ at the $\mathbf{5} \%$ significance level.
Since \mathbf{p}-value for $\mathbf{F}_{\mathbf{0}}=\mathbf{0 . 8 8 2 1}>\mathbf{0 . 1 0}$, retain $\mathbf{H}_{\mathbf{0}}$ at the $\mathbf{1 0} \%$ significance level.

- Result:
(1 mark)
The sample evidence favours the null hypothesis $\mathbf{H}_{\mathbf{0}}$ that distance from the incinerator had no effect on mean prices for all houses sold in 1978 at both the $\mathbf{5 \%}$ and $\mathbf{1 0 \%}$ significance levels. It thus provides no evidence that the partial marginal effect on 1978 house prices of distance from the incinerator was non-zero.

2. (continued)

(12 marks)
(c) Write the expression implied by regression equation (2) for the partial marginal effect of $\mathrm{DIST}_{\mathrm{i}}$ on the prices of houses sold in 1981. Use the OLS estimation results for equation (2) to test the proposition that distance from the incinerator had no effect on mean prices for all houses sold in 1981. State the null and alternative hypotheses, and show how the sample value of the test statistic is calculated (give its formula). Report the sample value of the test statistic and its p-value. State the decision rule you use, and the inference you would draw from the test. Does the sample evidence favour the proposition that the partial marginal effect of distance from the incinerator had no effect on the mean prices of houses sold in 1981?

ANSWER Question 2(c)

- The partial marginal effect of DIST $_{i}$ on house prices in 1981 is:

$$
\begin{equation*}
\frac{\partial \mathrm{PRICE}_{\mathrm{i}}}{\partial \mathrm{DIST}_{\mathrm{i}}}=\frac{\partial \mathrm{E}\left(\mathrm{PRICE}_{\mathrm{i}} \mid \bullet\right)}{\partial \mathrm{DIST}_{\mathrm{i}}}=\beta_{8}+\beta_{12}+2\left(\beta_{9}+\beta_{13}\right) \mathrm{DIST}_{\mathrm{i}} \tag{2marks}
\end{equation*}
$$

Null hypothesis: $\quad \mathrm{H}_{0}: \beta_{8}+\beta_{12}=0$ and $\beta_{9}+\beta_{13}=0$
Alternative hypothesis: $\mathrm{H}_{1}: \beta_{8}+\beta_{12} \neq 0$ and/or $\beta_{9}+\beta_{13} \neq 0$

- Formula for general F-test statistic is:

$$
\mathrm{F}=\frac{\left(\mathrm{RSS}_{0}-\mathrm{RSS}_{1}\right) /\left(\mathrm{df}_{0}-\mathrm{df}_{1}\right)}{\mathrm{RSS}_{1} / \mathrm{df}_{1}}=\frac{\left(\mathrm{RSS}_{0}-\mathrm{RSS}_{1}\right) /\left(\mathrm{K}-\mathrm{K}_{0}\right)}{\mathrm{RSS}_{1} /(\mathrm{N}-\mathrm{K})}
$$

$\underline{\text { or }}$

$$
F=\frac{\left(R_{U}^{2}-R_{R}^{2}\right) /\left(d f_{0}-d f_{1}\right)}{\left(1-R_{U}^{2}\right) / d f_{1}}=\frac{\left(R_{U}^{2}-R_{R}^{2}\right) /\left(K-K_{0}\right)}{\left(1-R_{U}^{2}\right) /(N-K)}
$$

where:
$\mathrm{df}_{0}=\mathrm{N}-\mathrm{K}_{0}=$ degrees-of-freedom for $\mathrm{RSS}_{0}=321-12=309$;
$\mathrm{df}_{1}=\mathrm{N}-\mathrm{K}=$ degrees-of-freedom for $\mathrm{RSS}_{1}=321-14=\mathbf{3 0 7}$;
number of restrictions specified by $\mathrm{H}_{0}=\mathrm{q}=\mathrm{df}_{0}-\mathrm{df}_{1}=\mathrm{K}-\mathrm{K}_{0}=14-12=\mathbf{2}$

- Sample value $\mathbf{F}_{\mathbf{0}}$ of the general \mathbf{F}-test statistic and \mathbf{p}-value under H_{0} is:
$\mathrm{F}_{0}=\mathbf{9 . 5 6 0 0}=\underline{\mathbf{9 . 5 6}}$
(2 marks)
p-value of $\mathbf{F}_{\mathbf{0}}=\mathbf{0 . 0 0 0 0 9 4 2}=\underline{\mathbf{0 . 0 0 0 1}}$
(1 marks
- Decision rule and inference: either formulation 1 or 2
(1) Decision Rule -- Formulation 1: This a two-tail test. Compare the sample value F_{0} with the α-level critical value of the $F[2, N-14]=F[2,307]$ distribution.

1. If $\mathrm{F}_{0} \leq \mathrm{F}_{\alpha}[2, \mathrm{~N}-14]$, retain (do not reject) $\mathbf{H}_{\mathbf{0}}$ at the 100α percent significance level.
2. If $\mathrm{F}_{0}>\mathrm{F}_{\alpha}[2, \mathrm{~N}-14]$, reject $\mathbf{H}_{\mathbf{0}}$ at the 100α percent significance level.

Inference:

Since $\mathbf{F}_{\mathbf{0}}=\underline{9.56}>\underline{4.675}=\mathbf{F}_{\mathbf{0 . 0 1}}[2,307]$, reject $\mathrm{H}_{\mathbf{0}}$ at the $\mathbf{1} \%$ significance level.
Since $F_{\mathbf{0}}=\underline{9.56}>\underline{\underline{\mathbf{3} .025}}=\mathrm{F}_{\mathbf{0 . 0 5}}[2,307]$, reject $\mathrm{H}_{\mathbf{0}}$ at the 5% significance level.
(2) Decision Rule -- Formulation 2: This a two-tail test. Compare the \mathbf{p}-value for $\mathbf{F}_{\mathbf{0}}$ with the chosen significance level α.

1. If p-value for $\mathrm{F}_{0} \geq \alpha$, retain (do not reject) $\mathbf{H}_{\mathbf{0}}$ at significance level α.
2. If \mathbf{p}-value for $\mathrm{F}_{0}<\alpha$, reject $\mathbf{H}_{\mathbf{0}}$ at significance level α.

Inference:

Since p-value for $\mathbf{F}_{\mathbf{0}}=\mathbf{0 . 0 0 0 1}<\mathbf{0 . 0 1}$, reject $\mathbf{H}_{\mathbf{0}}$ at the $\mathbf{1} \%$ significance level.
Since p-value for $\mathbf{F}_{\mathbf{0}}=\mathbf{0 . 0 0 0 1}<\mathbf{0 . 0 5}$, reject $\mathbf{H}_{\mathbf{0}}$ at the $\mathbf{5} \%$ significance level.

- Result:
(1 mark)
The sample evidence strongly favours the alternative hypothesis $\mathbf{H}_{\mathbf{1}}$ that distance from the incinerator had a non-zero effect on mean house prices in 1981 at both the $\mathbf{5 \%}$ and $\mathbf{1 0 \%}$ significance levels. It thus provides strong evidence that the partial marginal effect on house prices in 1981 of distance from the incinerator was non-zero.

2. (continued)

(12 marks)
(d) Use the OLS estimation results for equation (2) to test the economics graduate's conjecture that the partial marginal effect on house prices of distance from the incinerator was different in 1981 than it was in 1978. State the null and alternative hypotheses, and show how the sample value of the test statistic is calculated (give its formula). Report the sample value of the test statistic and its p-value. State the decision rule you use, and the inference you would draw from the test. Does the sample evidence favour the conjecture?

ANSWER Question 2(d)

- The 1981-1978 difference in the partial marginal effect of DIST $_{i}$ on house prices is:

$$
\begin{equation*}
\frac{\partial \mathrm{E}\left(\mathrm{PRICE}_{\mathrm{i}} \mid \mathrm{Y} 81_{\mathrm{i}}=1\right)}{\partial \mathrm{DIST}_{\mathrm{i}}}-\frac{\partial \mathrm{E}\left(\mathrm{PRICE}_{\mathrm{i}} \mid \mathrm{Y} 81_{\mathrm{i}}=0\right)}{\partial \mathrm{DIST}_{\mathrm{i}}}=\beta_{12}+2 \beta_{13} \mathrm{DIST}_{\mathrm{i}} \tag{2marks}
\end{equation*}
$$

Null hypothesis: $\quad \mathrm{H}_{0}: \beta_{12}=0$ and $\beta_{13}=0$
Alternative hypothesis: $\mathrm{H}_{1}: \beta_{12} \neq 0$ and/or $\beta_{13} \neq 0$

- Formula for general F-test statistic is:
(1 mark)

$$
\mathrm{F}=\frac{\left(\mathrm{RSS}_{0}-\mathrm{RSS}_{1}\right) /\left(\mathrm{df}_{0}-\mathrm{df}_{1}\right)}{\mathrm{RSS}_{1} / \mathrm{df}_{1}}=\frac{\left(\mathrm{RSS}_{0}-\mathrm{RSS}_{1}\right) /\left(\mathrm{K}-\mathrm{K}_{0}\right)}{\mathrm{RSS}_{1} /(\mathrm{N}-\mathrm{K})}
$$

or

$$
\mathrm{F}=\frac{\left(\mathrm{R}_{\mathrm{U}}^{2}-\mathrm{R}_{\mathrm{R}}^{2}\right) /\left(\mathrm{df}_{0}-\mathrm{df}_{1}\right)}{\left(1-\mathrm{R}_{\mathrm{U}}^{2}\right) / \mathrm{df}_{1}}=\frac{\left(\mathrm{R}_{\mathrm{U}}^{2}-\mathrm{R}_{\mathrm{R}}^{2}\right) /\left(\mathrm{K}-\mathrm{K}_{0}\right)}{\left(1-\mathrm{R}_{\mathrm{U}}^{2}\right) /(\mathrm{N}-\mathrm{K})}
$$

where:
$\mathrm{df}_{0}=\mathrm{N}-\mathrm{K}_{0}=$ degrees-of-freedom for $\mathrm{RSS}_{0}=321-12=309$;
$\mathrm{df}_{1}=\mathrm{N}-\mathrm{K}=$ degrees-of-freedom for $\mathrm{RSS}_{1}=321-14=\mathbf{3 0 7}$;
number of restrictions specified by $\mathrm{H}_{0}=\mathrm{q}=\mathrm{df}_{0}-\mathrm{df}_{1}=\mathrm{K}-\mathrm{K}_{0}=14-12=\mathbf{2}$

- Sample value $\mathbf{F}_{\mathbf{0}}$ of the general \mathbf{F}-test statistic and \mathbf{p}-value under H_{0} is:
$\mathrm{F}_{0}=5.7949=\underline{5.79}$
(2 marks)
p-value of $F_{0}=0.003386=\underline{0.0034}$
(1 mark)
- Decision rule and inference: either formulation 1 or 2
(1) Decision Rule -- Formulation 1: This a two-tail test. Compare the sample value F_{0} with the α-level critical value of the $F[2, N-14]=F[2,307]$ distribution.

1. If $\mathrm{F}_{0} \leq \mathrm{F}_{\alpha}[2, \mathrm{~N}-14]$, retain (do not reject) $\mathbf{H}_{\mathbf{0}}$ at the 100α percent significance level.
2. If $\mathrm{F}_{0}>\mathrm{F}_{\alpha}[2, \mathrm{~N}-14]$, reject $\mathbf{H}_{\mathbf{0}}$ at the 100α percent significance level.

Inference:

Since $F_{0}=\underline{5.79}>\underline{4.675}=F_{0.01}[2,307]$, reject H_{0} at the 1% significance level.
Since $F_{0}=\underline{5.79}>\underline{3.025}=F_{0.05}[2,307]$, reject H_{0} at the 5% significance level.
(2) Decision Rule -- Formulation 2: This a two-tail test. Compare the \mathbf{p}-value for $\mathbf{F}_{\mathbf{0}}$ with the chosen significance level α.

1. If \mathbf{p}-value for $\mathrm{F}_{0} \geq \alpha$, retain (do not reject) $\mathbf{H}_{\mathbf{0}}$ at significance level α.
2. If \mathbf{p}-value for $\mathrm{F}_{0}<\alpha$, reject $\mathbf{H}_{\mathbf{0}}$ at significance level α.

Inference:

Since p-value for $\mathbf{F}_{\mathbf{0}}=\mathbf{0 . 0 0 3 4}<\mathbf{0 . 0 1}$, reject $\mathbf{H}_{\mathbf{0}}$ at the $\mathbf{1} \%$ significance level.
Since p-value for $\mathbf{F}_{\mathbf{0}}=\mathbf{0 . 0 0 3 4}<\mathbf{0 . 0 5}$, reject $\mathbf{H}_{\mathbf{0}}$ at the $\mathbf{5} \%$ significance level.

- Result:
(1 mark)
The sample evidence strongly supports the conjecture (i.e., the alternative hypothesis $\mathbf{H}_{\mathbf{1}}$) that distance from the incinerator had a different marginal effect on mean house prices in 1981 than in 1978.

2. (continued)

(10 marks)
(e) Use the OLS estimation results for equation (2) to test the proposition that the partial marginal effect of DIST $_{i}$ on house prices was positive for houses sold in 1981 that were located 6,000 metres from the incinerator, i.e., for houses sold in 1981 for which DIST $=$ 6000. State the null and alternative hypotheses, and show how the sample value of the test statistic is calculated (give its formula). Report the sample value of the test statistic and its p-value. State the decision rule you use, and the inference you would draw from the test. Does the sample evidence favour the conjecture?

ANSWER Question 2(e)

- The partial marginal effect of DIST $_{i}$ on house prices in 1981 is:

$$
\frac{\partial \mathrm{PRICE}_{\mathrm{i}}}{\partial \mathrm{DIST}_{\mathrm{i}}}=\frac{\partial \mathrm{E}\left(\mathrm{PRICE}_{\mathrm{i}} \mid \bullet\right)}{\partial \mathrm{DIST}_{\mathrm{i}}}=\beta_{8}+\beta_{12}+2\left(\beta_{9}+\beta_{13}\right) \mathrm{DIST}_{\mathrm{i}}
$$

Null hypothesis:

$$
\mathrm{H}_{0}: \beta_{8}+\beta_{12}+2\left(\beta_{9}+\beta_{13}\right) 6000=0
$$

Alternative hypothesis: $\mathrm{H}_{1}: \beta_{8}+\beta_{12}+2\left(\beta_{9}+\beta_{13}\right) 6000>0$

- Calculation of \mathbf{t}-test statistic: The sample value \mathbf{t}_{0} under the null hypothesis H_{0} is

$$
\begin{equation*}
\mathrm{t}_{0}\left(\hat{\beta}_{8}+\hat{\beta}_{12}+12000\left(\hat{\beta}_{9}+\hat{\beta}_{13}\right)\right)=\frac{\hat{\beta}_{8}+\hat{\beta}_{12}+12000\left(\hat{\beta}_{9}+\hat{\beta}_{13}\right)}{\operatorname{sê}\left(\hat{\beta}_{8}+\hat{\beta}_{12}+12000\left(\hat{\beta}_{9}+\hat{\beta}_{13}\right)\right.}=\frac{3.467287}{1.815021}=\underline{\mathbf{1 . 9 1 0 3 3}}=\underline{\mathbf{1 . 9 1}} \tag{3marks}
\end{equation*}
$$

- Right-tail p-value of $\mathbf{t}_{\mathbf{0}}=\operatorname{Pr}\left(\mathrm{t}>\mathrm{t}_{0}\right)=\operatorname{Pr}(\mathrm{t}>1.91033)=\underline{\mathbf{0 . 0 2 8 5 1}}$
(1 mark)
- Right-tail critical values of the $\mathrm{t}[\mathrm{N}-14]=\mathrm{t}[307]$ distribution are:

$$
\begin{aligned}
& \mathrm{t}_{\alpha}[\mathrm{N}-14]=\mathrm{t}_{0.05}[307]=\underline{\mathbf{1 . 6 4 9 8}}=\underline{\mathbf{1 . 6 5}} \text { at the } \mathbf{5 \%} \text { significance level }(\alpha=0.05) \quad(\mathbf{1} \text { mark }) \\
& \mathrm{t}_{\alpha}[\mathrm{N}-14]=\mathrm{t}_{0.01}[307]=\underline{\mathbf{2 . 3 3 8 6}}=\underline{\mathbf{2 . 3 4}} \text { at the } \mathbf{1 \%} \text { significance level }(\alpha=0.01)
\end{aligned}
$$

- Decision rule and inference: either formulation 1 or 2
(1) Decision Rule -- Formulation 1: This a right-tail test. Compare the sample value t_{0} with the upper α-level critical value of the $\mathbf{t}[\mathrm{N}-14]=\mathrm{t}[307]$ distribution.

1. If $\mathrm{t}_{0} \leq \mathrm{t}_{\alpha}[\mathrm{N}-14]$, retain (do not reject) $\mathbf{H}_{\mathbf{0}}$ at the 100α percent significance level.
2. If $\mathrm{t}_{0}>\mathrm{t}_{\alpha}[\mathrm{N}-14]$, reject $\mathbf{H}_{\mathbf{0}}$ at the 100α percent significance level.

Inference: Since $\mathrm{t}_{0}=\mathbf{1 . 9 1}>\mathbf{1 . 6 5}=\mathbf{t}_{\mathbf{0 . 0 5}}$ [307], reject $\mathbf{H}_{\mathbf{0}}$ at the $\mathbf{5} \%$ significance level. Since $t_{0}=\mathbf{1 . 9 1}<2.34=\mathbf{t}_{\mathbf{0 . 0 1}}$ [307], retain $\mathbf{H}_{\mathbf{0}}$ at the $\mathbf{1} \%$ significance level.
OR
(2) Decision Rule -- Formulation 2: This a right-tail test. Compare the right-tail p-value for \mathbf{t}_{0} with the chosen significance level α.

1. If right-tail p-value for $\mathrm{t}_{0} \geq \alpha$, retain (do not reject) $\mathbf{H}_{\mathbf{0}}$ at significance level α.
2. If right-tail p-value for $\mathrm{t}_{0}<\alpha$, reject $\mathbf{H}_{\mathbf{0}}$ at significance level α.

Inference:

Since right-tail p-value for $\mathbf{t}_{\mathbf{0}}=\underline{\mathbf{0 . 0 2 8 5 1}}<\mathbf{0 . 0 5}$, reject $\mathbf{H}_{\mathbf{0}}$ at the $\mathbf{5} \%$ significance level. Since right-tail p-value for $\mathbf{t}_{\mathbf{0}}=\underline{\mathbf{0 . 0 2 8 5 1}}>\mathbf{0 . 0 1}$, retain $\mathbf{H}_{\mathbf{0}}$ at the $\mathbf{1 \%}$ significance level.

The sample evidence favours the alternative hypothesis $\mathbf{H}_{\mathbf{1}}$ at the $\mathbf{5 \%}$ significance level, but not at the $\mathbf{1 \%}$ significance level. It provides moderately strong evidence supporting the conjecture that the partial marginal effect of $\mathrm{DIST}_{\mathrm{i}}$ on house prices was positive for houses sold in 1981 that were located 6,000 metres from the incinerator.

2. (continued)

(14 marks)

(f) Use the OLS estimation results for equation (2) to compute an estimate of the partial marginal effect of DIST $_{i}$ on house prices for houses sold in 1981 that were located 2,000 metres from the incinerator, i.e., for houses sold in 1981 for which DIST $=2000$. Use the estimation results for equation (2) to test the proposition that the partial marginal effect of DIST $_{i}$ on house prices was zero for houses sold in 1981 that were located 2,000 metres from the incinerator (for which DIST = 2000). State the null and alternative hypotheses, and show how the sample value of the test statistic is calculated (give its formula). Report the sample value of the test statistic and its p-value. State the decision rule you use, and the inference you would draw from the test.

- The partial marginal effect of DIST $_{\mathrm{i}}$ on house prices in 1981 is:

$$
\begin{equation*}
\frac{\partial \text { PRICE }_{\mathrm{i}}}{\partial \mathrm{DIST}_{\mathrm{i}}}=\frac{\partial \mathrm{E}\left(\mathrm{PRICE}_{\mathrm{i}} \mid \bullet\right)}{\partial \mathrm{DIST}_{\mathrm{i}}}=\beta_{8}+\beta_{12}+2\left(\beta_{9}+\beta_{13}\right) \mathrm{DIST}_{\mathrm{i}} \tag{2marks}
\end{equation*}
$$

- Estimate of the partial marginal effect of DIST ${ }_{i}$ on house prices in 1981 for DIST $_{i}=2000$:

$$
\begin{aligned}
\hat{\beta}_{8}+\hat{\beta}_{12}+2\left(\hat{\beta}_{9}+\hat{\beta}_{13}\right) 2000=12.00699 & =\underline{\mathbf{1 2} .01 \text { dollars per metre }} \\
& =\underline{\mathbf{1 2 . 0 1} \text { dollars per metre }}
\end{aligned}
$$

(2 marks)
Null hypothesis:

$$
\mathrm{H}_{0}: \beta_{8}+\beta_{12}+2\left(\beta_{9}+\beta_{13}\right) 2000=0
$$

Alternative hypothesis: $\mathrm{H}_{1}: \beta_{8}+\beta_{12}+2\left(\beta_{9}+\beta_{13}\right) 2000 \neq 0$

- Calculation of \mathbf{t}-test statistic: The sample value \mathbf{t}_{0} under the null hypothesis H_{0} is

$$
\mathrm{t}_{0}\left(\hat{\beta}_{8}+\hat{\beta}_{12}+4000\left(\hat{\beta}_{9}+\hat{\beta}_{13}\right)\right)=\frac{\hat{\beta}_{8}+\hat{\beta}_{12}+4000\left(\hat{\beta}_{9}+\hat{\beta}_{13}\right)}{\operatorname{sê}\left(\hat{\beta}_{8}+\hat{\beta}_{12}+4000\left(\hat{\beta}_{9}+\hat{\beta}_{13}\right)\right.}=\frac{12.00699}{2.760975}=\underline{\mathbf{4 . 3 4 8 8}}=\underline{\mathbf{4 . 3 5}}
$$

(3 marks)

- Two-tail p-value for $\mathbf{t}_{\mathbf{0}}=\underline{\mathbf{0 . 0 0 0 0 1 8 6 5}}=\underline{\mathbf{0 . 0 0 0 0}}$
- Decision rule and inference: either formulation 1 or 2
(1) Decision Rule -- Formulation 1: This a two-tail test. Compare the sample value t_{0} with the $\alpha / 2$-level critical value of the $\mathbf{t}[\mathrm{N}-14]=\mathrm{t}[307]$ distribution.

1. If $\left|t_{0}\right| \leq t_{\alpha / 2}[N-14]$, retain (do not reject) H_{0} at the 100α percent significance level.
2. If $\left|t_{0}\right|>t_{\alpha / 2}[\mathrm{~N}-14]$, reject $\mathbf{H}_{\mathbf{0}}$ at the 100α percent significance level.

Inference:
Since $\left|\mathrm{t}_{0}\right|=\mathbf{4 . 3 5}>\underline{\mathbf{1 . 9 6 8}}=\mathbf{t}_{\mathbf{0 . 0 2 5}}$ [307], reject $\mathbf{H}_{\mathbf{0}}$ at $\mathbf{5} \%$ significance level.
Since $\left|t_{0}\right|=\mathbf{4 . 3 5}<\underline{2.592}=\mathbf{t}_{\mathbf{0 . 0 0 5}}[307]$, reject \mathbf{H}_{0} at $\mathbf{1 \%}$ significance level.
(2) Decision Rule -- Formulation 2: This a two-tail test. Compare the two-tail p-value for $\mathbf{t}_{\mathbf{0}}$ with the chosen significance level α.

1. If two-tail \mathbf{p}-value for $\mathrm{t}_{0} \geq \alpha$, retain (do not reject) $\mathbf{H}_{\mathbf{0}}$ at significance level α.
2. If two-tail p-value for $t_{0}<\alpha$, reject $\mathbf{H}_{\mathbf{0}}$ at significance level α.

Inference:

Since two-tail p-value for $\mathbf{t}_{\mathbf{0}}=\underline{\mathbf{0 . 0 0 0 0}}<\mathbf{0 . 0 5}$, reject $\mathbf{H}_{\mathbf{0}}$ at the $\mathbf{5} \%$ significance level.
Since two-tail p-value for $\mathbf{t}_{\mathbf{0}}=\underline{\mathbf{0 . 0 0 0 0}}<\mathbf{0 . 0 1}$, reject $\mathbf{H}_{\mathbf{0}}$ at the $\mathbf{1 \%}$ significance level.

- Result:

The sample evidence favours the alternative hypothesis \mathbf{H}_{1} that $\beta_{8}+\beta_{12}+2\left(\beta_{9}+\beta_{13}\right) \mathbf{2 0 0 0}$ $\neq 0$ at both the 5% and $\mathbf{1 \%}$ significance levels; it provides strong evidence that distance from the incinerator has a non-zero marginal effect on mean prices for houses sold in 1981 that were located 2,000 metres (2 kilometres) from the incinerator.

- The partial marginal effect of DIST $_{\mathrm{i}}$ on house prices in 1981 is:

$$
\frac{\partial \mathrm{PRICE}_{\mathrm{i}}}{\partial \mathrm{DIST}_{\mathrm{i}}}=\frac{\partial \mathrm{E}\left(\mathrm{PRICE}_{\mathrm{i}} \mid \bullet\right)}{\partial \mathrm{DIST}_{\mathrm{i}}}=\beta_{8}+\beta_{12}+2\left(\beta_{9}+\beta_{13}\right) \mathrm{DIST}_{\mathrm{i}}
$$

- Estimate of the partial marginal effect of DIST $_{i}$ on house prices in 1981 for $\operatorname{DIST}_{i}=2000$:
$\hat{\beta}_{8}+\hat{\beta}_{12}+2\left(\hat{\beta}_{9}+\hat{\beta}_{13}\right) 2000=12.00699=\underline{\mathbf{\$ 1 2 . 0 1} \text { dollars per metre }}$

$$
\text { = } 12.01 \text { dollars per metre }
$$

(2 marks)

- Null hypothesis:

$$
\mathrm{H}_{0}: \beta_{8}+\beta_{12}+2\left(\beta_{9}+\beta_{13}\right) 2000=0
$$

(1 mark)
Alternative hypothesis: $\mathrm{H}_{1}: \beta_{8}+\beta_{12}+2\left(\beta_{9}+\beta_{13}\right) 2000 \neq 0$
(1 mark)

- Calculation of F-test statistic: The sample value $\mathbf{F}_{\mathbf{0}}$ under the null hypothesis H_{0} is

$$
\begin{equation*}
\mathrm{F}_{0}\left(\hat{\beta}_{8}+\hat{\beta}_{12}+4000\left(\hat{\beta}_{9}+\hat{\beta}_{13}\right)\right)=\frac{\left(\hat{\beta}_{8}+\hat{\beta}_{12}+4000\left(\hat{\beta}_{9}+\hat{\beta}_{13}\right)\right)^{2}}{\operatorname{Var}\left(\hat{\beta}_{8}+\hat{\beta}_{12}+4000\left(\hat{\beta}_{9}+\hat{\beta}_{13}\right)\right)}=\frac{144.16781}{7.622983}=\underline{\mathbf{1 8 . 9 1 2 3}}=\underline{\mathbf{1 8 . 9 1}} \tag{3marks}
\end{equation*}
$$

- (right-tail) p-value for $\mathbf{F}_{\mathbf{0}}=\underline{\mathbf{0 . 0 0 0 0 1 8 6 5}=\underline{0.0000}}$
(1 mark)
- Decision rule and inference: either formulation 1 or 2
(3 marks)
(1) Decision Rule -- Formulation 1: This a two-tail test. Compare the sample value F_{0} with the α-level critical value of the $\mathrm{F}[1, \mathrm{~N}-14]=\mathrm{F}[1,307]$ distribution.

1. If $\mathrm{F}_{0} \leq \mathrm{F}_{\alpha}[1, \mathrm{~N}-14]$, retain (do not reject) $\mathbf{H}_{\mathbf{0}}$ at the 100α percent significance level.
2. If $\mathrm{F}_{0}>\mathrm{F}_{\alpha}[1, \mathrm{~N}-14]$, reject H_{0} at the 100α percent significance level.

Inference:

Since $\mathbf{F}_{\mathbf{0}}=18.91>\underline{\mathbf{3 . 8 7 2}}=\mathbf{F}_{0.05}[1,307]$, reject H_{0} at the 5% significance level.
Since $F_{0}=18.91>\underline{6.718}=F_{0.01}[1,307]$, reject H_{0} at the $\mathbf{1 \%}$ significance level.
(2) Decision Rule -- Formulation 2: This a two-tail test. Compare the \mathbf{p}-value for $\mathbf{F}_{\mathbf{0}}$ with the chosen significance level α.

1. If \mathbf{p}-value for $\mathrm{F}_{0} \geq \alpha$, retain (do not reject) $\mathbf{H}_{\mathbf{0}}$ at significance level α.
2. If \mathbf{p}-value for $\mathrm{F}_{0}<\alpha$, reject $\mathbf{H}_{\mathbf{0}}$ at significance level α.

Inference:

Since p-value for $\mathbf{F}_{\mathbf{0}}=\underline{\mathbf{0 . 0 0 0 0}}<\mathbf{0 . 0 5}$, reject $\mathbf{H}_{\mathbf{0}}$ at the $\mathbf{5} \%$ significance level.
Since p-value for $\mathbf{F}_{\mathbf{0}}=\underline{\mathbf{0 . 0 0 0 0}}<\mathbf{0 . 0 1}$, reject $\mathbf{H}_{\mathbf{0}}$ at the $\mathbf{1 \%}$ significance level.

- Result:

The sample evidence favours the alternative hypothesis \mathbf{H}_{1} that $\beta_{8}+\beta_{12}+2\left(\beta_{9}+\beta_{13}\right) \mathbf{2 0 0 0}$ $\neq 0$ at both the $\mathbf{5 \%}$ and $\mathbf{1 \%}$ significance levels; it provides strong evidence that distance from the incinerator has a non-zero marginal effect on mean prices for houses sold in 1981 that were located 2,000 metres (2 kilometres) from the incinerator.

```
. * Question 2(f):
. lincom _b[dist] + _b[y81dist] + 2*(_b[distsq] + _b[y81distsq])*2000
```

(1) dist + 4000 distsq + y81dist +4000 y81distsq $=0$

| price \| | Coef. | Std. Err. | t | P>\|t| | [95\% Conf | Interval] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (1) \| | 12.00699 | 2.760975 | 4.35 | 0.000 | 6.574164 | 17.43982 |

. lincom _b[dist] + _b[y81dist] + 2*(_b[distsq] + _b[y81distsq])*2000, level(99)
(1) dist + 4000 distsq + y81dist +4000 y81distsq $=0$
price | Coef. Std. Err. $t \quad P>|t| \quad$ [99\% Conf. Interval]
(1) | $12.00699 \quad 2.760975 \quad 4.35 \quad 0.000 \quad 4.850716 \quad 19.16327$

Alternative ANSWER 2 to Question 2(f): two-sided confidence intervals (total marks = 14)

- Estimate of the partial marginal effect of DIST $_{i}$ on house prices in 1981 for DIST $_{i}=2000$:

$$
\begin{aligned}
\hat{\beta}_{8}+\hat{\beta}_{12}+2\left(\hat{\beta}_{9}+\hat{\beta}_{13}\right) 2000=12.00699 & =\underline{\mathbf{\$ 1 2 . 0 1} \text { dollars per metre }} \\
& =\underline{\mathbf{1 2 . 0 1} \text { dollars per metre }}
\end{aligned}
$$

- Null hypothesis:

$$
\mathrm{H}_{0}: \beta_{8}+\beta_{12}+2\left(\beta_{9}+\beta_{13}\right) 2000=0
$$

Alternative hypothesis: $\mathrm{H}_{1}: \beta_{8}+\beta_{12}+2\left(\beta_{9}+\beta_{13}\right) 2000 \neq 0$

- Two-sided 100(1- α) percent confidence interval for $\beta_{8}+\beta_{12}+2\left(\beta_{9}+\beta_{13}\right) 2000$ $=\beta_{8}+\beta_{12}+4000\left(\beta_{9}+\beta_{13}\right)$ is:

Lower 100(1- α) percent confidence limit for $\beta_{8}+\beta_{12}+2\left(\beta_{9}+\beta_{13}\right) 2000$ $=\hat{\beta}_{8}+\hat{\beta}_{12}+4000\left(\hat{\beta}_{9}+\hat{\beta}_{13}\right)-\mathrm{t}_{\alpha / 2}[\mathrm{~N}-14] \operatorname{se}\left(\hat{\beta}_{8}+\hat{\beta}_{12}+4000\left(\hat{\beta}_{9}+\hat{\beta}_{13}\right)\right)$
Upper 100(1- α) percent confidence limit for $\beta_{8}+\beta_{12}+2\left(\beta_{9}+\beta_{13}\right) 2000$
$=\hat{\beta}_{8}+\hat{\beta}_{12}+4000\left(\hat{\beta}_{9}+\hat{\beta}_{13}\right)+\mathrm{t}_{\alpha / 2}[\mathrm{~N}-14] \operatorname{se}\left(\hat{\beta}_{8}+\hat{\beta}_{12}+4000\left(\hat{\beta}_{9}+\hat{\beta}_{13}\right)\right)$

- Compute two-sided 95 percent confidence interval for $\beta_{8}+\beta_{12}+2\left(\beta_{9}+\beta_{13}\right) 2000$

Lower 95 percent confidence limit $=\mathbf{6 . 5 7 4 1 6 4}=\underline{\mathbf{6 . 5 7 4 2}}$
(1 mark)
Upper 95 percent confidence limit $=17.43982=\underline{17.440}$
(1 mark)

- Compute two-sided 99 percent confidence interval for $\beta_{8}+\beta_{12}+2\left(\beta_{9}+\beta_{13}\right) 2000$

Lower 99 percent confidence limit $=\mathbf{4 . 8 5 0 7 1 6}=\underline{\mathbf{4 . 8 5 0 7}}$
(1 mark)
Upper 99 percent confidence limit $=19.16327=\underline{19.163}$

- Decision rule and inference:

1. If hypothesized value of $\beta_{8}+\beta_{12}+2\left(\beta_{9}+\beta_{13}\right) 2000$ lies inside the two-sided $100(1-\alpha)$ percent confidence interval for $\beta_{8}+\beta_{12}+2\left(\beta_{9}+\beta_{13}\right) 2000$, retain (do not reject) H_{0} at significance level α.
2. If hypothesized value of $\beta_{8}+\beta_{12}+2\left(\beta_{9}+\beta_{13}\right) 2000$ lies outside the two-sided $100(1-\alpha)$ percent confidence interval for $\beta_{8}+\beta_{12}+2\left(\beta_{9}+\beta_{13}\right) 2000$, reject \mathbf{H}_{0} at significance level α.

Inference:
Since 0 lies outside the two-sided 95 percent confidence interval for $\beta_{8}+\beta_{12}+2\left(\beta_{9}+\right.$ β_{13})2000, which is [6.5742, 17.440], reject H_{0} at the 5% significance level.

Since 0 lies outside the two-sided 99 percent confidence interval for $\beta_{8}+\beta_{12}+2\left(\beta_{9}+\right.$ β_{13})2000, which is [4.8507, 19.163], reject H_{0} at the $\mathbf{1 \%}$ significance level.

Alternative ANSWER 2 to Question 2(f) -- continued

- Result:

The sample evidence favours the alternative hypothesis \mathbf{H}_{1} that $\beta_{8}+\beta_{12}+\mathbf{2}\left(\beta_{9}+\beta_{13}\right) \mathbf{2 0 0 0}$ $\neq 0$ at both the 5% and 1% significance levels; it provides strong evidence that distance from the incinerator has a non-zero marginal effect on mean prices for houses sold in 1981 that were located 2,000 metres (2 kilometres) from the incinerator.

2. (continued)

(12 marks)
(g) Use the Stata graph command to draw a line graph of the conditional relationship of estimated mean house price to DIST $_{i}$, distance from the incinerator, for houses sold in 1981 (for which Y81 = 1) that had the following observed characteristics: HSIZE = 196 square metres; LSIZE $=3700$ square metres; ROOMS $=7 ;$ BATHS $=2 ;$ AGE $=18$ years; and $C B D=4,800$ metres. Note that these observed characteristics correspond to the approximate sample mean values of the explanatory variables HSIZE $_{i}$, LSIZE $_{i}$, ROOMS $_{i}$, BATHS $_{i}$, AGE $_{i}$ and $\mathrm{CBD}_{\mathrm{i}}$ in the estimation sample.

Stata commands used to create the above line graph:

```
#delimit ;
generate pricehat = _b[_cons] + _b[hsize]*196 + _b[lsize]*3700
+ _b[hsizelsize]*196*3700 + _b[rooms]*7 + _b[baths]*2 + _b[age]*18 + _b[agesq]*18*18
+ (_b[dist] + _b[y81dist] )*dist + (_b[distsq] + _b[y81distsq] )*dist *dist
+ _b[cbd]*4800 + _b[y81] ;
#delimit cr
sort dist
summarize pricehat dist
list dist pricehat in 1/10
#delimit ;
graph twoway line pricehat dist,
ytitle("mean house price in 1981 (dollars)")
xtitle("distance from incinerator (metres)")
title("Conditional Effect of Distance from Incinerator" "on Mean House Prices in
1981") ;
#delimit cr
```

