Queen's University
 Department of Economics

ECON 351* -- Introductory Econometrics

ASSIGNMENT 1: ANSWERS

Winter Term 2009
M.G. Abbott

TOPIC: Interpreting OLS Coefficient Estimates in Simple Linear Regression Models

INSTRUCTIONS:

- Answer all questions on standard-sized 8.5×11-inch paper.
- Answers need not be typewritten (document processed), but if hand-written must be legible. Illegible assignments will be returned unmarked.
- Please label clearly each answer with the appropriate question number and letter. Securely staple all answer sheets together, and make certain that your name(s) and student number(s) are printed clearly at the top of each answer sheet.
- Students submitting joint assignments with one other student must ensure that the name and student number of each student are printed clearly at the top of each answer sheet. Submit only one copy of the assignment.

MARKING: Marks for each question are indicated in parentheses. Total marks for the assignment equal 70. Marks are given for both content and presentation.

SOFT DUE DATE: Monday February 9, 2009 by 4:00 pm.

HARD DUE DATE: Thursday February 12, 2009 by 4:00 pm.

- Assignments submitted on or before the soft due date will receive a bonus of 2 points to a maximum total mark of 70 .
- Assignments submitted after the hard due date will be penalized 20 points per day.
- Please submit your assignments either to me in class, or by depositing them in the ECON 351 slot of the Assignment Collection Box located immediately inside the double doors on the second floor of Dunning Hall (opposite the elevator).

DATA FILE: 351assn1w09.raw (a text-format, or ASCII-format, data file)

- Data Description: A random sample of 472 employees drawn from the 1976 U.S. population of all employed paid workers.

- Variable Definitions:

WAGE $_{i} \equiv$ average hourly earnings of worker i in 1976, in dollars per hour.
$\mathrm{ED}_{\mathrm{i}} \equiv$ years of formal education completed by worker i , in years.
FEMALE $_{i} \equiv$ an indicator variable equal to 1 if worker i is female, and 0 if worker i is male.

- Stata Infile Statement: Use the following Stata infile statement to read the text-format data file 351assn1w09.raw:
infile wage ed female using 351assn1w09.raw

QUESTIONS and ANSWERS:

(5 marks)

1. Compile a table of descriptive summary statistics for the sample data. The table should include for each of the variables in the dataset: the sample mean, the sample standard deviation, the minimum sample value, and the maximum sample value. How many females and how many males are there in the sample?

ANSWER Question 1 (1 mark) per column in table

Variable Name	Mean	Std. Deviation	Minimum	Maximum
wage	5.95917	3.77002	0.53	25.00
ed	12.6419	2.69169	0	18
female	0.480932	0.500166	0	1

Number of females in the sample $=\mathbf{2 2 7}$
(0.5 mark)

Number of males in the sample $=\mathbf{2 4 5}$
(0.5 mark)
. summarize

Variable	Obs	Mean	Std. Dev.	Min	Max
wage	472	5.959174	3.770022	. 53	25
ed	472	12.64195	2.691691	0	18
female	472	. 4809322	. 5001664	0	1

. tab1 female, missing
-> tabulation of female

(20 marks)

2. Compute and present OLS estimates of the following population regression equation for the full sample of 472 paid workers:

$$
\begin{equation*}
\mathrm{WAGE}_{\mathrm{i}}=\beta_{0}+\beta_{1} \mathrm{ED}_{\mathrm{i}}+\mathrm{u}_{\mathrm{i}} \tag{1}
\end{equation*}
$$

where u_{i} is a random error term that is assumed to satisfy all the assumptions of the classical linear regression model.

(5 marks)

(a) Report the OLS coefficient estimates $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ computed by estimating population regression equation (1).

ANSWER Question 2(a)

$\hat{\beta}_{0}=-1.31250$
(2.5 marks)
$\hat{\beta}_{1}=0.575202$
(2.5 marks)

(5 marks)

(b) Interpret the value of the slope coefficient estimate $\hat{\beta}_{1}$; i.e., explain in words what the numerical value of $\hat{\beta}_{1}$ means.

ANSWER Question 2(b)

Answer must not be just a generic description of the slope coefficient estimate; it must explicitly account for the units in which WAGE and ED are measured.

WAGE is measured in dollars per hour; ED is measured in years.
Therefore, the estimate $\hat{\beta}_{1}=\mathbf{0 . 5 7 5 2}$ means that a $\mathbf{1}$-year increase in education is associated with an increase in average hourly wages equal to $\mathbf{0 . 5 7 5 2}$ dollars per hour, or equivalently 57.52 cents per hour.

(5 marks)

(c) Interpret the value of the intercept coefficient estimate $\hat{\beta}_{0}$; i.e., explain in words what the numerical value of $\hat{\beta}_{0}$ means.

ANSWER Question 2(c)

The estimate $\hat{\beta}_{0}=\mathbf{- 1 . 3 1 2 5}$ means that the average (mean) hourly wage rate of workers with zero years of education $(E D=0)$ equals $\mathbf{- 1 . 3 1 2 5}$ dollars per hour, or $\mathbf{- 1 3 1 . 2 5}$ cents per hour. (4 marks)

Note: There are almost no workers in the sample for whom ED $=0$. In fact, only two of 472 workers in the sample have zero years of formal education: they are both female workers whose observed hourly wage rates are $\$ 2.90$ per hour and $\$ 4.20$ per hour. Because there are so few sample observations for which $E D=0$, it is difficult to obtain from this sample a good estimate of the mean hourly wage rate of all such workers in the population.

(5 marks)

(d) On a set of appropriately labeled coordinate axes, draw the estimated sample regression function implied by OLS estimation of regression equation (1). That is, draw the graph of the equation $\widehat{W A G E}=\hat{\beta}_{0}+\hat{\beta}_{1} \mathrm{ED}_{\mathrm{i}}$, compute the coordinates of the two points on it that correspond to the values 12 and 16 of ED_{i}, and label these two points on your graph as A and B respectively. (Note: you do not need to use Stata, or any software program, to draw and label this graph.)

ANSWER Question 2(d)

The two points have the following coordinates:
Point A: For $\mathbf{E D}_{\mathbf{i}}=\mathbf{1 2}$ years, the estimated mean of average hourly earnings equals

$$
\begin{aligned}
\mathrm{WAAGE}_{\mathrm{i}}=\hat{\beta}_{0}+\hat{\beta}_{1} \mathrm{ED}_{\mathrm{i}}=-1.31250+0.575202(12) & =5.589924 \text { dollars per hour } \\
& =\$ 5.59 \text { per hour }
\end{aligned}
$$

(1 mark)
Point B: For $\mathbf{E D}_{\mathbf{i}}=\mathbf{1 6}$ years, estimated annual beer expenditure equals

$$
\begin{aligned}
\text { WÂGE }_{\mathrm{i}}=\hat{\beta}_{0}+\hat{\beta}_{1} \mathrm{ED}_{\mathrm{i}}=-1.31250+0.575202(16) & =7.890732 \text { dollars per hour } \\
& =\underline{\$ 7.89} \text { per hour }
\end{aligned}
$$

(1 mark)

Note: $\Delta \mathrm{WAGE}_{\mathrm{i}} / \Delta \mathrm{ED}_{\mathrm{i}}=(7.890732-5.589924) /(16-12)=2.300808 / 4=0.575202=\hat{\beta}_{1}$.

ANSWER Question 2(d), continued

Figure 1: Line Graph of $\mathrm{WAGE} \mathrm{i}_{\mathrm{i}}=\hat{\beta}_{0}+\hat{\beta}_{1} \mathrm{ED}_{\mathrm{i}}=-1.31250+0.575202 \mathrm{ED}_{\mathrm{i}}$
($\mathbf{3}$ marks) total: $\mathbf{2}$ marks for correct line graph; $\mathbf{1}$ mark for labeling points \mathbf{A} and B

Stata output for Question 2:

```
. regress wage ed
```


(25 marks)

3. Compute OLS coefficient estimates of the following population regression equation for the full sample of 472 workers:

$$
\begin{equation*}
\mathrm{WAGE}_{\mathrm{i}}=\beta_{0}+\beta_{1} \mathrm{FEMALE}_{i}+\mathrm{u}_{\mathrm{i}} \tag{2}
\end{equation*}
$$

where u_{i} is a random error term that is assumed to satisfy all the assumptions of the classical normal linear regression model.

(5 marks)

(a) Report the OLS coefficient estimates $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ computed by estimating population regression equation (2).

ANSWER Question 3(a)

$$
\begin{aligned}
& \hat{\beta}_{0}=7.185306 \\
& \hat{\beta}_{1}=-2.549491
\end{aligned}
$$

(5 marks)
(b) Before attempting to interpret the OLS coefficient estimates $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ in regression equation (2), compute and report the sample mean of $\mathrm{WAGE}_{\mathrm{i}}$ for females and the sample mean of $\mathrm{WAGE}_{\mathrm{i}}$ for males.

ANSWER Question 3(b)

sample mean of WAGE $_{\mathbf{i}}$ for females $=4.635815$ dollars $\mathbf{(\$ 4 . 6 4)}$ per hour sample mean of WAGE $_{\mathrm{i}}$ for males $=7.185306$ dollars $\mathbf{(\$ 7 . 1 9)}$) per hour

Variable \|	Obs	Mean	Std. Dev.	Min	Max
wage I	245	7.185306	4.236225	1.5	25
summarize wage if female $==1$					
Variable \|	Obs	Mean	Std. Dev.	Min	Max
wage ।	227	4.635815	2.618648	. 53	22

(5 marks)

(c) Interpret the value of the slope coefficient estimate $\hat{\beta}_{1}$ in equation (2); i.e., explain in words what it means. Remember that FEMALE_{i} is an indicator (or dummy) variable that takes only the two values 0 and 1 .

ANSWER Question 3(c)

Since $\hat{E}\left(\right.$ WAGE $_{\mathrm{i}} \mid$ FEMALE $\left._{\mathrm{i}}=1\right)=\hat{\beta}_{0}+\hat{\beta}_{1}$ and $\hat{\mathrm{E}}\left(\mathrm{WAGE}_{\mathrm{i}} \mid\right.$ FEMALE $\left._{\mathrm{i}}=0\right)=\hat{\beta}_{0}$, $\hat{E}\left(W_{A G E}^{i}| |\right.$ FEMALE $\left._{i}=1\right)-\hat{E}\left(\right.$ WAGE $\left._{i} \mid \operatorname{FEMALE}_{i}=0\right)=\hat{\beta}_{0}+\hat{\beta}_{1}-\hat{\beta}_{0}=\hat{\beta}_{1}$
$\hat{\beta}_{1}=\mathbf{- 2 . 5 4 9 4 9 1}=$ the sample mean hourly wage rate of female workers minus the sample mean hourly wage rate of male workers

The value $\mathbf{- 2 . 5 4 9 4 9 1}$ means that the average hourly wage rate of female workers is less than the average hourly wage rate of male workers in the sample by $\mathbf{2 . 5 4 9 4 9 1}$ dollars per hour, or \$2.55 per hour.

(5 marks)

(d) Interpret the value of the intercept coefficient estimate $\hat{\beta}_{0}$ in equation (2); i.e., explain in words what it means.

ANSWER Question 3(d)

$\hat{\mathrm{E}}\left(\right.$ PRICE $_{\mathrm{i}} \mid$ FEMALE $\left._{\mathrm{i}}=0\right)=\hat{\beta}_{0}=7.185306$

> = the sample mean hourly wage rate of male workers.

The value $\mathbf{7 . 1 8 5 3 0 6}$ means that the average hourly wage rate of male workers in the sample is $\mathbf{7 . 1 8 5 3 0 6}$ dollars per hour, or $\$ 7.19$ per year.
(5 marks)

(5 marks)

(e) Compute and interpret the value of $\hat{\beta}_{0}+\hat{\beta}_{1}$, the sum of the OLS coefficient estimates $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ for equation (2); i.e., explain in words what this sum means.

ANSWER Question 3(e)

$\hat{\beta}_{0}+\hat{\beta}_{1}$ is the predicted sample mean hourly wage rate of female workers, since

$$
\hat{\mathrm{E}}\left(\mathrm{WAGE}_{\mathrm{i}} \mid \mathrm{FEMALE}_{\mathrm{i}}=1\right)=\hat{\beta}_{0}+\hat{\beta}_{1} .
$$

The sample mean value of the hourly wage rate of female workers is therefore equal to $\hat{\beta}_{0}+\hat{\beta}_{1}=7.185306-2.549491=\underline{4.635815}$ dollars per hour $=\underline{\$ 4.64}$ per hour.
(5 marks)

Stata output for Question 3:

(20 marks)

4. Estimate separate OLS regressions of average hourly earnings on years of formal education for the subsample of females and the subsample of males. Write the female regression equation for $W_{A G E}^{i}$ as

$$
\begin{equation*}
\mathrm{WAGE}_{\mathrm{i}}=\alpha_{0}+\alpha_{1} \mathrm{ED}_{\mathrm{i}}+\mathrm{u}_{\mathrm{i}} \quad \text { if } \mathrm{FEMALE}_{\mathrm{i}}=1 \tag{3.1}
\end{equation*}
$$

Write the male regression equation for $\mathrm{WAGE}_{\mathrm{i}}$ as

$$
\begin{equation*}
\text { WAGE }_{i}=\beta_{0}+\beta_{1} E_{i}+u_{i} \quad \text { if } \text { FEMALE }_{i}=0 \tag{3.2}
\end{equation*}
$$

(8 marks)

(a) Compute and report the OLS coefficient estimates $\hat{\alpha}_{0}$ and $\hat{\alpha}_{1}$ for females and the OLS coefficient estimates $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ for males.

ANSWER Question 4(a)

For females $\left(\right.$ FEMALE $\left._{i}=1\right)$, the OLS coefficient estimates are:

$$
\begin{aligned}
& \hat{\alpha}_{0}=-1.342252=-1.342 \\
& \hat{\alpha}_{1}=0.4851703=0.4852
\end{aligned}
$$

For males $\left(\right.$ FEMALE $\left._{i}=0\right)$, the OLS coefficient estimates are:

$$
\begin{aligned}
& \hat{\beta}_{0}=-\mathbf{0 . 0 3 0 5 7 1}=-0.0306 \\
& \hat{\beta}_{1}=0.557694=0.5577
\end{aligned}
$$

(12 marks)

(b) Interpret the value of the female slope coefficient estimate $\hat{\alpha}_{1}$ for equation (3.1) and the value of the male slope coefficient estimate $\hat{\beta}_{1}$ for equation (3.2). Which slope coefficient estimate is larger? Can you legitimately conclude from this comparison of $\hat{\alpha}_{1}$ and $\hat{\beta}_{1}$ that the marginal effect of years of education on hourly earnings is different between males and females? Explain briefly.

ANSWER Question 4(b)

Interpretation of $\hat{\alpha}_{1}=\mathbf{0 . 4 8 5 2}$ for females:
For female workers, a one-year increase in years of formal education is associated on average with an increase in average hourly earnings of $\mathbf{0 . 4 8 5 2}$ dollars per hour, or $\mathbf{4 8 . 5 2}$ cents per hour.

Interpretation of $\hat{\beta}_{1}=\mathbf{0 . 5 5 7 7}$ for males:
For male workers, a one-year increase in years of formal education is associated on average with an increase in average hourly earnings of $\mathbf{0 . 5 5 7 7}$ dollars per hour, or $\underline{\mathbf{5 5 . 7 7}}$ cents per hour.

The male slope coefficient estimate $\hat{\beta}_{1}$ is larger than the female slope coefficient estimate $\hat{\alpha}_{1}$, which suggests that the increase in mean hourly wage rates associated with a one-year increase in years of formal education is greater for male workers than for female workers: i.e., $\hat{\beta}_{1}>\hat{\alpha}_{1}$.
(1 mark)

Can you legitimately conclude from this comparison of $\hat{\alpha}_{1}$ and $\hat{\beta}_{1}$ that the marginal effect of years of education on hourly wage rates is different between male and female workers? NO
(2 marks)
Explanation: The specific values of $\hat{\alpha}_{1}$ and $\hat{\beta}_{1}$ for the sample of 472 workers are point estimates that have some statistical error associated with them. Before we can legitimately conclude that β_{1} for males is greater than α_{1} for females, we would have to take account of these statistical errors.
(3 marks)

Stata output for Question 4:

