QUEEN'S UNIVERSITY AT KINGSTON
Department of Economics
ECONOMICS 351* - Winter Term 2005

Introductory Econometrics

Winter Term 2005
MID-TERM EXAM: ANSWERS
M.G. Abbott

DATE: \quad Thursday March 10, 2005.
TIME: $\quad 80$ minutes; 4:00 p.m. - 5:20 p.m.
INSTRUCTIONS: The exam consists of FIVE (5) questions. Students are required to answer ALL FIVE (5) questions.
Answer all questions in the exam booklets provided. Be sure your student number is printed clearly on the front of all exam booklets used.
Do not write answers to questions on the front page of the first exam booklet.
Please label clearly each of your answers in the exam booklets with the appropriate number and letter.
Please write legibly.
A table of percentage points of the t-distribution is given on the last page of the exam.
MARKING: The marks for each question are indicated in parentheses immediately above each question. Total marks for the exam equal 100.
GOOD LUCK!
All questions pertain to the simple (two-variable) linear regression model for which the population regression equation can be written in conventional notation as:

$$
\begin{equation*}
Y_{i}=\beta_{0}+\beta_{1} X_{i}+u_{i} \tag{1}
\end{equation*}
$$

where Y_{i} and X_{i} are observable variables, β_{0} and β_{1} are unknown (constant) regression coefficients, and u_{i} is an unobservable random error term. The Ordinary Least Squares (OLS) sample regression equation corresponding to regression equation (1) is

$$
\begin{equation*}
\mathrm{Y}_{\mathrm{i}}=\hat{\beta}_{0}+\hat{\beta}_{1} \mathrm{X}_{\mathrm{i}}+\hat{\mathrm{u}}_{\mathrm{i}} \quad(\mathrm{i}=1, \ldots, \mathrm{~N}) \tag{2}
\end{equation*}
$$

where $\hat{\beta}_{0}$ is the OLS estimator of the intercept coefficient $\beta_{0}, \hat{\beta}_{1}$ is the OLS estimator of the slope coefficient β_{1}, \hat{u}_{i} is the OLS residual for the i -th sample observation, and N is sample size (the number of observations in the sample).

QUESTIONS: Answer ALL FIVE questions.

(15 marks)

1. Show that the OLS slope coefficient estimator $\hat{\beta}_{1}$ is a linear function of the Y_{i} sample values. Stating explicitly all required assumptions, prove that the OLS slope coefficient estimator $\hat{\beta}_{1}$ is an unbiased estimator of the slope coefficient β_{1}.

ANSWER to Question 1:

(5 marks)

- Show that the OLS slope coefficient estimator $\hat{\beta}_{1}$ is a linear function of the Y_{i} sample values.

$$
\begin{array}{rlr}
\hat{\beta}_{1} & =\frac{\sum_{i} x_{i} y_{i}}{\sum_{i} x_{i}^{2}}=\frac{\sum_{i} x_{i}\left(Y_{i}-\bar{Y}\right)}{\sum_{i} x_{i}^{2}}=\frac{\sum_{i} x_{i} Y_{i}}{\sum_{i} x_{i}^{2}}-\frac{\bar{Y} \sum_{i} x_{i}}{\sum_{i} x_{i}^{2}} \\
& =\frac{\sum_{i} x_{i} Y_{i}}{\sum_{i} x_{i}^{2}} & \text { because } \sum_{i} x_{i}=0 \tag{5marks}\\
& =\sum_{i} k_{i} Y_{i} & \text { where } k_{i} \equiv \frac{x_{i}}{\sum_{i} x_{i}^{2}} .
\end{array}
$$

(10 marks)

- Stating explicitly all required assumptions, prove that the OLS slope coefficient estimator $\hat{\beta}_{1}$ is an unbiased estimator of the slope coefficient β_{1}.
(1) Substitute for $\mathbf{Y}_{\mathbf{i}}$ the expression $\mathrm{Y}_{\mathrm{i}}=\beta_{0}+\beta_{1} X_{i}+u_{i}$ from the population regression equation (or PRE).

$$
\begin{array}{rlr}
\hat{\beta}_{1} & =\sum_{\mathrm{i}} \mathrm{k}_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}} \\
& =\sum_{\mathrm{i}} \mathrm{k}_{\mathrm{i}}\left(\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i}}+\mathrm{u}_{\mathrm{i}}\right) \quad \text { since } \mathrm{Y}_{\mathrm{i}}=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i}}+\mathrm{u}_{\mathrm{i}} \text { by assumption (A1) } \\
& =\sum_{\mathrm{i}}\left(\beta_{0} \mathrm{k}_{\mathrm{i}}+\beta_{1} \mathrm{k}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}+\mathrm{k}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}\right) \\
& =\beta_{0} \sum_{\mathrm{i}} \mathrm{k}_{\mathrm{i}}+\beta_{1} \sum_{\mathrm{i}} \mathrm{k}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}+\sum_{\mathrm{i}} \mathrm{k}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}} \\
& =\beta_{1}+\sum_{\mathrm{i}} \mathrm{k}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}, \quad \text { since } \sum_{\mathrm{i}} \mathrm{k}_{\mathrm{i}}=0 \text { and } \sum_{\mathrm{i}} \mathrm{k}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}=1
\end{array}
$$

(2) Now take expectations of the above expression for $\hat{\beta}_{1}$ conditional on the value X_{i} of X :
(5 marks)

$$
\begin{aligned}
\mathrm{E}\left(\hat{\beta}_{1}\right) & =\mathrm{E}\left(\beta_{1}\right)+\mathrm{E}\left[\sum_{\mathrm{i}} \mathrm{k}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}\right] & & \\
& =\beta_{1}+\sum_{\mathrm{i}} \mathrm{k}_{\mathrm{i}} \mathrm{E}\left(\mathrm{u}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i}}\right) & & \text { since } \beta_{1} \mathrm{is} \text { a constant and the } \mathrm{k}_{\mathrm{i}} \text { are nonstochastic } \\
& =\beta_{1}+\sum_{\mathrm{i}} \mathrm{k}_{\mathrm{i}} 0 & & \text { since } \mathrm{E}\left(\mathrm{u}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i}}\right)=\mathrm{E}\left(\mathrm{u}_{\mathrm{i}}\right)=0 \text { by assumption (A2) } \\
& =\beta_{1} & &
\end{aligned}
$$

(15 marks)

2. Give a general definition of the t-distribution. Starting from this definition, derive the t-statistic for the OLS slope coefficient estimator $\hat{\beta}_{1}$. State all assumptions required for the derivation.

ANSWER to Question 2:

(2 marks)

- General Definition of the t-Distribution

A random variable has the \mathbf{t}-distribution with \boldsymbol{m} degrees of freedom if it can be constructed by dividing
(1) a standard normal random variable $\mathrm{Z} \sim \mathbf{N}(0,1)$ by
(2) the square root of an independent chi-square random variable \mathbf{V} that has been divided by its degrees of freedom \boldsymbol{m}.

Formally: Consider the two random variables Z and V .
If $\quad(1) \quad \mathrm{Z} \sim \mathrm{N}(0,1)$
(2) $\mathrm{V} \sim \chi^{2}[\mathrm{~m}]$
(3) Z and V are independent,
then the random variable

$$
\mathrm{t}=\frac{\mathrm{Z}}{\sqrt{\mathrm{~V} / \mathrm{m}}} \sim \mathrm{t}[\mathrm{~m}], \text { the } \mathbf{t} \text {-distribution with } \boldsymbol{m} \text { degrees of freedom. }
$$

(1 mark)

- Error Normality Assumption: The random error terms u_{i} are independently and identically distributed (iid) as the normal distribution with zero mean and constant variance σ^{2} :

$$
u_{i} \mid X_{i} \sim N\left(0, \sigma^{2}\right) \text { for all } i \quad \text { OR } \quad u_{i} \text { is iid as } N\left(0, \sigma^{2}\right)
$$

(3 marks)

- Three implications of error normality assumption (A9): (follow from linearity property of the normal distribution whereby any linear function of a normally distributed random variable is itself normally distributed).
(1 mark)

1. The OLS slope coefficient estimator $\hat{\beta}_{1}$ is normally distributed: $\hat{\beta}_{1} \sim N\left(\beta_{1}, \operatorname{Var}\left(\hat{\beta}_{1}\right)\right)$.

Why? Because $\hat{\beta}_{1}$ can be written as a linear function of the $\mathbf{Y}_{\mathbf{i}}$ values $\hat{\beta}_{1}=\sum_{\mathrm{i}} \mathrm{k}_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}}$; and the $\mathbf{Y}_{\mathbf{i}}$ values are normally distributed because they are linear functions of the random error terms u_{i}.

ANSWER to Question 2 (continued)

(1 mark)
2. The statistic $(\mathrm{N}-2) \hat{\sigma}^{2} / \sigma^{2}$ has a chi-square distribution with $(\mathrm{N}-2)$ degrees of freedom:

$$
\frac{(\mathrm{N}-2) \hat{\sigma}^{2}}{\sigma^{2}} \sim \chi^{2}[\mathrm{~N}-2] .
$$

(1 mark)

3. The estimators $\hat{\beta}_{1}$ and $\hat{\sigma}^{2}$ are statistically independent.

(2 marks)

- Numerator of the \mathbf{t}-statistic for $\hat{\beta}_{1}$: the $\mathrm{Z}\left(\hat{\beta}_{1}\right)$ statistic.

The normality of the sampling distribution of $\hat{\beta}_{1}$ implies that $\hat{\beta}_{1}$ can be written in the form of a standard normal variable with mean zero and variance one, denoted as $\mathrm{N}(0,1)$.

$$
\hat{\beta}_{1} \sim N\left(\beta_{1}, \frac{\sigma^{2}}{\sum_{i} x_{i}^{2}}\right) \Rightarrow Z\left(\hat{\beta}_{1}\right)=\frac{\hat{\beta}_{1}-\beta_{1}}{\sqrt{\operatorname{Var}\left(\hat{\beta}_{1}\right)}}=\frac{\hat{\beta}_{1}-\beta_{1}}{\operatorname{se}\left(\hat{\beta}_{1}\right)} \sim N(0,1)
$$

where the \mathbf{Z}-statistic for $\hat{\beta}_{1}$ can be written as

$$
\begin{equation*}
\mathrm{Z}\left(\hat{\beta}_{1}\right)=\frac{\hat{\beta}_{1}-\beta_{1}}{\sqrt{\operatorname{Var}\left(\hat{\beta}_{1}\right)}}=\frac{\hat{\beta}_{1}-\beta_{1}}{\operatorname{se}\left(\hat{\beta}_{1}\right)}=\frac{\hat{\beta}_{1}-\beta_{1}}{\sigma / \sqrt{\sum_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2}}}=\frac{\left(\hat{\beta}_{1}-\beta_{1}\right) \sqrt{\sum_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2}}}{\sigma} . \tag{1}
\end{equation*}
$$

(2 marks)

- Denominator of the \mathbf{t}-statistic for $\hat{\beta}_{1}$:

The error normality assumption implies that the statistic $\hat{\sigma}^{2} / \sigma^{2}$ has a degrees-of-freedomadjusted chi-square distribution with $(\mathrm{N}-2)$ degrees of freedom; that is

$$
\begin{equation*}
\frac{(\mathrm{N}-2) \hat{\sigma}^{2}}{\sigma^{2}} \sim \chi^{2}[\mathrm{~N}-2] \Rightarrow \frac{\hat{\sigma}^{2}}{\sigma^{2}} \sim \frac{\chi^{2}[\mathrm{~N}-2]}{(\mathrm{N}-2)} \Rightarrow \frac{\hat{\sigma}}{\sigma} \sim \sqrt{\frac{\chi^{2}[\mathrm{~N}-2]}{(\mathrm{N}-2)}} \tag{2}
\end{equation*}
$$

The last term $\hat{\sigma} / \sigma$ in (2) is the denominator of the t-statistic for $\hat{\beta}_{1}$: it is distributed as the square root of a degrees-of-freedom-adjusted chi-square variable with $(N-2)$ degrees of freedom.

ANSWER to Question 2 (continued)

(5 marks)

- The \mathbf{t}-statistic for $\hat{\boldsymbol{\beta}}_{1}$.

Since $\hat{\beta}_{1}$ and $\hat{\sigma}^{2}$ are statistically independent, the t-statistic for $\hat{\beta}_{1}$ is the ratio of (1) to (2): i.e.,

$$
\begin{equation*}
\mathrm{t}\left(\hat{\beta}_{1}\right)=\frac{\mathrm{Z}\left(\hat{\beta}_{1}\right)}{\hat{\sigma} / \sigma}=\frac{\left(\hat{\beta}_{1}-\beta_{1}\right) \sqrt{\sum_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2}} / \sigma}{\hat{\sigma} / \sigma}=\frac{\left(\hat{\beta}_{1}-\beta_{1}\right) \sqrt{\sum_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2}}}{\hat{\sigma}} . \tag{3}
\end{equation*}
$$

- Dividing the numerator and denominator of (3) by $\sqrt{\sum_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2}}$ yields

$$
\begin{equation*}
\mathrm{t}\left(\hat{\beta}_{1}\right)=\frac{\left(\hat{\beta}_{1}-\beta_{1}\right)}{\hat{\sigma} / \sqrt{\sum_{i} \mathrm{x}_{\mathrm{i}}^{2}}} . \tag{4}
\end{equation*}
$$

- But the denominator of (4) is simply the estimated standard error of $\hat{\beta}_{1}$; i.e.,

$$
\frac{\hat{\sigma}}{\sqrt{\sum_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2}}}=\sqrt{\operatorname{Vâr}\left(\hat{\beta}_{1}\right)}=\operatorname{se}\left(\hat{\beta}_{1}\right)
$$

- Result: The t-statistic for $\hat{\beta}_{1}$ thus takes the form

$$
\begin{equation*}
\mathrm{t}\left(\hat{\beta}_{1}\right)=\frac{\left(\hat{\beta}_{1}-\beta_{1}\right)}{\hat{\sigma} / \sqrt{\sum_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2}}}=\frac{\left(\hat{\beta}_{1}-\beta_{1}\right)}{\sqrt{\operatorname{Var}\left(\hat{\beta}_{1}\right)}}=\frac{\left(\hat{\beta}_{1}-\beta_{1}\right)}{\operatorname{se}\left(\hat{\beta}_{1}\right)} \sim \mathrm{t}[\mathrm{~N}-2] . \tag{5}
\end{equation*}
$$

(10 marks)

3. Explain what is meant by each of the following statements about the estimator $\hat{\theta}$ of the population parameter θ.
(a) $\hat{\theta}$ is a minimum variance estimator of θ.
(b) $\hat{\theta}$ is an efficient estimator of θ.

What is the difference between the minimum variance and efficiency properties of the estimator $\hat{\theta}$?

ANSWER to Question 3:

(4 marks)

- (a) $\hat{\theta}$ is a minimum variance estimator of θ.

The variance of the estimator $\hat{\theta}$ is smaller than the variance of any other estimator of the parameter θ.

If $\tilde{\theta}$ is any other estimator of θ, then $\hat{\theta}$ is a minimum variance estimator of θ if

$$
\operatorname{Var}(\hat{\theta}) \leq \operatorname{Var}(\tilde{\theta})
$$

(4 marks)

- (b) $\hat{\theta}$ is an efficient estimator of θ.

The estimator $\hat{\theta}$ is an efficient estimator if it is unbiased and has smaller variance than any other unbiased estimator of the parameter θ.

If $\tilde{\theta}$ is any other unbiased estimator of θ, then $\hat{\theta}$ is an efficient estimator of θ if

$$
\operatorname{Var}(\hat{\theta}) \leq \operatorname{Var}(\tilde{\theta}) \quad \text { where } \mathrm{E}(\hat{\theta})=\theta \text { and } \mathrm{E}(\tilde{\theta})=\theta
$$

(2 marks)

- The important difference between statements (a) and (b) is that an efficient estimator must be unbiased whereas a minimum variance estimator may be biased or unbiased.

An efficient estimator is the minimum variance estimator in the class of all unbiased estimators of the parameter θ.

(36 marks)

4. A researcher is using data for a sample of 121 students in an Introductory Econometrics course to investigate the relationship between students' grades on the final exam Y_{i} (measured in percentage points) and their grades on the mid-term exam X_{i} (measured in percentage points). The population regression equation takes the form of equation (1): $Y_{i}=\beta_{0}+\beta_{1} X_{i}+u_{i}$. Preliminary analysis of the sample data produces the following sample information:

$$
\begin{array}{lcc}
\mathrm{N}=121 & \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{Y}_{\mathrm{i}}=8344.0 \quad \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{X}_{\mathrm{i}}=8957.0 & \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{Y}_{\mathrm{i}}^{2}=616433.0 \\
\sum_{\mathrm{i}=1}^{N} \mathrm{X}_{\mathrm{i}}^{2}=713631.0 & \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{X}_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}}=641136.5 \quad \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{x}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}=23473.62 \\
\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{y}_{\mathrm{i}}^{2}=41041.79 & \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{x}_{\mathrm{i}}^{2}=50590.93 & \sum_{\mathrm{i}=1}^{\mathrm{N}} \hat{\mathrm{u}}_{\mathrm{i}}^{2}=30150.294
\end{array}
$$

where $x_{i} \equiv X_{i}-\bar{X}$ and $y_{i} \equiv Y_{i}-\bar{Y}$ for $i=1, \ldots, N$. Use the above sample information to answer all the following questions. Show explicitly all formulas and calculations.

ANSWERS to Question 4:

(10 marks)
(a) Use the above information to compute OLS estimates of the intercept coefficient β_{0} and the slope coefficient β_{1}.

- $\hat{\beta}_{1}=\frac{\sum_{\mathrm{i}} \mathrm{x}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}}{\sum_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2}}=\frac{23473.62}{50590.93}=\mathbf{0 . 4 6 3 9 9}=\underline{\mathbf{0 . 4 6 4}}$
- $\hat{\beta}_{0}=\overline{\mathrm{Y}}-\hat{\beta}_{1} \overline{\mathrm{X}}$
$\bar{Y}=\frac{\sum_{i=1}^{N} Y_{i}}{N}=\frac{8344}{121}=68.9587 \quad$ and $\quad \bar{X}=\frac{\sum_{i=1}^{N} X_{i}}{N}=\frac{8957}{121}=74.0248$
Therefore

$$
\hat{\beta}_{0}=\bar{Y}-\beta_{1} \bar{X}=68.9587-(0.46399)(74.0248)=68.9587-34.3467=\underline{\mathbf{3 4 . 6 1 2}}
$$

ANSWERS to Question 4 (continued):

(5 marks)

(b) Interpret the slope coefficient estimate you calculated in part (a) -- i.e., explain in words what the numeric value you calculated for $\hat{\beta}_{1}$ means.

Note: $\hat{\beta}_{1}=\mathbf{0 . 4 6 3 9 9}$. Y_{i} is measured in percentage points, and X_{i} is measured in percentage points.

The estimate $\mathbf{0 . 4 6 3 9 9}$ of β_{1} means that an increase (decrease) in mid-term exam grade X_{i} of 1 percentage point is associated on average with an increase (decrease) in final exam grade equal to 0.46399 percentage points, or 0.464 percentage points.

(5 marks)

(c) Calculate an estimate of σ^{2}, the error variance.

$$
\begin{aligned}
& \text { RSS }=\sum_{i=1}^{N} \hat{\mathrm{u}}_{\mathrm{i}}^{2}=30150.294 ; \quad \mathrm{N}-2=121-2=119 \\
& \hat{\sigma}^{2}=\frac{\mathrm{RSS}}{\mathrm{~N}-2}=\frac{\sum_{\mathrm{i}=1}^{\mathrm{N}} \hat{\mathrm{u}}_{\mathrm{i}}^{2}}{\mathrm{~N}-2}=\frac{30,150.294}{121-2}=\frac{30,150.294}{119}=\underline{\mathbf{2 5 3 . 3 6 3 8}}
\end{aligned}
$$

(5 marks)

(d) Calculate an estimate of $\operatorname{Var}\left(\hat{\beta}_{1}\right)$, the variance of $\hat{\beta}_{1}$.

$$
\begin{equation*}
\operatorname{Vâ}\left(\hat{\beta}_{1}\right)=\frac{\hat{\sigma}^{2}}{\sum_{i=1}^{N} x_{i}^{2}}=\frac{253.3638}{50590.93}=\underline{\mathbf{0 . 0 0 5 0 0 8 0 8 7}}=\underline{\mathbf{0 . 0 0 5 0 0 8 1}} \tag{5marks}
\end{equation*}
$$

(6 marks)

(e) Compute the value of R^{2}, the coefficient of determination for the estimated OLS sample regression equation. Briefly explain what the calculated value of R^{2} means.

(4 marks)

$R^{2}=\frac{E S S}{\operatorname{TSS}}=\frac{\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{y}_{\mathrm{i}}^{2}-\sum_{\mathrm{i}=1}^{\mathrm{N}} \hat{\mathrm{u}}_{\mathrm{i}}^{2}}{\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{y}_{\mathrm{i}}^{2}}=\frac{41041.79-30150.294}{41041.79}=\frac{10891.496}{41041.79}=\underline{\mathbf{0 . 2 6 5 4}}$
$R^{2}=1-\frac{\mathrm{RSS}}{\mathrm{TSS}}=1-\frac{\sum_{\mathrm{i}=1}^{\mathrm{N}} \hat{u}_{i}^{2}}{\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{y}_{\mathrm{i}}^{2}}=1-\frac{30150.294}{41041.79}=1-0.7346=\underline{\mathbf{0 . 2 6 5 4}}$
(2 marks)
Interpretation of $\mathbf{R}^{\mathbf{2}}=\mathbf{0 . 2 6 5 4}$: The value of 0.2654 indicates that $\mathbf{2 6 . 5 4}$ percent of the total sample (or observed) variation in $\mathbf{Y}_{\mathbf{i}}$ (final exam grades) is attributable to, or explained by, the sample regression function or the regressor $\mathbf{X}_{\mathbf{i}}$ (mid-term exam grades).

(5 marks)

(f) Calculate the sample value of the F-statistic for testing the null hypothesis $\mathrm{H}_{0}: \beta_{1}=0$ against the alternative hypothesis $\mathrm{H}_{1}: \beta_{1} \neq 0$. (Note: You are not required to obtain or state the inference of this test.)

- F-statistic for $\hat{\beta}_{1}$ is $\mathrm{F}\left(\hat{\beta}_{1}\right)=\frac{\left(\hat{\beta}_{1}-\beta_{1}\right)^{2}}{\operatorname{Var}\left(\hat{\beta}_{1}\right)}$
(2 marks)
- From part (a), $\hat{\beta}_{1}=0.46399$; from part (d), $\operatorname{Varr}\left(\hat{\beta}_{1}\right)=0.0050081$.
- Calculate the sample value of the F-statistic (1) under H_{0} : set $\beta_{1}=0, \hat{\beta}_{1}=0.46399$ and $\operatorname{Var}\left(\hat{\beta}_{1}\right)=0.0050081$ in (1).

$$
\begin{equation*}
\mathrm{F}_{0}\left(\hat{\beta}_{1}\right)=\frac{\left(\hat{\beta}_{1}-\beta_{1}\right)^{2}}{\operatorname{Vâr}\left(\hat{\beta}_{1}\right)}=\frac{(0.46399-0)^{2}}{0.0050081}=\frac{0.215287}{0.0050081}=\underline{\mathbf{4 2 . 9 9}} \tag{3marks}
\end{equation*}
$$

Alternative Answer to 4(f): use the ANOVA F-statistic

- ANOVA F-statistic is: ANOVA $-\mathrm{F}_{0}=\frac{\mathrm{ESS} / 1}{\mathrm{RSS} / \mathrm{N}-2}=\frac{\sum_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}^{2}-\sum_{\mathrm{i}} \hat{\mathrm{u}}_{\mathrm{i}}^{2}}{\hat{\sigma}^{2}}$
- $\sum_{i=1}^{N} y_{i}^{2}=41041.79 ; \sum_{i=1}^{N} \hat{u}_{i}^{2}=30150.294 ;$ from part (c), $\hat{\sigma}^{2}=\sum_{i=1}^{N} \hat{\mathrm{u}}_{\mathrm{i}}^{2} /(\mathrm{N}-2)=\underline{\mathbf{2 5 3 . 3 6 3 8}}$
- Calculate the sample value of the ANOVA F-statistic.

$$
\text { ANOVA }-\mathrm{F}_{0}=\frac{\sum_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}^{2}-\sum_{\mathrm{i}} \hat{\mathrm{u}}_{\mathrm{i}}^{2}}{\hat{\sigma}^{2}}=\frac{41041.79-30150.294}{253.3638}=\frac{10891.496}{253.3638}=\underline{\mathbf{4 2 . 9 9}}
$$

(24 marks)

5. You have been commissioned to investigate the relationship between the birth weight of newborn babies and the average number of cigarettes women smoked per day during pregnancy. The dependent variable is $\boldsymbol{b w g h t}_{\boldsymbol{i}}$, the birth weight of the baby born to the i-th mother, measured in grams. The explanatory variable is $\boldsymbol{c i g s}_{\boldsymbol{i}}$, the average number of cigarettes per day smoked by the i-th mother during pregnancy, measured in cigarettes per day. The model you propose to estimate is given by the population regression equation

$$
\operatorname{bwght}_{i}=\beta_{0}+\beta_{1} \operatorname{cigs}_{i}+\mathrm{u}_{\mathrm{i}} .
$$

Your research assistant has used 1,722 sample observations on bwght $_{i}$ and cigs ${ }_{i}$ to estimate the following OLS sample regression equation, where the figures in parentheses below the coefficient estimates are the estimated standard errors of the coefficient estimates:

$$
\begin{aligned}
\text { bwght }_{\mathrm{i}}=3421.71-11.4783 \text { cigs }_{\mathrm{i}}+\hat{\mathrm{u}}_{\mathrm{i}} & (\mathrm{i}=1, \ldots, \mathrm{~N}) \quad \mathrm{N}=1,722 \\
& (14.145)(3.2447)
\end{aligned}
$$

ANSWERS to Question 5:

(8 marks)

(a) Perform a test of the null hypothesis $\mathrm{H}_{0}: \beta_{1}=0$ against the alternative hypothesis H_{1} :
$\beta_{1} \neq 0$ at the 1% significance level (i.e., for significance level $\alpha=0.01$). Show how you calculated the test statistic. State the decision rule you use, and the inference you would draw from the test. Briefly state the conclusion you would draw from the test.

$$
\begin{aligned}
& \mathrm{H}_{0}: \beta_{1}=0 \\
& \mathrm{H}_{1}: \beta_{1} \neq 0 \quad \text { a two-sided alternative hypothesis } \Rightarrow \text { a two-tailed test }
\end{aligned}
$$

- Test statistic is either $\mathrm{t}\left(\hat{\beta}_{1}\right)=\frac{\hat{\beta}_{1}-\beta_{1}}{\operatorname{sê}\left(\hat{\beta}_{1}\right)} \sim \mathrm{t}[\mathrm{N}-2]$ or $\mathrm{F}\left(\hat{\beta}_{1}\right)=\frac{\left(\hat{\beta}_{1}-\beta_{1}\right)^{2}}{\operatorname{Vâr}\left(\hat{\beta}_{1}\right)} \sim \mathrm{F}[1, \mathrm{~N}-2]$.
- $\hat{\beta}_{1}=-\mathbf{1 1 . 4 7 8 3 ;} \quad \operatorname{se}\left(\hat{\beta}_{1}\right)=$ 3.2447; $\quad \operatorname{Vâ}\left(\hat{\beta}_{1}\right)=\left(\operatorname{se}\left(\hat{\beta}_{1}\right)\right)^{2}=10.528$
- Calculate the sample value of either the \mathbf{t}-statistic or the \mathbf{F}-statistic under H_{0} : set $\beta_{1}=0, \hat{\beta}_{1}=-\mathbf{1 1 . 4 7 8 3}$, $\operatorname{se}\left(\hat{\beta}_{1}\right)=3.2447$, and $\operatorname{Var}\left(\hat{\beta}_{1}\right)=\mathbf{1 0 . 5 2 8}$.

$$
\mathrm{t}_{0}\left(\hat{\beta}_{1}\right)=\frac{\hat{\beta}_{1}-\beta_{1}}{\operatorname{se}\left(\hat{\beta}_{1}\right)}=\frac{-11.4783-0.0}{3.2447}=\frac{-11.4783}{3.2447}=-3.5376=\underline{-3.54}
$$

or
(3 marks)

$$
\mathrm{F}_{0}\left(\hat{\beta}_{1}\right)=\frac{\left(\hat{\beta}_{1}-\beta_{1}\right)^{2}}{\operatorname{Vâr}\left(\hat{\beta}_{1}\right)}=\frac{(-11.4783-0.0)^{2}}{10.528}=\frac{131.7514}{10.528}=12.5144=\underline{\mathbf{1 2 . 5 1}}
$$

ANSWER to Question 5(a) -- continued:

- Null distribution of $\mathrm{t}_{0}\left(\hat{\beta}_{1}\right)$ is $\mathbf{t}[\mathbf{N}-2]=\mathbf{t}[1722-2]=\mathbf{t}[1720]$
- Null distribution of $\mathrm{F}_{0}\left(\hat{\beta}_{1}\right)$ is $\mathbf{F}[1, \mathrm{~N}-2]=\mathbf{F}[1,1722-2]=\mathbf{F}[1,1720]$

Decision Rule: At significance level α,

- reject \mathbf{H}_{0} if $\mathrm{F}_{0}\left(\hat{\beta}_{1}\right)>\mathrm{F}_{\alpha}[1,1720]$ or $\left|\mathrm{t}_{0}\left(\hat{\beta}_{1}\right)\right|>\mathrm{t}_{\alpha / 2}[1720]$,
i.e., if either (1) $t_{0}\left(\hat{\beta}_{1}\right)>t_{\alpha / 2}[1720]$ or (2) $t_{0}\left(\hat{\beta}_{1}\right)<-t_{\alpha / 2}[1720]$;
- retain \mathbf{H}_{0} if $\mathrm{F}_{0}\left(\hat{\beta}_{1}\right) \leq \mathrm{F}_{\alpha}[1,1720]$ or $\left|\mathrm{t}_{0}\left(\hat{\beta}_{1}\right)\right| \leq \mathrm{t}_{\alpha / 2}[1720]$,

$$
\text { i.e., if }-\mathrm{t}_{\alpha / 2}[1720] \leq \mathrm{t}_{0}\left(\hat{\beta}_{1}\right) \leq \mathrm{t}_{\alpha / 2}[1720] \text {. }
$$

Critical values of $\mathbf{t}[1720]$-distribution or $\mathbf{F}[1,1720]$-distribution: in t-table, use $\mathbf{d f}=\infty$.

- two-tailed $\underline{1}$ percent critical value $=\mathrm{t}_{\alpha / 2}[1720]=\mathrm{t}_{0.005}[1720]=2.576=\underline{\mathbf{2 . 5 8}}$ (1 mark)
- $\underline{1}$ percent critical value $=F_{\alpha}[1,1720]=F_{0.01}[1,1720]=\underline{\mathbf{6 . 6 5}}$

Inference:

- At 1 percent significance level, i.e., for $\alpha=0.01$,

$$
\begin{aligned}
& \left|\mathrm{t}_{0}\left(\hat{\beta}_{1}\right)\right|=3.54>2.58=\mathrm{t}_{0.005}[1720] \Rightarrow \quad \text { reject } \mathrm{H}_{0} \text { vs. } \mathrm{H}_{1} \text { at } 1 \text { percent level. } \\
& \mathrm{F}_{0}\left(\hat{\beta}_{1}\right)=12.51>6.65=\mathrm{F}_{0.01}[1,1720] \quad \Rightarrow \quad \text { reject } H_{0} \text { vs. } \mathrm{H}_{1} \text { at } 1 \text { percent level. }
\end{aligned}
$$

- Inference: At the $\mathbf{1 \%}$ significance level, the null hypothesis $\beta_{1}=0$ is rejected in favour of the alternative hypothesis $\beta_{1} \neq 0$.

Conclusion implied by test outcome:

Rejection of the null hypothesis $\beta_{1}=0$ against the alternative hypothesis $\beta_{1} \neq 0$ means that the sample evidence favours the existence of a relationship between students' final exam grades and their mid-term exam grades.

Question 5(a) - Alternative Answer -- uses confidence interval approach

- The two-sided $(1-\alpha)$-level, or $\mathbf{1 0 0}(1-\alpha)$ percent, confidence interval for β_{1} is:

$$
\begin{gathered}
\hat{\beta}_{1}-\mathrm{t}_{\alpha / 2}[\mathrm{~N}-2] \operatorname{se}\left(\hat{\beta}_{1}\right) \leq \beta_{1} \leq \hat{\beta}_{1}+\mathrm{t}_{\alpha / 2}[\mathrm{~N}-2] \operatorname{se}\left(\hat{\beta}_{1}\right) \\
\hat{\beta}_{1 \mathrm{~L}} \leq \beta_{1} \leq \hat{\beta}_{1 \mathrm{U}}
\end{gathered}
$$

- Required results and intermediate calculations:

$$
\begin{aligned}
& \mathrm{N}-\mathrm{K}=1722-2=1720 ; \quad \hat{\beta}_{1}=-\mathbf{1 1 . 4 7 8 3} ; \quad \operatorname{se}\left(\hat{\beta}_{1}\right)=3.2447 \\
& 1-\alpha=0.99 \Rightarrow \alpha=0.01 \Rightarrow \alpha / \mathbf{2}=\mathbf{0 . 0 0 5}: \mathrm{t}_{\alpha / 2}[\mathrm{~N}-2]=\mathbf{t}_{\mathbf{0 . 0 0 5}}[\mathbf{1 7 2 0}]=\underline{\mathbf{2 . 5 8}} \quad \text { (1 mark) } \\
& \mathrm{t}_{\alpha / 2}[\mathrm{~N}-2] \operatorname{se}\left(\hat{\beta}_{1}\right)=\mathrm{t}_{0.005}[1720] \operatorname{se}\left(\hat{\beta}_{1}\right)=2.58(3.2447)=\mathbf{8 . 3 7 1 3 3}
\end{aligned}
$$

- Lower 99\% confidence limit for β_{1} is:
(2 marks)

$$
\begin{aligned}
\hat{\beta}_{1 L} & =\hat{\beta}_{1}-\mathrm{t}_{\alpha / 2}[\mathrm{~N}-2] \operatorname{se}\left(\hat{\beta}_{1}\right)=\hat{\beta}_{1}-\mathrm{t}_{0.005}[1720] \mathrm{se}\left(\hat{\beta}_{1}\right) \\
& =-11.4783-2.58(3.2447)=-11.4783-8.37133=-19.8496=-\mathbf{1 9 . 8 5}
\end{aligned}
$$

- Upper 99\% confidence limit for β_{1} is:
(2 marks)

$$
\begin{aligned}
\hat{\beta}_{1 U} & =\hat{\beta}_{1}+\mathrm{t}_{\alpha / 2}[\mathrm{~N}-2] \operatorname{se}\left(\hat{\beta}_{1}\right)=\hat{\beta}_{1}+\mathrm{t}_{0.005}[1720] \operatorname{se}\left(\hat{\beta}_{1}\right) \\
& =-11.4783+2.58(3.2447)=-11.4783+8.37133=-3.10697=-\mathbf{3 . 1 0 7}
\end{aligned}
$$

- Decision Rule: At significance level α,
- reject $\mathbf{H}_{\mathbf{0}}$ if the hypothesized value $\mathbf{b}_{\mathbf{1}}$ of $\boldsymbol{\beta}_{\mathbf{1}}$ specified by H_{0} lies outside the two-sided ($1-\alpha$)-level confidence interval for β_{1}, i.e., if either
(1) $\mathrm{b}_{1}<\hat{\beta}_{1}-\mathrm{t}_{\alpha / 2}[1720] \operatorname{se}\left(\hat{\beta}_{1}\right)$ or
(2) $b_{1}>\hat{\beta}_{1}+t_{\alpha / 2}[1720] \operatorname{se}\left(\hat{\beta}_{1}\right)$.
- retain $\mathbf{H}_{\mathbf{0}}$ if the hypothesized value $\mathbf{b}_{\mathbf{1}}$ of β_{1} specified by H_{0} lies inside the two-sided $(1-\alpha)$-level confidence interval for β_{1}, i.e., if $\hat{\beta}_{1}-\mathrm{t}_{\alpha / 2}[1720] \operatorname{se}\left(\hat{\beta}_{1}\right) \leq \mathrm{b}_{1} \leq \hat{\beta}_{1}+\mathrm{t}_{\alpha / 2}[1720] \operatorname{se}\left(\hat{\beta}_{1}\right)$.

Question 5(a) - Alternative Answer (continued)

Inference:

- At 1 percent significance level, i.e., for $\alpha=0.01$,

$$
\begin{aligned}
& \mathrm{b}_{1}=\mathbf{0}>-3.107=\hat{\beta}_{1 \mathrm{U}}=\hat{\beta}_{1}+\mathrm{t}_{0.005}[1720] \mathrm{se}\left(\hat{\beta}_{1}\right) \\
& \Rightarrow \text { reject } H_{0} \text { vs. } H_{1} \text { at } 1 \text { percent level. }
\end{aligned}
$$

- Inference: At the $\mathbf{1 \%}$ significance level, the null hypothesis $\beta_{1}=0$ is rejected in favour of the alternative hypothesis $\beta_{1} \neq 0$.

Conclusion implied by test outcome:

Rejection of the null hypothesis $\beta_{1}=0$ against the alternative hypothesis $\beta_{1} \neq 0$ means that the sample evidence favours the existence of a relationship between students' final exam grades and their mid-term exam grades.

(8 marks)

(b) Perform a test of the proposition that an increase in women's cigarette consumption during pregnancy of one cigarette per day decreases the average birth weight of babies by less than 20 grams. Use the 1 percent significance level (i.e., $\alpha=0.01$). State the null hypothesis H_{0} and the alternative hypothesis H_{1}. Show how you calculated the test statistic. State the decision rule you use, and the inference you would draw from the test.

ANSWER to Question 5(b):

Null and Alternative Hypotheses:

$\mathrm{H}_{0}: \beta_{1}=-20$
$\mathrm{H}_{1}: \beta_{1}>-20 \quad \Rightarrow$ a right-tailed t-test

- Test statistic is $\mathrm{t}\left(\hat{\beta}_{1}\right)=\frac{\hat{\beta}_{1}-\beta_{1}}{\operatorname{se}\left(\hat{\beta}_{1}\right)} \sim \mathrm{t}[\mathrm{N}-2] ; \hat{\beta}_{1}=-\mathbf{1 1 . 4 7 8 3}$ and $\operatorname{sê}\left(\hat{\beta}_{1}\right)=3.2447$
- Calculate the sample value of the \mathbf{t}-statistic (1) under H_{0} : set $\beta_{1}=-20, \hat{\beta}_{1}=\mathbf{- 1 1 . 4 7 8 3}$ and $\operatorname{se}\left(\hat{\beta}_{1}\right)=3.2447$ in (1).

$$
\begin{equation*}
\mathrm{t}_{0}\left(\hat{\beta}_{1}\right)=\frac{\hat{\beta}_{1}-\beta_{1}}{\operatorname{se}\left(\hat{\beta}_{1}\right)}=\frac{-11.4783-(-20.0)}{3.2447}=\frac{8.5217}{3.2447}=2.6263445=\underline{\mathbf{2 . 6 3}} \tag{3marks}
\end{equation*}
$$

- Null distribution of $\mathrm{t}_{0}\left(\hat{\beta}_{1}\right)$ is $\mathbf{t}[\mathbf{N}-2]=\mathbf{t}[1722-2]=\mathbf{t}[1720]$

Decision Rule: At significance level α,
(1 mark)

- reject \mathbf{H}_{0} if $\mathrm{t}_{0}\left(\hat{\beta}_{1}\right)>\mathrm{t}_{\alpha}$ [1720],
- retain H_{0} if $t_{0}\left(\hat{\beta}_{1}\right) \leq t_{\alpha}[1720]$.

Critical value of $\mathbf{t}[1720]$-distribution: from t-table, use $\mathbf{d f}=\infty$.

- right-tail $\underline{1}$ percent critical value $=\mathrm{t}_{0.01}[1720]=\underline{2.326}=\underline{2.33}$

Inference:

- At 1 percent significance level, i.e., for $\alpha=0.01$,
$\mathrm{t}_{0}\left(\hat{\beta}_{1}\right)=2.63>2.33=\mathrm{t}_{0.01}[1720] \quad \Rightarrow \quad$ reject H_{0} vs. H_{1} at 1 percent level.
- Inference: At the $\mathbf{1 \%}$ significance level, the null hypothesis $\beta_{1}=-20$ is rejected in favour of the alternative hypothesis $\beta_{1}>-\mathbf{2 0}$.

(8 marks)

(c) Compute the two-sided 95% confidence interval for the slope coefficient β_{1}.

ANSWER to Question 5(c):

- The two-sided $(1-\alpha)$-level, or $\mathbf{1 0 0}(1-\alpha)$ percent, confidence interval for β_{1} is computed as

$$
\begin{equation*}
\hat{\beta}_{1}-\mathrm{t}_{\alpha / 2}[\mathrm{~N}-2] \operatorname{se}\left(\hat{\beta}_{1}\right) \leq \beta_{1} \leq \hat{\beta}_{1}+\mathrm{t}_{\alpha / 2}[\mathrm{~N}-2] \operatorname{se}\left(\hat{\boldsymbol{\beta}}_{1}\right) \tag{2marks}
\end{equation*}
$$

where

- $\hat{\beta}_{1 \mathrm{~L}}=\hat{\beta}_{1}-\mathrm{t}_{\alpha / 2}[\mathrm{~N}-2]$ sê $\left(\hat{\beta}_{1}\right)=$ the lower $\mathbf{1 0 0}(1-\alpha) \%$ confidence limit for β_{1}
- $\hat{\beta}_{1 U}=\hat{\beta}_{1}+t_{\alpha / 2}[N-2] \operatorname{se}\left(\hat{\beta}_{1}\right)=$ the upper $\mathbf{1 0 0}(1-\alpha) \%$ confidence limit for β_{1}
- $t_{\alpha / 2}[N-2]=$ the $\alpha / 2$ critical value of the t-distribution with $N-2$ degrees of freedom.
- Required results and intermediate calculations:

$$
\begin{aligned}
& \mathrm{N}-\mathrm{K}=1722-2=1720 ; \quad \hat{\beta}_{1}=-\mathbf{1 1 . 4 7 8 3} ; \quad \operatorname{se}\left(\hat{\beta}_{1}\right)=3.2447 \\
& 1-\alpha=0.95 \Rightarrow \alpha=0.05 \Rightarrow \alpha / \mathbf{2}=\mathbf{0 . 0 2 5 :} \quad \mathrm{t}_{\alpha / 2}[\mathrm{~N}-2]=\mathbf{t}_{0.025}[\mathbf{1 7 2 0}]=\mathbf{1 . 9 6} \\
& \mathrm{t}_{\alpha / 2}[\mathrm{~N}-2] \operatorname{se}\left(\hat{\beta}_{1}\right)=\mathrm{t}_{0.025}[1720] \operatorname{se}\left(\hat{\beta}_{1}\right)=1.96(3.2447)=\mathbf{6 . 3 5 9 6 1 2}
\end{aligned}
$$

- Lower 95\% confidence limit for β_{1} is:

$$
\begin{aligned}
\hat{\beta}_{1 \mathrm{~L}} & =\hat{\beta}_{1}-\mathrm{t}_{\alpha / 2}[\mathrm{~N}-2] \operatorname{se}\left(\hat{\beta}_{1}\right)=\hat{\beta}_{1}-\mathrm{t}_{0.025}[1720] \operatorname{se}\left(\hat{\beta}_{1}\right) \\
& =-11.4783-1.96(3.2447)=-11.4783-6.359612=-17.8379=-\mathbf{1 7 . 8 4}
\end{aligned}
$$

- Upper 95\% confidence limit for β_{1} is:

$$
\begin{aligned}
\hat{\beta}_{1 U} & =\hat{\beta}_{1}+\mathrm{t}_{\alpha / 2}[\mathrm{~N}-2] \operatorname{se}\left(\hat{\beta}_{1}\right)=\hat{\beta}_{1}+\mathrm{t}_{0.025}[1720] \operatorname{se}\left(\hat{\beta}_{1}\right) \\
& =-11.4783+1.96(3.2447)=-11.4783+6.359612=-5.11869=\underline{\mathbf{- 5 . 1 1 9}}
\end{aligned}
$$

- Result: The two-sided 95% confidence interval for β_{1} is: [-17.84, $\mathbf{- 5 . 1 1 9]}$

Percentage Points of the t-Distribution

TABLE D. 2
Percentage points of the t distribution

Note: The smaller probability shown at the head of each column ts the area in one tail; the larger probability is the area in both tails.
Source: From E. S. Pearson and H. O. Hartley. eds., Biomerrika Tables for Statisticians, vot. 1, 3d ed., lable 12. Cambridge University Press, New York. 1966. Reproduced by permission of the editors and irustees of Biomerrika.

