QUEEN'S UNIVERSITY AT KINGSTON
 Department of Economics

ECONOMICS 351* - Fall Term 2003

Introductory Econometrics

Fall Term 2003
MID-TERM EXAM: ANSWERS
M.G. Abbott

DATE: Tuesday October 28, 2003.
TIME: $\quad \mathbf{8 0}$ minutes; 1:00 p.m. - 2:20 p.m.
INSTRUCTIONS: The exam consists of FIVE (5) questions. Students are required to answer ALL FIVE (5) questions.
Answer all questions in the exam booklets provided. Be sure your name and student number are printed clearly on the front of all exam booklets used. Do not write answers to questions on the front page of the first exam booklet.
Please label clearly each of your answers in the exam booklets with the appropriate number and letter.
Please write legibly.
MARKING: The marks for each question are indicated in parentheses immediately above each question. Total marks for the exam equal 100.
GOOD LUCK!

All questions pertain to the simple (two-variable) linear regression model for which the population regression equation can be written in conventional notation as:

$$
\begin{equation*}
Y_{i}=\beta_{1}+\beta_{2} X_{i}+u_{i} \tag{1}
\end{equation*}
$$

where Y_{i} and X_{i} are observable variables, β_{1} and β_{2} are unknown (constant) regression coefficients, and u_{i} is an unobservable random error term. The Ordinary Least Squares (OLS) sample regression equation corresponding to regression equation (1) is

$$
\begin{equation*}
Y_{i}=\hat{\beta}_{1}+\hat{\beta}_{2} X_{i}+\hat{u}_{i} \quad(i=1, \ldots, N) \tag{2}
\end{equation*}
$$

where $\hat{\beta}_{1}$ is the OLS estimator of the intercept coefficient $\beta_{1}, \hat{\beta}_{2}$ is the OLS estimator of the slope coefficient β_{2}, \hat{u}_{i} is the OLS residual for the i-th sample observation, $\hat{Y}_{i}=\hat{\beta}_{1}+\hat{\beta}_{2} X_{i}$ is the OLS estimated value of Y for the i-th sample observation, and N is sample size (the number of observations in the sample).

QUESTIONS: Answer ALL FIVE questions.

(15 marks)

1. State the Ordinary Least Squares (OLS) estimation criterion. State the OLS normal equations. Derive the OLS normal equations from the OLS estimation criterion.

ANSWER:

(3 marks)

- State the Ordinary Least Squares (OLS) estimation criterion.

The OLS coefficient estimators are those formulas or expressions for $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$ that minimize the sum of squared residuals RSS for any given sample of size N .

The OLS estimation criterion is therefore:

$$
\begin{aligned}
& \operatorname{Minimize} \operatorname{RSS}\left(\hat{\beta}_{1}, \hat{\beta}_{2}\right)=\sum_{\mathrm{i}=1}^{\mathrm{N}} \hat{\mathrm{u}}_{\mathrm{i}}^{2}=\sum_{\mathrm{i}=1}^{\mathrm{N}}\left(\mathrm{Y}_{\mathrm{i}}-\hat{\beta}_{1}-\hat{\beta}_{2} \mathrm{X}_{\mathrm{i}}\right)^{2} \\
& \quad\left\{\hat{\beta}_{\mathrm{j}}\right\}
\end{aligned}
$$

(4 marks)

- State the OLS normal equations.

The first OLS normal equation can be written in any one of the following forms:

$$
\begin{align*}
\sum_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}}-\mathrm{N} \hat{\beta}_{1}-\hat{\beta}_{2} \sum_{\mathrm{i}} \mathrm{X}_{\mathrm{i}} & =0 \\
-\mathrm{N} \hat{\beta}_{1}-\hat{\beta}_{2} \sum_{\mathrm{i}} \mathrm{X}_{\mathrm{i}} & =-\sum_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}} \tag{N1}\\
\mathrm{~N} \hat{\beta}_{1}+\hat{\beta}_{2} \sum_{\mathrm{i}} X_{\mathrm{i}} & =\sum_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}}
\end{align*}
$$

The second OLS normal equation can be written in any one of the following forms:

$$
\begin{align*}
\sum_{\mathrm{i}} \mathrm{X}_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}}-\hat{\beta}_{1} \sum_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}-\hat{\beta}_{2} \sum_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}^{2} & =0 \\
-\hat{\beta}_{1} \sum_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}-\hat{\beta}_{2} \sum_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}^{2} & =-\sum_{\mathrm{i}} \mathrm{X}_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}} \tag{N2}\\
\hat{\beta}_{1} \sum_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}+\hat{\beta}_{2} \sum_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}^{2} & =\sum_{\mathrm{i}} \mathrm{X}_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}}
\end{align*}
$$

Question 1 (continued)

(8 marks)

- Show how the OLS normal equations are derived from the OLS estimation criterion.
(4 marks)
Step 1: Partially differentiate the $\operatorname{RSS}\left(\hat{\beta}_{1}, \hat{\beta}_{2}\right)$ function with respect to $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$, using

$$
\begin{align*}
& \hat{u}_{i}=Y_{i}-\hat{\beta}_{1}-\hat{\beta}_{2} X_{i} \quad \Rightarrow \quad \frac{\partial \hat{u}_{i}}{\partial \hat{\beta}_{1}}=-1 \quad \text { and } \quad \frac{\partial \hat{u}_{i}}{\partial \hat{\beta}_{2}}=-X_{i} . \\
& \frac{\partial \mathrm{RSS}}{\partial \hat{\beta}_{1}}=\sum_{\mathrm{i}=1}^{\mathrm{N}} 2 \hat{\mathrm{u}}_{\mathrm{i}}\left(\frac{\partial \hat{\mathrm{u}}_{\mathrm{i}}}{\partial \hat{\beta}_{1}}\right)=\sum_{\mathrm{i}=1}^{\mathrm{N}} 2 \hat{\mathrm{u}}_{\mathrm{i}}(-1)=-2 \sum_{\mathrm{i}=1}^{\mathrm{N}} \hat{\mathrm{u}}_{\mathrm{i}}=-2 \sum_{\mathrm{i}=1}^{\mathrm{N}}\left(\mathrm{Y}_{\mathrm{i}}-\hat{\boldsymbol{\beta}}_{1}-\hat{\boldsymbol{\beta}}_{2} \mathrm{X}_{\mathrm{i}}\right) \tag{1}\\
& \frac{\partial R S S}{\partial \hat{\beta}_{2}}=\sum_{i=1}^{N} 2 \hat{u}_{i}\left(\frac{\partial \hat{u}_{i}}{\partial \hat{\beta}_{2}}\right)=\sum_{i=1}^{N} 2 \hat{u}_{i}\left(-X_{i}\right)=-2 \sum_{i=1}^{N} X_{i} \hat{u}_{i} \\
& =-2 \sum_{i=1}^{N} X_{i}\left(Y_{i}-\hat{\beta}_{1}-\hat{\beta}_{2} X_{i}\right) \quad \text { since } \hat{\mathrm{u}}_{\mathrm{i}}=Y_{i}-\hat{\beta}_{1}-\hat{\beta}_{2} X_{i} \tag{2}\\
& =-2 \sum_{i=1}^{N}\left(X_{i} Y_{i}-\hat{\beta}_{1} X_{i}-\hat{\beta}_{2} X_{i}^{2}\right) \text {. }
\end{align*}
$$

(4 marks)

Step 2: Obtain the first-order conditions (FOCs) for a minimum of the RSS function by setting the partial derivatives (1) and (2) equal to zero and then dividing each equation by -2 and re-arranging:

$$
\begin{align*}
& \frac{\partial \mathrm{RSS}}{\partial \hat{\beta}_{1}}=0 \Rightarrow-2 \sum_{\mathrm{i}} \hat{\mathrm{u}}_{\mathrm{i}}=0 \Rightarrow-2 \sum_{\mathrm{i}}\left(\mathrm{Y}_{\mathrm{i}}-\hat{\beta}_{1}-\hat{\beta}_{2} \mathrm{X}_{\mathrm{i}}\right)=0 \\
& \Rightarrow \sum_{\mathrm{i}}\left(\mathrm{Y}_{\mathrm{i}}-\hat{\beta}_{1}-\hat{\beta}_{2} \mathrm{X}_{\mathrm{i}}\right)=0 \\
& \Rightarrow \sum_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}}-\mathrm{N} \hat{\beta}_{1}-\hat{\beta}_{2} \sum_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}=0 \\
& \Rightarrow \sum_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}}=\mathrm{N} \hat{\beta}_{1}+\hat{\beta}_{2} \sum_{\mathrm{i}} \mathrm{X}_{\mathrm{i}} \tag{N1}\\
& \frac{\partial \mathrm{RSS}}{\partial \hat{\beta}_{2}}=0 \Rightarrow-2 \sum_{\mathrm{i}} \mathrm{X}_{\mathrm{i}} \hat{\mathrm{u}}_{\mathrm{i}}=0 \Rightarrow-2 \sum_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}\left(\mathrm{Y}_{\mathrm{i}}-\hat{\beta}_{1}-\hat{\beta}_{2} \mathrm{X}_{\mathrm{i}}\right)=0 \\
& \Rightarrow \sum_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}\left(\mathrm{Y}_{\mathrm{i}}-\hat{\beta}_{1}-\hat{\beta}_{2} \mathrm{X}_{\mathrm{i}}\right)=0 \\
& \Rightarrow \sum_{\mathrm{i}}\left(\mathrm{X}_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}}-\hat{\beta}_{1} \mathrm{X}_{\mathrm{i}}-\hat{\beta}_{2} \mathrm{X}_{\mathrm{i}}^{2}\right)=0 \\
& \Rightarrow \sum_{\mathrm{i}} \mathrm{X}_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}}-\hat{\beta}_{1} \sum_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}-\hat{\beta}_{2} \sum_{\mathrm{i}} X_{\mathrm{i}}^{2}=0 \\
& \Rightarrow \sum_{\mathrm{i}} \mathrm{X}_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}}=\hat{\beta}_{1} \sum_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}+\hat{\beta}_{2} \sum_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}^{2} \tag{N2}
\end{align*}
$$

(15 marks)

2. Give a general definition of the F-distribution. Starting from this definition, derive the F-statistic for the OLS slope coefficient estimator $\hat{\beta}_{2}$. State all assumptions required for the derivation.

ANSWER:

(3 marks)

- General definition of the F-distribution: Consider the two random variables V_{1} and V_{2} such that
(1) $V_{1} \sim \chi^{2}\left[m_{1}\right]$
(2) $\mathrm{V}_{2} \sim \chi^{2}\left[\mathrm{~m}_{2}\right]$
(3) $\quad \mathrm{V}_{1}$ and V_{2} are independent.

Then the random variable

$$
\mathrm{F}=\frac{\mathrm{V}_{1} / \mathrm{m}_{1}}{\mathrm{~V}_{2} / \mathrm{m}_{2}} \sim \mathrm{~F}\left[\mathrm{~m}_{1}, \mathrm{~m}_{2}\right]
$$

where $\mathrm{F}\left[\mathrm{m}_{1}, \mathrm{~m}_{2}\right]$ denotes the \mathbf{F}-distribution with $\boldsymbol{m}_{\boldsymbol{1}}$ numerator degrees of freedom and $\boldsymbol{m}_{\mathbf{2}}$ denominator degrees of freedom.

(2 marks)

- Error Normality Assumption: The random error term u_{i} is normally distributed with mean 0 and variance σ^{2}; that is,

$$
u_{i} \mid X_{i} \sim N\left[0, \sigma^{2}\right] \text { for all i } \quad \text { OR } \quad u_{i} \text { is iid as } N\left[0, \sigma^{2}\right]
$$

(4 marks)

- Use three implications of the error normality assumption to derive $\mathrm{F}\left(\hat{\beta}_{2}\right)$:

1. $\hat{\beta}_{2} \sim N\left[\beta_{2}, \operatorname{Var}\left(\hat{\beta}_{2}\right)\right\rfloor$ where $\operatorname{Var}\left(\hat{\beta}_{2}\right)=\frac{\sigma^{2}}{\sum_{i=1}^{N} x_{i}^{2}}=\frac{\sigma^{2}}{\sum_{i=1}^{N}\left(X_{i}-\bar{X}\right)^{2}}$

Implications of normality of $\hat{\beta}_{2}$:

$$
\begin{align*}
& \mathrm{Z}\left(\hat{\beta}_{2}\right)=\frac{\hat{\beta}_{2}-\beta_{2}}{\operatorname{se}\left(\hat{\beta}_{2}\right)} \sim \mathrm{N}[0,1] \\
& {\left[\mathrm{Z}\left(\hat{\beta}_{2}\right)\right]^{2}=\frac{\left(\hat{\beta}_{2}-\beta_{2}\right)^{2}}{\operatorname{Var}\left(\hat{\beta}_{2}\right)}=\frac{\left(\hat{\beta}_{2}-\beta_{2}\right)^{2}}{\sigma^{2} / \sum_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2}}=\frac{\left(\hat{\beta}_{2}-\beta_{2}\right)^{2} \sum_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2}}{\sigma^{2}} \sim \chi^{2}[1]} \tag{1}
\end{align*}
$$

(1 mark)
2. $\frac{(\mathrm{N}-2) \hat{\sigma}^{2}}{\sigma^{2}} \sim \chi^{2}[\mathrm{~N}-2] \Rightarrow \frac{\hat{\sigma}^{2}}{\sigma^{2}} \sim \frac{\chi^{2}[\mathrm{~N}-2]}{(\mathrm{N}-2)}$
(1 mark)
3. The estimators $\hat{\beta}_{2}$ and $\hat{\sigma}^{2}$ are statistically independent OR
The statistics $Z\left(\hat{\beta}_{2}\right)$ and $\hat{\sigma}^{2} / \sigma^{2}$ are statistically independent.

(6 marks)

- The \boldsymbol{F}-statistic for $\hat{\boldsymbol{\beta}}_{2}$. The F-statistic for $\hat{\beta}_{2}$ is therefore the ratio of (1) to (2):

$$
\begin{aligned}
F\left(\hat{\beta}_{2}\right) & =\frac{\left(Z\left(\hat{\beta}_{2}\right)\right)^{2}}{\hat{\sigma}^{2} / \sigma^{2}} \\
& =\frac{\left(\hat{\beta}_{2}-\beta_{2}\right)^{2}\left(\sum_{i} x_{i}^{2}\right) / \sigma^{2}}{\hat{\sigma}^{2} / \sigma^{2}} \\
& =\frac{\left(\hat{\beta}_{2}-\beta_{2}\right)^{2}\left(\sum_{i} x_{i}^{2}\right)}{\hat{\sigma}^{2}} \\
& =\frac{\left(\hat{\beta}_{2}-\beta_{2}\right)^{2}}{\hat{\sigma}^{2} / \sum_{i} x_{i}^{2}} \quad \\
& =\frac{\left(\hat{\beta}_{2}-\beta_{2}\right)^{2}}{\operatorname{Vâr}\left(\hat{\beta}_{2}\right)} \quad \text { since } \hat{\sigma}^{2} / \sum_{i} x_{i}^{2}=\operatorname{Vâr}\left(\hat{\beta}_{2}\right) .
\end{aligned}
$$

- Result: The F-statistic for $\hat{\beta}_{2}$ takes the form

$$
\mathrm{F}\left(\hat{\beta}_{2}\right)=\frac{\left(\hat{\beta}_{2}-\beta_{2}\right)^{2}}{\hat{\sigma}^{2} /\left(\sum_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2}\right)}=\frac{\left(\hat{\beta}_{2}-\beta_{2}\right)^{2}}{\operatorname{Vâr}\left(\hat{\beta}_{2}\right)} \sim \mathrm{F}[1, \mathrm{~N}-2] .
$$

(10 marks)

3. Answer both parts (a) and (b) below. H_{0} stands for the null hypothesis of a statistical test. For each of parts (a) and (b), select which of statements (1) to (4) best defines the concept in question.

ANSWER: Correct answers are highlighted in bold.

(5 marks)

(a) The significance level of a hypothesis test is best defined as:
(1) the probability of retaining H_{0} when H_{0} is true
(2) the probability of rejecting H_{0} when H_{0} is true
(3) the probability of retaining H_{0} when H_{0} is false
(4) the probability of rejecting H_{0} when H_{0} is false

(5 marks)

(b) The power of a hypothesis test is best defined as:
(1) the probability of retaining H_{0} when H_{0} is true
(2) the probability of rejecting H_{0} when H_{0} is true
(3) the probability of retaining H_{0} when H_{0} is false
(4) the probability of rejecting $\mathrm{H}_{\mathbf{0}}$ when H_{0} is false

(36 marks)

4. A researcher is using data for a sample of 274 male employees to investigate the relationship between hourly wage rates Y_{i} (measured in dollars per hour) and firm tenure X_{i} (measured in years). Preliminary analysis of the sample data produces the following sample information:

$$
\begin{aligned}
& \mathrm{N}=274 \quad \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{Y}_{\mathrm{i}}=1945.26 \quad \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{X}_{\mathrm{i}}=1774.00 \quad \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{Y}_{\mathrm{i}}^{2}=18536.73 \\
& \sum_{i=1}^{N} X_{i}^{2}=30608.00 \quad \sum_{i=1}^{N} X_{i} Y_{i}=16040.72 \quad \sum_{i=1}^{N} x_{i} y_{i}=3446.226 \\
& \sum_{i=1}^{N} y_{i}^{2}=4726.377 \quad \sum_{i=1}^{N} x_{i}^{2}=19122.32 \quad \sum_{i=1}^{N} \hat{u}_{i}^{2}=4105.297
\end{aligned}
$$

where $x_{i} \equiv X_{i}-\bar{X}$ and $y_{i} \equiv Y_{i}-\bar{Y}$ for $i=1, \ldots, N$. Use the above sample information to answer all the following questions. Show explicitly all formulas and calculations.
(10 marks)
(a)Use the above information to compute OLS estimates of the intercept coefficient β_{1} and the slope coefficient β_{2}.

- $\hat{\boldsymbol{\beta}}_{2}=\frac{\sum_{\mathrm{i}} \mathrm{x}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}}{\sum_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2}}=\frac{3446.226}{19,122.32}=\mathbf{0 . 1 8 0 2 2 0 1}=\underline{\mathbf{0 . 1 8 0 2 2}}$
- $\hat{\beta}_{1}=\bar{Y}-\hat{\beta}_{2} \bar{X}$

$$
\bar{Y}=\frac{\sum_{i=1}^{N} Y_{i}}{N}=\frac{1945.26}{274}=7.09949 \quad \text { and } \quad \bar{X}=\frac{\sum_{i=1}^{N} X_{i}}{N}=\frac{1774.00}{274}=6.47445
$$

Therefore

$$
\hat{\beta}_{1}=\overline{\mathrm{Y}}-\beta_{2} \overline{\mathrm{X}}=7.09949-(0.18022)(6.47445)=7.09949-1.166825=\underline{\mathbf{5 . 9 3 2 6 6}}
$$

(5 marks)

(b) Interpret the slope coefficient estimate you calculated in part (a) -- i.e., explain in words what the numeric value you calculated for $\hat{\beta}_{2}$ means.

Note: $\hat{\beta}_{2}=\mathbf{0 . 1 8 0 2 2}$. Y_{i} is measured in dollars per hour, and X_{i} is measured in years.
The estimate $\mathbf{0 . 1 8 0 2 2}$ of β_{2} means that an increase (decrease) in firm tenure X_{i} of $\mathbf{1}$ year is associated on average with an increase (decrease) in male employees' hourly wage rate equal to 0.18 dollars per hour, or 18 cents per hour.

(5 marks)

(c) Calculate an estimate of σ^{2}, the error variance.

$$
\begin{align*}
& \mathrm{RSS}=\sum_{\mathrm{i}=1}^{\mathrm{N}} \hat{\mathrm{u}}_{\mathrm{i}}^{2}=4105.297 ; \quad \mathrm{N}-2=274-2=272 \\
& \hat{\sigma}^{2}=\frac{\mathrm{RSS}}{\mathrm{~N}-2}=\frac{\sum_{\mathrm{i}=1}^{\mathrm{N}} \hat{\mathrm{u}}_{\mathrm{i}}^{2}}{\mathrm{~N}-2}=\frac{4,105.297}{274-2}=\frac{4,105.297}{272}=\underline{\mathbf{1 5 . 0 9 3 0}} \tag{5marks}
\end{align*}
$$

(5 marks)

(d) Calculate an estimate of $\operatorname{Var}\left(\hat{\beta}_{2}\right)$, the variance of $\hat{\beta}_{2}$.

$$
\begin{equation*}
\operatorname{Vâr}\left(\hat{\beta}_{2}\right)=\frac{\hat{\sigma}^{2}}{\sum_{i=1}^{N} x_{i}^{2}}=\frac{15.0930}{19,122.32}=\underline{\mathbf{0 . 0 0 0 7 8 9 2 9}} \tag{5marks}
\end{equation*}
$$

(6 marks)

(e)Compute the value of R^{2}, the coefficient of determination for the estimated OLS sample regression equation. Briefly explain what the calculated value of R^{2} means.

(4 marks)

$R^{2}=\frac{E S S}{T S S}=\frac{\sum_{i=1}^{N} y_{i}^{2}-\sum_{i=1}^{N} \hat{u}_{i}^{2}}{\sum_{i=1}^{N} y_{i}^{2}}=\frac{4726.377-4105.297}{4726.377}=\frac{621.08}{4726.377}=\underline{\mathbf{0 . 1 3 1 4}}$
OR
$R^{2}=1-\frac{\mathrm{RSS}}{\mathrm{TSS}}=1-\frac{\sum_{i=1}^{N} \hat{u}_{i}^{2}}{\sum_{i=1}^{N} y_{i}^{2}}=1-\frac{4105.297}{4726.377}=1-0.8686=\underline{\mathbf{0 . 1 3 1 4}}$
(2 marks)
Interpretation of $\mathbf{R}^{\mathbf{2}}=\mathbf{0 . 1 3 1 4}$: The value of 0.1314 indicates that $\mathbf{1 3 . 1 4}$ percent of the total sample (or observed) variation in $\mathbf{Y}_{\mathbf{i}}$ (employees' hourly wage rates) is attributable to, or explained by, the sample regression function or the regressor $\mathbf{X}_{\mathbf{i}}$ (firm tenure).

(5 marks)

(f) Calculate the sample value of the t-statistic for testing the null hypothesis $\mathrm{H}_{0}: \beta_{2}=0$ against the alternative hypothesis $H_{1}: \beta_{2} \neq 0$. (Note: You are not required to obtain or state the inference of this test.)

- t-statistic for $\hat{\beta}_{2}$ is $t\left(\hat{\beta}_{2}\right)=\frac{\hat{\beta}_{2}-\beta_{2}}{\operatorname{se}\left(\hat{\beta}_{2}\right)}$
(1 mark)
- From part (a), $\hat{\beta}_{2}=0.180220$; from part (d), $\operatorname{Vâr}\left(\hat{\beta}_{2}\right)=0.00078929$.
- $\operatorname{sê}\left(\hat{\beta}_{2}\right)=\sqrt{\operatorname{Vâr}\left(\hat{\beta}_{2}\right)}=\sqrt{0.00078929}=\mathbf{0 . 0 2 8 0 9 4 3}$
- Calculate the sample value of the t-statistic (1) under H_{0} : set $\beta_{2}=0, \hat{\boldsymbol{\beta}}_{2}=0.180220$ and $\operatorname{se}\left(\hat{\boldsymbol{\beta}}_{2}\right)=0.0280943$ in (1).

$$
\mathrm{t}_{0}\left(\hat{\beta}_{2}\right)=\frac{\hat{\beta}_{2}-\beta_{2}}{\operatorname{sê}\left(\hat{\beta}_{2}\right)}=\frac{0.18022-0.0}{0.0280943}=\frac{0.18022}{0.0280943}=6.4148=\underline{\mathbf{6 . 4 1 5}}
$$

(24 marks)

5. You have been commissioned to investigate the relationship between the median selling prices of houses and the average number of rooms per house in 506 census districts of a large metropolitan area. The dependent variable is price , $_{\text {, the median selling price of a house in the i- }}$ th census district, measured in thousands of dollars. The explanatory variable is rooms \boldsymbol{r}_{i}, the average number of rooms per house in the i-th census district. The model you propose to estimate is given by the population regression equation

$$
\operatorname{price}_{\mathrm{i}}=\beta_{1}+\beta_{2} \text { rooms }_{i}+\mathrm{u}_{\mathrm{i}}
$$

Your research assistant has used the 506 sample observations on price e_{i} and rooms m_{i} to estimate the following OLS sample regression equation, where the figures in parentheses below the coefficient estimates are the estimated standard errors of the coefficient estimates:

$$
\begin{array}{rlrr}
\text { price }_{i}=-347.96+91.1955 \text { rooms }_{i}+\hat{\mathrm{u}}_{i} & (\mathrm{i}=1, \ldots, \mathrm{~N}) & \mathrm{N}=506 \\
& (26.52)(4.193) & \leftarrow \text { (standard errors) } & \tag{26.52}
\end{array}
$$

(8 marks)

(a) Compute the two-sided 95% confidence interval for the slope coefficient β_{2}.

- The two-sided $(1-\alpha)$-level, or $\mathbf{1 0 0}(1-\alpha)$ percent, confidence interval for β_{2} is computed as

$$
\begin{equation*}
\hat{\beta}_{2}-\mathrm{t}_{\alpha / 2}[\mathrm{~N}-2] \operatorname{se}\left(\hat{\boldsymbol{\beta}}_{2}\right) \leq \beta_{2} \leq \hat{\beta}_{2}+\mathrm{t}_{\alpha / 2}[\mathrm{~N}-2] \operatorname{se}\left(\hat{\boldsymbol{\beta}}_{2}\right) \tag{2marks}
\end{equation*}
$$

where

- $\hat{\beta}_{2 L}=\hat{\beta}_{2}-t_{\alpha / 2}[\mathrm{~N}-2] \operatorname{se}\left(\hat{\beta}_{2}\right)=$ the lower $\mathbf{1 0 0}(1-\alpha) \%$ confidence limit for β_{2}
- $\hat{\beta}_{2 U}=\hat{\beta}_{2}+t_{\alpha / 2}[N-2] \operatorname{se}\left(\hat{\beta}_{2}\right)=$ the upper $\mathbf{1 0 0}(1-\alpha) \%$ confidence limit for β_{2}
- $t_{\alpha / 2}[\mathrm{~N}-2]=$ the $\alpha / \mathbf{2}$ critical value of the \mathbf{t}-distribution with $\mathbf{N}-\mathbf{2}$ degrees of freedom.
- Required results and intermediate calculations:

$$
\begin{aligned}
& \mathrm{N}-\mathrm{k}=506-2=504 ; \quad \hat{\beta}_{2}=\mathbf{9 1 . 1 9 5 5} ; \quad \operatorname{se}\left(\hat{\beta}_{2}\right)=\mathbf{4 . 1 9 3} \\
& 1-\alpha=0.95 \Rightarrow \alpha=0.05 \Rightarrow \alpha / \mathbf{2}=\mathbf{0 . 0 2 5} ; \quad \mathrm{t}_{\alpha / 2}[\mathrm{~N}-2]=\mathbf{t}_{\mathbf{0 . 0 2 5}}[\mathbf{5 0 4}]=\mathbf{1 . 9 6} \\
& \mathrm{t}_{\alpha / 2}[\mathrm{~N}-2] \operatorname{se}\left(\hat{\boldsymbol{\beta}}_{2}\right)=\mathrm{t}_{0.025}[504] \operatorname{se}\left(\hat{\boldsymbol{\beta}}_{2}\right)=1.96(4.193)=\mathbf{8 . 2 1 8 2 8}
\end{aligned}
$$

Question 5(a) -- continued

- Lower 95\% confidence limit for β_{2} is:
(3 marks)

$$
\begin{aligned}
\hat{\beta}_{2 \mathrm{~L}} & =\hat{\beta}_{2}-\mathrm{t}_{\alpha / 2}[\mathrm{~N}-2] \operatorname{se}\left(\hat{\beta}_{2}\right)=\hat{\beta}_{2}-\mathrm{t}_{0.025}[504] \mathrm{se}\left(\hat{\beta}_{2}\right) \\
& =91.1955-1.96(4.193)=91.1955-8.21828=82.97722=\underline{\mathbf{8 2 . 9 8}}
\end{aligned}
$$

- Upper 95\% confidence limit for β_{2} is:
(3 marks)

$$
\begin{aligned}
\hat{\beta}_{2 \mathrm{U}} & =\hat{\beta}_{2}+\mathrm{t}_{\alpha / 2}[\mathrm{~N}-2] \operatorname{se}\left(\hat{\beta}_{2}\right)=\hat{\beta}_{2}+\mathrm{t}_{0.025}[504] \operatorname{se}\left(\hat{\beta}_{2}\right) \\
& =91.1955+1.96(4.193)=91.1955+8.21828=99.41378=\underline{\mathbf{9 9 . 4 1}}
\end{aligned}
$$

- Result: The two-sided $\mathbf{9 5 \%}$ confidence interval for β_{2} is:
[82.98, 99.41]

(8 marks)

(b) Perform a test of the null hypothesis $\mathrm{H}_{0}: \beta_{2}=0$ against the alternative hypothesis H_{1} :
$\beta_{2} \neq 0$ at the 1% significance level (i.e., for significance level $\alpha=0.01$). Show how you calculated the test statistic. State the decision rule you use, and the inference you would draw from the test. Briefly indicate the conclusion you would draw from the test.
$\mathrm{H}_{0}: \beta_{2}=0$
$H_{1}: \beta_{2} \neq 0 \quad$ a two-sided alternative hypothesis \Rightarrow a two-tailed test

- Test statistic is $\mathrm{t}\left(\hat{\beta}_{2}\right)=\frac{\hat{\beta}_{2}-\beta_{2}}{\operatorname{se}\left(\hat{\beta}_{2}\right)} \sim \mathrm{t}[\mathrm{N}-2]$.
- $\hat{\beta}_{2}=91.1955$ and $\operatorname{sê}\left(\hat{\beta}_{2}\right)=4.193$

Question 5(b) -- continued

- Calculate the sample value of the t-statistic (1) under H_{0} : set $\beta_{2}=0, \hat{\beta}_{2}=91.1955$ and $\operatorname{se}\left(\hat{\beta}_{2}\right)=4.193$ in (1).

$$
\begin{equation*}
\mathrm{t}_{0}\left(\hat{\beta}_{2}\right)=\frac{\hat{\beta}_{2}-\beta_{2}}{\operatorname{se}\left(\hat{\beta}_{2}\right)}=\frac{91.1955-0.0}{4.193}=\frac{91.1955}{4.193}=21.74946=\underline{\mathbf{2 1 . 7 5}} \tag{3marks}
\end{equation*}
$$

- Null distribution of $\mathrm{t}_{0}\left(\hat{\beta}_{2}\right)$ is $\mathbf{t}[\mathbf{N}-\mathbf{2}]=\mathbf{t}[506-2]=\mathbf{t}[504]$

Decision Rule: At significance level α,
(2 marks)

- reject \mathbf{H}_{0} if $\left|t_{0}\left(\hat{\beta}_{2}\right)\right|>t_{\alpha / 2}$ [504],
i.e., if either (1) $\mathrm{t}_{0}\left(\hat{\beta}_{2}\right)>\mathrm{t}_{\alpha / 2}[504]$ or (2) $\mathrm{t}_{0}\left(\hat{\beta}_{2}\right)<-\mathrm{t}_{\alpha / 2}[504]$;
- retain $\mathbf{H}_{\mathbf{0}}$ if $\left|\mathrm{t}_{0}\left(\hat{\beta}_{2}\right)\right| \leq \mathrm{t}_{\alpha / 2}[504]$, i.e., if $-\mathrm{t}_{\alpha / 2}[504] \leq \mathrm{t}_{0}\left(\hat{\beta}_{2}\right) \leq \mathrm{t}_{\alpha / 2}[504]$.

Critical value of $\mathbf{t}[504]$-distribution: from t-table, use $\mathbf{d f}=\infty$.

- two-tailed $\underline{1}$ percent critical value $=\mathrm{t}_{\alpha / 2}[504]=\mathrm{t}_{0.005}[504]=\underline{\mathbf{2} .58}$
(1 mark)

Inference:
(1 mark)

- At 1 percent significance level, i.e., for $\alpha=0.01$,
$\left|\mathrm{t}_{0}\left(\hat{\beta}_{2}\right)\right|=21.75>2.58=\mathrm{t}_{0.005}[504] \Rightarrow \operatorname{reject} \mathrm{H}_{\mathbf{0}}$ vs. H_{1} at $\mathbf{1}$ percent level.
- Inference: At the $\mathbf{1 \%}$ significance level, the null hypothesis $\beta_{2}=0$ is rejected in favour of the alternative hypothesis $\beta_{2} \neq 0$.

Meaning of test outcome:

(1 mark)
Rejection of the null hypothesis $\beta_{2}=0$ against the alternative hypothesis $\beta_{2} \neq 0$ means that the sample evidence favours the existence of a relationship between the median selling price of a houses and the average number of rooms per house.

(8 marks)

Question 5(b) - Alternative Answer (uses confidence interval approach)

- The two-sided $(1-\alpha)$-level, or $\mathbf{1 0 0}(1-\alpha)$ percent, confidence interval for β_{2} is:

$$
\begin{gathered}
\hat{\beta}_{2}-\mathrm{t}_{\alpha / 2}[\mathrm{~N}-2] \operatorname{se}\left(\hat{\beta}_{2}\right) \leq \beta_{2} \leq \hat{\beta}_{2}+\mathrm{t}_{\alpha / 2}[\mathrm{~N}-2] \operatorname{se}\left(\hat{\beta}_{2}\right) \\
\hat{\beta}_{2 \mathrm{~L}} \leq \beta_{2} \leq \hat{\beta}_{2 \mathrm{U}}
\end{gathered}
$$

- Required results and intermediate calculations:

$$
\begin{aligned}
& \mathrm{N}-\mathrm{k}=506-2=504 ; \quad \hat{\beta}_{2}=\mathbf{9 1 . 1 9 5 5} ; \quad \operatorname{se}\left(\hat{\beta}_{2}\right)=\mathbf{4 . 1 9 3} \\
& 1-\alpha=0.99 \Rightarrow \alpha=0.01 \Rightarrow \alpha / \mathbf{2}=\mathbf{0 . 0 0 5} ; \quad \mathrm{t}_{\alpha / 2}[\mathrm{~N}-2]=\mathbf{t}_{0.005}[504]=\underline{\mathbf{2 . 5 8}} \quad \text { (1 mark) } \\
& \mathrm{t}_{\alpha / 2}[\mathrm{~N}-2] \operatorname{se}\left(\hat{\beta}_{2}\right)=\mathrm{t}_{0.005}[504] \operatorname{se}\left(\hat{\boldsymbol{\beta}}_{2}\right)=2.58(4.193)=\mathbf{1 0 . 8 1 7 9 4}
\end{aligned}
$$

- Lower 99\% confidence limit for β_{2} is:
(2 marks)

$$
\begin{aligned}
\hat{\beta}_{2 \mathrm{~L}} & =\hat{\beta}_{2}-\mathrm{t}_{\alpha / 2}[\mathrm{~N}-2] \operatorname{se}\left(\hat{\beta}_{2}\right)=\hat{\beta}_{2}-\mathrm{t}_{0.005}[504] \operatorname{se}\left(\hat{\boldsymbol{\beta}}_{2}\right) \\
& =91.1955-2.58(4.193)=91.1955-10.81794=80.37756=\underline{\mathbf{8 0 . 3 8}}
\end{aligned}
$$

- Upper 99\% confidence limit for β_{2} is:
(2 marks)

$$
\begin{aligned}
\hat{\beta}_{2 \mathrm{U}} & =\hat{\beta}_{2}+\mathrm{t}_{\alpha / 2}[\mathrm{~N}-2] \operatorname{se}\left(\hat{\beta}_{2}\right)=\hat{\beta}_{2}+\mathrm{t}_{0.005}[504] \mathrm{se}\left(\hat{\beta}_{2}\right) \\
& =91.1955+2.58(4.193)=91.1955+10.81794=102.01344=\underline{\mathbf{1 0 2 . 0 1}}
\end{aligned}
$$

- Decision Rule: At significance level α,
- reject $\mathbf{H}_{\mathbf{0}}$ if the hypothesized value $\mathbf{b}_{\mathbf{2}}$ of $\boldsymbol{\beta}_{2}$ specified by H_{0} lies outside the two-sided $(1-\alpha)$-level confidence interval for β_{2}, i.e., if either (1) $b_{2}<\hat{\beta}_{2}-t_{\alpha / 2}[504] \operatorname{sê}\left(\hat{\beta}_{2}\right)$ or (2) $b_{2}>\hat{\beta}_{2}+t_{\alpha / 2}[504] \operatorname{se}\left(\hat{\beta}_{2}\right)$.
- retain $\mathbf{H}_{\mathbf{0}}$ if the hypothesized value $\mathbf{b}_{\mathbf{2}}$ of β_{2} specified by H_{0} lies inside the two-sided $(1-\alpha)$-level confidence interval for β_{2}, i.e., if $\hat{\beta}_{2}-\mathrm{t}_{\alpha / 2}[504] \operatorname{se}\left(\hat{\beta}_{2}\right) \leq \mathrm{b}_{2} \leq \hat{\beta}_{2}+\mathrm{t}_{\alpha / 2}[504] \operatorname{se}\left(\hat{\beta}_{2}\right)$.

Question 5(b) - Alternative Answer (continued)

Inference:

- At 1 percent significance level, i.e., for $\alpha=0.01$,
$\mathrm{b}_{2}=\mathbf{0}<\mathbf{8 0 . 3 8}=\hat{\beta}_{2 \mathrm{~L}}=\hat{\beta}_{2}-\mathrm{t}_{\alpha / 2}[504] \mathrm{se}\left(\hat{\beta}_{2}\right) \Rightarrow \operatorname{reject} \mathrm{H}_{\mathbf{0}}$ vs. H_{1} at 1 percent level.
- Inference: At the $\mathbf{1 \%}$ significance level, the null hypothesis $\beta_{2}=0$ is rejected in favour of the alternative hypothesis $\beta_{2} \neq 0$.

Meaning of test outcome:
(1 mark)
Rejection of the null hypothesis $\beta_{2}=0$ against the alternative hypothesis $\beta_{2} \neq 0$ means that the sample evidence favours the existence of a relationship between the median selling price of a houses and the average number of rooms per house.

(8 marks)

(c) Perform a test of the proposition that a one-room increase in average house size is associated on average with an increase in median house price of more than $\$ 80,000$. Use the 5 percent significance level (i.e., $\alpha=0.05$). State the null hypothesis H_{0} and the alternative hypothesis H_{1}. Show how you calculated the test statistic. State the decision rule you use, and the inference you would draw from the test.

$$
\begin{align*}
& \mathrm{H}_{0}: \beta_{2}=80.0 \\
& \mathrm{H}_{1}: \beta_{2}>80.0 \quad \Rightarrow \text { a right-tailed test } \tag{1mark}
\end{align*}
$$

- Test statistic is $\mathrm{t}\left(\hat{\beta}_{2}\right)=\frac{\hat{\beta}_{2}-\beta_{2}}{\operatorname{se}\left(\hat{\beta}_{2}\right)} \sim \mathrm{t}[\mathrm{N}-2]$.
- Calculate the sample value of the t-statistic (1) under H_{0} : set $\beta_{2}=80.0, \hat{\boldsymbol{\beta}}_{2}=91.1955$ and $\operatorname{se}\left(\hat{\beta}_{2}\right)=4.193$ in (1).

$$
\begin{equation*}
\mathrm{t}_{0}\left(\hat{\beta}_{2}\right)=\frac{\hat{\beta}_{2}-\beta_{2}}{\operatorname{se}\left(\hat{\beta_{2}}\right)}=\frac{91.1955-80.0}{4.193}=\frac{11.1955}{4.193}=2.6700=\underline{\mathbf{2 . 6 7}} \tag{3marks}
\end{equation*}
$$

- Null distribution of $\mathrm{t}_{0}\left(\hat{\beta}_{2}\right)$ is $\mathbf{t}[\mathbf{N}-\mathbf{2}]=\mathbf{t}[506-2]=\mathbf{t}[504]$

Decision Rule: At significance level α,
(1 mark)

- reject \mathbf{H}_{0} if $\mathrm{t}_{0}\left(\hat{\beta}_{2}\right)>\mathrm{t}_{\alpha}$ [504],
- retain \mathbf{H}_{0} if $\mathrm{t}_{0}\left(\hat{\beta}_{2}\right) \leq \mathrm{t}_{\alpha}[504]$.

Critical value of $t[504]$-distribution: from t-table, use $d f=\infty$.

- right-tailed $5 \underline{\text { percent }}$ critical value $=\mathrm{t}_{0.05}[504]=\underline{\mathbf{1 . 6 4 5}}=\underline{\mathbf{1 . 6 5}}$

Inference:

- At 5 percent significance level, i.e., for $\alpha=0.05$,

$$
\mathrm{t}_{0}\left(\hat{\beta}_{2}\right)=\mathbf{2 . 6 7}>\mathbf{1 . 6 5}=\mathrm{t}_{0.05}[504] \Rightarrow \text { reject } \mathbf{H}_{\mathbf{0}} \text { vs. } \mathrm{H}_{1} \text { at } 1 \text { percent level. }
$$

- Inference: At the $\mathbf{5 \%}$ significance level, the null hypothesis $\beta_{2}=\mathbf{8 0}$ is rejected in favour of the alternative hypothesis $\beta_{2}>\mathbf{8 0}$.

Percentage Points of the t-Distribution

TABLE D. 2
Percentage points of the t distribution

Note: The smaller probability shown at the head of each column is the area in one tail: the larger probability is the area in both tails.
Source: From E. S. Pearson and H. O. Hartley, eds., Biomerrika Tables for Statisticians, vol. 1, 3d ed., table 12. Cambridge University Press, New York. 1966. Reproduced by permission of the editors and irustees of Biomierrika.

