ECON 351* -- NOTE 23

Tests for Coefficient Differences: Examples 2

1. Introduction

Model and Data

- Sample data: A random sample of 534 paid employees.
- Variable definitions:

$$\begin{split} W_i &= \text{hourly wage rate of employee i;} \\ lnW_i &= \text{the natural logarithm of } W_i; \\ S_i &= \text{years of schooling completed by employee i;} \\ X_i &= \text{years of work experience accumulated by employee i.} \\ F_i &= \text{a female indicator variable, } = 1 \text{ if employee i is female, 0 otherwise;} \\ M_i &= \text{a male indicator variable, } = 1 \text{ if employee i is male, 0 otherwise.} \end{split}$$

• The Model: A simple log-lin (semi-log) wage equation of the form

$$\ln \mathbf{W}_{i} = \beta_{0} + \beta_{1} \mathbf{S}_{i} + \beta_{2} \mathbf{X}_{i} + \mathbf{u}_{i}$$
(1)

- Two Groups of Employees: Female and Male
- The *female* wage equation

$$\ln W_{i} = \alpha_{0} + \alpha_{1}S_{i} + \alpha_{2}X_{i} + u_{i} \qquad i = 1, ..., N_{f} = 245$$
(2.1)

• The *male* wage equation

$$\ln W_{i} = \beta_{0} + \beta_{1}S_{i} + \beta_{2}X_{i} + u_{i} \qquad i = 1, ..., N_{m} = 289$$
(2.2)

2. Tests for Full Coefficient Equality

Null and Alternative Hypotheses

H₀: $\alpha_0 = \beta_0$ and $\alpha_1 = \beta_1$ and $\alpha_2 = \beta_2$ (3 coefficient restrictions) H₁: $\alpha_0 \neq \beta_0$ and/or $\alpha_1 \neq \beta_1$ and/or $\alpha_2 \neq \beta_2$.

Unrestricted Model – Approach 1: Separate Female and Male Wage Equations

• The *female* wage equation

$$\ln W_{i} = \alpha_{0} + \alpha_{1}S_{i} + \alpha_{2}X_{i} + u_{i} \qquad i = 1, ..., N_{f} = 245$$
(2.1)

The OLS sample regression equation for *females* (with t-ratios) is:

$$\begin{split} &\ln W_{i} = \hat{\alpha}_{0} + \hat{\alpha}_{1}S_{i} + \hat{\alpha}_{2}X_{i} + \hat{u}_{i} & i = 1, ..., N_{f} = 245 & K_{0} = 3 \\ &\hat{\alpha}_{0} = 0.3031 & \hat{\alpha}_{1} = 0.1117 & \hat{\alpha}_{2} = 0.008854 & \textbf{RSS}_{(1)} = \textbf{43.2866} \\ & (1.699) & (9.381) & (3.868) & \textbf{df}_{(1)} = \textbf{245} - \textbf{3} = \textbf{242} \end{split}$$

• The *male* wage equation

 $\ln W_{i} = \beta_{0} + \beta_{1}S_{i} + \beta_{2}X_{i} + u_{i} \qquad i = 1, ..., N_{m} = 289$ (2.2)

The OLS sample regression equation for males (with t-ratios) is:

$$\ln W_{i} = \hat{\beta}_{0} + \hat{\beta}_{1}S_{i} + \hat{\beta}_{2}X_{i} + \hat{u}_{i}$$
 i = 1, ..., N_m = 289 K₀ = 3

$$\hat{\beta}_{0} = 0.6965 \quad \hat{\beta}_{1} = 0.09030 \qquad \hat{\beta}_{2} = 0.01635 \quad \mathbf{RSS}_{(2)} = \mathbf{63.1474}$$
(4.279) (8.430) (6.690) $\mathbf{df}_{(2)} = \mathbf{289} - \mathbf{3} = \mathbf{286}$

• The *unrestricted* residual sum-of-squares is:

 $RSS_1 = RSS_{(1)} + RSS_{(2)} = 43.2866 + 63.1474 = 106.4340;$ $df_1 = df_{(1)} + df_{(2)} = 242 + 286 = 528.$

<u>Unrestricted Model – Approach 2</u>: *Pooled* Full-Interaction Wage Equations

• *No* base group – no intercept coefficient (t-ratios in parentheses)

$$\ln W_{i} = \alpha_{0}F_{i} + \alpha_{1}F_{i}S_{i} + \alpha_{2}F_{i}X_{i} + \beta_{0}M_{i} + \beta_{1}M_{i}S_{i} + \beta_{2}M_{i}X_{i} + u_{i}$$
(12.0)
$$i = 1, ..., N = N_{f} + N_{m} = 534$$

Compare coefficient estimates of pooled regression equation (12.0) with the *separate* female and male sample wage equations:

- The OLS sample regression equation for *females* is:
 - $$\begin{split} &\ln W_{i} = \hat{\alpha}_{0} + \hat{\alpha}_{1}S_{i} + \hat{\alpha}_{2}X_{i} + \hat{u}_{i} & i = 1, ..., N_{f} = 245 \quad K_{0} = 3 \\ &\hat{\alpha}_{0} = 0.3031 \quad \hat{\alpha}_{1} = 0.1117 \quad \hat{\alpha}_{2} = 0.008854 \quad RSS_{(1)} = 43.2866 \\ &(1.699) \quad (9.381) \quad (3.868) \quad df_{(1)} = 245 3 = 242 \end{split}$$
- The OLS sample regression equation for *males* is:

$$\begin{split} &\ln W_i = \hat{\beta}_0 + \hat{\beta}_1 S_i + \hat{\beta}_2 X_i + \hat{u}_i & i = 1, ..., N_m = 289 \quad K_0 = 3 \\ &\hat{\beta}_0 = 0.6965 \quad \hat{\beta}_1 = 0.09030 \quad \hat{\beta}_2 = 0.01635 \quad RSS_{(2)} = 63.1474 \\ & (4.279) \quad (8.430) \quad (6.690) \quad df_{(2)} = 289 - 3 = 286 \end{split}$$

• *Females* as base group (t-ratios in parentheses)

$$\ln \mathbf{W}_{i} = \alpha_{0} + \alpha_{1}\mathbf{S}_{i} + \alpha_{2}\mathbf{X}_{i} + \gamma_{0}\mathbf{M}_{i} + \gamma_{1}\mathbf{M}_{i}\mathbf{S}_{i} + \gamma_{2}\mathbf{M}_{i}\mathbf{X}_{i} + \mathbf{u}_{i}$$
(12.1)

where $\gamma_0 = \beta_0 - \alpha_0; \quad \gamma_1 = \beta_1 - \alpha_1; \quad \gamma_2 = \beta_2 - \alpha_2.$

 $\mathbf{RSS}_1 = 106.4340$ with $\mathbf{df}_1 = \mathbf{N} - 2\mathbf{K}_0 = 534 - 6 = 528$ $\hat{\alpha}_0 = 0.3031$ $\hat{\alpha}_1 = 0.1117$ $\hat{\alpha}_2 = 0.008854$ (1.601)(8.837)(3.643) $\hat{\gamma}_0 = 0.3933$ $\hat{\gamma}_1 = -0.02144$ $\hat{\gamma}_2 = 0.007491$ (1.605)(-1.318)(2.223)

From OLS-SRE (12.0):

(-1.605)

 $\hat{\beta}_0 - \hat{\alpha}_0 = 0.3933 \qquad \hat{\beta}_1 - \hat{\alpha}_1 = -0.02144 \qquad \hat{\beta}_2 - \hat{\alpha}_2 = 0.007491 \\ (1.605) \qquad (-1.318) \qquad (2.223)$

• *Males* as base group (t-ratios in parentheses)

$$\ln W_{i} = \beta_{0} + \beta_{1}S_{i} + \beta_{2}X_{i} + \delta_{0}F_{i} + \delta_{1}F_{i}S_{i} + \delta_{2}F_{i}X_{i} + u_{i}$$
(12.2)
where $\delta_{0} = \alpha_{0} - \beta_{0}$; $\delta_{1} = \alpha_{1} - \beta_{1}$; $\delta_{2} = \alpha_{2} - \beta_{2}$.
RSS₁ = 106.4340 with **df_{1} = N - 2K_{0} = 534 - 6 = 528**
 $\hat{\beta}_{0} = 0.6965$ $\hat{\beta}_{1} = 0.09030$ $\hat{\beta}_{2} = 0.01635$
(4.478) (8.822) (7.002)
 $\hat{\delta}_{0} = -0.3933$ $\hat{\delta}_{1} = 0.02144$ $\hat{\delta}_{2} = -0.007491$
(-1.605) (1.318) (-2.223)
From OLS-SRE (12.0):
 $\hat{\alpha}_{0} - \hat{\beta}_{0} = -0.3933$ $\hat{\alpha}_{1} - \hat{\beta}_{1} = 0.02144$ $\hat{\alpha}_{2} - \hat{\beta}_{2} = -0.007491$

(1.318)

(-2.223)

<u>Restricted Model – Same for Approach 1 and Approach 2</u>

Corresponds to the null hypothesis that all female and male coefficients are equal:

- H₀: $\alpha_0 = \beta_0$ and $\alpha_1 = \beta_1$ and $\alpha_2 = \beta_2$ in pooled equation (12.0) $\gamma_0 = 0$ and $\gamma_1 = 0$ and $\gamma_2 = 0$ in pooled equation (12.1) $\delta_0 = 0$ and $\delta_1 = 0$ and $\delta_2 = 0$ in pooled equation (12.2)
- The *restricted* model can be written as *either*

$$ln W_{i} = \alpha_{0} + \alpha_{1}S_{i} + \alpha_{2}X_{i} + u_{i} \qquad i = 1, ..., N = 534$$
(1.1)
or
$$ln W_{i} = \beta_{0} + \beta_{1}S_{i} + \beta_{2}X_{i} + u_{i} \qquad i = 1, ..., N = 534$$
(1.2)

• The *restricted* **OLS-SRE** for the full sample of 534 observations is

$$\begin{split} &\ln W_{i} = \widetilde{\beta}_{0} + \widetilde{\beta}_{1}S_{i} + \widetilde{\beta}_{2}X_{i} + \widetilde{u}_{i}, & i = 1, ..., N = N_{1} + N_{2} = 534 \\ &\widetilde{\beta}_{0} = 0.5828 & \widetilde{\beta}_{1} = 0.09642 & \widetilde{\beta}_{2} = 0.01175 \\ & (4.646) & (11.601) & (6.700) \end{split}$$

• The *restricted* residual sum-of-squares is:

 $RSS_0 = 117.0626$ with $df_0 = N - K_0 = 534 - 3 = 531$.

The F-Test for Equality of All Coefficients Between Males and Females

$$F = \frac{(RSS_0 - RSS_1)/(df_0 - df_1)}{RSS_1/df_1} = \frac{(RSS_0 - RSS_1)/(K - K_0)}{RSS_1/(N - K)} \sim F[df_0 - df_1, df_1]$$

$$RSS_0 = 117.0626 \quad with \qquad df_0 = N - K_0 = 534 - 3 = 531$$

$$RSS_1 = 106.4340 \quad with \qquad df_1 = N - 2K_0 = 534 - 6 = 528$$

• Sample value of the F-statistic:

$$F_{0} = \frac{(RSS_{0} - RSS_{1})/(df_{0} - df_{1})}{RSS_{1}/df_{1}}$$

$$= \frac{(117.0626 - 106.4340)/(531 - 528)}{106.4340/528} \implies F_{0} = 17.58$$

$$= \frac{10.6286/3}{106.4340/528}$$

$$= 17.58$$

- *Null distribution* of \mathbf{F}_0 : $\mathbf{F}_0 \sim \mathbf{F}[\mathbf{K}_0, \mathbf{N} 2\mathbf{K}_0] = \mathbf{F}[3, 528]$ under \mathbf{H}_0 .
- Decision Rule: At the 100α percent significance level
 1. reject H₀ if F₀ ≥ F_α[K₀, N − 2K₀] or p-value for F₀ ≤ α;
 2. retain H₀ if F₀ < F_α[K₀, N − 2K₀] or p-value for F₀ > α.
- Critical Values of F[3, 528]: at the 5% and 1% significance levels.

At $\alpha = 0.05$: $F_{0.05}[3, 528] = 2.622$ At $\alpha = 0.01$: $F_{0.01}[3, 528] = 3.819$

- *P-value for* $F_0 = 0.0000$.
- Inference:

Since $F_0 = 17.58 > 3.819 = F_{0.01}[3, 528]$, *reject* H_0 at the 1% significance level. Since **p-value for** $F_0 = 0.0000 < 0.01$, *reject* H_0 at the 1% significance level.

3. Tests for Equality of Both Slope Coefficients

Null and Alternative Hypotheses

 $\begin{array}{lll} \mbox{female } S_i \mbox{ coefficient} = \mbox{male } S_i \mbox{ coefficient} & \Rightarrow & \alpha_1 = \beta_1 \\ \mbox{female } X_i \mbox{ coefficient} = \mbox{male } X_i \mbox{ coefficient} & \Rightarrow & \alpha_2 = \beta_2 \end{array}$

H ₀ : $\alpha_1 = \beta_1$ and $\alpha_2 = \beta_2$	in pooled equation (12.0)
$\gamma_1 = 0$ and $\gamma_2 = 0$	in pooled equation (12.1)
$\delta_1 = 0$ and $\delta_2 = 0$	in pooled equation (12.2)

against

H ₁ : $\alpha_1 \neq \beta_1$ and/or $\alpha_2 \neq \beta_2$	in pooled equation (12.0)
$\gamma_1 \neq 0$ and/or $\gamma_2 \neq 0$	in pooled equation (12.1)
$\delta_1 \neq 0$ and/or $\delta_2 \neq 0$	in pooled equation (12.2)

Unrestricted Model – corresponds to H₁

Any one of the three pooled full-interaction regression equations for lnW_i .

$$\ln W_{i} = \alpha_{0}F_{i} + \alpha_{1}F_{i}S_{i} + \alpha_{2}F_{i}X_{i} + \beta_{0}M_{i} + \beta_{1}M_{i}S_{i} + \beta_{2}M_{i}X_{i} + u_{i}$$
(12.0)
$$i = 1, ..., N = N_{f} + N_{m} = 534$$

$$\ln \mathbf{W}_{i} = \alpha_{0} + \alpha_{1}\mathbf{S}_{i} + \alpha_{2}\mathbf{X}_{i} + \gamma_{0}\mathbf{M}_{i} + \gamma_{1}\mathbf{M}_{i}\mathbf{S}_{i} + \gamma_{2}\mathbf{M}_{i}\mathbf{X}_{i} + \mathbf{u}_{i}$$
(12.1)

$$\ln \mathbf{W}_{i} = \beta_{0} + \beta_{1}\mathbf{S}_{i} + \beta_{2}\mathbf{X}_{i} + \delta_{0}F_{i} + \delta_{1}F_{i}\mathbf{S}_{i} + \delta_{2}F_{i}\mathbf{X}_{i} + \mathbf{u}_{i}$$
(12.2)

□ OLS estimation of any one of the three unrestricted regression equations (12.0), (12.1) or (12.2) on the pooled sample of 534 male and female employees yields the following value for the *unrestricted* RSS:

$$RSS_1 = 106.4340$$
 with $df_1 = N - 2K_0 = 534 - 6 = 528$.

<u>Restricted Model</u> – corresponds to H₀

Obtained by substituting the two coefficient restrictions specified by the null hypothesis H_0 into any one of the three pooled full-interaction regression equations for lnW_i .

• In equation (12.0) – *no base group*: set $\alpha_1 = \beta_1$ and $\alpha_2 = \beta_2$

$$\ln W_{i} = \alpha_{0}F_{i} + \alpha_{1}F_{i}S_{i} + \alpha_{2}F_{i}X_{i} + \beta_{0}M_{i} + \beta_{1}M_{i}S_{i} + \beta_{2}M_{i}X_{i} + u_{i}$$
(12.0)

$$\ln W_i = \alpha_0 F_i + \beta_0 M_i + \beta_1 S_i + \beta_2 X_i + u_i$$
(13.0)

• In equation (12.1) – *females* as base group: set $\gamma_1 = 0$ and $\gamma_2 = 0$

$$\ln W_i = \alpha_0 + \alpha_1 S_i + \alpha_2 X_i + \gamma_0 M_i + \gamma_1 M_i S_i + \gamma_2 M_i X_i + u_i$$
(12.1)

$$\ln \mathbf{W}_{i} = \alpha_{0} + \alpha_{1}\mathbf{S}_{i} + \alpha_{2}\mathbf{X}_{i} + \gamma_{0}\mathbf{M}_{i} + \mathbf{u}_{i}$$
(13.1)

• In equation (12.2) – *males* as base group: set $\delta_1 = 0$ and $\delta_2 = 0$

$$\ln W_{i} = \beta_{0} + \beta_{1}S_{i} + \beta_{2}X_{i} + \delta_{0}F_{i} + \delta_{1}F_{i}S_{i} + \delta_{2}F_{i}X_{i} + u_{i}$$
(12.2)

$$\ln \mathbf{W}_{i} = \beta_{0} + \beta_{1} \mathbf{S}_{i} + \beta_{2} \mathbf{X}_{i} + \delta_{0} \mathbf{F}_{i} + \mathbf{u}_{i}$$
(13.2)

OLS estimation of any one of the three restricted regression equations (13.0), (13.1) or (13.2) on the pooled sample of 534 male and female employees yields the following value for the *restricted* RSS:

 $RSS_0 = 108.4501$ with $df_0 = N - K_0 = 534 - 4 = 530$.

The F-Test for Male-Female Equality of Both Slope Coefficients

$$F = \frac{(RSS_0 - RSS_1)/(df_0 - df_1)}{RSS_1/df_1} = \frac{(RSS_0 - RSS_1)/(K - K_0)}{RSS_1/(N - K)} \sim F[df_0 - df_1, df_1]$$

 $\begin{array}{ll} RSS_0 \,=\, 108.4501 & \mbox{ with } & df_0 = N - K_0 = 534 - 4 = 530 \\ RSS_1 \,=\, 106.4340 & \mbox{ with } & df_1 = N - K = 534 - 6 = 528 \end{array}$

• Sample value of the F-statistic:

$$F_{0} = \frac{(RSS_{0} - RSS_{1})/(df_{0} - df_{1})}{RSS_{1}/df_{1}}$$

$$= \frac{(108.4501 - 106.4340)/(530 - 528)}{106.4340/528} \implies F_{0} = 5.001$$

$$= \frac{2.0161/2}{106.4340/528}$$

$$= 5.001$$

- Null distribution of \mathbf{F}_0 : $\mathbf{F}_0 \sim \mathbf{F}[df_0 df_1, df_1] = \mathbf{F}[2, 528]$ under \mathbf{H}_0 .
- Decision Rule: At the 100α percent significance level
 1. reject H₀ if F₀ ≥ F_α[df₀ df₁, df₁] or p-value for F₀ ≤ α;
 2. retain H₀ if F₀ < F_α[df₀ df₁, df₁] or p-value for F₀ > α.
- Critical Values of F[2, 528]: at the 5% and 1% significance levels.

- *P-value for* $F_0 = 0.00706$.
- Inference:

Since $F_0 = 5.001 > 4.646 = F_{0.01}[2, 528]$, *reject* H_0 at the 1% significance level. Since **p-value for** $F_0 = 0.00706 < 0.01$, *reject* H_0 at the 1% significance level.

4. Conditional Log-Wage Differentials Between Males and Females

<u>*Question:*</u> What is the mean log-wage differential between male and female employees with the *same* education and work experience – i.e., with the *same* values of S and X?

Conditional *female-male* **mean log-wage differential** is:

$$\begin{split} & E \big(\ln W \, \big| \, S_i, \, X_i, \, F_i = 1 \big) - \, E \big(\ln W \, \big| \, S_i, \, X_i, \, F_i = 0 \big) \\ or \\ & E \big(\ln W \, \big| \, S_i, \, X_i, \, M_i = 0 \big) - \, E \big(\ln W \, \big| \, S_i, \, X_i, \, M_i = 1 \big). \end{split}$$

• The *female* log-wage equation is

$$\ln W_{i} = \alpha_{0} + \alpha_{1}S_{i} + \alpha_{2}X_{i} + u_{i} \qquad i = 1, ..., N_{f} = 245$$
(2.1)

Hence, the conditional mean log-wage of *females* with S_i years of completed schooling and X_i years of work experience is:

$$E(\ln W | S_i, X_i, F_i = 1) = E(\ln W | S_i, X_i, M_i = 0) = \alpha_0 + \alpha_1 S_i + \alpha_2 X_i$$
(14.1)

• The *male* log-wage equation is

$$\ln W_{i} = \beta_{0} + \beta_{1}S_{i} + \beta_{2}X_{i} + u_{i} \qquad i = 1, ..., N_{m} = 289$$
(2.2)

Hence, the conditional mean log-wage of *males* with S_i years of completed schooling and X_i years of work experience is:

$$E(\ln W | S_i, X_i, F_i = 0) = E(\ln W | S_i, X_i, M_i = 1) = \beta_0 + \beta_1 S_i + \beta_2 X_i$$
(14.2)

• The conditional *female-male* mean log-wage differential is obtained by *subtracting* (14.2) from (14.1):

$$E(\ln W | S_i, X_i, F_i = 1) = E(\ln W | S_i, X_i, M_i = 0) = \alpha_0 + \alpha_1 S_i + \alpha_2 X_i \quad (14.1)$$
$$E(\ln W | S_i, X_i, F_i = 0) = E(\ln W | S_i, X_i, M_i = 1) = \beta_0 + \beta_1 S_i + \beta_2 X_i \quad (14.2)$$

$$E(\ln W | S_i, X_i, F_i = 1) - E(\ln W | S_i, X_i, F_i = 0)$$

= $\alpha_0 + \alpha_1 S_i + \alpha_2 X_i - \beta_0 - \beta_1 S_i - \beta_2 X_i$
= $(\alpha_0 - \beta_0) + (\alpha_1 - \beta_1) S_i + (\alpha_2 - \beta_2) X_i$
= $\delta_0 + \delta_1 S_i + \delta_2 X_i$

where $\delta_0 = \alpha_0 - \beta_0$; $\delta_1 = \alpha_1 - \beta_1$; $\delta_2 = \alpha_2 - \beta_2$.

• Pooled full interaction log-wage equation with *males* as base group

$$\ln \mathbf{W}_{i} = \beta_{0} + \beta_{1}\mathbf{S}_{i} + \beta_{2}\mathbf{X}_{i} + \delta_{0}F_{i} + \delta_{1}F_{i}\mathbf{S}_{i} + \delta_{2}F_{i}\mathbf{X}_{i} + u_{i}$$
(12.2)
where $\delta_{0} = \alpha_{0} - \beta_{0}; \quad \delta_{1} = \alpha_{1} - \beta_{1}; \quad \delta_{2} = \alpha_{2} - \beta_{2}.$

• *OLS estimation* of *pooled full interaction* log-wage equation (12.2) yields the sample regression equation

$$\ln W_{i} = \hat{\beta}_{0} + \hat{\beta}_{1}S_{i} + \hat{\beta}_{2}X_{i} + \hat{\delta}_{0}F_{i} + \hat{\delta}_{1}F_{i}S_{i} + \hat{\delta}_{2}F_{i}X_{i} + \hat{u}_{i}$$
(12.2*)

The OLS coefficient estimates (and t-ratios) for (12.2) are:

$$\hat{\beta}_{0} = 0.6965 \qquad \qquad \hat{\beta}_{1} = 0.09030 \qquad \qquad \hat{\beta}_{2} = 0.01635 \\ (4.478) \qquad \qquad (8.822) \qquad \qquad (7.002) \\ \hat{\delta}_{0} = -0.3933 \qquad \qquad \hat{\delta}_{1} = 0.02144 \qquad \qquad \hat{\delta}_{2} = -0.007491 \\ (-1.605) \qquad \qquad (1.318) \qquad \qquad (-2.223)$$

• The estimate of the conditional female-male mean log-wage differential is

$$\hat{E}(\ln W | S_i, X_i, F_i = 1) - \hat{E}(\ln W | S_i, X_i, F_i = 0)
= (\hat{\alpha}_0 - \hat{\beta}_0) + (\hat{\alpha}_1 - \hat{\beta}_1)S_i + (\hat{\alpha}_2 - \hat{\beta}_2)X_i
= \hat{\delta}_0 + \hat{\delta}_1S_i + \hat{\delta}_2X_i
= -0.3933 + 0.02144S_i - 0.007491X_i$$
(15)

Example: The estimated conditional *female-male* mean log-wage differential for employees with 16 years of schooling and 10 years of work experience is obtained by setting $S_i = 16$ and $X_i = 10$ in equation (15):

$$\hat{E}(\ln W | S_i = 16, X_i = 10, F_i = 1) - \hat{E}(\ln W | S_i = 16, X_i = 10, F_i = 0)$$
$$= -0.3933 + 0.02144 S_i - 0.007491 X_i$$
$$= -0.3933 + 0.02144 (16) - 0.007491 (10) = -0.12517$$

Interpretation: The average wage of *female* employees with 16 years of schooling and 10 years of work experience is approximately 12.5 percent *less* than the average wage of *male* employees with the same schooling and work experience.

D The variance of the conditional female-male mean log-wage differential is

$$\operatorname{Var}\left(\hat{\delta}_{0} + \hat{\delta}_{1}\mathbf{S}_{i} + \hat{\delta}_{2}\mathbf{X}_{i}\right) = \operatorname{Var}\left(\hat{\delta}_{0}\right) + S_{i}^{2}\operatorname{Var}\left(\hat{\delta}_{1}\right) + X_{i}^{2}\operatorname{Var}\left(\hat{\delta}_{2}\right) + 2S_{i}\operatorname{Cov}\left(\hat{\delta}_{0}, \hat{\delta}_{1}\right) + 2X_{i}\operatorname{Cov}\left(\hat{\delta}_{0}, \hat{\delta}_{2}\right) + 2S_{i}X_{i}\operatorname{Cov}\left(\hat{\delta}_{1}, \hat{\delta}_{2}\right)$$

The *standard error* **of the conditional** *female-male* **mean log-wage differential** is simply the *square root* **of the variance**:

$$\operatorname{se}\left(\hat{\delta}_{0}+\hat{\delta}_{1}\mathbf{S}_{i}+\hat{\delta}_{2}\mathbf{X}_{i}\right)=\sqrt{\operatorname{Var}\left(\hat{\delta}_{0}+\hat{\delta}_{1}\mathbf{S}_{i}+\hat{\delta}_{2}\mathbf{X}_{i}\right)}$$

<u>Proposition</u>: The conditional *female-male* mean log-wage differential for employees with 16 years of schooling and 10 years of work experience *equals* zero.

Null and Alternative Hypotheses

H₀:
$$E(\ln W | S_i = 16, X_i = 10, F_i = 1) - E(\ln W | S_i = 16, X_i = 10, F_i = 0) = 0$$

or $\delta_0 + \delta_1 S_i + \delta_2 X_i = \delta_0 + 16\delta_1 + 10\delta_2 = 0$

H₁: E(ln W | S_i = 16, X_i = 10, F_i = 1) − E(ln W | S_i = 16, X_i = 10, F_i = 0) ≠ 0
or
$$\delta_0 + \delta_1 S_i + \delta_2 X_i = \delta_0 + 16\delta_1 + 10\delta_2 ≠ 0$$

Perform a two-tail t-test: The t-statistic is

. regress lnw s x f fs fx

$$t(\hat{\delta}_{0} + \hat{\delta}_{1}S_{i} + \hat{\delta}_{2}X_{i}) = \frac{\hat{\delta}_{0} + \hat{\delta}_{1}S_{i} + \hat{\delta}_{2}X_{i} - (\delta_{0} + \delta_{1}S_{i} + \delta_{2}X_{i})}{s\hat{e}(\hat{\delta}_{0} + \hat{\delta}_{1}S_{i} + \hat{\delta}_{2}X_{i})} \sim t[N - 2K_{0}]$$
(16)

• Calculate the estimated variance and standard error of $\hat{\delta}_0 + \hat{\delta}_1 S_i + \hat{\delta}_2 X_i = \hat{\delta}_0 + 16\hat{\delta}_1 + 10\hat{\delta}_2$: $V\hat{a}r(\hat{\delta}_0 + \hat{\delta}_1 S_i + \hat{\delta}_2 X_i) = V\hat{a}r(\hat{\delta}_0) + S_i^2 V\hat{a}r(\hat{\delta}_1) + X_i^2 V\hat{a}r(\hat{\delta}_2) + 2S_i C\hat{o}v(\hat{\delta}_0, \hat{\delta}_1) + 2X_i C\hat{o}v(\hat{\delta}_0, \hat{\delta}_2) + 2S_i X_i C\hat{o}v(\hat{\delta}_1, \hat{\delta}_2)$

Model 42.0079479 5 8.40158958 $F(5, 528) = 41.68$ Model 42.0079479 5 8.40158958 $Prob > F = 0.0000$ Residual 106.433962 528 201579473 $R-squared = 0.2830$ Total 148.44191 533 278502645 $Root MSE = .44898$ InwCoef.Std. Err.t $P > t $ $[95\% Conf.$ InwCoef.Std. Err.t $P > t $ $[95\% Conf.$ s .0903006.0102354 8.822 0.000 .0701936 x .0163455.00233447.002 0.000 .0117597 f 3933286.2450724-1.605 0.109 8747652 fs .0214448.01626891.318 0.188 0105149 fx 0074912.0033699-2.223 0.027 0141112	-						
Model 42.0079479 5 8.40158958 Prob > F = 0.0000 Residual 106.433962 528 .201579473 R-squared = 0.2830	Source	SS	df	MS		Number of obs	s = 534
Residual 106.433962 528 .201579473 R-squared = 0.2830 Total 148.44191 533 .278502645 Adj R-squared = 0.2762 Total 148.44191 533 .278502645 Root MSE = .44898 Inw Coef. Std. Err. t P> t [95% Conf. Interval] s .0903006 .0102354 8.822 0.000 .0701936 .1104076 x .0163455 .0023344 7.002 0.000 .0117597 .0209314 f 3933286 .2450724 -1.605 0.109 8747652 .0881081 fs .0214448 .0162689 1.318 0.188 0105149 .0534046 fx 0074912 .0033699 -2.223 0.027 0141112 0008712	+					F(5, 528)	= 41.68
Adj R-squared = 0.2762 Total 148.44191 533 .278502645 Root MSE = .44898 Inw Coef. Std. Err. t P> t [95% Conf. Interval] s .0903006 .0102354 8.822 0.000 .0701936 .1104076 x .0163455 .0023344 7.002 0.000 .0117597 .0209314 f 3933286 .2450724 -1.605 0.109 8747652 .0881081 fs .0214448 .0162689 1.318 0.188 0105149 .0534046 fx 0074912 .0033699 -2.223 0.027 0141112 0008712	Model	42.0079479	5 8.40	158958		Prob > F	= 0.0000
Total 148.44191 533 .278502645 Root MSE = .44898 lnw Coef. Std. Err. t P> t [95% Conf. Interval] s .0903006 .0102354 8.822 0.000 .0701936 .1104076 x .0163455 .0023344 7.002 0.000 .0117597 .0209314 f 3933286 .2450724 -1.605 0.109 8747652 .0881081 fs .0214448 .0162689 1.318 0.188 0105149 .0534046 fx 0074912 .0033699 -2.223 0.027 0141112 0008712	Residual	106.433962	528 .201	579473		R-squared	= 0.2830
lnw Coef. Std. Err. t P> t [95% Conf. Interval] s .0903006 .0102354 8.822 0.000 .0701936 .1104076 x .0163455 .0023344 7.002 0.000 .0117597 .0209314 f 3933286 .2450724 -1.605 0.109 8747652 .0881081 fs .0214448 .0162689 1.318 0.188 0105149 .0534046 fx 0074912 .0033699 -2.223 0.027 0141112 0008712	+					Adj R-squared	l = 0.2762
s .0903006 .0102354 8.822 0.000 .0701936 .1104076 x .0163455 .0023344 7.002 0.000 .0117597 .0209314 f 3933286 .2450724 -1.605 0.109 8747652 .0881081 fs .0214448 .0162689 1.318 0.188 0105149 .0534046 fx 0074912 .0033699 -2.223 0.027 0141112 0008712	Total	148.44191	533 .278	502645		Root MSE	= .44898
s .0903006 .0102354 8.822 0.000 .0701936 .1104076 x .0163455 .0023344 7.002 0.000 .0117597 .0209314 f 3933286 .2450724 -1.605 0.109 8747652 .0881081 fs .0214448 .0162689 1.318 0.188 0105149 .0534046 fx 0074912 .0033699 -2.223 0.027 0141112 0008712							
s .0903006 .0102354 8.822 0.000 .0701936 .1104076 x .0163455 .0023344 7.002 0.000 .0117597 .0209314 f 3933286 .2450724 -1.605 0.109 8747652 .0881081 fs .0214448 .0162689 1.318 0.188 0105149 .0534046 fx 0074912 .0033699 -2.223 0.027 0141112 0008712	 1nw	Coef	std Err	+	 p> +	[95% Conf	Tntervall
x.0163455.00233447.0020.000.0117597.0209314f3933286.2450724-1.6050.1098747652.0881081fs.0214448.01626891.3180.1880105149.0534046fx0074912.0033699-2.2230.02701411120008712	++						
f3933286.2450724-1.6050.1098747652.0881081fs.0214448.01626891.3180.1880105149.0534046fx0074912.0033699-2.2230.02701411120008712	s	.0903006	.0102354	8.822	0.000	.0701936	.1104076
fs.0214448.01626891.3180.1880105149.0534046fx0074912.0033699-2.2230.02701411120008712	x	.0163455	.0023344	7.002	0.000	.0117597	.0209314
fx0074912 .0033699 -2.223 0.02701411120008712	f	3933286	.2450724	-1.605	0.109	8747652	.0881081
	fs	.0214448	.0162689	1.318	0.188	0105149	.0534046
_cons .6964687 .155538 4.478 0.000 .3909194 1.002018	fx	0074912	.0033699	-2.223	0.027	0141112	0008712
	cons	.6964687	.155538	4.478	0.000	.3909194	1.002018

ECON 351* -- Note 23: Tests for Coefficient Differences: Examples 2 ... Page 13 of 15 pages

. matr	ix list VC2					
symmet	ric VC2[6,6]					
	S	x	f	fs	fx	_cons
s	.00010476					
x	8.540e-06	5.449e-06				
f	.00151678	.00020904	.06006048			
fs	00010476	-8.540e-06	00381452	.00026468		
fx	-8.540e-06	-5.449e-06	00046734	.00001939	.00001136	
_cons	00151678	00020904	02419208	.00151678	.00020904	.02419208

 $\begin{aligned} &V \hat{a}r(\hat{\delta}_{0}) = 0.06006048 \\ &V \hat{a}r(\hat{\delta}_{1}) = 0.00026468 \\ &V \hat{a}r(\hat{\delta}_{2}) = 0.00001136 \\ &C \hat{o}v(\hat{\delta}_{0}, \hat{\delta}_{1}) = -0.00381452 \\ &C \hat{o}v(\hat{\delta}_{0}, \hat{\delta}_{2}) = -0.00046734 \\ &C \hat{o}v(\hat{\delta}_{1}, \hat{\delta}_{2}) = 0.00001939 \end{aligned}$

• Set $\mathbf{S}_{i} = \mathbf{16}$ and $\mathbf{X}_{i} = \mathbf{10}$ in formula for $V\hat{a}r(\hat{\delta}_{0} + \hat{\delta}_{1}\mathbf{S}_{i} + \hat{\delta}_{2}\mathbf{X}_{i})$:

$$\begin{aligned} \operatorname{Var}(\hat{\delta}_{0} + \hat{\delta}_{1}\mathbf{S}_{i} + \hat{\delta}_{2}\mathbf{X}_{i}) &= \operatorname{Var}(\hat{\delta}_{0}) + \operatorname{S}_{i}^{2}\operatorname{Var}(\hat{\delta}_{1}) + \operatorname{X}_{i}^{2}\operatorname{Var}(\hat{\delta}_{2}) \\ &+ 2\operatorname{S}_{i}\operatorname{Cov}(\hat{\delta}_{0}, \hat{\delta}_{1}) + 2\operatorname{X}_{i}\operatorname{Cov}(\hat{\delta}_{0}, \hat{\delta}_{2}) + 2\operatorname{S}_{i}\operatorname{X}_{i}\operatorname{Cov}(\hat{\delta}_{1}, \hat{\delta}_{2}) \end{aligned}$$

Calculate estimated variance of $\hat{\delta}_0 + \hat{\delta}_1 S_i + \hat{\delta}_2 X_i = \hat{\delta}_0 + 16 \hat{\delta}_1 + 10 \hat{\delta}_2$: $V\hat{a}r(\hat{\delta}_0 + 16 \hat{\delta}_1 + 10 \hat{\delta}_2) = V\hat{a}r(\hat{\delta}_0) + (16)^2 V\hat{a}r(\hat{\delta}_1) + (10)^2 V\hat{a}r(\hat{\delta}_2) + 2(16)C\hat{o}v(\hat{\delta}_0, \hat{\delta}_1) + 2(10)C\hat{o}v(\hat{\delta}_0, \hat{\delta}_2) + 2(16)(10)C\hat{o}v(\hat{\delta}_1, \hat{\delta}_2) = 0.06006048 + (16)^2 (0.00026468) + (10)^2 (0.00001136) + 2(16)(-0.00381452) + 2(10)(-0.00046734) + 2(16)(10)(0.00001939)$

<u>Results</u>:

$$V\hat{a}r(\hat{\delta}_{0} + 16\hat{\delta}_{1} + 10\hat{\delta}_{2}) = 0.00374538$$
$$s\hat{e}(\hat{\delta}_{0} + 16\hat{\delta}_{1} + 10\hat{\delta}_{2}) = \sqrt{V\hat{a}r(\hat{\delta}_{0} + 16\hat{\delta}_{1} + 10\hat{\delta}_{2})} = \sqrt{0.00374538} = 0.0611995$$

• The sample value of the t-statistic under H_0 is calculated from (16) by setting

$$\hat{\delta}_{0} + \hat{\delta}_{1}\mathbf{S}_{i} + \hat{\delta}_{2}\mathbf{X}_{i} = \hat{\delta}_{0} + 16\hat{\delta}_{1} + 10\hat{\delta}_{2} = -0.12512354$$

$$\delta_{0} + \delta_{1}\mathbf{S}_{i} + \delta_{2}\mathbf{X}_{i} = \delta_{0} + 16\delta_{1} + 10\delta_{2} = 0$$

$$s\hat{e}(\hat{\delta}_{0} + \hat{\delta}_{1}\mathbf{S}_{i} + \hat{\delta}_{2}\mathbf{X}_{i}) = s\hat{e}(\hat{\delta}_{0} + 16\hat{\delta}_{1} + 10\hat{\delta}_{2}) = 0.0611995$$

$$t(\hat{\delta}_{0} + \hat{\delta}_{1}\mathbf{S}_{i} + \hat{\delta}_{2}\mathbf{X}_{i}) = \frac{\hat{\delta}_{0} + \hat{\delta}_{1}\mathbf{S}_{i} + \hat{\delta}_{2}\mathbf{X}_{i} - (\delta_{0} + \delta_{1}\mathbf{S}_{i} + \delta_{2}\mathbf{X}_{i})}{s\hat{e}(\hat{\delta}_{0} + \hat{\delta}_{1}\mathbf{S}_{i} + \hat{\delta}_{2}\mathbf{X}_{i})}$$

$$t_{0}(\hat{\delta}_{0} + 16\hat{\delta}_{1} + 10\hat{\delta}_{2}) = \frac{-0.12512354 - 0}{0.0611005} = \frac{-0.12512354}{0.0611005} = -2.0445$$

0.0611995

• *Null distribution* of t_0 : $t_0 \sim t[N - 2K_0] = t[534 - 2(3)] = t[534 - 6] = t[528]$

0.0611995

- Two-tail critical values of t[528]: at the 5% and 1% significance levels
 - $\begin{array}{ll} \alpha = 0.05 \implies \alpha/2 = 0.025; & t_{0.025}[528] = 1.964 \\ \alpha = 0.01 \implies \alpha/2 = 0.005; & t_{0.005}[528] = 2.585 \end{array}$
- *Two-tail p-value* for $t_0 = 0.04140$.
- <u>Inference</u>:

Since $|\mathbf{t}_0| = 2.045 < 2.585 = \mathbf{t}_{0.005}[528]$, *retain* \mathbf{H}_0 at the *1*% significance level. Since $|\mathbf{t}_0| = 2.045 > 1.964 = \mathbf{t}_{0.025}[528]$, *reject* \mathbf{H}_0 at the 5% significance level.

Since **p-value for t**₀ = 0.04140 > 0.01, *retain* H₀ at the 1% significance level. Since **p-value for t**₀ = 0.04140 < 0.05, *reject* H₀ at the 5% significance level.

• How to use *Stata* to compute this t-test: Use the following *lincom* command.