ECON 351* -- NOTE 21

<u>Using Dummy Variables to Test for Coefficient Differences</u>

• The **population regression equation (PRE)** for the general multiple linear regression model takes the form:

$$Y_i=\beta_0+\beta_1X_{1i}+\beta_2X_{2i}+\dots+\beta_kX_{ki}+u_i$$

where u_i is an iid (independently and identically distributed) random error term.

• To illustrate the use of dummy variable regressors in testing for coefficient differences, we **use the** *simplest possible* **multiple regression equation** with only two non-constant regressors:

$$\mathbf{Y}_{i} = \boldsymbol{\beta}_{0} + \boldsymbol{\beta}_{1} \mathbf{X}_{1i} + \boldsymbol{\beta}_{2} \mathbf{X}_{2i} + \mathbf{u}_{i}$$

- 1. Definition and Properties of Indicator (Dummy) Variables
- Indicator (or dummy) variables are *binary* variables -- i.e., variables that take *only two values*.

The value 1 indicates **the presence** of some characteristic or attribute.

The value **0** indicates **the absence** of that same characteristic or attribute.

- Consider a two-way partitioning of a population or sample into two *mutually exclusive* and *exhaustive* subsets or groups, denoted as Group 1 and Group 2.
 - Let **D1**_i be the **Group 1 dummy variable**, defined as follows:

• Let **D2**_i be the **Group 2 dummy variable**, defined as follows:

 $D2_i = 1 \text{ if observation i belongs to Group 2} (\forall i \in Group 2)$ = 0 if observation i does not belong to Group 2 (\forall i \nothermole Group 2).

• Adding-Up Property of the Indicator Variables D1_i and D2_i

For each and every i (population member or sample observation):

and if $D1_i = 1$ then $D2_i = 0$ if $D2_i = 1$ then $D1_i = 0$.

The definition of the indicator variables $D1_i$ and $D2_i$ thus implies that they satisfy the following **adding-up property**:

 $\mathbf{D1}_{\mathbf{i}} + \mathbf{D2}_{\mathbf{i}} = \mathbf{1}$ $\forall \mathbf{i}$ i.e., for all $\mathbf{i} = 1, ..., N$.

- Implications of the Adding-Up Property
 - 1. Only *one* of the two dummy variables D1_i and D2_i is required to *completely represent* the *two-way partitioning* of a population and sample into Group 1 and Group 2.
 - given $D2_i$ values, the adding-up property implies that $D1_i = 1 D2_i$.
 - given $D1_i$ values, the adding-up property implies that $D2_i = 1 D1_i$.
 - 2. <u>General Rule</u>: A *categorical* variable with n categories can be completely represented by a set of n–1 indicator (dummy) variables.

The general adding-up property states that

 $D1_i + D2_i + D3_i + \cdots + Dn_i = 1 \quad \forall i.$

• Examples of Using Dummy Variables to Represent Categorical Variables

Example 1: The categorical variable gender or sex, *sex_i*, which is coded in Canadian Census data files for individual persons as follows:

 $sex_i = 1$ if person i is *female*; = 2 if person i is *male*.

• Define a set of two (2) gender dummy variables to represent the categorical variable *sex_i*:

 $female_i = 1$ if $sex_i = 1, = 0$ otherwise; $male_i = 1$ if $sex_i = 2, = 0$ otherwise.

• By definition, the two gender dummy variables satisfy the *adding-up property*:

female_i + male_i = 1 \forall i (for all i).

• <u>Implication of the adding-up property</u>: The partitioning of the adult population or sample into *two* **mutually exclusive and exhaustive gender categories** can be completely represented by **either** *one* **of the two gender dummy variables** *female*_i and *male*_i.

For example, the male dummy variable *male_i* can be computed from the female dummy variable *female_i* as follows:

 $male_i = 1 - female_i \quad \forall i.$

Example 2: Consider a categorical variable AGEGROUP_i defined as follows:

 $\begin{array}{l} AGEGROUP_i = 1 \mbox{ if person i is 15-19 years of age;} \\ = 2 \mbox{ if person i is 20-24 years of age;} \\ = 3 \mbox{ if person i is 25-34 years of age;} \\ = 4 \mbox{ if person i is 35-44 years of age;} \\ = 5 \mbox{ if person i is 45-54 years of age;} \\ = 6 \mbox{ if person i is 55-64 years of age;} \\ = 7 \mbox{ if person i is 65 years of age or over.} \end{array}$

• Define a set of seven (7) age group dummy variables to represent the categorical variable AGEGROUP_i.

DAGE1_i = 1 if AGEGROUP_i = 1, = 0 otherwise; DAGE2_i = 1 if AGEGROUP_i = 2, = 0 otherwise; DAGE3_i = 1 if AGEGROUP_i = 3, = 0 otherwise; DAGE4_i = 1 if AGEGROUP_i = 4, = 0 otherwise; DAGE5_i = 1 if AGEGROUP_i = 5, = 0 otherwise; DAGE6_i = 1 if AGEGROUP_i = 6, = 0 otherwise; DAGE7_i = 1 if AGEGROUP_i = 7, = 0 otherwise.

• By definition, the seven age group dummy variables satisfy the *adding-up property*:

 $DAGE1_{i} + DAGE2_{i} + DAGE3_{i} + DAGE4_{i} + DAGE5_{i} + DAGE6_{i} + DAGE7_{i} = 1$ $\forall i.$

<u>Implication of the adding-up property</u>: The partitioning of the population or sample into *seven* mutually exclusive and exhaustive age groups can be completely represented by *any six* of the seven age group dummy variables DAGE1_i, DAGE2_i, DAGE3_i, DAGE4_i, DAGE5_i, DAGE6_i, and DAGE7_i.

For example, the age group dummy variable $DAGE1_i$ can be computed from the other six age group dummy variables as follows:

$$DAGE1_{i} = 1 - DAGE2_{i} - DAGE3_{i} - DAGE4_{i} - DAGE5_{i} - DAGE6_{i} - DAGE7_{i}$$
$$\forall i.$$

Example 3: The categorical variable Marital Status, MARSTAT_i, which is coded in Canadian Census data files for individuals as follows:

MARSTAT_i = 1 if person i is *single, never married*; = 2 if person i is *married with spouse present*; = 3 if person i is *widowed*; = 4 if person i is *separated*; = 5 if person i is *divorced*.

• Define a set of five (5) marital status dummy variables to represent the categorical variable MARSTAT_i:

 $mssgl_i$ = 1 if MARSTAT_i = 1, = 0 otherwise; $msmar_i$ = 1 if MARSTAT_i = 2, = 0 otherwise; $mswid_i$ = 1 if MARSTAT_i = 3, = 0 otherwise; $mssep_i$ = 1 if MARSTAT_i = 4, = 0 otherwise; $msdiv_i$ = 1 if MARSTAT_i = 5, = 0 otherwise.

• By definition, the five marital status dummy variables satisfy the *adding-up property*:

 $mssgl_i + msmar_i + mswid_i + mssep_i + msdiv_i = 1 \quad \forall i \text{ (for all } i).$

<u>Implication of the adding-up property</u>: The partitioning of the adult population or sample into *five* mutually exclusive and exhaustive marital status categories can be completely represented by *any four* of the five marital status dummy variables *mssgl_i*, *msmar_i*, *mswid_i*, *mssep_i*, and *msdiv_i*.

For example, the maritial status dummy variable $mssgl_i$ can be computed from the other four marital status dummy variables as follows:

 $mssgl_i = 1 - msmar_i - mswid_i - mssep_i - msdiv_i \quad \forall i.$

2. The Framework

- □ Consider a *sample* or *population* of N observations that is partitioned into two mutually exclusive and exhaustive subsamples or subsets:
 - (1) Group 1 subsample of N_1 observations, for which

 $D1_i = 1$ and $D2_i = 0$

(2) Group 2 subsample of N_2 observations, for which

$$D2_i = 1$$
 and $D1_i = 0$

Note: The total number of observations is $N = N_1 + N_2$.

□ <u>Case 1</u>: All regression coefficients are *constant*, or *equal*, across the entire population. In this case, the PRE for the entire population (and hence for all N sample observations) is:

$$\begin{split} \mathbf{Y}_{i} &= \beta_{0} + \beta_{1} \mathbf{X}_{1i} + \beta_{2} \mathbf{X}_{2i} + \mathbf{u}_{i} & \forall i \text{ (for all i)} & \dots \text{ (1)} \\ & i &= 1, \dots, N = N_{1} + N_{2} \end{split}$$

- □ <u>Case 2</u>: All regression coefficients *differ*, or are *unequal*, between the two groups. In this case, Group 1 and Group 2 have completely different PREs.
 - (1) The Group 1 PRE is

$$\mathbf{Y}_{i} = \boldsymbol{\alpha}_{0} + \boldsymbol{\alpha}_{1} \mathbf{X}_{1i} + \boldsymbol{\alpha}_{2} \mathbf{X}_{2i} + \mathbf{u}_{1i} \qquad \forall i \in \text{Group 1} \qquad \dots (2.1)$$

where u_{1i} is NID $(0, \sigma_1^2)$.

(2) The Group 2 PRE is

$$Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i} + u_{2i} \qquad \forall i \in \text{Group 2} \qquad \dots (2.2)$$

where u_{2i} is NID $(0, \sigma_{2}^{2})$.

□ <u>Objective</u>: To test for *pairwise* coefficient *differences* between the Group 1 and Group 2 PRFs.

• The *null* hypothesis of *complete* coefficient equality is

H₀: $\alpha_0 = \beta_0$ and $\alpha_1 = \beta_1$ and $\alpha_2 = \beta_2$... (3)

or, more compactly,

 $H_0\!\!:\ \alpha_j\ =\ \beta_j \qquad \qquad \forall \ j=0,\,1,\,2.$

Interpretation of H_0 : The null hypothesis H_0 says that *all* regression coefficients (including the intercept coefficients) are *equal* in the Group 1 and Group 2 regression functions.

• The *alternative* hypothesis is

H₁:
$$\alpha_0 \neq \beta_0$$
 and/or $\alpha_1 \neq \beta_1$ and/or $\alpha_2 \neq \beta_2$... (4)

or, more compactly,

H₁: $\alpha_i \neq \beta_i$ j = 0, 1, 2.

Interpretation of H_1 : The alternative hypothesis H_1 says that *at least one* (*some or all*) of the regression coefficients are *unequal* (*or different*) in the Group 1 and Group 2 regression functions.

The Restricted and Unrestricted Models Corresponding to H₀ and H₁

- The *unrestricted* model corresponding to the alternative hypothesis H₁ consists of the Group 1 PRE (2.1) and the Group 2 PRE (2.2):
 - Group 1 PRE: $Y_i = \alpha_0 + \alpha_1 X_{1i} + \alpha_2 X_{2i} + u_{1i}$ $i = 1, ..., N_1$... (2.1)

Group 2 PRE: $Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + u_{2i}$ $i = 1, ..., N_2$... (2.2)

- The *restricted* model corresponding to the **null hypothesis** H₀ is obtained by imposing on the unrestricted model the coefficient restrictions specified by H₀.
 - 1) Set $\alpha_0 = \beta_0$ and $\alpha_1 = \beta_1$ and $\alpha_2 = \beta_2$ in PRE (2.1): the two PREs (2.1) and (2.2) can then be written as

Group 1 PRE: $Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + u_{2i}$ $i = 1, ..., N_1$ Group 2 PRE: $Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + u_{2i}$ $i = 1, ..., N_2$.

2) Assume that the error terms u_{1i} and u_{2i} have the same distribution. Since u_{1i} and u_{2i} both have zero means, this amounts to assuming that u_{1i} and u_{2i} have the same variance -- i.e., that $\sigma_1^2 = \sigma_2^2 = \sigma^2$.

<u>**Result</u></u>: The Group 1 PRE and the Group 2 PRE are** *identical***, so that the <u>restricted</u> model for the entire sample of N = N_1 + N_2 observations can be written as PRE (1):</u>**

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + u_i$$
 $\forall i = 1, ..., N = N_1 + N_2$... (1)

□ <u>Two Approaches to Testing for Inter-Group Coefficient Differences</u>

Both approaches involve using an *F-test* to perform a test of

H₀: $\alpha_0 = \beta_0$ and $\alpha_1 = \beta_1$ and $\alpha_2 = \beta_2$ (3 coefficient restrictions)

against

H₁: $\alpha_0 \neq \beta_0$ and/or $\alpha_1 \neq \beta_1$ and/or $\alpha_2 \neq \beta_2$

Approach 1: Separate Regressions Approach

• does not use indicator (or dummy) variables as regressors.

Approach 2: Pooled Regression Approach

• uses indicator (or dummy) variables as regressors.

3. Approach 1: Separate Regressions Approach

□ <u>Step 1</u>: Under H₀, estimate equation (1) by OLS on the full sample of N observations.

The *restricted* **OLS-SRE** is

$$Y_{i} = \tilde{\beta}_{0} + \tilde{\beta}_{1}X_{1i} + \tilde{\beta}_{2}X_{2i} + \tilde{u}_{i} \qquad i = 1, ..., N = N_{1} + N_{2} \qquad ... (4.1)$$

The *restricted* residual sum-of-squares is

$$RSS_0 = RSS_R = \sum_{i=1}^{N} \tilde{u}_i^2$$
 with $df_0 = df_R = N - K_0$... (4.2)

- □ <u>Step 2</u>: Under H₁, *separately* estimate by OLS (1) PRE (2.1) on the subsample of N₁ observations for Group 1 and (2) PRE (2.2) on the subsample of N₂ observations for Group 2.
 - **1.** The **Group 1 OLS-SRE** for the subsample of N_1 observations for Group 1 is

$$Y_{i} = \hat{\alpha}_{0} + \hat{\alpha}_{1}X_{1i} + \hat{\alpha}_{2}X_{2i} + \hat{u}_{1i} \qquad i = 1, ..., N_{1} \qquad ... (5.1)$$

The residual sum-of-squares for the Group 1 OLS-SRE is

$$RSS_{(1)} = \sum_{i=1}^{N_1} \hat{u}_{1i}^2 \qquad \text{with } df_{(1)} = N_1 - K_0 = N_1 - 3 \qquad \dots (5.2)$$

2. The Group 2 OLS-SRE for the subsample of N_2 observations for Group 2 is

$$Y_{i} = \hat{\beta}_{0} + \hat{\beta}_{1}X_{1i} + \hat{\beta}_{2}X_{2i} + \hat{u}_{2i} \qquad i = 1, ..., N_{2} \qquad ... (6.1)$$

The residual sum-of-squares for the Group 2 OLS-SRE is

$$RSS_{(2)} = \sum_{i=1}^{N_2} \hat{u}_{2i}^2$$
 with $df_{(2)} = N_2 - K_0 = N_2 - 3$... (6.2)

3. The unrestricted residual sum-of-squares is

$$RSS_{1} = RSS_{U} = RSS_{(1)} + RSS_{(2)} = \sum_{i=1}^{N_{1}} \hat{u}_{1i}^{2} + \sum_{i=1}^{N_{2}} \hat{u}_{2i}^{2} \qquad \dots (7.1)$$

with
$$df_1 = df_U = df_{(1)} + df_{(2)} = N - 2K_0 = N - 6$$
 ... (7.2)

Calculation of $df_1 = df_U$:

$$df_{1} = df_{(1)} + df_{(2)}$$

= N₁ - K₀ + N₂ - K₀
= N₁ + N₂ - 2K₀
= N - 2K₀ = N - 2(3) = N - 6.

Step 3: Compute the *sample value* of the F-statistic for testing H_0 against H_1 .

$$F_{SR} = \frac{(RSS_0 - RSS_1)/(df_0 - df_1)}{RSS_1/df_1} = \frac{[RSS_0 - (RSS_{(1)} + RSS_{(2)})]/(df_0 - df_1)}{(RSS_1 + RSS_2)/df_1}$$
...(8)

• The *restricted* **RSS under** H₀ is

 $RSS_0 = RSS_R$ with $df_0 = df_R = N - K_0$.

• The *unrestricted* **RSS under** H₁ is

$$RSS_{1} = RSS_{U} = RSS_{(1)} + RSS_{(2)} = \sum_{i=1}^{N_{1}} \hat{u}_{1i}^{2} + \sum_{i=1}^{N_{2}} \hat{u}_{2i}^{2}$$

with $df_{1} = df_{U} = df_{(1)} + df_{(2)} = N - 2K_{0}$.

• The difference $(RSS_0 - RSS_1)$ in the numerator of F is

$$RSS_{0} - RSS_{1} = RSS_{0} - (RSS_{(1)} + RSS_{(2)})$$
$$= \sum_{i=1}^{N} \tilde{u}_{i}^{2} - \left(\sum_{i=1}^{N_{1}} \hat{u}_{1i}^{2} + \sum_{i=1}^{N_{2}} \hat{u}_{2i}^{2}\right).$$

• The *numerator* degrees of freedom equal

$$df_{num} = df_0 - df_1 = (N - K_0) - (N - 2K_0) = N - K_0 - N + 2K_0 = K_0.$$

$$df_{den} = df_1 = N - 2K_0$$
.

• The sample value of the F-statistic for H₀ against H₁ is

$$F_{0} = \frac{(RSS_{0} - RSS_{1})/(df_{0} - df_{1})}{RSS_{1}/df_{1}}$$

$$= \frac{(RSS_{0} - RSS_{1})/K_{0}}{RSS_{1}/(N - 2K_{0})} \dots (9)$$

$$= \frac{[RSS_{0} - (RSS_{(1)} + RSS_{(2)})]/K_{0}}{(RSS_{1} + RSS_{2})/(N - 2K_{0})}$$

□ <u>Step 4</u>: Apply the conventional *decision rule*.

- Null distribution of \mathbf{F}_0 : $F_0 \sim F(\mathbf{K}_0, \mathbf{N} 2\mathbf{K}_0)$ under H_0 .
- *Decision Rule:* At the 100α percent significance level

1. *reject* \mathbf{H}_{0} if $F_{0} \geq F_{\alpha}(K_{0}, N-2K_{0})$ or p-value for $F_{0} \leq \alpha$;

2. retain H_0 if $F_0 < F_{\alpha}(K_0, N-2K_0)$ or p-value for $F_0 > \alpha$.

4. Approach 2: Pooled (Full-Interaction) Regression Approach

□ **<u>Strategy</u>**: Estimate a **single pooled regression equation** that incorporates the full set of coefficient differences between the PREs for Group 1 and Group 2.

Derivation of Pooled Regression Equation

Group 1 PRE: $Y_i = \alpha_0 + \alpha_1 X_{1i} + \alpha_2 X_{2i} + u_{1i}$ $i = 1, ..., N_1$... (2.1)

Group 2 PRE: $Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + u_{2i}$ $i = 1, ..., N_2$... (2.2)

1. Multiply equation (2.1) by $D1_i$ and equation (2.2) by $D2_i$:

$$Dl_{i}Y_{i} = \alpha_{0}Dl_{i} + \alpha_{1}Dl_{i}X_{1i} + \alpha_{2}Dl_{i}X_{2i} + Dl_{i}u_{i}$$
(10.1)

$$D2_{i}Y_{i} = \beta_{0}D2_{i} + \beta_{1}D2_{i}X_{1i} + \beta_{2}D2_{i}X_{2i} + D2_{i}u_{i}$$
(10.2)

Note: We again assume that $u_{1i} = u_{2i} = u_i - i.e.$, that u_{i1} and u_{i2} have identical distributions, so that they have equal variances $\sigma_1^2 = \sigma_2^2 = \sigma^2$.

2. Combine equations (10.1) and (10.2) by *adding them together* for each observation i = 1, ..., N.

$$\begin{split} Dl_{i}Y_{i} + D2_{i}Y_{i} &= \alpha_{0}Dl_{i} + \alpha_{1}Dl_{i}X_{1i} + \alpha_{2}Dl_{i}X_{2i} + Dl_{i}u_{i} \\ &+ \beta_{0}D2_{i} + \beta_{1}D2_{i}X_{1i} + \beta_{2}D2_{i}X_{2i} + D2_{i}u_{i} \\ &= \alpha_{0}Dl_{i} + \alpha_{1}Dl_{i}X_{1i} + \alpha_{2}Dl_{i}X_{2i} \\ &+ \beta_{0}D2_{i} + \beta_{1}D2_{i}X_{1i} + \beta_{2}D2_{i}X_{2i} \\ &+ Dl_{i}u_{i} + D2_{i}u_{i} \end{split}$$

or

$$(D1_{i} + D2_{i})Y_{i} = \alpha_{0}D1_{i} + \alpha_{1}D1_{i}X_{1i} + \alpha_{2}D1_{i}X_{2i} + \beta_{0}D2_{i} + \beta_{1}D2_{i}X_{1i} + \beta_{2}D2_{i}X_{2i} + (D1_{i} + D2_{i})u_{i}$$
(11)

3. Use the *adding-up property* to set $D1_i + D2_i = 1$ for all i in equation (11):

$$Y_{i} = \alpha_{0}Dl_{i} + \alpha_{1}Dl_{i}X_{1i} + \alpha_{2}Dl_{i}X_{2i} + \beta_{0}D2_{i} + \beta_{1}D2_{i}X_{1i} + \beta_{2}D2_{i}X_{2i} + u_{i} \quad \forall i$$
(12.0)

• <u>*Result*</u>: This equation (12.0) is the *pooled full-interaction PRE* corresponding to the alternative hypothesis H₁:

$$Y_{i} = \alpha_{0}Dl_{i} + \alpha_{1}Dl_{i}X_{1i} + \alpha_{2}Dl_{i}X_{2i} + \beta_{0}D2_{i} + \beta_{1}D2_{i}X_{1i} + \beta_{2}D2_{i}X_{2i} + u_{i} \quad \forall i$$
(12.0)

- Characteristics of equation (12.0):
 - 1) Equation (12.0) has *no intercept* coefficient.
 - **2)** Equation (12.0) **contains the** *full set of regression coefficients* for both the Group 1 PRF (α_0 , α_1 , and α_2) and the Group 2 PRF (β_0 , β_1 , and β_2).

Estimation of the pooled full-interaction regression equation (12.0) thus yields coefficient estimates of both the Group 1 PRF and the Group 2 PRF.

- **3)** Both the **Group 1 and Group 2 PREs can be obtained from equation** (12.0).
- Group 1 PRE is obtained by setting $D1_i = 1$ and $D2_i = 0$ in (12.0):

$$Y_i = \alpha_0 + \alpha_1 X_{1i} + \alpha_2 X_{2i} + u_i \qquad \forall i \text{ such that } D1_i = 1$$

• Group 2 PRE is obtained by setting $D2_i = 1$ and $D1_i = 0$ in (12.0):

$$Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i} + u_{i} \qquad \forall i \text{ such that } D2_{i} = 1$$

□ <u>Two Alternative Forms</u> of the *Pooled* Full-Interaction PRE (12.0):

- **1. Group 1 selected as** *base group*: set $D1_i = 1 D2_i$ in equation (12.0);
- **2.** Group 2 selected as *base group*: set $D2_i = 1 D1_i$ in equation (12.0).
- **1.** <u>**Group 1 selected as base group**</u>: Set $D1_i = 1 D2_i$ in equation (12.0):

$$Y_{i} = \alpha_{0}Dl_{i} + \alpha_{1}Dl_{i}X_{1i} + \alpha_{2}Dl_{i}X_{2i} + \beta_{0}D2_{i} + \beta_{1}D2_{i}X_{1i} + \beta_{2}D2_{i}X_{2i} + u_{i}$$
...(12.0)

$$\begin{split} \mathbf{Y}_{i} &= \alpha_{0} \big(1 - \mathbf{D2}_{i} \big) + \alpha_{1} \big(1 - \mathbf{D2}_{i} \big) \mathbf{X}_{1i} + \alpha_{2} \big(1 - \mathbf{D2}_{i} \big) \mathbf{X}_{2i} \\ &+ \beta_{0} \mathbf{D2}_{i} + \beta_{1} \mathbf{D2}_{i} \mathbf{X}_{1i} + \beta_{2} \mathbf{D2}_{i} \mathbf{X}_{2i} + \mathbf{u}_{i} \\ &= \alpha_{0} - \alpha_{0} \mathbf{D2}_{i} + \alpha_{1} \mathbf{X}_{1i} - \alpha_{1} \mathbf{D2}_{i} \mathbf{X}_{1i} + \alpha_{2} \mathbf{X}_{2i} - \alpha_{2} \mathbf{D2}_{i} \mathbf{X}_{2i} \\ &+ \beta_{0} \mathbf{D2}_{i} + \beta_{1} \mathbf{D2}_{i} \mathbf{X}_{1i} + \beta_{2} \mathbf{D2}_{i} \mathbf{X}_{2i} + \mathbf{u}_{i} \end{split}$$

Re-arrange the terms on the right-hand side of the above equation:

$$\begin{split} Y_{i} &= \alpha_{0} + \alpha_{1}X_{1i} + \alpha_{2}X_{2i} - \alpha_{0}D2_{i} - \alpha_{1}D2_{i}X_{1i} - \alpha_{2}D2_{i}X_{2i} \\ &\quad + \beta_{0}D2_{i} + \beta_{1}D2_{i}X_{1i} + \beta_{2}D2_{i}X_{2i} + u_{i} \\ &= \alpha_{0} + \alpha_{1}X_{1i} + \alpha_{2}X_{2i} + \beta_{0}D2_{i} - \alpha_{0}D2_{i} \\ &\quad + \beta_{1}D2_{i}X_{1i} - \alpha_{1}D2_{i}X_{1i} + \beta_{2}D2_{i}X_{2i} - \alpha_{2}D2_{i}X_{2i} + u_{i} \end{split}$$

Collect like terms in the above equation:

$$\begin{split} Y_{i} &= \alpha_{0} + \alpha_{1}X_{1i} + \alpha_{2}X_{2i} + \beta_{0}D2_{i} - \alpha_{0}D2_{i} \\ &+ \beta_{1}D2_{i}X_{1i} - \alpha_{1}D2_{i}X_{1i} + \beta_{2}D2_{i}X_{2i} - \alpha_{2}D2_{i}X_{2i} + u_{i} \\ &= \alpha_{0} + \alpha_{1}X_{1i} + \alpha_{2}X_{2i} + (\beta_{0} - \alpha_{0})D2_{i} \\ &+ (\beta_{1} - \alpha_{1})D2_{i}X_{1i} + (\beta_{2} - \alpha_{2})D2_{i}X_{2i} + u_{i} \end{split}$$

Define the coefficients of $D2_i$, $D2_iX_{1i}$, and $D2_iX_{2i}$ as

$$\gamma_0 = \beta_0 - \alpha_0; \quad \gamma_1 = \beta_1 - \alpha_1; \quad \gamma_2 = \beta_2 - \alpha_2.$$

Finally, the pooled full-interaction regression equation with Group 1 as the base group can be written as:

$$\begin{split} Y_{i} &= \alpha_{0} + \alpha_{1}X_{1i} + \alpha_{2}X_{2i} + (\beta_{0} - \alpha_{0})D2_{i} \\ &+ (\beta_{1} - \alpha_{1})D2_{i}X_{1i} + (\beta_{2} - \alpha_{2})D2_{i}X_{2i} + u_{i} \\ &= \alpha_{0} + \alpha_{1}X_{1i} + \alpha_{2}X_{2i} + \gamma_{0}D2_{i} + \gamma_{1}D2_{i}X_{1i} + \gamma_{2}D2_{i}X_{2i} + u_{i} \end{split}$$

• <u>*Result:*</u> The pooled full-interaction regression equation with *Group 1* as the *base group* can be written as:

$$Y_{i} = \alpha_{0} + \alpha_{1}X_{1i} + \alpha_{2}X_{2i} + \gamma_{0}D2_{i} + \gamma_{1}D2_{i}X_{1i} + \gamma_{2}D2_{i}X_{2i} + u_{i}$$
(12.1)

where $\gamma_0 = \beta_0 - \alpha_0; \quad \gamma_1 = \beta_1 - \alpha_1; \quad \gamma_2 = \beta_2 - \alpha_2.$

Interpretation of the Coefficients of PRE (12.1):

- 1) Equation (12.1) contains an *intercept* coefficient specifically, the Group 1 *intercept* coefficient α_0 .
- 2) The *slope* coefficients of the *regressors* X_{1i} *and* X_{2i} are the Group 1 *slope* coefficients α_1 and α_2 .
- 3) The coefficient γ_0 of the Group 2 *dummy variable* D2_i is the difference between the Group 2 intercept coefficient β_1 and the Group 1 intercept coefficient $\alpha_1 i.e.$, $\gamma_0 = \beta_0 \alpha_0$.
- 4) The coefficient γ_1 of the *interaction term* $D2_iX_{1i}$ is the difference between the Group 2 slope coefficient for X_{1i} (β_1) and the corresponding Group 1 slope coefficient for X_{1i} (α_1) i.e., $\gamma_1 = \beta_1 \alpha_1$.
- 5) The coefficient γ_2 of the *interaction term* $D2_iX_{2i}$ is the difference between the Group 2 slope coefficient for X_{2i} (β_2) and the corresponding Group 1 slope coefficient for X_{2i} (α_2) i.e., $\gamma_2 = \beta_2 \alpha_2$.

2. <u>**Group 2 selected as base group**</u>: Set $D2_i = 1 - D1_i$ in equation (12.0):

$$Y_{i} = \alpha_{0}D1_{i} + \alpha_{1}D1_{i}X_{1i} + \alpha_{2}D1_{i}X_{2i} + \beta_{0}D2_{i} + \beta_{1}D2_{i}X_{1i} + \beta_{2}D2_{i}X_{2i} + u_{i}$$
...(12.0)

$$\begin{split} Y_{i} &= \alpha_{0} D l_{i} + \alpha_{1} D l_{i} X_{1i} + \alpha_{2} D l_{i} X_{2i} \\ &+ \beta_{0} (1 - D l_{i}) + \beta_{1} (1 - D l_{i}) X_{1i} + \beta_{2} (1 - D l_{i}) X_{2i} + u_{i} \\ &= \alpha_{0} D l_{i} + \alpha_{1} D l_{i} X_{1i} + \alpha_{2} D l_{i} X_{2i} \\ &+ \beta_{0} - \beta_{0} D l_{i} + \beta_{1} X_{1i} - \beta_{1} D l_{i} X_{1i} + \beta_{2} X_{2i} - \beta_{2} D l_{i} X_{2i} + u_{i} \end{split}$$

Re-arrange the terms on the right-hand side of the above equation:

$$\begin{split} Y_{i} &= \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i} + \alpha_{0}Dl_{i} + \alpha_{1}Dl_{i}X_{1i} + \alpha_{2}Dl_{i}X_{2i} \\ &- \beta_{0}Dl_{i} - \beta_{1}Dl_{i}X_{1i} - \beta_{2}Dl_{i}X_{2i} + u_{i} \end{split} \\ &= \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i} + \alpha_{0}Dl_{i} - \beta_{0}Dl_{i} \\ &+ \alpha_{1}Dl_{i}X_{1i} - \beta_{1}Dl_{i}X_{1i} + \alpha_{2}Dl_{i}X_{2i} - \beta_{2}Dl_{i}X_{2i} + u_{i} \end{split}$$

Collect like terms in the above equation:

$$\begin{split} Y_{i} &= \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i} + \alpha_{0}Dl_{i} - \beta_{0}Dl_{i} \\ &+ \alpha_{1}Dl_{i}X_{1i} - \beta_{1}Dl_{i}X_{1i} + \alpha_{2}Dl_{i}X_{2i} - \beta_{2}Dl_{i}X_{2i} + u_{i} \\ &= \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i} + (\alpha_{0} - \beta_{0})Dl_{i} \\ &+ (\alpha_{1} - \beta_{1})Dl_{i}X_{1i} + (\alpha_{2} - \beta_{2})Dl_{i}X_{2i} + u_{i} \end{split}$$

Define the coefficients of $D1_i$, $D1_iX_{2i}$, and $D1_iX_{3i}$ as

$$\delta_0 = \alpha_0 - \beta_0; \quad \delta_1 = \alpha_1 - \beta_1; \quad \delta_2 = \alpha_2 - \beta_2.$$

Finally, the pooled full-interaction regression equation with Group 2 as the base group can be written as:

$$\begin{split} Y_{i} &= \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i} + (\alpha_{0} - \beta_{0})Dl_{i} \\ &+ (\alpha_{1} - \beta_{1})Dl_{i}X_{1i} + (\alpha_{2} - \beta_{2})Dl_{i}X_{2i} + u_{i} \\ &= \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i} + \delta_{0}Dl_{i} + \delta_{1}Dl_{i}X_{1i} + \delta_{2}Dl_{i}X_{2i} + u_{i} \end{split}$$

• <u>*Result:*</u> The pooled full-interaction regression equation with Group 2 as the base group can be written as:

$$Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i} + \delta_{0}Dl_{i} + \delta_{1}Dl_{i}X_{1i} + \delta_{2}Dl_{i}X_{2i} + u_{i}$$
(12.2)

where $\delta_0 = \alpha_0 - \beta_0$; $\delta_1 = \alpha_1 - \beta_1$; $\delta_2 = \alpha_2 - \beta_2$.

Interpretation of the Coefficients of PRE (12.2):

- 1) Equation (12.2) contains an *intercept* coefficient specifically, the Group 2 *intercept* coefficient β_0 .
- 2) The *slope* coefficients of the *regressors* X_{1i} *and* X_{2i} are the Group 2 *slope* coefficients β_1 and β_2 .
- 3) The coefficient δ_0 of the Group 1 *dummy variable* D1_i is the difference between the Group 1 intercept coefficient α_0 and the Group 2 intercept coefficient $\beta_0 i.e.$, $\delta_0 = \alpha_0 \beta_0$.
- 4) The coefficient δ_1 of the *interaction term* $D1_iX_{1i}$ is the difference between the Group 1 slope coefficient for $X_{1i}(\alpha_1)$ and the corresponding Group 2 slope coefficient for $X_{1i}(\beta_1) - i.e., \delta_1 = \alpha_1 - \beta_1$.
- 5) The coefficient δ_2 of the *interaction term* $D1_iX_{2i}$ is the difference between the Group 1 slope coefficient for $X_{2i}(\alpha_2)$ and the corresponding Group 2 slope coefficient for $X_{2i}(\beta_2) i.e.$, $\delta_2 = \alpha_2 \beta_2$.

Properties of Pooled Regression Equations (12.0), (12.1) and (12.2)

There are *three* different but equivalent ways of writing the pooled fullinteraction regression equation:

$$Y_{i} = \alpha_{0} + \alpha_{1}X_{1i} + \alpha_{2}X_{2i} + \gamma_{0}D2_{i} + \gamma_{1}D2_{i}X_{1i} + \gamma_{2}D2_{i}X_{2i} + u_{i}$$
(12.1)
where $\gamma_{0} = \beta_{0} - \alpha_{0}; \quad \gamma_{1} = \beta_{1} - \alpha_{1}; \quad \gamma_{2} = \beta_{2} - \alpha_{2}.$

$$Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i} + \delta_{0}Dl_{i} + \delta_{1}Dl_{i}X_{1i} + \delta_{2}Dl_{i}X_{2i} + u_{i}$$
(12.2)
where $\delta_{0} = \alpha_{0} - \beta_{0}; \quad \delta_{1} = \alpha_{1} - \beta_{1}; \quad \delta_{2} = \alpha_{2} - \beta_{2}.$

Note: The γ_j coefficients in pooled regression (12.1) are *equal in magnitude* but *opposite in sign* to the δ_j coefficients in pooled regression (12.2).

$$\gamma_{j}=\beta_{j}-\alpha_{j}=-\delta_{j} \qquad \text{or} \qquad \delta_{j}=\alpha_{j}-\beta_{j}=-\gamma_{j} \qquad j=0,\,2,\,3.$$

1. Equations (12.0), (12.1), and (12.2) are *observationally equivalent*: OLS estimation of equations (12.0), (12.1), and (12.2) yield *identical* values of

 $RSS \equiv residual sum-of-squares$

- $\hat{\sigma}^2 \equiv$ the estimator of the error variance σ^2
- $R^2 =$ the coefficient of determination.
- 2. The *unrestricted* **RSS** from OLS estimation of equations (12.0), (12.1), and (12.2) equals

 $RSS_1 = RSS_U = RSS_{(1)} + RSS_{(2)}$ with $df_1 = df_U = N - 2K_0$.

That is, the RSS from OLS estimation of pooled equations (12.0), (12.1), and (12.2) equals the sum of the RSS values from separate OLS estimation of the Group 1 and Group 2 regression equations.

<u>F-Tests of Complete Coefficient Equality</u> – Three Equivalent Tests

<u>TEST 1</u>: Use OLS estimates of pooled equation (12.0)

$$\begin{split} Y_{i} &= \alpha_{0}Dl_{i} + \alpha_{1}Dl_{i}X_{1i} + \alpha_{2}Dl_{i}X_{2i} + \beta_{0}D2_{i} + \beta_{1}D2_{i}X_{1i} + \beta_{2}D2_{i}X_{2i} + u_{i} \\ &\forall i = 1, ..., N \qquad \dots (12.0) \end{split}$$

to perform an F-test of

- $$\begin{split} H_0: \ \alpha_j \ = \ \beta_j \qquad \forall \quad j=0,\,1,\,2 \\ H_1: \ \alpha_j \ \neq \ \beta_j \qquad \qquad j=0,\,1,\,2. \end{split}$$
- ♦ *Restricted* OLS-SRE corresponding to H₀ is obtained by OLS estimation of the restricted equation (1) on the full sample of N = N₁ + N₂ observations:

$$\mathbf{Y}_{i} = \widetilde{\beta}_{0} + \widetilde{\beta}_{1} \mathbf{X}_{1i} + \widetilde{\beta}_{2} \mathbf{X}_{2i} + \widetilde{\mathbf{u}}_{i} \qquad \forall \ i = 1, ..., N = N_{1} + N_{2} \qquad \dots (1)$$

Yields restricted RSS

$$RSS_0 = RSS_R = \sum_{i=1}^N \tilde{u}_i^2$$
 with $df_0 = df_R = N - K_0 = N - 3$.

• *Unrestricted* **OLS-SRE** corresponding to H₁ is obtained by OLS estimation of equation (12.0):

$$\begin{split} Y_{i} &= \hat{\alpha}_{0} D \mathbf{1}_{i} + \hat{\alpha}_{1} D \mathbf{1}_{i} X_{1i} + \hat{\alpha}_{2} D \mathbf{1}_{i} X_{2i} + \hat{\beta}_{0} D \mathbf{2}_{i} + \hat{\beta}_{1} D \mathbf{2}_{i} X_{1i} + \hat{\beta}_{2} D \mathbf{2}_{i} X_{2i} + \hat{u}_{i} \\ &\forall \ i = 1, \, ..., \, N \end{split}$$

Yields unrestricted RSS

$$RSS_1 = RSS_U = \sum_{i=1}^{N} \hat{u}_i^2$$
 with $df_1 = df_U = N - K = N - 2K_0 = N - 6$.

<u>TEST 2</u>: Use OLS estimates of pooled equation (12.1)

$$Y_{i} = \alpha_{0} + \alpha_{1}X_{1i} + \alpha_{2}X_{2i} + \gamma_{0}D2_{i} + \gamma_{1}D2_{i}X_{1i} + \gamma_{2}D2_{i}X_{2i} + u_{i}$$
(12.1)
$$\gamma_{0} = \beta_{0} - \alpha_{0}; \quad \gamma_{1} = \beta_{1} - \alpha_{1}; \quad \gamma_{2} = \beta_{2} - \alpha_{2}.$$

to perform an F-test of

$$\begin{split} H_0: \ \gamma_j &= 0 \qquad \forall \ j = 0, \, 1, \, 2 \quad \Longrightarrow \quad \gamma_j = \beta_j - \alpha_j = 0 \quad \forall \ j = 0, \, 1, \, 2 \\ H_1: \ \gamma_j \neq 0 \qquad \qquad j = 0, \, 1, \, 2 \quad \Longrightarrow \quad \gamma_j = \beta_j - \alpha_j \neq 0 \qquad \qquad j = 0, \, 1, \, 2. \end{split}$$

• *Restricted* OLS-SRE corresponding to H₀ is obtained by OLS estimation of equation (12.1) with $\gamma_0 = \gamma_1 = \gamma_2 = 0$ on the full sample of N = N₁ + N₂ observations:

$$\mathbf{Y}_{i} = \widetilde{\boldsymbol{\alpha}}_{0} + \widetilde{\boldsymbol{\alpha}}_{1} \mathbf{X}_{1i} + \widetilde{\boldsymbol{\alpha}}_{2} \mathbf{X}_{2i} + \widetilde{\mathbf{u}}_{i} \qquad \forall i = 1, ..., N = N_{1} + N_{2}$$

Yields *restricted* RSS

$$RSS_0 = RSS_R = \sum_{i=1}^N \tilde{u}_i^2$$
 with $df_0 = df_R = N - K_0 = N - 3$.

• *Unrestricted* **OLS-SRE** corresponding to H₁ is obtained by OLS estimation of equation (12.1):

$$\begin{split} \mathbf{Y}_{i} &= \hat{\alpha}_{0} + \hat{\alpha}_{1} \mathbf{X}_{1i} + \hat{\alpha}_{2} \mathbf{X}_{2i} + \hat{\gamma}_{0} \mathbf{D} \mathbf{2}_{i} + \hat{\gamma}_{1} \mathbf{D} \mathbf{2}_{i} \mathbf{X}_{1i} + \hat{\gamma}_{2} \mathbf{D} \mathbf{2}_{i} \mathbf{X}_{2i} + \hat{\mathbf{u}}_{i} \\ \hat{\gamma}_{0} &= \hat{\beta}_{0} - \hat{\alpha}_{0}; \quad \hat{\gamma}_{1} = \hat{\beta}_{1} - \hat{\alpha}_{1}; \quad \hat{\gamma}_{2} = \hat{\beta}_{2} - \hat{\alpha}_{2}. \end{split}$$

Yields unrestricted RSS

$$RSS_1 = RSS_U = \sum_{i=1}^{N} \hat{u}_i^2$$
 with $df_1 = df_U = N - K = N - 2K_0 = N - 6$.

<u>TEST 3</u>: Use OLS estimates of pooled equation (12.2)

$$Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i} + \delta_{0}Dl_{i} + \delta_{1}Dl_{i}X_{1i} + \delta_{2}Dl_{i}X_{2i} + u_{i}$$
(12.2)
$$\delta_{0} = \alpha_{0} - \beta_{0}; \quad \delta_{1} = \alpha_{1} - \beta_{1}; \quad \delta_{2} = \alpha_{2} - \beta_{2}.$$

to perform an **F-test** of

$$\begin{split} H_0: \ \delta_j &= 0 \qquad \forall \ j = 0, \, 1, \, 2 \quad \Longrightarrow \quad \delta_j \, = \, \alpha_j - \beta_j \, = \, 0 \ \forall \ j = 0, \, 1, \, 2 \\ H_1: \ \delta_j \neq 0 \qquad \qquad j = 0, \, 1, \, 2 \quad \Longrightarrow \quad \delta_j \, = \, \alpha_j - \beta_j \, \neq \, 0 \qquad \qquad j = 0, \, 1, \, 2. \end{split}$$

• *Restricted* OLS-SRE corresponding to H_0 is obtained by OLS estimation of equation (12.2) with $\delta_0 = \delta_1 = \delta_2 = 0$ on the full sample of $N = N_1 + N_2$ observations:

$$Y_{i} = \widetilde{\beta}_{0} + \widetilde{\beta}_{1}X_{1i} + \widetilde{\beta}_{2}X_{2i} + \widetilde{u}_{i} \qquad \forall i = 1, ..., N = N_{1} + N_{2}$$

Yields restricted RSS

$$RSS_0 = RSS_R = \sum_{i=1}^{N} \tilde{u}_i^2$$
 with $df_0 = df_R = N - K_0 = N - 3$.

• *Unrestricted* **OLS-SRE** corresponding to H₁ is obtained by OLS estimation of equation (12.2):

$$\begin{split} \mathbf{Y}_{i} &= \hat{\beta}_{0} + \hat{\beta}_{1} \mathbf{X}_{1i} + \hat{\beta}_{2} \mathbf{X}_{2i} + \hat{\delta}_{0} \mathbf{D} \mathbf{1}_{i} + \hat{\delta}_{1} \mathbf{D} \mathbf{1}_{i} \mathbf{X}_{1i} + \hat{\delta}_{2} \mathbf{D} \mathbf{1}_{i} \mathbf{X}_{2i} + \hat{\mathbf{u}}_{i} \\ \\ \hat{\delta}_{0} &= \hat{\alpha}_{0} - \hat{\beta}_{0}; \quad \hat{\delta}_{1} = \hat{\alpha}_{1} - \hat{\beta}_{1}; \quad \hat{\delta}_{2} = \hat{\alpha}_{2} - \hat{\beta}_{2}. \end{split}$$

Yields *unrestricted* **RSS**

$$RSS_1 = RSS_U = \sum_{i=1}^{N} \hat{u}_i^2$$
 with $df_1 = df_U = N - K = N - 2K_0 = N - 6$.

Equivalence of Three F-Tests

The **three F-tests** based on pooled full-interaction regression equations (12.0), (12.1), and (12.2) *are equivalent to each other* and *to the F-test computed using the separate regressions approach*.

 $F(12.0) = F(12.1) = F(12.2) = F_{SR} \sim F(K_0, N - 2K_0)$ under H₀.

where all four F-statistics $F(12.0) = F(12.1) = F(12.2) = F_{SR} = F_0$ and

$$F_{0} = \frac{(RSS_{0} - RSS_{1})/(df_{0} - df_{1})}{RSS_{1}/df_{1}} = \frac{(RSS_{0} - RSS_{1})/K_{0}}{RSS_{1}/(N - 2K_{0})}.$$

<u>Meaning/Interpretation of Joint F-Tests of Complete Coefficient Equality</u>

Meaning of TEST 1: Uses OLS estimates of pooled equation (12.0)

$$Y_{i} = \alpha_{0}D1_{i} + \alpha_{1}D1_{i}X_{1i} + \alpha_{2}D1_{i}X_{2i} + \beta_{0}D2_{i} + \beta_{1}D2_{i}X_{1i} + \beta_{2}D2_{i}X_{2i} + u_{i}$$
(12.0)

to perform an **F-test** of H_0 : $\alpha_j = \beta_j \quad \forall j = 0, 1, 2$ versus H_1 : $\alpha_j \neq \beta_j$ for j = 0, 1, 2.

The **population regression functions** (PRFs) for Group 1 and Group 2 implied by pooled regression equation (12.0) give the conditional mean value of Y_i for each group for any given values of the explanatory variables X_{1i} and X_{2i} .

The Group 1 conditional mean value of Y_i for given values of X_{1i} and X_{2i} implied by equation (12.0) is:

$$E(Y_{i} | X_{1i}, X_{2i}, DI_{i} = 1, D2_{i} = 0) = \alpha_{0} + \alpha_{1}X_{1i} + \alpha_{2}X_{2i}$$

The Group 2 conditional mean value of Y_i for given values of X_{1i} and X_{2i} implied by equation (12.0) is:

$$E(Y_i | X_{1i}, X_{2i}, D1_i = 0, D2_i = 1) = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i}$$

The null hypothesis of complete coefficient equality – H_0 : $\alpha_j = \beta_j \forall j = 0, 1, 2$ – means that

$$E(Y_{i} | X_{1i}, X_{2i}, D1_{i} = 1, D2_{i} = 0) = E(Y_{i} | X_{1i}, X_{2i}, D1_{i} = 0, D2_{i} = 1)$$
$$= \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i}$$

i.e., the Group 1 conditional mean value of Y *equals* the Group 2 conditional mean value of Y for any given values of X_1 and X_2 .

Meaning of TEST 2: Uses OLS estimates of pooled equation (12.1)

$$Y_{i} = \alpha_{0} + \alpha_{1}X_{1i} + \alpha_{2}X_{2i} + \gamma_{0}D2_{i} + \gamma_{1}D2_{i}X_{1i} + \gamma_{2}D2_{i}X_{2i} + u_{i}$$
(12.1)

to perform an **F-test** of H₀: $\gamma_j = 0 \forall j = 0, 1, 2$ versus H₁: $\gamma_j \neq 0$ j = 0, 1, 2 where $\gamma_j = \beta_j - \alpha_j \neq 0$ for j = 0, 1, 2.

The population regression functions (PRFs) for Group 1 and Group 2 implied by pooled regression equation (12.1) give the conditional mean value of Y_i for each group for any given values of the explanatory variables X_{1i} and X_{2i} .

• The **Group 1 conditional mean value of** Y_i for given values of X_{1i} and X_{2i} implied by equation (12.1) is:

$$E(Y_{i} | X_{1i}, X_{2i}, D2_{i} = 0) = \alpha_{0} + \alpha_{1}X_{1i} + \alpha_{2}X_{2i}$$

• The Group 2 conditional mean value of Y_i for given values of X_{1i} and X_{2i} implied by equation (12.1) is:

$$E(Y_{i} | X_{1i}, X_{2i}, D2_{i} = 1) = (\alpha_{0} + \gamma_{0}) + (\alpha_{1} + \gamma_{1})X_{1i} + (\alpha_{2} + \gamma_{2})X_{2i}$$

The null hypothesis of complete coefficient equality – H_0 : $\gamma_j = 0 \forall j = 0, 1, 2 - means$ that

$$E(Y_{i} | X_{1i}, X_{2i}, D2_{i} = 0) = E(Y_{i} | X_{1i}, X_{2i}, D2_{i} = 1) = \alpha_{0} + \alpha_{1}X_{1i} + \alpha_{2}X_{2i}$$

i.e., the Group 1 conditional mean value of Y *equals* the Group 2 conditional mean value of Y for any given values of X₁ and X₂.

Meaning of TEST 3: Uses OLS estimates of pooled equation (12.2)

$$Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i} + \delta_{0}Dl_{i} + \delta_{1}Dl_{i}X_{1i} + \delta_{2}Dl_{i}X_{2i} + u_{i}$$
(12.2)

to perform an **F-test** of H₀: $\delta_j = 0 \forall j = 0, 1, 2$ versus H₁: $\delta_j \neq 0$ j = 0, 1, 2 where $\delta_i = \alpha_i - \beta_i \neq 0$ for j = 0, 1, 2.

The population regression functions (PRFs) for Group 1 and Group 2 implied by pooled regression equation (12.1) give the conditional mean value of Y_i for each group for any given values of the explanatory variables X_{1i} and X_{2i} .

• The **Group 1 conditional mean value of** Y_i for given values of X_{1i} and X_{2i} implied by equation (12.2) is:

$$E(Y_{i} | X_{1i}, X_{2i}, D1_{i} = 1) = (\beta_{0} + \delta_{0}) + (\beta_{1} + \delta_{1})X_{1i} + (\beta_{2} + \delta_{2})X_{2i}$$

• The Group 2 conditional mean value of Y_i for given values of X_{1i} and X_{2i} implied by equation (12.2) is:

$$E(Y_{i} | X_{1i}, X_{2i}, D1_{i} = 0) = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i}$$

The null hypothesis of complete coefficient equality – H_0 : $\delta_j = 0 \forall j = 0, 1, 2 - means$ that

$$E(Y_{i} | X_{1i}, X_{2i}, D1_{i} = 1) = E(Y_{i} | X_{1i}, X_{2i}, D1_{i} = 0) = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i}$$

i.e., the Group 1 conditional mean value of Y *equals* the Group 2 conditional mean value of Y for any given values of X_1 and X_2 .

□ <u>Advantages of Pooled Regression Approach</u> (Approach 2)

- 1. Approach 2 is more *informative*.
- It permits **t-tests of individual coefficient differences** between the Group 1 and Group 2 regression functions.

This advantage is particularly evident when a base group is selected for the pooled full-interaction regression equation.

- 2. Approach 2 is more *flexible*.
- Approach 2 can be used to test for coefficient equality between any subset of regression coefficients in the Group 1 and Group 2 PRFs.

Approach 1 can only test the hypothesis of **complete coefficient equality** between the Group 1 and Group 2 regression functions.

• Illustrations of Approach 2: Tests for equality of subsets of coefficients.

• <u>Test 1</u>: Equality of *all* (both) slope coefficients.

H ₀ :	$\alpha_1 = \beta_1$	and	$\alpha_2 = \beta_2$	in pooled PRE (12.0)
	$\gamma_1 = 0$	and	$\gamma_2 = 0$	in pooled PRE (12.1)
	$\delta_1 = 0$	and	$\delta_2 = 0$	in pooled PRE (12.2)
H_1 :	$\alpha_1 \neq \beta_1$	and/or	$\alpha_2 \neq \beta_2$	in pooled PRE (12.0)
	$\gamma_1 \neq 0$	and/or	$\gamma_2 \neq 0$	in pooled PRE (12.1)
	$\delta_1 \neq 0$	and/or	$\delta_2 \neq 0$	in pooled PRE (12.2)

• *Restricted* OLS-SRE corresponding to H_0 is any one of the following three OLS sample regression equations, for which $K_0 = 4$:

$$Y_{i} = \tilde{\alpha}_{0}D1_{i} + \tilde{\beta}_{0}D2_{i} + \tilde{\beta}_{1}X_{1i} + \tilde{\beta}_{2}X_{2i} + \tilde{u}_{i} \qquad \text{from (12.0)}$$

$$Y_{i} = \widetilde{\alpha}_{0} + \widetilde{\alpha}_{1}X_{1i} + \widetilde{\alpha}_{2}X_{2i} + \widetilde{\gamma}_{0}D2_{i} + \widetilde{u}_{i} \qquad \text{from (12.1)}$$

$$Y_{i} = \tilde{\beta}_{0} + \tilde{\beta}_{1}X_{1i} + \tilde{\beta}_{2}X_{2i} + \tilde{\delta}_{0}Dl_{i} + \tilde{u}_{i} \qquad \text{from (12.2)}$$

• The *restricted* **RSS under** H₀ is

$$RSS_0 = RSS_R = \sum_{i=1}^N \tilde{u}_i^2$$
 with $df_0 = df_R = N - K_0 = N - 4$.

• The *unrestricted* **RSS under** H₁ is

$$RSS_1 = RSS_U = \sum_{i=1}^{N} \hat{u}_i^2$$
 with $df_1 = df_U = N - K = N - 6$.

• The *numerator* degrees of freedom equal

$$df_{num} = df_0 - df_1 = (N - K_0) - (N - K) = K - K_0 = 6 - 4 = 2.$$

$$df_{den} = df_1 = N - K = N - 6.$$

• <u>Test 2</u>: Equality of a subset of slope coefficients, e.g. the coefficient of X_{2i} .

H ₀ :	$\alpha_2 = \beta_2$	in pooled PRE (12.0)
	$\gamma_2 = 0$	in pooled PRE (12.1)
	$\delta_2 = 0$	in pooled PRE (12.2)
H_1 :	$\alpha_2 \neq \beta_2$	in pooled PRE (12.0)
	$\gamma_2 \neq 0$	in pooled PRE (12.1)

• *Restricted* **OLS-SRE** corresponding to H_0 is any one of the following three OLS sample regression equations, for which $K_0 = 5$:

$$Y_{i} = \widetilde{\alpha}_{0}D1_{i} + \widetilde{\beta}_{0}D2_{i} + \widetilde{\alpha}_{1}D1_{i}X_{1i} + \widetilde{\beta}_{1}D2_{i}X_{1i} + \widetilde{\beta}_{2}X_{2i} + \widetilde{u}_{i} \qquad \text{from (12.0)}$$

$$Y_{i} = \tilde{\alpha}_{0} + \tilde{\alpha}_{1}X_{1i} + \tilde{\alpha}_{2}X_{2i} + \tilde{\gamma}_{0}D2_{i} + \tilde{\gamma}_{1}D2_{i}X_{1i} + \tilde{u}_{i} \qquad \text{from (12.1)}$$

$$Y_{i} = \widetilde{\beta}_{0} + \widetilde{\beta}_{1}X_{1i} + \widetilde{\beta}_{2}X_{2i} + \widetilde{\delta}_{0}D1_{i} + \widetilde{\delta}_{1}D1_{i}X_{1i} + \widetilde{u}_{i} \qquad \text{from (12.2)}$$

• The *restricted* **RSS under** H₀ is

$$RSS_0 = RSS_R = \sum_{i=1}^N \tilde{u}_i^2$$
 with $df_0 = df_R = N - K_0 = N - 5$.

• The *unrestricted* **RSS under** H₁ is

$$RSS_1 = RSS_U = \sum_{i=1}^{N} \hat{u}_i^2$$
 with $df_1 = df_U = N - K = N - 6$.

• The *numerator* degrees of freedom equal

$$df_{num} = df_0 - df_1 = (N - K_0) - (N - K) = K - K_0 = 6 - 5 = 1.$$

$$df_{den} = df_1 = N - K = N - 6.$$

• <u>Test 3</u>: Equality of *intercept* coefficients only.

H_0 :	$\alpha_0 = \beta_0$	in pooled PRE (12.0)
	$\gamma_0 = 0$	in pooled PRE (12.1)
	$\delta_0 = 0$	in pooled PRE (12.2)
	2	
H_1 :	$\alpha_0 \neq \beta_0$	in pooled PRE (12.0)
	0 10	$\lim pooled I \text{ RE} (12.0)$
	$\gamma_0 \neq 0$	in pooled PRE (12.0)
	$\gamma_0 \neq 0$ $\delta_0 \neq 0$	in pooled PRE (12.0) in pooled PRE (12.1) in pooled PRE (12.2)

• *Restricted* OLS-SRE corresponding to H_0 is any one of the following three OLS sample regression equations, for which $K_0 = 5$:

$$Y_{i} = \widetilde{\beta}_{0} + \widetilde{\alpha}_{1}Dl_{i}X_{1i} + \widetilde{\beta}_{1}D2_{i}X_{1i} + \widetilde{\alpha}_{2}Dl_{i}X_{2i} + \widetilde{\beta}_{2}D2_{i}X_{2i} + \widetilde{u}_{i} \quad \text{from (12.0)}$$

$$\mathbf{Y}_{i} = \widetilde{\alpha}_{0} + \widetilde{\alpha}_{1} \mathbf{X}_{1i} + \widetilde{\alpha}_{2} \mathbf{X}_{2i} + \widetilde{\gamma}_{1} \mathbf{D2}_{i} \mathbf{X}_{1i} + \widetilde{\gamma}_{2} \mathbf{D2}_{i} \mathbf{X}_{2i} + \widetilde{\mathbf{u}}_{i} \qquad \text{from (12.1)}$$

$$Y_{i} = \widetilde{\beta}_{0} + \widetilde{\beta}_{1}X_{1i} + \widetilde{\beta}_{2}X_{2i} + \widetilde{\delta}_{1}Dl_{i}X_{1i} + \widetilde{\delta}_{2}Dl_{i}X_{2i} + \widetilde{u}_{i} \qquad \text{from (12.2)}$$

• The *restricted* **RSS under** H₀ is

$$RSS_0 = RSS_R = \sum_{i=1}^N \tilde{u}_i^2$$
 with $df_0 = df_R = N - K_0 = N - 5$.

• The *unrestricted* **RSS under** H₁ is

$$RSS_1 = RSS_U = \sum_{i=1}^{N} \hat{u}_i^2$$
 with $df_1 = df_U = N - K = N - 6$.

• The *numerator* degrees of freedom equal

$$df_{num} = df_0 - df_1 = (N - K_0) - (N - K) = K - K_0 = 6 - 5 = 1.$$

$$df_{den} = df_1 = N - K = N - 6.$$

Computing Test 1, Test 2 and Test 3

For each test, compute the *sample value* of the general F-statistic, and then apply the conventional *decision rule*:

• *Sample value* of general F-statistic is computed as:

$$F_0 = \frac{\left(RSS_0 - RSS_1\right) / \left(df_0 - df_1\right)}{RSS_1 / df_1} \sim F(df_0 - df_1, df_1) \text{ under } H_0$$

or

$$F_0 = \frac{(RSS_0 - RSS_1)/(K - K_0)}{RSS_1/(N - K)} \sim F(K - K_0, N - K) \text{ under } H_0.$$

- Decision Rule:
 - (1) If $F_0 \ge F_{\alpha}(K-K_0, N-K)$, or if the *p*-value for $F_0 \le \alpha$, reject the coefficient restrictions specified by the *null* hypothesis H_0 at the 100 α % significance level;
 - (2) If $F_0 < F_{\alpha}(K-K_0, N-K)$, or if the *p*-value for $F_0 > \alpha$, retain (do not reject) the coefficient restrictions specified by the *null* hypothesis H_0 at the $100 \alpha\%$ significance level.