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ECON 351* -- NOTE 20 
 

Tests of Single Linear Coefficient Restrictions: t-tests and F-tests 
 

1.  Basic Rules 
 
1. Tests of a single linear coefficient restriction can be performed using either a 

two-tailed t-test or an F-test.   
 
2. Tests of two or more linear coefficient restrictions can only be performed using 

an F-test.   
 

2.  Testing Single Linear Coefficient Restrictions 
 
Consider the following LOG-LOG (double-log) regression equation:   
 

ii22i110i uXlnXlnYln +β+β+β=                (1) 
 
• The slope coefficients β1 and β2 are elasticity coefficients; they are therefore 

comparable in magnitude.   
 

• Common hypothesis tests: each involves only one linear coefficient restriction  
 

1. 21 β=β   or   02 =β . 1

1β 1 +

−β
 
• the elasticity of Y wrt X1 equals the elasticity of Y wrt X2.   
• the marginal effect on lnY of lnX1 equals the marginal effect on lnY of lnX2.   

 
2. 2β−=   or  02 =ββ . 

 
• the elasticity of Y wrt X1 is equal in magnitude but opposite in sign to the 

elasticity of Y wrt X2.   
• the marginal effect on lnY of lnX1 is equal in magnitude but opposite in sign 

to the marginal effect on lnY of lnX2.   
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3. 12 =β .  (the constant returns-to-scale hypothesis) 1

2211

1

1 1

+β
 

• the elasticities of Y wrt X1 and X2 sum to one; implies that if X1 and X2 both 
change by some proportion λ, then Y changes by the same proportion.   

• the marginal effects on lnY of lnX1 and lnX2 sum to one.   
 

All three of these hypotheses have a common form: each states that a linear 
combination of the regression coefficients β1 and β2 equals some constant.    

 
♦ A linear function, or linear combination, of the regression coefficients β1 and β2 

takes the general form 
 

cc β+β   where c1 and c2 are specified (known) constants.   
 

Some simple examples:   
 

1. 21 β=β   or   02 =β . −β
 
For this case, c1 = 1 and c2 = −1.     

 
2. 2β−=   or  02 =ββ +β . 

 
For this case, c1 = 1 and c2 = 1.     

 
3. 12 =β .  1

1

+β
 

For this case, c1 = 1 and c2 = 1.     
 

4. 12 2 =β .  +β
 

For this case, c1 = 1 and c2 = 2.     
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3.  General Framework for t-tests and F-tests of Linear Coefficient 
Restrictions 

 
♦ We want to generalize the t-statistics and F-statistics for individual coefficient 

estimates jβ̂ .  
 

Recall that the t-statistic for  is:   jβ̂
 

( ) ]KN[t]KN[t~
)β̂(ês
ββ̂

β̂t 1
j

jj
j −=−

−
=  

 
Recall that the F-statistic for  is: jβ̂

 

( ) ]KN,1[F]KN,1[F~
)β̂(râV
)ββ̂(

β̂F 1
1

2
jj

j −=−
−

= . 

 
♦ We now need the t-statistic and the F-statistic for linear combinations, or linear 

functions, of regression coefficient estimates such as:  
 

2211 β̂cβ̂c +   where c1 and c2 are specified (known) constants 
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♦ A linear function, or linear combination, of the regression coefficients β1 and β2 
takes the general form 
 

2211 cc β+β     where c1 and c2 are specified (known) constants.   
 
♦ A linear restriction on the regression coefficients β1 and β2 takes the general 

form   
 

   where c0 is also a specified (known) constant.    02211 ccc =β+β
 
♦ The null and alternative hypotheses take the general form   
 

H0:   02211 ccc =β+β
H1:   02211 ccc ≠β+β

 
♦ The t- and F-statistics for testing H0 against H1 are based on OLS estimates of the 

unrestricted model corresponding to the alternative hypothesis H1.   
 
       ii22i110i ûXlnˆXlnˆˆYln +β+β+β=
 
♦ The t-statistic for testing H0 against H1 takes the general form    
 

( ) ]KN[t]KN[t~
)ˆcˆc(ês

)cc()ˆcˆc(ˆcˆct 1
2211

22112211
2211 −=−

β+β
β+β−β+β

=β+β    

 
where )ˆcˆc(râV)ˆcˆc(ês 22112211 β+β=β+β .   

 
♦ The F-statistic for testing H0 against H1 takes the general form    
 

( ) [ ] ]KN,1[F]KN,1[F~
)ˆcˆc(râV

)cc()ˆcˆc(ˆcˆcF 1
2211

2

22112211
2211 −=−

β+β
β+β−β+β

=β+β .   
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♦ General formula for computing the estimated variance of a linear combination 
of coefficient estimates.   
 

The estimated variance of the linear combination of coefficient estimates  
 is given by the formula: 2211

ˆcˆc β+β
 

)ˆ,ˆ(vôCcc2)ˆ(râVc)ˆ(râVc)ˆcˆc(râV 21212
2
21

2
12211 ββ+β+β=β+β   

 
where  
 

≡β )ˆ(râV 1  the estimated variance of ; 1β̂

≡β )ˆ(râV 2  the estimated variance of ; $β2

≡ββ )ˆ,ˆ(vôC 21  the estimated covariance of  and .    1β̂
$β2

 
Note:  To compute , you need to obtain the values of 

,  and .  These are obtained from the estimated 
variance-covariance matrix for the OLS coefficient estimates j .    

)ˆcˆc(râV 2211 β+β

)2
ˆ,ˆ(vôC 21 ββ)ˆ(râV 1β ˆ(râV β )

β̂
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Examples     
 
Evaluate the general formula   
 

)ˆ,ˆ(vôCcc2)ˆ(râVc)ˆ(râVc)ˆcˆc(râV 21212
2
21

2
12211 ββ+β+β=β+β   

 
for some specific linear combinations of the two coefficient estimates  and . 1β̂

$β2

 
1. For the linear combination 21

ˆˆ β−β ,   

c1 = 1 and c2 = −1  ⇒  , ,  =2
1c 1 =2

2c 1 =21cc2 2(1)(−1) = −2. 
 
∴   )ˆ,ˆ(vôC2)ˆ(râV)ˆ(râV)ˆˆ(râV 212121 ββ−β+β=β−β

                   ↑ 
 

2. For the linear combination 21
ˆˆ β+β , 

c1 = 1 and c2 = 1  ⇒  , c 1,  =2
1c 1 2 =

2 =21cc

),(voC2)(raV)(raV)(raV 212121

=2c 1 =2

2 2(1)(1) = 2. 
 
∴   ˆˆˆˆˆˆˆˆˆˆ ββ+β+β=β+β

   ↑ 
 
3. For the linear combination 21

ˆ2 , ˆ β+β

c1 = 1 and c2 = 2  ⇒  , c 21 2
2 = 4,  =21cc

)ˆ,ˆ(vôC4)ˆ(râV4)ˆ(râV)ˆ2ˆ(râV 212121 ββ+β+β=β+β

2 2(1)(2) = 4. 
 
∴   

   ↑ 
 

4. For the linear combination 21
ˆ2β−β , ˆ

c1 = 1 and c2 = −2  ⇒  , (−2)2 = 4,  =2
1c 1 =2

2c =2

)ˆ,ˆ(vôC4)ˆ(râV4)ˆ(râV)ˆ2ˆ(râV 212121 ββ−β+β=β−β

1cc2 2(1)(−2) = − 4. 
 
∴   

   ↑ 
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4.  Test of a Single Linear Coefficient Restriction: General Example 
 
For testing a single linear combination of two (or more) regression coefficients such 
as , use either a t-test or an F-test.   2211 cc β+β
 
♦ The t-statistic for the linear combination of coefficient estimates 221  is:    1

ˆcˆc β+β
 

( ) ]KN[t]KN[t~
)ˆcˆc(ês

)cc()ˆcˆc(ˆcˆct 1
2211

22112211
2211 −=−

β+β
β+β−β+β

=β+β    

 
♦ The F-statistic for the linear combination of coefficient estimates 221  is:    1

ˆcˆc β+β
 

( ) [ ] ]KN,1[F]KN,1[F~
)ˆcˆc(râV

)cc()ˆcˆc(ˆcˆcF 1
2211

2

22112211
2211 −=−

β+β
β+β−β+β

=β+β .   

 
 

 A Two-Tailed t-test of a Single Linear Coefficient Restriction    
 

Null and alternative hypotheses   
 

H0:    ⇒  21 β=β 021 =β−β  
H1:    ⇒  21 β≠β 021 ≠β−β  
 

1. Compute OLS estimates of the unrestricted model corresponding to the 
alternative hypothesis H1.  The unrestricted OLS SRE is:   

 
ii22i110i ûXlnˆXlnˆˆYln +β+β+β=    (i = 1, …, N)        (1*) 

 
Retrieve the values of: , , ,  and .  1β̂ $β2 )ˆ(râV 1β )ˆ(râV 2β )ˆ,ˆ(vôC 21 ββ
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2. Compute sample value of the t-statistic under the null hypothesis H0.   
 

The t-statistic for the linear coefficient combination  is  21
ˆˆ β−β

 

( ) ]3N[t]KN[t]KN[t~
)ˆˆ(ês

)()ˆˆ(ˆˆt 1
21

2121
21 −=−=−

β−β
β−β−β−β

=β−β  

 
• Compute )ˆ,ˆ .  (vôC2)ˆ(râV)ˆ(râV)ˆˆ(râV 212121 ββ−β+β=β−β
 
• Compute )ˆˆ(râV)ˆˆ(ês 2121 β−β=β−β .   

 
• Set 02 , as specified by the null hypothesis H0.   1 =β−β

 
The sample value of the t-statistic under H0 is therefore  

 

 ( )
)ˆˆ(ês

ˆˆ

)ˆˆ(ês
)()ˆˆ(ˆˆt

21

21

21

2121
210 β−β

β−β
=

β−β
β−β−β−β

=β−β . 

 
3. The null distribution of ( )210

ˆˆt β−β  is the ]3N[t]KN[t]KN[t 1 −=−=−  
distribution:   
 

( ) ]3N[t]KN[t]KN[t~ˆˆt 1210 −=−=−β−β   under H0.   
 

4. Apply the usual decision rule for a two-tailed t-test.     
 
At significance level α (the 100α percent significance level),  
 
• Reject H0 if  ]3N[t]KN[tt 2/2/0 −=−> αα   or  two-tail p-value for α<0t ; 

• Retain H0 if  ]3N[t]KN[tt 2/2/0 −=−≤ αα   or  two-tail p-value for α≥0t .   
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 A Two-Tailed F-test of a Single Linear Coefficient Restriction    
 

Null and alternative hypotheses 
 

H0:    ⇒  21 β=β 021 =β−β  
H1:    ⇒  21 β≠β 021 ≠β−β  

 
1. Compute OLS estimates of the unrestricted model corresponding to the 

alternative hypothesis H1.  The unrestricted OLS SRE is:   
 

ii22i110i ûXlnˆXlnˆˆYln +β+β+β=    (i = 1, …, N)        (1*) 
 

Retrieve the values of: , , ,  and .  1β̂ $β2 )ˆ(râV 1β )ˆ(râV 2β )ˆ,ˆ(vôC 21 ββ
 
2. Compute sample value of the F-statistic under the null hypothesis H0.   
 

The F-statistic for the linear coefficient combination  is  21
ˆˆ β−β

 

( ) [ ] ]3N,1[F]KN,1[F]KN,1[F~
)ˆˆ(râV

)()ˆˆ(ˆˆF 1
21

2

2121
21 −=−=−

β−β
β−β−β−β

=β−β .   

 
• Compute )ˆ,ˆ( .  vôC2)ˆ(râV)ˆ(râV)ˆˆ(râV 212121 ββ−β+β=β−β
 
• Set 02 , as specified by the null hypothesis H0.   1 =β−β

 
The sample value of the F-statistic under H0 is therefore  

 

( ) [ ] ( )
)ˆˆ(râV

ˆˆ

)ˆˆ(râV
)()ˆˆ(ˆˆF

21

2

21

21

2

2121
210 β−β

β−β
=

β−β
β−β−β−β

=β−β .   
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3. The null distribution of ( )210
ˆˆF β−β  is the ]3N,1[F]KN,1[F]KN,1[F 1 −=−=−  

distribution:   
 

( ) ]3N,1[F]KN,1[F]KN,1[F~ˆˆF 1210 −=−=−β−β   under H0. 
 
Note:    or  ( ) ([ ]2210210

ˆˆtˆˆF β−β=β−β ) ( ) ( )210210
ˆˆFˆˆt β−β=β−β .    

 
4. Apply the usual decision rule for an F-test.     

 
At significance level α (the 100α percent significance level),  
 
• Reject H0 if  ]3N,1[F]KN,1[FF0 −=−> αα   or  p-value for α<0F ; 

• Retain H0 if  ]3N,1[F]KN,1[FF0 −=−≤ αα   or  p-value for α≥0F .   
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 An Equivalent General F-test of a Single Linear Coefficient Restriction   
 

Null and alternative hypotheses 
 
H0:    ⇒  21 β=β 021 =β−β  
H1:    ⇒  21 β≠β 021 ≠β−β  

 
1. Compute OLS estimates of the unrestricted model corresponding to the 

alternative hypothesis H1.   
 

The unrestricted model is given by the PRE 
 

ii22i110i uXlnXlnYln +β+β+β=                 (1) 
 

The unrestricted OLS SRE obtained by OLS estimation of equation (1) is  
 

ii22i110i ûXlnˆXlnˆˆYln +β+β+β=    (i = 1, …, N)        (1*) 
 

Retrieve the values of:  and RSS RSS uU i
i

N

1
2

1
= =

=
∑ $ 3NKNKNdf 11 −=−=−= . 

 
2. Formulate the restricted model corresponding to the null hypothesis H0.     
 

Substitute the restriction 21 β=β  into the unrestricted regression equation (1):   
 

.u)XlnX(ln
uXlnXln
uXlnXlnYln

ii2i120

ii22i120

ii22i110i

++β+β=
+β+β+β=
+β+β+β=

 

 
Result:  The restricted model is given by the PRE    

 
ii2i120i u)XlnX(lnYln ++β+β=                   (2) 
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3. Estimate the restricted model by OLS.     
 

The restricted OLS SRE obtained by OLS estimation of equation (2) is  
 

ii2i120i u~)XlnX(ln~~Yln ++β+β=         (i = 1, …, N)    (2*) 
 

Note that the restricted OLS estimate of β1 is simply 21
~~ β=β .   

Retrieve the values of  and RSS RSS uR i
i

N

0
2

1
= =

=
∑ ~ 2NKNdf 00 −=−= .    

 
4. Compute the sample value of the F-statistic under the null hypothesis H0.   
 

The required F-statistic is:   
 

( ) ( ) [ 110
11

1010 df,dfdfF~
dfRSS

dfdfRSSRSSF −
−−

= ] under H0.    

 
For this particular test:   

 
df0 = N − K0  = N − 2;   
df1 = N − K = N − 3.   
df0 − df1 = N − K0 − (N − K) = K − K0 = 3 − 2 = 1.   

 
The sample value of the F-statistic is therefore 

 
( ) ( ) ( ) ( )F
RSS RSS df df

RSS df
RSS RSS
RSS N

RSS RSS
RSS N0

0 1 0 1

1 1

0 1

1

0 1

1

1
3 3

=
− −

=
−

−
=

−
−( ) ( )

.    

 

5. The null distribution of F0 is the F[1, N−3] distribution.   
 
6. Apply the usual decision rule for an F-test.    At significance level α,  
 

• Reject H0 if  ]3N,1[F]KN,1[FF0 −=−> αα   or   p-value for α<0F ; 

• Retain H0 if  ]3N,1[F]KN,1[FF0 −=−≤ αα   or   p-value for α≥0F .   
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 Equivalence of the t-test and F-tests of a Single Linear Coefficient Restriction    
 

The t-test and F-test of a single linear coefficient restriction are completely 
equivalent.    
 
This equivalence follows from two facts:   
 
1. The sample values of the two test statistics under the null hypothesis H0 are 

related as follows:   
 

0
2

0 F)t( =   or   00 Ft = . 
 

The square of the sample value of the t-statistic equals the sample value of the F-
statistic; or the sample value of the t-statistic equals the square root of the sample 
value of the F-statistic.   
 

2. At significance level α, the critical values of the null distributions t[N−K] 
and  F[1, N−K] are related as follows:   

 
( ) ]KN,1[F]KN[t 2

2 −=− αα   or  ]KN,1[F]KN[t 2 −=− αα .  
 

The square of the two-tailed α/2 critical value of the t[N−K] distribution equals 
the α-level critical value of the F[1, N−K] distribution; or the two-tailed α/2 
critical value of the t[N−K] distribution equals the square root of the α-level 
critical value of the F[1, N−K] distribution.   
 

3. The p-values for the calculated sample values of the test statistics t0 and F0 
are related as follows:   

 
two-tailed p-value for t0  =  p-value for F0     
 

where 
 
two-tailed p-value for t0  = )ttPr( 0>    

p-value for F0  =  .   )FFPr( > 0
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