ECON 351* -- NOTE 17

F-Tests of Linear Coefficient Restrictions: A General Approach

1. Introduction

• The <u>population regression equation (PRE)</u> for the general multiple linear regression model takes the form:

$$Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i} + \dots + \beta_{k}X_{ki} + u_{i}$$
(1)

where u_i is an iid (independently and identically distributed) random error term.

PRE (1) constitutes the *unrestricted* model.

• The <u>OLS sample regression equation (OLS-SRE)</u> for equation (1) can be written as

$$Y_{i} = \hat{\beta}_{0} + \hat{\beta}_{1}X_{1i} + \hat{\beta}_{2}X_{2i} + \dots + \hat{\beta}_{k}X_{ki} + \hat{u}_{i} = \hat{Y}_{i} + \hat{u}_{i}$$
 (i = 1, ..., N) (2)

where

(1) the OLS estimated (or predicted) values of Y_i , or the OLS sample regression function (OLS-SRF), are

$$\hat{Y}_{i} = \hat{\beta}_{0} + \hat{\beta}_{1} X_{1i} + \hat{\beta}_{2} X_{2i} + \dots + \hat{\beta}_{k} X_{ki}$$
 (i = 1, ..., N)

(2) the OLS residuals are

$$\hat{\mathbf{u}}_{i} = \mathbf{Y}_{i} - \hat{\mathbf{Y}}_{i} = \mathbf{Y}_{i} - \hat{\boldsymbol{\beta}}_{0} - \hat{\boldsymbol{\beta}}_{1} \mathbf{X}_{1i} - \hat{\boldsymbol{\beta}}_{2} \mathbf{X}_{2i} - \dots - \hat{\boldsymbol{\beta}}_{k} \mathbf{X}_{ki} \qquad (i = 1, ..., N)$$

(3) the $\hat{\beta}_j$ are the OLS estimators of the corresponding population regression coefficients β_j (j = 0, 1, ..., k).

$$Y_{i} = \hat{\beta}_{0} + \hat{\beta}_{1}X_{1i} + \hat{\beta}_{2}X_{2i} + \dots + \hat{\beta}_{k}X_{ki} + \hat{u}_{i} = \hat{Y}_{i} + \hat{u}_{i}$$
 (i = 1, ..., N)
(2)

• The **OLS decomposition equation** for the OLS-SRE (2) is

where the figures in parentheses are the respective *degrees of freedom* for the **Total Sum of Squares** (**TSS**), the **Explained** (**Regression**) **Sum of Squares** (**ESS**₁) and the **Residual** (**Error**) **Sum of Squares** (**RSS**₁).

2. The ANOVA F-Test

What is it? The ANOVA F-test is

- a *joint* test of *exclusion* restrictions on all K-1 slope coefficients
- a **test** of the *joint* **significance** of **all the slope coefficients** in a linear regression model.

<u>The Null and Alternative Hypotheses</u>: A test of the joint significance of all the K-1=k slope coefficient estimates $\hat{\beta}_j$ (j=1,2,...,k) in OLS-SRE (2) consists of a test of the **null hypothesis**

$$\begin{array}{lll} H_0\colon & \beta_j = 0 & \forall \ j=1,2,...,k \\ & \beta_1 = 0 \ \textit{and} \ \beta_2 = 0 \ \textit{and} \ ... \ \beta_k = 0 \end{array}$$

against the alternative hypothesis

$$\begin{array}{lll} H_1 \colon & \beta_j \neq 0 & j=1,\,2,\,...,\,k. \\ & \beta_1 \neq 0 \ \textit{and/or} \ \beta_2 \neq 0 \ \textit{and/or} \ \ldots \ \beta_k \neq 0 \end{array}$$

<u>The Unrestricted Model</u> is the model corresponding to the alternative hypothesis H_1 . It is simply the <u>unrestricted</u> **PRE** given by equation (1):

$$Y_{i} = \beta_{0} + \beta_{1} X_{1i} + \beta_{2} X_{2i} + \dots + \beta_{k} X_{ki} + u_{i}$$
(1)

Number of free (unrestricted) regression coefficients in (1) is $K = K_1$.

• From the *analysis-of-variance table* for the OLS-SRE (2), it follows that the ANOVA F-statistic

ANOVA
$$-F_0 = \frac{ESS_1/(K-1)}{RSS_1/(N-K)} = \frac{ESS_1(N-K)}{RSS_1(K-1)}$$
 (3.1)

has the F[K-1, N-K] distribution under H_0 .

• Since $ESS_1 = TSS - RSS_1$, the ANOVA F-statistic can also be written as

ANOVA -
$$F_0 = \frac{(TSS - RSS_1)/(K - 1)}{RSS_1/(N - K)} = \frac{(TSS - RSS_1)(N - K)}{RSS_1/(K - 1)}$$
 (3.2)

<u>The Restricted Model</u> is the model corresponding to the null hypothesis H_0 . It is obtained by imposing on the PRE of the unrestricted model (1) the coefficient restrictions specified by H_0 . Accordingly, setting $\beta_1 = \beta_2 = ... = \beta_k = 0$ in equation (1) yields the <u>restricted</u> PRE:

$$Y_i = \beta_0 + u_i \tag{4}$$

Number of free (unrestricted) regression coefficients in (4) is $\mathbf{K_0} = \mathbf{1}$.

OLS estimation of (4) yields the *restricted* OLS-SRE

$$Y_{i} = \widetilde{\beta}_{0} + \widetilde{u}_{i} \tag{5}$$

where $\widetilde{\beta}_0$ denotes the <u>restricted</u> OLS estimator of the intercept coefficient β_0 and \widetilde{u}_i denotes the i-th <u>restricted</u> OLS residual.

Proposition: It can be shown that the restricted OLS-SRE (5) has an Explained Sum of Squares $ESS_0 = 0$. Hence, the **OLS decomposition equation for the** restricted **OLS-SRE** takes the form:

$$\sum_{i=1}^{N} y_i^2 = \sum_{i=1}^{N} \widetilde{u}_i^2$$

$$\downarrow \qquad \qquad \downarrow$$

$$TSS = RSS_0$$

$$(N-1) \quad (N-1)$$

Proof:

1. From the restricted SRE (5), the *restricted* OLS residuals are

$$\widetilde{\mathbf{u}}_{i} = \mathbf{Y}_{i} - \widetilde{\boldsymbol{\beta}}_{0}$$

2. Summing these restricted residuals over the sample yields:

$$\sum_{i} \widetilde{u}_{i} = \sum_{i} Y_{i} - N\widetilde{\beta}_{0}$$

3. But the sum of these OLS residuals must equal zero by computational property (C3); setting $\sum_{i} \widetilde{u}_{i} = 0$ implies that

$$\begin{split} \sum_{i} Y_{i} - N \widetilde{\beta}_{0} &= 0 \\ \sum_{i} \widetilde{u}_{i} &= \sum_{i} Y_{i} - N \widetilde{\beta}_{0} &= 0 \\ & \qquad \Longrightarrow \end{split} \qquad \begin{split} & \sum_{i} Y_{i} - N \widetilde{\beta}_{0} &= 0 \\ & \qquad \widetilde{\beta}_{0} &= \sum_{i} Y_{i} \\ & \qquad \widetilde{\beta}_{0} &= \sum_{i} Y_{i} / N \\ &= \overline{Y} \end{split}$$

where \overline{Y} is the sample mean value of the Y_i values over i = 1, ..., N.

4. The <u>restricted</u> OLS residuals $\widetilde{u}_i = Y_i - \widetilde{\beta}_0$ are therefore

$$\widetilde{u}_{_{i}}=Y_{_{i}}-\widetilde{\beta}_{_{0}}=Y_{_{i}}-\overline{Y}=y_{_{i}} \qquad \quad \text{where} \quad \quad y_{_{i}}=Y_{_{i}}-\overline{Y} \ \, \text{by definition}.$$

5. The *squared* <u>restricted</u> residuals are thus

$$\widetilde{\mathbf{u}}_{i}^{2} = \mathbf{y}_{i}^{2}$$

so that the restricted residual sum of squares for the restricted SRE is

$$\sum_{i}\,\widetilde{\boldsymbol{u}}_{i}^{\,2}\,=\sum_{i}\,\boldsymbol{y}_{i}^{\,2}$$
 ,

i.e.,

 $RSS_0 = TSS.$

□ Implication: The result RSS₀ = TSS implies that the ANOVA F-statistic (3.2)

ANOVA
$$-F_0 = \frac{(TSS - RSS_1)/(K - 1)}{RSS_1/(N - K)} = \frac{(TSS - RSS_1)(N - K)}{RSS_1/(K - 1)}$$
 (3.2)

can be written equivalently as:

$$F = \frac{(RSS_0 - RSS_1)/(K-1)}{RSS_1/(N-K)} = \frac{(RSS_0 - RSS_1)(N-K)}{RSS_1}$$
 (3.3)

□ <u>Summary</u>: We have derived *three* different forms of the ANOVA F-statistic for testing the joint significance of *all* the *slope* coefficient estimates -- i.e., for testing the null hypothesis

$$\begin{array}{lll} H_0 \colon & \beta_j = 0 & \forall \ j=1,2,...,k \\ & \beta_1 = 0 \ \textit{and} \ \beta_2 = 0 \ \textit{and} \ \ldots \ \beta_k = 0 \end{array}$$

against the alternative hypothesis

$$\begin{array}{lll} H_1 \hbox{:} & \beta_j \neq 0 & j=1,\,2,\,...,\,k. \\ & \beta_1 \neq 0 \ \textit{and/or} \ \beta_2 \neq 0 \ \textit{and/or} \ \ldots \ \beta_k \neq 0 \end{array}$$

• The three different forms of the ANOVA F-statistic are:

$$ANOVA - F_0 = \frac{ESS_1/(K-1)}{RSS_1/(N-K)} = \frac{ESS_1(N-K)}{RSS_1(K-1)}$$
(3.1)

$$ANOVA - F_0 = \frac{(TSS - RSS_1)/(K - 1)}{RSS_1/(N - K)} = \frac{(TSS - RSS_1)(N - K)}{RSS_1/(K - 1)}$$
(3.2)

$$F = \frac{(RSS_0 - RSS_1)/(K - 1)}{RSS_1/(N - K)} = \frac{(RSS_0 - RSS_1)(N - K)}{RSS_1}$$
(3.3)

• What is special about form (3.3) of the F-statistic?

All three forms of the F-statistic can be used to perform the ANOVA F-test of the joint significance of all K-1 = k slope coefficients.

But *only* form (3.3) of the F-statistic can be used to perform a test of *any* set of *linear* coefficient restrictions in a multiple linear regression model. So the F-statistic (3.3) is called a *general* F-statistic.

• Converting form (3.3) of the ANOVA F-statistic to the general F-statistic

$$F = \frac{(RSS_0 - RSS_1)/(K - 1)}{RSS_1/(N - K)} = \frac{(RSS_0 - RSS_1)(N - K)}{RSS_1}$$
(3.3)

Numerator degrees of freedom of ANOVA F-statistic in (3.3):

RSS₀ has degrees-of-freedom =
$$df_0 = N - 1$$

RSS₁ has degrees-of-freedom = $df_1 = N - K$

$$df_0 - df_1 = N - 1 - (N - K) = N - 1 - N + K = K - 1$$

Denominator degrees of freedom of ANOVA F-statistic in (3.3):

$$\mathbf{RSS_1}$$
 has $\mathbf{df_1} = \mathbf{N} - \mathbf{K}$

RESULT: The ANOVA F-statistic in (3.3) is just a special case of the *general* **F-statistic**

$$F = \frac{(RSS_0 - RSS_1)/(df_0 - df_1)}{RSS_1/df_1} = \frac{(RSS_0 - RSS_1)}{RSS_1} \frac{df_1}{(df_0 - df_1)}$$

where $df_0 - df_1 =$ the number of independent coefficient restrictions specified by H_0 .

3. General F-Statistic for Testing Linear Coefficient Restrictions

3.1 Form 1 of the General F-Statistic

$$F = \frac{(RSS_0 - RSS_1)/(K - K_0)}{RSS_1/(N - K)} = \frac{(RSS_0 - RSS_1)(N - K)}{RSS_1} (K - K_0)$$
 (F1)

where:

 RSS_0 = the *residual sum of squares* for the <u>restricted</u> OLS-SRE;

 RSS_1 = the residual sum of squares for the <u>unrestricted</u> OLS-SRE;

 K_0 = the number of free regression coefficients in the <u>restricted</u> model;

K = the *number of free regression coefficients* in the <u>unrestricted</u> model;

 $K - K_0$ = the **number of** *independent linear coefficient restrictions* specified by the null hypothesis H_0 ;

 $N - K = \text{the } degrees \text{ of } freedom \text{ for } RSS_1, \text{ the } \underline{unrestricted} \text{ } RSS.$

Form 1 of General F-Statistic: Alternative Formula

$$F = \frac{(RSS_0 - RSS_1)/(K - K_0)}{RSS_1/(N - K)} = \frac{(RSS_0 - RSS_1)}{RSS_1} \frac{(N - K)}{(K - K_0)}$$
(F1)

Alternatively, the general F-statistic (F1) can be written as

$$F = \frac{(RSS_0 - RSS_1)/(df_0 - df_1)}{RSS_1/df_1} = \frac{(RSS_0 - RSS_1)}{RSS_1} \frac{df_1}{(df_0 - df_1)}$$
 (F1)

where:

 $df_0 = N - K_0 =$ the *degrees of freedom* for RSS₀, the <u>restricted</u> RSS; $df_1 = N - K =$ the *degrees of freedom* for RSS₁, the <u>unrestricted</u> RSS; $df_0 - df_1 = N - K_0 - (N - K) = N - K_0 - N + K = K - K_0.$

Note: $df_0 - df_1 = K - K_0 =$ the number of independent linear coefficient restrictions specified by the null hypothesis H_0 .

Interpretation of Form 1 of General F-Statistic

☐ The *restricted* **OLS-SRE** estimated under the null hypothesis

H₀: the β_j (j = 1, ..., k) satisfy $df_0 - df_1 = K - K_0$ independent linear coefficient restrictions

takes the form

$$Y_{i} = \widetilde{\beta}_{0} + \widetilde{\beta}_{1}X_{1i} + \widetilde{\beta}_{2}X_{2i} + \dots + \widetilde{\beta}_{k}X_{ki} + \widetilde{u}_{i} = \widetilde{Y}_{i} + \widetilde{u}_{i} \quad (i = 1, ..., N) \quad (7.1)$$

where:

- the $\widetilde{\beta}_j$ (j = 1, ..., k) are the *restricted* OLS coefficient estimates
- the \widetilde{Y}_i (i = 1, ..., N) are the *restricted* predicted values of the dependent variable Y, the *restricted* OLS-SRF

$$\widetilde{Y}_{i} = \widetilde{\beta}_{0} + \widetilde{\beta}_{1} X_{1i} + \widetilde{\beta}_{2} X_{2i} + \dots + \widetilde{\beta}_{k} X_{ki}$$
 (i = 1, ..., N)

• the \widetilde{u}_i (i = 1, ..., N) are the *restricted* OLS residuals

$$\widetilde{u}_i = Y_i - \widetilde{Y}_i = Y_i - \widetilde{\beta}_0 - \widetilde{\beta}_1 X_{1i} - \widetilde{\beta}_2 X_{2i} - \dots - \widetilde{\beta}_k X_{ki} \quad (i = 1, ..., N)$$

• the OLS decomposition equation for the restricted OLS-SRE is

$$TSS = ESS_0 + RSS_0$$
 (7.2)
(N-1) (K₀-1) (N-K₀)

the restricted R-squared for the restricted OLS-SRE is

$$R_{R}^{2} = \frac{ESS_{0}}{TSS} = 1 - \frac{RSS_{0}}{TSS}.$$
 (7.3)

☐ The <u>unrestricted</u> **OLS-SRE** estimated under the alternative hypothesis

H₁: the β_j (j = 1, ..., k) <u>do not</u> satisfy the df₀ – df₁ = K – K₀ independent linear coefficient restrictions specified by H₀

takes the form

$$Y_{i} = \hat{\beta}_{0} + \hat{\beta}_{1} X_{1i} + \hat{\beta}_{2} X_{2i} + \dots + \hat{\beta}_{k} X_{ki} + \hat{u}_{i} = \hat{Y}_{i} + \hat{u}_{i} \quad (i = 1, ..., N) \quad (8.1)$$

where:

- the $\hat{\beta}_i$ (j=1,...,k) are the *unrestricted* OLS coefficient estimates
- the \hat{Y}_i (i = 1, ..., N) are the *unrestricted* predicted values of the dependent variable Y, the *unrestricted* OLS-SRF

$$\hat{Y}_{i} = \hat{\beta}_{0} + \hat{\beta}_{1} X_{1i} + \hat{\beta}_{2} X_{2i} + \dots + \hat{\beta}_{k} X_{ki}$$
 (i = 1, ..., N)

• the \hat{u}_i (i = 1, ..., N) are the *unrestricted* OLS residuals

$$\hat{\mathbf{u}}_{i} = \mathbf{Y}_{i} - \hat{\mathbf{Y}}_{i} = \mathbf{Y}_{i} - \hat{\boldsymbol{\beta}}_{0} - \hat{\boldsymbol{\beta}}_{1} \mathbf{X}_{1i} - \hat{\boldsymbol{\beta}}_{2} \mathbf{X}_{2i} - \dots - \hat{\boldsymbol{\beta}}_{k} \mathbf{X}_{ki} \quad (i = 1, ..., N)$$

the OLS decomposition equation for the unrestricted OLS-SRE is

$$TSS = ESS_1 + RSS_1$$
(8.2)
(N-1) (K-1) (N-K)

• the *unrestricted* **R-squared** for the *unrestricted* **OLS-SRE** is

$$R_{U}^{2} = \frac{ESS_{1}}{TSS} = 1 - \frac{RSS_{1}}{TSS}.$$
 (8.3)

□ Compare the OLS decomposition equations for the <u>restricted</u> and <u>unrestricted</u> OLS-SREs.

$$TSS = ESS_0 + RSS_0. [for restricted SRE] (7.2)$$

$$TSS = ESS_1 + RSS_1. [for unrestricted SRE] (8.2)$$

• Since the Total Sum of Squares (TSS) is the same for both decompositions, it follows that

$$ESS_0 + RSS_0 = ESS_1 + RSS_1. (9)$$

• Subtracting first RSS₁ and then ESS₀ from both sides of equation (9) allows equation (9) to be rewritten as:

$$RSS_0 - RSS_1 = ESS_1 - ESS_0$$
 (10)

where

 $RSS_0 - RSS_1$ = the **increase in RSS** attributable to *imposing* the **restrictions** specified by the null hypothesis H_0 ;

 $ESS_1 - ESS_0$ = the **increase in ESS** attributable to **relaxing the** restrictions specified by the null hypothesis H_0 .

<u>NOTE</u>: Imposing one or more linear coefficient restrictions on the regression coefficients β_j (j = 0, 1, ..., k) always *increases* (or leaves unchanged) the *residual* sum of squares, and hence always *reduces* (or leaves unchanged) the *explained* sum of squares. Consequently,

$$RSS_0 \ge RSS_1 \Leftrightarrow ESS_1 \ge ESS_0$$

so that

$$RSS_0 - RSS_1 \ge 0 \quad \Leftrightarrow \quad ESS_1 - ESS_0 \ge 0.$$

In other words, both sides of equation (10) are always non-negative.

3.2 Form 2 of the General F-Statistic

$$F = \frac{(R_{\rm U}^2 - R_{\rm R}^2)/(K - K_0)}{(1 - R_{\rm U}^2)/(N - K)} = \frac{(R_{\rm U}^2 - R_{\rm R}^2)}{(1 - R_{\rm U}^2)} \frac{(N - K)}{(K - K_0)}$$
(F2)

where:

 R_R^2 = the **R-squared value** for the <u>restricted</u> **OLS-SRE**;

 $R_{\rm U}^2$ = the **R-squared value** for the <u>unrestricted</u> **OLS-SRE**;

 K_0 = the number of free regression coefficients in the <u>restricted</u> model;

K = the number of free regression coefficients in the unrestricted model;

 $K - K_0$ = the number of *independent linear coefficient restrictions* specified by the null hypothesis H_0 ;

 $N - K = \text{the } degrees \text{ of } freedom \text{ for } RSS_1, \text{ the } \underline{unrestricted} \text{ } RSS.$

Form 2 of the General F-Statistic: Alternative Formula

$$F = \frac{(R_{\rm U}^2 - R_{\rm R}^2)/(K - K_0)}{(1 - R_{\rm U}^2)/(N - K)} = \frac{(R_{\rm U}^2 - R_{\rm R}^2)}{(1 - R_{\rm U}^2)} \frac{(N - K)}{(K - K_0)}$$
(F2)

Alternatively, the general F-statistic (F2) can be written as

$$F = \frac{(R_{\rm U}^2 - R_{\rm R}^2)/(df_0 - df_1)}{(1 - R_{\rm U}^2)/df_1} = \frac{(R_{\rm U}^2 - R_{\rm R}^2)}{(1 - R_{\rm U}^2)} \frac{df_1}{(df_0 - df_1)}$$
(F2)

where:

 $df_0 = N - K_0 =$ the *degrees of freedom* for RSS₀, the <u>restricted</u> RSS; $df_1 = N - K =$ the *degrees of freedom* for RSS₁, the <u>unrestricted</u> RSS; $df_0 - df_1 = N - K_0 - (N - K) = N - K_0 - N + K = K - K_0$.

Note: $df_0 - df_1 = K - K_0 =$ the number of independent linear coefficient restrictions specified by the null hypothesis H_0 .

Derivation of Form 2 of the General F-Statistic

The second form of the general F-statistic can be obtained by dividing the numerator and denominator of the F-statistic (F1) by TSS; this yields

$$F = \frac{\left[RSS_0 - RSS_1\right]}{RSS_1} \frac{(N - K)}{(K - K_0)} = \frac{\left[\frac{RSS_0}{TSS} - \frac{RSS_1}{TSS}\right]}{\frac{RSS_1}{TSS}} \frac{(N - K)}{(K - K_0)}$$
(11)

• Equation (7.3) shows that $ESS_0/TSS = R_R^2$ and $RSS_0/TSS = 1 - R_R^2$:

$$R_{R}^{2} = \frac{ESS_{0}}{TSS} = 1 - \frac{RSS_{0}}{TSS} \implies \frac{RSS_{0}}{TSS} = 1 - R_{R}^{2}. \tag{7.3}$$

• Equation (8.3) shows that $ESS_1/TSS = R_U^2$ and $RSS_1/TSS = 1 - R_U^2$:

$$R_{U}^{2} = \frac{ESS_{1}}{TSS} = 1 - \frac{RSS_{1}}{TSS} \implies \frac{RSS_{1}}{TSS} = 1 - R_{U}^{2}.$$
 (8.3)

• Equations (7.3) and (8.3) thus imply that:

$$\frac{RSS_0}{TSS} - \frac{RSS_1}{TSS} = 1 - R_R^2 - (1 - R_U^2) = 1 - R_R^2 - 1 + R_U^2 = R_U^2 - R_R^2.$$
 (12)

• Substituting from (8.3) and (12) into equation (11) yields the second form of the general F-statistic:

$$F = \frac{(R_{\rm U}^2 - R_{\rm R}^2)/(K - K_0)}{(1 - R_{\rm U}^2)/(N - K)} = \frac{(R_{\rm U}^2 - R_{\rm R}^2)}{(1 - R_{\rm U}^2)} \frac{(N - K)}{(K - K_0)}$$
(F2)

Interpretation of the General F-statistics (F1) and (F2)

$$F = \frac{(RSS_0 - RSS_1)/(K - K_0)}{RSS_1/(N - K)} = \frac{(RSS_0 - RSS_1)}{RSS_1} \frac{(N - K)}{(K - K_0)}$$
 (F1)

$$F = \frac{(R_{\rm U}^2 - R_{\rm R}^2)/(K - K_0)}{(1 - R_{\rm U}^2)/(N - K)} = \frac{(R_{\rm U}^2 - R_{\rm R}^2)}{(1 - R_{\rm U}^2)} \frac{(N - K)}{(K - K_0)}$$
(F2)

- The **F-statistic** (**F1**) in effect determines whether *imposing* the coefficient restrictions specified by the null hypothesis H₀ significantly *increases* the residual sum of squares RSS.
- The **F-statistic** (**F2**) in effect determines whether *imposing* the coefficient restrictions specified by the null hypothesis H_0 significantly reduces the coefficient of determination, \mathbb{R}^2 .
- Note that since $ESS_1 \ge ESS_0$ (and $RSS_0 \ge RSS_1$), the *unrestricted* \mathbb{R}^2 is greater than or equal to the restricted \mathbb{R}^2 ; i.e.,

$$R_U^2 \ge R_R^2$$
.

• The sample values of the F-statistics (F1) and (F2) are always equal and non-negative.

4. Outline of the General F-Test Procedure

The procedure for testing a set of $df_0 - df_1 = K - K_0$ independent linear coefficient restrictions consists of **four basic steps**.

<u>Step 1</u>: Estimate the *unrestricted* model by OLS to obtain the *unrestricted* OLS SRE and associated statistics.

<u>Step 2</u>: Estimate the *restricted* model by OLS, after imposing on the unrestricted PRE the linear coefficient restrictions specified by the null hypothesis. This yields the *restricted* OLS SRE and associated statistics.

Step 3: Compute the sample value of either one of the general F-statistics.

$$F = \frac{(RSS_0 - RSS_1)/(df_0 - df_1)}{RSS_1/df_1} = \frac{(RSS_0 - RSS_1)}{RSS_1} \frac{df_1}{(df_0 - df_1)}$$
(F1)

$$F = \frac{(R_{\rm U}^2 - R_{\rm R}^2)/(df_0 - df_1)}{(1 - R_{\rm U}^2)/df_1} = \frac{(R_{\rm U}^2 - R_{\rm R}^2)}{(1 - R_{\rm U}^2)} \frac{df_1}{(df_0 - df_1)}$$
(F2)

where:

$$df_0 = N - K_0 =$$
the degrees of freedom for RSS₀, the restricted RSS;
 $df_1 = N - K =$ the degrees of freedom for RSS₁, the unrestricted RSS;
 $df_0 - df_1 = N - K_0 - (N - K) = N - K_0 - N + K = K - K_0$
= the number of linear coefficient restrictions specified by H₀.

Step 4: Apply the conventional decision rule.

- (1) If $F_0 > F_{\alpha}(K-K_0, N-K)$, or if the p-value for $F_0 < \alpha$, reject the coefficient restrictions specified by the null hypothesis H_0 at the 100 α % significance level.
- (2) If $F_0 \leq F_{\alpha}(K-K_0, N-K)$, or if the **p-value for** $F_0 \geq \alpha$, retain (do not reject) the coefficient restrictions specified by the null hypothesis H_0 at the $100\alpha\%$ significance level.

5. Properties of the Restricted and Unrestricted Coefficient Estimators

The statistical properties of the *restricted* **OLS** coefficient estimators $\hat{\beta}_j$ (j = 0, 1, ..., k) and the *unrestricted* **OLS** coefficient estimators $\hat{\beta}_j$ (j = 0, 1, ..., k) depend on whether the linear coefficient restrictions are *true* or *false*.

- 5.1. If the linear coefficient restrictions specified by the null hypothesis H_0 are TRUE, then
 - (1) the <u>restricted</u> coefficient estimators $\tilde{\beta}_j$ (j = 0, 1, ..., k) are unbiased and have *smaller* variances than (i.e., are efficient relative to) the unrestricted coefficient estimators $\hat{\beta}_j$ -- i.e.,

$$E(\widetilde{\beta}_{j}) = \beta_{j}$$
 and $Var(\widetilde{\beta}_{j}) \le Var(\hat{\beta}_{j})$ for all $j = 0, 1, ..., k$;

whereas

(2) the <u>unrestricted</u> coefficient estimators $\hat{\beta}_j$ (j = 0, 1, ..., k) are also unbiased, but have *larger* variances than (i.e., are inefficient relative to) the restricted coefficient estimators $\tilde{\beta}_i$ -- i.e.,

$$E(\hat{\beta}_{j}) = \beta_{j}$$
 and $Var(\tilde{\beta}_{j}) \le Var(\hat{\beta}_{j})$ for all $j = 0, 1, ..., k$.

<u>Implication</u>: If the linear coefficient restrictions specified by the null hypothesis are retained by an F-test, then the <u>restricted</u> coefficient estimators $\tilde{\beta}_j$ (j = 0, 1, ..., k) are preferred because they have *smaller* variances than the unrestricted coefficient estimators $\hat{\beta}_j$ (j = 0, 1, ..., k). Both estimators are unbiased if the coefficient restrictions are true.

5.2. If the linear coefficient restrictions specified by the null hypothesis H_0 are FALSE, then

(1) the <u>restricted</u> coefficient estimators $\tilde{\beta}_j$ (j = 0, 1, ..., k) are *biased*, although they still have *smaller* variances than the unrestricted coefficient estimators $\hat{\beta}_j$ -- i.e.,

$$E(\widetilde{\beta}_{j}) \neq \beta_{j}$$
 and $Var(\widetilde{\beta}_{j}) \leq Var(\hat{\beta}_{j})$ for all $j = 0, 1, ..., k$;

whereas

(2) the <u>unrestricted</u> coefficient estimators $\hat{\beta}_j$ (j = 0, 1, ..., k) are <u>unbiased</u>, though they have <u>larger</u> variances than the restricted coefficient estimators $\tilde{\beta}_j$.

$$E\!\left(\hat{\beta}_{j}\right)\!=\beta_{j}\quad\text{and}\quad Var\!\left(\widetilde{\beta}_{j}\right)\leq Var\!\left(\hat{\beta}_{j}\right)\quad\text{for all }j=0,\,1,\,...,\,k.$$

<u>Implication</u>: If the linear coefficient restrictions specified by the null hypothesis are rejected by an F-test, then the <u>unrestricted</u> coefficient estimators $\hat{\beta}_j$ (j = 0, 1, ..., k) are preferred because they are <u>unbiased</u>, even though they have larger variances than the restricted coefficient estimators $\tilde{\beta}_j$ (j = 0, 1, ..., k).

ECON 351* -- Addendum to NOTE 17

General F-Tests of Linear Coefficient Restrictions: A Numerical <u>Example</u>

1. An Example

Multiple Linear Regression Model 1

The PRE (population regression equation) for Model 1 is:

$$price_{i} = \beta_{0} + \beta_{1}wgt_{i} + \beta_{2}mpg_{i} + \beta_{3}wgt_{i}^{2} + \beta_{4}mpg_{i}^{2} + \beta_{5}wgt_{i}mpg_{i} + u_{i}$$

$$K = 6; \quad K - 1 = 5.$$
(1)

• Marginal effect of wgt_i

$$\frac{\partial \, price_{_{i}}}{\partial \, wgt_{_{i}}} = \frac{\partial \, E(price_{_{i}} \, \big| \, wgt_{_{i}}, \, mpg_{_{i}})}{\partial \, wgt_{_{i}}} = \frac{\partial \, E(price_{_{i}} \, \big| \, \bullet)}{\partial \, wgt_{_{i}}} = \beta_{_{1}} + 2 \, \beta_{_{3}} wgt_{_{i}} + \beta_{_{5}} mpg_{_{i}} \, .$$

• Marginal effect of mpg_i

$$\frac{\partial \, price_{_{i}}}{\partial \, mpg_{_{i}}} = \frac{\partial \, E(price_{_{i}} \big| \, wgt_{_{i}}, \, mpg_{_{i}})}{\partial \, mpg_{_{i}}} = \frac{\partial \, E(price_{_{i}} \big| \, \bullet)}{\partial \, mpg_{_{i}}} = \beta_{2} + 2 \, \beta_{4} mpg_{_{i}} + \beta_{5} wgt_{_{i}} \, .$$

Proposition 1 to Test

The marginal effect of mpg_i on $price_i$ is zero: i.e., mpg_i has no effect on $price_i$; or car $price_i$ is unrelated to fuel efficiency as measured by mpg_i .

Examine the above expression for the **marginal effect of** mpg_i **on** $price_i$. We see that a sufficient condition for the proposition to be true for all cars (regardless of their values for wgt_i and mpg_i) is that the **three coefficients** β_2 , β_4 and β_5 all equal zero.

$$\text{If } \boldsymbol{\beta_2} = \boldsymbol{0} \text{ and } \boldsymbol{\beta_4} = \boldsymbol{0} \text{ and } \boldsymbol{\beta_5} = \boldsymbol{0} \text{, then } \frac{\partial \, price_{_i}}{\partial \, mpg_{_i}} = \boldsymbol{\beta_2} + 2\, \boldsymbol{\beta_4} mpg_{_i} + \boldsymbol{\beta_5} wgt_{_i} = 0 \ \, \forall \, \, i.$$

Null and Alternative Hypotheses

$$price_{i} = \beta_{0} + \beta_{1}wgt_{i} + \beta_{2}mpg_{i} + \beta_{3}wgt_{i}^{2} + \beta_{4}mpg_{i}^{2} + \beta_{5}wgt_{i}mpg_{i} + u_{i}$$
(1)

$$\frac{\partial \, price_{_{i}}}{\partial \, mpg_{_{i}}} = \frac{\partial \, E(price_{_{i}} \, \big| \, wgt_{_{i}}, \, mpg_{_{i}})}{\partial \, mpg_{_{i}}} = \frac{\partial \, E(price_{_{i}} \, \big| \, \bullet \,)}{\partial \, mpg_{_{i}}} = \beta_{2} + 2 \, \beta_{4} mpg_{_{i}} + \beta_{5} wgt_{_{i}} \,.$$

• H_0 : $\beta_2 = 0$ and $\beta_4 = 0$ and $\beta_5 = 0$

$$\Rightarrow \frac{\partial \operatorname{price}_{i}}{\partial \operatorname{mpg}_{i}} = \beta_{2} + 2\beta_{4} \operatorname{mpg}_{i} + \beta_{5} \operatorname{wgt}_{i} = 0 \quad \forall i$$

• H_1 : $\beta_2 \neq 0$ and/or $\beta_4 \neq 0$ and/or $\beta_5 \neq 0$

$$\Rightarrow \frac{\partial \operatorname{price}_{i}}{\partial \operatorname{mpg}_{i}} = \beta_{2} + 2\beta_{4} \operatorname{mpg}_{i} + \beta_{5} \operatorname{wgt}_{i}$$

•
$$\mathbf{H_0}$$
: $\beta_2 = \mathbf{0}$ and $\beta_4 = \mathbf{0}$ and $\beta_5 = \mathbf{0}$ $\Rightarrow \frac{\partial \, price_i}{\partial \, mpg_i} = \beta_2 + 2\, \beta_4 mpg_i + \beta_5 wgt_i = 0$

Restricted model corresponding to H_0 : set $\beta_2 = 0$ and $\beta_4 = 0$ and $\beta_5 = 0$ in the unrestricted model given by PRE (1).

$$\begin{aligned} &\text{price}_{i} = \beta_{0} + \beta_{1} w g t_{i} + \beta_{3} w g t_{i}^{2} + u_{i} \\ &K_{0} = 3; \quad K_{0} - 1 = 2; \quad N - K_{0} = 74 - 3 = 71; \\ &RSS_{0} = 384779934; \quad df_{0} = N - K_{0} = 71; \quad R_{R}^{2} = 0.3941. \end{aligned}$$

The OLS SRE for the Restricted Model - Model 2

. regress price wgt wgtsq

Source	ss	df	MS		Number of obs	= 74
	+				F(2, 71)	= 23.09
Model	250285462	2 125	142731		Prob > F	= 0.0000
Residual	384779934	71 5419	435.69		R-squared	= 0.3941
	+				Adj R-squared	= 0.3770
Total	635065396	73 8699	525.97		Root MSE	= 2328.0
price	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
wat	+ _7 273097		 -2 702	0 009	_12 64029	_1 905906
wgt	-7.273097	2.691747	-2.702	0.009	-12.64029	-1.905906
wgt wgtsq			-2.702 3.491	0.009 0.001	-12.64029 .0006494	-1.905906 .002379
-	-7.273097	2.691747				

• H_1 : $\beta_2 \neq 0$ and/or $\beta_4 \neq 0$ and/or $\beta_5 \neq 0$

$$\Rightarrow \frac{\partial \, price_{_{i}}}{\partial \, mpg_{_{i}}} = \beta_{2} + 2 \, \beta_{4} mpg_{_{i}} + \beta_{5} wgt_{_{i}}$$

Unrestricted model corresponding to H₁: is PRE (1).

$$\begin{aligned} & \text{price}_{i} = \beta_{0} + \beta_{1} \text{wgt}_{i} + \beta_{2} \text{mpg}_{i} + \beta_{3} \text{wgt}_{i}^{2} + \beta_{4} \text{mpg}_{i}^{2} + \beta_{5} \text{wgt}_{i} \text{mpg}_{i} + u_{i} \\ & K = 6; \quad K - 1 = 5; \quad N - K = 74 - 6 = 68; \\ & \text{RSS}_{1} = 326680563; \quad \text{df}_{1} = N - K = 68; \quad R_{11}^{2} = 0.4856. \end{aligned} \tag{1}$$

The OLS SRE for the *Unrestricted* Model – Model 1

. regress price wgt wgtsq mpg mpgsq wgtmpg

Source	ss	df	MS		Number of obs	
Model Residual	308384833 326680563		6966.6 125.93		F(5, 68) Prob > F R-squared Adj R-squared	= 0.0000 = 0.4856
Total	635065396	73 8699	525.97		Root MSE	= 2191.8
price	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
wgt wgtsq mpg mpgsq wgtmpg _cons	-31.88985 .0034574 -3549.495 38.74472 .5421927 92690.55	9.148215 .0008629 1126.464 12.62339 .1971854 25520.53	-3.486 4.007 -3.151 3.069 2.750 3.632	0.001 0.000 0.002 0.003 0.008 0.001	-50.14483 .0017355 -5797.318 13.55514 .1487154 41765.12	-13.63487 .0051792 -1301.672 63.9343 .9356701 143616

ECON 351* -- Note 17: F-Tests of Linear Coefficient Restrictions

2. The General F-Statistic

- *Usage:* Can be used to test *any linear* restrictions on the regression *coefficients* in a linear regression model.
- Formula 1 for the general F-statistic is:

$$F = \frac{(RSS_0 - RSS_1)/(df_0 - df_1)}{RSS_1/df_1} = \frac{(RSS_0 - RSS_1)/(K - K_0)}{RSS_1/(N - K)} \sim F[df_0 - df_1, df_1]$$
...(F1)

where:

 RSS_0 = the residual sum of squares for the restricted OLS-SRE;

 RSS_1 = the residual sum of squares for the <u>unrestricted</u> OLS-SRE;

 K_0 = the number of free regression coefficients in the <u>restricted</u> model;

K = the *number of free regression coefficients* in the <u>unrestricted</u> model;

 $K - K_0$ = the **number of** *independent linear coefficient restrictions* specified by the null hypothesis H_0 ;

 $N - K = \text{the } degrees \text{ of } freedom \text{ for } RSS_1, \text{ the } \underline{unrestricted} \text{ } RSS;$

 $df_0 = N - K_0 =$ the degrees of freedom for RSS₀, the restricted RSS;

 $df_1 = N - K = the degrees of freedom for RSS_1, the unrestricted RSS;$

$$df_0 - df_1 \; = \; N - K_0 - (N - K) \; = \; N - K_0 - N + K \; = \; K - K_0.$$

Note: $df_0 - df_1 = K - K_0 =$ the number of *independent linear coefficient* restrictions specified by the null hypothesis H_0 .

• Formula 2 for the general F-statistic is:

$$F = \frac{(R_U^2 - R_R^2)/(df_0 - df_1)}{(1 - R_U^2)/df_1} = \frac{(R_U^2 - R_R^2)/(K - K_0)}{(1 - R_U^2)/(N - K)} \sim F[df_0 - df_1, df_1]$$
 (F2)

where:

 R_R^2 = the **R-squared value** for the <u>restricted</u> **OLS-SRE**;

 R_{II}^2 = the **R-squared value** for the <u>unrestricted</u> **OLS-SRE**.

3. Performing a General F-Test of Exclusion Restrictions

Calculate the sample value of the general F-statistic using Formula 1

$$\begin{split} RSS_0 &= 384779934; \quad df_0 = N - K_0 = 71; \qquad R_R^2 = 0.3941. \\ RSS_1 &= 326680563; \quad df_1 = N - K = 68; \qquad R_U^2 = 0.4856. \\ F_0 &= \frac{(RSS_0 - RSS_1)/(df_0 - df_1)}{RSS_1/df_1} \\ &= \frac{(384779934 - 326680563)/(71 - 68)}{326680563/68} \\ &= \frac{58099371/3}{326680563/68} \\ &= \textbf{4.031} \end{split}$$

Calculate the sample value of the general F-statistic using Formula 2

$$F_0 = \frac{(R_U^2 - R_R^2)/(df_0 - df_1)}{(1 - R_U^2)/df_1}$$

$$= \frac{(0.4856 - 0.3941)/3}{(1 - 0.4856)/68}$$

$$= \frac{0.0915/3}{0.5144/68}$$

$$= 4.032$$

Result: $F_0 = 4.032$

Decision Rule -- Formulation 1

Let $F_{\alpha}[df_0 - df_1, df_1] =$ the α -level critical value of the $F[df_0 - df_1, df_1]$ distribution.

Retain H₀ at significance level α if $F_0 \leq F_\alpha[df_0 - df_1, df_1]$.

Reject $\mathbf{H_0}$ at significance level α if $F_0 > F_a[df_0 - df_1, df_1]$.

• Critical values of F[3, 68]

$$\alpha = 0.05: \quad F_{0.05}[3,68] = 2.79$$

$$\alpha = 0.01: \quad F_{0.01}[3,68] = 4.08$$

$$. \text{ display invFtail(3, 68, 0.05)}$$

$$2.794891$$

$$. \text{ display invFtail(3, 68, 0.01)}$$

$$4.083395$$

Inference:

- $F_0 = 4.032 > 2.79 = F_{0.05}[3, 68]$ \Rightarrow reject H_0 at 5% significance level
- $F_0 = 4.032 < 4.08 = F_{0.01}[3, 68]$ \Rightarrow *retain* H_0 at 1% significance level

Decision Rule -- Formulation 2

Retain H_0 at significance level α if the **p-value for** $F_0 \ge \alpha$.

Reject \mathbf{H}_0 at significance level α if the **p-value for** $\mathbf{F}_0 < \alpha$.

• p-value for $F_0 = 0.0106$

```
. display Ftail(3, 68, 4.032)
.01062773
```

Inference:

- p-value for $F_0 = 0.0106 < 0.05$ \Rightarrow reject H_0 at 5% significance level
- p-value for $F_0 = 0.0106 > 0.01$ \Rightarrow retain H_0 at 1% significance level

Computing this General F-Test with Stata

The Stata test command computes general F-tests of any set of coefficient restrictions on linear regression models.

The OLS SRE for the Unrestricted Model – Model 1

. regress price wgt wgtsq mpg mpgsq wgtmpg

Source	SS	df	MS		Number of obs	= 74
+					F(5, 68)	= 12.84
Model	308384833	5 61	76966.6		Prob > F	= 0.0000
Residual	326680563	68 48	04125.93		R-squared	= 0.4856
+					Adj R-squared	= 0.4478
Total	635065396	73 869	99525.97		Root MSE	= 2191.8
price	Coef.	Std. Err	, t	P> t	[95% Conf.	<pre>Interval]</pre>
+						
wgt	-31.88985	9.148215	-3.486	0.001	-50.14483	-13.63487
wgtsq	.0034574	.0008629	4.007	0.000	.0017355	.0051792
mpg	-3549.495	1126.464	-3.151	0.002	-5797.318	-1301.672
mpgsq	38.74472	12.62339	3.069	0.003	13.55514	63.9343
wgtmpg	.5421927	.1971854	2.750	0.008	.1487154	.9356701
cons	92690.55	25520.53	3.632	0.001	41765.12	143616

[.] test mpg mpgsq wgtmpg

```
F(3, 68) = \frac{4.03}{0.0106}
```

⁽¹⁾ mpg = 0.0 (2) mpgsq = 0.0 (3) wgtmpg = 0.0

4. Outline of the General F-Test Procedure

Once the null hypothesis H_0 and the alternative hypothesis H_1 have been formulated, the procedure for testing a set of $df_0 - df_1 = K - K_0$ independent linear coefficient restrictions consists of **four basic steps**.

Step 1: Estimate by OLS the *unrestricted* model implied by the alternative hypothesis H_1 to obtain the *unrestricted* OLS SRE and associated statistics:

$$RSS_1$$
; $df_1 = N - K$; $R_U^2 = ESS_1/TSS = 1 - RSS_1/TSS$.

<u>Step 2</u>: Estimate by OLS the *restricted* model implied by the null hypothesis H_0 , after imposing on the unrestricted PRE the linear coefficient restrictions specified by the null hypothesis. This yields the *restricted* OLS SRE and associated statistics:

$$RSS_0$$
; $df_0 = N - K_0$; $R_R^2 = ESS_0/TSS = 1 - RSS_0/TSS$.

Step 3: Compute the sample value of either of the general F-statistics.

$$F = \frac{(RSS_0 - RSS_1)/(df_0 - df_1)}{RSS_1/df_1} = \frac{(R_{\rm U}^{\, 2} - R_{\rm R}^{\, 2})/(df_0 - df_1)}{(1 - R_{\rm U}^{\, 2})/df_1} \ \sim \ F[df_0 - df_1, \, df_1]$$

where:

$$df_0 = N - K_0 =$$
the degrees of freedom for RSS₀, the restricted RSS;
 $df_1 = N - K =$ the degrees of freedom for RSS₁, the unrestricted RSS;
 $df_0 - df_1 = N - K_0 - (N - K) = N - K_0 - N + K = K - K_0$
= the *number* of coefficient restrictions specified by H₀.

Step 4: Apply the conventional decision rule:

- (1) If $F_0 > F_{\alpha}(K-K_0, N-K)$, or if the **p-value for** $F_0 < \alpha$, reject the coefficient restrictions specified by the null hypothesis H_0 at the 100 α % significance level;
- (2) If $F_0 \leq F_{\alpha}(K-K_0, N-K)$, or if the p-value for $F_0 \geq \alpha$, retain (do not reject) the coefficient restrictions specified by the null hypothesis H_0 at the $100\alpha\%$ significance level.

Proposition 2 to Test

The *marginal* effect of mpg_i on $price_i$ is zero for cars that weigh 3,000 pounds and have fuel efficiency of 23 miles per gallon: i.e., mpg_i has no effect on $price_i$ when $wgt_i = 3000$ and $mpg_i = 23$; or car $price_i$ is unrelated to fuel efficiency as measured by mpg_i when $wgt_i = 3000$ and $mpg_i = 23$.

Null and Alternative Hypotheses

$$price_{i} = \beta_{0} + \beta_{1}wgt_{i} + \beta_{2}mpg_{i} + \beta_{3}wgt_{i}^{2} + \beta_{4}mpg_{i}^{2} + \beta_{5}wgt_{i}mpg_{i} + u_{i}$$
 (1)

$$\frac{\partial \operatorname{price}_{i}}{\partial \operatorname{mpg}_{i}} = \frac{\partial \operatorname{E}(\operatorname{price}_{i} \mid \operatorname{wgt}_{i}, \operatorname{mpg}_{i})}{\partial \operatorname{mpg}_{i}} = \frac{\partial \operatorname{E}(\operatorname{price}_{i} \mid \bullet)}{\partial \operatorname{mpg}_{i}} = \beta_{2} + 2\beta_{4}\operatorname{mpg}_{i} + \beta_{5}\operatorname{wgt}_{i}.$$

•
$$\mathbf{H_0}$$
: $\frac{\partial \operatorname{price}_i}{\partial \operatorname{mpg}_i} = \beta_2 + 2\beta_4 \operatorname{mpg}_i + \beta_5 \operatorname{wgt}_i = 0$ when $\mathbf{wgt}_i = 3000$ and $\mathbf{mpg}_i = 23$

$$\Rightarrow \beta_2 + 2\beta_4 23 + \beta_5 3000 = 0 \qquad or \qquad \beta_2 + 46\beta_4 + 3000\beta_5 = 0$$
(number of restrictions = 1)

• **H**₁:
$$\frac{\partial \operatorname{price}_{i}}{\partial \operatorname{mpg}_{i}} = \beta_{2} + 2\beta_{4}\operatorname{mpg}_{i} + \beta_{5}\operatorname{wgt}_{i} \neq 0 \text{ when } wgt_{i} = 3000 \text{ and } mpg_{i} = 23$$

$$\Rightarrow$$
 $\beta_2 + 2\beta_4 23 + \beta_5 3000 \neq 0$ or $\beta_2 + 46\beta_4 + 3000\beta_5 \neq 0$

OLS Estimation of Model 1 in Stata

 regress price wgt wgtsq mpg mpgsq wgtmpg 		regress	price	wgt	wgtsq	mpg	mpgsq	wgtmpg
--	--	---------	-------	-----	-------	-----	-------	--------

Source	ss	df	MS			Number of obs		74 12.84
Model	308384833	5	6167696			Prob > F	=	0.0000
Residual	326680563	<u>68</u>	4804125	.93 		R-squared Adj R-squared	=	0.4856 0.4478
Total	635065396	73	8699525	.97		Root MSE	=	2191.8
price	Coef.	Std. I	irr.	t	P> t	[95% Conf.	In	terval]
wgt	-31.88985	9.1482	215	-3.486	0.001	-50.14483	-1	3.63487
wgtsq	.0034574	.00086	529	4.007	0.000	.0017355	•	0051792
mpg	-3549.495	1126.4	164	-3.151	0.002	-5797.318	-1	301.672
mpgsq	38.74472	12.623	339	3.069	0.003	13.55514		63.9343
wgtmpg	.5421927	.19718	354	2.750	0.008	.1487154		9356701
_cons	92690.55	25520.	.53	3.632	0.001	41765.12		143616

Appropriate Test Statistics for Testing Proposition 2

• t-statistic:

$$t(\hat{\beta}_2 + 2\hat{\beta}_4 23 + \hat{\beta}_5 3000) = \frac{\hat{\beta}_2 + 2\hat{\beta}_4 23 + \hat{\beta}_5 3000}{s\hat{e}(\hat{\beta}_2 + 2\hat{\beta}_4 23 + \hat{\beta}_5 3000)}$$

Null distribution of $t(\hat{\beta}_2 + 2\hat{\beta}_4 23 + \hat{\beta}_5 3000)$ under H_0 is t[N-K] = t[74-6] = t[68].

• F-statistic:

$$F(\hat{\beta}_2 + 2\hat{\beta}_4 23 + \hat{\beta}_5 3000) = \frac{(\hat{\beta}_2 + 2\hat{\beta}_4 23 + \hat{\beta}_5 3000)^2}{Var(\hat{\beta}_2 + 2\hat{\beta}_4 23 + \hat{\beta}_5 3000)}$$

Null distribution of $F(\hat{\beta}_2 + 2\hat{\beta}_4 23 + \hat{\beta}_5 3000)$ under H_0 is F[1, N - K] = F[1, 74 - 6] = F[1, 68].

Note: Both the t-statistic and the F-statistic are computed using **only** *unrestricted* **coefficient estimates of Model 1** computed under the alternative hypothesis H_1 .

Using Stata to Compute the Two-Tail t-test: Use the Stata lincom command.

•
$$\mathbf{H_0}$$
: $\frac{\partial \operatorname{price}_i}{\partial \operatorname{mpg}_i} = \beta_2 + 2\beta_4 \operatorname{mpg}_i + \beta_5 \operatorname{wgt}_i = 0$ when $\mathbf{wgt}_i = 3000$ and $\mathbf{mpg}_i = 23$

• **H**₁:
$$\frac{\partial \text{price}_i}{\partial \text{mpg}_i} = \beta_2 + 2\beta_4 \text{mpg}_i + \beta_5 \text{wgt}_i \neq 0 \text{ when } wgt_i = 3000 \text{ and } mpg_i = 23$$

. lincom _b[mpg] + 2*_b[mpgsq]*23 + _b[wgtmpg]*3000

(1) mpg + 46 mpgsq + 3000 wgtmpg = 0

```
price | Coef. Std. Err. t P>|t| [95% Conf. Interval]
(1) | -140.6595 90.73004 -1.55 0.126 -321.7085
```

. return list

scalars:

```
r(df) = 68
     r(se) = 90.73004185185361
r(estimate) = -140.6594967166902
```

- . display r(estimate)/r(se)
- -1.5503079
- . display 2*ttail(r(df), abs(r(estimate)/r(se))) .12570961
- . display 2*ttail(68, abs(r(estimate)/r(se))) .12570961

Using Stata to Compute the F-test: Use the Stata test command.

```
• \mathbf{H_0}: \frac{\partial \operatorname{price}_i}{\partial \operatorname{mpg}_i} = \beta_2 + 2\beta_4 \operatorname{mpg}_i + \beta_5 \operatorname{wgt}_i = 0 when \mathbf{wgt}_i = 3000 and \mathbf{mpg}_i = 23
```

• **H**₁:
$$\frac{\partial \text{price}_i}{\partial \text{mpg}_i} = \beta_2 + 2\beta_4 \text{mpg}_i + \beta_5 \text{wgt}_i \neq 0 \text{ when } wgt_i = 3000 \text{ and } mpg_i = 23$$

```
. test mpg + 2*mpgsq*23 + wgtmpg*3000 = 0
(1) mpg + 46 mpgsq + 3000 wgtmpg = 0
      F(1, 68) =
                         2.40
           Prob > F =
                        0.1257
. return list
scalars:
             r(drop) = 0
             r(df_r) = 68
                r(F) = 2.403454450376304
               r(df) = 1
                r(p) = .1257096143054587
. display Ftail(r(df), r(df_r), r(F))
.12570961
. display Ftail(1, 68, r(F))
.12570961
. display sqrt(r(F))
```

1.5503079

Proposition 3 to Test

The *marginal* effect of mpg_i on $price_i$ is zero for cars that weigh 3,000 pounds and have fuel efficiency of 18 miles per gallon: i.e., mpg_i has no effect on $price_i$ when $wgt_i = 3000$ and $mpg_i = 18$; or car $price_i$ is unrelated to fuel efficiency as measured by mpg_i when $wgt_i = 3000$ and $mpg_i = 18$.

Null and Alternative Hypotheses

$$price_{i} = \beta_{0} + \beta_{1}wgt_{i} + \beta_{2}mpg_{i} + \beta_{3}wgt_{i}^{2} + \beta_{4}mpg_{i}^{2} + \beta_{5}wgt_{i}mpg_{i} + u_{i}$$
 (1)

$$\frac{\partial \operatorname{price}_{i}}{\partial \operatorname{mpg}_{i}} = \frac{\partial \operatorname{E}(\operatorname{price}_{i} \mid \operatorname{wgt}_{i}, \operatorname{mpg}_{i})}{\partial \operatorname{mpg}_{i}} = \frac{\partial \operatorname{E}(\operatorname{price}_{i} \mid \bullet)}{\partial \operatorname{mpg}_{i}} = \beta_{2} + 2\beta_{4}\operatorname{mpg}_{i} + \beta_{5}\operatorname{wgt}_{i}.$$

•
$$\mathbf{H_0}$$
: $\frac{\partial \operatorname{price}_i}{\partial \operatorname{mpg}_i} = \beta_2 + 2\beta_4 \operatorname{mpg}_i + \beta_5 \operatorname{wgt}_i = 0$ when $\mathbf{wgt}_i = 3000$ and $\mathbf{mpg}_i = 18$

$$\Rightarrow \beta_2 + 2\beta_4 18 + \beta_5 3000 = 0 \qquad or \qquad \beta_2 + 36\beta_4 + 3000\beta_5 = 0$$
(number of restrictions = 1)

• **H**₁:
$$\frac{\partial \operatorname{price}_{i}}{\partial \operatorname{mpg}_{i}} = \beta_{2} + 2\beta_{4}\operatorname{mpg}_{i} + \beta_{5}\operatorname{wgt}_{i} \neq 0 \text{ when } wgt_{i} = 3000 \text{ and } mpg_{i} = 18$$

$$\Rightarrow$$
 $\beta_2 + 2\beta_4 18 + \beta_5 3000 \neq 0$ or $\beta_2 + 36\beta_4 + 3000\beta_5 \neq 0$

Using Stata to Compute the Two-Tail t-test: Use the Stata lincom command.

•
$$\mathbf{H_0}$$
: $\frac{\partial \operatorname{price}_i}{\partial \operatorname{mpg}_i} = \beta_2 + 2\beta_4 \operatorname{mpg}_i + \beta_5 \operatorname{wgt}_i = 0$ when $\mathbf{wgt}_i = 3000$ and $\mathbf{mpg}_i = 18$

• **H**₁:
$$\frac{\partial \text{price}_i}{\partial \text{mpg}_i} = \beta_2 + 2\beta_4 \text{mpg}_i + \beta_5 \text{wgt}_i \neq 0 \text{ when } wgt_i = 3000 \text{ and } mpg_i = 18$$

```
. lincom _b[mpg] + 2*_b[mpgsq]*18 + _b[wgtmpg]*3000
```

(1) mpg + 36 mpgsq + 3000 wgtmpg = 0

```
price | Coef. Std. Err. t P>|t| [95% Conf. Interval]

(1) | -528.1067 162.9029 -3.24 0.002 -853.1744 -203.039
```

. return list

scalars:

```
r(df) = 68

r(se) = 162.9029293974137

r(estimate) = -528.1067029465044
```

- . display r(estimate)/r(se)
- -3.241849
- . display (r(estimate)/r(se))^2
 10.509585
- . display 2*ttail(r(df), abs(r(estimate)/r(se)))
- .00184092

Using Stata to Compute the F-test: Use the Stata test command.

```
• \mathbf{H_0}: \frac{\partial \operatorname{price}_i}{\partial \operatorname{mpg}_i} = \beta_2 + 2\beta_4 \operatorname{mpg}_i + \beta_5 \operatorname{wgt}_i = 0 when \mathbf{wgt}_i = 3000 and \mathbf{mpg}_i = 18
```

• **H**₁:
$$\frac{\partial \text{price}_i}{\partial \text{mpg}_i} = \beta_2 + 2\beta_4 \text{mpg}_i + \beta_5 \text{wgt}_i \neq 0 \text{ when } wgt_i = 3000 \text{ and } mpg_i = 18$$

```
. test mpg + 2*mpgsq*18 + wgtmpg*3000 = 0
(1) mpg + 36 mpgsq + 3000 wgtmpg = 0
      F(1, 68) = 10.51
           Prob > F = 0.0018
. return list
scalars:
             r(drop) = 0
             r(df_r) = 68
                r(F) = 10.50958510526579
               r(df) = 1
                r(p) = .0018409212648082
. display Ftail(r(df), r(df_r), r(F))
.00184092
. display Ftail(1, 68, r(F))
.00184092
. display sqrt(r(F))
3.241849
```