ECON 351* -- NOTE 16

<u>Tests of Exclusion Restrictions on Regression Coefficients:</u> <u>Formulation and Interpretation</u>

• The **population regression equation (PRE)** for the general multiple linear regression model takes the form:

$$Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i} + \dots + \beta_{k}X_{ki} + u_{i}$$
(1)

where u_i is an iid (independently and identically distributed) random error term.

PRE (1) constitutes the *unrestricted* model for tests of exclusion restrictions.

• *Exclusion restrictions* set one or more regression coefficients equal to zero.

Common types of exclusion restrictions:

1. <u>One</u> slope coefficient equals zero.

Tests of the *individual* significance of a *single* slope coefficient.

2. <u>All</u> slope coefficients jointly equal zero.

Tests of the *joint* significance of *all* slope coefficients.

3. <u>Some</u> slope coefficients equal zero.

Tests of the *joint* significance of *a subset of* slope coefficients.

1. Tests of Exclusion Restrictions: Formulation

TEST 1: <u>One</u> slope coefficient equals zero.

• The *null* hypothesis is:

H₀: $\beta_j = 0$; the slope coefficient of regressor X_j equals zero.

• The *alternative* hypothesis is:

H₁: $\beta_j \neq 0$; the slope coefficient of regressor X_j is not equal to zero.

• Question addressed by this test :

Is the regressor X_j relevant in explaining the dependent variable Y (controlling for the effects on Y of all the other included regressors)?

Is the explanatory variable X_j *individually* relevant in explaining the dependent variable Y?

Does the explanatory variable X_j have an *individually* significant marginal effect on the dependent variable Y?

Does the true PRF for the dependent variable Y include X_i?

• Names (labels) for this test:

a test of the *individual relevance of the explanatory variable* X_j . a test of the *individual significance of the slope coefficient for* X_j .

TEST 2: <u>All</u> slope coefficients *jointly* equal zero.

• The *null* hypothesis is:

- All K 1 slope coefficients equal zero; i.e., the slope coefficients are jointly equal to zero.
- The *alternative* hypothesis is:

$$\begin{split} H_1: \quad \beta_j \neq 0 \qquad j=1,2,...,k. \\ \beta_1 \neq 0 \text{ and/or } \beta_2 \neq 0 \text{ and/or } \beta_3 \neq 0 \text{ ... and/or } \beta_k \neq 0. \end{split}$$

- At least one of the slope coefficients does not equal zero.
- Question addressed by this test :

Is the regression model given by PRE (1) relevant in explaining the dependent variable Y?

Are the k = K - 1 explanatory variables in PRE (1) *jointly* relevant in explaining the dependent variable Y?

• Names (labels) for this test:

a test of the *overall significance of the regression model* a test of the *joint significance of the slope coefficients*

TEST 3: Some regression coefficients equal zero.

<u>Example 1</u>:

Suppose the *unrestricted* model is given by the PRE

$$Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i} + \beta_{3}X_{3i} + u_{i} \qquad (i = 1, ..., N)$$
(1)

so that K = 4.

• The *null* hypothesis is:

 $H_0: \quad \beta_j = 0 \quad \forall \ j = 2, 3. \qquad \beta_2 = 0 \text{ and } \beta_3 = 0.$

- The two slope coefficients β₂ and β₃ *both* equal zero; i.e., the slope coefficients β₂ and β₃ are *jointly* equal to zero.
- The *alternative* hypothesis is:

H₁: $\beta_j \neq 0$ j = 2, 3. $\beta_2 \neq 0$ and/or $\beta_3 \neq 0$.

- At least one of the slope coefficients β_2 and β_3 does not equal zero.
- Question addressed by this test :

Are the explanatory variables X_2 and X_3 jointly relevant in explaining the dependent variable Y?

Does the true PRF for the dependent variable Y include both the explanatory variables X_2 and X_3 ?

• Names (labels) for this test:

a test of the *joint relevance of the regressors* X_2 and X_3 a test of the *joint significance of the slope coefficients for* X_2 and X_3 **Example 2**: A model of North American car prices from Stata Tutorials

Suppose the unrestricted model is given by the PRE

$$price_{i} = \beta_{0} + \beta_{1}weight_{i} + \beta_{2}weight_{i}^{2} + \beta_{3}mpg_{i} + u_{i} \qquad (i = 1, ..., N)$$
(2)

The *marginal effect* of the variable **weight**_i on the dependent variable **price**_i is obtained by taking the partial derivative of the regression function in (1) with respect to weight_i:

 $\frac{\partial \text{price}_{i}}{\partial \text{weight}_{i}} = \beta_{1} + 2\beta_{2} \text{weight}_{i} \qquad (i = 1, ..., N).$

A sufficient condition for the marginal effect of weight_i to equal zero for all observations is that the coefficients β_1 and β_2 equal zero.

• The *null* hypothesis is:

H₀: $\beta_j = 0 \quad \forall \ j = 1, 2;$ $\beta_1 = 0 \ and \ \beta_2 = 0$

- The two slope coefficients β₁ and β₂ both equal zero; i.e., the slope coefficients β₁ and β₂ are *jointly* equal to zero.
- The *marginal effect* on price_i of weight_i is *zero*.
- The *alternative* hypothesis is:

H₁: $\beta_j \neq 0$ j = 1, 2; $\beta_1 \neq 0$ and/or $\beta_2 \neq 0$

- At least one of the slope coefficients β_1 and β_2 does not equal zero.
- The *marginal effect* on price_i of weight_i is not equal zero.
- Question addressed by this test :

Is the explanatory variable weight_i relevant in determining price_i?

Does the true PRF for the dependent variable price_i include both the regressors weight_i and weight_i²?

2. The Restricted and Unrestricted Models

2.1 Definitions

□ The <u>unrestricted model</u> is the PRE that corresponds to, or is implied by, the *alternative* hypothesis H_1 .

It is the PRE that is presumed to be true if the null hypothesis H_0 is *false*.

□ The *restricted* model is the PRE that corresponds to, or is implied by, the *null* hypothesis H_0 .

It is the PRE that is presumed to be true if the null hypothesis H_0 is *true*.

It is obtained by *substituting the coefficient restrictions* specified by the null hypothesis H_0 *into the <u>unrestricted</u> model*.

2.2 Examples

Suppose the *unrestricted* model is given by the PRE

$$Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i} + \beta_{3}X_{3i} + u_{i} \qquad (i = 1, ..., N)$$
(1)

The number of free (unrestricted) regressions coefficients in (1) is $\mathbf{K} = \mathbf{4}$.

□ <u>Test 1</u>: a test of the *individual* significance of *one* slope coefficient.

• The *null* hypothesis is:

H₀: $\beta_3 = 0$; the slope coefficient of regressor X₃ equals zero.

- The *alternative* hypothesis is:
 - H₁: $\beta_3 \neq 0$; the slope coefficient of regressor X₃ is not equal to zero.
- The *unrestricted* model corresponding to the *alternative* hypothesis H₁ is simply PRE (1):

$$Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i} + \beta_{3}X_{3i} + u_{i} \qquad (i = 1, ..., N)$$
(1)

The number of free (unrestricted) regression coefficients in model (1) is $\mathbf{K} = \mathbf{K}_1 = \mathbf{4}$.

• The <u>restricted</u> model corresponding to the *null* hypothesis H_0 is obtained by setting $\beta_3 = 0$ in the unrestricted model (1):

$$Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i} + u_{i} \qquad (i = 1, ..., N)$$
(3)

The number of free (unrestricted) regression coefficients in model (3) is $K_0 = 3$.

• Number of coefficient restrictions specified by the null hypothesis H_0 is $q = K - K_0 = K_1 - K_0 = 4 - 3 = 1$.

□ <u>Test 2</u>: a test of the *joint* significance of *all* slope coefficients.

 $Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i} + \beta_{3}X_{3i} + u_{i} \qquad (i = 1, ..., N)$ (1)

• The *null* hypothesis is:

H₀: $\beta_j = 0 \quad \forall \ j = 1, 2, 3;$ $\beta_1 = 0 \text{ and } \beta_2 = 0 \text{ and } \beta_3 = 0.$

- All of the K-1 = k = 4-1 = 3 slope coefficients equal zero; i.e., the slope coefficients are jointly equal to zero.
- The *alternative* hypothesis is:

H₁:
$$\beta_j \neq 0$$
 $j = 1, 2, 3;$ $\beta_1 \neq 0$ and/or $\beta_2 \neq 0$ and/or $\beta_3 \neq 0$.

- At least one of the 3 slope coefficients does not equal zero.
- The *unrestricted* model corresponding to the *alternative* hypothesis H₁ is simply PRE (1):

$$Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i} + \beta_{3}X_{3i} + u_{i} \qquad (i = 1, ..., N)$$
(1)

The number of free (unrestricted) regression coefficients in the unrestricted model (1) is $\mathbf{K} = \mathbf{K}_1 = \mathbf{4}$.

• The <u>restricted</u> model corresponding to the *null* hypothesis H_0 is obtained by setting $\beta_1 = 0$ and $\beta_2 = 0$ and $\beta_3 = 0$ in the unrestricted model (1):

$$Y_i = \beta_0 + u_i$$
 (i = 1, ..., N) (4)

The number of free (unrestricted) regression coefficients in the restricted model (4) is $K_0 = 1$.

• Number of coefficient restrictions specified by the null hypothesis H_0 is $q = K - K_0 = K_1 - K_0 = 4 - 1 = 3$.

□ <u>Test 3</u>: a test of the *joint* significance of *two* of the slope coefficients.

 $Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i} + \beta_{3}X_{3i} + u_{i} \qquad (i = 1, ..., N)$ (1)

• The *null* hypothesis is:

H₀: $\beta_i = 0 \quad \forall \ j = 2, 3;$ $\beta_2 = 0 \ and \ \beta_3 = 0.$

- The two slope coefficients β₂ and β₃ *both* equal zero; i.e., the slope coefficients β₂ and β₃ are *jointly* equal to zero.
- The *alternative* hypothesis is:

H₁: $\beta_j \neq 0$ j = 2, 3; $\beta_2 \neq 0$ and/or $\beta_3 \neq 0$.

- At least one of the slope coefficients β_2 and β_3 does not equal zero.
- The *unrestricted* model corresponding to the *alternative* hypothesis H₁ is simply PRE (1):

$$Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i} + \beta_{3}X_{3i} + u_{i} \qquad (i = 1, ..., N)$$
(1)

The number of free (unrestricted) regression coefficients in the unrestricted model (1) is $\mathbf{K} = \mathbf{K}_1 = \mathbf{4}$.

• The <u>restricted</u> model corresponding to the *null* hypothesis H_0 is obtained by setting $\beta_2 = 0$ and $\beta_3 = 0$ in the unrestricted model (1):

$$Y_{i} = \beta_{0} + \beta_{1}X_{1i} + u_{i} \qquad (i = 1, ..., N)$$
(5)

The number of free (unrestricted) regression coefficients in the restricted model (5) is $\mathbf{K}_0 = 2$.

• Number of coefficient restrictions specified by the null hypothesis H_0 is $q = K - K_0 = K_1 - K_0 = 4 - 2 = 2$.