ECON 351* -- NOTE 16

Tests of Exclusion Restrictions on Regression Coefficients:

Formulation and Interpretation

- The population regression equation (PRE) for the general multiple linear regression model takes the form:

$$
\begin{equation*}
\mathrm{Y}_{\mathrm{i}}=\beta_{0}+\beta_{1} \mathrm{X}_{1 \mathrm{i}}+\beta_{2} \mathrm{X}_{2 \mathrm{i}}+\cdots+\beta_{\mathrm{k}} \mathrm{X}_{\mathrm{ki}}+\mathrm{u}_{\mathrm{i}} \tag{1}
\end{equation*}
$$

where u_{i} is an iid (independently and identically distributed) random error term.
PRE (1) constitutes the unrestricted model for tests of exclusion restrictions.

- Exclusion restrictions set one or more regression coefficients equal to zero.

Common types of exclusion restrictions:

1. One slope coefficient equals zero.

Tests of the individual significance of a single slope coefficient.
2. All slope coefficients jointly equal zero.

Tests of the joint significance of all slope coefficients.
3. Some slope coefficients equal zero.

Tests of the joint significance of \boldsymbol{a} subset of slope coefficients.

1. Tests of Exclusion Restrictions: Formulation

TEST 1: One slope coefficient equals zero.

- The null hypothesis is:
$\mathbf{H}_{0}: \quad \beta_{\mathrm{j}}=\mathbf{0} ; \quad$ the slope coefficient of regressor X_{j} equals zero.
- The alternative hypothesis is:
$\mathbf{H}_{\mathbf{1}}: \quad \beta_{\mathrm{j}} \neq \mathbf{0} ; \quad$ the slope coefficient of regressor X_{j} is not equal to zero.
- Question addressed by this test :

Is the regressor X_{j} relevant in explaining the dependent variable Y (controlling for the effects on Y of all the other included regressors)?

Is the explanatory variable X_{j} individually relevant in explaining the dependent variable Y?

Does the explanatory variable X_{j} have an individually significant marginal effect on the dependent variable Y?

Does the true PRF for the dependent variable Y include X_{j} ?

- Names (labels) for this test:
a test of the individual relevance of the explanatory variable $\boldsymbol{X}_{\boldsymbol{j}}$. a test of the individual significance of the slope coefficient for \boldsymbol{X}_{j}.

TEST 2: All slope coefficients jointly equal zero.

- The null hypothesis is:
$\mathbf{H}_{0}: \quad \beta_{\mathrm{j}}=\mathbf{0} \quad \forall \mathbf{j}=\mathbf{1}, \mathbf{2}, \ldots, \mathrm{k}$.

$$
\beta_{1}=0 \text { and } \beta_{2}=0 \text { and } \ldots \beta_{\mathrm{k}}=0 .
$$

- All K - 1 slope coefficients equal zero; i.e., the slope coefficients are jointly equal to zero.
- The alternative hypothesis is:

$$
\begin{aligned}
\mathrm{H}_{1}: & \beta_{\mathrm{j}} \neq 0 \quad \mathrm{j}=1,2, \ldots, \mathrm{k} . \\
& \beta_{1} \neq 0 \text { and/or } \beta_{2} \neq 0 \text { and/or } \beta_{3} \neq 0 \text {... and/or } \beta_{\mathrm{k}} \neq 0 .
\end{aligned}
$$

- At least one of the slope coefficients does not equal zero.
- Question addressed by this test :

Is the regression model given by PRE (1) relevant in explaining the dependent variable Y?

Are the $\mathrm{k}=\mathrm{K}-1$ explanatory variables in PRE (1) jointly relevant in explaining the dependent variable Y?

- Names (labels) for this test:
a test of the overall significance of the regression model a test of the joint significance of the slope coefficients

TEST 3: Some regression coefficients equal zero.

Example 1:

Suppose the unrestricted model is given by the PRE

$$
\begin{equation*}
Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\beta_{3} X_{3 i}+u_{i} \quad(i=1, \ldots, N) \tag{1}
\end{equation*}
$$

so that $\mathrm{K}=4$.

- The null hypothesis is:

$$
\mathbf{H}_{0}: \quad \beta_{\mathrm{j}}=0 \quad \forall \mathbf{j}=2,3 . \quad \beta_{2}=0 \text { and } \beta_{3}=0 .
$$

- The two slope coefficients β_{2} and β_{3} both equal zero; i.e., the slope coefficients β_{2} and β_{3} are jointly equal to zero.
- The alternative hypothesis is:
$\mathrm{H}_{1}: \quad \beta_{\mathrm{j}} \neq 0 \quad \mathrm{j}=2,3 . \quad \beta_{2} \neq 0$ and $/$ or $\beta_{3} \neq 0$.
- At least one of the slope coefficients β_{2} and β_{3} does not equal zero.
- Question addressed by this test :

Are the explanatory variables X_{2} and X_{3} jointly relevant in explaining the dependent variable Y?

Does the true PRF for the dependent variable Y include both the explanatory variables X_{2} and X_{3} ?

- Names (labels) for this test:

a test of the joint relevance of the regressors \boldsymbol{X}_{2} and \boldsymbol{X}_{3} a test of the joint significance of the slope coefficients for X_{2} and X_{3}

Example 2: A model of North American car prices from Stata Tutorials
Suppose the unrestricted model is given by the PRE

$$
\begin{equation*}
\operatorname{price}_{i}=\beta_{0}+\beta_{1} \text { weight }_{i}+\beta_{2} \text { weight }_{i}^{2}+\beta_{3} \text { mpg }_{i}+u_{i} \quad(i=1, \ldots, N) \tag{2}
\end{equation*}
$$

The marginal effect of the variable weight $\mathbf{t}_{\mathbf{i}}$ on the dependent variable price $_{\boldsymbol{i}}$ is obtained by taking the partial derivative of the regression function in (1) with respect to weight : $^{\text {: }}$

$$
\frac{\partial \text { price }_{i}}{\partial \text { weight }_{i}}=\beta_{1}+2 \beta_{2} \text { weight }_{i} \quad(i=1, \ldots, N)
$$

A sufficient condition for the marginal effect of weight ${ }_{\mathrm{i}}$ to equal zero for all observations is that the coefficients β_{1} and β_{2} equal zero.

- The null hypothesis is:
$\mathrm{H}_{0}: \beta_{\mathrm{j}}=0 \quad \forall \mathbf{j}=1,2 ; \quad \beta_{1}=0$ and $\beta_{2}=0$
- The two slope coefficients β_{1} and $\boldsymbol{\beta}_{2}$ both equal zero; i.e., the slope coefficients β_{1} and β_{2} are jointly equal to zero.
- The marginal effect on price ${ }_{i}$ of weight \mathbf{t}_{i} is zero.
- The alternative hypothesis is:
$\mathrm{H}_{1}: \quad \beta_{\mathrm{j}} \neq 0 \quad \mathrm{j}=1,2 ; \quad \beta_{1} \neq 0$ and/or $\beta_{2} \neq 0$
- At least one of the slope coefficients β_{1} and β_{2} does not equal zero.
- The marginal effect on price $\mathbf{i}_{\mathbf{i}}$ of weight $\boldsymbol{i}_{\mathbf{i}}$ is not equal zero.

- Question addressed by this test :

Is the explanatory variable weight relevant in determining price $_{i}$?
Does the true PRF for the dependent variable price include both the regressors weight ${ }_{i}$ and weight ${ }_{i}^{2}$?

2. The Restricted and Unrestricted Models

2.1 Definitions

- The unrestricted model is the PRE that corresponds to, or is implied by, the alternative hypothesis \mathbf{H}_{1}.

It is the PRE that is presumed to be true if the null hypothesis $\mathbf{H}_{\mathbf{0}}$ is $\boldsymbol{f a l s e}$.

- The restricted model is the PRE that corresponds to, or is implied by, the null hypothesis $\mathbf{H}_{\mathbf{0}}$.

It is the PRE that is presumed to be true if the null hypothesis $\mathbf{H}_{\mathbf{0}}$ is true.
It is obtained by substituting the coefficient restrictions specified by the null hypothesis H_{0} into the unrestricted model.

2.2 Examples

Suppose the unrestricted model is given by the PRE

$$
\begin{equation*}
Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\beta_{3} X_{3 i}+u_{i} \quad(i=1, \ldots, N) \tag{1}
\end{equation*}
$$

The number of free (unrestricted) regressions coefficients in (1) is $\mathbf{K}=\mathbf{4}$.

- Test 1: a test of the individual significance of one slope coefficient.
- The null hypothesis is:
$\mathrm{H}_{0}: \quad \beta_{3}=0 ; \quad$ the slope coefficient of regressor X_{3} equals zero.
- The alternative hypothesis is:
$H_{1}: \quad \beta_{3} \neq 0 ; \quad$ the slope coefficient of regressor X_{3} is not equal to zero.
- The unrestricted model corresponding to the alternative hypothesis $\mathbf{H}_{\mathbf{1}}$ is simply PRE (1):

$$
\begin{equation*}
Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\beta_{3} X_{3 i}+u_{i} \quad(i=1, \ldots, N) \tag{1}
\end{equation*}
$$

The number of free (unrestricted) regression coefficients in model (1) is $\mathbf{K}=\mathbf{K}_{\mathbf{1}}$ $=4$.

- The restricted model corresponding to the null hypothesis $\mathbf{H}_{\mathbf{0}}$ is obtained by setting $\beta_{3}=0$ in the unrestricted model (1):

$$
\begin{equation*}
\mathrm{Y}_{\mathrm{i}}=\beta_{0}+\beta_{1} \mathrm{X}_{1 \mathrm{i}}+\beta_{2} \mathrm{X}_{2 \mathrm{i}}+\mathrm{u}_{\mathrm{i}} \quad(\mathrm{i}=1, \ldots, \mathrm{~N}) \tag{3}
\end{equation*}
$$

The number of free (unrestricted) regression coefficients in model (3) is $\mathbf{K}_{\mathbf{0}}=\mathbf{3}$.

- Number of coefficient restrictions specified by the null hypothesis \mathbf{H}_{0} is $\mathrm{q}=\mathrm{K}-\mathrm{K}_{0}=\mathrm{K}_{1}-\mathrm{K}_{0}=4-3=1$.
- Test 2: a test of the joint significance of all slope coefficients.

$$
\begin{equation*}
Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\beta_{3} X_{3 i}+u_{i} \quad(i=1, \ldots, N) \tag{1}
\end{equation*}
$$

- The null hypothesis is:
$\mathrm{H}_{0}: \quad \beta_{\mathrm{j}}=0 \quad \forall \mathrm{j}=1,2,3 ; \quad \beta_{1}=0$ and $\beta_{2}=0$ and $\beta_{3}=0$.
- All of the $\mathrm{K}-1=\mathrm{k}=4-1=3$ slope coefficients equal zero; i.e., the slope coefficients are jointly equal to zero.
- The alternative hypothesis is:
$\mathrm{H}_{1}: \quad \beta_{\mathrm{j}} \neq 0 \quad \mathrm{j}=1,2,3 ; \quad \beta_{1} \neq 0$ and/or $\beta_{2} \neq 0$ and/or $\beta_{3} \neq 0$.
- At least one of the 3 slope coefficients does not equal zero.
- The unrestricted model corresponding to the alternative hypothesis $\mathbf{H}_{\mathbf{1}}$ is simply PRE (1):

$$
\begin{equation*}
Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\beta_{3} X_{3 i}+u_{i} \quad(i=1, \ldots, N) \tag{1}
\end{equation*}
$$

The number of free (unrestricted) regression coefficients in the unrestricted model (1) is $\mathbf{K}=\mathbf{K}_{\mathbf{1}}=\mathbf{4}$.

- The restricted model corresponding to the null hypothesis $\mathbf{H}_{\mathbf{0}}$ is obtained by setting $\beta_{1}=0$ and $\beta_{2}=0$ and $\beta_{3}=0$ in the unrestricted model (1):

$$
\begin{equation*}
\mathrm{Y}_{\mathrm{i}}=\beta_{0}+\mathrm{u}_{\mathrm{i}} \quad(\mathrm{i}=1, \ldots, \mathrm{~N}) \tag{4}
\end{equation*}
$$

The number of free (unrestricted) regression coefficients in the restricted model (4) is $\mathbf{K}_{\mathbf{0}}=\mathbf{1}$.

- Number of coefficient restrictions specified by the null hypothesis \mathbf{H}_{0} is $\mathbf{q}=\mathrm{K}-\mathrm{K}_{0}=\mathrm{K}_{1}-\mathrm{K}_{0}=\mathbf{4 - 1}=\mathbf{3}$.
- Test 3: a test of the joint significance of two of the slope coefficients.

$$
\begin{equation*}
Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\beta_{3} X_{3 i}+u_{i} \quad(i=1, \ldots, N) \tag{1}
\end{equation*}
$$

- The null hypothesis is:

$$
\mathrm{H}_{0}: \quad \beta_{\mathrm{j}}=0 \quad \forall \mathrm{j}=2,3 ; \quad \beta_{2}=0 \text { and } \beta_{3}=0 .
$$

- The two slope coefficients β_{2} and β_{3} both equal zero; i.e., the slope coefficients β_{2} and β_{3} are jointly equal to zero.
- The alternative hypothesis is:

$$
\mathrm{H}_{1}: \quad \beta_{\mathrm{j}} \neq 0 \quad \mathrm{j}=2,3 ; \quad \beta_{2} \neq 0 \text { and/or } \beta_{3} \neq 0 .
$$

- At least one of the slope coefficients β_{2} and β_{3} does not equal zero.
- The unrestricted model corresponding to the alternative hypothesis $\mathbf{H}_{\mathbf{1}}$ is simply PRE (1):

$$
\begin{equation*}
Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\beta_{3} X_{3 i}+u_{i} \quad(i=1, \ldots, N) \tag{1}
\end{equation*}
$$

The number of free (unrestricted) regression coefficients in the unrestricted $\operatorname{model}(1)$ is $\mathbf{K}=\mathbf{K}_{\mathbf{1}}=\mathbf{4}$.

- The restricted model corresponding to the null hypothesis $\mathbf{H}_{\mathbf{0}}$ is obtained by setting $\beta_{2}=0$ and $\beta_{3}=0$ in the unrestricted model (1):

$$
\begin{equation*}
\mathrm{Y}_{\mathrm{i}}=\beta_{0}+\beta_{1} \mathrm{X}_{1 \mathrm{i}}+\mathrm{u}_{\mathrm{i}} \quad(\mathrm{i}=1, \ldots, \mathrm{~N}) \tag{5}
\end{equation*}
$$

The number of free (unrestricted) regression coefficients in the restricted model (5) is $\mathbf{K}_{\mathbf{0}}=\mathbf{2}$.

- Number of coefficient restrictions specified by the null hypothesis \mathbf{H}_{0} is $\mathbf{q}=\mathrm{K}-\mathrm{K}_{0}=\mathrm{K}_{1}-\mathrm{K}_{0}=\mathbf{4 - 2}=\mathbf{2}$.

