ECON 351* -- NOTE 15

Marginal Effects of Explanatory Variables: Constant or Variable?

1. Constant Marginal Effects of Explanatory Variables: A Starting Point

<u>Nature</u>: A continuous explanatory variable has a *constant* marginal effect on the dependent variable if it enters the regressor set only linearly and additively.

<u>Model 1</u>:

$$Y_{i} = \beta_{0} + \beta_{1} X_{1i} + \beta_{2} X_{2i} + u_{i}$$
(1)

- Model 1 contains only two *explanatory variables* X_1 and X_2 and two *regressors*.
- The population regression function, or conditional mean function, f(X_{1i}, X_{2i}) in Model 1 takes the form

$$E(Y_{i} | X_{1i}, X_{2i}) = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i}.$$

- The *marginal* effects on Y of the two explanatory variables X_1 and X_2 in equation (1) are obtained analytically by partially differentiating Y, or the conditional mean of Y given X_1 and X_2 , with respect to each of the explanatory variables X_1 and X_2 .
 - 1. The marginal effect of X₁ in Model 1 is:

$$\frac{\partial \mathbf{Y}_{i}}{\partial \mathbf{X}_{1i}} = \frac{\partial \mathbf{E}(\mathbf{Y}_{i} | \mathbf{X}_{1i}, \mathbf{X}_{2i})}{\partial \mathbf{X}_{1i}} = \beta_{1} = a \text{ constant}$$

2. The marginal effect of X₂ in Model 1 is:

$$\frac{\partial \mathbf{Y}_{i}}{\partial \mathbf{X}_{2i}} = \frac{\partial \mathbf{E} \left(\mathbf{Y}_{i} | \mathbf{X}_{1i}, \mathbf{X}_{2i} \right)}{\partial \mathbf{X}_{2i}} = \beta_{2} = a \text{ constant}$$

Example of Model 1:

$$price_{i} = \beta_{0} + \beta_{1}wgt_{i} + \beta_{2}mpg_{i} + u_{i}$$
(1*)

where

price_i = the price of the i-th car (in US dollars);

wgt_i = the weight of the i-th car (in pounds);

 mpg_i = the miles per gallon (fuel efficiency) for the i-th car (in miles per gallon).

. * Model 1: c . regress pric	-	nal effects	of wgt a	and mpg		
Source	SS	df	MS		Number of obs F(2, 71)	
Model Residual	186321280 448744116	2 9316 71 6320			Prob > F R-squared Adj R-squared	= 0.0000 = 0.2934
Total	635065396	73 8699	525.97		Root MSE	
price	Coef.	Std. Err.	t	P> t 	[95% Conf.	Interval]
wgt	1.746559	.6413538	2.72	0.008	.467736	3.025382
mpg	-49.51222	86.15604	-0.57	0.567	-221.3025	122.278
_cons	1946.069	3597.05	0.54	0.590	-5226.244	9118.382

2. Variable Marginal Effects and Interaction Terms: Squares and Cross Products of Continuous Explanatory Variables

<u>Nature</u>: Interactions between two continuous variables refer to products of pairs of explanatory variables.

- If X_{ji} and X_{hi} are two continuous explanatory variables, the interaction term between them is the product $X_{ji}X_{hi}$.
- The interaction of the variable X_{ji} with itself is simply the product $X_{ii}X_{ji} = X_{ji}^2$.
- Inclusion of these regressors in a linear regression model allows for *variable* or *nonconstant* marginal effects of the explanatory variables on the conditional mean of the dependent variable Y.
- **<u>Usage</u>:** Interaction terms between continuous variables allow the marginal effect of one explanatory variable to be a linear function of both itself and other explanatory variables.

<u>Model 2</u>:

$$Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i} + \beta_{3}X_{1i}^{2} + \beta_{4}X_{2i}^{2} + \beta_{5}X_{1i}X_{2i} + u_{i}$$
(2)

- Model 2 contains only <u>two</u> explanatory variables $-X_1$ and X_2 but <u>five</u> regressors.
- Formally, the **population regression function** $E(Y_i | X_{1i}, X_{2i}) = f(X_{1i}, X_{2i})$ in PRE (2) can be derived as a second-order Taylor series approximation to the function $f(X_{1i}, X_{2i})$. A second-order Taylor series approximation to the population regression function $f(X_{1i}, X_{2i})$ takes the form

$$E(Y_{i} | X_{1i}, X_{2i}) = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i} + \beta_{3}X_{1i}^{2} + \beta_{4}X_{2i}^{2} + \beta_{5}X_{1i}X_{2i}.$$

Marginal Effects in Model 2:

• The *marginal* effects on Y of the two explanatory variables X_1 and X_2 in equation (2) are obtained analytically by partially differentiating Y, or the conditional mean of Y given X_1 and X_2 , with respect to each of the explanatory variables X_1 and X_2 .

The population regression function for Model 2 is:

$$E(Y_{i} | X_{1i}, X_{2i}) = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i} + \beta_{3}X_{1i}^{2} + \beta_{4}X_{2i}^{2} + \beta_{5}X_{1i}X_{2i}$$

1. The marginal effect of X₁ in Model 2 is:

$$\frac{\partial \mathbf{Y}_{i}}{\partial \mathbf{X}_{1i}} = \frac{\partial \mathbf{E} \Big(\mathbf{Y}_{i} | \mathbf{X}_{1i}, \mathbf{X}_{2i} \Big)}{\partial \mathbf{X}_{1i}} = \beta_{1} + 2\beta_{3} \mathbf{X}_{1i} + \beta_{5} \mathbf{X}_{2i}$$

= a linear function of *both* X_{1i} and X_{2i}

2. The marginal effect of X₂ in Model 2 is:

$$\frac{\partial \mathbf{Y}_{i}}{\partial \mathbf{X}_{2i}} = \frac{\partial \mathbf{E} (\mathbf{Y}_{i} | \mathbf{X}_{1i}, \mathbf{X}_{2i})}{\partial \mathbf{X}_{2i}} = \beta_{2} + 2\beta_{4} \mathbf{X}_{2i} + \beta_{5} \mathbf{X}_{1i}$$
$$= \text{a linear function of both } \mathbf{X}_{1i} \text{ and } \mathbf{X}_{2i}$$

Squares of Continuous Explanatory Variables

Purpose: Allow for *increasing* or *decreasing* marginal effects of an explanatory variable on the dependent variable -- sometimes called *increasing* or *decreasing* marginal returns.

Determining whether the marginal effect of X₁ is increasing or decreasing

• Whether the *marginal* effect of X_1 is *increasing* or *decreasing* – i.e., whether X_1 exhibits *increasing* or *decreasing* marginal returns – is determined by the sign of the regression coefficient β_3 on the regressor X_{1i}^2 in Model 2.

$$\mathbf{Y}_{i} = \beta_{0} + \beta_{1} \mathbf{X}_{1i} + \beta_{2} \mathbf{X}_{2i} + \beta_{3} \mathbf{X}_{1i}^{2} + \beta_{4} \mathbf{X}_{2i}^{2} + \beta_{5} \mathbf{X}_{1i} \mathbf{X}_{2i} + \mathbf{u}_{i}$$
(2)

• We previously saw that the *marginal* effect of X_1 in Model 2 is given by the *first-order* partial derivative of Y_i , or $E(Y_i | X_{1i}, X_{2i})$, with respect to X_{1i} :

$$\frac{\partial \mathbf{Y}_{i}}{\partial \mathbf{X}_{1i}} = \frac{\partial E(\mathbf{Y}_{i} | \mathbf{X}_{1i}, \mathbf{X}_{2i})}{\partial \mathbf{X}_{1i}} = \beta_{1} + 2\beta_{3}\mathbf{X}_{1i} + \beta_{5}\mathbf{X}_{2i}$$

To determine whether the *marginal* effect of X₁ in Model 2 is *increasing* or *decreasing* in X₁, we need to examine the *second-order* partial derivative of Y_i, or E(Y_i | X_{1i}, X_{2i}), with respect to X_{1i}:

$$\frac{\partial^{2} \mathbf{Y}_{i}}{\partial \mathbf{X}_{1i}^{2}} = \frac{\partial}{\partial \mathbf{X}_{1i}} \frac{\partial \mathbf{E} \left(\mathbf{Y}_{i} | \mathbf{X}_{1i}, \mathbf{X}_{2i} \right)}{\partial \mathbf{X}_{1i}} = \frac{\partial^{2} \mathbf{E} \left(\mathbf{Y}_{i} | \mathbf{X}_{1i}, \mathbf{X}_{2i} \right)}{\partial^{2} \mathbf{X}_{1i}^{2}} = 2\beta_{3}$$

1. The *marginal* effect of X_1 is *increasing* in X_1 – meaning X_1 exhibits *increasing* marginal returns – when

$$\frac{\partial^2 Y_i}{\partial X_{1i}^2} = \frac{\partial^2 E(Y_i | X_{1i}, X_{2i})}{\partial^2 X_{1i}^2} = 2\beta_3 > 0 \qquad \text{i.e., when } \beta_3 > 0$$

2. The *marginal* effect of X₁ is *decreasing* in X₁ – meaning X₁ exhibits *decreasing* marginal returns – when

$$\frac{\partial^2 Y_i}{\partial X_{1i}^2} = \frac{\partial^2 E(Y_i | X_{1i}, X_{2i})}{\partial^2 X_{1i}^2} = 2\beta_3 < 0 \qquad \text{i.e., when} \quad \beta_3 < 0$$

Determining whether the marginal effect of X₂ is increasing or decreasing

• Whether the *marginal* effect of X_2 is *increasing* or *decreasing* – i.e., whether X_2 exhibits *increasing* or *decreasing* marginal returns – is determined by the sign of the regression coefficient β_4 on the regressor X_{2i}^2 in Model 2.

$$Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i} + \beta_{3}X_{1i}^{2} + \beta_{4}X_{2i}^{2} + \beta_{5}X_{1i}X_{2i} + u_{i}$$
(2)

• We previously saw that the *marginal* effect of X₂ in Model 2 is given by the *first-order* partial derivative of Y_i, or E(Y_i | X_{1i}, X_{2i}), with respect to X_{2i}:

$$\frac{\partial \mathbf{Y}_{i}}{\partial \mathbf{X}_{2i}} = \frac{\partial \mathbf{E} \left(\mathbf{Y}_{i} | \mathbf{X}_{1i}, \mathbf{X}_{2i} \right)}{\partial \mathbf{X}_{2i}} = \beta_{2} + 2\beta_{4} \mathbf{X}_{2i} + \beta_{5} \mathbf{X}_{1i}$$

To determine whether the *marginal* effect of X₂ in Model 2 is *increasing* or *decreasing* in X₂, we need to examine the *second-order* partial derivative of Y_i, or E(Y_i | X_{1i}, X_{2i}), with respect to X_{2i}:

$$\frac{\partial^2 Y_i}{\partial X_{2i}^2} = \frac{\partial}{\partial X_{2i}} \frac{\partial E(Y_i | X_{1i}, X_{2i})}{\partial X_{2i}} = \frac{\partial^2 E(Y_i | X_{1i}, X_{2i})}{\partial^2 X_{2i}^2} = 2\beta_4$$

1. The *marginal* effect of X₂ is *increasing* in X₂ – meaning X₂ exhibits *increasing* marginal returns – when

$$\frac{\partial^2 Y_i}{\partial X_{2i}^2} = \frac{\partial^2 E(Y_i | X_{1i}, X_{2i})}{\partial^2 X_{2i}^2} = 2\beta_4 > 0 \quad \text{ i.e., when } \beta_4 > 0$$

2. The *marginal* effect of X₂ is *decreasing* in X₂ – meaning X₂ exhibits *decreasing* marginal returns – when

$$\frac{\partial^2 Y_i}{\partial X_{2i}^2} = \frac{\partial^2 E(Y_i | X_{1i}, X_{2i})}{\partial^2 X_{2i}^2} = 2\beta_4 < 0 \quad \text{ i.e., when } \beta_4 < 0$$

Products of Two Continuous Explanatory Variables

- *Purpose:* Allow for relationships of *complementarity* or *substitutability* between X_1 and X_2 in determining Y.
- Whether X_1 and X_2 are *complementary* or *substitutable* is determined by the *sign* of the regression coefficient β_5 on the interaction term $X_{1i}X_{2i}$ in Model 2.

$$Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i} + \beta_{3}X_{1i}^{2} + \beta_{4}X_{2i}^{2} + \beta_{5}X_{1i}X_{2i} + u_{i}$$
(2)

The marginal effects of X₁ and X₂ in Model 2 are given by the *first-order* partial derivatives of Y_i, or E(Y_i | X_{1i}, X_{2i}), with respect to X_{1i} and X_{2i}:

$$\frac{\partial \mathbf{Y}_{i}}{\partial \mathbf{X}_{1i}} = \frac{\partial \mathbf{E} \left(\mathbf{Y}_{i} | \mathbf{X}_{1i}, \mathbf{X}_{2i} \right)}{\partial \mathbf{X}_{1i}} = \beta_{1} + 2\beta_{3} \mathbf{X}_{1i} + \beta_{5} \mathbf{X}_{2i}$$
$$\frac{\partial \mathbf{Y}_{i}}{\partial \mathbf{X}_{2i}} = \frac{\partial \mathbf{E} \left(\mathbf{Y}_{i} | \mathbf{X}_{1i}, \mathbf{X}_{2i} \right)}{\partial \mathbf{X}_{2i}} = \beta_{2} + 2\beta_{4} \mathbf{X}_{2i} + \beta_{5} \mathbf{X}_{1i}$$

To determine whether the *marginal* effect of X₁ (X₂) in Model 2 is *increasing* or *decreasing* in X₂ (X₁), we need to examine the *second-order* cross partial derivative of Y_i, or E(Y_i | X_{1i}, X_{2i}), with respect to X_{1i} and X_{2i}:

$$\frac{\partial^2 \mathbf{Y}_{i}}{\partial \mathbf{X}_{2i} \partial \mathbf{X}_{1i}} = \frac{\partial^2 \mathbf{E} \big(\mathbf{Y}_{i} | \mathbf{X}_{1i}, \mathbf{X}_{2i} \big)}{\partial \mathbf{X}_{2i} \partial \mathbf{X}_{1i}} = \beta_5$$

1. The *marginal* effect of X₁ is *increasing* in X₂ (or the *marginal* effect of X₂ is *increasing* in X₁) -- meaning X₁ and X₂ are *complementary* -- when

$$\frac{\partial^{2} Y_{i}}{\partial X_{2i} \partial X_{1i}} = \frac{\partial^{2} E(Y_{i} | X_{1i}, X_{2i})}{\partial X_{2i} \partial X_{1i}} = \beta_{5} > 0$$

2. The *marginal* effect of X₁ is *decreasing* in X₂ (or the *marginal* effect of X₂ is *decreasing* in X₁) -- meaning X₁ and X₂ are *substitutable* -- when

$$\frac{\partial^2 Y_i}{\partial X_{2i} \partial X_{1i}} = \frac{\partial^2 E(Y_i | X_{1i}, X_{2i})}{\partial X_{2i} \partial X_{1i}} = \beta_5 < 0$$

Example of Model 2:

$$price_{i} = \beta_{0} + \beta_{1}wgt_{i} + \beta_{2}mpg_{i} + \beta_{3}wgt_{i}^{2} + \beta_{4}mpg_{i}^{2} + \beta_{5}wgt_{i}mpg_{i} + u_{i}.$$
 (2*)

where

price_i = the price of the i-th car (in US dollars);

 wgt_i = the weight of the i-th car (in pounds);

 wgt_i^2 = the square of wgt_i ;

 mpg_i = the miles per gallon (fuel efficiency) for the i-th car (in miles per gallon);

 mpg_i^2 = the square of mpg_i ;

 wgt_impg_i = the product of wgt_i and mpg_i for the i-th car.

. * Model 2: variable marginal effects of wgt and mpg
. regress price wgt mpg wgtsq mpgsq wgtmpg

Source	SS	df	MS		Number of obs F(5, 68)	
Model Residual	308384833 326680563		6966.6 125.93		Prob > F R-squared Adj R-squared	= 0.0000 = 0.4856
Total	635065396	73 8699	525.97		Root MSE	= 2191.8
price	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
wgt mpg wgtsq mpgsq wgtmpg _cons	-31.88985 -3549.495 .0034574 38.74472 .5421927 92690.55	9.148215 1126.464 .0008629 12.62339 .1971854 25520.53	-3.49 -3.15 4.01 3.07 2.75 3.63	0.001 0.002 0.000 0.003 0.008 0.001	-50.14483 -5797.318 .0017355 13.55514 .1487154 41765.12	-13.63487 -1301.672 .0051792 63.93431 .9356701 143616

Hypothesis Tests on the Marginal Effects of *wgt* and *mpg*

$$price_{i} = \beta_{0} + \beta_{1}wgt_{i} + \beta_{2}mpg_{i} + \beta_{3}wgt_{i}^{2} + \beta_{4}mpg_{i}^{2} + \beta_{5}wgt_{i}mpg_{i} + u_{i}$$
(2*)

<u>Test 1</u>: The **marginal effect of** *wgt*_{*i*} **on** *price*_{*i*} **is** *zero* for all cars.

• The marginal effect of *wgt_i* on *price_i* in Model 2* is:

$$\frac{\partial \text{price}_{i}}{\partial \text{wgt}_{i}} = \frac{\partial E(\text{price}_{i} | \text{wgt}_{i}, \text{mpg}_{i})}{\partial \text{wgt}_{i}} = \beta_{1} + 2\beta_{3}\text{wgt}_{i} + \beta_{5}\text{mpg}_{i}$$

• Null and Alternative Hypotheses

H₀: $\beta_1 = 0$ and $\beta_3 = 0$ and $\beta_5 = 0$ specifies **three** coefficient restrictions H₁: $\beta_1 \neq 0$ and/or $\beta_3 \neq 0$ and/or $\beta_5 \neq 0$

- Unrestricted Model Corresponding to H₁: regression equation (2*)
- *Restricted Model Corresponding to* H_0 : set $\beta_1 = 0$ and $\beta_3 = 0$ and $\beta_5 = 0$ in (2*).

 $price_i = \beta_0 + \beta_2 mpg_i + \beta_4 mpg_i^2 + u_i$

. * Test 1: Test hypothesis that marginal effect of wgt equals zero for all cars . test wgt wgtsq wgtmpg

```
( 1) wgt = 0.0
( 2) wgtsq = 0.0
( 3) wgtmpg = 0.0
F( 3, 68) = 6.42
Prob > F = 0.0007
```

Test 2: The **marginal effect of** *mpg*^{*i*} **on** *price*^{*i*} **is** *zero* for all cars.

$$price_{i} = \beta_{0} + \beta_{1}wgt_{i} + \beta_{2}mpg_{i} + \beta_{3}wgt_{i}^{2} + \beta_{4}mpg_{i}^{2} + \beta_{5}wgt_{i}mpg_{i} + u_{i}$$
(2*)

• The marginal effect of *mpg_i* on *price_i* in Model 2* is:

$$\frac{\partial \text{price}_{i}}{\partial \text{mpg}_{i}} = \frac{\partial E(\text{price}_{i} | \text{wgt}_{i}, \text{mpg}_{i})}{\partial \text{mpg}_{i}} = \beta_{2} + 2\beta_{4}\text{mpg}_{i} + \beta_{5}\text{wgt}_{i}$$

• Null and Alternative Hypotheses

H₀: $\beta_2 = 0$ and $\beta_4 = 0$ and $\beta_5 = 0$ specifies **three** coefficient restrictions H₁: $\beta_2 \neq 0$ and/or $\beta_4 \neq 0$ and/or $\beta_5 \neq 0$

- Unrestricted Model Corresponding to H₁: regression equation (2*)
- **Restricted Model Corresponding to** H_0 : set $\beta_2 = 0$ and $\beta_4 = 0$ and $\beta_5 = 0$ in (2*).

 $price_{i} = \beta_{0} + \beta_{1}wgt_{i} + \beta_{3}wgt_{i}^{2} + u_{i}$

. * Test 2: Test hypothesis that marginal effect of mpg equals zero for all cars . test mpg mpgsq wgtmpg

```
( 1) mpg = 0.0
( 2) mpgsq = 0.0
( 3) wgtmpg = 0.0
F( 3, 68) = 4.03
Prob > F = 0.0106
```

Test 3: The marginal effect of *wgt_i* on *price_i* is *constant*.

$$price_{i} = \beta_{0} + \beta_{1}wgt_{i} + \beta_{2}mpg_{i} + \beta_{3}wgt_{i}^{2} + \beta_{4}mpg_{i}^{2} + \beta_{5}wgt_{i}mpg_{i} + u_{i}$$
(2*)

• The marginal effect of *wgt_i* on *price_i* in Model 2* is:

$$\frac{\partial \text{price}_{i}}{\partial \text{wgt}_{i}} = \frac{\partial E(\text{price}_{i} | \text{wgt}_{i}, \text{mpg}_{i})}{\partial \text{wgt}_{i}} = \beta_{1} + 2\beta_{3}\text{wgt}_{i} + \beta_{5}\text{mpg}_{i}$$
$$= \beta_{1} \text{ (a constant) if } \beta_{3} = 0 \text{ and } \beta_{5} = 0$$

• Null and Alternative Hypotheses

H₀: $\beta_3 = 0$ and $\beta_5 = 0$ specifies **two** coefficient restrictions H₁: $\beta_3 \neq 0$ and/or $\beta_5 \neq 0$

- Unrestricted Model Corresponding to H₁: regression equation (2*)
- **Restricted Model Corresponding to** H_0 : set $\beta_3 = 0$ and $\beta_5 = 0$ in (2*).

 $price_{i} = \beta_{0} + \beta_{1}wgt_{i} + \beta_{2}mpg_{i} + \beta_{4}mpg_{i}^{2} + u_{i}$

```
. * Test 3: Test hypothesis that marginal effect of wgt is constant
. test wgtsq wgtmpg
( 1) wgtsq = 0.0
( 2) wgtmpg = 0.0
F( 2, 68) = 8.80
Prob > F = 0.0004
```

Test 4: The marginal effect of *mpg*_i on *price*_i is *constant*.

$$price_{i} = \beta_{0} + \beta_{1}wgt_{i} + \beta_{2}mpg_{i} + \beta_{3}wgt_{i}^{2} + \beta_{4}mpg_{i}^{2} + \beta_{5}wgt_{i}mpg_{i} + u_{i}$$
(2*)

• The marginal effect of *mpg_i* on *price_i* in Model 2* is:

$$\frac{\partial \text{price}_{i}}{\partial \text{mpg}_{i}} = \frac{\partial E(\text{price}_{i} | \text{wgt}_{i}, \text{mpg}_{i})}{\partial \text{mpg}_{i}} = \beta_{2} + 2\beta_{4}\text{mpg}_{i} + \beta_{5}\text{wgt}_{i}$$
$$= \beta_{2} (\text{a constant}) \text{ if } \beta_{4} = 0 \text{ and } \beta_{5} = 0$$

• Null and Alternative Hypotheses

H₀: $\beta_4 = 0$ and $\beta_5 = 0$ specifies **two** coefficient restrictions H₁: $\beta_4 \neq 0$ and/or $\beta_5 \neq 0$

- Unrestricted Model Corresponding to H₁: regression equation (2*)
- *Restricted Model Corresponding to* H_0 : set $\beta_4 = 0$ and $\beta_5 = 0$ in (2*).

 $price_{i} = \beta_{0} + \beta_{1}wgt_{i} + \beta_{2}mpg_{i} + \beta_{3}wgt_{i}^{2} + u_{i}$

```
. * Test 4: Test hypothesis that marginal effect of mpg is constant

. test mpgsq wgtmpg

( 1) mpgsq = 0.0

( 2) wgtmpg = 0.0

F(2, 68) = 4.75

Prob > F = 0.0117
```

Test 5: The marginal effects of <u>both</u> wgt_i and mpg_i on price_i are constant.

$$price_{i} = \beta_{0} + \beta_{1}wgt_{i} + \beta_{2}mpg_{i} + \beta_{3}wgt_{i}^{2} + \beta_{4}mpg_{i}^{2} + \beta_{5}wgt_{i}mpg_{i} + u_{i}$$
(2*)

• The marginal effect of *wgt_i* on *price_i* in Model 2* is:

$$\frac{\partial \text{price}_{i}}{\partial \text{wgt}_{i}} = \frac{\partial E(\text{price}_{i} | \text{wgt}_{i}, \text{mpg}_{i})}{\partial \text{wgt}_{i}} = \beta_{1} + 2\beta_{3}\text{wgt}_{i} + \beta_{5}\text{mpg}_{i}$$
$$= \beta_{1} \text{ (a constant) if } \beta_{3} = 0 \text{ and } \beta_{5} = 0$$

• The marginal effect of *mpg*_i on *price*_i in Model 2* is:

$$\frac{\partial \text{price}_{i}}{\partial \text{mpg}_{i}} = \frac{\partial E(\text{price}_{i} | \text{wgt}_{i}, \text{mpg}_{i})}{\partial \text{mpg}_{i}} = \beta_{2} + 2\beta_{4}\text{mpg}_{i} + \beta_{5}\text{wgt}_{i}$$
$$= \beta_{2} \text{ (a constant) if } \beta_{4} = 0 \text{ and } \beta_{5} = 0$$

• Null and Alternative Hypotheses

H₀: $\beta_3 = 0$ and $\beta_4 = 0$ and $\beta_5 = 0$ specifies **three** coefficient restrictions H₁: $\beta_3 \neq 0$ and/or $\beta_4 \neq 0$ and/or $\beta_5 \neq 0$

- Unrestricted Model Corresponding to H₁: regression equation (2*)
- *Restricted Model Corresponding to* H_0 is Model 1*: set $\beta_3 = 0$ and $\beta_4 = 0$ and $\beta_5 = 0$ in (2*).

$$price_{i} = \beta_{0} + \beta_{1}wgt_{i} + \beta_{2}mpg_{i} + u_{i}$$
(1*)

* Test 5: Test hypothesis that marginal effects of wgt and mpg are constants
test wgtsq mpgsq wgtmpg
(1) wgtsq = 0

```
( 2) mpgsq = 0
( 3) wgtmpg = 0
F( 3, 68) = 8.47
Prob > F = 0.0001
```