ECON 351* -- NOTE 14

Functional Form in the Variables: Common Specifications

1. Introduction

One of the requirements specified by **Assumption A1** of the CLRM is that the PRE be **linear in coefficients** or **linear in parameters**.

Recall that linearity-in-coefficients or linearity-in-parameters means that

 $\frac{\partial Y_i}{\partial \beta_j} = f_j(\underline{x}_i)$, a function that contains *no unknown parameters*.

But the requirement of linearity-in-parameters does allow the PRE to contain *known nonlinear* functions of observable variables $Y_i, X_{1i}, X_{2i}, ..., X_{ki}$.

Two important nonlinear functions in applied regression analysis are (1) the natural logarithmic transformation and (2) the exponential function.

1. The *natural logarithmic* transformation is defined only for observable variables that take strictly positive values -- i.e., that are greater than zero for all observations.

Examples:Natural logarithm of $Y_i \equiv \ln Y_i$ if $Y_i > 0$ for all i;Natural logarithm of $X_{ji} \equiv \ln X_{ji}$ if $X_{ji} > 0$ for all i.

2. Known exponential functions of observable variables.

Examples: The square (second power) of $X_{ji} \equiv X_{ji}^2$; The cube (third power) of $X_{ji} \equiv X_{ji}^3$; The square root of $X_{ji} \equiv X_{ji}^{0.5} = \sqrt{X_{ji}}$.

Note: What is not permitted are *unknown* exponential functions of variables, such as X_{ii}^{α} where α is an *unknown* parameter.

2. The Natural Logarithmic Transformation

• The *natural logarithmic transformation* is **defined only for variables that are** *strictly positively valued*.

 lnY_i is defined only if $Y_i > 0$ for all i. lnX_{ji} is defined only if $X_{ji} > 0$ for all i.

• Differentials of lnY_i and lnX_{ji} are the *relative*, or *proportionate*, changes in Y_i and X_{ji}.

$$d \ln Y_{i} = \frac{dY_{i}}{Y_{i}} = \text{the relative (proportionate) change in } Y_{i} \text{ if } Y_{i} > 0 \text{ for all } i.$$

$$d \ln X_{ji} = \frac{dX_{ji}}{X_{ji}} = \text{the relative (proportionate) change in } X_{ji} \text{ if } X_{ji} > 0 \text{ for all } i.$$

• **Percentage changes in Y_i and X_{ji}** are calculated by multiplying the respective relative changes by 100.

$$100 (d \ln Y_i) = 100 \left(\frac{dY_i}{Y_i}\right) = \text{the percentage change in } Y_i \text{ if } Y_i > 0 \text{ for all } i.$$

$$100 (d \ln X_{ji}) = 100 \left(\frac{dX_{ji}}{X_{ji}}\right) = \text{the percentage change in } X_{ji} \text{ if } X_{ji} > 0 \text{ for all } i.$$

• The *elasticity coefficient* of Y with respect to X_j is defined as follows:

$$\varepsilon_{j} = \frac{d \ln Y_{i}}{d \ln X_{ji}} = \frac{dY_{i}/Y_{i}}{dX_{ji}/X_{ji}} = \frac{dY_{i}}{dX_{ji}} \frac{X_{ji}}{Y_{i}} = \text{the elasticity of } Y \text{ wrt to } X_{j}.$$

3. Three Common Functional Forms for Regression Models

• Two are based on the natural logarithmic transformation of the dependent variable Y_i and/or the explanatory variables X_{ji} .

3.1 The LIN-LIN (Linear) Model

$$Y_{i} = \beta_{0} + \sum_{j=1}^{k} \beta_{j} X_{ji} + u_{i}$$
(1)

where the *slope* coefficients β_j (j = 1, 2, ..., k) are interpreted as

$$\beta_{j} = \frac{\partial Y_{i}}{\partial X_{ji}} = \frac{\text{change in } Y_{i}}{\text{change in } X_{ji}} = \text{ partial slope of } \mathbf{Y} \text{ with respect to } \mathbf{X}_{j}.$$

Note: The value of β_j depends on the units in which both Y_i and X_{ji} are measured.

The LIN-LIN model is **linear in the variables** Y_i and X_{ji} (j = 1, 2, ..., k):

slope of Y wrt
$$X_j = \frac{\partial Y_i}{\partial X_{ji}} = \beta_j = a \text{ constant.}$$

Example:

$$Y_i=\beta_0+\beta_1X_{1i}+\beta_2X_{2i}+u_i$$

$$\beta_1 = \frac{\partial Y_i}{\partial X_{1i}} = \frac{\text{change in } Y_i}{\text{change in } X_{1i}} = \text{the partial slope of } Y \text{ wrt } X_1;$$

$$\beta_2 = \frac{\partial Y_i}{\partial X_{2i}} = \frac{\text{change in } Y_i}{\text{change in } X_{2i}} = \text{ the partial slope of } Y \text{ wrt } X_2.$$

3.2 The LOG-LOG (Double-Log) Model

$$\ln Y_{i} = \alpha_{0} + \sum_{j=1}^{k} \alpha_{j} \ln X_{ji} + u_{i}$$
(2)

where the *slope* coefficients α_j (j = 1, ..., k) are interpreted as

$$\alpha_{j} = \frac{\partial \ln Y_{i}}{\partial \ln X_{ji}} = \frac{\partial Y_{i}/Y_{i}}{\partial X_{ji}/X_{ji}} = \frac{\partial Y_{i}}{\partial X_{ji}} \frac{X_{ji}}{Y_{i}} = \frac{\text{relative change in } Y_{i}}{\text{relative change in } X_{ji}}$$

- = the partial elasticity of Y with respect to X_i
- *Note:* The value of α_j does not depend on the units in which Y_i and X_{ji} are measured.
- The LOG-LOG model is nonlinear in the variables Y_i and X_{ji} (j = 1, ..., k):

slope of Y wrt X_j =
$$\frac{\partial Y_i}{\partial X_{ji}} = \frac{\partial \ln Y_i}{\partial \ln X_{ji}} \frac{Y_i}{X_{ji}} = \alpha_j \frac{Y_i}{X_{ji}} = a$$
 variable.

Example:

$$ln\,Y_i=\alpha_0+\alpha_1\,ln\,X_{1i}+\alpha_2\,ln\,X_{2i}+u_i$$

 $\alpha_{1} = \frac{\partial \ln Y_{i}}{\partial \ln X_{1i}} = \frac{\text{relative change in } Y_{i}}{\text{relative change in } X_{1i}} = \text{the partial$ *elasticity* $of Y wrt } X_{1};$

 $\alpha_2 = \frac{\partial \ln Y_i}{\partial \ln X_{2i}} = \frac{\text{relative change in } Y_i}{\text{relative change in } X_{2i}} = \text{ the partial$ *elasticity* $of Y wrt } X_2.$

3.3 The LOG-LIN (Semi-Log) Model

$$\ln Y_{i} = \gamma_{0} + \sum_{j=1}^{k} \gamma_{j} X_{ji} + u_{i}$$
(3)

where the *slope* coefficients γ_j (j = 1, ..., k) are interpreted as

$$\gamma_{j} = \frac{\partial \ln Y_{i}}{\partial X_{ji}} = \frac{\partial Y_{i}/Y_{i}}{\partial X_{ji}} = \frac{\partial Y_{i}}{\partial X_{ji}} \frac{1}{Y_{i}} = \frac{\text{relative change in } Y_{i}}{\text{change in } X_{ji}}$$

= the partial semi-elasticity of Y with respect to X_i .

Note: The value of γ_j does depend on the units in which X_{ji} is measured, but does not depend on the units in which Y_i is measured.

The LOG-LIN model is **nonlinear in the variable Y**_i:

slope of Y wrt
$$X_j = \frac{\partial Y_i}{\partial X_{ji}} = \frac{\partial \ln Y_i}{\partial X_{ji}} Y_i = \gamma_j Y_i = a$$
 variable.

Example:

 $ln Y_i = \gamma_0 + \gamma_1 X_{1i} + \gamma_2 X_{2i} + u_i$

$$\gamma_{1} = \frac{\partial \ln Y_{i}}{\partial X_{1i}} = \frac{\text{relative change in } Y_{i}}{\text{change in } X_{1i}} = \text{partial semi-elasticity of } Y \text{ wrt } X_{1};$$

$$\gamma_{2} = \frac{\partial \ln Y_{i}}{\partial X_{2i}} = \frac{\text{relative change in } Y_{i}}{\text{change in } X_{2i}} = \text{partial semi-elasticity of } Y \text{ wrt } X_{2}.$$

$$100\gamma_{1} = 100 \frac{\partial \ln Y_{i}}{\partial X_{1i}} = \frac{\text{percentage change in } Y_{i}}{\text{change in } X_{1i}}$$

$$100\gamma_{2} = 100 \frac{\partial \ln Y_{i}}{\partial X_{2i}} = \frac{\text{percentage change in } Y_{i}}{\text{change in } X_{2i}}$$

4. LIN-LIN, LOG-LOG and LOG-LIN Models: Examples

Example 1. LIN-LIN and LOG-LOG Models of Car Prices

 $price_i = price of car i, in US dollars$

weight_i = weight of car i, in pounds

 $mpg_i = miles per gallon of car i$

LIN-LIN Model of Car Prices

 $price_i = \beta_0 + \beta_1 weight_i + \beta_2 mpg_i + u_i$

OLS sample regression function:

. regress price weight mpg

Source	SS	df	MS		Number of obs F(2, 71)	
Model Residual	186321280 448744116)639.9 339.67		Prob > F	= 0.0000 = 0.2934
Total	635065396	73 8699!	525.97			= 2514.0
price	Coef.	Std. Err.	t			
+			L	₽> t	[95% Conf.	Interval]
weight mpg _cons		.6413538 86.15604 3597.05	2.723 -0.575 0.541	0.008 0.567 0.590	[95% Conf. .4677361 -221.3025 -5226.244	Interval] 3.025382 122.278 9118.382

 $\hat{\beta}_1 = 1.747 =$ an estimate of the (partial) *slope* of price with respect to weight.

<u>Meaning</u>: An *increase* (decrease) in *weight* of **1** pound is associated on average with an *increase* (decrease) in *price* of **1.747 dollars** (per car).

 $\hat{\beta}_2 = -49.51 = \text{an estimate of the (partial) } slope \text{ of } price \text{ with respect to } mpg.$

<u>Meaning</u>: An *increase* (decrease) in fuel efficiency of **1 mile per gallon** is associated on average with a *decrease* (increase) in *price* of **49.51 dollars** (per car).

. regress lnp lnw lnm

LOG-LOG Model of Car Prices

 $\ln(\text{price}_i) = \alpha_0 + \alpha_1 \ln(\text{weight}_i) + \alpha_2 \ln(\text{mpg}_i) + u_i$

OLS sample regression function:

Source	SS	df	MS		Number of obs = F(2, 71) =	74 15.64
Model Residual	3.43231706 7.79121602		515853 735437		Prob > F = R-squared =	0.0000 0.3058 0.2863
Total	11.2235331	73 .1537	47029		Adj R-squared = Root MSE =	.33126
lnp	Coef.	Std. Err.	t	P> t	[95% Conf. In	terval]
lnw lnm _cons	<u>.1910324</u> <u>6616411</u> 9.11759	.2720159 .2784715 2.91713	0.702 -2.376 3.126	0.485 0.020 0.003	-1.216898	7334167 1063847 4.93418

 $\hat{\alpha}_1 = 0.191 = \text{an estimate of the (partial)$ *elasticity*of*price*with respect to*weight*.

Meaning:

A **1 percent** *increase* (decrease) in *weight* is associated on average with a **0.191 percent** *increase* (decrease) in *price*.

A **10 percent** *increase* (decrease) in *weight* is associated on average with a **1.91 percent** *increase* (decrease) in *price*.

 $\hat{\alpha}_2 = -0.662 = \text{an estimate of the (partial)$ *elasticity*of*price*with respect to*mpg*.

Meaning:

A **1 percent** *increase* (decrease) in *mpg* is associated on average with a **0.662 percent** *decrease* (increase) in *price*.

A **10 percent** *increase* (decrease) in *mpg* is associated on average with a **6.62 percent** *decrease* (increase) in *price*.

Example 2. A LOG-LOG Model of Urban Demand for Bus Travel

- BUS_i = demand for urban bus travel in city i, in thousands of passenger hours per year
- INC_i = average income per capita in city i, in dollars per year
- POP_i = population of city i, in thousands of persons
- $AREA_i = land area of city i, in square miles$

Population regression equation (PRE):

 $ln BUS_i = \alpha_0 + \alpha_1 ln INC_i + \alpha_2 ln POP_i + \alpha_3 ln AREA_i + u_i$

OLS slope coefficient estimates (standard errors in parentheses):

 $\hat{\alpha}_1 = -4.730 =$ an estimate of the partial *elasticity* of *BUS* with respect to *INC*. (1.021)

Meaning:

A **1 percent** *increase* (decrease) in *INC* is associated on average with a **4.73 percent** *decrease* (increase) in *BUS*.

 $\hat{\alpha}_2 = 1.820 = an$ estimate of the partial *elasticity* of *BUS* with respect to *POP*. (0.236)

Meaning:

A **1 percent** *increase* (decrease) in *POP* is associated on average with a **1.82 percent** *increase* (decrease) in *BUS*.

 $\hat{\alpha}_3 = -0.971 = \text{an estimate of the partial$ *elasticity*of*BUS*with respect to*AREA*. (0.207)

Meaning:

A **1 percent** *increase* (decrease) in *AREA* is associated on average with a **0.971 percent** *decrease* (increase) in *BUS*.

. regress lnw ed exp

Example 3. A LOG-LIN Model of Employees' Wage Rates

 W_i = hourly wage rate of employee i, in dollars per hour

 ED_i = years of completed schooling of employee i, in years

 EXP_i = years of work experience of employee i, in years

Population regression equation (PRE):

 $\ln W_{i} = \gamma_{0} + \gamma_{1}ED_{i} + \gamma_{2}EXP_{i} + u_{i}$

OLS sample regression equation (SRE):

Source	SS	df	MS		Number of obs F(2, 531)	
Model Residual	31.3793042 117.062591	2 15.6 531 .220	5896521)456857		Prob > F	= 0.0000 = 0.2114
Total	148.441895	533 .278	3502617			= .46953
lnw	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
ed exp _cons	<u>.0964201</u> .0117536 .5827743	.0083113 .0017542 .1254241	11.601 6.700 4.646	0.000 0.000 0.000	.0800931 .0083077 .336386	.1127472 .0151996 .8291627

 $\hat{\gamma}_1 = 0.0964 \implies 100\hat{\gamma}_1 = 9.64$

Meaning:

A **1** year *increase* (decrease) in *ED* is associated on average with a 100×0.0964 = **9.64 percent** *increase* (decrease) in *W*.

 $\hat{\gamma}_2 = 0.0118 \implies 100\hat{\gamma}_2 = 1.18$

Meaning:

A **1** year *increase* (decrease) in *EXP* is associated on average with a $100 \times 0.0118 = 1.18$ percent *increase* (decrease) in *W*.