ECON 351* -- NOTE 14

Functional Form in the Variables: Common Specifications

1. Introduction

One of the requirements specified by Assumption A1 of the CLRM is that the PRE be linear in coefficients or linear in parameters.

Recall that linearity-in-coefficients or linearity-in-parameters means that $\frac{\partial \mathrm{Y}_{\mathrm{i}}}{\partial \beta_{\mathrm{j}}}=\mathrm{f}_{\mathrm{j}}\left(\underline{\mathrm{x}}_{\mathrm{i}}\right)$, a function that contains no unknown parameters.

But the requirement of linearity-in-parameters does allow the PRE to contain known nonlinear functions of observable variables $\mathrm{Y}_{\mathrm{i}}, \mathrm{X}_{1 \mathrm{i}}, \mathrm{X}_{2 \mathrm{i}}, \ldots, \mathrm{X}_{\mathrm{k}}$.

Two important nonlinear functions in applied regression analysis are (1) the natural logarithmic transformation and (2) the exponential function.

1. The natural logarithmic transformation is defined only for observable variables that take strictly positive values -- i.e., that are greater than zero for all observations.

Examples: Natural logarithm of $\mathrm{Y}_{\mathrm{i}} \equiv \ln \mathrm{Y}_{\mathrm{i}} \quad$ if $\mathrm{Y}_{\mathrm{i}}>0$ for all i ;
Natural \log arithm of $\mathrm{X}_{\mathrm{ji}} \equiv \ln \mathrm{X}_{\mathrm{ji}} \quad$ if $\mathrm{X}_{\mathrm{ji}}>0$ for all i .
2. Known exponential functions of observable variables.

Examples: The square (second power) of $\mathrm{X}_{\mathrm{ji}} \equiv \mathrm{X}_{\mathrm{ji}}^{2}$;
The cube (third power) of $\mathrm{X}_{\mathrm{ji}} \equiv \mathrm{X}_{\mathrm{ji}}^{3}$;
The square root of $\mathrm{X}_{\mathrm{ji}} \equiv \mathrm{X}_{\mathrm{ji}}^{0.5}=\sqrt{\mathrm{X}_{\mathrm{ji}}}$.
Note: What is not permitted are unknown exponential functions of variables, such as $\mathrm{X}_{\mathrm{ji}}^{\alpha}$ where α is an unknown parameter.

2. The Natural Logarithmic Transformation

- The natural logarithmic transformation is defined only for variables that are strictly positively valued.
$\ln Y_{i}$ is defined only if $Y_{i}>0$ for all i.
$\ln \mathrm{X}_{\mathrm{ji}}$ is defined only if $\mathrm{X}_{\mathrm{ji}}>0$ for all i .
- Differentials of $\ln Y_{i}$ and $\ln X_{j i}$ are the relative, or proportionate, changes in \mathbf{Y}_{i} and X_{ij}.
$d \ln Y_{i}=\frac{d Y_{i}}{Y_{i}}=$ the relative (proportionate) change in $\mathbf{Y}_{\mathbf{i}}$ if $Y_{i}>0$ for all i.
$\mathrm{d} \ln \mathrm{X}_{\mathrm{ji}}=\frac{\mathrm{d} \mathrm{X}_{\mathrm{ji}}}{\mathrm{X}_{\mathrm{ji}}}=$ the relative (proportionate) change in X_{ji} if $\mathrm{X}_{\mathrm{ji}}>0$ for all i.
- Percentage changes in $\mathbf{Y}_{\mathbf{i}}$ and $\mathbf{X}_{\mathbf{j i}}$ are calculated by multiplying the respective relative changes by 100 .

$$
\begin{aligned}
& 100\left(\mathrm{~d} \ln \mathrm{Y}_{\mathrm{i}}\right)=100\left(\frac{\mathrm{~d} \mathrm{Y}_{\mathrm{i}}}{\mathrm{Y}_{\mathrm{i}}}\right)=\text { the percentage change in } \mathrm{Y}_{\mathrm{i}} \text { if } \mathrm{Y}_{\mathrm{i}}>0 \text { for all i. } \\
& 100\left(\mathrm{~d} \ln \mathrm{X}_{\mathrm{ji}}\right)=100\left(\frac{\mathrm{~d} \mathrm{X}_{\mathrm{ji}}}{\mathrm{X}_{\mathrm{ji}}}\right)=\text { the percentage change in } \mathrm{X}_{\mathrm{ji}} \text { if } \mathrm{X}_{\mathrm{ji}}>0 \text { for all i. }
\end{aligned}
$$

- The elasticity coefficient of \mathbf{Y} with respect to $\mathbf{X}_{\mathbf{j}}$ is defined as follows:

$$
\varepsilon_{\mathrm{j}}=\frac{\mathrm{d} \ln \mathrm{Y}_{\mathrm{i}}}{\mathrm{~d} \ln \mathrm{X}_{\mathrm{ji}}}=\frac{\mathrm{dY}}{\mathrm{i}} / \mathrm{Y}_{\mathrm{i}} \mathrm{X}_{\mathrm{ji}} / \mathrm{X}_{\mathrm{ji}} \quad=\frac{\mathrm{dY}}{\mathrm{~d} \mathrm{X}_{\mathrm{ji}}} \frac{\mathrm{X}_{\mathrm{ji}}}{\mathrm{Y}_{\mathrm{i}}}=\text { the elasticity of } \mathbf{Y} \text { wrt to } \mathbf{X}_{\mathrm{j}} \text {. }
$$

3. Three Common Functional Forms for Regression Models

- Two are based on the natural logarithmic transformation of the dependent variable Y_{i} and/or the explanatory variables X_{ji}.

3.1 The LIN-LIN (Linear) Model

$$
\begin{equation*}
\mathrm{Y}_{\mathrm{i}}=\beta_{0}+\sum_{\mathrm{j}=1}^{\mathrm{k}} \beta_{\mathrm{j}} \mathrm{X}_{\mathrm{ji}}+\mathrm{u}_{\mathrm{i}} \tag{1}
\end{equation*}
$$

 $\beta_{\mathrm{j}}=\frac{\partial \mathrm{Y}_{\mathrm{i}}}{\partial \mathrm{X}_{\mathrm{ji}}}=\frac{\text { change in } \mathrm{Y}_{\mathrm{i}}}{\text { change in } \mathrm{X}_{\mathrm{ji}}}=$ partial slope of Y with respect to $\mathbf{X}_{\mathbf{j}}$.

Note: The value of β_{j} depends on the units in which both Y_{i} and X_{ji} are measured.

The LIN-LIN model is linear in the variables $\mathbf{Y}_{\mathbf{i}}$ and $\mathbf{X}_{\mathbf{j i}}(\mathrm{j}=1,2, \ldots, \mathrm{k})$: slope of Y wrt $X_{j}=\frac{\partial Y_{i}}{\partial X_{j i}}=\beta_{j}=$ a constant.

Example:

$Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+u_{i}$
$\beta_{1}=\frac{\partial \mathrm{Y}_{\mathrm{i}}}{\partial \mathrm{X}_{1 \mathrm{i}}}=\frac{\text { change in } \mathrm{Y}_{\mathrm{i}}}{\text { change in } \mathrm{X}_{1 \mathrm{i}}}=$ the partial slope of Y wrt $\mathbf{X}_{\mathbf{1}}$;
$\beta_{2}=\frac{\partial Y_{i}}{\partial X_{2 i}}=\frac{\text { change in } Y_{i}}{\text { change in } X_{2 i}}=$ the partial slope of Y wrt X_{2}.

3.2 The LOG-LOG (Double-Log) Model

$$
\begin{equation*}
\ln \mathrm{Y}_{\mathrm{i}}=\alpha_{0}+\sum_{\mathrm{j}=1}^{\mathrm{k}} \alpha_{\mathrm{j}} \ln \mathrm{X}_{\mathrm{ji}}+\mathrm{u}_{\mathrm{i}} \tag{2}
\end{equation*}
$$

where the slope coefficients $\alpha_{j}(\mathbf{j}=\mathbf{1}, \ldots, \mathbf{k})$ are interpreted as

$$
\begin{aligned}
\alpha_{\mathrm{j}} & =\frac{\partial \ln \mathrm{Y}_{\mathrm{i}}}{\partial \ln \mathrm{X}_{\mathrm{ji}}}=\frac{\partial \mathrm{Y}_{\mathrm{i}} / \mathrm{Y}_{\mathrm{i}}}{\partial \mathrm{X}_{\mathrm{ji}} / \mathrm{X}_{\mathrm{ji}}}=\frac{\partial \mathrm{Y}_{\mathrm{i}}}{\partial \mathrm{X}_{\mathrm{ji}}} \frac{\mathrm{X}_{\mathrm{ji}}}{\mathrm{Y}_{\mathrm{i}}}=\frac{\text { relative change in } \mathrm{Y}_{\mathrm{i}}}{\text { relative change in } \mathrm{X}_{\mathrm{ji}}} \\
& =\text { the partial elasticity of } \mathrm{Y} \text { with respect to } \mathrm{X}_{\mathrm{j}}
\end{aligned}
$$

Note: The value of α_{j} does not depend on the units in which Y_{i} and X_{ji} are measured.

The LOG-LOG model is nonlinear in the variables $\mathbf{Y}_{\mathbf{i}}$ and $\mathbf{X}_{\mathbf{j i}}(\mathrm{j}=1, \ldots, \mathrm{k})$: slope of Y wrt $\mathrm{X}_{\mathrm{j}}=\frac{\partial \mathrm{Y}_{\mathrm{i}}}{\partial \mathrm{X}_{\mathrm{ji}}}=\frac{\partial \ln \mathrm{Y}_{\mathrm{i}}}{\partial \ln \mathrm{X}_{\mathrm{ji}}} \frac{\mathrm{Y}_{\mathrm{i}}}{\mathrm{X}_{\mathrm{ji}}}=\alpha_{\mathrm{j}} \frac{\mathrm{Y}_{\mathrm{i}}}{\mathrm{X}_{\mathrm{ji}}}=$ a variable.

Example:

$\ln \mathrm{Y}_{\mathrm{i}}=\alpha_{0}+\alpha_{1} \ln \mathrm{X}_{1 \mathrm{i}}+\alpha_{2} \ln \mathrm{X}_{2 \mathrm{i}}+\mathrm{u}_{\mathrm{i}}$ $\alpha_{1}=\frac{\partial \ln \mathrm{Y}_{\mathrm{i}}}{\partial \ln \mathrm{X}_{1 \mathrm{i}}}=\frac{\text { relative change in } \mathrm{Y}_{\mathrm{i}}}{\text { relative change in } \mathrm{X}_{1 \mathrm{i}}}=$ the partial elasticity of \mathbf{Y} wrt $\mathbf{X}_{\mathbf{1}}$; $\alpha_{2}=\frac{\partial \ln \mathrm{Y}_{\mathrm{i}}}{\partial \ln \mathrm{X}_{2 \mathrm{i}}}=\frac{\text { relative change in } \mathrm{Y}_{\mathrm{i}}}{\text { relative change in } \mathrm{X}_{2 \mathrm{i}}}=$ the partial elasticity of \mathbf{Y} wrt \mathbf{X}_{2}.

3.3 The LOG-LIN (Semi-Log) Model

$$
\begin{equation*}
\ln \mathrm{Y}_{\mathrm{i}}=\gamma_{0}+\sum_{\mathrm{j}=1}^{\mathrm{k}} \gamma_{\mathrm{j}} \mathrm{X}_{\mathrm{ji}}+\mathrm{u}_{\mathrm{i}} \tag{3}
\end{equation*}
$$

where the slope coefficients $\gamma_{\mathbf{j}}(\mathbf{j}=\mathbf{1}, \ldots, \mathbf{k})$ are interpreted as
$\gamma_{\mathrm{j}}=\frac{\partial \ln \mathrm{Y}_{\mathrm{i}}}{\partial \mathrm{X}_{\mathrm{ji}}}=\frac{\partial \mathrm{Y}_{\mathrm{i}} / \mathrm{Y}_{\mathrm{i}}}{\partial \mathrm{X}_{\mathrm{ji}}}=\frac{\partial \mathrm{Y}_{\mathrm{i}}}{\partial \mathrm{X}_{\mathrm{ji}}} \frac{1}{\mathrm{Y}_{\mathrm{i}}}=\frac{\text { relative change in } \mathrm{Y}_{\mathrm{i}}}{\text { change in } \mathrm{X}_{\mathrm{ji}}}$
$=$ the partial semi-elasticity of Y with respect to X_{j}.
Note: The value of γ_{j} does depend on the units in which X_{ji} is measured, but does not depend on the units in which Y_{i} is measured.

The LOG-LIN model is nonlinear in the variable $\mathbf{Y}_{\mathbf{i}}$:

$$
\text { slope of } \mathrm{Y} \text { wrt } \mathrm{X}_{\mathrm{j}}=\frac{\partial \mathrm{Y}_{\mathrm{i}}}{\partial \mathrm{X}_{\mathrm{ji}}}=\frac{\partial \ln \mathrm{Y}_{\mathrm{i}}}{\partial \mathrm{X}_{\mathrm{ji}}} \mathrm{Y}_{\mathrm{i}}=\gamma_{\mathrm{j}} \mathrm{Y}_{\mathrm{i}}=\text { a variable. }
$$

Example:

$$
\begin{aligned}
& \ln \mathrm{Y}_{\mathrm{i}}=\gamma_{0}+\gamma_{1} \mathrm{X}_{1 \mathrm{i}}+\gamma_{2} \mathrm{X}_{2 \mathrm{i}}+\mathrm{u}_{\mathrm{i}} \\
& \gamma_{1}=\frac{\partial \ln \mathrm{Y}_{\mathrm{i}}}{\partial \mathrm{X}_{1 \mathrm{i}}}=\frac{\text { relative change in } \mathrm{Y}_{\mathrm{i}}}{\text { change in } \mathrm{X}_{1 \mathrm{i}}}=\text { partial semi-elasticity of } \mathrm{Y} \text { wrt } \mathbf{X}_{1} ; \\
& \gamma_{2}=\frac{\partial \ln \mathrm{Y}_{\mathrm{i}}}{\partial \mathrm{X}_{2 \mathrm{i}}}=\frac{\text { relative change in } \mathrm{Y}_{\mathrm{i}}}{\text { change in } \mathrm{X}_{2 \mathrm{i}}}=\text { partial semi-elasticity of } \mathbf{Y} \text { wrt } \mathrm{X}_{2} \text {. } \\
& 100 \gamma_{1}=100 \frac{\partial \ln \mathrm{Y}_{\mathrm{i}}}{\partial \mathrm{X}_{1 \mathrm{i}}}=\frac{\text { percentage change in } \mathrm{Y}_{\mathrm{i}}}{\text { change in } \mathrm{X}_{1 \mathrm{i}}} \\
& 100 \gamma_{2}=100 \frac{\partial \ln \mathrm{Y}_{\mathrm{i}}}{\partial \mathrm{X}_{2 \mathrm{i}}}=\frac{\text { percentage change in } \mathrm{Y}_{\mathrm{i}}}{\text { change in } \mathrm{X}_{2 \mathrm{i}}}
\end{aligned}
$$

4. LIN-LIN, LOG-LOG and LOG-LIN Models: Examples

Example 1. LIN-LIN and LOG-LOG Models of Car Prices

price $_{i}=$ price of car i, in US dollars
weight $_{i}=$ weight of car i, in pounds
$\mathrm{mpg}_{\mathrm{i}}=$ miles per gallon of car i

LIN-LIN Model of Car Prices

$$
\text { price }_{i}=\beta_{0}+\beta_{1} \text { weight }_{i}+\beta_{2} \mathrm{mpg}_{\mathrm{i}}+\mathrm{u}_{\mathrm{i}}
$$

OLS sample regression function:

$\hat{\beta}_{1}=1.747$ = an estimate of the (partial) slope of price with respect to weight.
Meaning: An increase (decrease) in weight of 1 pound is associated on average with an increase (decrease) in price of $\mathbf{1 . 7 4 7}$ dollars (per car).
$\hat{\beta}_{2}=\mathbf{- 4 9 . 5 1}=$ an estimate of the (partial) slope of price with respect to $\mathbf{m p g}$.
Meaning: An increase (decrease) in fuel efficiency of $\mathbf{1}$ mile per gallon is associated on average with a decrease (increase) in price of $\mathbf{4 9 . 5 1}$ dollars (per car).

LOG-LOG Model of Car Prices

$\ln \left(\right.$ price $\left._{\mathrm{i}}\right)=\alpha_{0}+\alpha_{1} \ln \left(\right.$ weight $\left._{\mathrm{i}}\right)+\alpha_{2} \ln \left(\mathrm{mpg}_{\mathrm{i}}\right)+\mathrm{u}_{\mathrm{i}}$
OLS sample regression function:

Source \|	SS	df	MS			Number of obs	$=$	74
						F(2, 71)	$=$	15.64
Model \|	3.43231706	2	1.7	1615853		Prob > F	$=$	0.0000
Residual	7.79121602	71	. 10	9735437		R-squared	=	0.3058
						Adj R-squared		0.2863
Total \|	11.2235331	73	. 15	3747029		Root MSE	$=$. 33126
lnp \|	Coef.	Std.	Err.	t	$P>\|t\|$	[95\% Conf.	In	terval]
lnw \|	. 1910324	. 2720	159	0.702	0.485	-. 3513519		7334167
lnm	-. 6616411	. 2784	4715	-2.376	0.020	-1.216898		1063847
_cons \|	9.11759	2.91	713	3.126	0.003	3.300998		4.93418

$\hat{\alpha}_{1}=\mathbf{0 . 1 9 1}=$ an estimate of the (partial) elasticity of price with respect to weight.

Meaning:

A 1 percent increase (decrease) in weight is associated on average with a 0.191 percent increase (decrease) in price.

A 10 percent increase (decrease) in weight is associated on average with a 1.91 percent increase (decrease) in price.
$\hat{\alpha}_{2}=\mathbf{- 0 . 6 6 2}=$ an estimate of the (partial) elasticity of price with respect to $\mathbf{m p g}$.

Meaning:

A 1 percent increase (decrease) in $\mathbf{m p g}$ is associated on average with a $\mathbf{0 . 6 6 2}$ percent decrease (increase) in price.
A 10 percent increase (decrease) in $\mathbf{m p g}$ is associated on average with a $\mathbf{6 . 6 2}$ percent decrease (increase) in price.

Example 2. A LOG-LOG Model of Urban Demand for Bus Travel

$B^{\prime} S_{i}=$ demand for urban bus travel in city i, in thousands of passenger hours per year
$\mathrm{INC}_{\mathrm{i}}=$ average income per capita in city i , in dollars per year
$\mathrm{POP}_{i}=$ population of city i , in thousands of persons
AREA $_{i}=$ land area of city i, in square miles

Population regression equation (PRE):

$$
\ln \mathrm{BUS}_{\mathrm{i}}=\alpha_{0}+\alpha_{1} \ln \mathrm{INC}_{\mathrm{i}}+\alpha_{2} \ln \mathrm{POP}_{\mathrm{i}}+\alpha_{3} \ln \mathrm{AREA}_{\mathrm{i}}+\mathrm{u}_{\mathrm{i}}
$$

OLS slope coefficient estimates (standard errors in parentheses):
$\hat{\alpha}_{1}=-\mathbf{4 . 7 3 0}=$ an estimate of the partial elasticity of BUS with respect to $\boldsymbol{I N C}$.

Meaning:
A 1 percent increase (decrease) in INC is associated on average with a 4.73 percent decrease (increase) in BUS.
$\hat{\alpha}_{2}=\mathbf{1 . 8 2 0}=$ an estimate of the partial elasticity of $\boldsymbol{B U S}$ with respect to $\boldsymbol{P O P}$. (0.236)

Meaning:
A 1 percent increase (decrease) in $\boldsymbol{P O P}$ is associated on average with a $\mathbf{1 . 8 2}$ percent increase (decrease) in BUS.
$\hat{\alpha}_{3}=\mathbf{- 0 . 9 7 1}=$ an estimate of the partial elasticity of $\boldsymbol{B} \boldsymbol{U S}$ with respect to AREA. (0.207)

Meaning:
A 1 percent increase (decrease) in AREA is associated on average with a $\mathbf{0 . 9 7 1}$ percent decrease (increase) in BUS.

Example 3. A LOG-LIN Model of Employees' Wage Rates

$\mathrm{W}_{\mathrm{i}}=$ hourly wage rate of employee i , in dollars per hour
$E D_{i}=$ years of completed schooling of employee i, in years
EXP $_{i}=$ years of work experience of employee i, in years
Population regression equation (PRE):

$$
\ln \mathrm{W}_{\mathrm{i}}=\gamma_{0}+\gamma_{1} \mathrm{ED}_{\mathrm{i}}+\gamma_{2} \mathrm{EXP}_{\mathrm{i}}+\mathrm{u}_{\mathrm{i}}
$$

OLS sample regression equation (SRE):

Source \|	SS	df MS				$\begin{aligned} & \text { Number of obs } \\ & \mathrm{F}(2, \quad 531) \end{aligned}$	534
							71.17
Model	31.3793042	2	15.	521			0.0000
Residual	117.062591	531	. 22	857		R-squared	0.2114
						Adj R-squared	0.2084
Total	148.441895	533	. 27	617		Root MSE	. 46953
lnw	Coef.	Std.	Err.	t	$P>\|t\|$	[95\% Conf.	Interval]
ed \|	. 0964201	. 0083	113	11.601	0.000	. 0800931	. 1127472
exp	. 0117536	. 0017	542	6.700	0.000	. 0083077	. 0151996
cons \|	. 5827743	. 1254	241	4.646	0.000	. 336386	. 8291627

$\hat{\gamma}_{1}=\mathbf{0 . 0 9 6 4} \quad \Rightarrow \quad 100 \hat{\gamma}_{1}=9.64$

Meaning:

A 1 year increase (decrease) in $\boldsymbol{E D}$ is associated on average with a 100×0.0964 = 9.64 percent increase (decrease) in W.
$\hat{\gamma}_{2}=\mathbf{0 . 0 1 1 8} \quad \Rightarrow \quad 100 \hat{\gamma}_{2}=1.18$

Meaning:

A 1 year increase (decrease) in $\boldsymbol{E X P}$ is associated on average with a $100 \times 0.0118=\mathbf{1 . 1 8}$ percent increase (decrease) in \boldsymbol{W}.

