ECON 351* -- NOTE 13

Goodness-of-Fit in the Multiple Linear Regression Model

- The population regression equation, or PRE, takes the form:

$$
\begin{equation*}
Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\cdots+\beta_{k} X_{k i}+u_{i} \tag{1}
\end{equation*}
$$

where u_{i} is an iid random error term.

- The OLS sample regression equation (OLS-SRE) for equation (1) can be written as

$$
\begin{equation*}
\mathrm{Y}_{\mathrm{i}}=\hat{\beta}_{0}+\hat{\beta}_{1} \mathrm{X}_{1 \mathrm{i}}+\hat{\beta}_{2} \mathrm{X}_{2 \mathrm{i}}+\cdots+\hat{\beta}_{\mathrm{k}} \mathrm{X}_{\mathrm{ki}}+\hat{\mathrm{u}}_{\mathrm{i}}=\hat{\mathrm{Y}}_{\mathrm{i}}+\hat{\mathrm{u}}_{\mathrm{i}} \quad(\mathrm{i}=1, \ldots, \mathrm{~N}) \tag{2}
\end{equation*}
$$

where
(1) the OLS estimated (or predicted) values of $\mathbf{Y}_{\mathbf{i}}$, or the OLS sample regression function (OLS-SRF), are

$$
\hat{Y}_{\mathrm{i}}=\hat{\beta}_{0}+\hat{\beta}_{1} \mathrm{X}_{1 \mathrm{i}}+\hat{\beta}_{2} \mathrm{X}_{2 \mathrm{i}}+\cdots+\hat{\beta}_{\mathrm{k}} \mathrm{X}_{\mathrm{ki}} \quad(\mathrm{i}=1, \ldots, \mathrm{~N})
$$

(2) the OLS residuals are

$$
\hat{u}_{i}=Y_{i}-\hat{Y}_{i}=Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{1 i}-\hat{\beta}_{2} X_{2 \mathrm{i}}-\cdots-\hat{\beta}_{\mathrm{k}} X_{\mathrm{ki}} \quad(\mathrm{i}=1, \ldots, \mathrm{~N})
$$

1. The OLS Decomposition Equation

1.1 General Form of the OLS Decomposition Equation

\square For the OLS sample regression equation (OLS-SRE)

$$
\begin{equation*}
Y_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} X_{1 i}+\hat{\beta}_{2} X_{2 i}+\cdots+\hat{\beta}_{k} X_{k i}+\hat{u}_{i}=\hat{Y}_{i}+\hat{u}_{i} \quad(i=1, \ldots, N) \tag{2}
\end{equation*}
$$

the OLS decomposition equation is

$$
\sum_{i=1}^{N} y_{i}^{2}=\sum_{i=1}^{N} \hat{y}_{i}^{2}+\sum_{i=1}^{N} \hat{u}_{i}^{2} \quad \Leftrightarrow \quad \text { TSS }=\mathrm{ESS}+\mathrm{RSS}
$$

where
(1) $\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{y}_{\mathrm{i}}^{2} \equiv \sum_{\mathrm{i}=1}^{\mathrm{N}}\left(\mathrm{Y}_{\mathrm{i}}-\overline{\mathrm{Y}}\right)^{2} \equiv \mathrm{TSS} \equiv$ the Total Sum of Squares
(2) $\sum_{i=1}^{\mathrm{N}} \hat{\mathrm{y}}_{\mathrm{i}}^{2} \equiv \sum_{\mathrm{i}=1}^{\mathrm{N}}\left(\hat{\mathrm{Y}}_{\mathrm{i}}-\overline{\mathrm{Y}}\right)^{2} \equiv \mathrm{ESS} \equiv$ the Explained Sum of Squares
(3) $\sum_{\mathrm{i}=1}^{\mathrm{N}} \hat{\mathrm{u}}_{\mathrm{i}}^{2} \equiv \sum_{\mathrm{i}=1}^{\mathrm{N}}\left(\mathrm{Y}_{\mathrm{i}}-\hat{\mathrm{Y}}_{\mathrm{i}}\right)^{2} \equiv \mathrm{RSS} \equiv$ the Residual Sum of Squares

- Interpretative Formula for ESS

$$
\mathrm{ESS} \equiv \sum_{\mathrm{i}=1}^{\mathrm{N}} \hat{\mathrm{y}}_{\mathrm{i}}^{2}=\hat{\beta}_{1} \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{x}_{1 \mathrm{i}} \mathrm{y}_{\mathrm{i}}+\hat{\beta}_{2} \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{x}_{2 \mathrm{i}} \mathrm{y}_{\mathrm{i}}+\cdots+\hat{\beta}_{\mathrm{k}} \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{x}_{\mathrm{ki}} \mathrm{y}_{\mathrm{i}}
$$

where $\mathrm{X}_{\mathrm{ji}} \equiv \mathrm{X}_{\mathrm{ji}}-\overline{\mathrm{X}}_{\mathrm{j}}, \mathrm{j}=1,2, \ldots, \mathrm{k}$.
Implication: ESS $=0$ if $\hat{\beta}_{1}=0$ and $\hat{\beta}_{2}=0$ and $\ldots \hat{\beta}_{\mathrm{k}}=0$ if $\hat{\beta}_{j}=0$ for all $\mathrm{j}=1, \ldots, \mathrm{k}$.

1.2 Derivation of OLS Decomposition Equation

We derive the OLS decomposition equation for the simplest case, that is the threevariable multiple regression model for which the OLS-SRE is

$$
\begin{equation*}
Y_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} X_{1 i}+\hat{\beta}_{2} X_{2 i}+\hat{u}_{i}=\hat{Y}_{i}+\hat{u}_{i} \quad(i=1, \ldots, N) \tag{2}
\end{equation*}
$$

STEP 1: Write the OLS-SRE (2) in deviation-from-means form.

1. Substitute for $\hat{\beta}_{0}$ in equation (2) the formula $\hat{\beta}_{0}=\overline{\mathrm{Y}}-\hat{\beta}_{1} \bar{X}_{1}-\hat{\beta}_{2} \bar{X}_{2}$:

$$
\mathrm{Y}_{\mathrm{i}}=\overline{\mathrm{Y}}-\hat{\beta}_{1} \overline{\mathrm{X}}_{1}-\hat{\beta}_{2} \overline{\mathrm{X}}_{2}+\hat{\beta}_{1} \mathrm{X}_{1 \mathrm{i}}+\hat{\beta}_{2} \mathrm{X}_{2 \mathrm{i}}+\hat{\mathrm{u}}_{\mathrm{i}} .
$$

2. Re-arrange by subtracting $\overline{\mathrm{Y}}$ from both sides and collecting terms in $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$:

$$
\mathrm{Y}_{\mathrm{i}}-\overline{\mathrm{Y}}=\hat{\beta}_{1}\left(\mathrm{X}_{1 \mathrm{i}}-\overline{\mathrm{X}}_{1}\right)+\hat{\beta}_{2}\left(\mathrm{X}_{2 \mathrm{i}}-\overline{\mathrm{X}}_{2}\right)+\hat{\mathrm{u}}_{\mathrm{i}}
$$

or

$$
y_{i}=\hat{\beta}_{1} x_{1 i}+\hat{\beta}_{2} x_{2 i}+\hat{u}_{i}=\hat{y}_{i}+\hat{u}_{i},
$$

where

$$
\begin{aligned}
& \hat{y}_{\mathrm{i}}=\hat{\beta}_{1} \mathrm{x}_{1 \mathrm{i}}+\hat{\beta}_{2} \mathrm{x}_{2 \mathrm{i}} \\
& \mathrm{y}_{\mathrm{i}} \equiv \mathrm{Y}_{\mathrm{i}}-\overline{\mathrm{Y}} ; \quad \mathrm{x}_{1 \mathrm{i}} \equiv \mathrm{X}_{1 \mathrm{i}}-\bar{X}_{1} ; \quad \mathrm{x}_{2 \mathrm{i}} \equiv \mathrm{X}_{2 \mathrm{i}}-\overline{\mathrm{X}}_{2} .
\end{aligned}
$$

3. Therefore, since $\hat{y}_{\mathrm{i}}=\hat{\beta}_{1} \mathrm{x}_{1 \mathrm{i}}+\hat{\beta}_{2} \mathrm{x}_{2 \mathrm{i}}$, we have the result that

$$
\begin{equation*}
y_{i}=\hat{y}_{i}+\hat{u}_{i} . \tag{3}
\end{equation*}
$$

STEP 2: Square both sides of equation (3).

$$
\begin{align*}
& \mathrm{y}_{\mathrm{i}}=\hat{\mathrm{y}}_{\mathrm{i}}+\hat{\mathrm{u}}_{\mathrm{i}} . \tag{3}\\
& \mathrm{y}_{\mathrm{i}}^{2}=\left(\hat{\mathrm{y}}_{\mathrm{i}}+\hat{\mathrm{u}}_{\mathrm{i}}\right)^{2}=\hat{\mathrm{y}}_{\mathrm{i}}^{2}+\hat{\mathrm{u}}_{\mathrm{i}}^{2}+2 \hat{\mathrm{y}}_{\mathrm{i}} \hat{\mathrm{u}}_{\mathrm{i}} . \tag{4}
\end{align*}
$$

STEP 3: Sum equation (4) over the sample observations, from $\mathrm{i}=1$ to $\mathrm{i}=\mathrm{N}$.

1. $\sum_{i=1}^{N} y_{i}^{2}=\sum_{i=1}^{N} \hat{y}_{i}^{2}+\sum_{i=1}^{N} \hat{u}_{i}^{2}+2 \sum_{i=1}^{N} \hat{y}_{i} \hat{u}_{i}$.
2. But the computational properties of the OLS-SRE imply that $\sum_{i=1}^{N} \hat{y}_{i} \hat{u}_{i}=0$.

$$
\begin{aligned}
\sum_{i=1}^{N} \hat{y}_{i} \hat{u}_{i} & =\sum_{i=1}^{N}\left(\hat{Y}_{i}-\bar{Y}\right) \hat{u}_{i} \\
& =\sum_{i=1}^{N}\left(\hat{Y}_{i} \hat{u}_{i}-\bar{Y} \hat{u}_{i}\right) \\
& =\sum_{i=1}^{N} \hat{Y}_{i} \hat{u}_{i}-\bar{Y} \sum_{i=1}^{N} \hat{u}_{i} \\
& =0
\end{aligned}
$$

because

$$
\sum_{\mathrm{i}=1}^{\mathrm{N}} \hat{\mathrm{u}}_{\mathrm{i}}=0 \quad \text { by computational property (C3) }
$$

and

$$
\sum_{\mathrm{i}=1}^{\mathrm{N}} \hat{\mathrm{Y}}_{\mathrm{i}} \hat{\mathrm{u}}_{\mathrm{i}}=0 \text { by computational property (C5). }
$$

- Result:

$$
\begin{equation*}
\sum_{i=1}^{N} \mathbf{y}_{i}^{2}=\sum_{i=1}^{N} \hat{\mathbf{y}}_{i}^{2}+\sum_{i=1}^{N} \hat{\mathbf{u}}_{i}^{2} \tag{5}
\end{equation*}
$$

i.e, TSS = ESS + RSS

2. Computational Formula for RSS

A convenient computational formula for the residual sum of squares RSS is:

$$
\begin{equation*}
\text { RSS }=\sum_{i=1}^{N} \hat{u}_{i}^{2}=\sum_{i=1}^{N} y_{i}^{2}-\sum_{i=1}^{N} \hat{y}_{i}^{2}=\sum_{i=1}^{N} y_{i}^{2}-\hat{\beta}_{1} \sum_{i=1}^{N} x_{1 i} y_{i}-\hat{\beta}_{2} \sum_{i=1}^{N} x_{2 i} y_{i} \tag{6}
\end{equation*}
$$

Derivation of equation (6) for RSS

1. The $\mathrm{i}-\mathrm{th}$ OLS residual $\hat{\mathrm{u}}_{\mathrm{i}}$ can be written in deviations-from-means form as

$$
\begin{array}{rlr}
\hat{\mathrm{u}}_{\mathrm{i}} & =\mathrm{Y}_{\mathrm{i}}-\hat{\mathrm{Y}}_{\mathrm{i}} & \text { since } \hat{Y}_{\mathrm{i}}=\hat{\beta}_{0}-\hat{\beta}_{1} \mathrm{X}_{1 \mathrm{i}}-\hat{\beta}_{2} \mathrm{X}_{2 \mathrm{i}} \\
& =\mathrm{Y}_{\mathrm{i}}-\hat{\beta}_{0}-\hat{\beta}_{1} \mathrm{X}_{1 \mathrm{i}}-\hat{\beta}_{2} \mathrm{X}_{2 \mathrm{i}} & \\
& =\mathrm{Y}_{\mathrm{i}}-\left(\overline{\mathrm{Y}}-\hat{\beta}_{1} \bar{X}_{1}-\hat{\beta}_{2} \bar{X}_{2}\right)-\hat{\beta}_{1} X_{1 \mathrm{i}}-\hat{\beta}_{2} \mathrm{X}_{2 \mathrm{i}} & \text { since } \hat{\beta}_{0}=\overline{\mathrm{Y}}-\hat{\beta}_{1} \bar{X}_{1}-\hat{\beta}_{2} \bar{X}_{2} \\
& =\left(\mathrm{Y}_{\mathrm{i}}-\overline{\mathrm{Y}}\right)-\hat{\beta}_{1}\left(\mathrm{X}_{1 \mathrm{i}}-\bar{X}_{1}\right)-\hat{\beta}_{2}\left(\mathrm{X}_{2 \mathrm{i}}-\bar{X}_{2}\right) \\
& =\mathrm{y}_{\mathrm{i}}-\hat{\beta}_{1} \mathrm{X}_{1 \mathrm{i}}-\hat{\beta}_{2} \mathrm{X}_{2 \mathrm{i}} &
\end{array}
$$

2. Multiplying both sides of the above equation by $\hat{\mathrm{u}}_{\mathrm{i}}$, we obtain

$$
\begin{aligned}
\hat{\mathrm{u}}_{\mathrm{i}}^{2} & =\left(\mathrm{y}_{\mathrm{i}}-\hat{\beta}_{1} \mathrm{x}_{1 \mathrm{i}}-\hat{\beta}_{2} \mathrm{x}_{2 \mathrm{i}}\right) \hat{\mathrm{u}}_{\mathrm{i}} \\
& =\mathrm{y}_{\mathrm{i}} \hat{\mathrm{u}}_{\mathrm{i}}-\hat{\beta}_{1} \mathrm{x}_{1 \mathrm{i}} \hat{\mathrm{u}}_{\mathrm{i}}-\hat{\beta}_{2} \mathrm{x}_{2 \mathrm{i}} \hat{u}_{\mathrm{i}}
\end{aligned}
$$

3. Summing both sides of the above equation over the sample yields

$$
\begin{aligned}
\Sigma_{\mathrm{i}} \hat{\mathrm{u}}_{\mathrm{i}}^{2} & =\Sigma_{\mathrm{i}} \mathrm{y}_{\mathrm{i}} \hat{\mathrm{u}}_{\mathrm{i}}-\hat{\beta}_{1} \Sigma_{\mathrm{i}} \mathrm{x}_{\mathrm{ij}} \hat{\mathrm{u}}_{\mathrm{i}}-\hat{\beta}_{2} \Sigma_{\mathrm{i}} \mathrm{x}_{2 \mathrm{i}} \hat{\mathrm{u}}_{\mathrm{i}} \\
& =\Sigma_{\mathrm{i}} \mathrm{y}_{\mathrm{i}} \hat{\mathrm{u}}_{\mathrm{i}}
\end{aligned}
$$

since the OLS normal equations imply that $\sum_{\mathrm{i}} \mathrm{X}_{1 \mathrm{i}} \hat{\mathrm{u}}_{\mathrm{i}}=0$ and $\sum_{\mathrm{i}} \mathrm{X}_{2 \mathrm{i}} \hat{\mathrm{u}}_{\mathrm{i}}=0$.
4. Setting $\hat{u}_{i}=y_{i}-\hat{\beta}_{1} x_{1 i}-\hat{\beta}_{2} x_{2 i}$ in the above equation yields the result

$$
\begin{aligned}
\sum_{\mathrm{i}} \hat{\mathrm{u}}_{\mathrm{i}}^{2} & =\sum_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}\left(\mathrm{y}_{\mathrm{i}}-\hat{\beta}_{1} \mathrm{x}_{1 \mathrm{i}}-\hat{\beta}_{2} \mathrm{x}_{2 \mathrm{i}}\right) \\
& =\sum_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}^{2}-\hat{\beta}_{1} \sum_{\mathrm{i}} \mathrm{x}_{1 \mathrm{i}} \mathrm{y}_{\mathrm{i}}-\hat{\beta}_{2} \sum_{\mathrm{i}} \mathrm{x}_{2 \mathrm{i}} \mathrm{y}_{\mathrm{i}}=\sum_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}^{2}-\sum_{\mathrm{i}} \hat{\mathrm{y}}_{\mathrm{i}}^{2}
\end{aligned}
$$

where $\sum_{\mathrm{i}} \hat{\mathrm{y}}_{\mathrm{i}}^{2}=\hat{\beta}_{1} \sum_{\mathrm{i}} \mathrm{x}_{1 \mathrm{i}} \mathrm{y}_{\mathrm{i}}+\hat{\beta}_{2} \sum_{\mathrm{i}} \mathrm{x}_{2 \mathrm{i}} \mathrm{y}_{\mathrm{i}}=\mathrm{ESS}$.

3. The Coefficient of Determination -- \mathbf{R}^{2}

3.1 Definition of $\mathbf{R}^{\mathbf{2}}$

1. Start with the OLS decomposition equation:

$$
\sum_{i=1}^{N} y_{i}^{2}=\sum_{i=1}^{N} \hat{y}_{i}^{2}+\sum_{i=1}^{N} \hat{u}_{i}^{2} \quad \Leftrightarrow \quad \text { TSS }=\mathrm{ESS}+\mathrm{RSS}
$$

2. Divide both sides of the OLS decomposition equation by TSS $=\sum_{i=1}^{N} y_{i}^{2}$:

$$
\begin{equation*}
1=\frac{\sum_{i} \hat{y}_{i}^{2}}{\sum_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}^{2}}+\frac{\sum_{\mathrm{i}} \hat{\mathrm{u}}_{\mathrm{i}}^{2}}{\sum_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}^{2}} \tag{7.1}
\end{equation*}
$$

or

$$
\begin{equation*}
1=\frac{\mathrm{ESS}}{\mathrm{TSS}}+\frac{\mathrm{RSS}}{\mathrm{TSS}} \tag{7.2}
\end{equation*}
$$

3. The coefficient of determination \mathbf{R}^{2} is defined as:

$$
R^{2} \equiv \frac{\sum_{i} \hat{\mathrm{y}}_{\mathrm{i}}^{2}}{\sum_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}^{2}}=1-\frac{\sum_{\mathrm{i}} \hat{\mathrm{u}}_{\mathrm{i}}^{2}}{\sum_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}^{2}} \quad \text { from equation (7.1) }
$$

or

$$
\mathrm{R}^{2} \equiv \frac{\mathrm{ESS}}{\mathrm{TSS}}=1-\frac{\mathrm{RSS}}{\mathrm{TSS}} \quad \text { from equation (7.2) }
$$

3.2 Alternative Formula for \mathbf{R}^{2}

1. Start with the OLS decomposition equation (5)

$$
\begin{equation*}
\sum_{i=1}^{N} y_{i}^{2}=\sum_{i=1}^{N} \hat{y}_{i}^{2}+\sum_{i=1}^{N} \hat{u}_{i}^{2} \tag{5}
\end{equation*}
$$

and expression (6) above for RSS $=\sum_{i=1}^{N} \hat{\mathrm{u}}_{\mathrm{i}}^{2}$

$$
\begin{equation*}
\text { RSS }=\sum_{i=1}^{N} \hat{u}_{i}^{2}=\sum_{i=1}^{N} y_{i}^{2}-\hat{\beta}_{1} \sum_{i=1}^{N} x_{1 i} y_{i}-\hat{\beta}_{2} \sum_{i=1}^{N} x_{2 i} y_{i} . \tag{6}
\end{equation*}
$$

2. Substitute the right-hand side of equation (6) for $\sum_{i=1}^{N} \hat{\mathrm{u}}_{i}^{2}$ in the decomposition equation (5):

$$
\sum_{i=1}^{N} y_{i}^{2}=\sum_{i=1}^{N} \hat{y}_{i}^{2}+\sum_{i=1}^{N} y_{i}^{2}-\hat{\beta}_{1} \sum_{i=1}^{N} x_{1 i} y_{i}-\hat{\beta}_{2} \sum_{i=1}^{N} x_{2 i} y_{i} .
$$

3. Subtract $\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{y}_{\mathrm{i}}^{2}$ from both sides of the above equation:

$$
0=\sum_{\mathrm{i}=1}^{\mathrm{N}} \hat{\mathrm{y}}_{\mathrm{i}}^{2}-\hat{\beta}_{1} \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{x}_{1 \mathrm{i}} \mathrm{y}_{\mathrm{i}}-\hat{\beta}_{2} \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{x}_{2 \mathrm{i}} \mathrm{y}_{\mathrm{i}} .
$$

4. Solve the above equation for $\sum_{i=1}^{N} \hat{y}_{i}^{2}$:

$$
\begin{equation*}
\sum_{i=1}^{N} \hat{y}_{i}^{2}=\hat{\beta}_{1} \sum_{i=1}^{N} x_{1 i} y_{i}+\hat{\beta}_{2} \sum_{i=1}^{N} x_{2 i} y_{i} \equiv \text { ESS. } \tag{8}
\end{equation*}
$$

- Result: Substitute the expression for ESS $\equiv \sum_{\mathrm{i}=1}^{\mathrm{N}} \hat{\mathrm{y}}_{\mathrm{i}}^{2}$ given by equation (8) into the definition of R^{2} to obtain the following expression for R^{2} :

$$
\begin{equation*}
R^{2} \equiv \frac{E S S}{T S S} \equiv \frac{\sum_{i} \hat{\mathrm{y}}_{\mathrm{i}}^{2}}{\sum_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}^{2}}=\frac{\hat{\beta}_{1} \sum_{\mathrm{i}} \mathrm{x}_{1 i} \mathrm{y}_{\mathrm{i}}+\hat{\beta}_{2} \sum_{\mathrm{i}} \mathrm{x}_{2 i} \mathrm{y}_{\mathrm{i}}}{\sum_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}^{2}} . \tag{9.1}
\end{equation*}
$$

In general, for the general multiple linear regression model with $\mathrm{k}=\mathrm{K}-1$ nonconstant regressors, the expression for R^{2} is:

$$
\begin{equation*}
R^{2} \equiv \frac{E S S}{T S S} \equiv \frac{\sum_{i} \hat{\mathrm{y}}_{\mathrm{i}}^{2}}{\sum_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}^{2}}=\frac{\hat{\beta}_{1} \sum_{\mathrm{i}} \mathrm{x}_{11} \mathrm{y}_{\mathrm{i}}+\hat{\beta}_{2} \sum_{\mathrm{i}} \mathrm{x}_{2 \mathrm{i}} \mathrm{y}_{\mathrm{i}}+\cdots+\hat{\beta}_{\mathrm{k}} \sum_{\mathrm{i}} \mathrm{x}_{\mathrm{ki}} \mathrm{y}_{\mathrm{i}}}{\sum_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}^{2}} . \tag{9.2}
\end{equation*}
$$

3.3 Interpretation of $\mathbf{R}^{\mathbf{2}}$: The Values of $\mathbf{R}^{\mathbf{2}}$

- What Does $\mathbf{R}^{\underline{2}}$ Measure?
$\mathrm{R}^{2}=$ the proportion of the total sample variation of the dependent variable Y that is explained by the sample regression function, i.e., by the values of the regressors $\mathrm{X}_{1 \mathrm{i}}, \mathrm{X}_{2 \mathrm{i}}, \ldots, \mathrm{X}_{\mathrm{k}}$.
- The Values of $\mathbf{R}^{\mathbf{2}}$
R^{2} values lie in the closed unit interval $[0,1]$; i.e., $\mathbf{0} \leq \mathbf{R}^{2} \leq \mathbf{1}$.

- Interpreting the Values of $\mathbf{R}^{\mathbf{2}}$

- Rule 1: The closer is the value of \mathbf{R}^{2} to 1 , the better the goodness-of-fit of the OLS-SRE to the sample data.
- The upper limiting value $\mathrm{R}^{2}=1$ corresponds to a perfect fit of the OLSSRE to the sample data.

$$
\mathrm{R}^{2}=1 \Rightarrow \frac{\mathrm{ESS}}{\mathrm{TSS}}=1 \Rightarrow \mathrm{ESS}=\mathrm{TSS} \Rightarrow \mathrm{RSS}=\sum_{\mathrm{i}} \hat{\mathrm{u}}_{\mathrm{i}}^{2}=0 .
$$

- But since $\hat{u}_{i}^{2} \geq 0$ for all $i, R S S=\sum_{i} \hat{u}_{i}^{2}=0$ if and only if

$$
\hat{\mathrm{u}}_{\mathrm{i}}=0 \forall \mathrm{i}=1, \ldots, \mathrm{~N} .
$$

- Therefore, a perfect fit of the OLS-SRE means that

$$
\hat{\mathrm{u}}_{\mathrm{i}}=0 \forall \mathrm{i}=1, \ldots, \mathrm{~N} \quad \text { or } \quad \mathrm{Y}_{\mathrm{i}}=\hat{\mathrm{Y}}_{\mathrm{i}} \quad \forall \mathrm{i}=1, \ldots, \mathrm{~N} .
$$

- Rule 2: The closer is the value of \mathbf{R}^{2} to 0 , the worse the goodness-of-fit of the OLS-SRE to the sample data.
- The lower limiting value $\mathrm{R}^{2}=0$ corresponds to the worst possible fit of the OLS-SRE to the sample data.

$$
\mathrm{R}^{2}=0 \Rightarrow \frac{\mathrm{ESS}}{\mathrm{TSS}}=0 \Rightarrow \mathrm{ESS}=0 \Rightarrow \mathrm{TSS}=\mathrm{RSS} .
$$

- When does ESS $=0$? ESS $=0$ when

$$
\mathrm{ESS} \equiv \sum_{\mathrm{i}=1}^{\mathrm{N}} \hat{\mathrm{y}}_{\mathrm{i}}^{2}=\hat{\beta}_{1} \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{x}_{1 \mathrm{ij}} \mathrm{y}_{\mathrm{i}}+\hat{\beta}_{2} \sum_{\mathrm{i}=1}^{N} \mathrm{x}_{2 \mathrm{i}} \mathrm{y}_{\mathrm{i}}+\cdots+\hat{\beta}_{\mathrm{k}} \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{x}_{\mathrm{ki}} \mathrm{y}_{\mathrm{i}}=0 .
$$

- A sufficient condition for ESS $=\mathbf{0}$ is thus that all slope coefficient estimates equal zero: i.e.,

$$
\hat{\beta}_{\mathrm{j}}=0 \quad \forall \mathrm{j}=1,2, \ldots, \mathrm{k} \quad \Leftrightarrow \quad \hat{\beta}_{1}=\hat{\beta}_{2}=\cdots=\hat{\beta}_{\mathrm{k}}=0 .
$$

- Finally, since

$$
\hat{Y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} X_{1 i}+\hat{\beta}_{2} X_{2 i}+\cdots+\hat{\beta}_{k} X_{k i}
$$

and

$$
\hat{\beta}_{0}=\overline{\mathrm{Y}}-\hat{\beta}_{1} \overline{\mathrm{X}}_{1}-\hat{\beta}_{2} \overline{\mathrm{X}}_{2}-\cdots-\hat{\beta}_{\mathrm{k}} \overline{\mathrm{X}}_{\mathrm{k}},
$$

it follows that $\hat{\beta}_{1}=\hat{\beta}_{2}=\cdots=\hat{\beta}_{\mathrm{k}}=0$ means that

$$
\hat{\mathrm{Y}}_{\mathrm{i}}=\hat{\beta}_{0}=\overline{\mathrm{Y}} \quad \forall \mathrm{i}=1, \ldots, \mathrm{~N} .
$$

The reason is that $\hat{\beta}_{1}=\hat{\beta}_{2}=\cdots=\hat{\beta}_{\mathrm{k}}=0$ implies that

$$
\hat{\mathrm{Y}}_{\mathrm{i}}=\hat{\beta}_{0} \quad \text { since } \hat{\mathrm{Y}}_{\mathrm{i}}=\hat{\beta}_{0}+\hat{\beta}_{1} \mathrm{X}_{\mathrm{li}}+\hat{\beta}_{2} \mathrm{X}_{2 \mathrm{i}}+\cdots+\hat{\beta}_{\mathrm{k}} \mathrm{X}_{\mathrm{ki}}
$$

$$
\begin{equation*}
\hat{\mathrm{Y}}_{\mathrm{i}}=\hat{\beta}_{0}=\overline{\mathrm{Y}} \quad \text { since } \hat{\beta}_{0}=\overline{\mathrm{Y}}-\hat{\beta}_{1} \overline{\mathrm{X}}_{1}-\hat{\beta}_{2} \overline{\mathrm{X}}_{2}-\cdots-\hat{\beta}_{\mathrm{k}} \overline{\mathrm{X}}_{\mathrm{k}} . \tag{2}
\end{equation*}
$$

3.4 Limitations of $\mathbf{R}^{\mathbf{2}}$

The R^{2} can be used to compare the goodness-of-fit of alternative sample regression equations only if the regression models satisfy two conditions.
(1) The models must have the same regressand, or same dependent variable.

Reason: TSS, ESS, and RSS depend on the units in which the regressand Y_{i} is measured.
(2) The models must have the same number of regressors and regression coefficients -- i.e., the same value of K .

Reason: Adding additional regressors to a regression equation - i.e., increasing the value of K - always increases the value of R^{2}.

- ESS is an increasing function of the number of regressors K.
- RSS is a decreasing function of the number of regressors K.
- Therefore, $\mathbf{R}^{\mathbf{2}}$ is an increasing function of the number of regressors \mathbf{K}.

4. The Adjusted \mathbf{R}^{2}

4.1 Definition of Adjusted $\mathbf{R}^{\mathbf{2}}$

$$
\overline{\mathrm{R}}^{2} \equiv 1-\frac{\mathrm{RSS} /(\mathrm{N}-\mathrm{K})}{\mathrm{TSS} /(\mathrm{N}-1)}=1-\frac{\hat{\sigma}^{2}}{\mathrm{~s}_{\mathrm{Y}}^{2}}
$$

where

$$
\begin{aligned}
& \hat{\sigma}^{2}=\frac{\mathrm{RSS}}{\mathrm{~N}-\mathrm{K}}=\text { the unbiased estimator of the error variance } \sigma^{2} ; \\
& \mathrm{s}_{\mathrm{Y}}^{2}=\frac{\mathrm{TSS}}{\mathrm{~N}-1}=\frac{\sum_{\mathrm{i}=1}^{\mathrm{N}}\left(\mathrm{Y}_{\mathrm{i}}-\overline{\mathrm{Y}}\right)^{2}}{\mathrm{~N}-1}=\text { the sample variance of the } \mathrm{Y}_{\mathrm{i}} \text { values. }
\end{aligned}
$$

4.2 Relationship Between \mathbf{R}^{2} and Adjusted \mathbf{R}^{2}

$$
\overline{\mathrm{R}}^{2}=1-\left(1-\mathrm{R}^{2}\right) \frac{\mathrm{N}-1}{\mathrm{~N}-\mathrm{K}} .
$$

(1) For values of $K>1, \overline{\mathrm{R}}^{2}<\mathrm{R}^{2}$.
(2) $\overline{\mathrm{R}}^{2}$ can be negative, even though R^{2} is non-negative.

4.3 Guidelines for Using Adjusted \mathbf{R}^{2}

1. $\overline{\mathrm{R}}^{2}$ can be used to compare the goodness-of-fit of two regression models only if the models have the same regressand.
2. $\overline{\mathrm{R}}^{2}$ should never be the sole criterion for choosing between two or more sample regression equations.

5. The ANOVA Table for the OLS SRE

5.1 The General ANOVA Table

The OLS sample regression equation (OLS-SRE) is written as

$$
\begin{equation*}
\mathrm{Y}_{\mathrm{i}}=\hat{\beta}_{0}+\hat{\beta}_{1} \mathrm{X}_{1 \mathrm{i}}+\hat{\beta}_{2} \mathrm{X}_{2 \mathrm{i}}+\cdots+\hat{\beta}_{\mathrm{k}} \mathrm{X}_{\mathrm{ki}}+\hat{\mathrm{u}}_{\mathrm{i}}=\hat{\mathrm{Y}}_{\mathrm{i}}+\hat{\mathrm{u}}_{\mathrm{i}} \quad(\mathrm{i}=1, \ldots, \mathrm{~N}) \tag{2}
\end{equation*}
$$

The Analysis-of-Variance (ANOVA) table for the OLS SRE in a multiple linear regression model takes the following general form.

Source of variation	SS	df	MSS $=\mathbf{S S} / \mathbf{d f}$		
The regression function (explained)	$\mathrm{ESS}=\sum_{\mathrm{i}=1}^{\mathrm{N}} \hat{\mathrm{y}}_{\mathrm{i}}^{2}$			$\mathrm{~K}-1 \quad$	$\frac{\mathrm{ESS}}{\mathrm{K}-1}=\frac{\sum_{\mathrm{i}} \hat{\mathrm{y}}_{\mathrm{i}}^{2}}{\mathrm{~K}-1}$
:---:					
The residuals (unexplained)					
Total sample variation of Y_{i}					

Definitions:

$\mathbf{K} \equiv$ the total number of estimated regression coefficients in the OLSSRE.

Thus, $\mathbf{k}=\mathbf{K}-\mathbf{1}$ = the number of estimated slope coefficients in the OLSSRE.

Interpretative Expression for ESS:

ESS $\equiv \sum_{\mathrm{i}=1}^{\mathrm{N}} \hat{\mathrm{y}}_{\mathrm{i}}^{2}=\hat{\beta}_{1} \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{x}_{1 \mathrm{i}} \mathrm{y}_{\mathrm{i}}+\hat{\beta}_{2} \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{x}_{2 \mathrm{i}} \mathrm{y}_{\mathrm{i}}+\cdots+\hat{\beta}_{\mathrm{k}} \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{x}_{\mathrm{ki}} \mathrm{y}_{\mathrm{i}}$
Interpretative Expression for RSS:
$\operatorname{RSS} \equiv \sum_{\mathrm{i}=1}^{\mathrm{N}} \hat{u}_{i}^{2}=\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{y}_{\mathrm{i}}^{2}-\sum_{\mathrm{i}=1}^{\mathrm{N}} \hat{\mathrm{y}}_{\mathrm{i}}^{2}=\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{y}_{\mathrm{i}}^{2}-\hat{\beta}_{1} \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{x}_{1 \mathrm{i}} \mathrm{y}_{\mathrm{i}}-\hat{\beta}_{2} \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{x}_{2 \mathrm{i}} \mathrm{y}_{\mathrm{i}}-\cdots-\hat{\beta}_{\mathrm{k}} \sum_{\mathrm{i}=1}^{N} \mathrm{x}_{\mathrm{k}} \mathrm{y}_{\mathrm{i}}$

5.2 The ANOVA F-statistic

The ANOVA table yields an \boldsymbol{F}-statistic that is used to test the joint significance of all the slope coefficients in a multiple linear regression model.

- The unrestricted PRE is:

$$
\begin{equation*}
Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\cdots+\beta_{k} X_{k i}+u_{i} \quad(i=1, \ldots, N) \tag{1}
\end{equation*}
$$

- The null and alternative hypotheses are:

$$
\begin{aligned}
& \mathrm{H}_{0}: \beta_{\mathrm{j}}=0 \text { for all } \mathrm{j}=1, \ldots, \mathrm{k} \quad \Leftrightarrow \quad \beta_{1}=0 \text { and } \beta_{2}=0 \ldots \text { and } \beta_{\mathrm{k}}=0 \\
& \mathrm{H}_{1}: \beta_{\mathrm{j}} \neq 0 \text { for } \mathrm{j}=1, \ldots, \mathrm{k} \quad \Leftrightarrow \quad \beta_{1} \neq 0 \text { and/or } \beta_{2} \neq 0 \ldots \text { and/or } \beta_{\mathrm{k}} \neq 0
\end{aligned}
$$

The null hypothesis $\mathbf{H}_{\mathbf{0}}$ says that all slope coefficients are jointly equal to zero.

The alternative hypothesis \mathbf{H}_{1} says that some or all of the slope coefficients are not equal to zero.

- The restricted PRE corresponding to the null hypothesis $\mathbf{H}_{\mathbf{0}}$ is obtained by substituting into the unrestricted PRE (1) the coefficient restrictions specified by H_{0}. That is, set $\beta_{1}=0$ and $\beta_{2}=0 \ldots$ and $\beta_{\mathrm{k}}=0$ in regression equation (1); this yields the restricted model:

$$
\begin{equation*}
Y_{i}=\beta_{0}+u_{i} \quad(i=1, \ldots, N) \tag{10}
\end{equation*}
$$

Note: OLS estimation of regression equation (10) yields the restricted sample regression equation

$$
Y_{i}=\widetilde{\beta}_{0}+\tilde{u}_{i} \quad(i=1, \ldots, N)
$$

where
$\tilde{\beta}_{0}=\bar{Y}=\frac{\sum_{i=1}^{N} Y_{i}}{N}=$ the sample mean of the observed Y_{i} values and
$\tilde{u}_{i}=Y_{i}-\tilde{\beta}_{0}=Y_{i}-\bar{Y}=y_{i}=$ the restricted OLS residuals $(i=1, \ldots, N)$.

- The ANOVA F-statistic is the ratio of (1) the MSS (mean sum-of-squares) for the sample regression function to (2) the MSS for the residuals:

$$
\text { ANOVA }-\mathrm{F}_{0}=\frac{\mathrm{ESS} /(\mathrm{K}-1)}{\mathrm{RSS} /(\mathrm{N}-\mathrm{K})}=\frac{\sum_{i=1}^{N} \hat{\mathrm{y}}_{\mathrm{i}}^{2} /(\mathrm{K}-1)}{\sum_{\mathrm{i}=1}^{N} \hat{\mathrm{u}}_{\mathrm{i}}^{2} /(\mathrm{N}-\mathrm{K})}=\frac{\sum_{\mathrm{i}=1}^{\mathrm{N}} \hat{\mathrm{y}}_{\mathrm{i}}^{2} /(\mathrm{K}-1)}{\hat{\sigma}^{2}} .
$$

Note that the denominator of ANOVA- F_{0} is the OLS estimator of σ^{2} :

$$
\hat{\sigma}^{2}=\frac{\mathrm{RSS}}{(\mathrm{~N}-\mathrm{K})}=\frac{\sum_{\mathrm{i}=1}^{\mathrm{N}} \hat{\mathrm{u}}_{\mathrm{i}}^{2}}{(\mathrm{~N}-\mathrm{K})}
$$

- The null distribution of $\mathbf{F}_{\mathbf{0}}$ - i.e., the distribution of ANOVA- F_{0} under the null hypothesis $\mathrm{H}_{0}: \beta_{\mathrm{j}}=0$ for all $\mathrm{j}=1, \ldots, \mathrm{k}$ - is the $\mathbf{F}[\mathbf{K}-\mathbf{1}, \mathbf{N}-\mathbf{K}]$ distribution:

$$
\mathrm{F}_{0}=\frac{\mathrm{ESS} /(\mathrm{K}-1)}{\mathrm{RSS} /(\mathrm{N}-\mathrm{K})} \sim \mathrm{F}[\mathrm{~K}-1, \mathrm{~N}-\mathrm{K}] \text { under } \mathrm{H}_{0}: \beta_{\mathrm{j}}=0 \quad \forall \mathrm{j}=1, \ldots, \mathrm{k}
$$

- Decision Rule -- Formulation 1:

Let $\mathrm{F}_{\alpha}[\mathrm{K}-1, \mathrm{~N}-\mathrm{K}]=$ the α-level critical value of the $\mathrm{F}[\mathrm{K}-1, \mathrm{~N}-\mathrm{K}]$ distribution.

Retain H_{0} at significance level α if $\mathrm{F}_{0} \leq \mathrm{F}_{\alpha}[\mathrm{K}-1, \mathrm{~N}-\mathrm{K}]$.
Reject \mathbf{H}_{0} at significance level α if $\mathrm{F}_{0}>\mathrm{F}_{\alpha}[\mathrm{K}-1, \mathrm{~N}-\mathrm{K}]$.

- Decision Rule -- Formulation 2:

Retain \mathbf{H}_{0} at significance level α if the p-value for $\mathrm{F}_{0} \geq \alpha$.
$\boldsymbol{R e j e c t} \mathbf{H}_{\mathbf{0}}$ at significance level α if the p -value for $\mathrm{F}_{0}<\alpha$.

- Alternative Formula for the ANOVA F-statistic:

Recall that the ANOVA F-statistic is written as

$$
\text { ANOVA }-\mathrm{F}_{0}=\frac{\mathrm{ESS} /(\mathrm{K}-1)}{\mathrm{RSS} /(\mathrm{N}-\mathrm{K})} \sim \mathrm{F}[\mathrm{~K}-1, \mathrm{~N}-\mathrm{K}] .
$$

Recall the definition of the R^{2} for the unrestricted OLS SRE (2):

$$
\mathrm{R}^{2}=\frac{\mathrm{ESS}}{\mathrm{TSS}}=1-\frac{\mathrm{RSS}}{\mathrm{TSS}} \quad \Rightarrow \quad \frac{\mathrm{RSS}}{\mathrm{TSS}}=1-\mathrm{R}^{2} .
$$

To obtain the alternative formula for ANOVA- F_{0}, divide the numerator and denominator of ANOVA- F_{0} by TSS:

$$
\text { ANOVA }-\mathrm{F}_{0}=\frac{\mathrm{ESS} /(\mathrm{K}-1)}{\mathrm{RSS} /(\mathrm{N}-\mathrm{K})}=\frac{\mathrm{ESS} / \mathrm{TSS} /(\mathrm{K}-1)}{\mathrm{RSS} / \mathrm{TSS} /(\mathrm{N}-\mathrm{K})}=\frac{\mathrm{R}^{2} /(\mathrm{K}-1)}{\left(1-\mathrm{R}^{2}\right) /(\mathrm{N}-\mathrm{K})} .
$$

- Result: The ANOVA F-statistic can be calculated using either of two equivalent formulas:

$$
\text { ANOVA }-\mathrm{F}_{0}=\frac{\mathrm{ESS} /(\mathrm{K}-1)}{\mathrm{RSS} /(\mathrm{N}-\mathrm{K})}=\frac{\mathrm{R}^{2} /(\mathrm{K}-1)}{\left(1-\mathrm{R}^{2}\right) /(\mathrm{N}-\mathrm{K})}
$$

Note: Either formula allows the ANOVA F-statistic to be computed using only OLS estimates of the unrestricted model given by equation (1) -- i.e., using only results for the unrestricted OLS-SRE (2).

