ECON 351* -- NOTE 12

OLS Estimation of the Multiple (Three-Variable) Linear Regression Model

This note derives the Ordinary Least Squares (OLS) coefficient estimators for the three-variable multiple linear regression model.

- The population regression equation, or PRE, takes the form:

$$
\begin{equation*}
\mathrm{Y}_{\mathrm{i}}=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{li}}+\beta_{2} \mathrm{X}_{2 \mathrm{i}}+\mathrm{u}_{\mathrm{i}} \tag{1}
\end{equation*}
$$

where u_{i} is an iid random error term.

- The OLS sample regression equation (OLS-SRE) for equation (1) can be written as

$$
\begin{equation*}
\mathrm{Y}_{\mathrm{i}}=\hat{\beta}_{0}+\hat{\beta}_{1} \mathrm{X}_{\mathrm{li}}+\hat{\beta}_{2} X_{2 \mathrm{i}}+\hat{\mathrm{u}}_{\mathrm{i}}=\hat{Y}_{\mathrm{i}}+\hat{u}_{\mathrm{i}} \quad(\mathrm{i}=1, \ldots, \mathrm{~N}) \tag{2}
\end{equation*}
$$

where the $\hat{\beta}_{\mathrm{j}}$ are the OLS estimators of the corresponding population regression coefficients $\beta_{j}(j=0,1,2)$,

$$
\hat{u}_{i}=Y_{i}-\hat{Y}_{i}=Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{1 i}-\hat{\beta}_{2} X_{2 i} \quad(i=1, \ldots, N)
$$

are the OLS residuals, and

$$
\hat{\mathrm{Y}}_{\mathrm{i}}=\hat{\beta}_{0}+\hat{\beta}_{1} \mathrm{X}_{\mathrm{li}}+\hat{\beta}_{2} \mathrm{X}_{2 \mathrm{i}} \quad(\mathrm{i}=1, \ldots, \mathrm{~N})
$$

are the OLS estimated (or predicted) values of $\mathbf{Y}_{\mathbf{i}}$.
The function $\mathrm{f}\left(\mathrm{X}_{1 \mathrm{i}}, \mathrm{X}_{2 \mathrm{i}}\right)=\hat{\beta}_{0}+\hat{\beta}_{1} \mathrm{X}_{1 \mathrm{i}}+\hat{\beta}_{2} \mathrm{X}_{2 \mathrm{i}}$ is called the OLS sample regression function (or OLS-SRF).

1. The OLS Estimation Criterion

The OLS coefficient estimators are those formulas (or expressions) for $\hat{\beta}_{0}, \hat{\beta}_{1}$, and $\hat{\beta}_{2}$ that minimize the sum of squared residuals RSS for any given sample of size N .

The OLS estimation criterion is therefore:

$$
\begin{aligned}
& \operatorname{Minimize} \operatorname{RSS}\left(\hat{\beta}_{0}, \hat{\beta}_{1}, \hat{\beta}_{2}\right)=\sum_{\mathrm{i}=1}^{\mathrm{N}} \hat{\mathrm{u}}_{\mathrm{i}}^{2}=\sum_{\mathrm{i}=1}^{\mathrm{N}}\left(\mathrm{Y}_{\mathrm{i}}-\hat{\beta}_{0}-\hat{\beta}_{1} \mathrm{X}_{1 \mathrm{i}}-\hat{\beta}_{2} \mathrm{X}_{2 \mathrm{i}}\right)^{2} \\
& \quad\left\{\hat{\beta}_{\mathrm{j}}\right\}
\end{aligned}
$$

Interpretation of the $\operatorname{RSS}\left(\hat{\beta}_{0}, \hat{\beta}_{1}, \hat{\beta}_{2}\right)$ function:

- The knowns in the $\operatorname{RSS}\left(\hat{\beta}_{0}, \hat{\beta}_{1}, \hat{\beta}_{2}\right)$ function are the sample observations $\left(\mathrm{Y}_{\mathrm{i}}, 1, \mathrm{X}_{\mathrm{li}}, \mathrm{X}_{2 \mathrm{i}}\right)$ for $\mathrm{i}=1, \ldots, \mathrm{~N}$. In other words, the N sample values of the observable variables $\mathrm{Y}, \mathrm{X}_{1}, \mathrm{X}_{2}$ are taken as known (or given).
- The unknowns in the $\operatorname{RSS}\left(\hat{\beta}_{0}, \hat{\beta}_{1}, \hat{\beta}_{2}\right)$ function are therefore the coefficient estimators $\hat{\beta}_{0}, \hat{\beta}_{1}, \hat{\beta}_{2}$.
- For purposes of deriving the OLS coefficient estimators, the $\operatorname{RSS}\left(\hat{\beta}_{0}, \hat{\beta}_{1}, \hat{\beta}_{2}\right)$ function is interpreted as a function of the three unknowns $\hat{\beta}_{0}, \hat{\beta}_{1}, \hat{\beta}_{2}$.

2. The OLS Normal Equations: Derivation of the FOCs

STEP 1: Re-write the $\operatorname{RSS}\left(\hat{\beta}_{0}, \hat{\beta}_{1}, \hat{\beta}_{2}\right)$ function in (3) as follows:
$\operatorname{RSS}\left(\hat{\beta}_{0}, \hat{\beta}_{1}, \hat{\beta}_{2}\right)=\sum_{i=1}^{N} \hat{u}_{i}^{2}=\sum_{i=1}^{N} f\left(\hat{u}_{i}\right) \quad$ where $\quad f\left(\hat{u}_{i}\right)=\hat{u}_{i}^{2}$

$$
\begin{equation*}
\hat{u}_{i}=Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{1 i}-\hat{\beta}_{2} X_{2 i} \tag{3}
\end{equation*}
$$

Note: The function $\mathrm{f}\left(\hat{\mathrm{u}}_{\mathrm{i}}\right)=\hat{\mathrm{u}}_{\mathrm{i}}^{2}$ is a function of $\hat{\mathrm{u}}_{\mathrm{i}}$, and $\hat{\mathrm{u}}_{\mathrm{i}}$ is in turn a function of $\hat{\beta}_{0}, \hat{\beta}_{1}$, and $\hat{\beta}_{2}$.

STEP 2: Partially differentiate the $\operatorname{RSS}\left(\hat{\beta}_{0}, \hat{\beta}_{1}, \hat{\beta}_{2}\right)$ function in (3) with respect to $\hat{\beta}_{0}, \hat{\beta}_{1}$, and $\hat{\beta}_{2}$:

- Using the chain rule of differentiation, each partial derivative of the $\operatorname{RSS}\left(\hat{\beta}_{0}, \hat{\beta}_{1}, \hat{\beta}_{2}\right)$ function takes the general form

$$
\begin{equation*}
\frac{\partial \mathrm{RSS}}{\partial \hat{\boldsymbol{\beta}}_{\mathrm{j}}}=\sum_{\mathrm{i}=1}^{\mathrm{N}} \frac{\mathrm{df}}{\mathrm{~d} \hat{\mathbf{u}}_{\mathrm{i}}} \frac{\partial \hat{\mathrm{u}}_{\mathrm{i}}}{\partial \hat{\boldsymbol{\beta}}_{\mathrm{j}}} . \tag{4}
\end{equation*}
$$

- Using the power rule of differentiation, the derivative $\mathrm{df} / \mathrm{d} \hat{u}_{\mathrm{i}}$ is

$$
\frac{\mathrm{df}}{\mathrm{~d} \hat{\mathrm{u}}_{\mathrm{i}}}=\frac{\mathrm{d}\left(\hat{\mathrm{u}}_{\mathrm{i}}^{2}\right)}{\mathrm{d} \hat{\mathrm{u}}_{\mathrm{i}}}=2 \hat{\mathrm{u}}_{\mathrm{i}} .
$$

The partial derivatives $\partial \operatorname{RSS} / \partial \hat{\beta}_{j}$ for $\mathrm{j}=0,1,2$ are therefore

$$
\begin{equation*}
\frac{\partial R S S}{\partial \hat{\beta}_{j}}=\sum_{i=1}^{N} \frac{d f}{d \hat{u}_{i}} \frac{\partial \hat{u}_{i}}{\partial \hat{\beta}_{j}}=\sum_{i=1}^{N} 2 \hat{u}_{i} \frac{\partial \hat{u}_{i}}{\partial \hat{\beta}_{j}}=2 \sum_{i=1}^{N} \hat{u}_{i} \frac{\partial \hat{u}_{i}}{\partial \hat{\beta}_{j}} \quad j=0,1,2 . \tag{5}
\end{equation*}
$$

- Since the i-th residual is $\hat{\mathrm{u}}_{\mathrm{i}}=\mathrm{Y}_{\mathrm{i}}-\hat{\beta}_{0}-\hat{\beta}_{1} \mathrm{X}_{\mathrm{li}}-\hat{\beta}_{2} \mathrm{X}_{2 \mathrm{i}}$, the partial derivatives $\partial \hat{u}_{i} / \partial \hat{\beta}_{j}$ for $\mathrm{j}=0,1,2$ are:

$$
\frac{\partial \hat{\mathbf{u}}_{\mathrm{i}}}{\partial \hat{\boldsymbol{\beta}}_{0}}=-1 ; \quad \frac{\partial \hat{\mathrm{u}}_{\mathrm{i}}}{\partial \hat{\mathrm{\beta}}_{1}}=-\mathrm{X}_{1 \mathrm{i}} ; \quad \frac{\partial \hat{\mathrm{u}}_{\mathrm{i}}}{\partial \hat{\boldsymbol{\beta}}_{2}}=-\mathrm{X}_{2 \mathrm{i}} .
$$

- Substitute the partial derivatives $\partial \hat{\mathrm{u}}_{\mathrm{i}} / \partial \hat{\beta}_{\mathrm{j}}$ for $\mathrm{j}=0,1,2$ into equation (5):

$$
\begin{equation*}
\frac{\partial \mathrm{RSS}}{\partial \hat{\beta}_{\mathrm{j}}}=2 \sum_{\mathrm{i}=1}^{\mathrm{N}} \hat{\mathrm{u}}_{\mathrm{i}} \frac{\partial \hat{\mathrm{u}}_{\mathrm{i}}}{\partial \hat{\beta}_{\mathrm{j}}} \quad \mathrm{j}=0,1,2 . \tag{5}
\end{equation*}
$$

The partial derivatives $\partial \mathrm{RSS} / \partial \hat{\beta}_{\mathrm{j}}$ for $\mathrm{j}=0,1,2$ thus take the form:

$$
\begin{align*}
& \frac{\partial \mathrm{RSS}}{\partial \hat{\beta}_{0}}=2 \sum_{\mathrm{i}=1}^{\mathrm{N}} \hat{\mathrm{u}}_{\mathrm{i}} \frac{\partial \hat{\mathrm{u}}_{\mathrm{i}}}{\partial \hat{\beta}_{0}}=2 \sum_{\mathrm{i}=1}^{\mathrm{N}} \hat{\mathrm{u}}_{\mathrm{i}}(-1)=-2 \sum_{\mathrm{i}=1}^{\mathrm{N}} \hat{\mathrm{u}}_{\mathrm{i}} \tag{6.1}\\
& \frac{\partial R S S}{\partial \hat{\beta}_{1}}=2 \sum_{i=1}^{N} \hat{u}_{i} \frac{\partial \hat{u}_{i}}{\partial \hat{\beta}_{1}}=2 \sum_{i=1}^{N} \hat{u}_{i}\left(-X_{1 i}\right)=-2 \sum_{i=1}^{N} X_{1 i} \hat{u}_{i} \tag{6.2}\\
& \frac{\partial \mathrm{RSS}}{\partial \hat{\beta}_{2}}=2 \sum_{\mathrm{i}=1}^{N} \hat{\mathrm{u}}_{\mathrm{i}} \frac{\partial \hat{\mathrm{u}}_{\mathrm{i}}}{\partial \hat{\beta}_{2}}=2 \sum_{\mathrm{i}=1}^{\mathrm{N}} \hat{\mathrm{u}}_{\mathrm{i}}\left(-\mathrm{X}_{2 \mathrm{i}}\right)=-2 \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{X}_{2 \mathrm{i}} \hat{\mathrm{u}}_{\mathrm{i}} \tag{6.3}
\end{align*}
$$

STEP 3: Obtain the first-order conditions (FOCs) for a minimum of the RSS function by setting the partial derivatives (6.1)-(6.3) equal to zero, then dividing each equation by -2 , and finally setting $\hat{u}_{i}=Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{1 i}-\hat{\beta}_{2} X_{2 i}$:

- $\frac{\partial \mathrm{RSS}}{\partial \hat{\boldsymbol{\beta}}_{0}}=-2 \sum_{\mathrm{i}=1}^{\mathrm{N}} \hat{\mathrm{u}}_{\mathrm{i}}$

$$
\begin{align*}
\frac{\partial \mathrm{RSS}}{\partial \hat{\beta}_{0}}=0 & \Rightarrow \quad-2 \sum_{\mathrm{i}=1}^{\mathrm{N}} \hat{\mathrm{u}}_{\mathrm{i}}=0 \quad \Rightarrow \quad \sum_{\mathrm{i}=1}^{\mathrm{N}} \hat{\mathrm{u}}_{\mathrm{i}}=0 \tag{7.1}\\
& \Rightarrow \quad \sum_{\mathrm{i}=1}^{\mathrm{N}}\left(\mathrm{Y}_{\mathrm{i}}-\hat{\beta}_{0}-\hat{\beta}_{1} \mathrm{X}_{1 \mathrm{i}}-\hat{\beta}_{2} \mathrm{X}_{2 \mathrm{i}}\right)=0 \tag{8.1}
\end{align*}
$$

- $\frac{\partial \mathrm{RSS}}{\partial \hat{\beta}_{1}}=-2 \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{X}_{\mathrm{li}} \hat{\mathbf{u}}_{\mathrm{i}}$

$$
\begin{align*}
\frac{\partial \mathrm{RSS}}{\partial \hat{\beta}_{1}}=0 & \Rightarrow \quad-2 \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{X}_{\mathrm{li}} \hat{\mathrm{u}}_{\mathrm{i}}=0 \quad \Rightarrow \quad \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{X}_{\mathrm{li}} \hat{\mathrm{u}}_{\mathrm{i}}=0 \tag{7.2}\\
& \Rightarrow \quad \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{X}_{\mathrm{li}}\left(\mathrm{Y}_{\mathrm{i}}-\hat{\beta}_{0}-\hat{\beta}_{1} \mathrm{X}_{\mathrm{li}}-\hat{\beta}_{2} \mathrm{X}_{2 \mathrm{i}}\right)=0 \tag{8.2}
\end{align*}
$$

- $\frac{\partial \mathrm{RSS}}{\partial \hat{\boldsymbol{\beta}}_{2}}=-2 \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{X}_{2 \mathrm{i}} \hat{\mathbf{u}}_{\mathrm{i}}$

STEP 4: Rearrange each of the equations (8.1)-(8.3) to put them in the conventional form of the OLS normal equations. Thus, taking summations and rearranging terms, we obtain the OLS normal equations:

$$
\text { - } \begin{align*}
& \sum_{i=1}^{N}\left(Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{1 i}-\hat{\beta}_{2} X_{2 i}\right)=0 \tag{8.1}\\
& \sum_{i=1}^{N} Y_{i}-N \hat{\beta}_{0}-\hat{\beta}_{1} \sum_{i=1}^{N} X_{1 i}-\hat{\beta}_{2} \sum_{i=1}^{N} X_{2 i}=0 \\
&-N \hat{\beta}_{0}-\hat{\beta}_{1} \sum_{i=1}^{N} X_{1 i}-\hat{\beta}_{2} \sum_{i=1}^{N} X_{2 i}=-\sum_{i=1}^{N} Y_{i} \\
& N \hat{\beta}_{0}+\hat{\beta}_{1} \sum_{i=1}^{N} X_{1 i}+\hat{\beta}_{2} \sum_{i=1}^{N} X_{2 i}=\sum_{i=1}^{N} Y_{i} \tag{N1}
\end{align*}
$$

$$
\begin{align*}
& \text { - } \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{X}_{1 \mathrm{i}}\left(\mathrm{Y}_{\mathrm{i}}-\hat{\beta}_{0}-\hat{\beta}_{1} \mathrm{X}_{\mathrm{li}}-\hat{\beta}_{2} \mathrm{X}_{2 \mathrm{i}}\right)=0 \tag{8.2}\\
& \sum_{\mathrm{i}=1}^{N}\left(\mathrm{X}_{\mathrm{li}} \mathrm{Y}_{\mathrm{i}}-\hat{\beta}_{0} \mathrm{X}_{\mathrm{li}}-\hat{\beta}_{1} \mathrm{X}_{\mathrm{li}}^{2}-\hat{\beta}_{2} \mathrm{X}_{\mathrm{li}} \mathrm{X}_{2 \mathrm{i}}\right)=0 \\
& \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{X}_{\mathrm{li}} \mathrm{Y}_{\mathrm{i}}-\hat{\beta}_{0} \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{X}_{1 \mathrm{i}}-\hat{\beta}_{1} \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{X}_{\mathrm{li}}^{2}-\hat{\beta}_{2} \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{X}_{\mathrm{li}} \mathrm{X}_{2 \mathrm{i}}=0 \\
& \quad-\hat{\beta}_{0} \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{X}_{\mathrm{li}}-\hat{\beta}_{1} \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{X}_{\mathrm{li}}^{2}-\hat{\beta}_{2} \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{X}_{\mathrm{li}} \mathrm{X}_{2 \mathrm{i}}=-\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{X}_{\mathrm{li}} \mathrm{Y}_{\mathrm{i}} \\
& \quad \hat{\beta}_{0} \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{X}_{\mathrm{li}}+\hat{\beta}_{1} \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{X}_{\mathrm{li}}^{2}+\hat{\beta}_{2} \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{X}_{\mathrm{li}} \mathrm{X}_{2 \mathrm{i}}=\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{X}_{\mathrm{li}} \mathrm{Y}_{\mathrm{i}} \tag{N2}
\end{align*}
$$

$$
\begin{align*}
& \text { - } \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{X}_{2 \mathrm{i}}\left(\mathrm{Y}_{\mathrm{i}}-\hat{\beta}_{0}-\hat{\beta}_{1} \mathrm{X}_{1 \mathrm{i}}-\hat{\beta}_{2} \mathrm{X}_{2 \mathrm{i}}\right)=0 \tag{8.3}\\
& \sum_{\mathrm{i}=1}^{N}\left(\mathrm{X}_{2 \mathrm{i}} \mathrm{Y}_{\mathrm{i}}-\hat{\beta}_{0} \mathrm{X}_{2 \mathrm{i}}-\hat{\beta}_{1} \mathrm{X}_{2 \mathrm{i}} \mathrm{X}_{1 \mathrm{i}}-\hat{\beta}_{2} \mathrm{X}_{2 \mathrm{i}}^{2}\right)=0 \\
& \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{X}_{2 \mathrm{i}} \mathrm{Y}_{\mathrm{i}}-\hat{\beta}_{0} \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{X}_{2 \mathrm{i}}-\hat{\beta}_{1} \sum_{i=1}^{N} \mathrm{X}_{2 \mathrm{i}} \mathrm{X}_{1 \mathrm{i}}-\hat{\beta}_{2} \sum_{i=1}^{\mathrm{N}} \mathrm{X}_{2 \mathrm{i}}^{2}=0 \\
& \quad-\hat{\beta}_{0} \sum_{\mathrm{i}=1}^{N} \mathrm{X}_{2 \mathrm{i}}-\hat{\beta}_{1} \sum_{\mathrm{i}=1}^{N} \mathrm{X}_{2 \mathrm{i}} \mathrm{X}_{1 \mathrm{i}}-\hat{\beta}_{2} \sum_{\mathrm{i}=1}^{N} \mathrm{X}_{2 \mathrm{i}}^{2}=-\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{X}_{2 \mathrm{i}} \mathrm{Y}_{\mathrm{i}} \\
& \hat{\beta}_{0} \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{X}_{2 \mathrm{i}}+\hat{\beta}_{1} \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{X}_{2 \mathrm{i}} \mathrm{X}_{1 \mathrm{i}}+\hat{\beta}_{2} \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{X}_{2 \mathrm{i}}^{2}=\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{X}_{2 \mathrm{i}} \mathrm{Y}_{\mathrm{i}} \tag{N3}
\end{align*}
$$

RESULT: Assemble the three OLS normal equations (N1)-(N3):

$$
\begin{align*}
& N \hat{\beta}_{0}+\hat{\beta}_{1} \sum_{i=1}^{N} X_{1 i}+\hat{\beta}_{2} \sum_{i=1}^{N} X_{2 i}=\sum_{i=1}^{N} Y_{i} \tag{N1}\\
& \hat{\beta}_{0} \sum_{i=1}^{N} X_{1 i}+\hat{\beta}_{1} \sum_{i=1}^{N} X_{1 i}^{2}+\hat{\beta}_{2} \sum_{i=1}^{N} X_{1 i} X_{2 i}=\sum_{i=1}^{N} X_{1 i} Y_{i} \tag{N2}\\
& \hat{\beta}_{0} \sum_{i=1}^{N} X_{2 i}+\hat{\beta}_{1} \sum_{i=1}^{N} X_{2 i} X_{1 i}+\hat{\beta}_{2} \sum_{i=1}^{N} X_{2 i}^{2}=\sum_{i=1}^{N} X_{2 i} Y_{i} \tag{N3}
\end{align*}
$$

- The OLS normal equations (N1)-(N3) constitute three linear equations in the three unknowns $\hat{\beta}_{0}, \hat{\beta}_{1}$, and $\hat{\beta}_{2}$.
- Solution of the OLS normal equations (N1)-(N3) yields explicit expressions (or formulas) for $\hat{\beta}_{0}, \hat{\beta}_{1}$, and $\hat{\beta}_{2}$; these expressions are the OLS estimators $\hat{\beta}_{0}$, $\hat{\beta}_{1}$, and $\hat{\beta}_{2}$ of the partial regression coefficients β_{0}, β_{1}, and β_{2} respectively.

3. Expressions for the OLS Coefficient Estimators

- The expressions (formulas) for the OLS estimators are most conveniently written in deviation-from-means form, which uses lower case letters to denote the deviations of the sample values of each observable variable from their respective sample means. Thus, define the deviations-from-means of $\mathrm{Y}_{\mathrm{i}}, \mathrm{X}_{1 \mathrm{i}}$, and $\mathrm{X}_{2 \mathrm{i}}$ as:

$$
\mathrm{y}_{\mathrm{i}} \equiv \mathrm{Y}_{\mathrm{i}}-\overline{\mathrm{Y}} ; \quad \mathrm{x}_{1 \mathrm{i}} \equiv \mathrm{X}_{\mathrm{li}}-\overline{\mathrm{X}}_{1} ; \quad \mathrm{x}_{2 \mathrm{i}} \equiv \mathrm{X}_{2 \mathrm{i}}-\overline{\mathrm{X}}_{2} ;
$$

where

$$
\begin{aligned}
& \overline{\mathrm{Y}}=\Sigma_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}} / \mathrm{N}=\frac{\Sigma_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}}}{\mathrm{~N}} \text { is the sample mean of the } \mathrm{Y}_{\mathrm{i}} \text { values; } \\
& \overline{\mathrm{X}}_{1}=\Sigma_{\mathrm{i}} \mathrm{X}_{\mathrm{li}} / \mathrm{N}=\frac{\sum_{\mathrm{i}} \mathrm{X}_{1 \mathrm{i}}}{\mathrm{~N}} \text { is the sample mean of the } \mathrm{X}_{1 \mathrm{i}} \text { values; } \\
& \overline{\mathrm{X}}_{2}=\Sigma_{\mathrm{i}} \mathrm{X}_{2 \mathrm{i}} / \mathrm{N}=\frac{\Sigma_{\mathrm{i}} \mathrm{X}_{2 \mathrm{i}}}{\mathrm{~N}} \text { is the sample mean of the } \mathrm{X}_{2 \mathrm{i}} \text { values. }
\end{aligned}
$$

- The OLS slope coefficient estimators $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$ in deviation-from-means form are:

$$
\begin{align*}
& \hat{\beta}_{1}=\frac{\left(\sum_{\mathrm{i}} \mathrm{x}_{2 \mathrm{i}}^{2}\right)\left(\sum_{\mathrm{i}} \mathrm{x}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}\right)-\left(\sum_{\mathrm{i}} \mathrm{x}_{1 \mathrm{i}} \mathrm{x}_{2 \mathrm{i}}\right)\left(\sum_{\mathrm{i}} \mathrm{x}_{2 \mathrm{i}} \mathrm{y}_{\mathrm{i}}\right)}{\left(\sum_{\mathrm{i}} \mathrm{x}_{\mathrm{li}}^{2}\right)\left(\sum_{\mathrm{i}} \mathrm{x}_{2 \mathrm{i}}^{2}\right)-\left(\sum_{\mathrm{i}} \mathrm{x}_{1 \mathrm{i}} \mathrm{x}_{2 \mathrm{i}}\right)^{2} ;} \tag{9.2}\\
& \hat{\beta}_{2}=\frac{\left(\sum_{\mathrm{i}} \mathrm{x}_{1 \mathrm{i}}^{2}\right)\left(\sum_{\mathrm{i}} \mathrm{x}_{2 \mathrm{i}} \mathrm{y}_{\mathrm{i}}\right)-\left(\sum_{\mathrm{i}} \mathrm{x}_{1 \mathrm{i}} \mathrm{x}_{2 \mathrm{i}}\right)\left(\sum_{\mathrm{i}} \mathrm{x}_{\mathrm{il}} \mathrm{y}_{\mathrm{i}}\right)}{\left(\sum_{\mathrm{i}} \mathrm{x}_{\mathrm{li}}^{2}\right)\left(\sum_{\mathrm{i}} \mathrm{x}_{2 \mathrm{i}}^{2}\right)-\left(\sum_{\mathrm{i}} \mathrm{x}_{\mathrm{ii}} \mathrm{x}_{2 \mathrm{i}}\right)^{2}} . \tag{9.3}
\end{align*}
$$

- The OLS intercept coefficient estimator $\hat{\beta}_{0}$ is:

$$
\begin{equation*}
\hat{\beta}_{0}=\bar{Y}-\hat{\beta}_{1} \bar{X}_{1}-\hat{\beta}_{2} \bar{X}_{2} . \tag{9.1}
\end{equation*}
$$

4. The OLS Variance-Covariance Estimators

- An unbiased estimator of the error variance σ^{2}

- For the general multiple linear regression model with K regression coefficients, an unbiased estimator of the error variance σ^{2} is the degrees-of-freedom-adjusted estimator

$$
\hat{\sigma}^{2}=\frac{\sum_{i} \hat{u}_{i}^{2}}{(\mathrm{~N}-\mathrm{K})}=\frac{\mathrm{RSS}}{(\mathrm{~N}-\mathrm{K})}
$$

where $\mathrm{K}=\mathrm{k}+1=$ the total number of regression coefficients in the PRF.

- For the three-variable multiple linear regression model (such as regression equation (1) above) for which $\mathbf{K}=\mathbf{3}$, the unbiased estimator of the error variance σ^{2} is therefore

$$
\begin{equation*}
\hat{\sigma}^{2}=\frac{\Sigma_{i} \hat{u}_{i}^{2}}{(\mathrm{~N}-3)}=\frac{\mathrm{RSS}}{(\mathrm{~N}-3)} . \tag{10}
\end{equation*}
$$

where $(\mathrm{N}-3)$ is the degrees of freedom for the residual sum of squares RSS in the OLS-SRE (2). $\hat{\sigma}^{2}$ is an unbiased estimator of σ^{2} because it can be shown that $\mathrm{E}\left(\sum_{\mathrm{i}} \hat{\mathrm{u}}_{\mathrm{i}}^{2}\right)=\mathrm{E}(\mathrm{RSS})=(\mathrm{N}-3) \sigma^{2}$.

- The error variance estimator $\hat{\sigma}^{2}$ is used to obtain unbiased estimators of the variances and covariances of the OLS coefficient estimators $\hat{\beta}_{0}, \hat{\beta}_{1}$, and $\hat{\beta}_{2}$.
- Formulas for the variances and covariances of the slope coefficient estimators $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$ in the three-variable multiple regression model

$$
\begin{aligned}
& \operatorname{Var}\left(\hat{\beta}_{1}\right)=\frac{\sigma^{2} \Sigma_{\mathrm{i}} \mathrm{x}_{2 \mathrm{i}}^{2}}{\left(\Sigma_{\mathrm{i}} \mathrm{x}_{\mathrm{li}}^{2}\right)\left(\Sigma_{\mathrm{i}} \mathrm{x}_{2 \mathrm{i}}^{2}\right)-\left(\Sigma_{\mathrm{i}} \mathrm{x}_{1 \mathrm{ii}} \mathrm{x}_{2 \mathrm{i}}\right)^{2}} ; \\
& \operatorname{Var}\left(\hat{\beta}_{2}\right)=\frac{\sigma^{2} \Sigma_{\mathrm{i}} \mathrm{x}_{\mathrm{li}}^{2}}{\left(\Sigma_{\mathrm{i}} \mathrm{x}_{\mathrm{li}}^{2}\right)\left(\Sigma_{\mathrm{i}} \mathrm{x}_{2 \mathrm{i}}^{2}\right)-\left(\Sigma_{\mathrm{i}} \mathrm{x}_{1 \mathrm{i}} \mathrm{x}_{2 \mathrm{i}}\right)^{2}} ; \\
& \operatorname{Cov}\left(\hat{\beta}_{1}, \hat{\beta}_{2}\right)=\frac{\sigma^{2} \Sigma_{\mathrm{i}} \mathrm{x}_{1 \mathrm{i}} \mathrm{x}_{2 \mathrm{i}}}{\left(\Sigma_{\mathrm{i}} \mathrm{x}_{\mathrm{li}}^{2}\right)\left(\sum_{\mathrm{i}} \mathrm{x}_{2 \mathrm{i}}^{2}\right)-\left(\Sigma_{\mathrm{i}} \mathrm{x}_{\mathrm{li}} \mathrm{x}_{2 \mathrm{i}}\right)^{2}} .
\end{aligned}
$$

- Unbiased estimators of the variances of the slope coefficient estimators $\hat{\beta}_{1}$

 and $\hat{\beta}_{2}$ are obtained by substituting the unbiased estimator $\hat{\sigma}^{2}$ for the unknown error variance σ^{2} in the formulas for $\operatorname{Var}\left(\hat{\boldsymbol{\beta}}_{1}\right)$ and $\operatorname{Var}\left(\hat{\beta}_{2}\right)$:$$
\begin{align*}
& \operatorname{Var}\left(\hat{\beta}_{1}\right)=\frac{\hat{\sigma}^{2} \sum_{\mathrm{i}} \mathrm{x}_{2 \mathrm{i}}^{2}}{\left(\sum_{\mathrm{i}} \mathrm{x}_{\mathrm{ii}}^{2}\right)\left(\sum_{\mathrm{i}} \mathrm{x}_{2 \mathrm{i}}^{2}\right)-\left(\sum_{\mathrm{i}} \mathrm{x}_{1 \mathrm{i}} \mathrm{x}_{2 \mathrm{i}}\right)^{2}} ; \tag{11.1}\\
& \operatorname{Var}\left(\hat{\beta}_{2}\right)=\frac{\hat{\sigma}^{2} \Sigma_{\mathrm{i}} \mathrm{x}_{1 \mathrm{i}}^{2}}{\left(\sum_{\mathrm{i}} \mathrm{x}_{1 \mathrm{i}}^{2}\right)\left(\sum_{\mathrm{i}} \mathrm{x}_{2 \mathrm{i}}^{2}\right)-\left(\sum_{\mathrm{i}} \mathrm{x}_{\mathrm{li}} \mathrm{x}_{2 \mathrm{i}}\right)^{2}} ; \tag{11.2}
\end{align*}
$$

- Similarly, an unbiased estimator of the covariance between the slope coefficient estimators $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$ is obtained by substituting the unbiased estimator $\hat{\sigma}^{2}$ for the unknown error variance σ^{2} in the formula for $\operatorname{Cov}\left(\hat{\beta}_{1}, \hat{\beta}_{2}\right):$

$$
\begin{equation*}
\operatorname{Côv}\left(\hat{\beta}_{1}, \hat{\beta}_{2}\right)=\frac{\hat{\sigma}^{2} \Sigma_{\mathrm{i}} \mathrm{x}_{\mathrm{li}} \mathrm{x}_{2 \mathrm{i}}}{\left(\Sigma_{\mathrm{i}} \mathrm{x}_{\mathrm{ii}}\right)\left(\Sigma_{\mathrm{i}} \mathrm{x}_{2 \mathrm{i}}^{2}\right)-\left(\Sigma_{\mathrm{i}} \mathrm{x}_{\mathrm{li}} \mathrm{x}_{2 \mathrm{i}}\right)^{2}} . \tag{11.3}
\end{equation*}
$$

- Interpretive formula for the variances of the OLS slope coefficient

 estimators $\hat{\beta}_{j}, j=1,2, \ldots, k$Consider the general multiple linear regression equation given by the PRE

$$
\begin{equation*}
\mathrm{Y}_{\mathrm{i}}=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{li}}+\cdots+\beta_{\mathrm{j}} \mathrm{X}_{\mathrm{ji}}+\cdots+\beta_{\mathrm{k}} \mathrm{X}_{\mathrm{ki}}+\mathrm{u}_{\mathrm{i}} \tag{12.1}
\end{equation*}
$$

OLS estimation of the PRE in (11) yields the OLS SRE

$$
\begin{equation*}
\mathrm{Y}_{\mathrm{i}}=\hat{\beta}_{0}+\hat{\beta}_{1} \mathrm{X}_{\mathrm{li}}+\cdots+\hat{\beta}_{\mathrm{j}} \mathrm{X}_{\mathrm{ji}}+\cdots+\hat{\beta}_{\mathrm{k}} \mathrm{X}_{\mathrm{ki}}+\hat{\mathrm{u}}_{\mathrm{i}} \tag{12.2}
\end{equation*}
$$

- The formula for $\operatorname{Var}\left(\hat{\beta}_{j}\right)$ for $\mathrm{j}=1,2, \ldots, k$ can be written as

$$
\begin{equation*}
\operatorname{Var}\left(\hat{\beta}_{j}\right)=\frac{\sigma^{2}}{\operatorname{TSS}_{j}\left(1-R_{j}^{2}\right)} \quad \text { for } j=1,2, \ldots, k \tag{13}
\end{equation*}
$$

where
$\mathrm{TSS}_{\mathrm{j}} \equiv \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{X}_{\mathrm{ji}}^{2} \equiv \sum_{\mathrm{i}=1}^{\mathrm{N}}\left(\mathrm{X}_{\mathrm{ji}}-\overline{\mathrm{X}}_{\mathrm{j}}\right)^{2} \equiv$ the total sample variation in the regressor $\mathrm{X}_{\mathrm{j}} ;$ $R_{j}^{2} \equiv$ the R^{2} from the OLS regression of regressor X_{j} on all the other $K-1$ regressors in (12.1), including the intercept. That is, $\mathrm{R}_{\mathrm{j}}^{2}$ measures the proportion of the total sample variation in X_{j} that is explained by the other regressors in the PRE. Alternatively, $\mathrm{R}_{\mathrm{j}}^{2}$ measures the degree of linear dependence between the sample values X_{ji} of the regressor X_{j} and the sample values of the other regressors in regression equation (12.1).

This formula for $\operatorname{Var}\left(\hat{\beta}_{\mathrm{j}}\right)$ is given in J. Kmenta, Elements of Econometrics, 2nd edition (1986), pp. 437-438.

- Determinants of $\operatorname{Var}\left(\hat{\beta}_{j}\right)$.

$$
\begin{equation*}
\operatorname{Var}\left(\hat{ß}_{\mathrm{j}}\right)=\frac{\sigma^{2}}{\operatorname{TSS}_{\mathrm{j}}\left(1-\mathrm{R}_{\mathrm{j}}^{2}\right)} \quad \text { for } \mathrm{j}=1,2, \ldots, \mathrm{k} \tag{13}
\end{equation*}
$$

Three factors determine $\operatorname{Var}\left(\hat{\beta}_{\mathrm{j}}\right)$:

1. the error variance σ^{2};
2. the total sample variation in $\mathbf{X}_{\mathbf{j}}, \mathbf{T S S}_{\mathbf{j}}$;
3. the degree of linear dependence between X_{j} and the other regressors in the model, as measured by $\mathbf{R}_{\mathrm{j}}{ }^{2}$.

- $\operatorname{Var}\left(\hat{\beta}_{j}\right)$ is smaller:
(1) the smaller is σ^{2}, the error variance in the true model;
(2) the larger is TSS $_{j}$, the total sample variation in the regressor $\mathbf{X}_{\mathbf{j}}$;
$\mathrm{TSS}_{\mathrm{j}} \equiv \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{x}_{\mathrm{ji}}^{2} \equiv \sum_{\mathrm{i}=1}^{\mathrm{N}}\left(\mathrm{X}_{\mathrm{ji}}-\overline{\mathrm{X}}_{\mathrm{j}}\right)^{2}$ is larger
- the larger the values of $\mathbf{x}_{\mathrm{ji}}^{2}=\left(\mathbf{X}_{\mathrm{ji}}-\overline{\mathbf{X}}_{\mathrm{j}}\right)^{2}$ for $\mathrm{i}=1, \ldots, \mathrm{~N}$, meaning the greater the sample variation in the X_{ji} values around their sample mean;
- the larger is \mathbf{N}, the size of the estimation sample;
(3) the smaller (closer to 0) is R_{j}^{2}, the lower the degree of linear dependence between the sample values X_{ji} of the regressor X_{j} and the sample values of the other regressors in the PRE.
- Conversely, $\operatorname{Var}\left(\hat{\boldsymbol{\beta}}_{\mathrm{j}}\right)$ is larger:
(1) the larger is σ^{2}, the error variance in the true model;
(2) the smaller is TSS_{j}, the total sample variation in the regressor $\mathbf{X}_{\mathbf{j}}$;
$\mathrm{TSS}_{\mathrm{j}} \equiv \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{X}_{\mathrm{ji}}^{2} \equiv \sum_{\mathrm{i}=1}^{\mathrm{N}}\left(\mathrm{X}_{\mathrm{ji}}-\overline{\mathrm{X}}_{\mathrm{j}}\right)^{2}$ is smaller
- the smaller the values of $\mathbf{x}_{\mathrm{ji}}^{2}=\left(\mathbf{X}_{\mathrm{ij}}-\overline{\mathbf{X}}_{\mathrm{j}}\right)^{2}$ for $\mathrm{i}=1, \ldots, \mathrm{~N}$, meaning the greater the sample variation in the X_{ji} values around their sample mean;
- the smaller is \mathbf{N}, the size of the estimation sample;
(3) the larger (closer to 1) is R_{j}^{2}, the greater the degree of linear dependence between the sample values X_{ji} of the regressor X_{j} and the sample values of the other regressors in the PRE.

Note: Assumption A8, the absence of perfect multicollinearity, rules out the value 1 for R_{j}^{2}.

If $\mathbf{R}_{\mathbf{j}}^{2}=\mathbf{1}$, then the sample values of the regressor X_{j} exhibit an exact linear dependence -- are perfectly multicollinear -- with one or more of the other regressors in the model, in which case it is impossible to compute either
(1) the OLS estimate $\hat{\beta}_{j}$ of the slope coefficient β_{j} associated with the regressor X_{j}, or
(2) the estimated value of $\operatorname{Var}\left(\hat{\boldsymbol{\beta}}_{\mathrm{j}}\right)$, the estimated variance of $\hat{\boldsymbol{\beta}}_{\mathrm{j}}$.

If $\mathbf{R}_{\mathbf{j}}^{2}<\mathbf{1}$, then multicollinearity is simply a question of degree: the closer to 1 is the sample value of $\mathrm{R}_{\mathrm{j}}^{2}$, the larger is $\operatorname{Var}\left(\hat{\beta}_{j}\right)$.

$$
\operatorname{Var}\left(\hat{\beta}_{\mathrm{j}}\right) \rightarrow \infty \quad \text { as } \quad \mathbf{R}_{\mathrm{j}}^{2} \rightarrow \mathbf{1}
$$

5. Computational Properties of the OLS-SRE (2)

$$
\begin{equation*}
Y_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} X_{1 i}+\hat{\beta}_{2} X_{2 i}+\hat{u}_{i}=\hat{Y}_{i}+\hat{u}_{i} \quad(i=1, \ldots, N) \tag{2}
\end{equation*}
$$

5.1 The OLS-SRE passes through the point of sample means $\left(\overline{\mathrm{Y}}, \overline{\mathrm{X}}_{1}, \overline{\mathrm{X}}_{2}\right)$; i.e.,

$$
\begin{equation*}
\overline{\mathrm{Y}}=\hat{\beta}_{0}+\hat{\beta}_{1} \overline{\mathrm{X}}_{1}+\hat{\beta}_{2} \overline{\mathrm{X}}_{2} . \tag{C1}
\end{equation*}
$$

Proof of (C1): Follows directly from dividing OLS normal equation (N1) by N.

$$
\begin{align*}
& N \hat{\beta}_{0}+\hat{\beta}_{1} \sum_{i=1}^{N} X_{1 i}+\hat{\beta}_{2} \sum_{i=1}^{N} X_{2 i}=\sum_{i=1}^{N} Y_{i} \tag{N1}\\
& \frac{N \hat{\beta}_{0}}{N}+\hat{\beta}_{1} \frac{\sum_{i=1}^{N} X_{1 i}}{N}+\hat{\beta}_{2} \frac{\sum_{i=1}^{N} X_{2 i}}{N}=\frac{\sum_{i=1}^{N} Y_{i}}{N} \text { dividing (N1) by } N \\
& \hat{\beta}_{0}+\hat{\beta}_{1} \bar{X}_{1}+\hat{\beta}_{2} \bar{X}_{2}=\bar{Y} .
\end{align*}
$$

5.2 The sum of the estimated \mathbf{Y}_{i} 's (the $\hat{\mathbf{Y}}_{i}$'s) equals the sum of the observed \mathbf{Y}_{i} 's; or the sample mean of the estimated $\mathbf{Y}_{\mathbf{i}}$'s (the $\hat{\mathbf{Y}}_{i}$'s) equals the sample mean of the observed \mathbf{Y}_{i} 's.

$$
\begin{equation*}
\sum_{i=1}^{N} \hat{Y}_{i}=\sum_{i=1}^{N} Y_{i} \quad \text { or } \quad \frac{\sum_{i=1}^{N} \hat{Y}_{i}}{N}=\frac{\sum_{i=1}^{N} Y_{i}}{N} \quad \text { or } \quad \overline{\hat{Y}}=\bar{Y} \tag{C2}
\end{equation*}
$$

Proof of (C2):

1. Substitute $\hat{\beta}_{0}=\bar{Y}-\hat{\beta}_{1} \bar{X}_{1}-\hat{\beta}_{2} \bar{X}_{2}$ in the expression for \hat{Y}_{i} :

$$
\begin{aligned}
\hat{Y}_{\mathrm{i}} & =\hat{\beta}_{0}+\hat{\beta}_{1} X_{1 \mathrm{i}}+\hat{\beta}_{2} \mathrm{X}_{2 \mathrm{i}} \\
& =\left(\overline{\mathrm{Y}}-\hat{\beta}_{1} \bar{X}_{1}-\hat{\beta}_{2} \bar{X}_{2}\right)+\hat{\beta}_{1} \mathrm{X}_{1 \mathrm{i}}+\hat{\beta}_{2} \mathrm{X}_{2 \mathrm{i}} \\
& =\overline{\mathrm{Y}}+\hat{\beta}_{1}\left(\mathrm{X}_{1 \mathrm{i}}-\bar{X}_{1}\right)+\hat{\beta}_{2}\left(\mathrm{X}_{2 \mathrm{i}}-\bar{X}_{2}\right) \\
& =\overline{\mathrm{Y}}+\hat{\beta}_{1} \mathrm{x}_{1 \mathrm{i}}+\hat{\beta}_{2} \mathrm{x}_{2 \mathrm{i}}
\end{aligned} \quad \text { since } \begin{aligned}
& \mathrm{x}_{1 \mathrm{i}} \equiv\left(\mathrm{X}_{1 \mathrm{i}}-\bar{X}_{1}\right) \\
& \mathrm{x}_{2 \mathrm{i}} \equiv\left(\mathrm{X}_{2 \mathrm{i}}-\overline{\mathrm{X}}_{2}\right)
\end{aligned}
$$

2. Now sum the above equation over the sample:

$$
\begin{array}{rlr}
\sum_{i=1}^{N} \hat{Y}_{i} & =N \bar{Y}+\hat{\beta}_{1} \sum_{i=1}^{N} x_{1 i}+\hat{\beta}_{2} \sum_{i=1}^{N} x_{2 i} & \\
& =N \bar{Y} & \text { because } \sum_{i=1}^{N} x_{1 i}=\sum_{i=1}^{N} x_{2 i}=0 .
\end{array}
$$

3. Thus, dividing both sides of the above equation by N , we obtain the result

$$
\sum_{i=1}^{N} \hat{Y}_{i}=N \bar{Y} \Rightarrow \frac{\sum_{i=1}^{N} \hat{Y}_{i}}{N}=\bar{Y} \text { or } \frac{\sum_{i=1}^{N} \hat{Y}_{i}}{N}=\frac{\sum_{i=1}^{N} Y_{i}}{N} \text { or } \overline{\hat{Y}}=\bar{Y} \text { or } \sum_{i=1}^{N} \hat{Y}_{i}=\sum_{i=1}^{N} Y_{i} .
$$

5.3 The sum of the OLS residuals $\hat{\mathbf{u}}_{\mathbf{i}}(\mathbf{i}=\mathbf{1}, \ldots, \mathrm{N})$ equals zero, or the sample

 mean of the OLS residuals $\hat{\mathbf{u}}_{\mathrm{i}}$ equals zero.$$
\begin{equation*}
\sum_{\mathrm{i}=1}^{\mathrm{N}} \hat{\mathrm{u}}_{\mathrm{i}}=0 \quad \text { or } \quad \overline{\hat{\mathrm{u}}}=\frac{\sum_{\mathrm{i}=1}^{\mathrm{N}} \hat{\mathrm{u}}_{\mathrm{i}}}{\mathrm{~N}}=0 . \tag{C3}
\end{equation*}
$$

Proof of (C3): An immediate implication of equation (7.1).

$$
\begin{equation*}
\sum_{i=1}^{N}\left(Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{1 i}-\hat{\beta}_{2} X_{2 i}\right)=0 \quad \Leftrightarrow \quad \sum_{i=1}^{N} \hat{u}_{i}=0 \tag{7.1}
\end{equation*}
$$

5.4 The OLS residuals $\hat{\mathbf{u}}_{\mathbf{i}}(\mathbf{i}=1, \ldots, \mathrm{~N})$ are uncorrelated with the sample values of the regressors $X_{1 i}$ and $X_{2 i}(i=1, \ldots, N)$ i.e.,

$$
\begin{equation*}
\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{X}_{1 \mathrm{i}} \hat{\mathrm{u}}_{\mathrm{i}}=0 \quad \text { and } \quad \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{X}_{2 \mathrm{i}} \hat{\mathrm{u}}_{\mathrm{i}}=0 . \tag{C4}
\end{equation*}
$$

Proof of (C4): An immediate implication of equations (7.2) and (7.3).

$$
\begin{array}{ll}
\sum_{\mathrm{i}=1}^{N} X_{1 i}\left(Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{1 i}-\hat{\beta}_{2} X_{2 i}\right)=0 & \Leftrightarrow \sum_{\mathrm{i}=1}^{N} X_{1 i} \hat{u}_{i}=0 \\
\sum_{\mathrm{i}=1}^{N} X_{2 i}\left(Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{1 i}-\hat{\beta}_{2} X_{2 i}\right)=0 & \Leftrightarrow \sum_{\mathrm{i}=1}^{N} X_{2 i} \hat{u}_{i}=0 \tag{7.3}
\end{array}
$$

5.5 The OLS residuals $\hat{\mathbf{u}}_{\mathrm{i}}(\mathbf{i}=1, \ldots, \mathrm{~N})$ are uncorrelated with the estimated

 values of $\mathbf{Y}_{\mathbf{i}}$, the $\hat{\mathbf{Y}}_{i}$ values $(\mathbf{i}=1, \ldots, \mathbf{N})$: i.e.,$$
\begin{equation*}
\sum_{\mathrm{i}=1}^{\mathrm{N}} \hat{\mathrm{Y}}_{\mathrm{i}} \hat{\mathrm{u}}_{\mathrm{i}}=0 . \tag{C5}
\end{equation*}
$$

Proof of (C5): Follows from properties (C3) and (C4) above.

1. The \hat{Y}_{i} are given by the following expression for the OLS sample regression function (the OLS-SRF):

$$
\hat{Y}_{i}=\hat{\beta}_{0}+\beta_{1} X_{1 i}+\hat{\beta}_{2} X_{2 i} .
$$

2. Multiply the above equation by $\hat{\mathrm{u}}_{\mathrm{i}}$:

$$
\hat{Y}_{\mathrm{i}} \hat{u}_{\mathrm{i}}=\hat{\beta}_{0} \hat{u}_{\mathrm{i}}+\hat{\beta}_{1} \mathrm{X}_{\mathrm{li}} \hat{u}_{\mathrm{i}}+\hat{\beta}_{2} \mathrm{X}_{2 \mathrm{i}} \hat{\mathrm{u}}_{\mathrm{i}} .
$$

3. Summing both sides of the above equation over the sample gives the result

$$
\begin{aligned}
\sum_{i=1}^{N} \hat{Y}_{i} \hat{u}_{i} & =\hat{\beta}_{0} \sum_{i=1}^{N} \hat{u}_{i}+\hat{\beta}_{1} \sum_{i=1}^{N} X_{1 i} \hat{u}_{i}+\hat{\beta}_{2} \sum_{i=1}^{N} X_{2 i} \hat{u}_{i} \\
& =0
\end{aligned}
$$

because

$$
\sum_{i=1}^{N} \hat{u}_{i}=0 \quad \text { by property }(\mathrm{C} 3)
$$

and

$$
\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{X}_{1 \mathrm{i}} \hat{\mathrm{u}}_{\mathrm{i}}=\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{X}_{2 \mathrm{i}} \hat{\mathrm{u}}_{\mathrm{i}}=0 \quad \text { by property }(\mathrm{C} 4) .
$$

