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ECON 351* -- NOTE 11 
 

The Multiple Classical Linear Regression Model (CLRM): 
Specification and Assumptions  

 
1.  Introduction 

 
CLRM stands for the Classical Linear Regression Model.  The CLRM is also 
known as the standard linear regression model.   
 
Three sets of assumptions define the multiple CLRM -- essentially the same 
three sets of assumptions that defined the simple CLRM, with one 
modification to assumption A8.     
 
1. Assumptions respecting the formulation of the population regression 

equation, or PRE. 
 

Assumption A1 
 
2. Assumptions respecting the statistical properties of the random error term 

and the dependent variable.   
 

Assumptions A2-A4 
 

• Assumption A2:  The Assumption of Zero Conditional Mean Error 
• Assumption A3:  The Assumption of Constant Error Variances 
• Assumption A4:  The Assumption of Zero Error Covariances 

 
3. Assumptions respecting the properties of the sample data.   
 

Assumptions A5-A8 
 

• Assumption A5:  The Assumption of Independent Random Sampling 
• Assumption A6:  The Assumption of Sufficient Sample Data (N > K) 
• Assumption A7:  The Assumption of Nonconstant Regressors 
• Assumption A8:  The Assumption of No Perfect Multicollinearity   

 



ECONOMICS 351* -- NOTE 11  M.G. Abbott 
 

 

 

2.  Formulation of the Population Regression Equation (PRE) 
 
Assumption A1:  The population regression equation, or PRE, takes the form 
 

       (A1) uX=uXXXY
k

1j
jj0kk22110 +β+β+β++β+β+β= ∑

=
L

or 

     (A1) i

k

1j
jij0ikiki22i110i uX=uXXXY +β+β+β++β+β+β= ∑

=
L

The second form of (A1) writes the PRE for a particular observation i.  
  
As in the simple CLRM, the PRE (A1) incorporates three distinct assumptions.   
 
A1.1:  Assumption of an Additive Random Error Term.    
 
⇒ The random error term ui enters the PRE additively.  

 

   1
u
Y

i

i =
∂
∂   for all i ( ∀ i).     

 
A1.2:  Assumption of Linearity-in-Parameters or Linearity-in-Coefficients.    
 
⇒ The PRE is linear in the population regression coefficients βj (j = 0, ..., k).   

 
Let [ kii2i1i XXX1x L= ] be the (K×1) vector of regressor values for 
observation i.   
 

 )x(fY
ij

j

i =
∂β
∂    where )x(f ij  contains no unknown parameters, j = 0, ..., k. 

 
A1.3:  Assumption of Parameter or Coefficient Constancy.    
 
⇒ The population regression coefficients βj (j = 0, 1, ..., k) are (unknown) 

constants that do not vary across observations.   
 

j  =  a constant ∀ i  (j = 0, 1, ..., k).   ji β=β
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3.  Properties of the Random Error Term 
 
Assumption A2:  The Assumption of Zero Conditional Mean Error 
 

The conditional mean, or conditional expectation, of the random error 
terms ui for any given values Xji of the regressors Xj is equal to zero:   

 
( ) ( ) 0xuEX,,X,XuE k21 ==K            (A2) 

or 
( ) ( ) i      0xuEX,,X,XuE iikii2i1i ∀==K         (A2) 

 
where [ k21 XXX1x L= ] is any (K×1) vector of regressor values, and 

[ kii2i1i XXX1x L= ] denotes the (K×1) vector of regressor values for a 
particular observation, namely observation i.   

 
Implications of Assumption A2 
 
• Implication 1 of A2.  Assumption A2 implies that the unconditional mean of 

the population values of the random error term u equals zero:     
 

( ) 0xuE =   ⇒    ( ) 0uE =              (A2-1) 
or   

( ) 0xuE ii =  ⇒    ( ) 0uE i =  ∀ i.          (A2-1) 
 

This implication follows from the so-called law of iterated expectations, 
which states that ( )[ ] ( )uExuEE = .  Since ( ) 0xuE =  by A2, it follows that 
( ) ( )[ ] [ ] 00ExuEEuE === .   

 
The logic of (A2-1) is straightforward: If the conditional mean of u for each and 
every population value of x  equals zero, then the mean of these zero 
conditional means must also be zero.    
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• Implication 2 of A2: the Orthogonality Condition.  Assumption A2 also 
implies that the population values Xji of the regressor Xj and ui of the 
random error term u have zero covariance -- i.e., the population values of 
Xj and u are uncorrelated:   

 
( ) 0xuE =   ⇒   ( ) ( ) 0uXEu,XCov jj == ,  j = 1, 2, …, k       (A2-2) 

or 

( ) 0xuE ii =   ⇒   ( ) ( ) 0uXEu,XCov ijiiji ==  ∀ i,  j = 1, 2, …, k    (A2-2) 
 
1. The equality ( ) ( )ijiiji uXEu,XCov =  in (A2-2) follows from the definition of 

the covariance between Xji and ui, and from assumption (A2):   
 

( ) [ ][ ]{ }
[ ]{ }
[ ]

A2.by   0)x|E(u)u(E since )uX(E=

constant a is )X(E since)u(E)X(E)uX(E

u)X(EuXE=

A2by   0)x|E(u sinceu)X(EXE=
definitionby         )x|u(Eu)X(EXEu,XCov

iiiiji

jiijiiji

ijiiji

iiijiji

iiijijiiji

==

−=

−

=−

−−≡

  

 
2. Implication (A2-2) states that the random error term u has zero 

covariance with, or is uncorrelated with, each of the regressors Xj (j = 1, 
…, k) in the population.  This assumption means that there exists no linear 
association between u and any of the k regressors Xj (j = 1, …, k).   

 
Note that zero covariance between Xji and ui implies zero correlation 
between Xji and ui, since the simple correlation coefficient between Xji 
and ui, denoted as ρ(Xji, ui), is defined as 

 

  ρ( , )
( , )

( ) ( )
( , )

( ) ( )
.X u

Cov X u
Var X Var u

Cov X u
sd X sd uji i

ji i

ji i

ji i

ji i

≡ =    

 
From this definition of ρ(Xji, ui), it is obvious that if Cov(Xji, ui) = 0, then 
ρ(Xji, ui) = 0, i.e.,  
 

( )Cov X uji i, = 0 ⇒  ( )ρ X uji i, = 0.   

ECON 351* -- Note 11:  The Multiple CLRM: Specification … Page 4 of 23 pages 



ECONOMICS 351* -- NOTE 11  M.G. Abbott 
 

 

 

 

• Implication 3 of A2.  Assumption A2 implies that the conditional mean of the 
population Yi values corresponding to given values Xji of the regressors Xj (j = 
1, …, k) equals the population regression function (PRF):     
 

( ) 0xuE =   ⇒  ( ) kk22110 XXX)x(fxYE β++β+β+β== L       

∑
=
β+β=

k

1j
jj0 X          (A2-3) 

or 
 
( ) 0xuE ii =   ⇒  ( ) kiki22i110iii XXX)x(fxYE β++β+β+β== L   

     ∀ i.     (A2-3) ∑
=
β+β=

k

1j
jij0 X

 
Proof:  Take the conditional expectation of the PRE (A1) for some given set of 
regressor values [ ]kii2i1i XXX1x L= :   
 

i

k

1j
jij0ikiki22i110i uX=uXXXY +β+β+β++β+β+β= ∑

=
L     (A1) 

 

 

( ) ( ) ( )
( ) ( )

.XxXEcesinX

XXX
0xuE,2AbyxXXXE

xuExXXXExYE

k

1j
jij0

k

1j
i

k

1j
jij0jij0

kiki22i110

iiikiki22i110

iiikiki22i110ii

∑∑ ∑
== =
β+β=⎟

⎠

⎞
⎜
⎝

⎛
β+ββ+β=

β++β+β+β=

=β++β+β+β=

+β++β+β+β=

L

L

L

  

 
• Meaning of the Zero Conditional Mean Error Assumption A2:   
 

Each set of regressor values [ ]kii2i1i XXX1x L=  identifies a segment or 
subset of the relevant population, specifically the segment that has those 
particular values of the regressors.  For each of these population segments or 
subsets, assumption A2 says that the mean of the random error u is zero.  
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Assumption A2 rules out both linear dependence and nonlinear dependence 
between each Xj and u; that is, it requires that Xj and u be statistically 
independent for all j = 1, …, k.   
 
• The absence of linear dependence between Xj and u means that Xj and u 

are uncorrelated, or equivalently that Xj and u have zero covariance.   
 

• But linear independence between Xj and u is not sufficient to guarantee the 
satisfaction of assumption A2.  It is possible for Xj and u to be both 
uncorrelated, or linearly unrelated, and nonlinearly related.   
  

• Assumption A2 therefore also requires that there be no nonlinear 
relationship between Xj and u.   

 
• Violations of the Zero Conditional Mean Error Assumption A2   
 
• Remember that the random error term u represents all the unobservable, 

unmeasured and unknown variables other than the regressors Xj, j = 1, …, k that 
determine the population values of the dependent variable Y.   
 

• Anything that causes the random error u to be correlated with one or more of 
the regressors Xj (j = 1, …, k) will violate assumption A2:   

 
( ) 0u,XCov j ≠   or  ( ) 0u,X j ≠ρ    ⇒ ( ) 0xuE ≠ .  

 
If Xj and u are correlated, then ( )xuE  must depend on Xj and so cannot be 
zero.  
 
Note that the converse is not true:  

 
( ) 0u,XCov j =   or  ( ) 0u,X j =ρ   for all j does not imply that  ( ) 0xuE = .   

 
Reason: ( )u,XCov j  measures only linear dependence between u and Xj. 
But any nonlinear dependence between u and Xj will also cause ( )xuE   
to depend on Xj, and hence to differ from zero.  So ( ) 0u,XCov j =  for all  
j = 1, …, k is not enough to insure that assumption A2 is satisfied.    
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• Common causes of correlation or dependence between the Xj and u -- i.e., 
common causes of violations of assumption A2.   

 
1. Incorrect specification of the functional form of the relationship 

between Y and the Xj, j = 1, …, k.     
Examples: Using Y as the dependent variable when the true model has ln(Y) 
as the dependent variable. Or using Xj as the independent variable when the 
true model has ln(Xj) as the independent variable.  
 

2. Omission of relevant variables that are correlated with one or more of 
the included regressors Xj, j = 1, …, k.    

 
3. Measurement errors in the regressors Xj, j = 1, …, k.   

 
4. Joint determination of one or more Xj and Y.   
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Assumption A3: The Assumption of Constant Error Variances 
      The Assumption of Homoskedastic Errors 
      The Assumption of Homoskedasticity  
 

The conditional variances of the random error terms ui are identical for all 
observations -- i.e., for all sets of regressor values [ ]k21 XXX1x L= ) -- 
and equal the same finite positive constant σ2 for all i: 

 
( ) ( ) 0σxuExuVar 22 >==              (A3) 

or  
( ) ( ) i0σxuExuVar 2

i
2
iii ∀>==           (A3) 

                        
where σ2 is a finite positive (unknown) constant and [ ]kii2i1i XXX1x L=  
is the (K×1) vector of regressor values for observation i.   
 

• The first equality in A3 follows from the definition of the conditional variance 
of ui and assumption A2:   

 
( ) [ ]{ }

[ ]{ }
( ).xuE

2Aassumptionby0)x|u(Ebecausex0uE=

definitionby x)x|u(EuExuVar

i
2
i

iii
2

i

i
2

iiiii

=

=−

−≡
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• Implication 1 of A3:  Assumption A3 implies that the unconditional variance 
of the random error u is also equal to 2σ :   

 
( ) ( )[ ] ( ) 22

i
2

iii σuE)u(EuEuVar ==−=  ∀ i.    
 

where ( ) ( )2
ii uEuVar =  because 0)u(E i =  by A2-1. 

 
Proof:  By assumptions A2 and A3, ( ) 2

i
2
i xuE σ= .   

By the law or iterated expectations, ( )[ ] ( )2
ii

2
i uExuEE = .   

Thus,  
 

( ) ( ) ( )[ ] [ ] 22
i

2
i

2
ii σσExuEEuEuVar ====   ∀ i. 

 
• Implication 2 of A3:  Assumption A3 implies that the conditional variance of 

the regressand Yi corresponding to given set of regressor values 
[ ]kiX  equals the conditional error variance σ2:     i2i1i XX1x L=

 
( ) 0σxuVar 2 >=    ⇒  ( ) .0xYVar 2 >σ=        (A3-2) 

or 

( ) i0σxuVar 2
ii ∀>=  ⇒  ( ) .i0xYVar 2

ii ∀>σ=      (A3-2) 
 
Proof:  Start with the definition of the conditional variance of Yi for some given 
set (vector) of values of the regressors [ ]kii2i1i XXX1x L= .    
 

( ) [ ]{ }

( )
( ) A3. assumptionby  σxuE since                                    σ

A1by   XββYu since                         xuE=

A2by   Xββ)x|E(Y since   xXββYE=

definitionby     x)x|Y(EYExYVar

2
i

2
i

2

k

1j
jij0iii

2
i

k

1j
jij0iii

2
k

1j
jij0i

i
2

iiiii

==

−−=

+=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
−−

−≡

∑

∑∑

=

==  
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• Meaning of the Homoskedasticity Assumption A3   
 
• For each set of regressor values, there is a conditional distribution of random 

errors, and a corresponding conditional distribution of population Y values.  
 
• Assumption A3 says that the variance of the random errors for any 

particular set of regressor values [ ]kii2i1i XXX1x L=  is the same as the 
variance of the random errors for any other set of regressor values 

[ ]ksX  (for all s2s1s XX1x L= is xx ≠ ).   
 

In other words, the variances of the conditional random error distributions 
corresponding to each set of regressor values in the relevant population are all 
equal to the same finite positive constant 2σ .  

 
( ) ( ) 0xuVarxuVar 2

ssii >σ==   for all  is xx ≠ .   
 
• Implication A3-2 says that the variance of the population Y values for 

[ ]kiXL  is the same as the variance of the population Y 
values for any other set of regressor values 

i2i1i XX1xx ==
[ ]kss2s1s XXX1xx L==  (for 

all is xx ≠ ).  The conditional distributions of the population Y values around 
the PRF have the same constant variance 2σ  for all sets of regressor values.   

 
( ) ( ) 0xYVarxYVar 2

ssii >σ==   for all  is xx ≠ . 
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Assumption A4: The Assumption of Zero Error Covariances 
      The Assumption of Nonautoregressive Errors 
      The Assumption of Nonautocorrelated Errors  
 

Consider any pair of distinct random error terms ui and us (i ≠ s) 
corresponding to two different sets (or vectors) of regressor values xi  ≠  xs.  
This assumption states that ui and us have zero covariance:   

 
  ( ) ( ) .si0x,xuuEx,xu,uCov sisisisi ≠∀==        (A4) 

 
• The first equality in (A4) follows from the definition of the conditional 

covariance of ui and us and assumption (A2):   
 
 ( ) [ ][ ]{ }sisssiiisisi x,x)x|u(Eu)x|u(EuEx,xu,uCov −−≡  by definition 

       = ( )sisi x,xuuE         since 0)xu(E)xu(E ssii ==  by A2.  

 
• The second equality in (A4) states the assumption that all pairs of error terms  

corresponding to different sets of regressor values have zero covariance.   
 

• Implication of A4:  Assumption A4 implies that the conditional covariance of 
any two distinct values of the regressand, say Yi and Ys where i ≠ s, is equal to 
zero:     

 
( )Cov u u x x i si s i s, , = ∀ ≠0  ⇒    ( )Cov Y Y x x i si s i s, , = ∀ ≠0   .
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Proof:  Show that ( ) ( ) ( )sisisisisisi x,xu,uCovx,xuuEx,xY,YCov == .    
 

(1) Begin with the definition of the conditional covariance for Yi and Ys for 
given ix  and sx  values where si xx ≠ :    

 

   
( ) [ ][ ]{ }

( )sisi

sisssiiisisi

x,xuuE

x,x)xY(EY)xY(EYEx,xY,YCov

=

−−≡
 

since  

 ( ) i

k

1j
jij0iiii uXYxYEY =β−β−=− ∑

=
    by assumption A1,  

 ( ) s

k

1j
jsj0ssss uXYxYEY =β−β−=− ∑

=
    by assumption A1.    

(2) Therefore   

   ( ) ( )Cov Y Y x x E u u x xi s i s i s i s, , ,= 0=    by assumption A4.    
 
• Meaning of A4:  Assumption A4 means that there is no systematic linear 

association between ui and us, or between Yi and Ys, where i and s 
correspond to different observations (or different sets of regressor values 

si xx ≠ ).     
 

1. Each random error term ui has zero covariance with, or is uncorrelated 
with, each and every other random error term us (s ≠ i).   

 
2. Equivalently, each regressand value Yi has zero covariance with, or is 

uncorrelated with, each and every other regressand value Ys (s ≠ i). 
 

♦ The assumption of zero covariance, or zero correlation, between each pair 
of distinct observations is weaker than the assumption of independent 
random sampling A5 from an underlying population.   

 
♦ The assumption of independent random sampling implies that the sample 

observations are statistically independent.  The assumption of statistically 
independent observations is sufficient for the assumption of zero 
covariance between observations, but is stronger than necessary.   
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4.  Properties of the Sample Data 
 
Assumption A5: Random Sampling or Independent Random Sampling 
 
The sample data consist of N randomly selected observations on the regressand Y 
and the regressors Xj (j = 1, ..., k), the observable variables in the PRE described 
by A1. These N randomly selected observations can be written as N row vectors:    
 

   
[ ]
( )

.N,,1i)x,Y(
N,,1iX,,X,X,1,Y

)x,Y(,),x,Y(),x,Y(dataSample

ii

kii2i1i

NN2211

K

KK

K

=≡
=≡

≡
 

 
• Implications of the Random Sampling Assumption A5      
 

The assumption of random sampling implies that the sample observations 
are statistically independent.   
 
1. It thus means that the error terms ui and us are statistically independent, 

and hence have zero covariance, for any two observations i and s.  
 

Random sampling ⇒ ( )sisi x,xu,uCov  = ( )si u,uCov  = 0  ∀  i ≠ s. 
 

2. It also means that the dependent variable values Yi and Ys are statistically 
independent, and hence have zero covariance, for any two observations i 
and s. 

 
  Random sampling ⇒ ( )sisi x,xY,YCov  = ( )si Y,YCov  = 0  ∀  i ≠ s. 
 

The assumption of random sampling is therefore sufficient for assumption A4 
of zero covariance between observations, but is stronger than necessary.  
 

• When is the Random Sampling Assumption A5 Appropriate?    
 
The random sampling assumption is often appropriate for cross-sectional 
regression models, but is hardly ever appropriate for time-series regression 
models.  
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Assumption A6: The number of sample observations N is greater than the 
number of unknown parameters K:   
 
  number of sample observations  >  number of unknown parameters 
 
               N  >  K.          (A6) 
 
• Meaning of A6:  Unless this assumption is satisfied, it is not possible to 

compute from a given sample of N observations estimates of all the unknown 
parameters in the model.    

 
Assumption A7:   Nonconstant Regressors  
 
The sample values Xji of each regressor Xj (j = 1, …, k) in a given sample (and 
hence in the population) are not all equal to a constant:   
 
  Xji   ≠  cj   ∀  i = 1, ..., N   where the cj are constants (j = 1, ..., k) .   (A7) 
 
• Technical Form of A7:  Assumption A7 requires that the sample variances of 

all k−1 non-constant regressors Xj (j = 1, ..., k) must be finite positive 
numbers for any sample size N; i.e.,   

  sample variance of Xji  ≡ Var(Xji)  =  
∑ −

−
i ji jX X

N
( )2

1
 =  sX

2
j
 > 0,   

where  are finite positive numbers for all j = 1, ..., k.    sX j

2 0>

 
• Meaning of A7:  Assumption A7 requires that each nonconstant regressor Xj 

(j = 1, …, k) takes at least two different values in any given sample.     
 

Unless this assumption is satisfied, it is not possible to compute from the 
sample data an estimate of the effect on the regressand Y of changes in the 
value of the regressor Xj.  In other words, to calculate the effect of changes in 
Xj on Y, the sample values Xji of the regressor Xj must vary across observations 
in any given sample.   
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Assumption A8:  No Perfect Multicollinearity  
 
The sample values of the regressors Xj (j = 1, ..., k) in a multiple regression 
model do not exhibit perfect or exact multicollinearity.   
 

This assumption is relevant only in multiple regression models that contain 
two or more non-constant regressors.   
 
This assumption is the only new assumption required for the multiple linear 
regression model.     

 
• Statement of Assumption A8:  The absence of perfect multicollinearity 

means that there exists no exact linear relationship among the sample values 
of the non-constant regressors Xj (j = 1, ..., k).   

 
♦ An exact linear relationship exists among the sample values of the non-

constant regressors if the sample values of the regressors Xj (j = 1, ..., k) 
satisfy a linear relationship of the form    

 
   0XXX kiki22i110 =λ++λ+λ+λ L   ∀ =i 1 2, , , .K N       (1) 
 

where the  (j = 0, l, …, k) are fixed constants, not all of which equal zero.     jλ
 
♦ Assumption A8 – the absence of perfect multicollinearity – means that there 

exists no relationship of the form (1) among the sample values Xji of the 
regressors Xj (j = 1, ..., k).   

 
• Meaning of Assumption A8:   
 

♦ Each non-constant regressor Xj (j = 1, ..., k) must exhibit some independent 
linear variation in the sample data.   

 
♦ Otherwise, it is not possible to estimate the separate linear effect of each 

and every non-constant regressor on the regressand Y.   
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• Example of Perfect Multicollinearity    
 

Consider the following multiple linear regression model:   
 

      (2) N).1,..., = (i                                uXXY ii22i110i +β+β+β=
 

Suppose that the sample values of the regressors X1i and X2i satisfy the 
following linear equality for all sample observations:    

 
    or  i2i1 X3X = 0X3X i2i1 =−  ∀ i = 1,...,N .        (3) 
 

The exact linear relationship (3) can be written in the general form (1).   
 

1. For the linear regression model given by PRE (2), equation (1) takes the 
form  

 
    0XX i22i110 =λ+λ+λ ∀ =i N1 2, , , .K  
 
2. Set 00 =λ , 11 =λ , and 32 −=λ  in the above equation:   
 
      (identical to equation (3) above.) 0X3X i2i1 =− ∀ =i 1 2, , , .K N
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• Consequences of Perfect Multicollinearity   
 

1. Substitute for X1i in PRE (2) the equivalent expression i2 :    i1 X3X =
  

  ii22i110i uXXY +β+β+β=   

( ) ii22i210 uXX3 +β+β+β=   

ii22i210 uXX3 +β+β+β=   

( ) ii2210 uX3 +β+β+β=   

ii220 uX +α+β=      where  212 3 β+β=α     (4a) 
 

♦ It is possible to estimate from the sample data the regression coefficients β0 
and α2.   

 
♦ But from the estimate of α2 it is not possible to compute estimates of the 

coefficients β1 and β2.  Reason: The equation  
 

212 3 β+β=α  
 

is one equation containing two unknowns, namely β1 and β2.    
 

Result:  It is not possible to compute from the sample data estimates of both 
β1 and β2, the separate linear effects of X1i and X2i on the regressand Yi.   
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2. Alternatively, substitute for X2i in PRE (2) the equivalent expression 

3
XX i1

i2 = :    

 

(4b)                    .
3

     where                    uX

uX
3

uX
3

X

u
3

XX

uXXY

2
11ii110

ii1
2

10

ii1
2

i110

i
i1

2i110

ii22i110i

β
+β=α+α+β=

+⎟
⎠
⎞

⎜
⎝
⎛ β

+β+β=

+
β

+β+β=

+⎟
⎠
⎞

⎜
⎝
⎛β+β+β=

+β+β+β=

  

 
♦ It is possible to estimate from the sample data the regression coefficients β0 

and α1.   
 
♦ But from the estimate of α1 it is not possible to compute estimates of the 

coefficients β1 and β2.  Reason:  The equation  
 

  
3

2
11

β
+β=α  

 
is one equation containing two unknowns, namely β1 and β2.    

 
Result:  Again, it is not possible to compute from the sample data estimates 
of both β1 and β2, the separate linear effects of X1i and X2i on the regressand 
Yi.   
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5. Interpreting Slope Coefficients in Multiple Linear  
Regression Models 

 
• Consider the multiple linear regression model given by the following 

population regression equation (PRE): 
 

ii33i22i110i uXXXY +β+β+β+β=            (5) 
 

X1, X2 and X3 are three distinct independent or explanatory variables that 
determine the population values of Y.    

 
Because regression equation (5) contains more than one regressor, it is called a 
multiple linear regression model.  

 
• The population regression function (PRF) corresponding to PRE (5) is:   

 
( ) ( ) i33i22i110i3i2i1iii XXXX,X,XYExYE β+β+β+β==    (6) 

 
where ix  is the 1×4 row vector of regressors:  )XXX1(x i3i2i1i = .   

 
 Interpreting the Slope Coefficients in Multiple Regression Model (5) 
 

• Each slope coefficient βj is the marginal effect of the corresponding 
explanatory variable Xj on the conditional mean of Y. Formally, the slope 
coefficients {βj : j = 1, 2, 3} are the partial derivatives of the population 
regression function (PRF) with respect to the explanatory variables {Xj : j 
= 1, 2, 3}:  

 
( ) ( )

j
ji

i3i2i1i

ji

ii

X
X,X,XYE

X
xYE

β=
∂

∂
=

∂
∂

  j = 1, 2, 3      (7) 

ECON 351* -- Note 11:  The Multiple CLRM: Specification … Page 19 of 23 pages 



ECONOMICS 351* -- NOTE 11  M.G. Abbott 
 

 

 

 

For example, for j = 1 in multiple regression model (5):   
 

( )
1

i1

i33i22i110

i1

i3i2i1i

X
)XXX(

X
X,X,XYE

β=
∂

β+β+β+β∂
=

∂
∂

     (8) 

 
• Interpretation:  A partial derivative isolates the marginal effect on the 

conditional mean of Y of small variations in one of the explanatory variables, 
while holding constant the values of the other explanatory variables in the 
PRF.    
 
Example:  In multiple regression model (5)   
 

ii33i22i110i uXXXY +β+β+β+β=            (5) 
 

with population regression function 
 

( ) i33i22i110i3i2i1i XXXX,X,XYE β+β+β+β=        (6) 
 

the slope coefficients β1, β2 and β3 are interpreted as follows:  
 

β1  = the partial marginal effect of X1 on the conditional mean of Y 
holding constant the values of the other regressors X2 and X3.   

 
β2  = the partial marginal effect of X2 on the conditional mean of Y 

holding constant the values of the other regressors X1 and X3.   
 

β3  = the partial marginal effect of X3 on the conditional mean of Y 
holding constant the values of the other regressors X1 and X2.   

 
• Including X2 and X3 in the regression function allows us to estimate the partial 

marginal effect of X1 on ( )321 X,X,XYE  while  
 

• holding constant the values of X2 and X3    
• controlling for the effects on Y of X2 and X3   
• conditioning on X2 and X3.   

  

ECON 351* -- Note 11:  The Multiple CLRM: Specification … Page 20 of 23 pages 



ECONOMICS 351* -- NOTE 11  M.G. Abbott 
 

 

 

 

 Interpreting the Slope Coefficient β1 in Multiple Regression Model (5) 
 

ii33i22i110i uXXXY +β+β+β+β=             (5) 
 
( ) i33i22i110i3i2i1i XXXX,X,XYE β+β+β+β=         (6) 

 
• Denote the initial values of the explanatory variables X1, X2 and X3 as X10, 

X20 and X30. 
 
The initial value of the population regression function for Y for the initial 
values of X1, X2 and X3 is:  
 

( ) 3032021010302010 XXXX,X,XYE β+β+β+β=        (9) 
 

• Now change the value of the explanatory variable X1 by 1XΔ , while holding 
constant the values of the other two explanatory variables X2 and X3 at their 
initial values X20 and X30.  
 
The new value of X1 is therefore 
 

11011 XXX Δ+=  
 

The change in the value of X1 is thus 
 

10111 XXX −=Δ  
 
The new value of the population regression function for Y at the new value 
of the explanatory variable X1 is:   
 

( )302011 X,X,XYE   = 3032021110 XXX β+β+β+β   

    = 30320211010 XX)XX( β+β+Δ+β+β   

    = 303202111010 XXXX β+β+Δβ+β+β    (10) 
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• The change in the conditional mean value of Y associated with the change 
1XΔ  in the value of X1 is obtained by subtracting the initial value of the 

population regression function given by (9) from the new value of the 
population regression function given by (10):    
 

( )321 X,X,XYEΔ   =  ( )302011 X,X,XYE   − ( )302010 X,X,XYE   

         =  303202111010 XXXX β+β+Δβ+β+β   
         − ( 3032021010 XXX β+β+β+β )  

         =  303202111010 XXXX β+β+Δβ+β+β   
         3032021010 XXX β−β−β−β−   

         =  11 XΔβ              (11) 
 

• The interpretation of the slope coefficient β1 is obtained by solving for β1 in 
(11):   
  

0X,0X1

321
1

32
X

)X,X,XY(E

=Δ=Δ
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ

Δ
=β   =  

( )
1

321

X
X,X,XYE

∂
∂

  

 
β1  = the partial marginal effect of X1 on the conditional mean of Y 

holding constant the values of the other regressors X2 and X3.   

 
 Comparing Slope Coefficients in Simple and Multiple Regression Models 
 

• Compare the multiple linear regression model  
 

ii33i22i110i uXXXY +β+β+β+β=               (5) 
 

with the simple linear regression model 
 

ii110i uXY +β+β=                   (12) 
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• Question: What is the difference between the slope coefficient β1 in these two 
regression models?   

 
• Answer: Compare the population regression functions for these two models.  

 
For the multiple regression model (5), the population regression function is 
 

( )i3i2i1 X,X,XYE   = i33i22i110 XXX β+β+β+β        (6) 
 
As we have seen, the slope coefficient β1 in multiple regression model (5) is  
 

β1 in model (5)  =  
0X,0X1

321

32
X

)X,X,XY(E

=Δ=Δ
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ

Δ
  =  

( )
1

321

X
X,X,XYE

∂
∂

  

 
For the simple regression model (12), the population regression function is 
 

( )i1XYE   = i110 Xβ+β   
 

The slope coefficient β1 in simple regression model (12) is  
 

β1 in model (12)  =  
1

1

X
)XY(E

Δ
Δ

  =  
( )

1

1

Xd
XYEd

  

 
• Compare β1 in model (5) with β1 in model (12)   

 
β1 in multiple regression model (5) controls for – or accounts for – the effects of 
X2 and X3 on the conditional mean value of the dependent variable Y.  

 

β1 in multiple regression model (5) is therefore referred to as the adjusted 
marginal effect of X1 on Y.  

 
β1 in simple regression model (12) does not control for – or account for – the 
effects of X2 and X3 on the conditional mean value of the dependent variable Y.  

 

β1 in simple regression model (12) is therefore referred to as the 
unadjusted marginal effect of X1 on Y.  
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