ECON 351* -- NOTE 8

<u>Hypothesis Testing in the Classical Normal Linear Regression</u> <u>Model</u>

1. Components of Hypothesis Tests

1. A *testable* hypothesis, which consists of *two parts*:

<u>Part 1</u>: a <u>null</u> hypothesis, H₀ <u>Part 2</u>: an <u>alternative</u> hypothesis, H₁

2. A *feasible* test statistic.

Definition: A test statistic is a *random variable* whose value for given sample data determines whether the null hypothesis H_0 is rejected or not rejected.

Definition: A test statistic is *feasible* if it satisfies two conditions:

- (1) Its **probability distribution**, or **sampling distribution**, *must be known* completely when the null hypothesis H₀ is true, and it must have some other distribution when the null hypothesis is false.
- (2) Its value can be calculated from the given sample data.
- 3. A *decision* rule or rejection rule.

Definition: A decision rule *specifies* (1) the *rejection* region and (2) the *non-rejection* region of the test statistic.

- (1) *Definition:* The <u>rejection</u> region is the set, or range, of values of the test statistic for which the null hypothesis H_0 is rejected i.e., that have a low probability of occurring when the null hypothesis is true.
- (2) Definition: The <u>nonrejection</u> region is the set, or range, of values of the test statistic for which the null hypothesis H_0 is not rejected, or retained.

2. Procedure for Testing Hypotheses

Five Basic Steps

The procedure for testing hypotheses consists of *five* basic steps.

- **Step 1:** Formulate the null hypothesis H₀ and the alternative hypothesis H₁.
- <u>Step 2</u>: Specify the test statistic and its distribution -- specifically its distribution when the null hypothesis H_0 is true.

The distribution of the test statistic when the null hypothesis H_0 is true is known as the *null distribution of the test statistic*.

- **<u>Step 3</u>**: Calculate the *sample value* of the test statistic under the null hypothesis H_0 for the given sample data.
- <u>Step 4</u>: Select the *significance level α*, and determine the corresponding *rejection* region and *non-rejection* region for the test statistic.
- Step 5: Apply the *decision rule* of the test and state the inference, or conclusion, implied by the sample value of the test statistic.

We illustrate these five steps for an important class of hypothesis tests in applied econometrics -- namely tests of equality restrictions on individual regression coefficients.

Tests of Equality Restrictions on Individual Regression Coefficients

• These tests assess the probable empirical validity of statements or hypotheses of the following form:

 $\beta_j = b_j$ where b_j is a *specified constant*. (j = 0, 1)

• Such statements are conjectures about the population values of the regression coefficients β_j (j = 0, 1).

Examples

$\beta_1 = 0$	\Rightarrow	$\partial E(Y_i X_i) / \partial X_i = 0$, i.e., X_i is unrelated to $E(Y_i X_i)$
$\beta_1 = 1.0$	\Rightarrow	$\partial \mathbf{E}(\mathbf{Y}_{i} \mathbf{X}_{i}) / \partial \mathbf{X}_{i} = 1$
$\beta_1 = 0.8$	\Rightarrow	$\partial \mathbf{E}(\mathbf{Y}_i \mathbf{X}_i) / \partial \mathbf{X}_i = 0.8$
$\beta_1 = -1.0$	\Rightarrow	$\partial E(\mathbf{Y}_i \mathbf{X}_i) / \partial \mathbf{X}_i = -1.0$

Later we will consider more general hypotheses that take the form of **linear** equality restrictions on *two or more* regression coefficients β_j (j = 0, 1).

<u>STEP 1</u>: Formulation of the Null and Alternative Hypotheses

<u>Step 1</u>: Formulate the *null* hypothesis H_0 and the *alternative* hypothesis H_1 .

Components of a Statistical Test

A statistical hypothesis test consists of *two opposing statements or propositions or conjectures* about the model parameters:

- 1. The *<u>null</u>* hypothesis, denoted by H₀.
 - H₀ is the *proposition being tested*.
 - It specifies our conjecture about the true value(s) of the regression coefficient(s).
- 2. The *alternative* hypothesis, denoted by H₁.
 - H_1 is the counter-proposition to the null hypothesis H_0 .
 - It specifies the set of alternative possibilities which is *presumed* to contain the truth if the null hypothesis is false.

Purpose of a Statistical Test

- A statistical test is designed and constructed so as to provide sample evidence respecting the *probable empirical validity*, or *truth*, *of the null hypothesis* H_{0} .
- The test addresses the question: Are the sample estimates of the model parameters -- *consistent or inconsistent (compatible or incompatible)* with the *truth* of the *null hypothesis*?

Consistency or compatibility means sufficiently close to the value(s) specified by H_0 that we retain (do not reject) the null hypothesis.

• A statistical test does not test the empirical validity, or truth, of the alternative hypothesis H_1 . Only the null hypothesis H_0 is being subjected to test.

Formulation of H_0 and H_1 : Equality Restrictions on β_1

The Null Hypothesis H₀

H₀: $\beta_1 = \mathbf{b}_1$ where \mathbf{b}_1 is a *specified constant* (such as 0 or 0.9 or -1).

The Alternative Hypothesis H₁

For a null hypothesis of this general form, there are *three* possible alternative hypotheses.

(1) $H_1: \beta_1 \neq b_1$ a *two-sided* alternative hypothesis.

Rejection of the null hypothesis H_0 : $\beta_1 = b_1$ implies that β_1 takes some other value, and that this other value is **either greater than or less than b**₁.

That is, $H_1: \beta_1 \neq b_1 \implies either \beta_1 > b_1 \text{ or } \beta_1 < b_1$.

(2) $H_1: \beta_1 > b_1$ a <u>one-sided</u> (right-sided) alternative hypothesis.

Rejection of the null hypothesis H_0 : $\beta_1 = b_1$ in this case implies that β_1 takes some other value that is *greater than* b_1 .

This alternative hypothesis completely discounts the possibility that $\beta_1 < b_1$. It implies that values of β_1 *less than* b_1 are considered to be logically unacceptable alternatives to the null hypothesis, an implication that presumably is based on economic theory.

(3) $H_1: \beta_1 < b_1$ a <u>one-sided</u> (*left-sided*) alternative hypothesis.

Rejection of the null hypothesis H_0 : $\beta_1 = b_1$ in this case implies that β_1 takes some other value that is *less than* \mathbf{b}_1 .

This alternative hypothesis completely excludes the possibility that $\beta_1 > b_1$. It implies that the value of β_1 could not be *greater than* b_1 if in fact the null hypothesis H₀ is false.

<u>STEP 2</u>: Specify the Test Statistic and its Null Distribution

<u>Step 2</u>: Specify the *test statistic* and its *null distribution* when the null hypothesis H₀ is true.

Theoretical Prerequisite

Assumptions A1-A9 of the CNLRM -- especially the normality assumption A9.

Important Results

1. Under assumptions A1-A9 of the CNLRM, the following t-statistics are *feasible test statistics* for the OLS coefficient estimators $\hat{\beta}_0$ and $\hat{\beta}_1$:

$$\begin{split} t(\hat{\beta}_{1}) &= \frac{\hat{\beta}_{1} - \beta_{1}}{\sqrt{V\hat{a}r(\hat{\beta}_{1})}} = \frac{\hat{\beta}_{1} - \beta_{1}}{\hat{s}\hat{e}(\hat{\beta}_{1})} = \frac{\hat{\beta}_{1} - \beta_{1}}{\hat{\sigma}/(\sum_{i} x_{i}^{2})^{l/2}} \sim t[N-2] \\ t(\hat{\beta}_{0}) &= \frac{\hat{\beta}_{0} - \beta_{0}}{\sqrt{V\hat{a}r(\hat{\beta}_{0})}} = \frac{\hat{\beta}_{0} - \beta_{0}}{\hat{s}\hat{e}(\hat{\beta}_{0})} = \frac{\hat{\beta}_{0} - \beta_{0}}{\hat{\sigma}(\sum_{i} X_{i}^{2})^{l/2}/N^{1/2}(\sum_{i} x_{i}^{2})^{l/2}} \sim t[N-2] \end{split}$$

2. For the true (but unknown) values of the population regression coefficients β_0 and β_1 , each of the test statistics $t(\hat{\beta}_0)$ and $t(\hat{\beta}_1)$ has the t-distribution with N-2 degrees of freedom, denoted as t[N-2].

STEP 3: Evaluate the Test Statistic Under H₀

<u>Step 3</u>: Calculate the *sample value* of the test statistic under the null hypothesis H_0 for the given sample data.

The null hypothesis is

H₀: $\beta_1 = \mathbf{b}_1$ where \mathbf{b}_1 is *a specified constant* such as 0 or 0.9 or -1.

From Step 2, the **feasible test statistic** is the t-statistic for the OLS estimator $\hat{\beta}_1$:

$$t(\hat{\beta}_1) = \frac{\hat{\beta}_1 - \beta_1}{\sqrt{V\hat{a}r(\hat{\beta}_1)}} = \frac{\hat{\beta}_1 - \beta_1}{\hat{se}(\hat{\beta}_1)} \sim t[N-2].$$

To calculate the *sample value* of $t(\hat{\beta}_1)$ under the null hypothesis H_0 : $\beta_1 = b_1$, simply **substitute** in the above formula for $t(\hat{\beta}_1)$

- the value b_1 for β_1 , since b_1 is the value of β_1 specified by H_0 ;
- the sample value of $\hat{\beta}_1$, the point estimate of β_1 for the given sample data;
- the sample value of $\hat{se}(\hat{\beta}_1) = \sqrt{V\hat{ar}(\hat{\beta}_1)}$, the estimated standard error of $\hat{\beta}_1$.

 \Box The sample value of $t(\hat{\beta}_1)$ evaluated under the null hypothesis H_0 is therefore

$$t_0(\hat{\beta}_1) = \frac{\hat{\beta}_1 - b_1}{\sqrt{V\hat{a}r(\hat{\beta}_1)}} = \frac{\hat{\beta}_1 - b_1}{\hat{s}e(\hat{\beta}_1)}.$$

Note: The subscript "0" on $t_0(\hat{\beta}_1)$ indicates the value of $t(\hat{\beta}_1)$ under H_0 .

□ The *null distribution* of $t_0(\hat{\beta}_1)$, the calculated sample value of $t(\hat{\beta}_1)$, is t[N-2], the *t*-distribution with *N*-2 degrees of freedom:

$$t_0(\hat{\beta}_1) = \frac{\hat{\beta}_1 - b_1}{\sqrt{V\hat{a}r(\hat{\beta}_1)}} = \frac{\hat{\beta}_1 - b_1}{\hat{s}e(\hat{\beta}_1)} \sim t[N-2] \text{ under } H_0: \beta_1 = b_1.$$

<u>STEP 4</u>: Determine the Rejection and Non-Rejection Regions

Step 4: Select the *significance level* α, and determine the corresponding *rejection* region and *non-rejection* region for the calculated test statistic.

Background: Type I and Type II Errors

In performing any hypothesis test – i.e., in deciding to reject or retain a null hypothesis – there is always some chance of making mistakes. Such mistakes arise whenever the decision to retain or reject H_0 does not reflect the true but unknown state of the world.

	State of the World			
Decision	H₀ is true	\mathbf{H}_{0} is false		
	v	v		
Retain (do not reject) H_0	Correct Decision	Type II Error		
	$Pr = 1 - \alpha$	$Pr = \beta$		
Reject H ₀	Type I Error	Correct Decision		
	$Pr = \alpha$	$Pr = 1 - \beta$		

1. A *correct* decision is made if:

- the null hypothesis H_0 is **false** and the decision is to **reject** it.
- the null hypothesis H_0 is true and the decision is to retain (not to reject) it.
- 2. An *incorrect* decision is made if:
 - the null hypothesis H₀ is **true** and the decision is to **reject** it (a Type I error).
 - the null hypothesis H₀ is **false** and the decision is to **retain** (**not to reject**) it (a Type II error).

Definitions:

Type I error: *rejecting* H_0 when H_0 is *true*.

Type II error: not rejecting H_0 when H_0 is false.

Probabilities of Type I and Type II Errors

$\alpha \equiv Pr(Type \ I \ Error) = Pr(H_0 \ is \ rejected \ | \ H_0 \ is \ true)$

 $1 - \alpha = Pr(H_0 \text{ is not rejected } | H_0 \text{ is true}) = \text{ the$ **confidence level** $of the test}$ = the *probability* of making a *correct* decision when the null hypothesis H₀ is *true*.

$\beta \equiv Pr(Type \ II \ Error) = Pr(H_0 \ is \ not \ rejected \ | \ H_0 \ is \ false)$

- $1 \beta = Pr(H_0 \text{ is rejected} | H_0 \text{ is false}) = \text{ the$ **power** $of the test}$
 - = the *probability* of making a *correct* decision when the null hypothesis H_0 is *false*.

Analogy Between Statistical Hypothesis Tests and Criminal Court Trials

<u>Presumption of Innocence</u>:

The accused is presumed innocent until proven to be guilty beyond a reasonable doubt.

- H₀: the accused is *not guilty*
- H₁: the accused is *guilty* as charged

The court must decide whether to retain or reject H_0 on the basis of admissible evidence.

	State of the World			
Court's Decision	Accused is innocent	Accused is guilty		
Acquit (find not guilty)	Correct Decision	Type II Error		
Convict (find guilty)	Type I Error	Correct Decision		

- **1.** The court makes a *correct* decision if:
 - the accused is **innocent** and the court's decision is to **acquit**.
 - the accused is **guilty** and the court's decision is to **convict**.
- 2. The court makes an *incorrect* decision if:
 - the accused is **innocent** and the court's decision is to **convict** (the court has made a *Type I error*).
 - the accused is **guilty** and the court's decision is to **acquit** (the court has made a *Type II error*).

The Significance Level of the Test

- *Definition:* The *significance level* of the test is chosen to equal α, the **probability** of making a Type I error.
- $\Box \quad \underline{Significance \ level} \ of \ the \ test = \alpha \equiv \Pr(Type \ I \ Error)$

 $= Pr(H_0 \text{ is rejected} | H_0 \text{ is true}).$

Confidence level of the test = $1 - \alpha = Pr(H_0 \text{ is not rejected } | H_0 \text{ is true})$.

Power of the Test

Definition: The power of the test is defined to equal $1 - \beta$, the probability of making a correct decision when the null hypothesis **H**₀ is *false*.

Power of the test $\equiv 1 - \beta = Pr(H_0 \text{ is rejected } | H_0 \text{ is false})$ = 1 - Pr(Type II Error)

Relationship Between Type I and Type II Errors

For any given sample size N,

 α = Pr(Type I Error) is *inversely related* to Pr(Type II Error)

 $\Rightarrow \alpha = Pr(Type \ I \ Error)$ is *directly related* to the **power** of the test.

Result: For any given sample size N, there exists a trade-off between

(1) $\alpha = Pr(Type \ I \ Error) = the significance level of the test$

and

(2) $\beta = Pr(Type II Error)$

Implications of Trade-Off Between α and β

- By choosing a *lower* significance level α -- and thereby reducing the Pr(Type I Error) -- we necessarily
 - (1) *increase* β = the Pr(Type II Error), and
 - (2) *decrease* 1β = the power of the test.
- Conversely, by choosing a *higher* significance level α -- and thereby increasing the Pr(Type I Error) -- we necessarily
 - (1) *decrease* β = the Pr(Type II Error), and
 - (2) *increase* 1β = the power of the test.

Comments on Choosing α, the Significance Level of the Test

• The value of the significance level α is usually chosen to be small. In practice, the values most frequently chosen are:

$\alpha = 0.01$	(a 1% significance level);
$\alpha = 0.05$	(a 5% significance level);
$\alpha = 0.10$	(a 10% significance level).

• But the choice of value for α is more or less arbitrary. It presumably reflects the investigator's relative willingness to accept, or relative aversion to, Type I and Type II errors.

Rejection and Non-Rejection Regions for a Test Statistic

Definition of the Rejection and Non-Rejection Regions

□ The *rejection* region is the *set, or range, of values of the test statistic* for which the null hypothesis H_0 is *rejected*.

Values of the test statistic in the rejection region have a low probability of occurring when the null hypothesis H_0 is true.

□ The *nonrejection* region is the *set*, *or range*, *of values of the test statistic* for which the null hypothesis H₀ is not rejected, or retained.

Distinguishing Between the Rejection and Nonrejection Regions

- *Question:* How are the rejection and nonrejection regions delineated or separated?
- <u>Answer</u>: By the *critical values* of the test statistic or more correctly, by the *critical values* of the *null distribution* of the test statistic.

Critical Values of a Test Statistic

Definition: The *critical values* of a test statistic are defined as those values

that separate the rejection region from the non-rejection region,

that **partition** the **sample values** of a test statistic into a *rejection region* and a *non-rejection region*.

<u>Determinants</u>

The *critical values* of a test statistic are determined by the following factors:

- 1. the *null distribution* of the test statistic the probability, or sampling, distribution of the test statistic when the null hypothesis H_0 is true;
- **2.** the chosen *significance level* for the test, α ;
- 3. the *nature* of the hypothesis test, specifically whether the test is
 - (1) a *two-tail*, or *two-sided*, test
 - or
 - (2) a *one-tail*, or *one-sided*, test, of which there are two types,
 - (2.1) a *left-tail* test
 - (2.2) a *right-tail* test.

Two-Tail and One-Tail Tests: Which is it?

Important Point: Whether a two-tail or one-tail test is appropriate depends on the nature of the *alternative hypothesis* H_1 .

<u>Definitions</u>

□ A <u>two-tail test</u> is one for which the alternative hypothesis H_1 is a two-sided **hypothesis** that incorporates the "not equal" condition " \neq ".

Example: $H_0: \beta_1 = b_1$ where b_1 is a specified constant $H_1: \beta_1 \neq b_1$ is a *two-sided* alternative hypothesis \Rightarrow a *two-tail* test \Rightarrow a *two-tail* rejection region.

- □ A <u>one-tail test</u> is one for which the alternative hypothesis H₁ is a one-sided hypothesis that incorporates either the "less than" condition "<" or the "greater than" condition ">".
 - □ *Case 1:* A *left-tail* test is one in which H₁ incorporates the "less than" condition "<".

Example: $H_0: \beta_1 = b_1$ where b_1 is a specified constant $H_1: \beta_1 < b_1$ is a *left-sided* alternative hypothesis \Rightarrow a *one-tail* test, specifically a *left-tail* test. \Rightarrow a *left-tail* rejection region.

- □ *Case 2:* A <u>*right-tail* test</u> is one in which H₁ incorporates the "greater than" condition ">".
 - Example: $H_0: \beta_1 = b_1$ where b_1 is a specified constant $H_1: \beta_1 > b_1$ is a *right-sided* alternative hypothesis \Rightarrow a *one-tail* test, specifically a *right-tail* test. \Rightarrow a *right-tail* rejection region.

<u>Note</u>: The form of the alternative hypothesis H_1 – specifically the *direction* of the inequality in the alternative hypothesis H_1 – determines whether a one-tail test is a right-tail test or a left-tail test.

Determining Critical Values for Two-Tail Tests

Problem: Determine the critical values for the following two-tail t-test:

H₀: $\beta_1 = b_1$ or $\beta_1 - b_1 = 0$ where b_1 is a specified constant H₁: $\beta_1 \neq b_1$ or $\beta_1 - b_1 \neq 0 \iff a$ *two-sided* alternative hypothesis.

1. The appropriate *test statistic* is the **t-statistic for** $\hat{\beta}_1$, the OLS estimate of the slope coefficient β_1 :

$$t(\hat{\beta}_1) = \frac{\hat{\beta}_1 - \beta_1}{\sqrt{V\hat{a}r(\hat{\beta}_1)}} = \frac{\hat{\beta}_1 - \beta_1}{s\hat{e}(\hat{\beta}_1)}.$$

2. The *sample value* of the test statistic $t(\hat{\beta}_1)$ is calculated by evaluating $t(\hat{\beta}_1)$ under the null hypothesis H₀. That is, in the expression for $t(\hat{\beta}_1)$, set β_1 equal to b_1 , which is the value of β_1 specified by H₀. The resulting sample value of the test statistic $t(\hat{\beta}_1)$ under H₀ is

$$\mathbf{t}_{0}(\hat{\boldsymbol{\beta}}_{1}) = \frac{\hat{\boldsymbol{\beta}}_{1} - \mathbf{b}_{1}}{\hat{se}(\hat{\boldsymbol{\beta}}_{1})}.$$

3. The *null distribution* of $t_0(\hat{\beta}_1)$ is t[N-2], the t-distribution with N – 2 degrees of freedom. In other words, if the null hypothesis H_0 : $\beta_1 = b_1$ is true, then

$$t_0(\hat{\beta}_1) = \frac{\hat{\beta}_1 - b_1}{\hat{se}(\hat{\beta}_1)} \sim t[N-2] \text{ under } H_0: \beta_1 = b_1.$$

<u>Question 1</u>: What values of $\hat{\beta}_1$ and $t_0(\hat{\beta}_1)$ would lead us to reject H_0 against H_1 ?

Answer: Examine the numerator of the calculated t-statistic:

$$\mathbf{t}_0(\hat{\boldsymbol{\beta}}_1) = \frac{\hat{\boldsymbol{\beta}}_1 - \mathbf{b}_1}{\hat{\mathrm{se}}(\hat{\boldsymbol{\beta}}_1)}$$

Remember:

- $\hat{\beta}_1 = \text{the estimated value of } \beta_1$ $b_1 = \text{the hypothesized value of } \beta_1$ $s \hat{e}(\hat{\beta}_1) > 0 \qquad (s \hat{e}(\hat{\beta}_1) \text{ is always a positive number})$
- We would reject H_0 against H_1 if $\hat{\beta}_1$, the estimated value of β_1 , is very different from b_1 , the hypothesized value of β_1 .
- More specifically, we would reject H_0 against H_1 in either of the following two cases:

1.
$$\hat{\beta}_1 \gg b_1 \implies \hat{\beta}_1 - b_1 \gg 0 \implies t_0(\hat{\beta}_1) = \frac{\hat{\beta}_1 - b_1}{\hat{s}\hat{e}(\hat{\beta}_1)} \gg 0$$

Values of $\hat{\beta}_1$ much greater than \mathbf{b}_1 imply large positive values of $t_0(\hat{\beta}_1)$;

or

2.
$$\hat{\beta}_1 \ll b_1 \implies \hat{\beta}_1 - b_1 \ll 0 \implies t_0(\hat{\beta}_1) = \frac{\hat{\beta}_1 - b_1}{\hat{se}(\hat{\beta}_1)} \ll 0$$

Values of $\hat{\beta}_1$ much less than \mathbf{b}_1 imply large negative values of $t_0(\hat{\beta}_1)$.

<u>Question 2</u>: How much larger or smaller than zero does the value of $t_0(\hat{\beta}_1)$ have to be for us to reject H_0 in favour of H_1 ?

Answer: It depends on the *significance level* we choose for the test and the *null distribution* of our test statistic.

Let α = the chosen significance level for the test (e.g., 0.01, 0.05, or 0.10) = the probability of making a Type I error.

Allocate α equally between large positive values of t_0 and large negative values of t_0 . We therefore have both an upper critical value and a lower critical value of the null distribution of our test statistic, which is the **t**[**N** – **2**]-distribution.

$$t_{\alpha/2}[N-2] = \text{the upper } \alpha/2 \text{ critical value of the } t[N-2]\text{-distribution};$$

 $-t_{\alpha/2}[N-2] = \text{the lower } \alpha/2 \text{ critical value of the } t[N-2]\text{-distribution}.$

Implications: If H_0 : $\beta_1 = b_1$ is *true*, then the following two probability statements hold.

(1)
$$\Pr\left(-t_{\alpha/2}[N-2] \le t_0(\hat{\beta}_1) \le t_{\alpha/2}[N-2]\right) = 1 - \alpha$$
 (1)

(2)
$$\Pr(t_0(\hat{\beta}_1) < -t_{\alpha/2}[N-2] \text{ or } t_0(\hat{\beta}_1) > t_{\alpha/2}[N-2]) = \Pr(|t_0(\hat{\beta}_1)| > t_{\alpha/2}[N-2]) = \alpha$$
 (2)

where

$$\begin{split} t_0(\hat{\beta}_1) &= \text{ the calculated sample value of the t-statistic under } H_0; \\ \left| t_0(\hat{\beta}_1) \right| &= \text{ the absolute value of } t_0(\hat{\beta}_1); \\ t_{\alpha/2}[N-2] &= \text{ the upper } \alpha/2 \text{ critical value of the } t[N-2]\text{-distribution}; \\ -t_{\alpha/2}[N-2] &= \text{ the lower } \alpha/2 \text{ critical value of the } t[N-2]\text{-distribution}; \\ \alpha &= \text{ the significance level for the test;} \\ 1-\alpha &= \text{ the confidence level for the test.} \end{split}$$

Determine the Rejection and Nonrejection Regions – Two-Tail Test

□ The *non-rejection* region for $t_0(\hat{\beta}_1)$ is defined by the double inequality in probability statement (1) above. It consists of all values of $t_0(\hat{\beta}_1)$ such that

 $-t_{\alpha/2}[N-2] \le t_0(\hat{\beta}_1) \le t_{\alpha/2}[N-2] \quad \Leftarrow \textit{ non-rejection region for } \mathbf{H_0: } \beta_1 = \mathbf{b_1}.$

□ The <u>rejection region</u> for $t_0(\hat{\beta}_1)$ is the two-sided region or *two-tail* region defined in probability statement (2) above. It consists of all values of $t_0(\hat{\beta}_1)$ such that

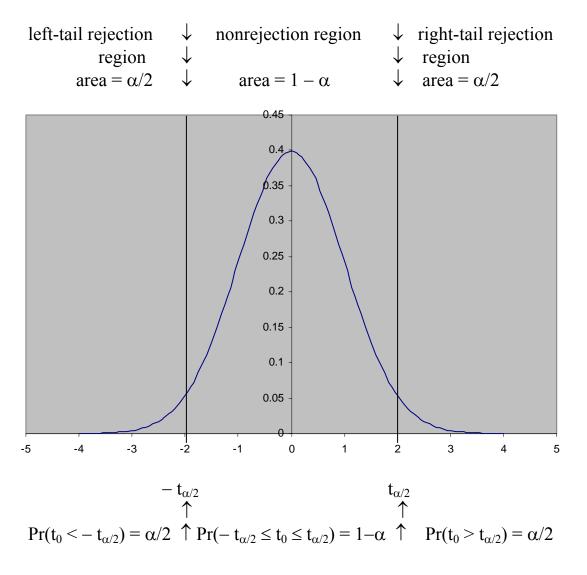
$$t_0(\hat{\beta}_1) < -t_{\alpha/2}[N-2] \quad or \quad t_0(\hat{\beta}_1) > t_{\alpha/2}[N-2]$$

or

$$\begin{aligned} \left| \mathbf{t}_0(\hat{\boldsymbol{\beta}}_1) \right| > \mathbf{t}_{\alpha/2}[N-2] & \Leftarrow \textit{ rejection region for } \mathbf{H_0: } \boldsymbol{\beta}_1 = \mathbf{b}_1 \\ & \text{ is a two-tail rejection region.} \end{aligned}$$

- <u>NOTE</u>: For a *two-tail* test, the rejection region is a *two-tail* rejection region consisting of **two parts**.
- The *lower* or *left-tail* rejection region t₀(β̂₁) < t_{α/2}[N 2], which contains unexpectedly *small* values of t₀(β̂₁) under H₀ i.e., values that we would only expect to obtain with "small" probability α/2 if the null hypothesis H₀: β₁ = b₁ is true.
- 2) The *upper* or *right-tail* rejection region t₀(β₁) > t_{α/2}[N 2], which contains unexpectedly *large* values of t₀(β₁) under H₀ i.e., values that we would only expect to obtain with "small" probability α/2 if the null hypothesis H₀: β₁ = b₁ is true.

- 3) The <u>rejection</u> region for a *two-tail* test thus consists of *both* the lower *left-hand* tail *and* the upper *right-hand* tail of the t[N 2]-distribution.
 - The area in each tail under the t[N 2]-distribution is $\alpha/2$.
 - The sum of these two tail area probabilities equals the significance level α .
 - Thus, for a two-tail test, the significance level α is allocated equally between the *lower* $\alpha/2$ rejection region and the *upper* $\alpha/2$ rejection region.



Rejection and Nonrejection Regions for a Two-Tail Test

ECON 351* -- Note 8: Hypothesis Testing in the CNLRM 351note08.doc

... Page 20 of 49 pages

STEP 5: Apply the Decision Rule and State Inference

<u>Step 5</u>: Apply the *decision rule* of the test and state the *inference*, or conclusion, implied by the sample value of the test statistic.

1. Formulation 1 of the Decision Rule for a Two-Tail Test

Formulation 1: Determine if the *sample value* t_0 of the test statistic lies in the *rejection* or *nonrejection* region at the chosen significance level α .

Decision Rule for a Two-Tail Test – Formulation 1

1. If the *sample value* t_0 of the test statistic lies in the *rejection* region at the chosen significance level, then *reject* the null hypothesis H_0 .

For a <u>*two-tail*</u> test: $|t_0| > t_{\alpha/2}[N-2] \implies reject H_0$ at significance level α .

Reject H_0 in favour of H_1 at significance level α if

(1) $t_0 > t_{\alpha/2}[N-2]$ meaning t_0 lies in the upper tail rejection area;

or

(2) $t_0 < -t_{\alpha/2}[N-2]$ meaning t_0 lies in the *lower tail* rejection area.

Inference: Reject H_0 in favour of H_1 at significance level α .

2. If the *sample value* t_0 of the test statistic lies in the *nonrejection* region at the chosen significance level, then *retain* (do not reject) the null hypothesis H_0 .

For a <u>two-tail</u> test: $|t_0| \le t_{\alpha/2}[N-2] \implies retain H_0$ at significance level α .

Retain H_0 against H_1 at significance level α if

 $- t_{\alpha/2}[N-2] \le t_0 \le t_{\alpha/2}[N-2]$ meaning t_0 lies in the nonrejection area.

Inference: Retain H_0 against H_1 at significance level α .

Examples of Two-Tail Hypothesis Tests

The Model:

DATA: auto1.dta (a Stata-format data file)

MODEL: price_i = β_0 + β_1 weight_i + u_i (i = 1, ..., N)

. regress price weight									
Source	SS	df	MS		Number of obs				
Model Residual	+ 184233937 450831459		34233937 51548.04		F(1, 72) Prob > F R-squared Adj R-squared	= 0.0000 = 0.2901			
Total	635065396	73 869	9525.97		Root MSE	= 0.2802 = 2502.3			
price	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]			
weight _cons	2.044063 -6.707353	.3768341 1174.43	5.424 -0.006	0.000 0.995	1.292858 -2347.89	2.795268 2334.475			

$$N = 74$$
 $N - 2 = 74 - 2 = 72$

 $\hat{\beta}_1 = 2.0441$ s $\hat{e}(\hat{\beta}_1) = 0.376834$

 $\alpha = 0.05 \implies \alpha/2 = 0.025$

 $t_{\alpha/2}[N-2] = t_{0.025}[72] = 1.9935$

<u>**Test 1**</u>: Test the proposition that weight_i is unrelated to price_i at the 5 percent significance level ($\alpha = 0.05$).

• Null and Alternative Hypotheses

H₀: $\beta_1 = 0$

H₁: $\beta_1 \neq 0$ a *two-sided* alternative hypothesis.

• The *feasible* test statistic is the t-statistic for $\hat{\beta}_1$:

$$t(\hat{\beta}_1) = \frac{\hat{\beta}_1 - \beta_1}{\sqrt{V\hat{a}r(\hat{\beta}_1)}} = \frac{\hat{\beta}_1 - \beta_1}{s\hat{e}(\hat{\beta}_1)} \sim t[N-2].$$

• Compute the sample value of $t(\hat{\beta}_2)$ under the null hypothesis H₀: Set $\hat{\beta}_1 = 2.0441$, $\beta_1 = 0$ and $\hat{se}(\hat{\beta}_1) = 0.376834$ in the formula for $t(\hat{\beta}_1)$:

$$t_0(\hat{\beta}_1) = \frac{\hat{\beta}_1 - \beta_1}{\hat{se}(\hat{\beta}_1)} = \frac{2.0441 - 0}{0.376834} = \frac{2.0441}{0.376834} = 5.424$$

- The *two-tail critical value* of the t[N 2] distribution at the 5 percent significance level (at $\alpha = 0.05$) is $t_{\alpha/2}[N-2] = t_{0.025}[72] = 1.9935$.
- Decision Rule:

If $|t_0| > t_{\alpha/2}[N-2]$ reject H_0 at significance level α ; If $|t_0| \le t_{\alpha/2}[N-2]$ retain H_0 at significance level α .

• Inference:

 $|\mathbf{t}_0| = 5.424 > 1.9935 = \mathbf{t}_{0.025}[72] \implies reject \mathbf{H_0}$ at significance level $\alpha = 0.05$

Reject $H_0: \beta_1 = 0$ in favour of $H_1: \beta_1 \neq 0$ at the *5 percent* significance level.

• Null and Alternative Hypotheses

$$H_0: β_1 = 1$$

$$H_1: β_1 ≠ 1 a two-sided alternative hypothesis.$$

• The *feasible* test statistic is the t-statistic for $\hat{\beta}_1$:

$$\mathfrak{t}(\hat{\beta}_1) = \frac{\hat{\beta}_1 - \beta_1}{\sqrt{V\hat{a}\mathfrak{r}(\hat{\beta}_1)}} = \frac{\hat{\beta}_1 - \beta_1}{\hat{s}\mathfrak{e}(\hat{\beta}_1)} \sim \mathfrak{t}[N-2].$$

• Compute the sample value of $t(\hat{\beta}_1)$ under the null hypothesis H₀: Set $\hat{\beta}_1 = 2.0441$, $\beta_1 = 1$ and $\hat{se}(\hat{\beta}_1) = 0.376834$ in the formula for $t(\hat{\beta}_1)$:

$$\mathbf{t}_{0}(\hat{\beta}_{1}) = \frac{\hat{\beta}_{1} - \beta_{1}}{\hat{\mathrm{se}}(\hat{\beta}_{1})} = \frac{2.0441 - 1}{0.376834} = \frac{1.0441}{0.376834} = \mathbf{2.771}$$

- The *two-tail critical value* of the t[N 2] distribution at the 5 percent significance level (at $\alpha = 0.05$) is $t_{\alpha/2}[N-2] = t_{0.025}[72] = 1.9935$.
- Decision Rule:

 $\begin{array}{ll} \mathrm{If} \left| \left| t_{0} \right| > t_{\alpha/2} [\mathrm{N}-2] & \textit{reject } \mathbf{H}_{0} \mbox{ at significance level } \alpha; \\ \mathrm{If} \left| \left| t_{0} \right| \leq t_{\alpha/2} [\mathrm{N}-2] & \textit{retain } \mathbf{H}_{0} \mbox{ at significance level } \alpha. \end{array} \right.$

• Inference:

 $|\mathbf{t}_0| = 2.771 > 1.9935 = \mathbf{t}_{0.025}[72] \implies reject \mathbf{H_0}$ at significance level $\alpha = 0.05$

Reject H_0 : $\beta_1 = 1$ in favour of H_1 : $\beta_1 \neq 1$ at the *5 percent* significance level.

• Null and Alternative Hypotheses

$$H_0: β_1 = 2$$

$$H_1: β_1 ≠ 2 a two-sided alternative hypothesis$$

• The *feasible* test statistic is the t-statistic for $\hat{\beta}_1$:

$$\mathbf{t}(\hat{\beta}_1) = \frac{\hat{\beta}_1 - \beta_1}{\sqrt{\mathrm{Var}(\hat{\beta}_1)}} = \frac{\hat{\beta}_1 - \beta_1}{\mathrm{se}(\hat{\beta}_1)} \sim \mathbf{t}[\mathrm{N}-2].$$

• Compute the sample value of $t(\hat{\beta}_1)$ under the null hypothesis H₀: Set $\hat{\beta}_1 = 2.0441$, $\beta_1 = 2$ and $\hat{se}(\hat{\beta}_1) = 0.376834$ in the formula for $t(\hat{\beta}_1)$:

$$\mathbf{t}_{0}(\hat{\beta}_{1}) = \frac{\hat{\beta}_{1} - \beta_{1}}{\hat{\mathrm{se}}(\hat{\beta}_{1})} = \frac{2.0441 - 2}{0.376834} = \frac{0.0441}{0.376834} = \mathbf{0.1170}$$

- The *two-tail critical value* of the t[N 2] distribution at the 5 percent significance level (at $\alpha = 0.05$) is $t_{\alpha/2}[N-2] = t_{0.025}[72] = 1.9935$.
- Decision Rule:

$$\begin{split} & \text{If} \left| \left| t_0 \right| > t_{\alpha/2}[N-2] \quad \textit{reject } \mathbf{H}_0 \text{ at significance level } \alpha; \\ & \text{If} \left| \left| t_0 \right| \leq t_{\alpha/2}[N-2] \quad \textit{retain } \mathbf{H}_0 \text{ at significance level } \alpha. \end{split} \end{split}$$

• Inference:

 $|\mathbf{t}_0| = 0.1170 < 1.9935 = \mathbf{t}_{0.025}[72] \Rightarrow retain \mathbf{H_0}$ at significance level $\alpha = 0.05$

Retain H_0 : $\beta_1 = 2$ against H_1 : $\beta_1 \neq 2$ at the *5 percent* significance level.

How to perform all three of these two-tail hypothesis tests at once

 Test 1:
 H_0 :
 $\beta_1 = 0$ versus
 H_1 :
 $\beta_1 \neq 0$

 Test 2:
 H_0 :
 $\beta_1 = 1$ versus
 H_1 :
 $\beta_1 \neq 1$

 Test 3:
 H_0 :
 $\beta_1 = 2$ versus
 H_1 :
 $\beta_1 \neq 2$

Compute the *two-sided* 95 percent confidence interval for β_1 .

$$\hat{\beta}_{1U} = \hat{\beta}_1 + t_{\alpha/2} [N-2] \hat{se}(\hat{\beta}_1) = 2.0441 + 0.75121 = 2.79531 = 2.7953$$
$$\hat{\beta}_{1L} = \hat{\beta}_1 - t_{\alpha/2} [N-2] \hat{se}(\hat{\beta}_1) = 2.0441 - 0.75121 = 1.29289 = 1.29333$$

<u>*Result*</u>: The two-sided 95% confidence interval for β_1 is [1.293, 2.795].

Decision Rule:

- If the hypothesized value of β_1 lies outside the two-sided 95 percent confidence interval for β_1 , reject the null hypothesis H_0 at the 5 percent significance level.
- If the hypothesized value of β_1 lies inside the two-sided 95 percent confidence interval for β_1 , retain the null hypothesis H_0 at the 5 percent significance level.
- <u>*Test 1:*</u> Since the value 0 lies *outside* the two-sided 95 *percent confidence* interval for β_1 , *reject* H_0 : $\beta_1 = 0$ in favour of H_1 : $\beta_1 \neq 0$ at the 5 *percent* significance level.
- <u>*Test 2:*</u> Since the value 1 lies *outside* the two-sided 95 *percent confidence* interval for β_1 , *reject* H_0 : $\beta_1 = 1$ in favour of H_1 : $\beta_1 \neq 1$ at the 5 *percent* significance level.
- <u>*Test 3:*</u> Since the value 2 lies *inside* the two-sided 95 *percent confidence* interval for β_1 , *retain* H_0 : $\beta_1 = 2$ against H_1 : $\beta_1 \neq 2$ at the 5 *percent* significance level.

Determining Critical Values for One-Tail Tests

CASE 1 – A Left-Tail Test

Problem: Determine the critical values for the following **one-tail t-test**:

H₀: $\beta_1 = b_1 \text{ or } \beta_1 - b_1 = 0$ where b_1 is a specified constant H₁: $\beta_1 < b_1 \text{ or } \beta_1 - b_1 < 0 \iff a \text{ left-sided alternative hypothesis.}$ $\Rightarrow a \text{ one-tail test}$, specifically a left-tail test.

1. The appropriate *test statistic* is the **t-statistic for** $\hat{\beta}_1$, the OLS estimate of the slope coefficient β_1 :

$$\mathsf{t}(\hat{\beta}_1) = \frac{\hat{\beta}_1 - \beta_1}{\sqrt{\mathsf{V}\hat{a}\mathsf{r}(\hat{\beta}_1)}} = \frac{\hat{\beta}_1 - \beta_1}{s\hat{e}(\hat{\beta}_1)}.$$

2. The *sample value* of the test statistic $t(\hat{\beta}_1)$ is calculated by evaluating $t(\hat{\beta}_1)$ under the null hypothesis H_0 . This involves evaluating $t(\hat{\beta}_1)$ using the *equality form of the null hypothesis* H_0 , which is $\beta_1 = b_1$. Setting $\beta_1 = b_1$ in the expression for $t(\hat{\beta}_1)$ yields the sample value of the test statistic $t(\hat{\beta}_1)$ under H_0 :

$$\mathbf{t}_0(\hat{\boldsymbol{\beta}}_1) = \frac{\hat{\boldsymbol{\beta}}_1 - \mathbf{b}_1}{\hat{\mathrm{se}}(\hat{\boldsymbol{\beta}}_1)}.$$

<u>Note</u>: The *null* hypothesis for a *left-tail* test is sometimes written as $H_0: \beta_1 \ge b_1$ rather than $H_0: \beta_1 = b_1$. But the computational procedure for testing

 $H_0: \beta_1 \ge b_1$ against $H_1: \beta_1 < b_1$

is *exactly the same* as the procedure for testing

$$H_0: \beta_1 = b_1$$
 against $H_1: \beta_1 < b_1$.

Question: Why do we use the equality form of the null hypothesis, $\beta_1 = b_1$, to calculate the sample value of the test statistic?

Answer: A two-part answer:

- A test that takes the null hypothesis as H_0 : $\beta_1 = b_1$ is the most favorable to the null hypothesis, and hence is the least favorable to the alternative hypothesis H_1 : $\beta_1 < b_1$. This means that, at any chosen significance level α , if we reject H_0 : $\beta_1 = b_1$ in favor of the alternative hypothesis H_1 : $\beta_1 < b_1$, then we would also reject H_0 : $\beta_1 = b_1 + c$ in favor of H_1 : $\beta_1 < b_1 + c$, where c > 0 is any *positive* constant.
- Calculating the value of $t(\hat{\beta}_1)$ for *all* values of $\beta_1 > b_1$ would be extremely tedious!! (How would you know when you're done?) Moreover, its unnecessary.
- 3. The *null distribution* of $t_0(\hat{\beta}_1)$ is t[N-2], the t-distribution with N 2 degrees of freedom. In other words, if the null hypothesis H₀ is true i.e., if $\beta_1 = b_1$, then

$$t_0(\hat{\beta}_1) = \frac{\hat{\beta}_1 - b_1}{\hat{se}(\hat{\beta}_1)} \sim t[N-2] \text{ under } H_0: \beta_1 = b_1.$$

<u>Question 1</u>: What values of $\hat{\beta}_1$ and $t_0(\hat{\beta}_1)$ would lead us to reject H_0 against H_1 ?

 $\begin{array}{ll} H_0: \ \beta_1 = b_1 \ or \ \beta_1 - b_1 = 0 \\ H_1: \ \beta_1 < b_1 \ or \ \beta_1 - b_1 < 0 \ \Leftarrow a \ \textit{left-sided alternative hypothesis.} \end{array}$

Answer: Examine the numerator of the calculated t-statistic:

$$\mathbf{t}_0(\hat{\boldsymbol{\beta}}_1) = \frac{\hat{\boldsymbol{\beta}}_1 - \mathbf{b}_1}{\hat{\mathrm{se}}(\hat{\boldsymbol{\beta}}_1)}$$

Remember:

 $\hat{\beta}_1$ = the *estimated* value of β_1 b_1 = the *hypothesized* value of β_1 $\hat{se}(\hat{\beta}_1) > 0$ ($\hat{se}(\hat{\beta}_1)$ is *always* a *positive* number)

- We would reject H_0 against H_1 if $\hat{\beta}_1$ is much less than b_1 , if the *estimated* value of β_1 is *much less than* b_1 , the *hypothesized* value of β_1 .
- More specifically, we would reject H_0 against H_1 in the following case:

$$\hat{\beta}_1 \ll b_1 \implies \hat{\beta}_1 - b_1 \ll 0 \implies t_0(\hat{\beta}_1) = \frac{\hat{\beta}_1 - b_1}{\hat{s}\hat{e}(\hat{\beta}_1)} \ll 0$$

Values of $\hat{\beta}_1$ much less than \mathbf{b}_1 imply large negative values of $\mathbf{t}_0(\hat{\beta}_1)$.

<u>Question 2</u>: How much less than zero does the value of $t_0(\hat{\beta}_1)$ have to be for us to reject H_0 in favour of H_1 ?

Answer: It depends on the *significance level* we choose for the test and the *null distribution* of our test statistic.

Let α = the chosen significance level for the test (e.g., 0.01, 0.05, or 0.10) = the probability of making a Type I error.

Because only large negative values of t_0 favour the alternative hypothesis, there is only one critical value – a lower critical value of the t[N – 2]-distribution that delineates a lower or left-tail rejection area equal to α .

 $-t_{\alpha}[N-2] =$ the *lower* α critical value of the t[N-2]-distribution.

Implications: If H_0 : $\beta_1 = b_1$ is *true*, then the following two probability statements hold.

(1)
$$\Pr\left(t_0(\hat{\beta}_1) \ge -t_\alpha[N-2]\right) = 1-\alpha$$
 (1)

(2)
$$\Pr\left(t_0(\hat{\beta}_1) < -t_\alpha[N-2]\right) = \alpha$$
 (2)

where

 $t_0(\hat{\beta}_1) =$ the calculated *sample* value of the t-statistic under H₀; $-t_{\alpha}[N-2] =$ the <u>lower</u> α -level critical value of the t[N-2]-distribution; $\alpha =$ the *significance* level for the test; $1 - \alpha =$ the *confidence* level for the test.

Determine the Rejection and Nonrejection Regions -- Left-Tail Test

□ The <u>non-rejection region</u> for $t_0(\hat{\beta}_1)$ is defined by the inequality in probability statement (1) above.

(1)
$$\Pr(t_0(\hat{\beta}_1) \ge -t_\alpha[N-2]) = 1-\alpha$$
 (1)

It consists of all values of $t_0(\hat{\beta}_1)$ such that

$$t_0(\hat{\beta}_1) \ge -t_{\alpha}[N-2] \qquad \Leftarrow \text{ non-rejection region under } H_0: \beta_1 = b_1.$$

□ The <u>rejection region</u> for $t_0(\hat{\beta}_1)$ is the set of values defined by the inequality in probability statement (2) above.

(2)
$$\Pr\left(t_0(\hat{\beta}_1) < -t_\alpha[N-2]\right) = \alpha$$
 (2)

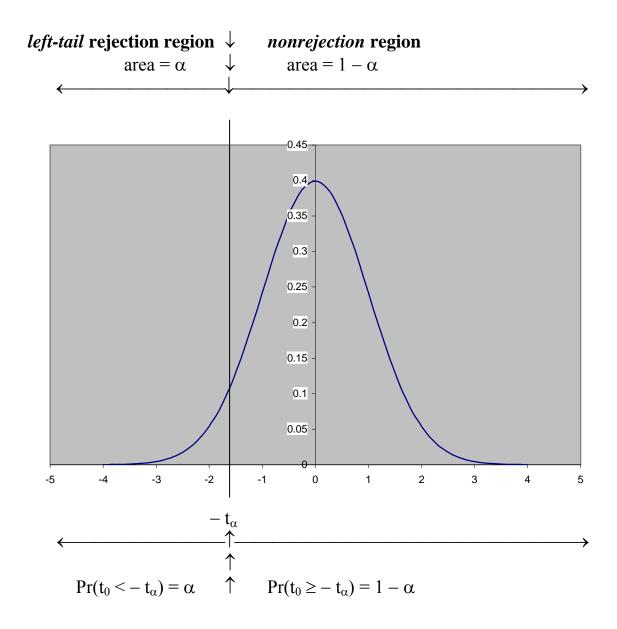
It consists of all values of $t_0(\hat{\beta}_1)$ such that

 $t_0(\hat{\beta}_1) < -t_{\alpha}[N-2] \iff rejection \text{ region under } H_0: \beta_1 = b_1$ is a *one-tail left-tail* rejection region.

<u>NOTE</u>:

- 1) For a <u>*left-tail*</u> test, the rejection region $t_0(\hat{\beta}_1) \le -t_{\alpha}[N-2]$ consists only of the *lower* <u>*left-hand*</u> tail of the t-distribution with N 2 degrees of freedom.
- 2) This <u>left-tail</u> rejection region contains unexpectedly *small* values of $t_0(\hat{\beta}_1)$ under $H_0 i.e.$, values that we would only expect to obtain with "small" probability α if the null hypothesis H_0 : $\beta_1 = b_1$ is true.
- 3) The *left tail area* under the t[N 2]-distribution in this lower tail *equals* the significance level α . This area is called the *lower* α -level (or lower 100 α percent) tail area of the t[N 2]-distribution.

Rejection and Nonrejection Regions for a Left-Tail Test



... Page 32 of 49 pages

STEP 5: Apply the Decision Rule and State Inference

Step 5: Apply the *decision rule* of the test and **state the** *inference*, or conclusion, implied by the sample value of the test statistic.

1. Formulation 1 of the Decision Rule for a Left-Tail Test

Formulation 1: Determine if the *sample value* t_0 of the test statistic lies in the *rejection* or *nonrejection* region at the chosen significance level α .

Decision Rule for a Left-Tail Test -- Formulation 1

1. If the *sample value* t_0 of the test statistic lies in the *left-tail rejection* region at the chosen significance level, then *reject* the null hypothesis H_0 .

For a <u>left-tail</u> test: $t_0 < -t_{\alpha}[N-2] \implies reject H_0$ at significance level α .

Reject H_0 in favour of H_1 at significance level α if

 $t_0 < -t_\alpha [N-2]$ meaning t_0 lies in the *lower left-tail* rejection area.

Inference: Reject H_0 in favour of H_1 at significance level α .

2. If the *sample value* t_0 of the test statistic lies in the *nonrejection* region at the chosen significance level, then *retain* (do not reject) the null hypothesis H_0 .

For a <u>left-tail</u> test: $t_0 \ge -t_{\alpha}[N-2] \implies$ retain H_0 at significance level α .

Retain H_0 against H_1 at significance level α if

 $t_0 \ge -t_{\alpha}[N-2]$ meaning t_0 lies in the nonrejection area.

Inference: Retain H_0 against H_1 at significance level α .

CASE 2 – A Right-Tail Test

Problem: Determine the critical values for the following **one-tail t-test**:

H₀: $\beta_1 = b_1 \text{ or } \beta_1 - b_1 = 0$ where b_1 is a specified constant H₁: $\beta_1 > b_1 \text{ or } \beta_1 - b_1 > 0 \iff a \text{ right-sided alternative hypothesis.}$ $\Rightarrow a \text{ one-tail test}$, specifically a right-tail test.

- <u>NOTE</u>: This one-tail test is a *right-tail* test because, as we will see, the *rejection* region for the test consists of the *upper* <u>right-hand</u> tail of the appropriate t-distribution.
- **1.** Again, the **appropriate** *test statistic* is the **t-statistic for** $\hat{\beta}_1$, the OLS estimate of the slope coefficient β_1 :

$$t(\hat{\beta}_1) = \frac{\hat{\beta}_1 - \beta_1}{\sqrt{V\hat{a}r(\hat{\beta}_1)}} = \frac{\hat{\beta}_1 - \beta_1}{s\hat{e}(\hat{\beta}_1)}.$$

2. The *sample value* of the test statistic $t(\hat{\beta}_1)$ is calculated by evaluating $t(\hat{\beta}_1)$ under the null hypothesis H_0 . This involves evaluating $t(\hat{\beta}_1)$ using the *equality form of the null hypothesis* H_0 , which is $\beta_1 = b_1$. Setting $\beta_1 = b_1$ in the expression for $t(\hat{\beta}_1)$ yields the sample value of the test statistic $t(\hat{\beta}_1)$ under H_0 :

$$\mathbf{t}_0(\hat{\boldsymbol{\beta}}_1) = \frac{\hat{\boldsymbol{\beta}}_1 - \mathbf{b}_1}{\hat{\mathrm{se}}(\hat{\boldsymbol{\beta}}_1)}.$$

<u>*Note:*</u> The *null* hypothesis for a *right-tail* test can be written as $H_0: \beta_1 \le b_1$ rather than $H_0: \beta_1 = b_1$. But the computational procedure for testing

 $H_0: \beta_1 \le b_1$ against $H_1: \beta_1 > b_1$

is *exactly the same* as the procedure for testing

$$H_0: \beta_1 = b_1$$
 against $H_1: \beta_1 > b_1$.

Question: Why do we use the equality form of the null hypothesis, $\beta_1 = b_1$, to calculate the sample value of the test statistic?

- Answer: A test that takes the null hypothesis as H_0 : $\beta_1 = b_1$ is the most favorable to the null hypothesis, and hence is the least favorable to the alternative hypothesis H_1 : $\beta_1 > b_1$. This means that, at any chosen significance level α , if we reject H_0 : $\beta_1 = b_1$ in favor of the alternative hypothesis H_1 : $\beta_1 > b_1$, then we would also reject H_0 : $\beta_1 = b_1 c$ in favor of H_1 : $\beta_1 > b_1 c$, where c > 0 is any *positive* constant.
- 3. The *null distribution* of $t_0(\hat{\beta}_1)$ is t[N-2], the t-distribution with N 2 degrees of freedom. In other words, if the null hypothesis H₀ is true i.e., if $\beta_1 = b_1$, then

$$t_0(\hat{\beta}_1) = \frac{\hat{\beta}_1 - b_1}{\hat{se}(\hat{\beta}_1)} \sim t[N-2] \text{ under } H_0: \beta_1 = b_1.$$

<u>Question 1</u>: What values of $\hat{\beta}_1$ and $t_0(\hat{\beta}_1)$ would lead us to reject H_0 against H_1 ?

 $\begin{array}{ll} H_0: \ \beta_1 = b_1 \ or \ \beta_1 - b_1 = 0 \\ H_1: \ \beta_1 > b_1 \ or \ \beta_1 - b_1 > 0 & \Leftarrow \ a \ \textit{right-sided alternative hypothesis.} \end{array}$

Answer: Examine the numerator of the calculated t-statistic:

$$\mathbf{t}_0(\hat{\boldsymbol{\beta}}_1) = \frac{\hat{\boldsymbol{\beta}}_1 - \mathbf{b}_1}{\hat{\mathrm{se}}(\hat{\boldsymbol{\beta}}_1)}.$$

Remember:

 $\hat{\beta}_1$ = the *estimated* value of β_1 b_1 = the *hypothesized* value of β_1 $\hat{se}(\hat{\beta}_1) > 0$ ($\hat{se}(\hat{\beta}_1)$) is *always* a *positive* number)

- We would reject H_0 against H_1 if $\hat{\beta}_1$ is much greater than b_1 , if the *estimated* value of β_1 is *much greater than* b_1 , the *hypothesized* value of β_1 .
- More specifically, we would reject H_0 against H_1 in the following case:

$$\hat{\beta}_1 \gg b_1 \implies \hat{\beta}_1 - b_1 \gg 0 \implies t_0(\hat{\beta}_1) = \frac{\hat{\beta}_1 - b_1}{\hat{se}(\hat{\beta}_1)} \gg 0$$

Values of $\hat{\beta}_1$ much greater than \mathbf{b}_1 imply large positive values of $\mathbf{t}_0(\hat{\beta}_1)$.

<u>Question 2</u>: How much greater than zero does the value of $t_0(\hat{\beta}_1)$ have to be for us to reject H_0 in favour of H_1 ?

Answer: It depends on the *significance level* we choose for the test and the *null distribution* of our test statistic.

Let α = the chosen significance level for the test (e.g., 0.01, 0.05, or 0.10) = the probability of making a Type I error.

Because only large positive values of t_0 favour the alternative hypothesis, there is only one critical value – an upper critical value of the t[N – 2]-distribution that delineates an upper or right-tail rejection area equal to α .

 $t_{\alpha}[N-2] =$ the *upper* α critical value of the t[N-2]-distribution.

<u>Implications</u>: If H_0 : $\beta_1 = b_1$ is *true*, then the following two probability statements hold.

(1)
$$\Pr\left(t_0(\hat{\beta}_1) \le t_\alpha[N-2]\right) = 1 - \alpha$$
 (1)

(2)
$$\Pr\left(t_0(\hat{\beta}_1) > t_{\alpha}[N-2]\right) = \alpha$$
 (2)

where

 $t_0(\hat{\beta}_1) =$ the calculated *sample* value of the t-statistic under H₀; $t_{\alpha}[N-2] =$ the <u>upper</u> α -level critical value of the t[N-2]-distribution; $\alpha =$ the *significance* level for the test; $1 - \alpha =$ the *confidence* level for the test.

Determine the Rejection and Nonrejection Regions – Right-Tail Test

□ The <u>non-rejection region</u> for $t_0(\hat{\beta}_1)$ is the set of values defined by the inequality in probability statement (1) above:

(1)
$$\Pr\left(t_0(\hat{\beta}_1) \le t_\alpha[N-2]\right) = 1 - \alpha$$
 (1)

It consists of all values of $t_0(\hat{\beta}_1)$ such that

$$t_0(\hat{\beta}_1) \leq t_{\alpha}[N-2] \quad \Leftarrow \text{ non-rejection region under } H_0: \beta_1 = b_1.$$

□ The <u>rejection region</u> for $t_0(\hat{\beta}_1)$ is the set of values defined by the inequality in probability statement (2) above:

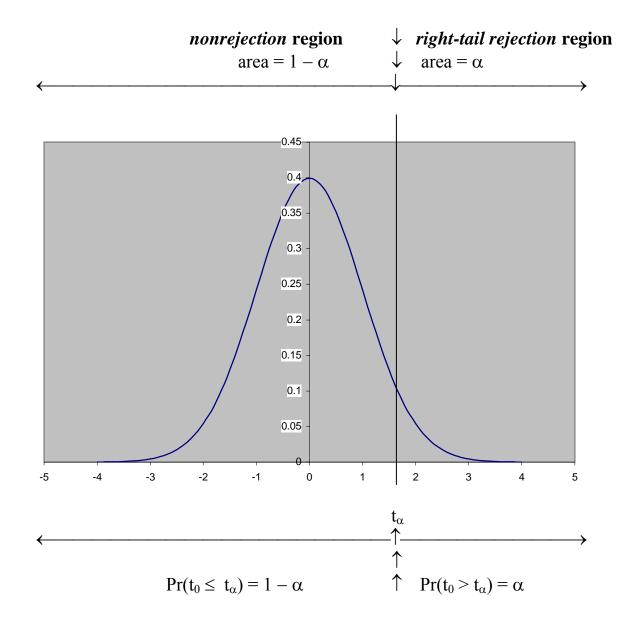
(2)
$$\Pr(t_0(\hat{\beta}_1) > t_\alpha[N-2]) = \alpha$$
 (2)

It consists of all values of $t_0(\hat{\beta}_1)$ such that

 $t_0(\hat{\beta}_1) > t_{\alpha}[N-2] \quad \Leftarrow rejection region under H_0: \beta_1 = b_1$ is a *one-tail <u>right-tail</u> rejection region.*

<u>NOTE</u>:

- 1) For a <u>*right-tail*</u> test, the rejection region $t_0(\hat{\beta}_1) > t_\alpha[N-2]$ consists only of the *upper <u>right-hand</u>* tail of the t-distribution with N 2 degrees of freedom.
- 2) This <u>**right-tail</u>** rejection region contains unexpectedly *large* values of $t_0(\hat{\beta}_1)$ under $H_0 i.e.$, values that we would only expect to obtain with "small" probability α if the null hypothesis H_0 : $\beta_1 = b_1$ is true.</u>
- 3) The *right tail area* under the t[N 2]-distribution in this upper tail equals the significance level α . This area is called the *upper* α -level (or upper 100 α percent) tail area of the t[N 2]-distribution.



Rejection and Nonrejection Regions for a Right-Tail Test

STEP 5: Apply the Decision Rule and State Inference

Step 5: Apply the *decision rule* of the test and **state the** *inference*, or conclusion, implied by the sample value of the test statistic.

1. Formulation 1 of the Decision Rule for a Right-Tail Test

Formulation 1: Determine if the *sample value* t_0 of the test statistic lies in the *rejection* or *nonrejection* region at the chosen significance level α .

Decision Rule for a Right-Tail Test -- Formulation 1

1. If the sample value t_0 of the test statistic lies in the right-tail rejection region at the chosen significance level, then reject the null hypothesis H_0 .

For a <u>*right-tail*</u> test: $t_0 > t_{\alpha}[N-2] \implies$ reject H_0 at significance level α .

Reject H_0 in favour of H_1 at significance level α if

 $t_0 > t_{\alpha}[N-2]$ meaning t_0 lies in the *upper right-tail* rejection area.

Inference: Reject H_0 in favour of H_1 at significance level α .

2. If the *sample value* t_0 of the test statistic lies in the *nonrejection* region at the chosen significance level, then *retain* (do not reject) the null hypothesis H_0 .

For a <u>*right-tail*</u> test: $t_0 \le t_{\alpha}[N-2] \implies retain H_0$ at significance level α .

Retain H_0 against H_1 at significance level α if

 $t_0 \le t_{\alpha}[N-2]$ meaning t_0 lies in the nonrejection area.

Inference: Retain H_0 against H_1 at significance level α .

Examples of One-Tail Hypothesis Tests

The Model:

DATA: auto1.dta (a Stata-format data file)

MODEL: price_i = β_0 + β_1 weight_i + u_i (i = 1, ..., N)

. regress price weight						
Source	SS	df	MS		Number of obs	
Model Residual	+ 184233937 450831459	-	233937 548.04		F(1, 72) = 29.42 Prob > F = 0.0000 R-squared = 0.2901 Adj R-squared = 0.2802	
Total	635065396	73 86995	8699525.97		5 1	= 2502.3
price	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
weight _cons	2.044063 -6.707353	.3768341 1174.43	5.424 -0.006	0.000 0.995	1.292858 -2347.89	2.795268 2334.475

$$N = 74$$
 $N - 2 = 74 - 2 = 72$

- $\hat{\beta}_1 = 2.0441$ $\hat{se}(\hat{\beta}_1) = 0.376834$
- $\alpha = 0.05 \implies \alpha/2 = 0.025$
- $t_{\alpha/2}[N-2] = t_{0.025}[72] = 1.9935$
- $t_{\alpha}[N-2] = t_{0.05}[72] = 1.6663$

<u>Test 1 – A Left-Tail Test</u>: Test the proposition that weight_i has a *negative* effect on price_i. Perform the test at the 5 percent significance level ($\alpha = 0.05$).

- Null and Alternative Hypotheses
 - **H**₀: $\beta_1 = 0$

H₁: $\beta_1 < 0$ a *one-sided* <u>*left-sided*</u> alternative hypothesis.

• The *feasible* test statistic is the t-statistic for $\hat{\beta}_1$:

$$t(\hat{\beta}_1) = \frac{\hat{\beta}_1 - \beta_1}{\sqrt{V\hat{a}r(\hat{\beta}_1)}} = \frac{\hat{\beta}_1 - \beta_1}{\hat{se}(\hat{\beta}_1)} \sim t[N-2].$$

• Compute the sample value of $t(\hat{\beta}_1)$ under the null hypothesis H₀. Set $\hat{\beta}_1 = 2.0441$, $\beta_1 = 0$ and $\hat{se}(\hat{\beta}_1) = 0.376834$ in the formula for $t(\hat{\beta}_1)$:

$$t_0(\hat{\beta}_1) = \frac{\hat{\beta}_1 - \beta_1}{\hat{se}(\hat{\beta}_1)} = \frac{2.0441 - 0}{0.376834} = \frac{2.0441}{0.376834} = 5.424$$

- The *one-tail critical value* of the t[N 2] distribution at the 5 percent significance level (at $\alpha = 0.05$) is $t_{\alpha}[N-2] = t_{0.05}[72] = 1.6663$.
- Decision Rule -- Left-Tail Test:

If $t_0 < -t_{\alpha}[N-2]$ reject H_0 at significance level α ; If $t_0 \ge -t_{\alpha}[N-2]$ retain H_0 at significance level α .

• Inference:

$$t_0 = 5.424 > -1.6663 = -t_{0.05}[72] \implies retain H_0$$
 at significance level
 $\alpha = 0.05$

Retain H_0 : $\beta_1 = 0$ against H_1 : $\beta_1 < 0$ at the *5 percent* significance level.

<u>Test 2 – A Right-Tail Test</u>: Test the proposition that weight_i has a *positive* effect on price_i. Perform the test at the 5 percent significance level ($\alpha = 0.05$).

- Null and Alternative Hypotheses
 - **H**₀: $\beta_1 = 0$

H₁: $\beta_1 > 0$ a *one-sided* <u>*right-sided*</u> alternative hypothesis.

• The *feasible* test statistic is the t-statistic for $\hat{\beta}_1$:

$$t(\hat{\beta}_1) = \frac{\hat{\beta}_1 - \beta_1}{\sqrt{V\hat{a}r(\hat{\beta}_1)}} = \frac{\hat{\beta}_1 - \beta_1}{\hat{se}(\hat{\beta}_1)} \sim t[N-2].$$

• Compute the *sample value* of $t(\hat{\beta}_1)$ under the null hypothesis H₀. Set $\hat{\beta}_1 = 2.0441$, $\beta_1 = 0$ and $\hat{se}(\hat{\beta}_1) = 0.376834$ in the formula for $t(\hat{\beta}_1)$:

$$t_0(\hat{\beta}_1) = \frac{\hat{\beta}_1 - \beta_1}{\hat{se}(\hat{\beta}_1)} = \frac{2.0441 - 0}{0.376834} = \frac{2.0441}{0.376834} = 5.424$$

- The *one-tail critical value* of the t[N 2] distribution at the 5 percent significance level (at $\alpha = 0.05$) is $t_{\alpha}[N 2] = t_{0.05}[72] = 1.6663$.
- Decision Rule -- Right-Tail Test:

If $t_0 > t_{\alpha}[N-2]$ reject H_0 at significance level α ; If $t_0 \le t_{\alpha}[N-2]$ retain H_0 at significance level α .

• Inference:

 $t_0 = 5.424 > 1.6663 = t_{0.05}[72] \implies reject H_0$ at significance level $\alpha = 0.05$

Reject H_0 : $\beta_1 = 0$ against H_1 : $\beta_1 > 0$ at the *5 percent* significance level. The sample evidence *favours* the alternative hypothesis H_1 : $\beta_1 > 0$.

Interpretation of the Decision Rules

□ An hypothesis test can lead to *only two* possible decisions:

either

(1) a decision *to reject* the null hypothesis H₀ against the alternative hypothesis H₁, in which case the sample evidence favours H₁ over H₀;

or

(2) a decision to retain (not to reject) the null hypothesis H₀ against the alternative hypothesis H₁, in which case the sample evidence favours H₀ over H₁.

D Points to remember in interpreting these alternative decisions.

1) An hypothesis test can never be interpreted as **either** *proving* **or** *disproving* **the truth of the null hypothesis**.

<u>Reason</u>: The decision to reject or retain H_0 on the basis of sample evidence is always subject -- explicitly or implicitly -- to some uncertainty, or margin of statistical error. That is, there is always some non-zero probability of committing a Type I or Type II error.

2) A decision *to retain (not to reject)* the null hypothesis H₀ should not be interpreted to mean that we "accept" H₀, or that H₀ is true.

<u>Reason</u>: Saying "we accept H_0 " implies that we are concluding that the null hypothesis is true, but such a conclusion is incorrect. Nonrejection (or retention) of H_0 means only that the sample data provide insufficient evidence to reject H_0 ; it does not mean that H_0 is true beyond any doubt.

Explanation: see example in Gujarati (2003, p. 134).

We obtain an estimate of the slope coefficient of $\hat{\beta}_1 = 0.5091$ and a corresponding estimated standard error of $\hat{se}(\hat{\beta}_1) = 0.0357$.

• First, we perform a **two-tail test of H₀:** $\beta_1 = 0.50$ against H₁: $\beta_1 \neq 0.50$.

The sample value of the t-statistic under H₀ is calculated as:

$$t_0(\hat{\beta}_1) = \frac{\hat{\beta}_1 - \beta_1}{\hat{se}(\hat{\beta}_1)} = \frac{0.5091 - 0.50}{0.0357} = 0.25.$$

But the sample value 0.25 is clearly insignificant at, say, the 5% significance level ($\alpha = 0.05$). Suppose we "accept" H₀ and conclude that the true value of β_1 is 0.50.

• Next, we perform a **two-tail test of H₀:** $\beta_1 = 0.48$ against H₁: $\beta_1 \neq 0.48$.

The sample value of the t-statistic under this H₀ is calculated as:

$$t_0(\hat{\beta}_1) = \frac{\hat{\beta}_1 - \beta_1}{\hat{se}(\hat{\beta}_1)} = \frac{0.5091 - 0.48}{0.0357} = 0.82.$$

But the sample value 0.82 is also clearly insignificant at the 5% significance level ($\alpha = 0.05$). Do we now "accept" this H₀ and conclude that the true value of β_1 is 0.48?

 <u>Question</u>: Do we "accept" either or both of these hypothesized values of β₁ as the true value?

The correct answer is NO. We do not know the exact true value of β_1 .

<u>Conclusion</u>: All we can legitimately conclude from these two hypothesis tests is that the sample evidence is consistent or compatible with both the null hypotheses we have tested. But the tests provide no reason to conclude that either hypothesized value, 0.50 or 0.48, is the true value of β₁.

3) A decision to reject H_0 on the basis of given sample data does not imply that we must accept the alternative hypothesis H_1 , or that H_1 must be true, or that H_1 does in fact *contain the truth*.

<u>Reason</u>: An hypothesis test is designed only to assess the probable empirical validity of the null hypothesis H_0 ; it is not designed to test the alternative hypothesis H_1 .

- Regardless of whether a test outcome for some particular sample data indicates rejection or nonrejection of H_0 , the set of alternative possibilities specified by the alternative hypothesis H_1 may or may not contain the truth.
- It is quite possible for a test of some null hypothesis H_0 against some alternative hypothesis H_1 to indicate rejection of H_0 when H_1 is false that is, when the alternative possibilities specified by H_1 do not contain the truth.

Formulation 2 of the Decision Rule: the p-value Rule

Formulation 2: Determine if the p-value for t_0 , the calculated sample value of the test statistic, is *smaller* or *larger* than the chosen significance level α .

Definition: The **p-value** (or **probability value**) associated with the calculated sample value of the test statistic is defined as the *lowest* significance level at which the null hypothesis H_0 can be rejected, given the calculated sample value of the test statistic.

Interpretation

- The p-value is the probability of obtaining a *sample value* of the test statistic *as extreme as* the one we computed *if the null hypothesis* H_0 *is true*.
- P-values serve as *inverse* measures of the strength of evidence *against* the *null* hypothesis H₀.
 - Small p-values p-values *close to zero* constitute *strong* evidence against the null hypothesis H₀.
 - Large p-values p-values close to one provide only weak evidence against the null hypothesis H₀.

Examples of p-values for common types of hypothesis tests

• For a <u>two-tail t-test</u>, let the calculated sample value of the t-statistic for a given null hypothesis be t₀. Then the p-value associated with the sample value t₀ is the probability that the null distribution of the test statistic takes a value greater than the absolute value of t₀, where the absolute value of t₀ is denoted as | t₀|. That is,

two-tail p-value for
$$t_0 = Pr(|t| > |t_0|)$$

= $Pr(t > t_0) + Pr(t < -t_0) = 2Pr(t > t_0)$ if $t_0 > 0$
= $Pr(t < t_0) + Pr(t > -t_0) = 2Pr(t < t_0)$ if $t_0 < 0$

Remember: the t-distribution is symmetric about its mean of zero.

- For a <u>one-tail t-test</u>, let the calculated sample value of the t-statistic for a given null hypothesis be t₀. Then the p-value associated with the sample value t₀ is depends on whether the test is a *right-tail* or *left-tail* test.
 - (1) For a <u>*right-tail*</u> **t-test**, the p-value associated with the sample value t_0 is the probability that the null distribution of the test statistic takes a value *greater than* the calculated sample value $t_0 i.e.$,

right-tail **p**-value for $t_0 = Pr(t > t_0)$.

(2) For a <u>*left-tail*</u> t-test, the p-value associated with the sample value t_0 is the probability that the null distribution of the test statistic takes a value *less than* the calculated sample value $t_0 - i.e.$,

left-tail **p-value for** $t_0 = Pr(t < t_0)$.

For an <u>F-test</u>, let the calculated sample value of the F-statistic for a given null hypothesis be F₀. Then the p-value associated with the sample value F₀ is the probability that the null distribution of the test statistic takes a value greater than the calculated sample value F₀ − i.e.,

```
p-value for F_0 = Pr(F > F_0).
```

Note that the F-distribution is defined only over non-negative values that are greater than or equal to zero.

Decision Rule -- Formulation 2

1. If the **p-value** for the calculated sample value of the test statistic *is less than* the chosen **significance level** α , *reject* the null hypothesis at significance level α .

p-value $< \alpha \implies reject H_0$ at significance level α .

If the p-value for the calculated sample value of the test statistic *is greater than* or equal to the chosen significance level α, retain (i.e., do not reject) the null hypothesis at significance level α.

p-value $\geq \alpha \implies retain H_0$ at significance level α .