#### ECON 351\* -- NOTE 7

#### Interval Estimation in the Classical Normal Linear Regression Model

This note outlines the basic elements of **interval estimation** in the Classical Normal Linear Regression Model (the CNLRM). Interval estimation – i.e., the construction of confidence intervals for unknown population parameters – is one of the two alternative approaches to statistical inference; the other is hypothesis testing.

#### 1. Introduction

□ We have previously derived **point estimators** of all the unknown population parameters in the Classical Normal Linear Regression Model (CNLRM) for which the **population regression equation**, or **PRE**, is

 $Y_i = \beta_0 + \beta_1 X_i + u_i \qquad \text{where } u_i \text{ is iid as } N(0, \sigma^2) \quad (i = 1, ..., N)$ (1)

- The unknown parameters of the PRE are
  - (1) the regression coefficients  $\beta_0$  and  $\beta_1$

and

- (2) the error variance  $\sigma^2$ .
- The **point estimators** of these unknown population parameters are

(1) the *unbiased* OLS regression coefficient estimators  $\hat{\beta}_0$  and  $\hat{\beta}_1$  and

(2) the *unbiased* error variance estimator  $\hat{\sigma}^2$ .

• Assume that we have computed the point estimates  $\hat{\beta}_0$ ,  $\hat{\beta}_1$  and  $\hat{\sigma}^2$  of the unknown parameters for a given set of sample data (Y<sub>i</sub>, X<sub>i</sub>), i = 1, ..., N.

□ We therefore begin with the following **OLS sample regression equation** (or **OLS-SRE**):

$$Y_{i} = \hat{\beta}_{0} + \hat{\beta}_{1}X_{i} + \hat{u}_{i} = \hat{Y}_{i} + \hat{u}_{i} \qquad (i = 1, ..., N)$$
(2)

where

$$\begin{split} \hat{\beta}_{1} &= \frac{\sum_{i} x_{i} y_{i}}{\sum_{i} x_{i}^{2}} = \frac{\sum_{i=1}^{N} (X_{i} - \overline{X})(Y_{i} - \overline{Y})}{\sum_{i=1}^{N} (X_{i} - \overline{X})^{2}} = \text{OLS estimate of } \beta_{1}; \\ \hat{\beta}_{0} &= \overline{Y} - \hat{\beta}_{1} \overline{X} = \text{OLS estimate of } \beta_{0}; \\ \hat{\sigma}^{2} &= \frac{\sum_{i} \hat{u}_{i}^{2}}{(N - 2)} = \frac{\text{RSS}}{(N - 2)} = \text{unbiased OLS estimate of } \sigma^{2}; \\ \text{V}\hat{a}r(\hat{\beta}_{1}) &= \frac{\hat{\sigma}^{2}}{\sum_{i} x_{i}^{2}} = \frac{\hat{\sigma}^{2}}{\sum_{i} (X_{i} - \overline{X})^{2}}; \\ \hat{s}\hat{e}(\hat{\beta}_{1}) &= \sqrt{\hat{V}\hat{a}r(\hat{\beta}_{1})} = \left(\frac{\hat{\sigma}^{2}}{\sum_{i} x_{i}^{2}}\right)^{\frac{1}{2}} = \frac{\hat{\sigma}}{\sqrt{\sum_{i} x_{i}^{2}}}; \\ \text{V}\hat{a}r(\hat{\beta}_{0}) &= \frac{\hat{\sigma}^{2} \sum_{i} X_{i}^{2}}{N \sum_{i} x_{i}^{2}} = \frac{\hat{\sigma}^{2} \sum_{i} X_{i}^{2}}{N \sum_{i} (X_{i} - \overline{X})^{2}}; \\ \hat{s}\hat{e}(\hat{\beta}_{0}) &= \sqrt{\hat{V}\hat{a}r(\hat{\beta}_{0})} = \left(\frac{\hat{\sigma}^{2} \sum_{i} X_{i}^{2}}{N \sum_{i} x_{i}^{2}}\right)^{\frac{1}{2}}. \end{split}$$

□ Under the assumptions of the Classical Normal Linear Regression Model (CNLRM) – including in particular the *normality assumption A9* – the sample *t-statistics* for  $\hat{\beta}_1$  and  $\hat{\beta}_0$  each have the t-distribution with (N – 2) degrees of freedom: i.e.,

$$\begin{split} t(\hat{\beta}_1) &= \frac{\hat{\beta}_1 - \beta_1}{\sqrt{V\hat{a}r(\hat{\beta}_1)}} = \frac{\hat{\beta}_1 - \beta_1}{\hat{s}\hat{e}(\hat{\beta}_1)} \sim t[N-2];\\ t(\hat{\beta}_0) &= \frac{\hat{\beta}_0 - \beta_0}{\sqrt{V\hat{a}r(\hat{\beta}_0)}} = \frac{\hat{\beta}_0 - \beta_0}{\hat{s}\hat{e}(\hat{\beta}_0)} \sim t[N-2]. \end{split}$$

#### 2. Interval Estimation: Some Basic Ideas

#### 2.1 General Form of a Confidence Interval

A confidence interval for the slope coefficient  $\beta_1$  takes the general form

$$\Pr(\hat{\beta}_{1L} \le \beta_1 \le \hat{\beta}_{1U}) = \Pr(\hat{\beta}_1 - \hat{\delta} \le \beta_1 \le \hat{\beta}_1 + \hat{\delta}) = 1 - \alpha$$
(3)

where

$$\alpha = \text{the significance level } (0 < \alpha < 1),$$
  

$$1 - \alpha = \text{the confidence level (or confidence coefficient),}$$
  

$$\hat{\delta} = \text{a positively-valued sample statistic,}$$
  

$$\hat{\beta}_{1L} = \hat{\beta}_1 - \hat{\delta} = \text{the lower confidence limit,}$$
  

$$\hat{\beta}_{1U} = \hat{\beta}_1 + \hat{\delta} = \text{the upper confidence limit.}$$

The interval  $[\hat{\beta}_{1L}, \hat{\beta}_{1U}] = [\hat{\beta}_1 - \hat{\delta}, \hat{\beta}_1 + \hat{\delta}]$  is called the **two-sided**  $(1 - \alpha)$ -level confidence interval, or two-sided 100 $(1 - \alpha)$  percent confidence interval, for the slope coefficient  $\beta_1$ .

#### **2.2 Interpretation of Confidence Intervals**

# 1. The confidence interval [ $\hat{\beta}_{1L}$ , $\hat{\beta}_{1U}$ ] is a <u>random</u> interval.

- The confidence limits  $\hat{\beta}_{1L} = \hat{\beta}_1 \hat{\delta}$  and  $\hat{\beta}_{1U} = \hat{\beta}_1 + \hat{\delta}$  are random variables (or sample statistics) that vary in value from one sample to another because the values of  $\hat{\beta}_1$  and  $\hat{\delta}$  vary from sample to sample.
- But for any one sample of data of size N and the corresponding estimates of  $\hat{\beta}_1$  and  $\hat{\delta}$ , the confidence limits  $\hat{\beta}_{1L} = \hat{\beta}_1 \hat{\delta}$  and  $\hat{\beta}_{1U} = \hat{\beta}_1 + \hat{\delta}$  are simply fixed numbers, i.e., they take fixed values. Therefore, any one confidence interval calculated for a particular sample of data is a fixed, meaning nonrandom, interval.

- 2. The correct interpretation of the confidence interval  $[\hat{\beta}_{1L}, \hat{\beta}_{1U}]$  is based on the concept of *repeated sampling*.
  - Suppose a very large number of random samples of the same size N (e.g., N = 50 observations) are independently selected from a given population.
  - For each of these random samples of N observations, the values of the confidence limits  $\hat{\beta}_{1L} = \hat{\beta}_1 \hat{\delta}$  and  $\hat{\beta}_{1U} = \hat{\beta}_1 + \hat{\delta}$  are calculated for some fixed value of the confidence level  $1 \alpha$  (such as  $1 \alpha = 0.99$  or 0.95 or 0.90).
  - The probability statement in (3) means that  $100(1 \alpha)$  percent of all the confidence intervals so constructed will contain the true (but unknown) population value of  $\beta_1$ .
  - But note that *any one* confidence interval  $[\hat{\beta}_{1L}, \hat{\beta}_{1U}]$  based on one sample of N observations may or may not contain the true value of  $\beta_1$ .
    - For one sample of N observations, the confidence limits  $\hat{\beta}_{1L} = \hat{\beta}_1 \hat{\delta}$ and  $\hat{\beta}_{1U} = \hat{\beta}_1 + \hat{\delta}$  take fixed values because the values of  $\hat{\beta}_1$  and  $\hat{\delta}$ calculated for a single sample of N observations are fixed numbers.
    - Because β<sub>1</sub> is some fixed but unknown number, β<sub>1</sub> either lies inside or outside the fixed confidence interval calculated for any one sample of N observations. That is, a single confidence interval computed for one specific sample of N observations either does or does not contain the true population value of β<sub>1</sub>.
    - *Result:* A *single* confidence interval  $[\hat{\beta}_{1L}, \hat{\beta}_{1U}]$  based on *one* sample of N observations is a fixed, or nonrandom, interval.

#### **3. Summary: Interpretation of Confidence Intervals**

The **two-sided 100(1–\alpha) percent confidence interval** for the slope coefficient  $\beta_1$  is defined by probability statement (3):

$$\Pr(\hat{\beta}_{1L} \le \beta_1 \le \hat{\beta}_{1U}) = \Pr(\hat{\beta}_1 - \hat{\delta} \le \beta_1 \le \hat{\beta}_1 + \hat{\delta}) = 1 - \alpha$$
(3)

- (1) Any one confidence interval for  $\beta_1$ , based on one sample of data, may or may not contain the true value of  $\beta_1$ . Since the true value of  $\beta_1$  is unknown, we do not know whether that value does or does not lie inside any one confidence interval.
- (2) The probability statement (3) is therefore a statement about the procedure used to construct the confidence interval, not about any one confidence interval estimate calculated for a particular sample of data.

# 3. Confidence Intervals for the Regression Coefficients $\beta_0$ and $\beta_1$

# 3.1 Confidence Interval for $\beta_1$ : Derivation

A **two-step** derivation:

- **<u>Step 1</u>**: Start with a probability statement formulated in terms of  $t(\hat{\beta}_1)$ , the tstatistic for  $\hat{\beta}_1$ . This probability statement *implicitly* defines the two-sided  $(1-\alpha)$ -level confidence interval for  $\beta_1$ .
- **<u>Step 2</u>**: Re-arrange this probability statement to obtain an equivalent probability statement formulated in terms of  $\beta_1$  rather than  $t(\hat{\beta}_1)$ . The resultant probability statement *explicitly* defines the two-sided  $(1-\alpha)$ -level confidence interval for  $\beta_1$ .

<u>STEP 1</u>: The two-sided  $(1 - \alpha)$ -level confidence interval for  $\beta_1$  is implicitly defined by the probability statement

$$\Pr\left(-t_{\alpha/2}[N-2] \le t(\hat{\beta}_1) \le t_{\alpha/2}[N-2]\right) = 1 - \alpha$$
(4)

where

 $1 - \alpha =$  the *confidence* level attached to the confidence interval;  $\alpha =$  the *significance* level, where  $0 < \alpha < 1$ ;  $t_{\alpha/2}[N-2] =$  the *critical value* of the t-distribution with (N-2) degrees of freedom at the  $\alpha/2$  (or  $100\alpha/2$  percent) significance level;

and  $t(\hat{\beta}_1)$  is the t-statistic for  $\hat{\beta}_1$  given by

$$t(\hat{\beta}_1) = \frac{\hat{\beta}_1 - \beta_1}{\sqrt{V\hat{a}r(\hat{\beta}_1)}} = \frac{\hat{\beta}_1 - \beta_1}{\hat{s}\hat{e}(\hat{\beta}_1)}.$$
(5)

#### Upper and Lower $\alpha/2$ Critical Values of t[N-2] Distribution



**<u>STEP 2</u>**: Express the double inequality inside the brackets in probability statement (4) in terms of  $\beta_1$  rather than  $t(\hat{\beta}_1)$ .

$$\Pr\left(-t_{\alpha/2}[N-2] \le t(\hat{\beta}_1) \le t_{\alpha/2}[N-2]\right) = 1 - \alpha$$
(4)

(1) Substitute in the double inequality

$$-t_{\alpha/2}[N-2] \le t(\hat{\beta}_1) \le t_{\alpha/2}[N-2]$$

the expression for  $t(\hat{\beta}_1)$  given in (5) above:

$$-t_{\alpha/2}[N-2] \le \frac{\hat{\beta}_1 - \beta_1}{\hat{se}(\hat{\beta}_1)} \le t_{\alpha/2}[N-2].$$
(6.1)

(2) Multiply the double inequality (6.1) by the positive number  $\hat{se}(\hat{\beta}_1) > 0$ :

$$-\mathbf{t}_{\alpha/2}\hat{\operatorname{se}}(\hat{\beta}_{1}) \leq \hat{\beta}_{1} - \beta_{1} \leq \mathbf{t}_{\alpha/2}\hat{\operatorname{se}}(\hat{\beta}_{1}).$$
(6.2)

(3) Subtract  $\hat{\beta}_1$  from both sides of inequality (6.2):

$$-\hat{\beta}_1 - t_{\alpha/2}\hat{se}(\hat{\beta}_1) \le -\beta_1 \le -\hat{\beta}_1 + t_{\alpha/2}\hat{se}(\hat{\beta}_1).$$
(6.3)

(4) Multiply all terms in inequality (6.3) by −1, remembering to reverse the direction of the inequalities:

$$\hat{\beta}_1 - \mathbf{t}_{\alpha/2} \hat{se}(\hat{\beta}_1) \le \beta_1 \le \hat{\beta}_1 + \mathbf{t}_{\alpha/2} \hat{se}(\hat{\beta}_1).$$
(6.4)

**<u>RESULT</u>**: The probability statement (4) can be written as

$$\Pr\left(\hat{\beta}_1 - t_{\alpha/2}[N-2]\hat{se}(\hat{\beta}_1) \le \beta_1 \le \hat{\beta}_1 + t_{\alpha/2}[N-2]\hat{se}(\hat{\beta}_1)\right) = 1 - \alpha.$$
(7)

The two-sided  $(1 - \alpha)$ -level confidence interval for  $\beta_1$  can therefore be written as

$$\hat{\beta}_1 - t_{\alpha/2}[N-2]\hat{se}(\hat{\beta}_1) \leq \beta_1 \leq \hat{\beta}_1 + t_{\alpha/2}[N-2]\hat{se}(\hat{\beta}_1)$$

or more compactly as

$$\hat{\beta}_1 \pm t_{\alpha/2}[N-2]\hat{se}(\hat{\beta}_1) \quad or \quad [\hat{\beta}_1 - t_{\alpha/2}[N-2]\hat{se}(\hat{\beta}_1), \hat{\beta}_1 + t_{\alpha/2}[N-2]\hat{se}(\hat{\beta}_1)]$$

where at the  $(1 - \alpha)$  confidence level, or  $100(1 - \alpha)$  percent confidence level,

$$\hat{\beta}_{1L} = \hat{\beta}_1 - t_{\alpha/2} [N-2] \hat{se}(\hat{\beta}_1) = \text{ the lower } 100(1-\alpha) \text{ percent confidence limit}$$
  
for  $\beta_1$ 

and

 $\hat{\beta}_{1U} = \hat{\beta}_1 + t_{\alpha/2} [N-2] \hat{se}(\hat{\beta}_1) = \text{ the upper } \mathbf{100(1-\alpha) percent confidence limit}$ for  $\beta_1$ 

### Two-Sided $(1 - \alpha)$ -level Confidence Interval for $\beta_1$

left-tail area =  $\alpha/2 \downarrow$  confidence area =  $1 - \alpha \downarrow$  right-tail area =  $\alpha/2$ 



# **3.2** Confidence Interval for $\beta_0$ : Derivation

The confidence interval (or interval estimator) for the intercept coefficient  $\beta_0$  is derived, interpreted, and constructed in exactly the same way as the confidence interval for the slope coefficient  $\beta_1$ .

1. The two-sided  $(1 - \alpha)$ -level confidence interval for  $\beta_0$  is implicitly defined by the probability statement

$$\Pr\left(-t_{\alpha/2}[N-2] \le t(\hat{\beta}_0) \le t_{\alpha/2}[N-2]\right) = 1 - \alpha$$
(8)

where

$$\begin{array}{ll} 1-\alpha &= \mbox{ the confidence level attached to the confidence interval;} \\ \alpha &= \mbox{ the significance level, where } 0 < \alpha < 1; \\ t_{\alpha/2}[N-2] = \mbox{ the critical value of the t-distribution with (N-2) degrees of freedom at the $\alpha/2$ (or $100(\alpha/2)$ percent) significance level;} \end{array}$$

and t( $\hat{\beta}_0$ ) is the t-statistic for  $\hat{\beta}_0$  given by

$$t(\hat{\beta}_0) = \frac{\hat{\beta}_0 - \beta_0}{\sqrt{V\hat{a}r(\hat{\beta}_0)}} = \frac{\hat{\beta}_0 - \beta_0}{\hat{s}\hat{e}(\hat{\beta}_0)}.$$
(9)

2. The double inequality inside the brackets in probability statement (8) can be expressed in terms of  $\beta_0$  rather than  $t(\hat{\beta}_0)$ , using a derivation analogous to that used in deriving the confidence interval for  $\beta_1$ .

**<u>RESULT</u>**: The probability statement (8) can be written as

$$\Pr\left(\hat{\beta}_0 - t_{\alpha/2}[N-2]\hat{se}(\hat{\beta}_0) \le \beta_0 \le \hat{\beta}_0 + t_{\alpha/2}[N-2]\hat{se}(\hat{\beta}_0)\right) = 1 - \alpha.$$
(10)

The two-sided  $(1 - \alpha)$ -level confidence interval for  $\beta_0$  can therefore be written as

$$\hat{\beta}_0 - t_{\alpha/2}[N-2]\hat{se}(\hat{\beta}_0) \leq \beta_0 \leq \hat{\beta}_0 + t_{\alpha/2}[N-2]\hat{se}(\hat{\beta}_0)$$

or more compactly as

$$\hat{\beta}_{0} \pm t_{\alpha/2}[N-2]\hat{se}(\hat{\beta}_{0}) \quad or \quad [\hat{\beta}_{0} - t_{\alpha/2}[N-2]\hat{se}(\hat{\beta}_{0}), \hat{\beta}_{0} + t_{\alpha/2}[N-2]\hat{se}(\hat{\beta}_{0})]$$

where at the  $(1 - \alpha)$  confidence level, or  $100(1 - \alpha)$  percent confidence level,

$$\hat{\beta}_{0L} = \hat{\beta}_0 - t_{\alpha/2} [N-2] \hat{se}(\hat{\beta}_0) = \text{ the lower } \mathbf{100}(\mathbf{1} - \alpha) \text{ percent confidence limit}$$
for  $\beta_0$ 

and

$$\hat{\beta}_{0U} = \hat{\beta}_0 + t_{\alpha/2} [N-2] \hat{se}(\hat{\beta}_0) = \text{ the } upper \ \mathbf{100}(\mathbf{1} - \alpha) \text{ percent confidence limit} \\ \mathbf{for } \beta_0$$

### **3.3 Procedure for Computing Confidence Intervals**

Consider the problem of computing a confidence interval for the slope coefficient  $\beta_1$ . Recall that the **two-sided**  $(1 - \alpha)$ -level confidence interval for  $\beta_1$  is given by the double inequality

$$\hat{\beta}_1 - t_{\alpha/2}[N-2]\hat{se}(\hat{\beta}_1) \leq \beta_1 \leq \hat{\beta}_1 + t_{\alpha/2}[N-2]\hat{se}(\hat{\beta}_1).$$

- **<u>Step 1</u>**: After estimating the PRE (1) by OLS, retrieve from the estimation results the OLS estimate  $\hat{\beta}_1$  of  $\beta_1$  and the estimated standard error  $\hat{se}(\hat{\beta}_1)$ .
- <u>Step 2</u>: Select the value of the confidence level  $(1 \alpha)$ , which amounts to selecting the value of  $\alpha$ . Although the choice of confidence level is essentially arbitrary, the values most commonly used in practice are:

 $\alpha = 0.01 \implies (1 - \alpha) = 0.99$ , i.e., the  $100(1 - \alpha) = 100(0.99) = 99$  percent confidence level;

 $\alpha = 0.05 \implies (1 - \alpha) = 0.95$ , i.e., the  $100(1 - \alpha) = 100(0.95) = 95$  percent confidence level;

 $\alpha = 0.10 \implies (1 - \alpha) = 0.90$ , i.e., the  $100(1 - \alpha) = 100(0.90) = 90$  percent confidence level.

- **<u>Step 3</u>**: Obtain the value of  $t_{\alpha/2}[N-2]$ , the  $\alpha/2$  critical value of the t-distribution with N–2 degrees of freedom, either from statistical tables of the t-distribution or from a computer software program.
- **<u>Step 4</u>**: Use the values of  $\hat{\beta}_1$ ,  $\hat{se}(\hat{\beta}_1)$ , and  $t_{\alpha/2}[N-2]$  to compute the upper and lower  $100(1 \alpha)$  percent confidence limits for  $\beta_1$ :

 $\hat{\beta}_{1U} = \hat{\beta}_1 + t_{\alpha/2} [N-2] \hat{se}(\hat{\beta}_1) = \text{ the upper } 100(1-\alpha)\% \text{ confidence limit for } \beta_1;$ 

 $\hat{\beta}_{1L} = \hat{\beta}_1 - t_{\alpha/2} [N-2] \hat{se}(\hat{\beta}_1) = \text{ the lower } 100(1-\alpha)\% \text{ confidence limit for } \beta_1.$ 

# 4. Determinants of the Confidence Interval for $\beta_{\rm j}$

Consider the two-sided  $100(1 - \alpha)$ % confidence interval for  $\beta_j$  (j = 0, 1):

$$\hat{\beta}_{j} - t_{\alpha/2}[N-2]\hat{se}(\hat{\beta}_{j}) \le \beta_{j} \le \hat{\beta}_{j} + t_{\alpha/2}[N-2]\hat{se}(\hat{\beta}_{j})$$

or

$$\left[\hat{\beta}_{j} - t_{\alpha/2}[N-2]\hat{se}(\hat{\beta}_{j}), \hat{\beta}_{j} + t_{\alpha/2}[N-2]\hat{se}(\hat{\beta}_{j})\right]$$

By inspection, it is apparent that the **two-sided confidence interval for**  $\beta_j$  is *wider* 

- the *greater* the value of sê(β̂<sub>j</sub>), the estimated standard error of β̂<sub>j</sub>, i.e., the *less* precise is the estimate of β̂<sub>i</sub>;
- (2) the *greater* the critical value  $t_{\alpha/2}[N-2]$ , i.e., the *greater* the chosen value of the confidence level  $(1 \alpha)$  for the given sample size N.

*Explanation*: Given sample size N, the value of  $t_{\alpha/2}[N-2]$  is *negatively* related to the value of  $\alpha$ , and so is *positively* related to the value of  $(1 - \alpha)$ .

*Example*: Suppose sample size N = 30, so that the degrees-of-freedom N-2 = 28. Then from a table of percentage points for the t-distribution, we obtain the following values of  $t_{\alpha/2}[N-2] = t_{\alpha/2}[28]$  for different values of  $\alpha$ :

 $\begin{aligned} \alpha &= 0.01 \implies (1 - \alpha) = 0.99; & \alpha/2 = 0.005 \text{ and } t_{0.005}[28] = 2.763; \\ \alpha &= 0.02 \implies (1 - \alpha) = 0.98; & \alpha/2 = 0.01 \text{ and } t_{0.01}[28] = 2.467; \\ \alpha &= 0.05 \implies (1 - \alpha) = 0.95; & \alpha/2 = 0.025 \text{ and } t_{0.025}[28] = 2.048; \\ \alpha &= 0.10 \implies (1 - \alpha) = 0.90; & \alpha/2 = 0.05 \text{ and } t_{0.05}[28] = 1.701. \end{aligned}$ 

Note that higher values of  $(1 - \alpha)$  -- i.e., higher confidence levels -- correspond to higher critical values of  $t_{\alpha/2}$ [28].

# 5. Numerical Example: Computing a Two-Sided 95 Percent Confidence Interval for $\beta_1$

• Estimate by OLS on the **auto1.dta** sample of N = 74 observations the simple linear regression model given by the population regression equation (*Stata 10* Tutorial 3)

 $price_i = \beta_0 + \beta_1 weight_i + u_i$ 

. regress price weight

| Source              | SS                           | df                         | MS               |                | Number of obs $F(1)$ 72)    | = 74                 |
|---------------------|------------------------------|----------------------------|------------------|----------------|-----------------------------|----------------------|
| Model  <br>Residual | 184233937<br>450831459       | 1 184<br>72 6261           | 233937<br>548.04 |                | Prob > F<br>R-squared       | = 0.0000<br>= 0.2901 |
| Total               | 635065396                    | 73 8699                    | 9525.97          |                | Root MSE                    | = 0.2802<br>= 2502.3 |
| price               | Coef.                        | Std. Err.                  | t                | P> t           | [95% Conf.                  | Interval]            |
| weight  <br>_cons   | <u>2.044063</u><br>-6.707353 | <u>.3768341</u><br>1174.43 | 5.42<br>-0.01    | 0.000<br>0.995 | <u>1.292857</u><br>-2347.89 | 2.795268<br>2334.475 |

```
. display _b[weight]
2.0440626
. display _se[weight]
```

```
.37683413
```

```
. display invttail(72, 0.025)
1.9934636
```

- Selected results from OLS estimation of the above linear regression model:
  - $\hat{\beta}_{1} = 2.0440626$   $s\hat{e}(\hat{\beta}_{1}) = 0.37683413$   $(1 \alpha) = 0.95 \implies \alpha = 1 0.95 = 0.05 \implies \alpha/2 = 0.05/2 = 0.025$   $t_{\alpha/2}[N 2] = t_{0.025}[74 2] = t_{0.025}[72] = 1.9934636$
- Compute *upper* 95% confidence limit for  $\beta_1$

$$\hat{\beta}_{1U} = \hat{\beta}_1 + t_{0.025} [N-2] \hat{se}(\hat{\beta}_1) = 2.0440626 + 1.9934636(0.37683413)$$
$$= 2.0440626 + 0.7512051$$
$$= 2.7952677 = 2.795$$

• Compute *lower* 95% confidence limit for  $\beta_1$ 

$$\hat{\beta}_{1L} = \hat{\beta}_1 - t_{0.025} [N-2] \hat{se}(\hat{\beta}_1) = 2.0440626 - 1.9934636(0.37683413)$$
$$= 2.0440626 - 0.7512051$$
$$= 1.2928575 = \underline{1.293}$$

• <u>*Result*</u>: The two-sided 95% confidence interval for  $\beta_1$  is: [1.293, 2.795]

#### 6. Simulations for Two-Sided 95 Percent Confidence Interval for $\hat{\beta}_1$

The True Model: is given by the population regression equation (PRE)

$$Y_i = \beta_0 + \beta_1 X_i + u_i = 70.0 + 0.90 X_i + u_i$$

where

 $\beta_0 = 70.0$  and  $\beta_1 = 0.90$ ;

 $Y_i$  = weekly consumption expenditures of the i-th household;

 $X_i$  = weekly disposable income of the i-th household;

 $u_i$  = an iid random error term that is assumed to be N(0,  $\sigma^2$ ).

**Model 3:** sets  $\sigma^2 = Var(u_i | X_i) = 25,600$ ,  $\sigma = \sqrt{Var(u_i | X_i)} = se(u_i | X_i) = 160$ .

#### The Monte Carlo Simulations

- Two different sample sizes: N = 60, N = 120.
- Set population values of X,  $\beta_0$  and  $\beta_1$ , and  $\sigma^2 = Var(u_i | X_i)$ .
- Generate 1,000 independent random samples of Y<sub>i</sub> and u<sub>i</sub> values.
- For each of these 1,000 independent random samples, compute the values of the OLS slope coefficient estimator

$$\hat{\beta}_1 = \frac{\sum_i x_i y_i}{\sum_i x_i^2}$$

and its estimated standard error

$$\hat{se}(\hat{\beta}_1) = \sqrt{\hat{var}(\hat{\beta}_1)} = \left(\frac{\hat{\sigma}^2}{\sum_i x_i^2}\right)^{\frac{1}{2}} = \frac{\hat{\sigma}}{\sqrt{\sum_i x_i^2}}$$

where  $x_i \equiv X_i - \overline{X}$ ,  $y_i \equiv Y_i - \overline{Y}$ ,  $\overline{X} = \sum_i X_i / N$ , and  $\overline{Y} = \sum_i Y_i / N$ .

- Save the 1,000 values of  $\hat{\beta}_1$  and the 1,000 values of  $\hat{se}(\hat{\beta}_1)$ .
- Use each of the 1,000 values of β<sub>1</sub> and sê(β<sub>1</sub>) to compute the two-sided 95 percent confidence interval for the slope coefficient β<sub>1</sub>, and then count the number and percentage of these 1,000 confidence intervals that contain the true population value of β<sub>1</sub>, which is 0.90.

# Simulation Results for Model 3 for Sample Sizes N = 60 and N = 120 Observations (1,000 Replications)

#### For sample size N = 60:

- Number of two-sided 95% confidence intervals that contained *true* value of  $\beta_1 = 940/1000$
- Percentage of two-sided 95% confidence intervals that contained *true* value of  $\beta_1 = 94.0\%$

For sample size N = 120:

- Number of two-sided 95% confidence intervals that contained *true* value of  $\beta_1 = 952/1000$
- Percentage of two-sided 95% confidence intervals that contained *true* value of  $\beta_1 = 95.2\%$