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ECON 351* -- NOTE 5 
 

Computational Properties and Goodness-of-Fit 
of the OLS Sample Regression Equation 

 
 
Outline of Note 5  
 

 State and prove the five computational properties of the OLS SRE 
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ûXˆˆY

ii

ii10i

+=

+β+β=
  (i = 1, ..., N)           (1) 

 
 Derive and interpret the OLS decomposition equation, which looks like this:   
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or   

 
TSS  = ESS + RSS                 (5.2) 

 
 Define and interpret the goodness-of-fit measure called R2 (R-squared), 

which is defined as  
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Starting Point 
 
The OLS sample regression equation (OLS-SRE) is 
 

iiii10i ûŶûXˆˆY +=+β+β=     (i = 1, ..., N)        (1) 
 
where  
 
   the OLS estimate of the intercept coefficient β0;   =β0

ˆ

  the OLS estimate of the slope coefficient β1;   $β1 =

i10i XˆˆŶ β+β=  = the i-th estimated (or predicted) value of E(Yi | Xi) = β0 + 
β1Xi, and is called the OLS sample regression function 
(or OLS-SRF);   

i10iiii XˆˆYŶYû β−β−=−=  = the i-th OLS residual.   
 
 
The OLS sample regression equation (1) exhibits five computational properties.  
These computational properties are necessary for developing goodness-of-fit 
measures such as the coefficient of determination, R2. 
 
Recall that the OLS normal equations for the simple (two-variable) linear 
regression model are:   
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1.  Computational Properties of the OLS SRE 
 
 
PROPERTY 1:  The OLS sample regression equation passes through the point 
of sample means ( X,Y ) , where  
 

  Y Yi
i

N
=

=
∑ /

1
N  is the sample mean value of Y; and  

  X Xi
i

N
=

=
∑ /

1
N  is the sample mean value of X. 

 
That is,  
 
  XˆˆY 10 β+β=                  ... (C1) 
 
 

 Proof of (C1):   Follows from the first OLS normal equation (N1) 
 

ii10ii XˆˆNY Σβ+β=Σ .                (N1) 
 
 Dividing both sides of equation (N1) by N yields  
 

N
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 or, using the definitions of Y and X , 
 

XˆˆY 10 β+β= .                 ... (C1) 
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PROPERTY 2:  The sample mean of the estimated Yi's (the 's) equals the 
sample mean of the observed Yi's; or the sum of the estimated Yi's (the 's) 
equals the sum of the observed Yi's.      

iŶ

iŶ

 
  $ $ $ /Y Y Y Y Ni i= ≡                where Σ  and N/YY iiΣ=     ... (C2) 
 

or 
 

     sum of estimated Yi's, (the 's) = sum of observed Yi's. ∑∑
==

=
N
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i YŶ $Yi

 
 Proof of (C2): 

 
 (1)  The estimated values of Yi are given by 
 
   .   i10i XˆˆŶ β+β=
 
 (2)  Substitute for XˆYˆ

10 β−=β  in the above expression for :   $Yi
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 (3)  Now sum both sides over i = 1, ..., N:   
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 (4)  Finally, dividing by N, we get   
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ECONOMICS 351* -- NOTE 5 M.G. Abbott 
 

 

 
ECON 351* -- Note 5:  Computational Properties and Fit of the OLS-SRE … Page 5 of 18 pages 

 
 Implication of Property C2:  The OLS-SRF i1  can be written in 

deviation-from-means form as   
0i XˆˆŶ β+β=

 
          XXx and YŶŷ ere        wh          xˆŷ iiiii1i −≡−≡β= .   
 
 Proof:   
 
 (1)  From line (2) of the proof of Property (C2) above,  
 

( )XXˆYŶ i1i −β+= . 
 
 (2)  Subtract Y  from both sides of the above equation to get  
 

( ) ( )XXˆYŶ i1i −β=− , 
 
  which is simply  
 

i1i xˆŷ β=  
 
  where by definition $ $y Y Yi i≡ −  and  x i iX X≡ − .   
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PROPERTY 3:  The sample mean of the OLS residuals  equals zero, or the 
sum of the OLS residuals  equals zero.     

iû
iû
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 Proof of (C3):  Involves demonstrating that Σ i iu$ = 0 .   

 
 (1)  From the first normal equation (N1), we have  
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 (2)  But ( ) ii10i ûXˆˆY =β−β−  by definition, so that equation (N1) implies that  
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NOTE:   Properties 1-3 depend on their being an intercept coefficient in the 
population regression function.  The following two properties do not require an 
intercept in the regression function. 
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PROPERTY 4:  The OLS residuals  are uncorrelated with the sample values 
of X, the Xi;  i.e.,  

iû

 

  .                  ... (C4) 0ûX
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 Proof of (C4):  Is based on the second OLS normal equation (N2):  
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 (1)  Since , we can pre-multiply by Xi to obtain  i10ii XˆˆYû β−β−=
 
   . 2
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PROPERTY 5:  The OLS residuals  are uncorrelated with the estimated or 
predicted values of Yi, the ; i.e.,   

iû

iŶ
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 Proof of (C5):  Makes use of properties (C3) and (C4) above. 

 
 (1)  Since , we can post-multiply by  to obtain  i10i XˆˆŶ β+β= $ui

 
   . ii1i0ii ûXˆûˆûŶ β+β=
 
 (2)  Summing over i = 1, ..., N, we get  
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2.  Goodness-of-Fit of the OLS-SRE: Objective 
 
The previous section derived the computational properties of the OLS sample 
regression equation (OLS-SRE).     
 
      (i = 1, …, N)         (1) ii10i ûXˆˆY +β+β=
 
where   
 
   = the OLS estimator of the intercept coefficient β0,   0β̂

   = the OLS estimator of the slope coefficient β1,  $β1

   = the OLS residual for sample observation i.   $ui

 
 
Our objective now is to derive a measure of how well the OLS-SRE fits the sample 
data.   
 
• The measure of goodness-of-fit we use is called the coefficient of 

determination, which is conventionally denoted as R2.    
 
• The R2 provides a measure of how well the OLS-SRE explains, or accounts for, 

the observed sample variation of the regressand Y, where  
 

sample variation of Y  ≡ ( )Y Yi
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• The derivation of the R2 for an OLS-SRE is based on the OLS decomposition 

equation for the sample variation of Y.    
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3.  The OLS Decomposition Equation    
 
3.1  Derivation of the OLS Decomposition Equation   
 
1. For each sample observation i, the OLS-SRE is written as  
 

iii ûŶY +=     where   (i = 1, …, N)    i10i XˆˆŶ β+β=
 
2. Subtract the sample mean of the Yi values, Y , from both sides of equation (1): 
 

Y Y Y Y ui i− = − +$ $ i

i

  
 

or, in deviation-from-means form,   
 

y y ui i= +$ $                    (2) 
 

where y Y Yi i≡ − , i1ii xˆYŶŷ β=−≡ , and x Xi i X≡ − .   
 
3. Next, square both sides of equation (2):   
 

4. Now sum both sides of equation (3) over i = 1,...,N:   
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5. But the last term on the right-hand side of equation (4) equals zero:   
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6. Therefore, setting ∑ i i iy u$ $  = 0 in equation (4) gives the result that  
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 Result:  Equation (5) is the OLS decomposition equation for OLS-SRE (1).   
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3.2  Interpretation of the OLS Decomposition Equation   
 
Equation (5) is the OLS decomposition equation for OLS-SRE (1):    
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Each of the three terms in equation (5) are defined as follows:    
 

(1)    y TSS the Total i
i

N
2

1=
∑ ≡ ≡ Sum of Squares

        =  the total sum of squares of the observed sample values of Y  
         about their sample mean Y  
         =  the total sample variation of the observed Yi values.   
 

(2)    $y ESS the Explaii
i

N
2

1=
∑ ≡ ≡ ned Sum of Squares

         =  the sum of squares of the estimated or predicted values of Y, 
         the , about their sample mean $Yi Y  
         =  the sum of squares explained by the sample regression  
         function,  i.e., by the regressor X.   
   

(3)    $u RSS the Residui
i

N
2

1=
∑ ≡ ≡ al Sum of Squares

         =  the sum of squares of the OLS residuals   $ui

         =  the unexplained variation of the observed sample values Yi of  
         the regressand Y around the sample regression line 
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Using these definitions, the OLS decomposition equation  
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can be re-written as  
 

TSS = ESS + RSS                 (5.2) 
 
Equation (5.1) or (5.2) -- the OLS decomposition equation -- decomposes the 
sample variation of the regressand Y into two additive components:     
 

(1) one component, ESS ≡ $yi , is attributable to, or explained by, the sample 

regression function i1 ;   
i

N
2
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∑

0
ˆ +β=i XˆŶ β

 

(2) a second component, RSS ≡ $ui , is attributable to the OLS residuals $u  

representing unknown random factors that influence the observed Yi values.   
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3.3  An Unbiased Estimator of the Error Variance   
 
The Residual Sum of Squares (RSS) in the OLS decomposition equation can be 
used to construct an unbiased estimator of the unknown error variance .   2σ
 
• Question:  Why do we need an estimator of the error variance 2σ ?   
 
• Answer:  We need an estimator of the error variance 2σ  so that we can obtain 

estimators of the variances of the OLS coefficient estimators 0β̂  and $β1  which 
as we have seen are given by the formulas    
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 Result: An unbiased estimator of the error variance σ2 is given by the 

formula    
 

$
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i iu
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N

,      (i = 1, ..., N) i10iiii XˆˆYŶYû β−β−=−=

 
where 2 is the number of regression coefficients estimated, and N−2 is the 
degrees of freedom for RSS.   

 
• Explanation: $σ 2  is an unbiased estimator of the error variance because it can 

be shown that   
 

( ) ( )E RSS E u Ni i= = −Σ $ ( )2 22 σ . 
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 Summary: $σ 2  is an unbiased estimator of the error variance σ2:   

 
( )E $σ σ2 = 2   because  ( ) ( )E RSS E u Ni i= = −Σ $ ( )2 22 σ .    

 
 
3.4 Unbiased Estimators of the Variances of the OLS Coefficient  

Estimates   
 
Unbiased estimators of and are obtained by simply replacing the 
unknown σ2 with its unbiased estimator 

)ˆ(Var 1β )ˆ(Var 0β
$σ 2  in the formulas for and 
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• The unbiased estimator of )ˆ( , the variance of 1β̂ , is therefore Var 1β
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• The unbiased estimator of )ˆ( , the variance of 0β̂ , is therefore Var 0β
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4.  The Coefficient of Determination, R2   
 
 
4.1  Definition of R2     

 
1. Start with the OLS decomposition equation (5.1) or (5.2):  
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TSS = ESS + RSS                 (5.2) 

 
2. Divide both sides of the OLS decomposition equation (5.1) or (5.2) by TSS = 
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or 
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3. The coefficient of determination R2 is defined as:   
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4.2  Interpretation of R2:  The Values of R2     

 
 What Does R2 Measure?     

 
R2  =  the proportion of the total sample variation of the dependent variable Y 

that is explained by the sample regression function, i.e., by the values of 
the regressor X.   

 
 

 The Values of R2    
 
R2 values lie in the closed unit interval [0, 1];  i.e.,  0  ≤  R2  ≤  1.   
 
 

 Interpreting the Values of R2    
 

• Rule 1:  The closer is the value of R2 to 1, the better the goodness-of-fit of the 
OLS-SRE to the sample data.   
 
• The upper limiting value R2 = 1 corresponds to a perfect fit of the OLS-SRE 

to the sample data.   
 

R2 = 1    ⇒    ESS
TSS

 = 1    ⇒    ESS = TSS    ⇒    RSS = ∑ = 0.   i iu$ 2

 
• But since $ui

2  ≥ 0 for all i, RSS = ∑ i iu$ 2  = 0 if and only if   
 

$ui  = 0  ∀ i = 1,...,N.     

  r i ∀  

 
• Therefore, a perfect fit of the OLS-SRE means that  

 
$ui  = 0  ∀ i = 1,...,N  o  Y = $Yi   i = 1,...,N.   
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• Rule 2:  The closer is the value of R2 to 0, the worse the goodness-of-fit of the 
OLS-SRE to the sample data.   
 
• The lower limiting value R2 = 0 corresponds to the worst possible fit of the 

OLS-SRE to the sample data.   
 

R2 = 0    ⇒    ESS
TSS

 = 0    ⇒    ESS = 0    ⇒    TSS = RSS.   

 
• But ESS = 0 if and only if 1β̂  = 0:   
 

ESS = 0    ⇒     ∑  =  = 0     ⇒      = 0.   
=

N
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2
iŷ ∑

=
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2
i

2
1 xˆ

1β̂

 
• Finally, since i1  and 0i XˆˆŶ β+β= XˆYˆ

10 β−=β , it follows that R2 = 0 means 
that  

 
YˆŶ 0i =β=   ∀ i = 1,...,N.   

 
The reason is that 

 
1β̂  = 0   ⇒    iŶ   since  i

ˆŶ =     0β̂= i10 Xβ̂+β

      ⇒    YˆŶ 0i =β=   since  XˆYˆ
10 β−=β .   
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