ECON 351* -- NOTE 5

Computational Properties and Goodness-of-Fit of the OLS Sample Regression Equation

Outline of Note 5

- State and prove the five computational properties of the OLS SRE

$$
Y_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} X_{i}+\hat{u}_{i} \quad(i=1, \ldots, N)
$$

- Derive and interpret the OLS decomposition equation, which looks like this:

$$
\begin{equation*}
\sum_{i=1}^{N} y_{i}^{2}=\sum_{i=1}^{N} \hat{y}_{i}^{2}+\sum_{i=1}^{N} \hat{u}_{i}^{2} \tag{5.1}
\end{equation*}
$$

or
TSS = ESS + RSS

- Define and interpret the goodness-of-fit measure called \mathbf{R}^{2} (R-squared), which is defined as

$$
\mathrm{R}^{2} \equiv \frac{\sum_{\mathrm{i}}^{\hat{\mathrm{y}}_{\mathrm{i}}^{2}}}{\sum_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}^{2}}=1-\frac{\sum_{\mathrm{i}} \hat{\mathrm{u}}_{\mathrm{i}}^{2}}{\sum_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}^{2}}
$$

or

$$
\mathrm{R}^{2} \equiv \frac{\mathrm{ESS}}{\mathrm{TSS}}=1-\frac{\mathrm{RSS}}{\mathrm{TSS}}
$$

\qquad

Starting Point

The OLS sample regression equation (OLS-SRE) is

$$
\begin{equation*}
Y_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} X_{i}+\hat{u}_{i}=\hat{Y}_{i}+\hat{u}_{i} \quad(i=1, \ldots, N) \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
& \hat{\beta}_{0}=\text { the OLS estimate of the intercept coefficient } \beta_{0} ; \\
& \hat{\beta}_{1}=\text { the OLS estimate of the slope coefficient } \beta_{1} ; \\
& \hat{Y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} X_{i}=\text { the } i \text {-th estimated (or predicted) value of } E\left(Y_{i} \mid X_{i}\right)=\beta_{0}+ \\
& \quad \beta_{1} X_{i} \text {, and is called the OLS sample regression function } \\
& \text { (or OLS-SRF); } \\
& \hat{u}_{i}=Y_{i}-\hat{Y}_{i}=Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{i}=\text { the } i \text {-th OLS residual. }
\end{aligned}
$$

The OLS sample regression equation (1) exhibits five computational properties. These computational properties are necessary for developing goodness-of-fit measures such as the coefficient of determination, R^{2}.

Recall that the OLS normal equations for the simple (two-variable) linear regression model are:

$$
\begin{align*}
& N \hat{\beta}_{0}+\hat{\beta}_{1} \sum_{i=1}^{N} X_{i}=\sum_{i=1}^{N} Y_{i} \tag{N1}\\
& \hat{\beta}_{0} \sum_{i=1}^{N} X_{i}+\hat{\beta}_{1} \sum_{i=1}^{N} X_{i}^{2}=\sum_{i=1}^{N} X_{i} Y_{i} \tag{N2}
\end{align*}
$$

1. Computational Properties of the OLS SRE

PROPERTY 1: The OLS sample regression equation passes through the point of sample means $(\overline{\mathrm{Y}}, \overline{\mathrm{X}})$, where

$$
\begin{aligned}
& \bar{Y}=\sum_{i=1}^{N} Y_{i} / N \text { is the sample mean value of } Y \text {; and } \\
& \bar{X}=\sum_{i=1}^{N} X_{i} / N \text { is the sample mean value of } X .
\end{aligned}
$$

That is,

$$
\begin{equation*}
\overline{\mathrm{Y}}=\hat{\beta}_{0}+\hat{\beta}_{1} \overline{\mathrm{X}} \tag{C1}
\end{equation*}
$$

- Proof of (C1): Follows from the first OLS normal equation (N1)

$$
\begin{equation*}
\Sigma_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}}=\mathrm{N} \hat{\beta}_{0}+\hat{\beta}_{1} \Sigma_{\mathrm{i}} \mathrm{X}_{\mathrm{i}} . \tag{N1}
\end{equation*}
$$

Dividing both sides of equation (N1) by N yields

$$
\frac{\sum_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}}}{\mathrm{~N}}=\hat{\beta}_{0}+\hat{\beta}_{1} \frac{\sum_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}}{\mathrm{~N}}
$$

or, using the definitions of $\overline{\mathrm{Y}}$ and $\overline{\mathrm{X}}$,

$$
\begin{equation*}
\overline{\mathrm{Y}}=\hat{\beta}_{0}+\hat{\beta}_{1} \overline{\mathrm{X}} . \tag{C1}
\end{equation*}
$$

PROPERTY 2: The sample mean of the estimated $\mathbf{Y}_{\mathbf{i}}$'s (the $\hat{\mathbf{Y}}_{\mathbf{i}}$'s) equals the sample mean of the observed \mathbf{Y}_{i} 's; or the sum of the estimated \mathbf{Y}_{i} 's (the $\hat{\mathbf{Y}}_{\mathrm{i}}$'s) equals the sum of the observed Y_{i} 's.

$$
\begin{equation*}
\overline{\hat{\mathbf{Y}}}=\overline{\mathbf{Y}} \quad \text { where } \overline{\hat{\mathbf{Y}}} \equiv \Sigma_{\mathrm{i}} \hat{\mathbf{Y}}_{\mathbf{i}} / \mathbf{N} \text { and } \overline{\mathbf{Y}}=\Sigma_{\mathrm{i}} \mathbf{Y}_{\mathbf{i}} / \mathbf{N} \tag{C2}
\end{equation*}
$$

or

$$
\sum_{i=1}^{N} \hat{\mathbf{Y}}_{\mathbf{i}}=\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathbf{Y}_{\mathbf{i}} \quad \text { sum of estimated } \mathrm{Y}_{\mathrm{i}} \text { 's, (the } \hat{\mathrm{Y}}_{\mathrm{i}} \text { 's) = sum of observed } \mathrm{Y}_{\mathrm{i}} \text { 's. }
$$

- Proof of (C2):

(1) The estimated values of Y_{i} are given by

$$
\hat{\mathrm{Y}}_{\mathrm{i}}=\hat{\beta}_{0}+\hat{\beta}_{1} \mathrm{X}_{\mathrm{i}} .
$$

(2) Substitute for $\hat{\beta}_{0}=\bar{Y}-\hat{\beta}_{1} \bar{X}$ in the above expression for \hat{Y}_{i} :

$$
\begin{aligned}
\hat{Y}_{i} & =\bar{Y}-\hat{\beta}_{1} \bar{X}+\hat{\beta}_{1} X_{i} \\
& =\bar{Y}+\hat{\beta}_{1}\left(X_{i}-\bar{X}\right)
\end{aligned}
$$

(3) Now sum both sides over $\mathrm{i}=1, \ldots, \mathrm{~N}$:

$$
\begin{aligned}
\sum_{i=1}^{N} \hat{Y}_{i} & =N \bar{Y}+\hat{\beta}_{1}\left(\sum_{i=1}^{N} X_{i}-N \bar{X}\right) & & \\
& =N \bar{Y}+\hat{\beta}_{1}(N \bar{X}-N \bar{X}), & & \text { since } \sum_{i=1}^{N} X_{i}=N \bar{X} \\
& =N \bar{Y}, & & \text { since }(N \bar{X}-N \bar{X})=0 .
\end{aligned}
$$

(4) Finally, dividing by N, we get

$$
\frac{\sum_{i=1}^{N} \hat{Y}_{i}}{N}=\overline{\mathrm{Y}} \quad \Rightarrow \quad \overline{\hat{Y}}=\overline{\mathrm{Y}} \quad \Rightarrow \quad \sum_{\mathrm{i}=1}^{\mathrm{N}} \hat{\mathrm{Y}}_{\mathrm{i}}=\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{Y}_{\mathrm{i}} .
$$

\qquad

- Implication of Property C2: The OLS-SRF $\hat{Y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} X_{i}$ can be written in deviation-from-means form as

$$
\hat{y}_{i}=\hat{\beta}_{1} x_{i} \quad \text { where } \hat{y}_{i} \equiv \hat{Y}_{i}-\bar{Y} \text { and } x_{i} \equiv X_{i}-\bar{X} .
$$

Proof:
(1) From line (2) of the proof of Property (C2) above,

$$
\hat{\mathrm{Y}}_{\mathrm{i}}=\overline{\mathrm{Y}}+\hat{\beta}_{1}\left(\mathrm{X}_{\mathrm{i}}-\overline{\mathrm{X}}\right) .
$$

(2) Subtract $\overline{\mathrm{Y}}$ from both sides of the above equation to get

$$
\left(\hat{\mathrm{Y}}_{\mathrm{i}}-\overline{\mathrm{Y}}\right)=\hat{\beta}_{1}\left(\mathrm{X}_{\mathrm{i}}-\overline{\mathrm{X}}\right),
$$

which is simply

$$
\hat{y}_{\mathrm{i}}=\hat{\beta}_{1} \mathrm{x}_{\mathrm{i}}
$$

where by definition $\hat{y}_{i} \equiv \hat{Y}_{i}-\bar{Y}$ and $x_{i} \equiv X_{i}-\bar{X}$.

PROPERTY 3: The sample mean of the OLS residuals $\hat{\mathbf{u}}_{i}$ equals zero, or the sum of the OLS residuals $\hat{\mathbf{u}}_{\mathrm{i}}$ equals zero.

$$
\begin{equation*}
\overline{\mathbf{u}}=\sum_{i=1}^{N} \hat{\mathbf{u}}_{i} / \mathbf{N}=\frac{\sum_{i=1}^{N} \hat{\mathbf{u}}_{i}}{\mathbf{N}}=\mathbf{0} \quad \text { or } \quad \sum_{i=1}^{N} \hat{\mathbf{u}}_{i}=\mathbf{0} . \tag{C3}
\end{equation*}
$$

- Proof of (C3): Involves demonstrating that $\Sigma_{i} \hat{u}_{i}=0$.
(1) From the first normal equation (N1), we have

$$
\begin{aligned}
-2 \sum_{\mathrm{i}=1}^{\mathrm{N}}\left(\mathrm{Y}_{\mathrm{i}}-\hat{\beta}_{0}-\hat{\beta}_{1} \mathrm{X}_{\mathrm{i}}\right) & =0 \\
\sum_{\mathrm{i}=1}^{\mathrm{N}}\left(\mathrm{Y}_{\mathrm{i}}-\hat{\beta}_{0}-\hat{\beta}_{1} \mathrm{X}_{\mathrm{i}}\right) & =0 .
\end{aligned}
$$

(2) $\operatorname{But}\left(\mathrm{Y}_{\mathrm{i}}-\hat{\beta}_{0}-\hat{\beta}_{1} \mathrm{X}_{\mathrm{i}}\right)=\hat{\mathrm{u}}_{\mathrm{i}}$ by definition, so that equation (N1) implies that

$$
\sum_{i=1}^{N} \hat{\mathrm{u}}_{\mathrm{i}}=0 \quad \text { and hence that } \quad \overline{\mathrm{u}}=\sum_{\mathrm{i}=1}^{\mathrm{N}} \hat{\mathrm{u}}_{\mathrm{i}} / \mathrm{N}=\frac{\sum_{i} \hat{\mathrm{u}}_{\mathrm{i}}}{\mathrm{~N}}=0 .
$$

NOTE: Properties 1-3 depend on their being an intercept coefficient in the population regression function. The following two properties do not require an intercept in the regression function.

PROPERTY 4: The OLS residuals $\hat{\mathbf{u}}_{\mathrm{i}}$ are uncorrelated with the sample values of X, the X_{i}; i.e.,

$$
\begin{equation*}
\sum_{i=1}^{N} X_{i} \hat{\mathbf{u}}_{i}=\mathbf{0} . \tag{C4}
\end{equation*}
$$

- Proof of (C4): Is based on the second OLS normal equation (N2):

$$
\begin{equation*}
\sum_{i=1}^{N} X_{i} Y_{i}=\hat{\beta}_{0} \sum_{i=1}^{N} X_{i}+\hat{\beta}_{1} \sum_{i=1}^{N} X_{i}^{2} . \tag{N2}
\end{equation*}
$$

(1) Since $\hat{u}_{i}=Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{i}$, we can pre-multiply by X_{i} to obtain

$$
\mathrm{X}_{\mathrm{i}} \hat{\mathrm{u}}_{\mathrm{i}}=\mathrm{X}_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}}-\hat{\beta}_{0} \mathrm{X}_{\mathrm{i}}-\hat{\beta}_{1} \mathrm{X}_{\mathrm{i}}^{2} .
$$

(2) Summing over $\mathrm{i}=1, \ldots, \mathrm{~N}$, we get

$$
\sum_{i=1}^{N} X_{i} \hat{u}_{i}=\sum_{i=1}^{N} X_{i} Y_{i}-\hat{\beta}_{0} \sum_{i=1}^{N} X_{i}-\hat{\beta}_{1} \sum_{i=1}^{N} X_{i}^{2}
$$

$$
=0 \quad \text { by normal equation (N2). }
$$

PROPERTY 5: The OLS residuals $\hat{\mathbf{u}}_{\mathrm{i}}$ are uncorrelated with the estimated or

 predicted values of $\mathbf{Y}_{\mathbf{i}}$, the $\hat{\mathbf{Y}}_{\mathbf{i}}$; i.e.,$$
\begin{equation*}
\sum_{i=1}^{N} \hat{\mathbf{Y}}_{\mathbf{i}} \hat{\mathbf{u}}_{\mathbf{i}}=\mathbf{0} . \tag{C5}
\end{equation*}
$$

- Proof of (C5): Makes use of properties (C3) and (C4) above.
(1) Since $\hat{Y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} X_{i}$, we can post-multiply by \hat{u}_{i} to obtain

$$
\hat{\mathrm{Y}}_{\mathrm{i}} \hat{\mathrm{u}}_{\mathrm{i}}=\hat{\beta}_{0} \hat{\mathrm{u}}_{\mathrm{i}}+\hat{\beta}_{1} \mathrm{X}_{\mathrm{i}} \hat{\mathrm{u}}_{\mathrm{i}} .
$$

(2) Summing over $\mathrm{i}=1, \ldots, \mathrm{~N}$, we get

$$
\sum_{i=1}^{N} \hat{Y}_{i} \hat{u}_{i}=\hat{\beta}_{0} \sum_{i=1}^{N} \hat{u}_{i}+\hat{\beta}_{1} \sum_{i=1}^{N} X_{i} \hat{u}_{i} .
$$

(3) But $\sum_{i=1}^{N} \hat{\mathrm{u}}_{\mathrm{i}}=0$ by (C3) and $\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{X}_{\mathrm{i}} \hat{\mathrm{u}}_{\mathrm{i}}=0$ by (C4), so that

$$
\sum_{i=1}^{N} \hat{Y}_{i} \hat{u}_{i}=0 .
$$

2. Goodness-of-Fit of the OLS-SRE: Objective

The previous section derived the computational properties of the OLS sample regression equation (OLS-SRE).

$$
\begin{equation*}
Y_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} X_{i}+\hat{u}_{i} \quad(i=1, \ldots, N) \tag{1}
\end{equation*}
$$

where
$\hat{\beta}_{0}=$ the OLS estimator of the intercept coefficient β_{0},
$\hat{\beta}_{1}=$ the OLS estimator of the slope coefficient β_{1},
$\hat{\mathrm{u}}_{\mathrm{i}}=$ the OLS residual for sample observation i .

Our objective now is to derive a measure of how well the OLS-SRE fits the sample data.

- The measure of goodness-of-fit we use is called the coefficient of determination, which is conventionally denoted as \mathbf{R}^{2}.
- The R^{2} provides a measure of how well the OLS-SRE explains, or accounts for, the observed sample variation of the regressand Y, where

$$
\text { sample variation of } \mathbf{Y} \equiv \sum_{i=1}^{N}\left(Y_{i}-\bar{Y}\right)^{2}=\sum_{i=1}^{N} y_{i}^{2} .
$$

- The derivation of the R^{2} for an OLS-SRE is based on the OLS decomposition equation for the sample variation of Y .

3. The OLS Decomposition Equation

3.1 Derivation of the OLS Decomposition Equation

1. For each sample observation i, the OLS-SRE is written as

$$
\mathrm{Y}_{\mathrm{i}}=\hat{\beta}_{0}+\hat{\beta}_{1} \mathrm{X}_{\mathrm{i}}+\hat{\mathrm{u}}_{\mathrm{i}}
$$

or

$$
\begin{equation*}
\mathrm{Y}_{\mathrm{i}}=\hat{\mathrm{Y}}_{\mathrm{i}}+\hat{\mathrm{u}}_{\mathrm{i}} \quad \text { where } \hat{\mathrm{Y}}_{\mathrm{i}}=\hat{\beta}_{0}+\hat{\beta}_{1} \mathrm{X}_{\mathrm{i}} \quad(\mathrm{i}=1, \ldots, \mathrm{~N}) \tag{1}
\end{equation*}
$$

2. Subtract the sample mean of the Y_{i} values, \bar{Y}, from both sides of equation (1):

$$
\mathrm{Y}_{\mathrm{i}}-\overline{\mathrm{Y}}=\hat{\mathrm{Y}}_{\mathrm{i}}-\overline{\mathrm{Y}}+\hat{\mathrm{u}}_{\mathrm{i}}
$$

or, in deviation-from-means form,

$$
\begin{equation*}
y_{i}=\hat{y}_{i}+\hat{u}_{i} \tag{2}
\end{equation*}
$$

where $y_{i} \equiv Y_{i}-\bar{Y}, \hat{y}_{i} \equiv \hat{Y}_{i}-\bar{Y}=\hat{\beta}_{1} x_{i}$, and $x_{i} \equiv X_{i}-\bar{X}$.
3. Next, square both sides of equation (2):

$$
\begin{align*}
y_{i}^{2} & =\left(\hat{y}_{i}+\hat{u}_{i}\right)^{2} \tag{3}\\
& =\hat{y}_{i}^{2}+\hat{u}_{i}^{2}+2 \hat{y}_{i} \hat{u}_{i}
\end{align*}
$$

4. Now sum both sides of equation (3) over $\mathrm{i}=1, \ldots, \mathrm{~N}$:

$$
\begin{equation*}
\sum_{i=1}^{N} y_{i}^{2}=\sum_{i=1}^{N} \hat{y}_{i}^{2}+\sum_{i=1}^{N} \hat{u}_{i}^{2}+2 \sum_{i=1}^{N} \hat{y}_{i} \hat{u}_{i} \tag{4}
\end{equation*}
$$

5. But the last term on the right-hand side of equation (4) equals zero:

$$
\begin{aligned}
\sum_{i=1}^{N} \hat{y}_{i} \hat{u}_{i} & =\sum_{i=1}^{N}\left(\hat{Y}_{i}-\bar{Y}\right) \hat{u}_{i} \\
& =\sum_{i=1}^{N} \hat{Y}_{i} \hat{u}_{i}-\overline{\mathrm{Y}} \sum_{i=1}^{N} \hat{u}_{i} \\
& =0 \quad \text { since } \sum_{i=1}^{N} \hat{Y}_{i} \hat{u}_{i}=0 \text { by (C5) and } \sum_{i=1}^{N} \hat{u}_{i}=0 \text { by (C3). }
\end{aligned}
$$

6. Therefore, setting $\sum_{i} \hat{y}_{\mathrm{i}} \hat{\mathrm{u}}_{\mathrm{i}}=0$ in equation (4) gives the result that

$$
\begin{equation*}
\sum_{i=1}^{N} y_{i}^{2}=\sum_{i=1}^{N} \hat{y}_{i}^{2}+\sum_{i=1}^{N} \hat{u}_{i}^{2} . \tag{5}
\end{equation*}
$$

- Result: Equation (5) is the OLS decomposition equation for OLS-SRE (1).

3.2 Interpretation of the OLS Decomposition Equation

Equation (5) is the OLS decomposition equation for OLS-SRE (1):

$$
\begin{equation*}
\sum_{i=1}^{N} \mathbf{y}_{i}^{2}=\sum_{i=1}^{N} \hat{\mathbf{y}}_{i}^{2}+\sum_{i=1}^{N} \hat{\mathbf{u}}_{i}^{2} \tag{5}
\end{equation*}
$$

Each of the three terms in equation (5) are defined as follows:
(1) $\sum_{i=1}^{\mathrm{N}} \mathrm{y}_{\mathrm{i}}^{2} \equiv$ TSS \equiv the Total Sum of Squares
$=$ the total sum of squares of the observed sample values of Y about their sample mean \bar{Y}
$=$ the total sample variation of the observed Y_{i} values.
(2) $\sum_{i=1}^{N} \hat{y}_{i}^{2} \equiv$ ESS \equiv the Explained Sum of Squares
$=$ the sum of squares of the estimated or predicted values of Y , the \hat{Y}_{i}, about their sample mean \bar{Y}
$=$ the sum of squares explained by the sample regression function, i.e., by the regressor X .
(3) $\sum_{i=1}^{N} \hat{\mathrm{u}}_{\mathrm{i}}^{2} \equiv \mathrm{RSS} \equiv$ the Residual Sum of Squares

$$
=\text { the sum of squares of the OLS residuals } \hat{\mathrm{u}}_{\mathrm{i}}
$$

$=$ the unexplained variation of the observed sample values Y_{i} of the regressand Y around the sample regression line

Using these definitions, the OLS decomposition equation

$$
\begin{equation*}
\sum_{i=1}^{N} y_{i}^{2}=\sum_{i=1}^{N} \hat{y}_{i}^{2}+\sum_{i=1}^{N} \hat{u}_{i}^{2} . \tag{5.1}
\end{equation*}
$$

can be re-written as
TSS = ESS + RSS

Equation (5.1) or (5.2) -- the OLS decomposition equation -- decomposes the sample variation of the regressand Y into two additive components:
(1) one component, $\mathrm{ESS} \equiv \sum_{\mathrm{i}=1}^{\mathrm{N}} \hat{\mathrm{Y}}_{\mathrm{i}}^{2}$, is attributable to, or explained by, the sample regression function $\hat{Y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} X_{i}$;
(2) a second component, RSS $\equiv \sum_{i=1}^{N} \hat{\mathrm{u}}_{\mathrm{i}}^{2}$, is attributable to the OLS residuals $\hat{\mathrm{u}}_{\mathrm{i}}$ representing unknown random factors that influence the observed Y_{i} values.

3.3 An Unbiased Estimator of the Error Variance

The Residual Sum of Squares (RSS) in the OLS decomposition equation can be used to construct an unbiased estimator of the unknown error variance σ^{2}.

- Question: Why do we need an estimator of the error variance σ^{2} ?
- Answer: We need an estimator of the error variance σ^{2} so that we can obtain estimators of the variances of the OLS coefficient estimators $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ which as we have seen are given by the formulas

$$
\begin{aligned}
& \operatorname{Var}\left(\hat{\beta}_{1}\right)=\frac{\sigma^{2}}{\sum_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2}}=\frac{\sigma^{2}}{\sum_{\mathrm{i}}\left(\mathrm{X}_{\mathrm{i}}-\overline{\mathrm{X}}\right)^{2}} \\
& \operatorname{Var}\left(\hat{\beta}_{0}\right)=\frac{\sigma^{2} \sum_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}^{2}}{\mathrm{~N} \sum_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2}}=\frac{\sigma^{2} \sum_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}^{2}}{\mathrm{~N} \sum_{\mathrm{i}}\left(\mathrm{X}_{\mathrm{i}}-\overline{\mathrm{X}}\right)^{2}} .
\end{aligned}
$$

- Result: An unbiased estimator of the error variance σ^{2} is given by the formula

$$
\hat{\sigma}^{2}=\frac{\sum_{i} \hat{u}_{i}^{2}}{(\mathrm{~N}-2)}=\frac{\mathrm{RSS}}{(\mathrm{~N}-2)}, \quad \hat{\mathrm{u}}_{\mathrm{i}}=\mathrm{Y}_{\mathrm{i}}-\hat{\mathrm{Y}}_{\mathrm{i}}=\mathrm{Y}_{\mathrm{i}}-\hat{\beta}_{0}-\hat{\beta}_{1} \mathrm{X}_{\mathrm{i}} \quad(\mathrm{i}=1, \ldots, \mathrm{~N})
$$

where 2 is the number of regression coefficients estimated, and $\mathrm{N}-2$ is the degrees of freedom for RSS.

- Explanation: $\hat{\sigma}^{2}$ is an unbiased estimator of the error variance because it can be shown that

$$
\mathrm{E}(\mathrm{RSS})=\mathrm{E}\left(\Sigma_{\mathrm{i}} \hat{\mathrm{u}}_{\mathrm{i}}^{2}\right)=(\mathrm{N}-2) \sigma^{2} .
$$

Therefore

$$
\mathrm{E}\left(\hat{\sigma}^{2}\right)=\mathrm{E}\left(\frac{\sum_{i} \hat{\mathrm{u}}_{\mathrm{i}}^{2}}{(\mathrm{~N}-2)}\right)=\frac{\mathrm{E}\left(\sum_{\mathrm{i}} \hat{\mathrm{u}}_{\mathrm{i}}^{2}\right)}{(\mathrm{N}-2)}=\frac{(\mathrm{N}-2) \sigma^{2}}{(\mathrm{~N}-2)}=\sigma^{2} .
$$

Summary: $\hat{\sigma}^{2}$ is an unbiased estimator of the error variance σ^{2} :

$$
\mathrm{E}\left(\hat{\sigma}^{2}\right)=\sigma^{2} \text { because } \mathrm{E}(\mathrm{RSS})=\mathrm{E}\left(\Sigma_{\mathrm{i}} \hat{\mathrm{u}}_{\mathrm{i}}^{2}\right)=(\mathrm{N}-2) \sigma^{2}
$$

3.4 Unbiased Estimators of the Variances of the OLS Coefficient Estimates

Unbiased estimators of $\operatorname{Var}\left(\hat{\beta}_{1}\right)$ and $\operatorname{Var}\left(\hat{\beta}_{0}\right)$ are obtained by simply replacing the unknown σ^{2} with its unbiased estimator $\hat{\sigma}^{2}$ in the formulas for $\operatorname{Var}\left(\hat{\beta}_{1}\right)$ and $\operatorname{Var}\left(\hat{\beta}_{0}\right)$.

- The unbiased estimator of $\operatorname{Var}\left(\hat{\beta}_{1}\right)$, the variance of $\hat{\beta}_{1}$, is therefore

$$
\operatorname{Var}\left(\hat{\beta}_{1}\right)=\frac{\hat{\sigma}^{2}}{\sum_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2}}=\frac{\hat{\sigma}^{2}}{\sum_{\mathrm{i}}\left(\mathrm{X}_{\mathrm{i}}-\overline{\mathrm{X}}\right)^{2}} .
$$

- The unbiased estimator of $\operatorname{Var}\left(\hat{\boldsymbol{\beta}}_{0}\right)$, the variance of $\hat{\boldsymbol{\beta}}_{0}$, is therefore

$$
\operatorname{Vâr}\left(\hat{\beta}_{0}\right)=\frac{\hat{\sigma}^{2} \sum_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}^{2}}{\mathrm{~N} \sum_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2}}=\frac{\hat{\sigma}^{2} \sum_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}^{2}}{\mathrm{~N} \sum_{\mathrm{i}}\left(\mathrm{X}_{\mathrm{i}}-\overline{\mathrm{X}}\right)^{2}} .
$$

4. The Coefficient of Determination, \mathbf{R}^{2}

4.1 Definition of $\mathbf{R}^{\mathbf{2}}$

1. Start with the OLS decomposition equation (5.1) or (5.2):

$$
\begin{align*}
& \sum_{i=1}^{N} y_{i}^{2}=\sum_{i=1}^{N} \hat{y}_{i}^{2}+\sum_{i=1}^{N} \hat{u}_{i}^{2} \tag{5.1}\\
& \text { TSS }=\text { ESS }+ \text { RSS } \tag{5.2}
\end{align*}
$$

2. Divide both sides of the OLS decomposition equation (5.1) or (5.2) by TSS $=$ $\sum_{i=1}^{N} y_{i}^{2}$:

$$
\begin{equation*}
1=\frac{\sum_{\mathrm{i}} \hat{\mathrm{y}}_{\mathrm{i}}^{2}}{\sum_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}^{2}}+\frac{\sum_{\mathrm{i}} \hat{\mathrm{u}}_{\mathrm{i}}^{2}}{\sum_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}^{2}} \tag{6.1}
\end{equation*}
$$

or

$$
\begin{equation*}
1=\frac{\mathrm{ESS}}{\mathrm{TSS}}+\frac{\mathrm{RSS}}{\mathrm{TSS}} \tag{6.2}
\end{equation*}
$$

3. The coefficient of determination \mathbf{R}^{2} is defined as:

$$
\mathrm{R}^{2} \equiv \frac{\sum_{\mathrm{i}} \hat{\mathrm{y}}_{\mathrm{i}}^{2}}{\sum_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}^{2}}=1-\frac{\sum_{\mathrm{i}} \hat{\mathrm{u}}_{\mathrm{i}}^{2}}{\sum_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}^{2}} \quad \quad \text { from equation (6.1) }
$$

or

$$
\mathrm{R}^{2} \equiv \frac{\mathrm{ESS}}{\mathrm{TSS}}=1-\frac{\mathrm{RSS}}{\mathrm{TSS}}
$$

from equation (6.2)

4.2 Interpretation of $\mathbf{R}^{\mathbf{2}}$: The Values of $\mathbf{R}^{\mathbf{2}}$

- What Does R^{2} Measure?

$R^{2}=$ the proportion of the total sample variation of the dependent variable Y that is explained by the sample regression function, i.e., by the values of the regressor X .

- The Values of \mathbf{R}^{2}

R^{2} values lie in the closed unit interval $[0,1]$; i.e., $\mathbf{0} \leq \mathbf{R}^{2} \leq \mathbf{1}$.

- Interpreting the Values of \mathbf{R}^{2}

- Rule 1: The closer is the value of \mathbf{R}^{2} to 1 , the better the goodness-of-fit of the OLS-SRE to the sample data.
- The upper limiting value $\mathrm{R}^{2}=1$ corresponds to a perfect fit of the OLS-SRE to the sample data.

$$
\mathrm{R}^{2}=1 \Rightarrow \frac{\mathrm{ESS}}{\mathrm{TSS}}=1 \Rightarrow \mathrm{ESS}=\mathrm{TSS} \Rightarrow \mathrm{RSS}=\sum_{i} \hat{\mathrm{u}}_{\mathrm{i}}^{2}=0 .
$$

- But since $\hat{u}_{i}^{2} \geq 0$ for all i , RSS $=\sum_{\mathrm{i}} \hat{\mathrm{u}}_{\mathrm{i}}^{2}=0$ if and only if

$$
\hat{\mathrm{u}}_{\mathrm{i}}=0 \quad \forall \mathrm{i}=1, \ldots, \mathrm{~N} .
$$

- Therefore, a perfect fit of the OLS-SRE means that

$$
\hat{\mathrm{u}}_{\mathrm{i}}=0 \quad \forall \mathrm{i}=1, \ldots, \mathrm{~N} \quad \text { or } \quad \mathrm{Y}_{\mathrm{i}}=\hat{\mathrm{Y}}_{\mathrm{i}} \quad \forall \mathrm{i}=1, \ldots, \mathrm{~N} .
$$

- Rule 2: The closer is the value of \mathbf{R}^{2} to $\mathbf{0}$, the worse the goodness-of-fit of the OLS-SRE to the sample data.
- The lower limiting value $R^{2}=0$ corresponds to the worst possible fit of the OLS-SRE to the sample data.

$$
\mathrm{R}^{2}=0 \Rightarrow \frac{\mathrm{ESS}}{\mathrm{TSS}}=0 \Rightarrow \mathrm{ESS}=0 \Rightarrow \mathrm{TSS}=\mathrm{RSS} .
$$

- But ESS $=0$ if and only if $\hat{\beta}_{1}=0$:

$$
\text { ESS }=0 \quad \Rightarrow \quad \sum_{i=1}^{N} \hat{y}_{i}^{2}=\hat{\beta}_{1}^{2} \sum_{i=1}^{N} x_{i}^{2}=0 \quad \Rightarrow \quad \hat{\beta}_{1}=0 .
$$

- Finally, since $\hat{Y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} X_{i}$ and $\hat{\beta}_{0}=\bar{Y}-\hat{\beta}_{1} \bar{X}$, it follows that $R^{2}=0$ means that

$$
\hat{\mathrm{Y}}_{\mathrm{i}}=\hat{\beta}_{0}=\overline{\mathrm{Y}} \quad \forall \mathrm{i}=1, \ldots, \mathrm{~N} .
$$

The reason is that

$$
\begin{array}{lll}
\hat{\beta}_{1}=0 & \Rightarrow \hat{Y}_{i}=\hat{\beta}_{0} & \text { since } \hat{Y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} X_{i} \\
& \Rightarrow \hat{Y}_{i}=\hat{\beta}_{0}=\bar{Y} & \text { since } \hat{\beta}_{0}=\overline{\mathrm{Y}}-\hat{\beta}_{1} \bar{X} .
\end{array}
$$

