ECON 351* -- NOTE 4

Statistical Properties of the OLS Coefficient Estimators

1. Introduction

We derived in *Note 2* the OLS (Ordinary Least Squares) estimators $\hat{\beta}_j$ (j = 0, 1) of the regression coefficients β_j (j = 0, 1) in the simple linear regression model given by the **population regression equation**, or PRE

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$
 (i = 1, ..., N) (1)

where u_i is an iid random error term. The **OLS sample regression equation** (SRE) corresponding to PRE (1) is

$$Y_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{u}_i$$
 (i = 1, ..., N) (2)

where $\hat{\beta}_0$ and $\hat{\beta}_1$ are the **OLS coefficient estimators** given by the formulas

$$\hat{\beta}_1 = \frac{\sum_i x_i y_i}{\sum_i x_i^2}$$
(3)

$$\hat{\beta}_0 = \overline{Y} - \hat{\beta}_1 \overline{X} \tag{4}$$

$$x_i \equiv X_i - \overline{X}$$
, $y_i \equiv Y_i - \overline{Y}$, $\overline{X} = \sum_i X_i / N$, and $\overline{Y} = \sum_i Y_i / N$.

Why Use the OLS Coefficient Estimators?

The reason we use these OLS coefficient estimators is that, under assumptions A1-A8 of the classical linear regression model, they have **several desirable statistical properties**. This note examines these desirable statistical properties of the OLS coefficient estimators primarily in terms of the OLS slope coefficient estimator $\hat{\beta}_1$; the same properties apply to the intercept coefficient estimator $\hat{\beta}_0$.

2. Statistical Properties of the OLS Slope Coefficient Estimator

> <u>**PROPERTY 1</u>**: Linearity of $\hat{\beta}_1$ </u>

The OLS coefficient estimator $\hat{\beta}_1$ can be written as a linear function of the sample values of Y, the Y_i (i = 1, ..., N).

<u>Proof</u>: Starts with formula (3) for $\hat{\beta}_1$:

$$\begin{split} \hat{\beta}_{1} &= \frac{\sum_{i} x_{i} y_{i}}{\sum_{i} x_{i}^{2}} \\ &= \frac{\sum_{i} x_{i} (Y_{i} - \overline{Y})}{\sum_{i} x_{i}^{2}} \\ &= \frac{\sum_{i} x_{i} Y_{i}}{\sum_{i} x_{i}^{2}} - \frac{\overline{Y} \sum_{i} x_{i}}{\sum_{i} x_{i}^{2}} \\ &= \frac{\sum_{i} x_{i} Y_{i}}{\sum_{i} x_{i}^{2}} \qquad \text{because } \sum_{i} x_{i} = 0. \end{split}$$

• Defining the observation weights $\mathbf{k}_i = \mathbf{x}_i / \sum_i \mathbf{x}_i^2$ for i = 1, ..., N, we can rewrite the last expression above for $\hat{\beta}_1$ as:

$$\hat{\beta}_1 = \sum_i k_i Y_i$$
 where $k_i \equiv \frac{X_i}{\sum_i x_i^2}$ (i = 1, ..., N) ... (P1)

• Note that the formula (3) and the definition of the weights k_i imply that $\hat{\beta}_1$ is also a linear function of the y_i 's such that

$$\hat{\beta}_1 = \sum_i k_i y_i$$
.

 $\square \underline{Result}: \text{ The OLS slope coefficient estimator } \hat{\beta}_1 \text{ is a$ *linear* $function of the sample values <math>Y_i$ or y_i (i = 1,...,N), where the coefficient of Y_i or y_i is k_i .

In order to establish the remaining properties of $\hat{\beta}_1$, it is necessary to know the arithmetic properties of the weights k_i .

[K1] $\sum_{i} \mathbf{k}_{i} = \mathbf{0}$, i.e., the weights k_{i} sum to zero.

$$\sum_{i} k_{i} = \sum_{i} \frac{x_{i}}{\sum_{i} x_{i}^{2}} = \frac{1}{\sum_{i} x_{i}^{2}} \sum_{i} x_{i} = 0, \quad \text{because } \sum_{i} x_{i} = 0.$$

$$[\mathbf{K2}] \quad \sum_{i} \mathbf{k}_{i}^{2} = \frac{1}{\sum_{i} \mathbf{x}_{i}^{2}}.$$

$$\sum_{i} k_{i}^{2} = \sum_{i} \left(\frac{\mathbf{x}_{i}}{\sum_{i} \mathbf{x}_{i}^{2}}\right)^{2} = \sum_{i} \frac{\mathbf{x}_{i}^{2}}{\left(\sum_{i} \mathbf{x}_{i}^{2}\right)^{2}} = \frac{\left(\sum_{i} \mathbf{x}_{i}^{2}\right)}{\left(\sum_{i} \mathbf{x}_{i}^{2}\right)^{2}} = \frac{1}{\sum_{i} \mathbf{x}_{i}^{2}}.$$

 $[\mathbf{K3}] \quad \sum_{i} \mathbf{k}_{i} \mathbf{X}_{i} = \sum_{i} \mathbf{k}_{i} \mathbf{X}_{i} \ .$

$$\begin{split} \sum_{i} k_{i} x_{i} &= \sum_{i} k_{i} (X_{i} - \overline{X}) \\ &= \sum_{i} k_{i} X_{i} - \overline{X} \sum_{i} k_{i} \\ &= \sum_{i} k_{i} X_{i} \qquad \text{since } \sum_{i} k_{i} = 0 \text{ by [K1] above.} \end{split}$$

[K4] $\sum_{i} k_i x_i = 1$.

$$\sum_{i} k_{i} x_{i} = \sum_{i} \left(\frac{x_{i}}{\sum_{i} x_{i}^{2}} \right) x_{i} = \sum_{i} \frac{x_{i}^{2}}{\left(\sum_{i} x_{i}^{2}\right)} = \frac{\left(\sum_{i} x_{i}^{2}\right)}{\left(\sum_{i} x_{i}^{2}\right)} = 1.$$

<u>Implication</u>: $\sum_{i} \mathbf{k}_{i} \mathbf{X}_{i} = \mathbf{1}$.

> <u>**PROPERTY 2</u>**: Unbiasedness of $\hat{\beta}_1$ and $\hat{\beta}_0$.</u>

The OLS coefficient estimator $\hat{\beta}_1$ is unbiased, meaning that $\mathbf{E}(\hat{\beta}_1) = \beta_1$. The OLS coefficient estimator $\hat{\beta}_0$ is unbiased, meaning that $\mathbf{E}(\hat{\beta}_0) = \beta_0$.

- **Definition of unbiasedness:** The coefficient estimator $\hat{\beta}_1$ is unbiased if and only if $E(\hat{\beta}_1) = \beta_1$; i.e., its mean or expectation is equal to the true coefficient β_1 .
- **Proof of unbiasedness of** $\hat{\beta}_1$: Start with the formula $\hat{\beta}_1 = \sum_i k_i Y_i$.
 - **1.** Since assumption A1 states that the PRE is $Y_i = \beta_0 + \beta_1 X_i + u_i$,

$$\begin{split} \hat{\beta}_{1} &= \sum_{i} k_{i} Y_{i} \\ &= \sum_{i} k_{i} (\beta_{0} + \beta_{1} X_{i} + u_{i}) \\ &= \beta_{0} \sum_{i} k_{i} + \beta_{1} \sum_{i} k_{i} X_{i} + \sum_{i} k_{i} u_{i} \\ &= \beta_{1} + \sum_{i} k_{i} u_{i}, \end{split} \qquad since \sum_{i} k_{i} = 0 \text{ and } \sum_{i} k_{i} X_{i} = 1. \end{split}$$

Now take expectations of the above expression for β
₁, conditional on the sample values {X_i: i = 1, ..., N} of the regressor X. Conditioning on the sample values of the regressor X means that the k_i are treated as nonrandom, since the k_i are functions only of the X_i.

$$E(\hat{\beta}_{1}) = E(\beta_{1}) + E[\sum_{i} k_{i} u_{i}]$$

= $\beta_{1} + \sum_{i} k_{i} E(u_{i} | X_{i})$ since β_{1} is a constant and the k_{i} are nonrandom
= $\beta_{1} + \sum_{i} k_{i} 0$ since $E(u_{i} | X_{i}) = 0$ by assumption A2
= β_{1} .

 $\square \underline{Result}: \text{ The OLS slope coefficient estimator } \hat{\beta}_1 \text{ is an unbiased estimator of the slope coefficient } \beta_1: \text{ that is,}$

$$\mathbf{E}(\hat{\boldsymbol{\beta}}_1) = \boldsymbol{\beta}_1. \tag{P2}$$

- **Proof of unbiasedness of \hat{\beta}_0:** Start with the formula $\hat{\beta}_0 = \overline{Y} \hat{\beta}_1 \overline{X}$.
 - **1.** Average the PRE $Y_i = \beta_0 + \beta_1 X_i + u_i$ across i:

$$\begin{split} &\sum_{i=l}^{N}Y_{i} = N\beta_{0} + \beta_{1}\sum_{i=l}^{N}X_{i} + \sum_{i=l}^{N}u_{i} \qquad (\text{sum the PRE over the N observations}) \\ & \frac{\sum_{i=l}^{N}Y_{i}}{N} = \frac{N\beta_{0}}{N} + \beta_{1}\frac{\sum_{i=l}^{N}X_{i}}{N} + \frac{\sum_{i=l}^{N}u_{i}}{N} \qquad (\text{divide by N}) \\ & \overline{Y} = \beta_{0} + \beta_{1}\overline{X} + \overline{u} \qquad \text{where } \overline{Y} = \sum_{i}Y_{i}/N, \ \overline{X} = \sum_{i}X_{i}/N, \text{ and } \overline{u} = \sum_{i}u_{i}/N. \end{split}$$

2. Substitute the above expression for \overline{Y} into the formula $\hat{\beta}_0 = \overline{Y} - \hat{\beta}_1 \overline{X}$:

$$\hat{\beta}_0 = \overline{Y} - \hat{\beta}_1 \overline{X}$$

= $\beta_0 + \beta_1 \overline{X} + \overline{u} - \hat{\beta}_1 \overline{X}$ since $\overline{Y} = \beta_0 + \beta_1 \overline{X} + \overline{u}$
= $\beta_0 + (\beta_1 - \hat{\beta}_1) \overline{X} + \overline{u}$.

3. Now take the expectation of $\hat{\beta}_0$ conditional on the sample values {X_i: i = 1, ..., N} of the regressor X. Conditioning on the X_i means that \overline{X} is treated as nonrandom in taking expectations, since \overline{X} is a function only of the X_i.

$$\begin{split} E(\hat{\beta}_0) &= E(\beta_0) + E\left[(\beta_1 - \hat{\beta}_1)\overline{X}\right] + E(\overline{u}) \\ &= \beta_0 + \overline{X} E(\beta_1 - \hat{\beta}_1) + E(\overline{u}) \quad \text{since } \beta_0 \text{ is a constant} \\ &= \beta_0 + \overline{X} E(\beta_1 - \hat{\beta}_1) \quad \text{since } E(\overline{u}) = 0 \text{ by assumptions A2 and A5} \\ &= \beta_0 + \overline{X} \left[E(\beta_1) - E(\hat{\beta}_1)\right] \\ &= \beta_0 + \overline{X} (\beta_1 - \beta_1) \quad \text{since } E(\beta_1) = \beta_1 \text{ and } E(\hat{\beta}_1) = \beta_1 \\ &= \beta_0 \end{split}$$

 $\square \underline{Result}: \text{ The OLS intercept coefficient estimator } \hat{\beta}_0 \text{ is an unbiased estimator} \\ \text{ of the intercept coefficient } \beta_0: \text{ that is,} \\ \end{array}$

> <u>**PROPERTY 3**</u>: Variance of $\hat{\beta}_1$.

• **Definition:** The variance of the OLS slope coefficient estimator $\hat{\beta}_1$ is defined as

$$\operatorname{Var}(\hat{\beta}_{1}) \equiv E\left\{\left[\hat{\beta}_{1} - E(\hat{\beta}_{1})\right]^{2}\right\}.$$

- Derivation of Expression for $Var(\hat{\beta}_1)$:
 - **1.** Since $\hat{\beta}_1$ is an unbiased estimator of β_1 , $E(\hat{\beta}_1) = \beta_1$. The variance of $\hat{\beta}_1$ can therefore be written as

$$\operatorname{Var}(\hat{\beta}_{1}) = \operatorname{E}\left\{ \left[\hat{\beta}_{1} - \beta_{1} \right]^{2} \right\}.$$

2. From part (1) of the unbiasedness proofs above, the term $[\hat{\beta}_1 - \beta_1]$, which is called the **sampling error of** $\hat{\beta}_1$, is given by

$$\left[\hat{\beta}_1 - \beta_1\right] = \sum_i k_i u_i.$$

3. The square of the sampling error is therefore

$$\left[\hat{\beta}_{1}-\beta_{1}\right]^{2}=\left(\sum_{i}k_{i}u_{i}\right)^{2}$$

4. Since the square of a sum is equal to the sum of the squares plus twice the sum of the cross products,

$$\begin{split} \left[\hat{\beta}_{1} - \beta_{1} \right]^{2} &= \left(\sum_{i} k_{i} u_{i} \right)^{2} \\ &= \sum_{i=1}^{N} k_{i}^{2} u_{i}^{2} + 2 \sum_{i < s} \sum_{s=2}^{N} k_{i} k_{s} u_{i} u_{s}. \end{split}$$

For example, if the summation involved only three terms, the square of the sum would be

$$\left(\sum_{i=1}^{3} k_{i} u_{i}\right)^{2} = \left(k_{1} u_{1} + k_{2} u_{2} + k_{3} u_{3}\right)^{2}$$

= $k_{1}^{2} u_{1}^{2} + k_{2}^{2} u_{2}^{2} + k_{3}^{2} u_{3}^{2} + 2k_{1} k_{2} u_{1} u_{2} + 2k_{1} k_{3} u_{1} u_{3} + 2k_{2} k_{3} u_{2} u_{3}.$

5. Now use assumptions A3 and A4 of the classical linear regression model (CLRM):

(A3)
$$\operatorname{Var}(u_i | X_i) = E(u_i^2 | X_i) = \sigma^2 > 0$$
 for all $i = 1, ..., N$;
(A4) $\operatorname{Cov}(u_i, u_s | X_i, X_s) = E(u_i u_s | X_i, X_s) = 0$ for all $i \neq s$.

6. We take expectations conditional on the sample values of the regressor X:

$$\begin{split} E\Big[\left(\hat{\beta}_{1} - \beta_{1} \right)^{2} \Big] &= \sum_{i=1}^{N} k_{i}^{2} E(u_{i}^{2} | X_{i}) + 2 \sum_{i < s} \sum_{s=2}^{N} k_{i} k_{s} E(u_{i} u_{s} | X_{i}, X_{s}) \\ &= \sum_{i=1}^{N} k_{i}^{2} E(u_{i}^{2} | X_{i}) \quad \text{since } E(u_{i} u_{s} | X_{i}, X_{s}) = 0 \quad \text{for } i \neq s \text{ by (A4)} \\ &= \sum_{i=1}^{N} k_{i}^{2} \sigma^{2} \qquad \text{since } E(u_{i}^{2} | X_{i}) = \sigma^{2} \quad \forall i \text{ by (A3)} \\ &= \frac{\sigma^{2}}{\sum_{i} x_{i}^{2}} \qquad \text{since } \sum_{i} k_{i}^{2} = \frac{1}{\sum_{i} x_{i}^{2}} \text{ by (K2).} \end{split}$$

 \square *<u>Result</u>: The variance of the OLS slope coefficient estimator \hat{\beta}_1 is*

$$\operatorname{Var}(\hat{\beta}_{1}) = \frac{\sigma^{2}}{\sum_{i} x_{i}^{2}} = \frac{\sigma^{2}}{\sum_{i} (X_{i} - \overline{X})^{2}} = \frac{\sigma^{2}}{\operatorname{TSS}_{X}} \quad \text{where } \operatorname{TSS}_{X} = \sum_{i} x_{i}^{2} \cdot \dots \cdot \mathbf{P3}$$

The *standard error* of $\hat{\beta}_1$ is the square root of the variance: i.e.,

$$\operatorname{se}(\hat{\beta}_{1}) = \sqrt{\operatorname{Var}(\hat{\beta}_{1})} = \left(\frac{\sigma^{2}}{\sum_{i} x_{i}^{2}}\right)^{\frac{1}{2}} = \frac{\sigma}{\sqrt{\sum_{i} x_{i}^{2}}} = \frac{\sigma}{\sqrt{\operatorname{TSS}_{X}}}.$$

... Page 7 of 12 pages

> <u>PROPERTY 4</u>: Variance of $\hat{\beta}_0$ (given without proof).

 \square *<u>Result</u>: The variance of the OLS intercept coefficient estimator \hat{\beta}_0 is*

$$\operatorname{Var}(\hat{\beta}_{0}) = \frac{\sigma^{2} \sum_{i} X_{i}^{2}}{N \sum_{i} x_{i}^{2}} = \frac{\sigma^{2} \sum_{i} X_{i}^{2}}{N \sum_{i} (X_{i} - \overline{X})^{2}}.$$
 ... (P4)

The *standard error* of $\hat{\beta}_0$ is the square root of the variance: i.e.,

$$\operatorname{se}(\hat{\beta}_0) = \sqrt{\operatorname{Var}(\hat{\beta}_0)} = \left(\frac{\sigma^2 \sum_i X_i^2}{N \sum_i x_i^2}\right)^{\frac{1}{2}}.$$

• Interpretation of the Coefficient Estimator Variances

Var(β̂₀) and Var(β̂₁) measure the statistical precision of the OLS coefficient estimators β̂₀ and β̂₁.

$$\operatorname{Var}(\hat{\beta}_{1}) = \frac{\sigma^{2}}{\sum_{i} x_{i}^{2}}; \qquad \operatorname{Var}(\hat{\beta}_{0}) = \frac{\sigma^{2} \sum_{i} X_{i}^{2}}{N \sum_{i} x_{i}^{2}}.$$

• Determinants of $Var(\hat{\beta}_0)$ and $Var(\hat{\beta}_1)$

 $Var(\hat{\beta}_0)$ and $Var(\hat{\beta}_1)$ are *smaller*:

- (1) the *smaller* is the error variance σ^2 , i.e., the smaller the variance of the unobserved and unknown random influences on Y_i ;
- (2) the *larger* is the sample variation of the X_i about their sample mean, i.e., the larger the values of $x_i^2 = (X_i \overline{X})^2$, i = 1, ..., N;
- (3) the *larger* is the size of the sample, i.e., the *larger* is N.

> <u>**PROPERTY 5</u>**: Covariance of $\hat{\beta}_0$ and $\hat{\beta}_1$.</u>

• **Definition:** The covariance of the OLS coefficient estimators $\hat{\beta}_0$ and $\hat{\beta}_1$ is defined as

$$\operatorname{Cov}(\hat{\beta}_0, \hat{\beta}_1) \equiv \mathrm{E}\{[\hat{\beta}_0 - \mathrm{E}(\hat{\beta}_0)][\hat{\beta}_1 - \mathrm{E}(\hat{\beta}_1)]\}.$$

- Derivation of Expression for $Cov(\hat{\beta}_0, \hat{\beta}_1)$:
 - 1. Since $\hat{\beta}_0 = \overline{Y} \hat{\beta}_1 \overline{X}$, the expectation of $\hat{\beta}_0$ can be written as

$$E(\hat{\beta}_0) = \overline{Y} - E(\hat{\beta}_1)\overline{X}$$

= $\overline{Y} - \beta_1\overline{X}$ since $E(\hat{\beta}_1) = \beta_1$.

Therefore, the term $\hat{\beta}_0 - E(\hat{\beta}_0)$ can be written as

$$\begin{split} \hat{\beta}_0 - \mathbf{E}(\hat{\beta}_0) &= [\overline{\mathbf{Y}} - \hat{\beta}_1 \overline{\mathbf{X}}] - [\overline{\mathbf{Y}} - \beta_1 \overline{\mathbf{X}}] \\ &= \overline{\mathbf{Y}} - \hat{\beta}_1 \overline{\mathbf{X}} - \overline{\mathbf{Y}} + \beta_1 \overline{\mathbf{X}} \\ &= -\hat{\beta}_1 \overline{\mathbf{X}} + \beta_1 \overline{\mathbf{X}} \\ &= -\overline{\mathbf{X}}(\hat{\beta}_1 - \beta_1). \end{split}$$

2. Since $E(\hat{\beta}_1) = \beta_1$, the term $\hat{\beta}_1 - E(\hat{\beta}_1)$ takes the form

$$\hat{\beta}_1 - \mathrm{E}(\hat{\beta}_1) = \hat{\beta}_1 - \beta_1.$$

3. The product $[\hat{\beta}_0 - E(\hat{\beta}_0)][\hat{\beta}_1 - E(\hat{\beta}_1)]$ thus takes the form

$$\begin{split} [\hat{\beta}_0 - \mathbf{E}(\hat{\beta}_0)][\hat{\beta}_1 - \mathbf{E}(\hat{\beta}_1)] &= -\overline{\mathbf{X}}(\hat{\beta}_1 - \beta_1)(\hat{\beta}_1 - \beta_1) \\ &= -\overline{\mathbf{X}}(\hat{\beta}_1 - \beta_1)^2. \end{split}$$

$$\begin{split} E\Big\{[\hat{\beta}_0 - E(\hat{\beta}_0)][\hat{\beta}_1 - E(\hat{\beta}_1)]\Big\} &= E\Big[-\overline{X}(\hat{\beta}_1 - \beta_1)^2\Big] \\ &= -\overline{X} E(\hat{\beta}_1 - \beta_1)^2 \quad \text{b/c } \overline{X} \text{ is a constant} \\ &= -\overline{X} Var(\hat{\beta}_1) \qquad \text{b/c } E(\hat{\beta}_1 - \beta_1)^2 = Var(\hat{\beta}_1) \\ &= -\overline{X}\bigg(\frac{\sigma^2}{\sum_i x_i^2}\bigg) \qquad \text{b/c } Var(\hat{\beta}_1) = \frac{\sigma^2}{\sum_i x_i^2}. \end{split}$$

 $\Box \quad \underline{\textit{Result:}} \text{ The covariance of } \hat{\beta}_0 \text{ and } \hat{\beta}_1 \text{ is}$

$$\operatorname{Cov}(\hat{\beta}_0, \beta_1) = -\overline{X}\left(\frac{\sigma^2}{\sum_i x_i^2}\right).$$
 ... (P5)

• Interpretation of the Covariance $Cov(\hat{\beta}_0, \hat{\beta}_1)$.

Since both σ^2 and $\sum_i x_i^2$ are positive, the sign of $Cov(\hat{\beta}_0, \hat{\beta}_1)$ depends on the sign of \overline{X} .

- (1) If $\overline{X} > 0$, $Cov(\hat{\beta}_0, \hat{\beta}_1) < 0$: the sampling errors $(\hat{\beta}_0 \beta_0)$ and $(\hat{\beta}_1 \beta_1)$ are of *opposite* sign.
- (2) If $\overline{X} < 0$, $Cov(\hat{\beta}_0, \hat{\beta}_1) > 0$: the sampling errors $(\hat{\beta}_0 \beta_0)$ and $(\hat{\beta}_1 \beta_1)$ are of the *same* sign.

> <u>THE GAUSS-MARKOV THEOREM</u>

• Importance of the Gauss-Markov Theorem:

- 1) The Gauss-Markov Theorem summarizes the statistical properties of the OLS coefficient estimators $\hat{\beta}_i$ (j = 0, 1).
- 2) More specifically, it establishes that the OLS coefficient estimators $\hat{\beta}_j$ (j = 0, 1) have several desirable statistical properties.
- <u>Statement of the Gauss-Markov Theorem</u>: Under assumptions A1-A8 of the CLRM, the OLS coefficient estimators $\hat{\beta}_j$ (j = 0, 1) are the *minimum variance* estimators of the regression coefficients β_j (j = 0, 1) in the class of *all linear unbiased estimators* of β_j .

That is, under assumptions A1-A8, the **OLS coefficient estimators** $\hat{\beta}_j$ are **the BLUE** of β_j (j = 0, 1) in the class of all linear unbiased estimators, where

- 1) **BLUE** = **B**est Linear Unbiased Estimator
- 2) "Best" means "minimum variance" or "smallest variance".

So the Gauss-Markov Theorem says that the OLS coefficient estimators $\hat{\beta}_j$ are the best of all linear unbiased estimators of β_j , where "best" means "minimum variance".

• Interpretation of the G-M Theorem:

- 1. Let $\hat{\beta}_j$ be any other linear unbiased estimator of β_j . Let $\hat{\beta}_j$ be the *OLS estimator* of β_j ; it too is linear and unbiased.
- **2.** Both estimators $\hat{\beta}_j$ and $\hat{\beta}_j$ are *unbiased* estimators of β_j :

$$E(\hat{\beta}_j) = \beta_j \text{ and } E(\widetilde{\beta}_j) = \beta_j.$$

3. But the OLS estimator $\hat{\beta}_j$ has a *smaller* variance than $\widetilde{\beta}_j$:

$$\operatorname{Var}(\hat{\beta}_j) \leq \operatorname{Var}(\widetilde{\beta}_j) \implies \hat{\beta}_j \text{ is efficient relative to } \widetilde{\beta}_j.$$

This means that the OLS estimator $\hat{\beta}_j$ is statistically *more precise* than $\tilde{\beta}_j$, *any other linear unbiased* estimator of β_j .