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ECON 351* -- NOTE 4 
 

Statistical Properties of the OLS Coefficient Estimators
 

1. Introduction 
 
We derived in Note 2 the OLS (Ordinary Least Squares) estimators  (j = 0, 1) of 
the regression coefficients β

jβ̂

j (j = 0, 1) in the simple linear regression model given 
by the population regression equation, or PRE 
 

ii10i uXY +β+β=      (i = 1, …, N)        (1) 
 
where ui is an iid random error term.  The OLS sample regression equation 
(SRE) corresponding to PRE (1) is  
 

ii10i ûXˆˆY +β+β=       (i = 1, …, N)        (2) 
 
where  and  are the OLS coefficient estimators given by the formulas    0β̂ 1β̂
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ii

iii
1 x

yxˆ
∑
∑

=β                    (3) 

 

XˆYˆ
10 β−=β                    (4)  

 
x X Xi i≡ − , y Y Yi i≡ − , X Xi i= N∑ , and Y Yi i N= ∑ . 
 
 
Why Use the OLS Coefficient Estimators?    
 
The reason we use these OLS coefficient estimators is that, under assumptions A1-
A8 of the classical linear regression model, they have several desirable statistical 
properties. This note examines these desirable statistical properties of the OLS 
coefficient estimators primarily in terms of the OLS slope coefficient estimator ; 
the same properties apply to the intercept coefficient estimator .    

1β̂

0β̂
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2. Statistical Properties of the OLS Slope Coefficient Estimator 

 
 PROPERTY 1:  Linearity of   1β̂

 
The OLS coefficient estimator  can be written as a linear function of the 
sample values of Y, the Y

1β̂

i  (i = 1, ..., N).   
 
 Proof:  Starts with formula (3) for : 1β̂
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• Defining the observation weights k x xi i i= ∑ 2

i  for i = 1, …, N, we can re-
write the last expression above for  as: 1β̂

 

2
ii

i
iiii1 x

xk   where          Ykˆ
∑

≡∑=β   (i = 1, ..., N)    … (P1) 

 
• Note that the formula (3) and the definition of the weights ki imply that  is 

also a linear function of the y
1β̂

i’s such that 
 

iii1 ykˆ ∑=β . 
 

 Result:  The OLS slope coefficient estimator  is a linear function of the 
sample values Y

1β̂

i or yi (i = 1,…,N), where the coefficient of Yi or yi is ki.   
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 Properties of the Weights ki     
 

In order to establish the remaining properties of , it is necessary to know the 
arithmetic properties of the weights k

1β̂
i.   

 
[K1] ,  i.e., the weights k∑ =i ik 0 i sum to zero.   
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[K3] ∑ = ∑i i i i i ik x k X  .   
 

   
∑ = ∑ −

∑ − ∑
= ∑ ∑ =

i i i i i i

i i i i

i i i i

k x k X
k X k
k X k

(   X)
=   X

                      since   by [K1] above.
i

i 0
 

 
[K4] .   ∑ =i i ik x 1
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  Implication:  ∑ =i i ik X 1.    
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 PROPERTY 2:  Unbiasedness of  and . 1β̂ 0β̂
 
The OLS coefficient estimator  is unbiased, meaning that . 1β̂ 11 )ˆ(E β=β

The OLS coefficient estimator  is unbiased, meaning that . 0β̂ 00 )ˆ(E β=β
 
• Definition of unbiasedness:  The coefficient estimator  is unbiased if and 

only if ; i.e., its mean or expectation is equal to the true coefficient β
1β̂

11)ˆ(E β=β 1. 
 
 Proof of unbiasedness of :  Start with the formula .   1β̂ iii1 Ykˆ ∑=β

 
1. Since assumption A1 states that the PRE is ii10i uXY +β+β= ,   
 

   

.1Xkand0k since,uk
ukXkk

1AbyuXYcesin)uX(k
Ykˆ

iiiiiiii1

iiiiii1ii0

ii10iii10ii

iii1

=∑=∑∑+β=
∑+∑β+∑β=

+β+β=+β+β∑=
∑=β

 
2. Now take expectations of the above expression for , conditional on the 

sample values {X
1β̂

i: i = 1, …, N} of the regressor X.  Conditioning on the 
sample values of the regressor X means that the ki are treated as nonrandom, 
since the ki are functions only of the Xi.  

 

.=
A2 assumptionby  0)XE(u since0k=

nonrandom are k  theandconstant  a is  since)Xu(Ek
]uk[E)(E)ˆ(E
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 Result:  The OLS slope coefficient estimator  is an unbiased estimator of 

the slope coefficient β
1β̂

1:  that is, 
  

  .                      ... (P2) 11 )ˆ(E β=β
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 Proof of unbiasedness of :  Start with the formula 0β̂ XˆYˆ

10 β−=β .  
 
1. Average the PRE ii10i uXY +β+β=  across i:   

∑∑∑
===

ββ
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i10
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1i
i u+X+N=Y     (sum the PRE over the N observations) 
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u+X+=Y 10 ββ   where NYY i i∑= , NXX i i∑= , and Nuu i i∑= .   
 

2. Substitute the above expression for Y into the formula XˆYˆ
10 β−=β :   

 

.uX)ˆ(

uXYcesinXˆuX

XˆYˆ

110
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3. Now take the expectation of  conditional on the sample values {X0β̂ i: i = 1, 

…, N} of the regressor X.  Conditioning on the Xi means that X is treated as 
nonrandom in taking expectations, since X is a function only of the Xi.     
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 Result:  The OLS intercept coefficient estimator  is an unbiased estimator 

of the intercept coefficient β
0β̂

0:  that is,  
 

00 )ˆ(E β=β .                  ... (P2) 
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 PROPERTY 3:  Variance of . 1β̂

 
• Definition:  The variance of the OLS slope coefficient estimator  is defined 

as 
1β̂

 
( ) [ ]{ }2

111 )ˆ(EˆEˆVar β−β≡β . 
 
• Derivation of Expression for Var( ): 1β̂
 

1. Since  is an unbiased estimator of β1β̂ 1, E( ) = β1β̂ 1.  The variance of  can 
therefore be written as  

1β̂

 
( ) [ ]{ }2

111
ˆEˆVar β−β=β . 

 
2. From part (1) of the unbiasedness proofs above, the term [  − β1β̂ 1], which is 

called the sampling error of , is given by 1β̂
 
  [ ] iii11 ukˆ ∑=β−β . 
 
3. The square of the sampling error is therefore   
 
  [ ]  ( )2iii

2

11 ukˆ ∑=β−β
 
4. Since the square of a sum is equal to the sum of the squares plus twice the 

sum of the cross products,  
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For example, if the summation involved only three terms, the square of the 
sum would be  
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5. Now use assumptions A3 and A4 of the classical linear regression model 

(CLRM):   
 
   (A3) 0)Xu(E)Xu(Var 2

i
2
iii >σ==     for all i = 1, ..., N;    

 
   (A4) 0)X,Xuu(E)X,Xu,u(Cov sisisisi ==  for all i ≠ s. 
 

6. We take expectations conditional on the sample values of the regressor X:   
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 Result:  The variance of the OLS slope coefficient estimator  is   1β̂

 

X

2

2
ii

2

2
ii

2

1 TSS)XX(x
)ˆ(Var σ

=
−∑

σ
=

∑
σ

=β  where  .    ... (P3) ∑= i
2
iX xTSS

 
The standard error of  is the square root of the variance: i.e.,  1β̂
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 PROPERTY 4:  Variance of  (given without proof).   0β̂
 

 Result:  The variance of the OLS intercept coefficient estimator  is   0β̂
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 The standard error of   is the square root of the variance:  i.e.,  0β̂
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• Interpretation of the Coefficient Estimator Variances   
 

 Var  and Var  measure the statistical precision of the OLS 

coefficient estimators  and .   

)ˆ( 0β ( $ )β1

0β̂ $β1
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 Determinants of  and  )ˆ(Var 0β Var( $ )β1

 
)ˆ(Var 0β  and  are smaller:   Var( $ )β1

 
(1) the smaller is the error variance σ2 , i.e., the smaller the variance of the 

unobserved and unknown random influences on Yi ;   
 
(2) the larger is the sample variation of the Xi about their sample mean, 

i.e., the larger the values of  x X Xi i
2 = −( 2) , i = 1, …, N;   

 
(3) the larger is the size of the sample, i.e., the larger is N.   
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 PROPERTY 5:  Covariance of  and .   0β̂ $β 1

 
• Definition:  The covariance of the OLS coefficient estimators  and  is 

defined as 
0β̂ $β1

 
Cov( , )  ≡  E{[  - E( )][ - E( )]}.   0β̂ 1β̂ 0β̂ 0β̂ $β1

$β1

 
• Derivation of Expression for Cov( , ): 0β̂ $β 1

 
1. Since XˆYˆ

10 β−=β , the expectation of  can be written as  0β̂
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2. Since , the term  takes the form   11)ˆ(E β=β )ˆ(Eˆ
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4. The expectation of the product [ ][ ] is therefore )ˆ(Eˆ
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11 β−β
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 Result: The covariance of  and  is  0β̂ $β1
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• Interpretation of the Covariance Cov( , ).             0β̂ $β 1

 
Since both  and  are positive, the sign of Cov( , ) depends on the 
sign of 

2σ ∑ i ix2
0β̂ 1β̂

X .   
 
(1) If X  > 0, Cov( , ) < 0:   the sampling errors  and  

are of opposite sign.   
0β̂ 1β̂ )ˆ( 00 β−β )ˆ( 11 β−β

 
(2) If X  < 0, Cov( , ) > 0:   the sampling errors  and  

are of the same sign.   
0β̂ 1β̂ )ˆ( 00 β−β )ˆ( 11 β−β
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 THE GAUSS-MARKOV THEOREM    

 
• Importance of the Gauss-Markov Theorem:   
 

1) The Gauss-Markov Theorem summarizes the statistical properties of the 
OLS coefficient estimators  (j = 0, 1).   $β j

2) More specifically, it establishes that the OLS coefficient estimators  (j = 
0, 1) have several desirable statistical properties.   

jβ̂

 
• Statement of the Gauss-Markov Theorem:  Under assumptions A1-A8 of the 

CLRM, the OLS coefficient estimators  (j = 0, 1) are the minimum variance 
estimators of the regression coefficients β

$β j

j (j = 0, 1) in the class of all linear 
unbiased estimators of βj.   

 
That is, under assumptions A1-A8, the OLS coefficient estimators  are the 
BLUE of β

$β j

j (j = 0, 1) in the class of all linear unbiased estimators, where  
 

1)  BLUE  ≡  Best Linear Unbiased Estimator   
 
2) “Best” means “minimum variance” or “smallest variance”.   

 
So the Gauss-Markov Theorem says that the OLS coefficient estimators  are 
the best of all linear unbiased estimators of β

$β j

j, where “best” means “minimum 
variance”.   
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• Interpretation of the G-M Theorem:    
 

1. Let ~
β j  be any other linear unbiased estimator of βj.   

Let  be the OLS estimator of β$β j j; it too is linear and unbiased.   
 
2. Both estimators ~

β j  and  are unbiased estimators of β$β j j:   
 

E j j  and .    ( $ )β β= E j j(~ )β β=
 
3. But the OLS estimator  has a smaller variance than $β j

~
β j :   

 
Var Varj j( $ ) (~ )β β≤  ⇒   is efficient relative to $β j

~
β j .   

 
This means that the OLS estimator  is statistically more precise than $β j

~
β j , 

any other linear unbiased estimator of βj.   
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