1. Introduction

We derived in Note 2 the OLS (Ordinary Least Squares) estimators $\hat{\beta}_j$ ($j = 0, 1$) of the regression coefficients β_j ($j = 0, 1$) in the simple linear regression model given by the population regression equation, or PRE

$$Y_i = \beta_0 + \beta_1 X_i + u_i \quad (i = 1, \ldots, N)$$

(1)

where u_i is an iid random error term. The OLS sample regression equation (SRE) corresponding to PRE (1) is

$$Y_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{u}_i \quad (i = 1, \ldots, N)$$

(2)

where $\hat{\beta}_0$ and $\hat{\beta}_1$ are the OLS coefficient estimators given by the formulas

$$\hat{\beta}_1 = \frac{\sum_i x_i y_i}{\sum_i x_i^2}$$

(3)

$$\hat{\beta}_0 = \overline{Y} - \hat{\beta}_1 \overline{X}$$

(4)

$x_i \equiv X_i - \overline{X}, \; y_i \equiv Y_i - \overline{Y}, \; \overline{X} = \sum_i X_i / N$, and $\overline{Y} = \sum_i Y_i / N$.

Why Use the OLS Coefficient Estimators?

The reason we use these OLS coefficient estimators is that, under assumptions A1-A8 of the classical linear regression model, they have several desirable statistical properties. This note examines these desirable statistical properties of the OLS coefficient estimators primarily in terms of the OLS slope coefficient estimator $\hat{\beta}_1$; the same properties apply to the intercept coefficient estimator $\hat{\beta}_0$.
2. Statistical Properties of the OLS Slope Coefficient Estimator

➢ **PROPERTY 1: Linearity of \(\hat{\beta}_1 \)**

The OLS coefficient estimator \(\hat{\beta}_1 \) can be written as a **linear function of the sample values of Y, the** \(Y_i \) (i = 1, ..., N).

Proof: Starts with formula (3) for \(\hat{\beta}_1 \):

\[
\hat{\beta}_1 = \frac{\sum_i x_i y_i}{\sum_i x_i^2}
\]

\[
= \frac{\sum_i x_i (Y_i - \bar{Y})}{\sum_i x_i^2}
\]

\[
= \frac{\sum_i x_i Y_i}{\sum_i x_i^2} - \frac{\bar{Y} \sum_i x_i}{\sum_i x_i^2}
\]

\[
= \frac{\sum_i x_i Y_i}{\sum_i x_i^2} \quad \text{because} \quad \sum_i x_i = 0.
\]

- Defining the observation weights \(k_i = \frac{x_i}{\sum_i x_i^2} \) for i = 1, ..., N, we can rewrite the last expression above for \(\hat{\beta}_1 \) as:

\[
\hat{\beta}_1 = \sum_i k_i Y_i \quad \text{where} \quad k_i = \frac{x_i}{\sum_i x_i^2} \quad (i = 1, ..., N) \quad \ldots \ (P1)
\]

- Note that the formula (3) and the definition of the weights \(k_i \) imply that \(\hat{\beta}_1 \) is also a linear function of the \(y_i \)’s such that

\[
\hat{\beta}_1 = \sum_i k_i y_i.
\]

Result: The OLS slope coefficient estimator \(\hat{\beta}_1 \) is a **linear function of the sample values** \(Y_i \) or \(y_i \) (i = 1, ..., N), where the coefficient of \(Y_i \) or \(y_i \) is \(k_i \).
Properties of the Weights k_i

In order to establish the remaining properties of $\hat{\beta}_i$, it is necessary to know the arithmetic properties of the weights k_i.

[K1] $\sum_i k_i = 0$, i.e., the weights k_i sum to zero.

$$\sum_i k_i = \sum_i \frac{x_i}{\sum_i x_i^2} = \frac{1}{\sum_i x_i^2} \sum_i x_i = 0, \quad \text{because } \sum_i x_i = 0.$$

[K2] $\sum_i k_i^2 = \frac{1}{\sum_i x_i^2}$.

$$\sum_i k_i^2 = \sum_i \left(\frac{x_i}{\sum_i x_i^2} \right)^2 = \sum_i \frac{x_i^2}{(\sum_i x_i^2)^2} = \frac{(\sum_i x_i^2)^2}{(\sum_i x_i^2)^2} = \frac{1}{\sum_i x_i^2}.$$

[K3] $\sum_i k_i x_i = \sum_i k_i X_i$.

$$\sum_i k_i x_i = \sum_i k_i (X_i - \bar{X})$$
$$= \sum_i k_i X_i - \bar{X} \sum_i k_i$$
$$= \sum_i k_i X_i \quad \text{since } \sum_i k_i = 0 \text{ by [K1] above.}$$

[K4] $\sum_i k_i x_i = 1$.

$$\sum_i k_i x_i = \sum_i \left(\frac{x_i}{\sum_i x_i^2} \right) x_i = \sum_i \frac{x_i^2}{(\sum_i x_i^2)} = \frac{(\sum_i x_i^2)}{(\sum_i x_i^2)} = 1.$$

Implication: $\sum_i k_i X_i = 1$.
PROPERTY 2: Unbiasedness of $\hat{\beta}_1$ and $\hat{\beta}_0$.

The OLS coefficient estimator $\hat{\beta}_1$ is unbiased, meaning that $E(\hat{\beta}_1) = \beta_1$. The OLS coefficient estimator $\hat{\beta}_0$ is unbiased, meaning that $E(\hat{\beta}_0) = \beta_0$.

- **Definition of unbiasedness:** The coefficient estimator $\hat{\beta}_1$ is unbiased if and only if $E(\hat{\beta}_1) = \beta_1$; i.e., its mean or expectation is equal to the true coefficient β_1.

- **Proof of unbiasedness of $\hat{\beta}_1$:** Start with the formula $\hat{\beta}_1 = \sum_i k_i Y_i$.

1. Since assumption A1 states that the PRE is $Y_i = \beta_0 + \beta_1 X_i + u_i$,

$$\hat{\beta}_1 = \sum_i k_i Y_i$$
$$= \sum_i k_i (\beta_0 + \beta_1 X_i + u_i) \quad \text{since } Y_i = \beta_0 + \beta_1 X_i + u_i \text{ by A1}$$
$$= \beta_0 \sum_i k_i + \beta_1 \sum_i k_i X_i + \sum_i k_i u_i$$
$$= \beta_1 + \sum_i k_i u_i, \quad \text{since } \sum_i k_i = 0 \text{ and } \sum_i k_i X_i = 1.$$

2. Now take expectations of the above expression for $\hat{\beta}_1$, conditional on the sample values $\{X_i: i = 1, \ldots, N\}$ of the regressor X. Conditioning on the sample values of the regressor X means that the k_i are treated as nonrandom, since the k_i are functions only of the X_i.

$$E(\hat{\beta}_1) = E(\beta_1) + E[\sum_i k_i u_i]$$
$$= \beta_1 + \sum_i k_i E(u_i|X_i) \quad \text{since } \beta_1 \text{ is a constant and the } k_i \text{ are nonrandom}$$
$$= \beta_1 + \sum_i k_i 0 \quad \text{since } E(u_i|X_i) = 0 \text{ by assumption A2}$$
$$= \beta_1.$$

- **Result:** The OLS slope coefficient estimator $\hat{\beta}_1$ is an unbiased estimator of the slope coefficient β_1: that is,

$$E(\hat{\beta}_1) = \beta_1. \quad \ldots \text{(P2)}$$
Proof of unbiasedness of $\hat{\beta}_0$: Start with the formula $\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}$.

1. Average the PRE $Y_i = \beta_0 + \beta_1 X_i + u_i$ across i:

$\sum_{i=1}^{N} Y_i = N \beta_0 + \beta_1 \sum_{i=1}^{N} X_i + \sum_{i=1}^{N} u_i$ (sum the PRE over the N observations)

$\frac{1}{N} \sum_{i=1}^{N} Y_i = \frac{N \beta_0}{N} + \frac{\sum_{i=1}^{N} X_i}{N} + \frac{\sum_{i=1}^{N} u_i}{N}$ (divide by N)

$\bar{Y} = \beta_0 + \beta_1 \bar{X} + \bar{u}$ where $\bar{Y} = \frac{\sum_{i=1}^{N} Y_i}{N}, \bar{X} = \frac{\sum_{i=1}^{N} X_i}{N},$ and $\bar{u} = \frac{\sum_{i=1}^{N} u_i}{N}$.

2. Substitute the above expression for \bar{Y} into the formula $\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}$:

$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}$

$= \beta_0 + \beta_1 \bar{X} + \bar{u} - \hat{\beta}_1 \bar{X}$ since $\bar{Y} = \beta_0 + \beta_1 \bar{X} + \bar{u}$

$= \beta_0 + (\beta_1 - \hat{\beta}_1) \bar{X} + \bar{u}$.

3. Now take the expectation of $\hat{\beta}_0$ conditional on the sample values $\{X_i: i = 1, \ldots, N\}$ of the regressor X. Conditioning on the X_i means that \bar{X} is treated as nonrandom in taking expectations, since \bar{X} is a function only of the X_i.

$E(\hat{\beta}_0) = E(\beta_0) + E[(\beta_1 - \hat{\beta}_1) \bar{X}] + E(\bar{u})$

$= \beta_0 + \bar{X} E(\beta_1 - \hat{\beta}_1) + E(\bar{u})$ since β_0 is a constant

$= \beta_0 + \bar{X} E(\beta_1 - \hat{\beta}_1)$ since $E(\bar{u}) = 0$ by assumptions A2 and A5

$= \beta_0 + \bar{X} [E(\beta_1) - E(\hat{\beta}_1)]$

$= \beta_0 + \bar{X} (\beta_1 - \beta_1)$ since $E(\beta_1) = \beta_1$ and $E(\hat{\beta}_1) = \beta_1$

$= \beta_0$

Result: The OLS intercept coefficient estimator $\hat{\beta}_0$ is an unbiased estimator of the intercept coefficient β_0: that is,

$E(\hat{\beta}_0) = \beta_0$. ... (P2)
➢ **PROPERTY 3: Variance of \(\hat{\beta}_1 \).**

- **Definition:** The variance of the OLS slope coefficient estimator \(\hat{\beta}_1 \) is defined as

\[
\text{Var}(\hat{\beta}_1) = E\{[\hat{\beta}_1 - E(\hat{\beta}_1)]^2\}.
\]

- **Derivation of Expression for \(\text{Var}(\hat{\beta}_1) \):**

1. Since \(\hat{\beta}_1 \) is an unbiased estimator of \(\beta_1 \), \(E(\hat{\beta}_1) = \beta_1 \). The variance of \(\hat{\beta}_1 \) can therefore be written as

\[
\text{Var}(\hat{\beta}_1) = E\{[\hat{\beta}_1 - \beta_1]^2\}.
\]

2. From part (1) of the unbiasedness proofs above, the term \([\hat{\beta}_1 - \beta_1]\), which is called the **sampling error of \(\hat{\beta}_1 \)**, is given by

\[
[\hat{\beta}_1 - \beta_1] = \sum_i k_i u_i.
\]

3. The square of the sampling error is therefore

\[
[\hat{\beta}_1 - \beta_1]^2 = (\sum_i k_i u_i)^2.
\]

4. Since the square of a sum is equal to the sum of the squares plus twice the sum of the cross products,

\[
[\hat{\beta}_1 - \beta_1]^2 = (\sum_i k_i u_i)^2 \\
= \sum_{i=1}^{N} k_i^2 u_i^2 + 2 \sum_{i<s}^{N} k_i k_s u_i u_s.
\]
For example, if the summation involved only three terms, the square of the sum would be

\[
\left(\sum_{i=1}^{3} k_i u_i \right)^2 = (k_1 u_1 + k_2 u_2 + k_3 u_3)^2
\]

\[
= k_1^2 u_1^2 + k_2^2 u_2^2 + k_3^2 u_3^2 + 2k_1 k_2 u_1 u_2 + 2k_1 k_3 u_1 u_3 + 2k_2 k_3 u_2 u_3.
\]

5. Now use assumptions A3 and A4 of the classical linear regression model (CLRM):

(A3) \(\text{Var}(u_i | X_i) = E(u_i^2 | X_i) = \sigma^2 > 0 \) for all \(i = 1, \ldots, N; \)

(A4) \(\text{Cov}(u_i, u_s | X_i, X_s) = E(u_i u_s | X_i, X_s) = 0 \) for all \(i \neq s. \)

6. We take expectations conditional on the sample values of the regressor \(X: \)

\[
E\left[(\hat{\beta}_1 - \beta_1)^2 \right] = \sum_{i=1}^{N} k_i^2 E(u_i^2 | X_i) + 2 \sum_{i<s}^{N} k_i k_s E(u_i u_s | X_i, X_s)
\]

\[
= \sum_{i=1}^{N} k_i^2 \sigma^2 \quad \text{since } E(u_i u_s | X_i, X_s) = 0 \text{ for } i \neq s \text{ by (A4)}
\]

\[
= \sum_{i=1}^{N} k_i^2 \sigma^2 \quad \text{since } E(u_i^2 | X_i) = \sigma^2 \quad \forall i \text{ by (A3)}
\]

\[
= \frac{\sigma^2}{\sum_i x_i^2} \quad \text{since } \sum_i k_i^2 = \frac{1}{\sum_i x_i^2} \text{ by (K2)}.
\]

\[\square \quad \textbf{Result:} \text{ The variance of the OLS slope coefficient estimator } \hat{\beta}_1 \text{ is}
\]

\[\text{Var}(\hat{\beta}_1) = \frac{\sigma^2}{\sum_i x_i^2} = \frac{\sigma^2}{\sum_i (X_i - \bar{X})^2} = \frac{\sigma^2}{\text{TSS}_X} \text{ where } \text{TSS}_X = \sum_i x_i^2. \quad \ldots (P3)\]

The \textbf{standard error} of \(\hat{\beta}_1 \) is the square root of the variance: i.e.,

\[\text{se}(\hat{\beta}_1) = \sqrt{\text{Var}(\hat{\beta}_1)} = \left(\frac{\sigma^2}{\sum_i x_i^2} \right)^{\frac{1}{2}} = \frac{\sigma}{\sqrt{\sum_i x_i^2}} = \frac{\sigma}{\sqrt{\text{TSS}_X}}.\]
PROPERTY 4: Variance of $\hat{\beta}_0$ (given without proof).

Result: The variance of the OLS intercept coefficient estimator $\hat{\beta}_0$ is

$$\text{Var}(\hat{\beta}_0) = \frac{\sigma^2 \sum_i X_i^2}{N \sum_i x_i^2} = \frac{\sigma^2 \sum_i X_i^2}{N \sum_i (X_i - \bar{X})^2}.$$... (P4)

The standard error of $\hat{\beta}_0$ is the square root of the variance: i.e.,

$$\text{se}(\hat{\beta}_0) = \sqrt{\text{Var}(\hat{\beta}_0)} = \left(\frac{\sigma^2 \sum_i X_i^2}{N \sum_i x_i^2}\right)^{\frac{1}{2}}.$$

- Interpretation of the Coefficient Estimator Variances
 - $\text{Var}(\hat{\beta}_0)$ and $\text{Var}(\hat{\beta}_1)$ measure the statistical precision of the OLS coefficient estimators $\hat{\beta}_0$ and $\hat{\beta}_1$.

$$\text{Var}(\hat{\beta}_1) = \frac{\sigma^2}{\sum_i x_i^2}; \quad \text{Var}(\hat{\beta}_0) = \frac{\sigma^2 \sum_i X_i^2}{N \sum_i x_i^2}.$$

- Determinants of $\text{Var}(\hat{\beta}_0)$ and $\text{Var}(\hat{\beta}_1)$

$\text{Var}(\hat{\beta}_0)$ and $\text{Var}(\hat{\beta}_1)$ are smaller:

1. the smaller is the error variance σ^2, i.e., the smaller the variance of the unobserved and unknown random influences on Y_i;

2. the larger is the sample variation of the X_i about their sample mean, i.e., the larger the values of $x_i^2 = (X_i - \bar{X})^2$, $i = 1, \ldots, N$;

3. the larger is the size of the sample, i.e., the larger is N.
PROPERTY 5: Covariance of $\hat{\beta}_0$ and $\hat{\beta}_1$.

- **Definition:** The covariance of the OLS coefficient estimators $\hat{\beta}_0$ and $\hat{\beta}_1$ is defined as

$$\text{Cov}(\hat{\beta}_0, \hat{\beta}_1) = E\{[\hat{\beta}_0 - E(\hat{\beta}_0)][\hat{\beta}_1 - E(\hat{\beta}_1)]\}.$$

- **Derivation of Expression for Cov($\hat{\beta}_0, \hat{\beta}_1$):**

1. Since $\hat{\beta}_0 = Y - \hat{\beta}_1 X$, the expectation of $\hat{\beta}_0$ can be written as

$$E(\hat{\beta}_0) = Y - E(\hat{\beta}_1)X$$

$$= Y - \beta_1 X$$

since $E(\hat{\beta}_1) = \beta_1$.

Therefore, the term $\hat{\beta}_0 - E(\hat{\beta}_0)$ can be written as

$$\hat{\beta}_0 - E(\hat{\beta}_0) = [Y - \hat{\beta}_1 X] - [Y - \beta_1 X]$$

$$= Y - \hat{\beta}_1 X - Y + \beta_1 X$$

$$= -\hat{\beta}_1 X + \beta_1 X$$

$$= -X(\hat{\beta}_1 - \beta_1).$$

2. Since $E(\hat{\beta}_1) = \beta_1$, the term $\hat{\beta}_1 - E(\hat{\beta}_1)$ takes the form

$$\hat{\beta}_1 - E(\hat{\beta}_1) = \hat{\beta}_1 - \beta_1.$$

3. The product $[\hat{\beta}_0 - E(\hat{\beta}_0)][\hat{\beta}_1 - E(\hat{\beta}_1)]$ thus takes the form

$$[\hat{\beta}_0 - E(\hat{\beta}_0)][\hat{\beta}_1 - E(\hat{\beta}_1)] = -X(\hat{\beta}_1 - \beta_1)(\hat{\beta}_1 - \beta_1)$$

$$= -X(\hat{\beta}_1 - \beta_1)^2.$$
4. The expectation of the product \([\hat{\beta}_0 - E(\hat{\beta}_0)][\hat{\beta}_1 - E(\hat{\beta}_1)]\) is therefore

\[
E\{[\hat{\beta}_0 - E(\hat{\beta}_0)][\hat{\beta}_1 - E(\hat{\beta}_1)]\} = E\left[-\bar{X}(\hat{\beta}_1 - \beta_1)^2\right]
\]

\[= -\bar{X}E(\hat{\beta}_1 - \beta_1)^2 \quad \text{b/c } \bar{X} \text{ is a constant}
\]

\[= -\bar{X}\operatorname{Var}(\hat{\beta}_1) \quad \text{b/c } E(\hat{\beta}_1 - \beta_1)^2 = \operatorname{Var}(\hat{\beta}_1)
\]

\[= -\bar{X}\left(\frac{\sigma^2}{\sum_i x_i^2}\right) \quad \text{b/c } \operatorname{Var}(\hat{\beta}_1) = \frac{\sigma^2}{\sum_i x_i^2}.
\]

\[\square \textbf{Result}: \text{ The covariance of } \hat{\beta}_0 \text{ and } \hat{\beta}_1 \text{ is}
\]

\[
\operatorname{Cov}(\hat{\beta}_0, \hat{\beta}_1) = -\bar{X}\left(\frac{\sigma^2}{\sum_i x_i^2}\right). \quad \text{... (P5)}
\]

- **Interpretation of the Covariance** \(\operatorname{Cov}(\hat{\beta}_0, \hat{\beta}_1)\).

Since both \(\sigma^2\) and \(\sum_i x_i^2\) are positive, the sign of \(\operatorname{Cov}(\hat{\beta}_0, \hat{\beta}_1)\) depends on the sign of \(\bar{X}\).

1. If \(\bar{X} > 0\), \(\operatorname{Cov}(\hat{\beta}_0, \hat{\beta}_1) < 0\): the sampling errors \((\hat{\beta}_0 - \beta_0)\) and \((\hat{\beta}_1 - \beta_1)\) are of **opposite sign**.

2. If \(\bar{X} < 0\), \(\operatorname{Cov}(\hat{\beta}_0, \hat{\beta}_1) > 0\): the sampling errors \((\hat{\beta}_0 - \beta_0)\) and \((\hat{\beta}_1 - \beta_1)\) are of the **same sign**.
THE GAUSS-MARKOV THEOREM

Importance of the Gauss-Markov Theorem:

1) The Gauss-Markov Theorem summarizes the statistical properties of the OLS coefficient estimators \(\hat{\beta}_j \) (\(j = 0, 1 \)).

2) More specifically, it establishes that the OLS coefficient estimators \(\hat{\beta}_j \) (\(j = 0, 1 \)) have several desirable statistical properties.

Statement of the Gauss-Markov Theorem: Under assumptions A1-A8 of the CLRM, the OLS coefficient estimators \(\hat{\beta}_j \) (\(j = 0, 1 \)) are the minimum variance estimators of the regression coefficients \(\beta_j \) (\(j = 0, 1 \)) in the class of all linear unbiased estimators of \(\beta_j \).

That is, under assumptions A1-A8, the OLS coefficient estimators \(\hat{\beta}_j \) are the BLUE of \(\beta_j \) (\(j = 0, 1 \)) in the class of all linear unbiased estimators, where

1) BLUE \(\equiv \) Best Linear Unbiased Estimator

2) “Best” means “minimum variance” or “smallest variance”.

So the Gauss-Markov Theorem says that the OLS coefficient estimators \(\hat{\beta}_j \) are the best of all linear unbiased estimators of \(\beta_j \), where “best” means “minimum variance”.

ECON 351* -- Note 4: Statistical Properties of OLS Estimators
Interpretation of the G-M Theorem:

1. Let \(\tilde{\beta}_j \) be any other linear unbiased estimator of \(\beta_j \).
 Let \(\hat{\beta}_j \) be the OLS estimator of \(\beta_j \); it too is linear and unbiased.

2. Both estimators \(\tilde{\beta}_j \) and \(\hat{\beta}_j \) are unbiased estimators of \(\beta_j \):

 \[
 E(\hat{\beta}_j) = \beta_j \quad \text{and} \quad E(\tilde{\beta}_j) = \beta_j.
 \]

3. But the OLS estimator \(\hat{\beta}_j \) has a smaller variance than \(\tilde{\beta}_j \):

 \[
 \text{Var}(\hat{\beta}_j) \leq \text{Var}(\tilde{\beta}_j) \quad \Rightarrow \quad \hat{\beta}_j \text{ is efficient relative to } \tilde{\beta}_j.
 \]

 This means that the OLS estimator \(\hat{\beta}_j \) is statistically more precise than \(\tilde{\beta}_j \), any other linear unbiased estimator of \(\beta_j \).