Econometrics: What's It All About, Alfie?

Using sample data on observable variables to learn about economic relationships, the functional relationships among economic variables.

Econometrics consists mainly of:

- estimating economic relationships from sample data
- testing hypotheses about how economic variables are related

Three empirical attributes of relationships we are concerned with testing:

- the existence of relationships between a dependent variable and the independent variables that are thought to determine it.
- the direction of the relationships between one economic variable - the dependent or outcome variable -and its hypothesized observable determinants
- the magnitude of the relationships between a dependent variable and the independent variables that are thought to determine it.

Sample data consist of observations on randomly selected members of populations of economic agents (individual persons, households or families, firms) or other units of observation (industries, provinces or states, countries).

Example 1

We wish to investigate empirically the determinants of households' food expenditures, in particular the relationship between households' food expenditures and households' incomes.

Sample data consist of a random sample of $\mathbf{3 8}$ households from the population of all households. For each household in the random sample, we have observations on three observable variables:
foodexp = annual food expenditure of household, thousands of dollars per year
income = annual income of household, thousands of dollars per year
hhsize = household size, number of persons in household

list foodexp income hhsize			
foodexp			income

```
. describe
Contains data from foodexp.dta
    obs: 38
    vars: 3 7 Sep 2000 23:30
    size: 608 (99.9% of memory free)
```

1. foodexp float $\% 9.0 \mathrm{~g}$
2. income float $\% 9.0 \mathrm{~g}$
3. hhsize float $\% 9.0 \mathrm{~g}$
Sorted by:
Note: dataset has changed since last saved

Question 1: What relationship generated these sample data? What is the data generating process?

Answer: We postulate that each population value of foodexp, denoted as foodexp $\mathbf{p}_{\mathbf{i}}$, is generated by a relationship of the form:
foodexp $_{i}=\mathrm{f}\left(\right.$ income $_{\mathrm{i}}$, hhsize $\left._{\mathrm{i}}\right)+\mathrm{u}_{\mathrm{i}} \quad \Leftarrow$ the population regression equation
where
foodexp $_{\mathrm{i}}=$ the dependent or outcome variable we are trying to explain
$=$ the annual food expenditure of household i (thousands of $\$$ per year)
income $_{\mathrm{i}}=$ one independent or explanatory variable that we think might explain the dependent variable food $\exp _{i}$
$=$ the annual income of household i (thousands of \$ per year)
hhsize $_{i}=$ a second independent or explanatory variable that we think might explain the dependent variable food $\exp _{i}$
= household size, measured by the number of persons in the household
$\mathrm{f}\left(\right.$ income $_{\mathrm{i}}$, hhsize $\left._{\mathrm{i}}\right)=$ a population regression function representing the systematic relationship of food $\exp _{i}$ to the independent or explanatory variables income ${ }_{i}$ and hhsize ${ }_{i}$;
$u_{i}=$ an unobservable random error term representing all unknown and unmeasured variables that determine the individual population values of foodexp ${ }_{i}$

Question 2: What mathematical form does the population regression function f (income ${ }_{\mathrm{i}}$, hhsize $_{\mathrm{i}}$) take?

Answer: We hypothesize that the population regression function - or PRF - is a linear function:
$\mathrm{f}\left(\right.$ income $_{\mathrm{i}}$, hhsize $\left._{\mathrm{i}}\right)=\beta_{0}+\beta_{1}$ income $_{\mathrm{i}}+\beta_{2}$ hhsize $_{\mathrm{i}}$
Implication: The population regression equation - the PRE - is therefore

$$
\begin{aligned}
\text { foodexp }_{i} & =\mathrm{f}\left(\text { income }_{\mathrm{i}}, \text { hhsize }_{\mathrm{i}}\right)+\mathrm{u}_{\mathrm{i}} \\
& =\beta_{0}+\beta_{1} \text { income }_{\mathrm{i}}+\beta_{2} \text { hhsize }_{\mathrm{i}}+\mathrm{u}_{\mathrm{i}}
\end{aligned}
$$

- Observable Variables:
foodexp $_{\mathrm{i}} \equiv$ the value of the dependent variable foodexp for the i-th household income $_{\mathrm{i}} \equiv$ the value of the independent variable income for the i-th household hhsize $_{i} \equiv$ the value of the independent variable hhsize for the i-th household
- Unobservable Variable:
$u_{i} \equiv$ the value of the random error term for the i-th household in the population
- Unknown Parameters: the regression coefficients β_{0}, β_{1} and β_{2}
$\beta_{0}=$ the intercept coefficient
$\beta_{1}=$ the slope coefficient on income ${ }_{i}$
$\beta_{2}=$ the slope coefficient on hhsize ${ }_{i}$
The population values of the regression coefficients β_{0}, β_{1} and β_{2} are unknown.

Example 2

We wish to investigate empirically the determinants of paid workers' wage rates. In particular, we want to investigate whether male and female workers with the same characteristics on average earn the same wage rate.

Sample data consist of a random sample of 526 paid workers from the 1976 US population of all paid workers in the employed labour force.

For each paid worker in the random sample, we have observations on six observable variables:

```
wage = average hourly earnings of paid worker, dollars per hour
ed = years of education completed by paid worker, years
exp = years of potential work experience of paid worker, years
ten = tenure, or years with current employer, of paid worker, years
female = 1 if paid worker is female, = 0 otherwise
married = 1 if paid worker is married, = 0 otherwise
```

Two fundamental types of variables in econometrics:

1. continuous variables, such as wage, ed, exp, and ten;
2. categorical or discrete variables, such as female and married, which are examples of binary variables that are called indicator or dummy variables.
```
. describe
Contains data from wage1.dta
    obs: 526
    vars: 6 16 Apr 2000 16:18
    size: 94,680 (90.7% of memory free)
```

1. wage
2. ed
3. exp
4. ten
5. female
6. married

16 Apr 2000 16:18
\% 0
float \%9.0g
float \%9.0g
float \%9.0g
float $\% 9.0 \mathrm{~g}$
float \%9.0g
average hourly earnings, \$/hour years of education years of potential work experience
tenure = years with current employer
$=1$ if female, =0 otherwise
=1 if married, =0 otherwise
. list wage ed exp ten female married

	wage	ed	exp	ten	female	married
1.	21.86	12	24	16	\bigcirc	1
2.	5.5	12	18	3	0	0
3.	3.75	2	39	13	0	1
4.	10	12	31	2	0	1
5.	3.5	13	1	0	0	0
6.	6.67	12	35	10	0	0
7.	3.88	12	12	3	0	1
8.	5.91	12	14	6	0	1
9.	5.9	12	14	7	0	1
10.	10	17	5	3	0	1
11.	4.55	16	34	2	0	1
12.	10	8	9	0	0	1
13.	6	13	8	\bigcirc	0	1
14.	5	9	31	9	0	1
15.	4.5	12	13	0	0	1
16.	5.43	14	10	3	\bigcirc	1
17.	2.83	10	1	0	0	0
18.	6.8	12	14	10	\bigcirc	1
19.	6.76	12	19	3	0	1
20.	4.51	12	5	2	\bigcirc	0

(output omitted)

507.	6.15	12	35	12	1	0
508.	11.1	15	1	4	1	0
509.	3.35	15	3	1	1	1
510.	5	12	7	3	1	0
511.	3.35	7	35	0	1	0
512.	6.25	12	13	0	1	1
513.	3.06	12	14	10	1	0
514.	5.9	12	9	7	1	1
515.	8.1	12	38	3	1	1
516.	14.58	18	13	7	1	0
517.	9.42	14	23	0	1	1
518.	9.68	13	16	16	1	0
519.	8.6	16	3	2	1	0
520.	3	12	38	0	1	1
521.	3.33	12	45	4	1	1
522.	4	12	22	11	1	1
523.	2.75	13	1	2	1	0
524.	3	16	19	10	1	1
525.	2.9	8	49	6	1	0
526.	3.18	12	5	0	1	1

. summarize wage ed exp ten female married

Variable	Obs	Mean	Std. Dev.	Min	Max
wage	526	5.896103	3.693086	. 53	24.98
ed	526	12.56274	2.769022	0	18
exp	526	17.01711	13.57216	1	51
ten	526	5.104563	7.224462	0	44
female	526	. 4790875	. 500038	0	1
married	526	. 608365	. 4885804	0	1

Question 1: What relationship generated these sample data? What is the data generating process?

Answer: We postulate that each population value of wage, denoted as wage ${ }_{i}$, is generated by a population regression equation of the form:

$$
\text { wage }_{i}=f\left(\text { ed }_{i}, \exp _{i}, \text { ten }_{i}, \text { female }_{i}, \text { married }_{i}\right)+u_{i}
$$

where:
wage $_{\mathrm{i}}=$ the dependent or outcome variable we are trying to explain
= the average hourly earnings of paid worker i (dollars per hour)
$\mathrm{ed}_{\mathrm{i}} \quad=$ one independent or explanatory variable that we think might explain the dependent variable wage ${ }_{i}$
= the years of education completed by paid worker i (years)
$\exp _{i}=$ a second independent or explanatory variable that might explain wage ${ }_{i}$
$=$ the potential work experience accumulated by paid worker i (years)
ten $_{\mathrm{i}}=$ a third independent or explanatory variable that might explain wage ${ }_{\mathrm{i}}$
= tenure, years with current employer, of paid worker i (years)
female $_{\mathrm{i}}=$ a fourth independent or explanatory variable that might affect wage ${ }_{\mathrm{i}}$ $=1$ if paid worker i is female, $=0$ otherwise
married $_{i}=$ a fifth independent or explanatory variable that we think might explain the dependent variable wage ${ }_{i}$
$=1$ if paid worker i is married, $=0$ otherwise
$\mathrm{f}\left(\mathrm{ed}_{\mathrm{i}}\right.$, exp $_{\mathrm{i}}$, ten $_{\mathrm{i}}$, female $_{\mathrm{i}}$, married $\left._{\mathrm{i}}\right)$
= a population regression function representing the systematic relationship of wage ${ }_{i}$ to the independent variables $\operatorname{ed}_{i}, \exp _{i}$, ten $_{i}$, female ${ }_{i}$ and married ${ }_{i}$
$\mathrm{u}_{\mathrm{i}}=$ an unobservable random error term representing all unknown and unmeasured variables that determine the individual population values of wage $_{i}$

Question 2: What mathematical form does the population regression function, or PRF, $\mathrm{f}\left(\mathrm{ed}_{\mathrm{i}}, \cdots\right.$, married $\left._{\mathrm{i}}\right)$ take?

Answer: We hypothesize that the population regression function - or PRF - is a linear function.

$$
\mathrm{f}\left(\mathrm{ed}_{\mathrm{i}}, \cdots, \text { married }_{\mathrm{i}}\right)=\beta_{0}+\beta_{1} \mathrm{ed}_{\mathrm{i}}+\beta_{2} \exp _{\mathrm{i}}+\beta_{3} \operatorname{ten}_{\mathrm{i}}+\beta_{4} \text { female }_{\mathrm{i}}+\beta_{5} \text { married }_{\mathrm{i}}
$$

Implication: The population regression equation - the PRE - is therefore

$$
\begin{aligned}
\text { wage }_{i} & =\mathrm{f}\left(\text { ed }_{\mathrm{i}}, \exp _{\mathrm{i}}, \text { ten }_{\mathrm{i}}, \text { female }_{\mathrm{i}}, \text { married }_{\mathrm{i}}\right)+\mathrm{u}_{\mathrm{i}} \\
& =\beta_{0}+\beta_{1} \text { ed }_{\mathrm{i}}+\beta_{2} \exp _{\mathrm{i}}+\beta_{3} \text { ten }_{\mathrm{i}}+\beta_{4} \text { female }_{i}+\beta_{5} \text { married }_{\mathrm{i}}+\mathrm{u}_{\mathrm{i}}
\end{aligned}
$$

- Observable Variables:
wage $_{i} \equiv$ the value of the dependent variable wage for the i-th employee $\mathrm{ed}_{\mathrm{i}} \equiv$ the value of the independent variable ed for the i-th employee $\exp _{i} \equiv$ the value of the independent variable exp for the i-th employee $\operatorname{ten}_{\mathrm{i}} \equiv$ the value of the independent variable ten for the i-th employee female ${ }_{i} \equiv$ the value of the independent variable female for the i-th employee married $_{\mathrm{i}} \equiv$ the value of the independent variable married for the i-th employee
- Unobservable Variable:
$u_{i} \equiv$ the value of the random error term for the i-th paid worker in the population
- Unknown Parameters: the regression coefficients $\beta_{0}, \beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}$ and β_{5}
$\beta_{0}=$ the intercept coefficient
$\beta_{1}=$ the slope coefficient on $\mathbf{e d}_{\mathbf{i}}$
$\beta_{2}=$ the slope coefficient on $\exp _{\mathbf{i}}$
$\beta_{3}=$ the slope coefficient on ten ${ }_{i}$
$\beta_{4}=$ the slope coefficient on female ${ }_{i}$
$\beta_{5}=$ the slope coefficient on married ${ }_{i}$

Our Tasks in this Course:

1. To learn how to compute from sample data reliable estimates of the numerical values of the regression coefficients $\beta_{0}, \beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}$ and β_{5}.
2. To learn how to use sample estimates of the regression coefficients to test hypotheses about the true population values of the regression coefficients.

The Four Elements of Econometrics

Data

Collecting and coding the sample data, the raw material of econometrics.
Most economic data is observational, or non-experimental, data (as distinct from experimental data generated under controlled experimental conditions).

Specification

Specification of the econometric model that we think (hope) generated the sample data - that is, specification of the data generating process (or DGP).

An econometric model consists of two components:

1. An economic model: specifies the dependent or outcome variable to be explained and the independent or explanatory variables that we think are related to the dependent variable of interest.

- Often suggested or derived from economic theory.
- Sometimes obtained from informal intuition and observation.

2. A statistical model: specifies the statistical elements of the relationship under investigation, in particular the statistical properties of the random variables in the relationship.

Estimation

Consists of using the assembled sample data on the observable variables in the model to compute estimates of the numerical values of all the unknown parameters in the model.

Inference

Consists of using the parameter estimates computed from sample data to test hypotheses about the numerical values of the unknown population parameters that describe the behaviour of the population from which the sample was selected.

Scientific Method

The collection of principles and processes necessary for scientific investigation, including:

1. rules for concept formation
2. rules for conducting observations and experiments
3. rules for validating hypotheses by observations or experiments

Econometrics is that branch of economics -- the dismal science -- which is concerned with items 2 and 3 in the above list.

Recap

We have considered two examples of what are generically called linear regression equations or linear regression models.

Example 1 - a linear regression model for household food expenditure:
food $^{\exp }{ }_{i}=\beta_{0}+\beta_{1}$ income $_{i}+\beta_{2}$ hhsize $_{i}+$ u $_{i}$
Example 2 - a linear regression model for paid workers' wage rates:

$$
\text { wage }_{i}=\beta_{0}+\beta_{1} \text { ed }_{i}+\beta_{2} \exp _{i}+\beta_{3} \text { ten }_{i}+\beta_{4} \text { female }_{i}+\beta_{5} \text { married }_{i}+u_{i}
$$

Regression analysis has two fundamental tasks:

1. Estimation: computing from sample data reliable estimates of the numerical values of the regression coefficients $\beta_{j}(\mathbf{j}=\mathbf{0}, \mathbf{1}, \ldots, \mathbf{k})$, and hence of the population regression function.
2. Inference: using sample estimates of the regression coefficients $\beta_{j}(\mathbf{j}=\mathbf{0}, \mathbf{1}, \ldots$, k) to test hypotheses about the population values of the unknown regression coefficients - i.e., to infer from sample estimates the true population values of the regression coefficients within specified margins of statistical error.
