(70 marks)

4. You are conducting an econometric investigation into the selling prices of houses in a single urban area in the years 1993 and 2003. You have available for this purpose a random sample of houses that were sold in the years 1993 and 2003. The sample data consist of observations for these houses on the following variables:

PRICE $_{\mathrm{i}} \quad=$ the selling price of the i-th house, in thousands of dollars;
HSIZE $_{\mathrm{i}} \quad=$ the living area of the i-th house, in hundreds of square feet;
$\mathrm{LOT}_{\mathrm{i}} \quad=$ lot size of the i-th house, in hundreds of square feet;
$\mathrm{AGE}_{\mathrm{i}} \quad=$ the age of the i -th house at the time it was sold, in years;
VIEW $_{\mathrm{i}} \quad=$ an indicator variable defined such that VIEW $_{\mathrm{i}}=1$ if the i-th house has a view, and VIEW $_{\mathrm{i}}=0$ if the i -th house does not have a view;
$\mathrm{D}_{\mathrm{i}}^{\mathrm{i}}$ - an indicator variable defined such that $\mathrm{D} 03_{\mathrm{i}}=1$ if the i -th house was sold in 2003, and $\mathrm{D} 03_{\mathrm{i}}=0$ if the i -th house was sold in 1993.

The regression model you are asked to estimate is given by the population regression equation

$$
\begin{align*}
\text { PRICE }_{i}= & \beta_{0}+\beta_{1} \text { HSIZE }_{i}+\beta_{2} \text { HSIZE }_{i}^{2}+\beta_{3} \text { LOT }_{i}+\beta_{4} \text { AGE }_{i}+\beta_{5} \text { HSIZE }_{i} \text { AGE }_{i}+\beta_{6} \text { VIEW }_{i} \\
& +\beta_{7} \text { D03 }_{i}+\beta_{8} \text { D03 }_{i} \text { HSIZE }_{i}+\beta_{9} \text { D03 }_{i} \text { HSIZE }_{i}^{2}+\beta_{10} \text { D03 }_{i} \text { LOT }_{i} \\
& +\beta_{11} \text { D03 }_{\mathrm{i}} \text { AGE }_{i}+\beta_{12} \mathrm{DO}_{i} \text { HSIZE }_{i} \text { AGE }_{i}+\beta_{13} \text { D03 }_{i} \text { VIEW }_{i}+u_{i} \tag{1}
\end{align*}
$$

where the $\beta_{j}(j=0,1,2, \ldots, 13)$ are regression coefficients and u_{i} is a random error term.

State the null hypothesis H_{0} and alternative hypothesis H_{1} of the statistical test that you would perform on regression equation (1) to assess the evidence for each of the following empirical propositions. In addition, for each hypothesis test, state which of the following tests you would use: (1) a two-tail t-test; (2) a left-tail t-test; (3) a right-tail t-test; or (4) an F-test.

Regression function for house prices implied by equation (1):

$$
\begin{aligned}
& \mathrm{E}\left(\text { PRICE }_{\mathrm{i}} \mid \bullet\right)=\beta_{0}+\beta_{1} \text { HSIZE }_{i}+\beta_{2} \text { HSIZE }_{\mathrm{i}}^{2}+\beta_{3} \text { LOT }_{\mathrm{i}}+\beta_{4} \mathrm{AGE}_{\mathrm{i}}+\beta_{5} \mathrm{HSIZE}_{\mathrm{i}} \mathrm{AGE}_{\mathrm{i}}+\beta_{6} \text { VIEW }_{\mathrm{i}} \\
& +\beta_{7} \mathrm{DO}_{\mathrm{i}}+\beta_{8}{\mathrm{D} 03_{i}}^{\text {HSIZE }_{i}}+\beta_{9} \mathrm{DO}_{i} \text { HSIZE }_{\mathrm{i}}^{2}+\beta_{10}{\mathrm{D} 03_{i} \text { LOT }_{i}} \\
& +\beta_{11} \text { D03 }_{i} \text { AGE }_{i}+\beta_{12} \text { D03 }_{i} \text { HSIZE }_{i} \text { AGE }_{i}+\beta_{13} \text { D03 }_{i} \text { VIEW }_{i}
\end{aligned}
$$

Regression function for mean house prices in 2003, for which D03 $_{i}=1$:

$$
\begin{aligned}
& \mathrm{E}\left(\text { PRICE }_{i} \mid \text { D03 }_{\mathrm{i}}=1\right)=\beta_{0}+\beta_{1} \text { HSIZE }_{i}+\beta_{2} \text { HSIZE }_{i}^{2}+\beta_{3} \text { LOT }_{i}+\beta_{4} \text { AGE }_{i}+\beta_{5} \text { HSIZE }_{i} \text { AGE }_{i} \\
& +\beta_{6} \text { VIEW }_{\mathrm{i}}+\beta_{7}+\beta_{8} \text { HSIZE }_{\mathrm{i}}+\beta_{9} \text { HSIZE }_{\mathrm{i}}^{2}+\beta_{10} \text { LOT }_{\mathrm{i}} \\
& +\beta_{11} \text { AGE }_{i}+\beta_{12} \text { HSIZE }_{i} \text { AGE }_{i}+\beta_{13} \text { VIEW }_{i}
\end{aligned}
$$

Regression function for mean house prices in 1993, for which $\mathbf{D 0 3} \mathbf{i}_{\mathrm{i}}=\mathbf{0}$:

$$
\mathrm{E}\left(\text { PRICE }_{i} \mid \text { D03 }_{\mathrm{i}}=1\right)=\beta_{0}+\beta_{1} \mathrm{HSIZE}_{\mathrm{i}}+\beta_{2} \mathrm{HSIZE}_{\mathrm{i}}^{2}+\beta_{3} \mathrm{LOT}_{\mathrm{i}}+\beta_{4} \mathrm{AGE}_{\mathrm{i}}+\beta_{5} \mathrm{HSIZE}_{\mathrm{i}} \mathrm{AGE}_{\mathrm{i}}+\beta_{6} \text { VIEW }_{\mathrm{i}}
$$

Regression function for mean house prices in 2003, for which $D 03_{i}=1$:

$$
\begin{aligned}
& \mathrm{E}_{\left(\text {PRICE }_{i} \mid \text { D03 }_{i}=1\right)=\beta_{0}}+\beta_{1} \text { HSIZE }_{i}+\beta_{2} \text { HSIZE }_{\mathrm{i}}^{2}+\beta_{3} \text { LOT }_{\mathrm{i}}+\beta_{4} \text { AGE }_{\mathrm{i}}+\beta_{5} \text { HSIZE }_{\mathrm{i}} \text { AGE }_{\mathrm{i}} \\
&+\beta_{6} \text { VIEW }_{\mathrm{i}}+\beta_{7}+\beta_{8} \text { HSIZE }_{i}+\beta_{9} \text { HSIZE }_{\mathrm{i}}^{2}+\beta_{10} \text { LOT }_{\mathrm{i}} \\
&+\beta_{11} \text { AGE }_{i}+\beta_{12} \text { HSIZE }_{\mathrm{i}} \text { AGE }_{i}+\beta_{13} \text { VIEW }_{i}
\end{aligned}
$$

Regression function for mean house prices in 1993 , for which $\mathbf{D 0 3} \mathbf{i}_{\mathbf{i}}=\mathbf{0}$:

$$
\mathrm{E}\left(\text { PRICE }_{\mathrm{i}} \mid \mathrm{D03}_{\mathrm{i}}=1\right)=\beta_{0}+\beta_{1} \text { HSIZE }_{\mathrm{i}}+\beta_{2} \mathrm{HSIZE}_{\mathrm{i}}^{2}+\beta_{3} \mathrm{LOT}_{\mathrm{i}}+\beta_{4} \mathrm{AGE}_{\mathrm{i}}+\beta_{5} \text { HSIZE }_{\mathrm{i}} \mathrm{AGE}_{\mathrm{i}}+\beta_{6} \text { VIEW }_{\mathrm{i}}
$$

Conditional mean price difference between 2003 and 1993:

$$
\begin{aligned}
& \mathrm{E}\left(\text { PRICE }_{\mathrm{i}} \mid \mathrm{D} 03_{\mathrm{i}}=1\right)-\mathrm{E}\left(\operatorname{PRICE}_{\mathrm{i}} \mid \mathrm{D}_{\mathrm{i}}=0\right)= \\
& \beta_{7}+\beta_{8} \text { HSIZE }_{\mathrm{i}}+\beta_{9} \text { HSIZE }_{\mathrm{i}}^{2}+\beta_{10} \text { LOT }_{\mathrm{i}}+\beta_{11} \text { AGE }_{\mathrm{i}}+\beta_{12} \text { HSIZE }_{\mathrm{i}} \text { AGE }_{\mathrm{i}}+\beta_{13} \text { VIEW }_{\mathrm{i}}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{E}\left(\text { PRICE }_{\mathrm{i}} \mid \bullet\right)=\beta_{0}+\beta_{1} \text { HSIZE }_{\mathrm{i}}+\beta_{2} \text { HSIZE }_{\mathrm{i}}^{2}+\beta_{3} \text { LOT }_{\mathrm{i}}+\beta_{4} \mathrm{AGE}_{\mathrm{i}}+\beta_{5} \text { HSIZE }_{\mathrm{i}} \mathrm{AGE}_{\mathrm{i}}+\beta_{6} \text { VIEW }_{\mathrm{i}} \\
& +\beta_{7} \text { D03 }_{i}+\beta_{8} \text { D03 }_{i} \text { HSIZE }_{i}+\beta_{9} \text { D03 }_{i} \text { HSIZE }_{i}^{2}+\beta_{10} \text { D03 }_{i} \text { LOT }_{i} \\
& +\beta_{11} \text { D03 }_{i} \text { AGE }_{i}+\beta_{12} \text { D03 }_{i} \text { HSIZE }_{i} \text { AGE }_{i}+\beta_{13} \text { D03 }_{i} \text { VIEW }_{i}
\end{aligned}
$$

Marginal effect of HSIZE $_{i}$ on PRICE $_{i}$:

$$
\begin{array}{rlr}
\frac{\partial \mathrm{E}\left(\text { PRICE }_{\mathrm{i}} \bullet \bullet\right)}{\partial \mathrm{HSIZE}_{\mathrm{i}}} & =\beta_{1}+2 \beta_{2} \mathrm{HSIZE}_{\mathrm{i}}+\beta_{5} \mathrm{AGE}_{\mathrm{i}}+\beta_{8}{\mathrm{D} 03_{i}}+2 \beta_{9} \mathrm{D}_{\mathrm{i}} 3_{\mathrm{i}} \text { HSIZE }_{\mathrm{i}}+\beta_{12} \text { D03 }_{\mathrm{i}} \mathrm{AGE}_{\mathrm{i}} \\
& =\beta_{1}+2 \beta_{2} \text { HSIZE }_{\mathrm{i}}+\beta_{5} \text { AGE }_{\mathrm{i}}+\beta_{8}+2 \beta_{9} \text { HSIZE }_{\mathrm{i}}+\beta_{12} \text { AGE }_{\mathrm{i}} & \\
& =\left(\beta_{1}+\beta_{8}\right)+2\left(\beta_{2}+\beta_{9}\right) \text { HSIZE }_{\mathrm{i}}+\left(\beta_{5}+\beta_{12}\right) \text { AGE }_{\mathrm{i}} & \text { in } 2003 \\
& =\beta_{1}+2 \beta_{2} \text { HSIZE }_{\mathrm{i}}+\beta_{5} \text { AGE }_{\mathrm{i}} & \text { in } 1993
\end{array}
$$

Marginal effect of AGE $_{i}$ on PRICE $_{i}$:

$$
\begin{array}{rlrl}
\frac{\partial \mathrm{E}\left(\text { PRICE }_{\mathrm{i}} \mid \bullet\right)}{\partial \mathrm{AGE}_{\mathrm{i}}} & =\beta_{4}+\beta_{5} \operatorname{HSIZE}_{\mathrm{i}}+\beta_{11}{\mathrm{D} 03_{\mathrm{i}}}+\beta_{12} \text { D03 }_{\mathrm{i}} \text { HSIZE }_{\mathrm{i}} & \\
& =\beta_{4}+\beta_{5} \text { HSIZE }_{\mathrm{i}}+\beta_{11}+\beta_{12} \text { HSIZE }_{\mathrm{i}}=\left(\beta_{4}+\beta_{11}\right)+\left(\beta_{5}+\beta_{12}\right) \text { HSIZE }_{\mathrm{i}} & \text { in } 2003 \\
& =\beta_{4}+\beta_{5} \text { HSIZE }_{\mathrm{i}} & & \text { in } 1993
\end{array}
$$

$$
\begin{aligned}
& \mathrm{E}\left(\text { PRICE }_{\mathrm{i}} \mid \bullet\right)=\beta_{0}+\beta_{1} \text { HSIZE }_{\mathrm{i}}+\beta_{2} \text { HSIZE }_{\mathrm{i}}^{2}+\beta_{3} \text { LOT }_{\mathrm{i}}+\beta_{4} \mathrm{AGE}_{\mathrm{i}}+\beta_{5} \text { HSIZE }_{\mathrm{i}} \mathrm{AGE}_{\mathrm{i}}+\beta_{6} \text { VIEW }_{\mathrm{i}} \\
& +\beta_{7} \text { D03 }_{i}+\beta_{8} \text { D03 }_{i} \text { HSIZE }_{i}+\beta_{9} \text { D03 }_{i} \text { HSIZE }_{i}^{2}+\beta_{10} \text { D03 }_{i} \text { LOT }_{i} \\
& +\beta_{11} \text { D03 }_{i} \text { AGE }_{i}+\beta_{12} \text { D03 }_{i} \text { HSIZE }_{i} \text { AGE }_{i}+\beta_{13} \text { D03 }_{i} \text { VIEW }_{i}
\end{aligned}
$$

Marginal effect of LOT $_{i}$ on PRICE $_{i}$:

$$
\begin{aligned}
\frac{\partial \mathrm{E}\left(\operatorname{PRICE}_{\mathrm{i}} \mid \bullet\right)}{\partial \mathrm{LOT}_{\mathrm{i}}} & =\beta_{3}+\beta_{10} \mathrm{D} 03_{\mathrm{i}} & & \\
& =\beta_{3}+\beta_{10} & & \text { in } 2003 \\
& =\beta_{3} & & \text { in } 1993
\end{aligned}
$$

4. (continued)

(7 marks)

(a) The marginal effect of house size on price was zero in 1993.

Marginal effect of HSIZE $_{i}$ on PRICE $_{i}$:

$$
\begin{array}{rlr}
\frac{\partial \mathrm{E}\left(\text { PRICE }_{\mathrm{i}} \bullet \bullet\right)}{\partial \mathrm{HSIZE}_{\mathrm{i}}} & =\beta_{1}+2 \beta_{2} \text { HSIZE }_{\mathrm{i}}+\beta_{5} \text { AGE }_{\mathrm{i}}+\beta_{8} \mathrm{D} 03_{\mathrm{i}}+2 \beta_{9} \mathrm{DO}_{\mathrm{i}} \text { HSIZE }_{\mathrm{i}}+\beta_{12} \text { D03 }_{\mathrm{i}} \mathrm{AGE}_{\mathrm{i}} \\
& =\beta_{1}+2 \beta_{2} \text { HSIZE }_{\mathrm{i}}+\beta_{5} \text { AGE }_{\mathrm{i}}+\beta_{8}+2 \beta_{9} \text { HSIZE }_{\mathrm{i}}+\beta_{12} \text { AGE }_{\mathrm{i}} & \\
& =\left(\beta_{1}+\beta_{8}\right)+2\left(\beta_{2}+\beta_{9}\right) \text { HSIZE }_{\mathrm{i}}+\left(\beta_{5}+\beta_{12}\right) \text { AGE }_{\mathrm{i}} & \text { in } 2003 \\
& =\beta_{1}+2 \beta_{2} \text { HSIZE }_{\mathrm{i}}+\beta_{5} \text { AGE }_{\mathrm{i}} & \text { in } 1993
\end{array}
$$

$\mathrm{H}_{0}: \beta_{1}=0$ and $\beta_{2}=0$ and $\beta_{5}=0$
$\mathrm{H}_{1}: \beta_{1} \neq 0$ and/or $\beta_{2} \neq 0$ and/or $\beta_{5} \neq 0$

Test: F-test

(7 marks)

(b) The relationship of house size to price exhibited increasing marginal returns in 2003.

$H_{0}: \beta_{2}+\beta_{9}=0$	or	$2\left(\beta_{2}+\beta_{9}\right)=0$
$H_{1}: \beta_{2}+\beta_{9}>0$	or	$2\left(\beta_{2}+\beta_{9}\right)>0$

Test: right-tail t-test

Marginal effect of AGE $_{i}$ on PRICE $_{i}$:

$$
\begin{array}{rlrl}
\frac{\partial \mathrm{E}\left(\text { PRICE }_{\mathrm{i}} \bullet\right)}{\partial \mathrm{AGE}_{\mathrm{i}}} & =\beta_{4}+\beta_{5} \mathrm{HSIZE}_{\mathrm{i}}+\beta_{11} \text { D03 }_{\mathrm{i}}+\beta_{12} \text { D03 }_{\mathrm{i}} \text { HSIZE }_{\mathrm{i}} \\
& =\beta_{4}+\beta_{5} \text { HSIZE }_{\mathrm{i}}+\beta_{11}+\beta_{12} \operatorname{HSIZE}_{\mathrm{i}}=\left(\beta_{4}+\beta_{11}\right)+\left(\beta_{5}+\beta_{12}\right) \text { HSIZE }_{\mathrm{i}} & \text { in } 2003 \\
& =\beta_{4}+\beta_{5} \text { HSIZE }_{\mathrm{i}} & & \text { in } 1993
\end{array}
$$

(7 marks)

(c) The marginal effect of house age on price was the same in 2003 as it was in 1993.
$\mathrm{H}_{0}: \beta_{11}=0$ and $\beta_{12}=0$
$\mathrm{H}_{1}: \beta_{11} \neq 0$ and/or $\beta_{12} \neq 0$

Test: F-test

(7 marks)

(d) Holding constant house size, lot size and view status, house prices in 2003 were unrelated to house age.
$\mathrm{H}_{0}: \beta_{4}+\beta_{11}=0$ and $\beta_{5}+\beta_{12}=0$
$\mathrm{H}_{1}: \beta_{4}+\beta_{11} \neq 0$ and/or $\beta_{5}+\beta_{12} \neq 0$

Test: F-test

4. (continued)

(7 marks)
(e) House size and house age were substitutable for one another in determining house prices in 2003.

Marginal effect of AGE $_{\mathbf{i}}$ on PRICE $_{\mathbf{i}}$:

$$
\begin{aligned}
\frac{\partial \mathrm{E}\left(\operatorname{PRICE}_{\mathrm{i}} \mid \bullet\right)}{\partial \mathrm{AGE}_{\mathrm{i}}} & =\beta_{4}+\beta_{5} \mathrm{HSIZE}_{\mathrm{i}}+\beta_{11} \mathrm{D}_{\mathrm{i}}+3_{12} \mathrm{D}_{\mathrm{i}} 3_{\mathrm{i}} \text { HSIZE }_{\mathrm{i}} \\
& =\beta_{4}+\beta_{5} \text { HSIZE }_{\mathrm{i}}+\beta_{11}+\beta_{12} \text { HSIZE }_{\mathrm{i}}=\left(\beta_{4}+\beta_{11}\right)+\left(\beta_{5}+\beta_{12}\right) \mathrm{HSIZE}_{\mathrm{i}} \quad \text { in } 2003
\end{aligned}
$$

$\mathrm{H}_{0}: \beta_{5}+\beta_{12}=0$
$\mathrm{H}_{1}: \beta_{5}+\beta_{12}<0$
Test: left-tail t-test

4. (continued)

(7 marks)
(f) The marginal effect of house size on price was constant in 2003.

Marginal effect of HSIZE $_{i}$ on PRICE ${ }_{i}$:

$$
\begin{aligned}
& \frac{\partial \mathrm{E}\left(\text { PRICE }_{\mathrm{i}} \mid \bullet\right)}{\partial \mathrm{HSIZE}_{\mathrm{i}}}=\beta_{1}+2 \beta_{2} \text { HSIZE }_{\mathrm{i}}+\beta_{5} \text { AGE }_{\mathrm{i}}+\beta_{8}{\mathrm{D} 03_{i}}+2 \beta_{9} \mathrm{DO}_{\mathrm{i}} \mathrm{HSIZE}_{\mathrm{i}}+\beta_{12} \text { D03 }_{\mathrm{i}} \text { AGE }_{\mathrm{i}} \\
& =\beta_{1}+2 \beta_{2} \text { HSIZE }_{i}+\beta_{5} \text { AGE }_{\mathrm{i}}+\beta_{8}+2 \beta_{9} \text { HSIZE }_{\mathrm{i}}+\beta_{12} \text { AGE }_{\mathrm{i}} \\
& =\left(\beta_{1}+\beta_{8}\right)+2\left(\beta_{2}+\beta_{9}\right) \text { HSIZE }_{i}+\left(\beta_{5}+\beta_{12}\right) \text { AGE }_{\mathrm{i}} \\
& \text { in } 2003 \\
& =\beta_{1}+2 \beta_{2} \text { HSIZE }_{\mathrm{i}}+\beta_{5} \text { AGE }_{\mathrm{i}} \\
& \text { in } 1993
\end{aligned}
$$

$\mathrm{H}_{0}: \beta_{2}+\beta_{9}=0$ and $\beta_{5}+\beta_{12}=0$
$\mathrm{H}_{1}: \beta_{2}+\beta_{9} \neq 0$ and/or $\beta_{5}+\beta_{12} \neq 0$
Test: F-test

4. (continued)

(7 marks)
(g) The marginal effect of lot size on price was zero in both 1993 and 2003.

Marginal effect of LOT $_{i}$ on PRICE $_{i}$:

$$
\begin{aligned}
\frac{\partial \mathrm{E}\left(\operatorname{PRICE}_{\mathrm{i}} \mid \bullet\right)}{\partial \mathrm{LOT}_{\mathrm{i}}} & =\beta_{3}+\beta_{10} \mathrm{D} 03_{\mathrm{i}} & & \\
& =\beta_{3}+\beta_{10} & & \text { in } 2003 \\
& =\beta_{3} & & \text { in } 1993
\end{aligned}
$$

$\mathrm{H}_{0}: \beta_{3}=0$ and $\beta_{10}=0$
OR
$\beta_{3}=0$ and $\beta_{3}+\beta_{10}=0$
$\mathrm{H}_{1}: \beta_{3} \neq 0$ and/or $\beta_{10} \neq 0$
OR
$\beta_{3} \neq 0$ and/or $\beta_{3}+\beta_{10} \neq 0$

Test: F-test

4. (continued)

(7 marks)

(h) The mean price of houses with a view was equal to the mean price of houses without a view in both 1993 and 2003.

Regression function for mean house prices in 2003, for which D03 $_{\mathrm{i}}=\mathbf{1}$:

$$
\begin{aligned}
& \mathrm{E}\left(\text { PRICE }_{\mathrm{i}} \mid \mathrm{DO}_{\mathrm{i}}=1\right)=\beta_{0}+\beta_{1} \text { HSIZE }_{i}+\beta_{2} \text { HSIZE }_{\mathrm{i}}^{2}+\beta_{3} \text { LOT }_{i}+\beta_{4} \text { AGE }_{\mathrm{i}}+\beta_{5} \text { HSIZE }_{\mathrm{i}} \text { AGE }_{\mathrm{i}} \\
& +\beta_{6} \text { VIEW }_{i}+\beta_{7}+\beta_{8} \text { HSIZE }_{i}+\beta_{9} \text { HSIZE }_{i}^{2}+\beta_{10} \text { LOT }_{i} \\
& +\beta_{11} \text { AGE }_{\mathrm{i}}+\beta_{12} \text { HSIZE }_{\mathrm{i}} \text { AGE }_{\mathrm{i}}+\beta_{13} \text { VIEW }_{\mathrm{i}}
\end{aligned}
$$

Regression function for mean house prices in 1993, for which $\mathbf{D 0 3}_{\mathrm{i}}=\mathbf{0}$:

$$
\mathrm{E}\left(\text { PRICE }_{i} \mid \text { D03 }_{i}=1\right)=\beta_{0}+\beta_{1} \text { HSIZE }_{i}+\beta_{2} \text { HSIZE }_{i}^{2}+\beta_{3} \mathrm{LOT}_{\mathrm{i}}+\beta_{4} \mathrm{AGE}_{\mathrm{i}}+\beta_{5} \mathrm{HSIZE}_{\mathrm{i}} \mathrm{AGE}_{\mathrm{i}}+\beta_{6} \text { VIEW }_{\mathrm{i}}
$$

Marginal effect of VIEW $_{\mathbf{i}}$ in $2003=\beta_{6}+\beta_{13}$
Marginal effect of VIEW $\mathbf{W}_{\mathbf{i}}$ in $1993=\beta_{6}$

$$
\begin{array}{lll}
\mathrm{H}_{0}: \beta_{6}=0 \text { and } \beta_{13}=0 & \text { OR } & \beta_{6}=0 \text { and } \beta_{6}+\beta_{13}=0 \\
\mathrm{H}_{1}: \beta_{6} \neq 0 \text { and/or } \beta_{13} \neq 0 & \text { OR } & \beta_{6} \neq 0 \text { and/or } \beta_{6}+\beta_{13} \neq 0
\end{array}
$$

Test: F-test

4. (continued)

(7 marks)

(i) The mean price of houses in 1993 was equal to the mean price of similar houses in 2003.

Conditional mean price difference between 2003 and 1993:

$$
\begin{aligned}
& \mathrm{E}\left(\text { PRICE }_{\mathrm{i}} \mid{\mathrm{D} 03_{\mathrm{i}}}=1\right)-\mathrm{E}\left(\text { PRICE }_{\mathrm{i}} \mid \mathrm{D}_{\mathrm{i}}=0\right)= \\
& \beta_{7}+\beta_{8} \text { HSIZE }_{i}+\beta_{9} \text { HSIZE }_{i}^{2}+\beta_{10} \text { LOT }_{i}+\beta_{11} \text { AGE }_{i}+\beta_{12} \text { HSIZE }_{i} \text { AGE }_{i}+\beta_{13} \text { VIEW }_{i}
\end{aligned}
$$

$\mathrm{H}_{0}: \beta_{7}=0$ and $\beta_{8}=0$ and $\beta_{9}=0$ and $\beta_{10}=0$ and $\beta_{11}=0$ and $\beta_{12}=0$ and $\beta_{13}=0$
$\mathrm{H}_{1}: \beta_{7} \neq 0$ or $\beta_{8} \neq 0$ or $\beta_{9} \neq 0$ or $\beta_{10} \neq 0$ or $\beta_{11} \neq 0$ or $\beta_{12} \neq 0$ or $\beta_{13} \neq 0$
Test: F-test

4. (continued)

(7 marks)

(j) For houses with 2500 square feet of living area and lots of 6000 square feet that were 10 years old and had a view, mean price in 2003 was greater than mean price in 1993.

Evaluate 2003-1993 mean price difference

$$
\begin{aligned}
E\left(\text { PRICE }_{i} \mid \text { D03 }_{i}=1\right)- & E\left(\text { PRICE }_{i} \mid \text { D03 }_{i}=0\right)= \\
& \beta_{7}+\beta_{8} \text { HSIZE }_{i}+\beta_{9} \text { HSIZE }_{i}^{2}+\beta_{10} \text { LOT }_{i}+\beta_{11} \text { AGE }_{i}+\beta_{12} \text { HSIZE }_{i} \text { AGE }_{i}+\beta_{13} \text { VIEW }_{i}
\end{aligned}
$$

at: $\operatorname{HSIZE}_{\mathrm{i}}=25 ; \mathrm{LOT}_{\mathrm{i}}=60 ; \quad \mathrm{AGE}_{\mathrm{i}}=10 ; \mathrm{VIEW}_{\mathrm{i}}=1$.
$\mathrm{H}_{0}: \beta_{7}+\beta_{8} 25+\beta_{9}(25)^{2}+\beta_{10} 60+\beta_{11} 10+\beta_{12}(25)(10)+\beta_{13}=0$
or
$\beta_{7}+\beta_{8} 25+\beta_{9} 625+\beta_{10} 60+\beta_{11} 10+\beta_{12} 250+\beta_{13}=0$
$H_{1}: \beta_{7}+\beta_{8} 25+\beta_{9}(25)^{2}+\beta_{10} 60+\beta_{11} 10+\beta_{12}(25)(10)+\beta_{13}>0$
or
$\beta_{7}+\beta_{8} 25+\beta_{9} 625+\beta_{10} 60+\beta_{11} 10+\beta_{12} 250+\beta_{13}>0$
Test: right-tail t-test

