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The modified version is known as the centered R2, and we will denote it by
R2

c . It is defined as

R2
c ≡ 1− ‖MXy‖2

‖Mιy‖2
, (1.09)

where
Mι ≡ I− ι

(
ι>ι
)−1

ι>= I− n−1ιι>

is the matrix that projects off the space spanned by the constant vector ι,
which is simply a vector of n ones. When any vector is multiplied by Mι,
the result is a vector of deviations from the mean. Thus what the centered
R2 measures is the proportion of the total sum of squares of the regressand
around its mean that is explained by the regressors.

An alternative expression for R2
c is

‖PXMιy‖2

‖Mιy‖2
, (1.10)

but this is equal to (1.09) only if PXι = ι, which means that S(X) must
include the vector ι (so that either one column of X must be a constant, or
some linear combination of the columns of X must equal a constant). In this
case, the equality must hold, because

MXMιy = MX(I− Pι)y = MXy,

the second equality here being a consequence of the fact that MX annihilates
Pι when ι belongs to S(X). When this is not the case and (1.10) is not valid,
there is no guarantee that R2

c will be positive. After all, there will be many
cases in which a regressand y is better explained by a constant term than
by some set of regressors that does not include a constant term. Clearly, if
(1.10) is valid, R2

c must lie between 0 and 1, since (1.10) is then simply the
uncentered R2 for a regression of Mιy on X.

The use of the centered R2 when X does not include a constant term or
the equivalent is thus fraught with difficulties. Some programs for statistics
and econometrics refuse to print an R2 at all in this circumstance; others print
R2

u (without always warning the user that they are doing so); some print R2
c ,

defined as (1.09), which may be either positive or negative; and some print
still other quantities, which would be equal to R2

c if X included a constant
term but are not when it does not. Users of statistical software, be warned!

Notice that R2 is an interesting number only because we used the least
squares estimator β̂ to estimate β. If we chose an estimate of β, say β̃, in
any other way, so that the triangle in Figure 1.3 were no longer a right-angled
triangle, we would find that the equivalents of the two definitions of R2, (1.09)
and (1.10), were not the same:

1− ‖y −Xβ̃‖2

‖y‖2
6= ‖Xβ̃‖2

‖y‖2
.
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condition. Unlike asymptotic equality, the big-O relation does not require
that the ratio f(n)/g(n) should have any limit. It may have, but it may also
oscillate boundedly for ever.

The relations we have defined so far are for nonstochastic real-valued
sequences. Of greater interest to econometricians are the so-called stochastic
order relations. These are perfectly analogous to the relations we have defined
but instead use one or other of the forms of stochastic convergence. Formally:

Definition 4.8.

If {an} is a sequence of random variables, and g(n) is a real-valued
function of the positive integer argument n, then the notation an =
op
(
g(n)

)
means that

plim
n→∞

(
an
g(n)

)
= 0.

Similarly, the notation an = Op

(
g(n)

)
means that, for all ε > 0, there

exist a constant K and a positive integer N such that

Pr

(∣∣∣∣ an
g(n)

∣∣∣∣ > K

)
< ε for all n > N.

If {bn} is another sequence of random variables, the notation an
a
= bn

means that

plim
n→∞

(
an
bn

)
= 1.

Comparable definitions may be written down for almost sure convergence
and convergence in distribution, but we will not use these. In fact, after
this section we will not bother to use the subscript p in the stochastic order
symbols, because it will always be plain when random variables are involved.
When they are, O(·) and o(·) should be read as Op(·) and op(·).

The order symbols are very easy to manipulate, and we now present a
few useful rules for doing so. For simplicity, we restrict ourselves to functions
g(n) that are just powers of n, for that is all we use in this book. The rules
for addition and subtraction are

O(np)±O(nq) = O
(
nmax(p,q)

)
;

o(np)± o(nq) = o
(
nmax(p,q)

)
;

O(np)± o(nq) = O(np) if p ≥ q;

O(np)± o(nq) = o(nq) if p < q.

The rules for multiplication, and by implication for division, are

O(np)O(nq) = O(np+q);

o(np)o(nq) = o(np+q);

O(np)o(nq) = o(np+q).
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since the distribution of the ut’s has not been specified. Thus, for a sample
of size n, the model M described by (5.08) is the set of all DGPs generating
samples y of size n such that the expectation of yt conditional on some infor-
mation set Ωt that includes Zt is xt(β) for some parameter vector β ∈ Rk,
and such that the differences yt − xt(β) are independently distributed error
terms with common variance σ2, usually unknown.

It will be convenient to generalize this specification of the DGPs in M a
little, in order to be able to treat dynamic models, that is, models in which
there are lagged dependent variables. Therefore, we explicitly recognize the
possibility that the regression function xt(β) may include among its (until
now implicit) dependences an arbitrary but bounded number of lags of the
dependent variable itself. Thus xt may depend on yt−1, yt−2, . . . , yt−l, where l
is a fixed positive integer that does not depend on the sample size. When
the model uses time-series data, we will therefore take xt(β) to mean the
expectation of yt conditional on an information set that includes the entire
past of the dependent variable, which we can denote by {ys}t−1

s=1, and also the
entire history of the exogenous variables up to and including the period t, that
is, {Zs}ts=1. The requirements on the disturbance vector u are unchanged.

For asymptotic theory to be applicable, we must next provide a rule for
extending (5.08) to samples of arbitrarily large size. For models which are
not dynamic (including models estimated with cross-section data, of course),
so that there are no time trends or lagged dependent variables in the regres-
sion functions xt, there is nothing to prevent the simple use of the fixed-in-
repeated-samples notion that we discussed in Section 4.4. Specifically, we con-
sider only sample sizes that are integer multiples of the actual sample size m
and then assume that xNm+t(β) = xt(β) for N > 1. This assumption makes
the asymptotics of nondynamic models very simple compared with those for
dynamic models.3

Some econometricians would argue that the above solution is too simple-
minded when one is working with time-series data and would prefer a rule
like the following. The variables Zt appearing in the regression functions will
usually themselves display regularities as time series and may be susceptible
to modeling as one of the standard stochastic processes used in time-series
analysis; we will discuss these standard processes at somewhat greater length
in Chapter 10. In order to extend the DGP (5.08), the out-of-sample values for
the Zt’s should themselves be regarded as random, being generated by appro-
priate processes. The introduction of this additional randomness complicates
the asymptotic analysis a little, but not really a lot, since one would always
assume that the stochastic processes generating the Zt’s were independent of
the stochastic process generating the disturbance vector u.

3 Indeed, even for linear dynamic models it is by no means trivial to show that
least squares yields consistent, asymptotically normal estimates. The classic
reference on this subject is Mann and Wald (1943).
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The fundamental result that makes the DLR possible is that, for this
class of models, the information matrix I(θ) satisfies the equality

I(θ) = plim
n→∞

(
1−
n

(
F>(y,θ)F (y,θ) +K>(y,θ)K(y,θ)

))
(14.20)

and so can be consistently estimated by

1−
n

(
F>(y, θ̈)F (y, θ̈) +K>(y, θ̈)K(y, θ̈)

)
, (14.21)

where θ̈ is any consistent estimator of θ. We are interested in the implications
of (14.20) rather than how it is derived. The derivation makes use of some
rather special properties of the normal distribution and may be found in
Davidson and MacKinnon (1984a).

The principal implication of (14.20) is that a certain artificial regression,
which we call the DLR, has all the properties that we expect an artificial
regression to have. The DLR may be written as[

f(y,θ)
ι

]
=

[
−F (y,θ)

K(y,θ)

]
b + residuals. (14.22)

This artificial regression has 2n artificial observations. The regressand is
ft(yt,θ) for observation t and unity for observation t+ n, and the regressors
corresponding to θ are −Ft(y,θ) for observation t and Kt(y,θ) for observa-
tion t + n, where Ft and Kt denote, respectively, the tth rows of F and K.
Intuitively, the reason we need a double-length regression here is that each
genuine observation makes two contributions to the loglikelihood function: a
sum-of-squares term − 1

2f
2
t and a Jacobian term kt. As a result, the gradient

and the information matrix each involve two parts as well, and the way to
take both of these into account is to incorporate two artificial observations
into the artificial regression for each genuine one.

Why is (14.22) a valid artificial regression? As we noted when we dis-
cussed the OPG regression in Section 13.7, there are two principal conditions
that an artificial regression must satisfy. It is worth stating these conditions
somewhat more formally here.4 Let r(y,θ) denote the regressand for some
artificial regression and let R(y,θ) denote the matrix of regressors. Let the
number of rows of both r(y,θ) and R(y,θ) be n∗, which will generally be
either n or an integer multiple of n. The regression of r(y,θ) on R(y,θ) will
have the properties of an artificial regression if

R>(y,θ)r(y,θ) = ρ(θ)g(y,θ) and (14.23)

plim
n→∞

θ

(
1−
n
R>(y, θ̈)R(y, θ̈)

)
= ρ(θ) I(θ), (14.24)

4 For a fuller treatment of this topic, see Davidson and MacKinnon (1990).
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where θ̈ denotes any consistent estimator of θ. The notation plimθ indicates,
as usual, that the probability limit is being taken under the DGP characterized
by the parameter vector θ, and ρ(θ) is a scalar defined as

ρ(θ) ≡ plim
n→∞

θ

(
1

n∗ r
>(y,θ)r(y,θ)

)
.

Because ρ(θ) is equal to unity for both the OPG regression and the DLR,
those two artificial regressions satisfy the simpler conditions

R>(y,θ)r(y,θ) = g(y,θ) and (14.25)

plim
n→∞

θ

(
1−
n
R>(y, θ̈)R(y, θ̈)

)
= I(θ), (14.26)

as well as the original conditions (14.23) and (14.24). However, these simpler
conditions are not satisfied by the GNR and are thus evidently too simple in
general.

It is now easy to see that the DLR (14.21) satisfies conditions (14.25) and
(14.26). For the first of these, simple calculation shows that

[
−F (y,θ)

K(y,θ)

]>[
f(y,θ)

ι

]
= −F>(y,θ)f(y,θ) +K>(y,θ)ι,

which by (14.19) is equal to the gradient g(y,θ). For the second, we see that

[
−F (y,θ)

K(y,θ)

]>[−F (y,θ)

K(y,θ)

]
= F>(y,θ)F (y,θ) +K>(y,θ)K(y,θ).

The right-hand side here is just the expression that appears in the fundamental
result (14.20). Hence it is clear that the DLR must satisfy (14.26). All this
discussion assumes, of course, that the matrices F (y,θ) and K(y,θ) satisfy
appropriate regularity conditions, which may not always be easy to verify in
practice; see Davidson and MacKinnon (1984a).

The DLR can be used in all the same ways that the GNR and the OPG
regression can be used. In particular, it can be used

(i) to verify that the first-order conditions for a maximum of the log-
likelihood function are satisfied sufficiently accurately,

(ii) to calculate estimated covariance matrices,

(iii) to calculate test statistics,

(iv) to calculate one-step efficient estimates, and

(v) as a key part of procedures for finding ML estimates.
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second term looks like the loglikelihood function for a linear regression model
with normal errors. The third term is one that we have not seen before.

Maximum likelihood estimates can be obtained in the usual way by max-
imizing (15.55). However, this maximization is relatively burdensome, and so
instead of ML estimation a computationally simpler technique proposed by
Heckman (1976) is often used. Heckman’s two-step method is based on the
fact that the first equation of (15.53) can be rewritten as

y∗t = Xtβ + ρσvt + et. (15.56)

The idea is to replace y∗t by yt and vt by its mean conditional on zt = 1 and on
the realized value of Wtγ. As can be seen from (15.42), this conditional mean
is φ(Wtγ)/Φ(Wtγ), a quantity that is sometimes referred to as the inverse
Mills ratio. Hence regression (15.56) becomes

yt = Xtβ + ρσ
φ(Wtγ)

Φ(Wtγ)
+ residual. (15.57)

It is now easy to see how Heckman’s two-step method works. In the first step,
an ordinary probit model is used to obtain consistent estimates γ̂ of the para-
meters of the selection equation. In the second step, the selectivity regressor
φ(Wtγ)/Φ(Wtγ) is evaluated at γ̂, and regression (15.57) is estimated by
OLS for the observations with zt = 1 only. This regression provides a test
for sample selectivity as well as an estimation technique. The coefficient on
the selectivity regressor is ρσ. Since σ 6= 0, the ordinary t statistic for this
coefficient to be zero can be used to test the hypothesis that ρ = 0; it will be
asymptotically distributed as N(0, 1) under the null hypothesis. Thus, if this
coefficient is not significantly different from zero, the investigator may reason-
ably decide that selectivity is not a problem for this data set and proceed to
use least squares as usual.

Even when the hypothesis that ρ = 0 cannot be accepted, OLS estimation
of regression (15.57) yields consistent estimates of β. However, the OLS
covariance matrix is valid only when ρ = 0. In this respect, the situation
is very similar to the one encountered at the end of the previous section,
when we were testing for possible simultaneity bias in models with truncated
or censored dependent variables. There are actually two problems. First of
all, the residuals in (15.57) will be heteroskedastic, since a typical residual is
equal to

ut − ρσ
φ(Wtγ)

Φ(Wtγ)
.

Secondly, the selectivity regressor is being treated like any other regressor,
when it is in fact part of the error term. One could solve the first problem by
using a heteroskedasticity-consistent covariance matrix estimator (see Chap-
ter 16), but that would not solve the second one. It is possible to obtain a



15.9 Conclusion 545

valid covariance matrix estimate to go along with the two-step estimates of β
from (15.57). However, the calculation is cumbersome, and the estimated co-
variance matrix is not always positive definite. See Greene (1981b) and Lee
(1982) for more details.

It should be stressed that the consistency of this two-step estimator, like
that of the ML estimator, depends critically on the assumption of normality.
This can be seen from the specification of the selectivity regressor as the
inverse Mills ratio φ(Wtγ)/Φ(Wtγ). When the elements of Wt are the same
as, or a subset of, the elements of Xt, as is often the case in practice, it is
only the nonlinearity of φ(Wtγ)/Φ(Wtγ) as a function of Wtγ that makes the
parameters of the second-step regression identifiable. The exact form of the
nonlinear relationship depends critically on the normality assumption. Pagan
and Vella (1989), Smith (1989), and Peters and Smith (1991) discuss various
ways to test this crucial assumption. Many of the tests suggested by these
authors are applications of the OPG regression.

Although the two-step method for dealing with sample selectivity is
widely used, our recommendation would be to use regression (15.57) only as
a procedure for testing the null hypothesis that selectivity bias is not present.
When that hypothesis is rejected, ML estimation based on (15.55) should
probably be used in preference to the two-step method, unless it is computa-
tionally prohibitive.

15.9 Conclusion

Our treatment of binary response models in Sections 15.2 to 15.4 was reason-
ably detailed, but the discussions of more general qualitative response models
and limited dependent variable models were necessarily quite superficial. Any-
one who intends to do empirical work that employs this type of model will
wish to consult some of the more detailed surveys referred to above. All of
the methods that we have discussed for handling limited dependent variables
rely heavily on the assumptions of normality and homoskedasticity. These
assumptions should always be tested. A number of methods for doing so have
been proposed; see, among others, Bera, Jarque, and Lee (1984), Lee and
Maddala (1985), Blundell (1987), Chesher and Irish (1987), Pagan and Vella
(1989), Smith (1989), and Peters and Smith (1991).
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that this determinant is a polynomial in λ, of degree n if A is n × n. The
fundamental theorem of algebra tells us that such a polynomial has n complex
roots, say λ1, . . . , λn. To each λi there must correspond an eigenvector xi.
This eigenvector is determined only up to a scale factor, because if xi is an
eigenvector corresponding to λi, then so is αxi for any nonzero scalar α. The
eigenvector xi does not necessarily have real elements if λi itself is not real.

If A is a real symmetric matrix, it can be shown that the eigenvalues λi

are in fact all real and that the eigenvectors can be chosen to be real as well.
If A is a positive definite matrix, then all its eigenvalues are positive. This
follows from the facts that

x>Ax = λx>x

and that both x>x and x>Ax are positive. The eigenvectors of a real sym-
metric matrix can be chosen to be mutually orthogonal. If one looks at two
eigenvectors xi and xj , corresponding to two distinct eigenvalues λi and λj ,
then xi and xj are necessarily orthogonal:

λixj
>xi = xj

>Axi = (Axj)
>xi = λjxj

>xi,

which is impossible unless xj
>xi = 0. If not all the eigenvalues are distinct,

then two (or more) eigenvectors may correspond to one and the same eigen-
value. When that happens, these two eigenvectors span a space that is or-
thogonal to all other eigenvalues by the reasoning just given. Since any linear
combination of the two eigenvectors will also be an eigenvector correspond-
ing to the one eigenvalue, one may choose an orthogonal set of them. Thus,
whether or not all the eigenvalues are distinct, eigenvectors may be chosen to
be orthonormal, by which we mean that they are mutually orthogonal and
each has norm equal to 1. Thus the eigenvectors of a real symmetric matrix
provide an orthonormal basis.

Let U ≡ [x1 · · · xn ] be a matrix the columns of which are an orthonor-
mal set of eigenvectors of A, corresponding to the eigenvalues λi, i = 1, . . . , n.
Then we can write the eigenvalue relationship (A.28) for all the eigenvalues
at once as

AU = UΛ, (A.30)

where Λ is a diagonal matrix with λi as its ith diagonal element. The ith

column of AU is Axi, and the ith column of UΛ is λixi. Since the columns of
U are orthonormal, we find that U>U = I, which implies that U>= U−1. A
matrix with this property is said to be an orthogonal matrix. Postmultiplying
(A.30) by U> gives

A = UΛU>. (A.31)

This equation expresses the diagonalization of A.
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