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The modified version is known as the centered R2, and we will denote it by
R2

c . It is defined as

R2
c ≡ 1− ‖MXy‖2

‖Mιy‖2
, (1.09)

where
Mι ≡ I− ι

(
ι>ι
)−1

ι>= I− n−1ιι>

is the matrix that projects off the space spanned by the constant vector ι,
which is simply a vector of n ones. When any vector is multiplied by Mι,
the result is a vector of deviations from the mean. Thus what the centered
R2 measures is the proportion of the total sum of squares of the regressand
around its mean that is explained by the regressors.

An alternative expression for R2
c is

‖PXMιy‖2

‖Mιy‖2
, (1.10)

but this is equal to (1.09) only if PXι = ι, which means that S(X) must
include the vector ι (so that either one column of X must be a constant, or
some linear combination of the columns of X must equal a constant). In this
case, the equality must hold, because

MXMιy = MX(I− Pι)y = MXy,

the second equality here being a consequence of the fact that MX annihilates
Pι when ι belongs to S(X). When this is not the case and (1.10) is not valid,
there is no guarantee that R2

c will be positive. After all, there will be many
cases in which a regressand y is better explained by a constant term than
by some set of regressors that does not include a constant term. Clearly, if
(1.10) is valid, R2

c must lie between 0 and 1, since (1.10) is then simply the
uncentered R2 for a regression of Mιy on X.

The use of the centered R2 when X does not include a constant term or
the equivalent is thus fraught with difficulties. Some programs for statistics
and econometrics refuse to print an R2 at all in this circumstance; others print
R2

u (without always warning the user that they are doing so); some print R2
c ,

defined as (1.09), which may be either positive or negative; and some print
still other quantities, which would be equal to R2

c if X included a constant
term but are not when it does not. Users of statistical software, be warned!

Notice that R2 is an interesting number only because we used the least
squares estimator β̂ to estimate β. If we chose an estimate of β, say β̃, in
any other way, so that the triangle in Figure 1.3 were no longer a right-angled
triangle, we would find that the equivalents of the two definitions of R2, (1.09)
and (1.10), were not the same:

1− ‖y −Xβ̃‖2

‖y‖2
6= ‖Xβ̃‖2

‖y‖2
.
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condition. Unlike asymptotic equality, the big-O relation does not require
that the ratio f(n)/g(n) should have any limit. It may have, but it may also
oscillate boundedly for ever.

The relations we have defined so far are for nonstochastic real-valued
sequences. Of greater interest to econometricians are the so-called stochastic
order relations. These are perfectly analogous to the relations we have defined
but instead use one or other of the forms of stochastic convergence. Formally:

Definition 4.8.

If {an} is a sequence of random variables, and g(n) is a real-valued
function of the positive integer argument n, then the notation an =
op
(
g(n)

)
means that

plim
n→∞

(
an
g(n)

)
= 0.

Similarly, the notation an = Op

(
g(n)

)
means that, for all ε > 0, there

exist a constant K and a positive integer N such that

Pr

(∣∣∣∣ an
g(n)

∣∣∣∣ > K

)
< ε for all n > N.

If {bn} is another sequence of random variables, the notation an
a
= bn

means that

plim
n→∞

(
an
bn

)
= 1.

Comparable definitions may be written down for almost sure convergence
and convergence in distribution, but we will not use these. In fact, after
this section we will not bother to use the subscript p in the stochastic order
symbols, because it will always be plain when random variables are involved.
When they are, O(·) and o(·) should be read as Op(·) and op(·).

The order symbols are very easy to manipulate, and we now present a
few useful rules for doing so. For simplicity, we restrict ourselves to functions
g(n) that are just powers of n, for that is all we use in this book. The rules
for addition and subtraction are

O(np)±O(nq) = O
(
nmax(p,q)

)
;

o(np)± o(nq) = o
(
nmax(p,q)

)
;

O(np)± o(nq) = O(np) if p ≥ q;

O(np)± o(nq) = o(nq) if p < q.

The rules for multiplication, and by implication for division, are

O(np)O(nq) = O(np+q);

o(np)o(nq) = o(np+q);

O(np)o(nq) = o(np+q).
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since the distribution of the ut’s has not been specified. Thus, for a sample
of size n, the model M described by (5.08) is the set of all DGPs generating
samples y of size n such that the expectation of yt conditional on some infor-
mation set Ωt that includes Zt is xt(β) for some parameter vector β ∈ Rk,
and such that the differences yt − xt(β) are independently distributed error
terms with common variance σ2, usually unknown.

It will be convenient to generalize this specification of the DGPs in M a
little, in order to be able to treat dynamic models, that is, models in which
there are lagged dependent variables. Therefore, we explicitly recognize the
possibility that the regression function xt(β) may include among its (until
now implicit) dependences an arbitrary but bounded number of lags of the
dependent variable itself. Thus xt may depend on yt−1, yt−2, . . . , yt−l, where l
is a fixed positive integer that does not depend on the sample size. When
the model uses time-series data, we will therefore take xt(β) to mean the
expectation of yt conditional on an information set that includes the entire
past of the dependent variable, which we can denote by {ys}t−1

s=1, and also the
entire history of the exogenous variables up to and including the period t, that
is, {Zs}ts=1. The requirements on the disturbance vector u are unchanged.

For asymptotic theory to be applicable, we must next provide a rule for
extending (5.08) to samples of arbitrarily large size. For models which are
not dynamic (including models estimated with cross-section data, of course),
so that there are no time trends or lagged dependent variables in the regres-
sion functions xt, there is nothing to prevent the simple use of the fixed-in-
repeated-samples notion that we discussed in Section 4.4. Specifically, we con-
sider only sample sizes that are integer multiples of the actual sample size m
and then assume that xNm+t(β) = xt(β) for N > 1. This assumption makes
the asymptotics of nondynamic models very simple compared with those for
dynamic models.3

Some econometricians would argue that the above solution is too simple-
minded when one is working with time-series data and would prefer a rule
like the following. The variables Zt appearing in the regression functions will
usually themselves display regularities as time series and may be susceptible
to modeling as one of the standard stochastic processes used in time-series
analysis; we will discuss these standard processes at somewhat greater length
in Chapter 10. In order to extend the DGP (5.08), the out-of-sample values for
the Zt’s should themselves be regarded as random, being generated by appro-
priate processes. The introduction of this additional randomness complicates
the asymptotic analysis a little, but not really a lot, since one would always
assume that the stochastic processes generating the Zt’s were independent of
the stochastic process generating the disturbance vector u.

3 Indeed, even for linear dynamic models it is by no means trivial to show that
least squares yields consistent, asymptotically normal estimates. The classic
reference on this subject is Mann and Wald (1943).



278 The Method of Maximum Likelihood

The LM statistic (8.76) is numerically equal to a test based on the score
vector g(θ̃). By the first set of first-order conditions (8.72), g(θ̃) = R̃>λ̃.
Substituting g(θ̃) for R̃>λ̃ in (8.76) yields the score form of the LM test,

1−
n
g̃>Ĩ−1g̃. (8.77)

In practice, this score form is often more useful than the LM form because,
since restricted estimates are rarely obtained via a Lagrangian, g̃ is generally
readily available while λ̃ typically is not. However, deriving the test via the
Lagrange multipliers is illuminating, because this derivation makes it quite
clear why the test has r degrees of freedom.

The third of the three classical tests is the Wald test. This test is very
easy to derive. It asks whether the vector of restrictions, evaluated at the
unrestricted estimates, is close enough to a zero vector for the restrictions to
be plausible. In the case of the restrictions (8.71), the Wald test is based
on the vector r(θ̂), which should tend to a zero vector asymptotically if the
restrictions hold. As we have seen in Sections 8.5 and 8.6,

n1/2(θ̂ − θ0)
a∼ N

(
0, I−1(θ0)

)
.

A Taylor-series approximation of r(θ̂) around θ0 yields r(θ̂) ∼= R0(θ̂ − θ0).
Therefore,

V
(
n1/2r(θ̂)

) a
= R0 I

−1
0 R0

>.

It follows that an appropriate test statistic is

nr>(θ̂)
(
R̂ Î−1R̂>)−1

r(θ̂), (8.78)

where Î denotes any consistent estimate of I(θ0) based on the unrestricted
estimates θ̂. Different variants of the Wald test will use different estimates of
I(θ0). It is easy to see that given suitable regularity the test statistic (8.78)
will be asymptotically distributed as χ2(r) under the null.

The fundamental property of the three classical test statistics is that
under the null hypothesis, as n → ∞, they all tend to the same random
variable, which is distributed as χ2(r). We will prove this result in Chapter 13.
The implication is that, in large samples, it does not really matter which of
the three tests we use. If both θ̂ and θ̃ are easy to compute, it is attractive
to use the LR test. If θ̃ is easy to compute but θ̂ is not, as is often the case
for tests of model specification, then the LM test becomes attractive. If on
the other hand θ̂ is easy to compute but θ̃ is not, as may be the case when
we are interested in nonlinear restrictions on a linear model, then the Wald
test becomes attractive. When the sample size is not large, choice among the
three tests is complicated by the fact that they may have very different finite-
sample properties, which may further differ greatly among the alternative
variants of the LM and Wald tests. This makes the choice of tests rather
more complicated in practice than asymptotic theory would suggest.
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where β̂ denotes the NLS estimates of β for the whole sample. The GNR
(11.04) may be written more compactly as

û = X̂b+ δ∗X̂c + residuals, (11.05)

where û has typical element yt − xt(β̂), and X̂ has typical element Xt(β̂).
Here ∗ denotes the direct product of two matrices. Since δtXti(β̂) is a typical
element of δ∗X̂, δt∗X̂t = X̂t when δt = 1 and δt∗X̂t = 0 when δt = 0. To
perform the test, we simply have to estimate the model using the entire sample
and regress the residuals from that estimation on the matrix of derivatives X̂
and on that matrix with the rows which correspond to group 1 observations
set to zero. We do not have to reorder the data. As usual, there are several
asymptotically valid test statistics, the best probably being the ordinary F
statistic for the null hypothesis that c = 0. In the usual case with k less than
min(n1, n2), that test statistic will have k degrees of freedom in the numerator
and n− 2k degrees of freedom in the denominator.

Notice that the sum of squared residuals from regression (11.05) is equal
to the SSR from the GNR

û = X̂b + residuals (11.06)

run over observations 1 to n1 plus the SSR from the same GNR run over
observations n1+1 to n. This is the unrestricted sum of squared residuals for
the F test of c = 0 in (11.05). The restricted sum of squared residuals for that
test is simply the SSR from (11.06) run over all n observations, which is the
same as the SSR from nonlinear estimation of the null hypothesis H0. Thus
the ordinary Chow test for the GNR (11.06) will be numerically identical to
the F test of c = 0 in (11.05). This provides the easiest way to calculate the
test statistic.

As we mentioned above, the ordinary Chow test (11.03) is not applicable
if min(n1, n2) < k. Using the GNR framework, it is easy to see why this is
so. Suppose that n2 < k and n1 > k, without loss of generality, since the
numbering of the two groups of observations is arbitrary. Then the matrix
δ∗X̂, which has k columns, will have n2 < k rows that are not just rows of
zeros and hence will have rank at most n2. Thus, when equation (11.05) is
estimated, at most n2 elements of c will be identifiable, and the residuals
corresponding to all observations that belong to group 2 will be zero. The
number of degrees of freedom for the numerator of the F statistic must there-
fore be at most n2. In fact, it will be equal to the rank of [X̂ δ∗X̂] minus the

rank of X̂, which might be less than n2 in some cases. The number of degrees
of freedom for the denominator will be the number of observations for which
(11.05) has nonzero residuals, which will normally be n1, minus the number of
regressors that affect those observations, which will be k, for a total of n1−k.
Thus we can use the GNR whether or not min(n1, n2) < k, provided that
we use the appropriate numbers of degrees of freedom for the numerator and
denominator of the F test.
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than the other may be seen as a deficiency of these tests. That is so only if
one misinterprets their nature. Nonnested hypothesis tests are specification
tests, and since there is almost never any reason a priori to believe that either
of the models actually generated the data, it is appropriate that nonnested
tests, like other model specification tests, may well tell us that neither model
seems to be compatible with the data.

It is important to stress that the purpose of nonnested tests is not to
choose one out of a fixed set of models as the “best” one. That is the subject
of an entirely different strand of the econometric literature, which deals with
criteria for model selection. We will not discuss the rather large literature on
model selection in this book. Two useful surveys are Amemiya (1980) and
Leamer (1983), and an interesting recent paper is Pollak and Wales (1991).

It is of interest to examine more closely the case in which both models
are linear, that is, x(β) = Xβ and z(γ) = Zγ. This will allow us to see why
the J and P tests (which in this case are identical) are asymptotically valid
and also to see why these tests may not always perform well in finite samples.
The J-test regression for testing H1 against H2 is

y = Xb+ αPZy + residuals, (11.16)

where PZ = Z(Z>Z)−1Z> and b = (1 − α)β. Using the FWL Theorem, we
see that the estimate of α from (11.16) will be the same as the estimate from
the regression

MXy = αMXPZy + residuals. (11.17)

Thus, if ś denotes the OLS estimate of σ from (11.16), the t statistic for α = 0
will be

y>PZMXy

ś(y>PZMXPZy)1/2
. (11.18)

First of all, notice that when only one column of Z, say Z1, does not
belong to S(X), it must be the case that

S(X,PZy) = S(X,Z) = S(X,Z1).

Therefore, the J-test regression (11.16) must yield exactly the same SSR as
the regression

y = Xb+ δZ1 + residuals. (11.19)

Thus, in this special case, the J test is equal in absolute value to the t statistic
on the estimate of δ from (11.19).

When two or more columns of Z do not belong to S(X), this special
result is no longer available. If the data were actually generated by H1, we
can replace y in the numerator of (11.18) by Xβ+u. Since MXXβ = 0, that
numerator becomes

β>X>PZMXu+ u>PZMXu. (11.20)
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Similarly, when we test H0 against H2, the NCP is

Λ21 =
ρ20
σ2
0

plim
n→∞

(
1−
n
u−1

>MX(X−1β0 + u−1)
)

× plim
n→∞

(
1−
n
(X−1β0 + u−1)

>MX(X−1β0 + u−1)
)−1

× plim
n→∞

(
1−
n
(X−1β0 + u−1)

>MXu−1

)
.

This simplifies to

ρ20
σ2
0

σ2
0

(
σ2
0 + plim 1−

n

∥∥MXX−1β0

∥∥2)−1

σ2
0

= ρ20

(
1 + σ−2

0 plim 1−
n

∥∥MXX−1β0

∥∥2)−1

.

Evidently, cos2φ for the test of H0 against H2 is the right-hand expression
here divided by ρ20, which is(

1 +
plimn−1‖MXX−1β0‖2

σ2
0

)−1

. (12.34)

This last result is worth comment. We have found that cos2φ for the
test against H2 when the data were generated by H1, expression (12.34), is
identical to cos2φ for the test against H1 when the data were generated by H2,
expression (12.33). This result is true not just for this example, but for every
case in which both alternatives involve one-degree-of-freedom tests. Geomet-
rically, this equivalence simply reflects the fact that when z is a vector, the
angle between αn−1/2MXa and the projection of αn−1/2MXa onto S(X,z),
which is

αn−1/2MXz
(
z>MXz

)−1
z>MXa,

is the same as the angle between αn−1/2MXa and αn−1/2MXz. The reason
for this is that (z>MXz)−1z>MXa is a scalar when z is a vector. Hence, if
we reverse the roles of a and z, the angle is unchanged. This geometrical fact
also results in two numerical facts. First, in the regressions

y = Xα+ γz + residuals and

z = Xβ + δy + residuals,

the t statistic on z in the first is equal to that on y in the second. Second, in
the regressions

MXy = γMXz + residuals and

MXz = δMXy + residuals,

the t statistics on γ and δ are numerically identical and so are the uncen-
tered R2’s.
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both the estimate itself and the difference between the estimate and the true
value of the parameter, to be of order n−1/2. It follows that 2nτ̂2 will be of
order unity and that higher terms in the expansion of the exponential function
in (13.53) will be of lower order. Thus, if the various forms of the classical
test do indeed yield asymptotically equal expressions, we may expect that the
leading term of all of them will be 2nτ̂2.

Let us next consider the LM statistic. The essential piece of it is the
derivative of the loglikelihood function (13.49) with respect to τ , evaluated at
τ = 0. We find that

∂`

∂τ
= −n+ e−2τ

n∑
t=1

y2t and
∂`

∂τ

∣∣∣∣
τ=0

= n
(
e2τ̂ − 1

)
. (13.54)

If for the variance of ∂`/∂τ we use n times the true, constant, value of the
single element of the information matrix, 2, the LM statistic is the square of
(∂`/∂τ)|τ=0, given by (13.54), divided by 2n:

LM1 = n−
2

(
e2τ̂ − 1

)2
= 2nτ̂2 + o(1).

This variant of the LM statistic has the same leading term as the LR statistic
(13.53) but will of course differ from it in finite samples.

Instead of the true information matrix, an investigator might prefer to
use the negative of the empirical Hessian to estimate the information matrix;
see equations (8.47) and (8.49). Because the loglikelihood function is not
exactly quadratic, this estimator does not coincide numerically with the true
value. Since

∂2`

∂τ2
= −2e−2τ

n∑
t=1

y2t , (13.55)

which at τ = 0 is −2ne2τ̂, the LM test calculated in this fashion is

LM2 = n−
2
e−2τ̂

(
e2τ̂ − 1

)2
= 2nτ̂2 + o(1). (13.56)

The leading term is as in LR and LM1, but LM2 will differ from both those
statistics in finite samples.

Another possibility is to use the OPG estimator of the information ma-
trix; see equations (8.48) and (8.50). This estimator is

1−
n

n∑
t=1

(
∂`t
∂τ

)2
= 1−

n

n∑
t=1

(
y2t e

−2τ − 1
)2
,

which, when evaluated at τ = 0, is equal to

1−
n

n∑
t=1

(
y2t − 1

)2
.
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The fundamental result that makes the DLR possible is that, for this
class of models, the information matrix I(θ) satisfies the equality

I(θ) = plim
n→∞

(
1−
n

(
F>(y,θ)F (y,θ) +K>(y,θ)K(y,θ)

))
(14.20)

and so can be consistently estimated by

1−
n

(
F>(y, θ̈)F (y, θ̈) +K>(y, θ̈)K(y, θ̈)

)
, (14.21)

where θ̈ is any consistent estimator of θ. We are interested in the implications
of (14.20) rather than how it is derived. The derivation makes use of some
rather special properties of the normal distribution and may be found in
Davidson and MacKinnon (1984a).

The principal implication of (14.20) is that a certain artificial regression,
which we call the DLR, has all the properties that we expect an artificial
regression to have. The DLR may be written as[

f(y,θ)
ι

]
=

[
−F (y,θ)

K(y,θ)

]
b + residuals. (14.22)

This artificial regression has 2n artificial observations. The regressand is
ft(yt,θ) for observation t and unity for observation t+ n, and the regressors
corresponding to θ are −Ft(y,θ) for observation t and Kt(y,θ) for observa-
tion t + n, where Ft and Kt denote, respectively, the tth rows of F and K.
Intuitively, the reason we need a double-length regression here is that each
genuine observation makes two contributions to the loglikelihood function: a
sum-of-squares term − 1

2f
2
t and a Jacobian term kt. As a result, the gradient

and the information matrix each involve two parts as well, and the way to
take both of these into account is to incorporate two artificial observations
into the artificial regression for each genuine one.

Why is (14.22) a valid artificial regression? As we noted when we dis-
cussed the OPG regression in Section 13.7, there are two principal conditions
that an artificial regression must satisfy. It is worth stating these conditions
somewhat more formally here.4 Let r(y,θ) denote the regressand for some
artificial regression and let R(y,θ) denote the matrix of regressors. Let the
number of rows of both r(y,θ) and R(y,θ) be n∗, which will generally be
either n or an integer multiple of n. The regression of r(y,θ) on R(y,θ) will
have the properties of an artificial regression if

R>(y,θ)r(y,θ) = ρ(θ)g(y,θ) and (14.23)

plim
n→∞

θ

(
1−
n
R>(y, θ̈)R(y, θ̈)

)
= ρ(θ) I(θ), (14.24)

4 For a fuller treatment of this topic, see Davidson and MacKinnon (1990).
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where θ̈ denotes any consistent estimator of θ. The notation plimθ indicates,
as usual, that the probability limit is being taken under the DGP characterized
by the parameter vector θ, and ρ(θ) is a scalar defined as

ρ(θ) ≡ plim
n→∞

θ

(
1

n∗ r
>(y,θ)r(y,θ)

)
.

Because ρ(θ) is equal to unity for both the OPG regression and the DLR,
those two artificial regressions satisfy the simpler conditions

R>(y,θ)r(y,θ) = g(y,θ) and (14.25)

plim
n→∞

θ

(
1−
n
R>(y, θ̈)R(y, θ̈)

)
= I(θ), (14.26)

as well as the original conditions (14.23) and (14.24). However, these simpler
conditions are not satisfied by the GNR and are thus evidently too simple in
general.

It is now easy to see that the DLR (14.21) satisfies conditions (14.25) and
(14.26). For the first of these, simple calculation shows that

[
−F (y,θ)

K(y,θ)

]>[
f(y,θ)

ι

]
= −F>(y,θ)f(y,θ) +K>(y,θ)ι,

which by (14.19) is equal to the gradient g(y,θ). For the second, we see that

[
−F (y,θ)

K(y,θ)

]>[−F (y,θ)

K(y,θ)

]
= F>(y,θ)F (y,θ) +K>(y,θ)K(y,θ).

The right-hand side here is just the expression that appears in the fundamental
result (14.20). Hence it is clear that the DLR must satisfy (14.26). All this
discussion assumes, of course, that the matrices F (y,θ) and K(y,θ) satisfy
appropriate regularity conditions, which may not always be easy to verify in
practice; see Davidson and MacKinnon (1984a).

The DLR can be used in all the same ways that the GNR and the OPG
regression can be used. In particular, it can be used

(i) to verify that the first-order conditions for a maximum of the log-
likelihood function are satisfied sufficiently accurately,

(ii) to calculate estimated covariance matrices,

(iii) to calculate test statistics,

(iv) to calculate one-step efficient estimates, and

(v) as a key part of procedures for finding ML estimates.
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can be written as

`(β1, . . . ,βJ) =
J∑

j=1

∑
yt=j

Xtβ
j −

n∑
t=1

log

(
1 +

J∑
j=1

exp(Xtβ
j)

)
.

This function is a sum of contributions from each observation. Each con-
tribution has two terms: The first is Xtβ

j, where the index j is that for
which yt = j (or zero if j = 0), and the second is minus the logarithm of the
denominator that appears in (15.35) and (15.36).

One important property of the multinomial logit model is that

Pr(yt = l)

Pr(yt = j)
=

exp(Xtβ
l)

exp(Xtβ
j)

= exp
(
Xt(β

l − βj)
)

(15.38)

for any two responses l and j (including response zero if we interpret β0 as
a vector of zeros). Thus the odds between any two responses depend solely
on Xt and on the parameter vectors associated with those two responses.
They do not depend on the parameter vectors associated with any of the
other responses. In fact, we see from (15.38) that the log of the odds between
responses l and j is simply Xtβ

∗, where β∗ ≡ (βl − β j). Thus, conditional
on either j or l being chosen, the choice between them is determined by an
ordinary logit model with parameter vector β∗.

Closely related to the multinomial logit model is the conditional logit
model pioneered by McFadden (1974a, 1974b). See Domencich and McFadden
(1975), McFadden (1984), and Greene (1990a, Chapter 20) for detailed treat-
ments. The conditional logit model is designed to handle consumer choice
among J (not J + 1) discrete alternatives, where one and only one of the
alternatives can be chosen. Suppose that when the ith consumer chooses
alternative j, he or she obtains utility

Uij = Wijβ + εij ,

where Wij is a row vector of characteristics of alternative j as they apply to
consumer i. Let yi denote the choice made by the ith consumer. Presumably
yi = l if Uil is at least as great as Uij for all j 6= l. Then if the disturbances
εij for j = 1, . . . , J are independent and identically distributed according to
the Weibull distribution, it can be shown that

Pr(yi = l) =
exp(Wilβ)∑J
j=1 exp(Wijβ)

. (15.39)

This closely resembles (15.37), and it is easy to see that the probabilities must
add to unity.

There are two key differences between the multinomial logit and con-
ditional logit models. In the former, there is a single vector of independent
variables for each observation, and there are J different vectors of parameters.
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In the latter, the values of the independent variables vary across alternatives,
but there is just a single parameter vector β. The multinomial logit model is
a straightforward generalization of the logit model that can be used to deal
with any situation involving three or more unordered qualitative responses.
In contrast, the conditional logit model is specifically designed to handle con-
sumer choices among discrete alternatives based on the characteristics of those
alternatives.

Depending on the nature of the explanatory variables, there can be a
number of subtleties associated with the specification and interpretation of
conditional logit models. There is not enough space in this book to treat
these adequately, and so readers who intend to estimate such models are
urged to consult the references mentioned above. One important property of
conditional logit models is the analog of (15.38):

Pr(yi = l)

Pr(yi = j)
=

exp(Wilβ)

exp(Wijβ)
. (15.40)

This property is called the independence of irrelevant alternatives, or IIA,
property. It implies that adding another alternative to the model, or changing
the characteristics of another alternative that is already included, will not
change the odds between alternatives l and j.

The IIA property can be extremely implausible in certain circumstances.
Suppose that there are initially two alternatives for traveling between two
cities: flying Monopoly Airways and driving. Suppose further that half of
all travelers fly and the other half drive. Then Upstart Airways enters the
market and creates a third alternative. If Upstart offers a service identical to
that of Monopoly, it must gain the same market share. Thus, according to
the IIA property, one third of the travelers must take each of the airlines and
one third must drive. So the automobile has lost just as much market share
from the entry of Upstart Airways as Monopoly Airways has! This seems
very implausible.6 As a result, a number of papers have been devoted to the
problem of testing the independence of irrelevant alternatives property and
finding tractable models that do not embody it. See, in particular, Hausman
and Wise (1978), Manski and McFadden (1981), Hausman and McFadden
(1984), and McFadden (1987).

This concludes our discussion of qualitative response models. More de-
tailed treatments may be found in surveys by Maddala (1983), McFadden
(1984), Amemiya (1981; 1985, Chapter 9), and Greene (1990a, Chapter 20),
among others. In the next three sections, we turn to the subject of limited
dependent variables.

6 One might object that a price war between Monopoly and Upstart would con-
vince some drivers to fly instead. So it would. But if the two airlines offered
lower prices, that would change one or more elements of the Wij ’s associated
with them. The above analysis assumes that all the Wij ’s remain unchanged.
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second term looks like the loglikelihood function for a linear regression model
with normal errors. The third term is one that we have not seen before.

Maximum likelihood estimates can be obtained in the usual way by max-
imizing (15.55). However, this maximization is relatively burdensome, and so
instead of ML estimation a computationally simpler technique proposed by
Heckman (1976) is often used. Heckman’s two-step method is based on the
fact that the first equation of (15.53) can be rewritten as

y∗t = Xtβ + ρσvt + et. (15.56)

The idea is to replace y∗t by yt and vt by its mean conditional on zt = 1 and on
the realized value of Wtγ. As can be seen from (15.42), this conditional mean
is φ(Wtγ)/Φ(Wtγ), a quantity that is sometimes referred to as the inverse
Mills ratio. Hence regression (15.56) becomes

yt = Xtβ + ρσ
φ(Wtγ)

Φ(Wtγ)
+ residual. (15.57)

It is now easy to see how Heckman’s two-step method works. In the first step,
an ordinary probit model is used to obtain consistent estimates γ̂ of the para-
meters of the selection equation. In the second step, the selectivity regressor
φ(Wtγ)/Φ(Wtγ) is evaluated at γ̂, and regression (15.57) is estimated by
OLS for the observations with zt = 1 only. This regression provides a test
for sample selectivity as well as an estimation technique. The coefficient on
the selectivity regressor is ρσ. Since σ 6= 0, the ordinary t statistic for this
coefficient to be zero can be used to test the hypothesis that ρ = 0; it will be
asymptotically distributed as N(0, 1) under the null hypothesis. Thus, if this
coefficient is not significantly different from zero, the investigator may reason-
ably decide that selectivity is not a problem for this data set and proceed to
use least squares as usual.

Even when the hypothesis that ρ = 0 cannot be accepted, OLS estimation
of regression (15.57) yields consistent estimates of β. However, the OLS
covariance matrix is valid only when ρ = 0. In this respect, the situation
is very similar to the one encountered at the end of the previous section,
when we were testing for possible simultaneity bias in models with truncated
or censored dependent variables. There are actually two problems. First of
all, the residuals in (15.57) will be heteroskedastic, since a typical residual is
equal to

ut − ρσ
φ(Wtγ)

Φ(Wtγ)
.

Secondly, the selectivity regressor is being treated like any other regressor,
when it is in fact part of the error term. One could solve the first problem by
using a heteroskedasticity-consistent covariance matrix estimator (see Chap-
ter 16), but that would not solve the second one. It is possible to obtain a
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valid covariance matrix estimate to go along with the two-step estimates of β
from (15.57). However, the calculation is cumbersome, and the estimated co-
variance matrix is not always positive definite. See Greene (1981b) and Lee
(1982) for more details.

It should be stressed that the consistency of this two-step estimator, like
that of the ML estimator, depends critically on the assumption of normality.
This can be seen from the specification of the selectivity regressor as the
inverse Mills ratio φ(Wtγ)/Φ(Wtγ). When the elements of Wt are the same
as, or a subset of, the elements of Xt, as is often the case in practice, it is
only the nonlinearity of φ(Wtγ)/Φ(Wtγ) as a function of Wtγ that makes the
parameters of the second-step regression identifiable. The exact form of the
nonlinear relationship depends critically on the normality assumption. Pagan
and Vella (1989), Smith (1989), and Peters and Smith (1991) discuss various
ways to test this crucial assumption. Many of the tests suggested by these
authors are applications of the OPG regression.

Although the two-step method for dealing with sample selectivity is
widely used, our recommendation would be to use regression (15.57) only as
a procedure for testing the null hypothesis that selectivity bias is not present.
When that hypothesis is rejected, ML estimation based on (15.55) should
probably be used in preference to the two-step method, unless it is computa-
tionally prohibitive.

15.9 Conclusion

Our treatment of binary response models in Sections 15.2 to 15.4 was reason-
ably detailed, but the discussions of more general qualitative response models
and limited dependent variable models were necessarily quite superficial. Any-
one who intends to do empirical work that employs this type of model will
wish to consult some of the more detailed surveys referred to above. All of
the methods that we have discussed for handling limited dependent variables
rely heavily on the assumptions of normality and homoskedasticity. These
assumptions should always be tested. A number of methods for doing so have
been proposed; see, among others, Bera, Jarque, and Lee (1984), Lee and
Maddala (1985), Blundell (1987), Chesher and Irish (1987), Pagan and Vella
(1989), Smith (1989), and Peters and Smith (1991).
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The estimator (17.63) was proposed by Hansen (1982) and White and
Domowitz (1984), and was used in some of the earlier published work that
employed GMM estimation, such as Hansen and Singleton (1982). From the
point of view of theory, it is necessary to let the truncation parameter p,
usually referred to as the lag truncation parameter, go to infinity at some
suitable rate. A typical rate would be n1/4, in which case p = o(n1/4). This
ensures that, for large enough n, all the nonzero Γ (j)’s are estimated con-
sistently. Unfortunately, this type of result is not of much use in practice,
where one typically faces a given, finite n. We will return to this point a little
later, and for the meantime suppose simply that we have somehow selected
an appropriate value for p.

A much more serious difficulty associated with (17.63) is that, in finite
samples, it need not be positive definite or even positive semidefinite. If one
is unlucky enough to be working with a data set that yields a nondefinite Φ̂,
then (17.63) is unusable. There are numerous ways out of this difficulty. The
most widely used was suggested by Newey and West (1987a). It is simply to
multiply the Γ̂ (j)’s by a sequence of weights that decrease as |j| increases.
Specifically, the estimator that they propose is

Φ̂ = Γ̂ (0) +

p∑
j=1

(
1− j

p+ 1

)(
Γ̂ (j) + Γ̂ (j)>

)
. (17.64)

It can be seen that the weights 1 − j/(p + 1) decrease linearly with j from
a value of 1 for Γ̂ (0) by steps of 1/(p + 1) down to a value of 1/(p + 1) for
|j| = p. The use of such a set of weights is clearly compatible with the idea
that the impact of the autocovariance of order j diminishes with |j|.

We will not attempt even to sketch a proof of the consistency of the
Newey-West or similar estimators. We have alluded to the sort of regularity
conditions needed for consistency to hold: Basically, the autocovariance mat-
rices of the empirical moments must tend to zero quickly enough as p increases.
It would also go well beyond the scope of this book to provide a theoretical
justification for the Newey-West estimator. It rests on considerations of the
so-called “frequency domain representation” of the Ft’s and also of a number
of notions associated with nonparametric estimation procedures. Interested
readers are referred to Andrews (1991b) for a rather complete treatment of
many of the issues. This paper suggests some alternatives to the Newey-West
estimator and shows that in some circumstances they are preferable. However,
the performance of the Newey-West estimator is never greatly inferior to that
of the alternatives. Consequently, its simplicity is much in its favor.

Let us now return to the linear IV model with empirical moments given
by W>(y−Xβ). In order to be able to use (17.64), we suppose that the true
error terms ut ≡ yt−Xtβ0 satisfy an appropriate mixing condition. Then the
sample autocovariance matrices Γ̂ (j) for j = 0, . . . , p, for some given p, are
calculated as follows. A preliminary consistent estimate of β is first obtained
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where Ψ2 = Φ−1, and MΨD is the l × l orthogonal projection matrix onto
the orthogonal complement of the k columns of ΨD. By construction, the
l--vector n−1/2ΨF0

>ι has the N(0, I) distribution asymptotically. It follows,
then, that (17.68) is asymptotically distributed as chi-squared with number
of degrees of freedom equal to the rank of MΨD, that is, l− k, the number of
overidentifying restrictions.

Hansen’s test of overidentifying restrictions is completely analogous, in
the present more general context, to the one for IV estimation discussed in
Section 7.8, based on the criterion function (7.56). It is a good exercise to work
through the derivation given above for the simple case of a linear regression
model with homoskedastic, serially uncorrelated errors, in order to see how
closely the general case mimics the simple one.2

Hansen’s test of overidentifying restrictions is perhaps as close as one can
come in econometrics to a portmanteau specification test. Because models es-
timated by GMM are subject to so few restrictions, their “specification” is not
very demanding. In particular, if nothing more is required than the existence
of the moments used to identify the parameters, then only two things are left
to test. One is the set of any overidentifying restrictions used, and the other
is parameter constancy.3 Because Hansen’s test of overidentifying restrictions
has as many degrees of freedom as there are overidentifying restrictions, it
may be possible to achieve more power by reducing the number of degrees of
freedom. However, if Hansen’s test statistic is small enough numerically, no
such test can reject, for the simple reason that Hansen’s statistic provides an
upper bound for all possible test statistics for which the null hypothesis is the
estimated model. This last fact follows from the observation that no criterion
function of the form (17.67) can be less than zero.

Tests for which the null hypothesis is not the estimated model are not
subject to the bound provided by Hansen’s statistic. This is just as well, of
course, since otherwise it would be impossible to reject a just identified model
at all. A test for parameter constancy is not subject to the bound either,
although at first glance the null hypothesis would appear to be precisely the
estimated model. The reason was discussed in Section 11.2 in connection
with tests for parameter constancy in nonlinear regression models estimated
by means of instrumental variables. Essentially, in order to avoid problems
of identification, it is necessary to double the number of instruments used, by
splitting the original ones up as in (11.09). Exactly the same considerations
apply for GMM models, of course, especially those that are just identified
or have few overidentifying restrictions. But if one uses twice as many in-
struments, the null model has effectively been changed, and for that reason,

2 Hansen’s test statistic, (17.68), is sometimes referred to as the J statistic. For
obvious reasons (see Chapter 11) we prefer not to give it that name.

3 Tests of parameter constancy in models estimated by GMM are discussed by
Hoffman and Pagan (1989) and Ghysels and Hall (1990).
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Because the determinant of the sum of two positive definite matrices is always
greater than the determinants of either of those matrices (see Appendix A),
it follows from (18.35) that (18.34) will exceed |Y>MXY | for all A 6= 0.
This implies that Π̂ minimizes (18.34), and so we have proved that equation-
by-equation OLS estimates of the URF are also ML estimates for the entire
system.

If one does not have access to a regression package that calculates (18.33)
easily, there is another way to do so. Consider the recursive system

y1 = Xη1 + e1

y2 = Xη2 + y1α1 + e2

y3 = Xη3 + [y1 y2]α2 + e3

y4 = Xη4 + [y1 y2 y3]α3 + e4,

(18.36)

and so on, where yi denotes the ith column of Y . This system of equations
can be interpreted as simply a reparametrization of the URF (18.03). It is
easy to see that if one estimates these equations by OLS, all the residual
vectors will be mutually orthogonal: ê2 will be orthogonal to ê1, ê3 will be
orthogonal to ê2 and ê1, and so on. According to the URF, all the yi’s are
linear combinations of the columns of X plus random errors. Therefore, the
equations of (18.36) are correct for any arbitrary choice of the α parameters:
The ηi’s simply adjust to whatever choice is made. If, however, we require
that the error terms ei should be orthogonal, then this serves to identify a
particular unique choice of the α’s. In fact, the recursive system (18.36) has
exactly the same number of parameters as the URF (18.03): g vectors ηi, each
with k elements, g − 1 vectors αi, with a total of g(g − 1)/2, and g variance
parameters, for a total of gk + (g2 + g)/2. The URF has gk parameters in
Π and (g2 + g)/2 in the covariance matrix Ω, for the same total. What has
happened is that the α parameters in (18.36) have replaced the off-diagonal
elements of the covariance matrix of V in the URF.

Since the recursive system (18.36) is simply a reparametrization of the
URF (18.03), it should come as no surprise that the loglikelihood function for
the former is equal to (18.33). Because the residuals of the various equations
in (18.36) are orthogonal, the value of the loglikelihood function for (18.36)
is simply the sum of the values of the loglikelihood functions from OLS es-
timation of the individual equations. This result, which readers can easily
verify numerically, sometimes provides a convenient way to compute the log-
likelihood function for the URF. Except for this purpose, recursive systems
are not generally of much interest. They do not convey any information that
is not already provided by the URF, and the parametrization depends on an
arbitrary ordering of the equations.



714 Unit Roots and Cointegration

Serial correlation is not the only complication that one is likely to en-
counter when trying to compute unit root test statistics. One very serious
problem is that these statistics are severely biased against rejecting the null
hypothesis when they are used with data that have been seasonally adjusted
by means of a linear filter or by the methods used by government statistical
agencies. In Section 19.6, we discussed the tendency of the OLS estimate of
α in the regression yt = β0 + αyt−1 + ut to be biased toward 1 when yt is
a seasonally adjusted series. This bias is present for all the test regressions
we have discussed. Even when α̂ is not actually biased toward 1, it will be
less biased away from 1 than the corresponding estimate using an unfiltered
series. Since the tabulated distributions of the test statistics are based on
the behavior of α̂ for the latter case, it is likely that test statistics computed
using seasonally adjusted data will reject the null hypothesis substantially less
often than they should according to the critical values in Table 20.1. That
is exactly what Ghysels and Perron (1993) found in a series of Monte Carlo
experiments.

If possible, one should therefore avoid using seasonally adjusted data to
compute unit root tests. One possibility is to use annual data. This may
cause the sample size to be quite small, but the consequences of that are not
as severe as one might fear. As Shiller and Perron (1985) point out, the power
of these tests depends more on the span of the data (i.e., the number of years
the sample covers) than on the number of observations. The reason for this is
that if α is in fact positive but less than 1, it will be closer to 1 when the data
are observed more frequently. Thus a test based on n annual observations may
have only slightly less power than a test based on 4n quarterly observations
that have not been seasonally adjusted and may have more power than a test
based on 4n seasonally adjusted observations.

If quarterly or monthly data are to be used, they should if possible not be
seasonally adjusted. Unfortunately, as we remarked in Chapter 19, seasonally
unadjusted data for many time series are not available in many countries.
Moreover, the use of seasonally unadjusted data may make it necessary to
add seasonal dummy variables to the regression and to account for fourth-
order or twelfth-order serial correlation.

A second major problem with unit root tests is that they are very sensitive
to the assumption that the process generating the data has been stable over
the entire sample period. Perron (1989) showed that the power of unit root
tests is dramatically reduced if the level or the trend of a series has changed
exogenously at any time during the sample period. Even though the series
may actually be stationary in each of the two parts of the sample, it can be
almost impossible to reject the null that it is I(1) in such cases.

Perron therefore proposed techniques that can be used to test for unit
roots conditional on exogenous changes in level or trend. His tests are per-
formed by first regressing yt on a constant, a time trend, and one or two
dummy variables that allow either the constant, the trend, or both the con-
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that this determinant is a polynomial in λ, of degree n if A is n × n. The
fundamental theorem of algebra tells us that such a polynomial has n complex
roots, say λ1, . . . , λn. To each λi there must correspond an eigenvector xi.
This eigenvector is determined only up to a scale factor, because if xi is an
eigenvector corresponding to λi, then so is αxi for any nonzero scalar α. The
eigenvector xi does not necessarily have real elements if λi itself is not real.

If A is a real symmetric matrix, it can be shown that the eigenvalues λi

are in fact all real and that the eigenvectors can be chosen to be real as well.
If A is a positive definite matrix, then all its eigenvalues are positive. This
follows from the facts that

x>Ax = λx>x

and that both x>x and x>Ax are positive. The eigenvectors of a real sym-
metric matrix can be chosen to be mutually orthogonal. If one looks at two
eigenvectors xi and xj , corresponding to two distinct eigenvalues λi and λj ,
then xi and xj are necessarily orthogonal:

λixj
>xi = xj

>Axi = (Axj)
>xi = λjxj

>xi,

which is impossible unless xj
>xi = 0. If not all the eigenvalues are distinct,

then two (or more) eigenvectors may correspond to one and the same eigen-
value. When that happens, these two eigenvectors span a space that is or-
thogonal to all other eigenvalues by the reasoning just given. Since any linear
combination of the two eigenvectors will also be an eigenvector correspond-
ing to the one eigenvalue, one may choose an orthogonal set of them. Thus,
whether or not all the eigenvalues are distinct, eigenvectors may be chosen to
be orthonormal, by which we mean that they are mutually orthogonal and
each has norm equal to 1. Thus the eigenvectors of a real symmetric matrix
provide an orthonormal basis.

Let U ≡ [x1 · · · xn ] be a matrix the columns of which are an orthonor-
mal set of eigenvectors of A, corresponding to the eigenvalues λi, i = 1, . . . , n.
Then we can write the eigenvalue relationship (A.28) for all the eigenvalues
at once as

AU = UΛ, (A.30)

where Λ is a diagonal matrix with λi as its ith diagonal element. The ith

column of AU is Axi, and the ith column of UΛ is λixi. Since the columns of
U are orthonormal, we find that U>U = I, which implies that U>= U−1. A
matrix with this property is said to be an orthogonal matrix. Postmultiplying
(A.30) by U> gives

A = UΛU>. (A.31)

This equation expresses the diagonalization of A.
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