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The modified version is known as the centered R2, and we will denote it by
R2

c . It is defined as

R2
c ≡ 1− ‖MXy‖2

‖Mιy‖2
, (1.09)

where
Mι ≡ I− ι

(
ι>ι
)−1
ι>= I− n−1ιι>

is the matrix that projects off the space spanned by the constant vector ι,
which is simply a vector of n ones. When any vector is multiplied by Mι,
the result is a vector of deviations from the mean. Thus what the centered
R2 measures is the proportion of the total sum of squares of the regressand
around its mean that is explained by the regressors.

An alternative expression for R2
c is

‖PXMιy‖2

‖Mιy‖2
, (1.10)

but this is equal to (1.09) only if PXι = ι, which means that S(X) must
include the vector ι (so that either one column of X must be a constant, or
some linear combination of the columns of X must equal a constant). In this
case, the equality must hold, because

MXMιy =MX(I− Pι)y =MXy,

the second equality here being a consequence of the fact thatMX annihilates
Pι when ι belongs to S(X). When this is not the case and (1.10) is not valid,
there is no guarantee that R2

c will be positive. After all, there will be many
cases in which a regressand y is better explained by a constant term than
by some set of regressors that does not include a constant term. Clearly, if
(1.10) is valid, R2

c must lie between 0 and 1, since (1.10) is then simply the
uncentered R2 for a regression of Mιy on X.

The use of the centered R2 when X does not include a constant term or
the equivalent is thus fraught with difficulties. Some programs for statistics
and econometrics refuse to print an R2 at all in this circumstance; others print
R2

u (without always warning the user that they are doing so); some print R2
c ,

defined as (1.09), which may be either positive or negative; and some print
still other quantities, which would be equal to R2

c if X included a constant
term but are not when it does not. Users of statistical software, be warned!

Notice that R2 is an interesting number only because we used the least
squares estimator β̂ to estimate β. If we chose an estimate of β, say β̃, in
any other way, so that the triangle in Figure 1.3 were no longer a right-angled
triangle, we would find that the equivalents of the two definitions of R2, (1.09)
and (1.10), were not the same:

1− ‖y −Xβ̃‖2

‖y‖2
6= ‖Xβ̃‖2

‖y‖2
.
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with the values of certain variables. They may be the only variables about
which we have information or the only ones that we are interested in for a
particular purpose. If we had more information about potential explanatory
variables, we might very well specify xt(β) differently so as to make use of
that additional information.

It is sometimes desirable to make explicit the fact that xt(β) represents
the conditional mean of yt, that is, the mean of yt conditional on the values
of a number of other variables. The set of variables on which yt is conditioned
is often referred to as an information set. If Ωt denotes the information set
on which the expectation of yt is to be conditioned, one could define xt(β)
formally as E(yt |Ωt). There may be more than one such information set.
Thus we might well have both

x1t(β1) ≡ E(yt |Ω1t) and x2t(β2) ≡ E(yt |Ω2t),

where Ω1t and Ω2t denote two different information sets. The functions
x1t(β1) and x2t(β2) might well be quite different, and we might want to
estimate both of them for different purposes. There are many circumstances
in which we might not want to condition on all available information. For
example, if the ultimate purpose of specifying a regression function is to use
it for forecasting, there may be no point in conditioning on information that
will not be available at the time the forecast is to be made. Even when we do
want to take account of all available information, the fact that a certain vari-
able belongs to Ωt does not imply that it will appear in xt(β), since its value
may tell us nothing useful about the conditional mean of yt, and including it
may impair our ability to estimate how other variables affect that conditional
mean.

For any given dependent variable yt and information set Ωt, one is always
at liberty to consider the difference yt−E(yt |Ωt) as the error term associated
with the tth observation. But for a regression model to be applicable, these
differences must generally have the i.i.d. property. Actually, it is possible,
when the sample size is large, to deal with cases in which the error terms are
independent, but identically distributed only as regards their means, and not
necessarily as regards their variances. We will discuss techniques for dealing
with such cases in Chapters 16 and 17, in the latter of which we will also relax
the independence assumption. As we will see in Chapter 3, however, conven-
tional techniques for making inferences from regression models are unreliable
when models lack the i.i.d. property, even when the regression function xt(β)
is “correctly” specified. Thus we are in general not at liberty to choose an
arbitrary information set and estimate a properly specified regression function
based on it if we want to make inferences using conventional procedures.

There are, however, exceptional cases in which we can choose any infor-
mation set we like, because models based on different information sets will
always be mutually consistent. For example, suppose that the vector con-
sisting of yt and each of x1t through xmt is independently and identically



Chapter 3

Inference in

Nonlinear Regression Models

3.1 Introduction

Suppose that one is given a vector y of observations on some dependent vari-
able, a vector x(β) of, in general nonlinear, regression functions, which may
and normally will depend on independent variables, and the data needed
to evaluate x(β). Then, assuming that these data allow one to identify all
elements of the parameter vector β and that one has access to a suitable com-
puter program for nonlinear least squares and enough computer time, one
can always obtain NLS estimates β̂. In order to interpret these estimates,
one generally makes the heroic assumption that the model is “correct,” which
means that y is in fact generated by a DGP from the family

y = x(β) + u, u ∼ IID(0, σ2I). (3.01)

Without this assumption, or some less restrictive variant, it would be very
difficult to say anything about the properties of β̂, although in certain special
cases one can do so.

It is clear that β̂ must be a vector of random variables, since it will
depend on y and hence on the vector of error terms u. Thus, if we are to
make inferences about β, we must recognize that β̂ is random and quan-
tify its randomness. In Chapter 5, we will demonstrate that it is reasonable,
when the sample size is large enough, to treat β̂ as being normally distributed
around the true value of β, which we may call β0. Thus the only thing we
need to know if we are to make asymptotically valid inferences about β is
the covariance matrix of β̂, say V (β̂). In the next section, we discuss how
this covariance matrix may be estimated for linear and nonlinear regression
models. In Section 3.3, we show how the resulting estimates may be used
to make inferences about β. In Section 3.4, we discuss the basic ideas that
underlie all types of hypothesis testing. In Section 3.5, we then discuss pro-
cedures for testing hypotheses in linear regression models. In Section 3.6,
we discuss similar procedures for testing hypotheses in nonlinear regression
models. The latter section provides an opportunity to introduce the three
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fundamental principles on which most hypothesis tests are based: the Wald,
Lagrange multiplier, and likelihood ratio principles. Finally, in Section 3.7, we
discuss the effects of imposing incorrect restrictions and introduce the notion
of preliminary test estimators.

3.2 Covariance Matrix Estimation

In the case of the linear regression model

y =Xβ + u, u ∼ IID(0, σ2I), (3.02)

it is well known that when the DGP satisfies (3.02) for specific parameter
values β0 and σ0, the covariance matrix of the vector of OLS estimates β̂ is

V (β̂) = σ2
0

(
X>X

)−1
. (3.03)

The proof of this familiar result is quite straightforward. The covariance
matrix V (β̂) is defined as the expectation of the outer product of β̂ − E(β̂)
with itself, conditional on the independent variables X. Starting with this
definition and using the fact that E(β̂) = β0, we first replace β̂ by what it is
equal to under the DGP, then take expectations conditional onX, and finally
simplify the algebra to obtain (3.03):

V (β̂) ≡ E(β̂ − β0)(β̂ − β0)
>

= E
(
(X>X)−1X>y − β0

)(
(X>X)−1X>y − β0

)>
= E

(
(X>X)−1X>(Xβ0 + u)− β0

)(
(X>X)−1X>(Xβ0 + u)− β0

)>
= E

(
β0 + (X>X)−1X>u− β0

)(
β0 + (X>X)−1X>u− β0

)>
= E

(
X>X

)−1
X>uu>X

(
X>X

)−1

=
(
X>X

)−1
X>(σ2

0I
)
X
(
X>X

)−1

= σ2
0

(
X>X

)−1
X>X

(
X>X

)−1

= σ2
0

(
X>X

)−1
.

Deriving an analogous result for the nonlinear regression model (3.01) requires
a few concepts of asymptotic analysis that we have not yet developed, plus
a certain amount of mathematical manipulation. We will therefore postpone
this derivation until Chapter 5 and merely state an approximate result here.

For a nonlinear model, we cannot in general obtain an exact expression
for V (β̂) in the finite-sample case. In Chapter 5, on the assumption that
the data are generated by a DGP which is a special case of (3.01), we will,
however, obtain an asymptotic result which allows us to state that

V (β̂) ∼= σ2
0

(
X>(β0)X(β0)

)−1
, (3.04)
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region for the entire parameter vector β, implying that l = k. For concrete-
ness, we will also assume that the estimated covariance matrix of β̂ is V̂ (β̂),
although it could just as well be Vs(β̂).

Let us denote the true (but unknown) value of β by β0. Consider the
quadratic form

(β̂ − β0)
>V̂ −1(β̂)(β̂ − β0). (3.13)

This is just a random scalar that depends on the random vector β̂. For neither
a linear nor a nonlinear regression will it actually have the χ2 distribution with
l degrees of freedom in finite samples. But it is reasonable to hope that it will
be approximately distributed as χ2(l), and in fact such an approximation is
valid when the sample is large enough; see Section 5.7. Consequently, with
just as much justification (or lack of it) as for the case of a single parameter,
the confidence region for β is constructed as if (3.13) did indeed have the χ2(l)
distribution.4

For a given set of estimates β̂, the (approximate) confidence region at
level α can be defined as the set of vectors β for which the value of (3.13)
with β0 replaced by β is less than some critical value, say cα(l). This critical
value will be such that, if z is a random variable with the χ2(l) distribution,

Pr
(
z > cα(l)

)
= α.

The confidence region is therefore the set of all β for which

(β̂ − β)>V̂ −1(β̂)(β̂ − β) ≤ cα(l). (3.14)

Since the left-hand side of this inequality is quadratic in β, the region is, for
l = 2, the interior of an ellipse and, for l > 2, the interior of an l--dimensional
ellipsoid.

Figure 3.2 illustrates what a confidence ellipse can look like in the two-
parameter case. In this case, the two parameter estimates are negatively
correlated, and the ellipse is centered at the parameter estimates (β̂1, β̂2).
Confidence intervals for β1 and β2 are also shown, and it should now be clear
why it can be misleading to consider only these rather than the confidence
ellipse. On the one hand, there are clearly many points, such as (β∗

1 , β
∗
2), that

lie outside the confidence ellipse but inside the two confidence intervals, and
on the other hand there are points, like (β′

1, β
′
2), that are contained in the

ellipse but lie outside one or both of the confidence intervals.

4 It is also possible, of course, to construct an approximate confidence region by
using the F distribution with l and n − k degrees of freedom, and this might
well provide a better approximation in finite samples. Our discussion utilizes
the χ2 distribution primarily because it simplifies the exposition.
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obtained by differentiating (3.42) with respect to β and λ and setting the
derivatives to zero are

−X>(β̃)
(
y − x(β̃)

)
+R>λ̃ = 0 (3.43)

Rβ̃ − r = 0, (3.44)

where β̃ denotes the restricted estimates and λ̃ denotes the estimated La-
grange multipliers. From (3.43), we see that

R>λ̃ = X̃>(y − x̃
)
, (3.45)

where, as usual, x̃ and X̃ denote x(β̃) and X(β̃). The expression on the
right-hand side of (3.45) is minus the k--vector of the derivatives of 1

2SSR(β)
with respect to all the elements of β, evaluated at β̃. This vector is often
called the score vector. Since y − x̃ is simply a vector of residuals, which
should converge asymptotically under H0 to the vector of error terms u, it
seems plausible that the asymptotic covariance matrix of the vector of scores is

σ2
0X

>(β0)X(β0). (3.46)

Subject to certain asymptotic niceties, that is indeed the case, and a more
rigorous version of this result will be proved in Chapter 5.

The obvious way to estimate (3.46) is to use s̃2X̃>X̃, where s̃2 is
SSR(β̃)/(n − k + r). Putting this estimate together with the expressions on
each side of (3.45), we can construct two apparently different, but numerically
identical, test statistics. The first of these is

λ̃>R
(
s̃2X̃>X̃

)−1
R>λ̃ =

1

s̃2
λ̃>R

(
X̃>X̃

)−1
R>λ̃. (3.47)

In this form, the test statistic is clearly a Lagrange multiplier statistic. Since λ̃
is an r--vector, it should not be surprising that this statistic would be asymp-
totically distributed as χ2(r). A proof that this is the case follows from
essentially the same arguments used in the case of the Wald test, since (3.47)
is a quadratic form similar to (3.37). Of course, the result depends critically
on the vector λ̃ being asymptotically normally distributed, something that
we will prove in Chapter 5.

The second test statistic, which we stress is numerically identical to the
first, is obtained by substituting X̃>(y − x̃) for R>λ̃ in (3.47). The result,
which is the score form of the LM statistic, is

1

s̃2
(y − x̃)>X̃

(
X̃>X̃

)−1
X̃>(y − x̃) = 1

s̃2
(y − x̃)>P̃X(y − x̃), (3.48)

where P̃X ≡ X̃(X̃>X̃)−1X̃>. It is evident that this expression is simply the
explained sum of squares from the artificial linear regression

1

s̃
(y − x̃) = X̃b + residuals, (3.49)
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with β20 6= 0. Then it is easy to see that the restricted estimator β̃1 will, in
general, be biased. Under this DGP,

E(β̃1) = E
((
X1

>X1

)−1
X1

>y
)

= E
((
X1

>X1

)−1
X1

>(X1β10 +X2β20 + u
))

= β10 +
(
X1

>X1

)−1
X1

>X2β20.

(3.57)

Unless X1
>X2 is a zero matrix or β20 is a zero vector, β̃1 will be a biased

estimator. The magnitude of the bias will depend on the matrices X1
>X1 and

X1
>X2 and the vector β20.

Results very similar to (3.57) are available for all types of restrictions,
not just for linear restrictions, and for all sorts of models in addition to linear
regression models. We will not attempt to deal with nonlinear models here
because that requires a good deal of technical apparatus, which will be de-
veloped in Chapter 12. Results analogous to (3.57) for nonlinear regression
models and other types of nonlinear models may be found in Kiefer and Skoog
(1984). The important point is that imposition of false restrictions on some
of the parameters of a model generally causes all of the parameter estimates
to be biased. This bias does not go away as the sample size gets larger.

Even though β̃1 is biased when the DGP is (3.56), it is still of interest
to ask how well it performs. The analog of the covariance matrix for a biased
estimator is the mean squared error matrix, which in this case is

E
(
β̃1 − β10

)(
β̃1 − β10

)>
= E

(
(X1

>X1)
−1X1

>(X2β20 + u)
)(
(X1

>X1)
−1X1

>(X2β20 + u)
)>

= σ2
0

(
X1

>X1

)−1
+
(
X1

>X1

)−1
X1

>X2β20β
>
20X2

>X1

(
X1

>X1

)−1
. (3.58)

The third line here is the sum of two matrices: the covariance matrix of β̃1

when the DGP satisfies the restrictions, and the outer product of the second
term in the last line of (3.57) with itself. It is possible to compare (3.58) with
V (β̂1), the covariance matrix of the unrestricted estimator β̂1, only if σ0 and
β20 are known. Since the first term of (3.58) is smaller in the matrix sense
than V (β̂1), it is clear that if β20 is small enough (3.58) will be smaller than
V (β̂1). Thus it may be desirable to use the restricted estimator β̃1 when the
restrictions are false, provided they are not too false.

Applied workers frequently find themselves in a situation like the one we
have been discussing. They want to estimate β1 and do not know whether or
not β2 = 0. It then seems natural to define a new estimator,

β̌1 =

{
β̃1 if Fβ2=0 < cα;

β̂1 if Fβ2=0 ≥ cα.
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Here Fβ2=0 is the usual F test statistic for the null hypothesis that β2 = 0, and
cα is the critical value for a test of size α given by the F (r, n−k) distribution.
Thus β̌1 will be the restricted estimator β̃1 when the F test does not reject
the hypothesis that the restrictions are satisfied and will be the unrestricted
estimator β̂1 when the F test does reject that hypothesis. It is an example of
what is called a preliminary test estimator or pretest estimator.

Pretest estimators are used all the time. Whenever we test some aspect
of a model’s specification and then decide, on the basis of the test results,
what version of the model to estimate or what estimation method to use, we
are employing a pretest estimator. Unfortunately, the properties of pretest
estimators are, in practice, very difficult to know. The problems can be seen
from the example we have been studying. Suppose the restrictions hold. Then
the estimator we would like to use is the restricted estimator, β̃1. But, α%
of the time, the F test will incorrectly reject the null hypothesis and β̌1 will
be equal to the unrestricted estimator β̂1 instead. Thus β̌1 must be less
efficient than β̃1 when the restrictions do in fact hold. Moreover, since the
estimated covariance matrix reported by the regression package will not take
the pretesting into account, inferences about β̌1 may be misleading.

On the other hand, when the restrictions do not hold, we may or may not
want to use the unrestricted estimator β̂1. Depending on how much power
the F test has, β̌1 will sometimes be equal to β̃1 and sometimes be equal
to β̂1. It will certainly not be unbiased, because β̃1 is not unbiased, and it
may be more or less efficient (in the sense of mean squared error) than the
unrestricted estimator. Inferences about β̌1 based on the usual estimated
OLS covariance matrix for whichever of β̃1 and β̂1 it turns out to be equal to
may be misleading, because they fail to take into account the pretesting that
occurred previously.

In practice, there is often not very much that we can do about the
problems caused by pretesting, except to recognize that pretesting adds an
additional element of uncertainty to most problems of statistical inference.
Since α, the level of the preliminary test, will affect the properties of β̌1, it
may be worthwhile to try using different values of α. Conventional signifi-
cance levels such as .05 are certainly not optimal in general, and there is a
literature on how to choose better ones in specific cases; see, for example, Toy-
oda and Wallace (1976). However, real pretesting problems are much more
complicated than the one we have discussed as an example or the ones that
have been studied in the literature. Every time one subjects a model to any
sort of test, the result of that test may affect the form of the final model, and
the implied pretest estimator therefore becomes even more complicated. It is
hard to see how this can be analyzed formally.

Our discussion of pretesting has been very brief. More detailed treat-
ments may be found in Fomby, Hill, and Johnson (1984, Chapter 7), Judge,
Hill, Griffiths, Lütkepohl, and Lee (1985, Chapter 21), and Judge and Bock
(1978). In the remainder of this book, we entirely ignore the problems caused
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condition. Unlike asymptotic equality, the big-O relation does not require
that the ratio f(n)/g(n) should have any limit. It may have, but it may also
oscillate boundedly for ever.

The relations we have defined so far are for nonstochastic real-valued
sequences. Of greater interest to econometricians are the so-called stochastic
order relations. These are perfectly analogous to the relations we have defined
but instead use one or other of the forms of stochastic convergence. Formally:

Definition 4.8.

If {an} is a sequence of random variables, and g(n) is a real-valued
function of the positive integer argument n, then the notation an =
op
(
g(n)

)
means that

plim
n→∞

(
an
g(n)

)
= 0.

Similarly, the notation an = Op

(
g(n)

)
means that, for all ε > 0, there

exist a constant K and a positive integer N such that

Pr

(∣∣∣∣ ang(n)

∣∣∣∣ > K

)
< ε for all n > N.

If {bn} is another sequence of random variables, the notation an
a
= bn

means that

plim
n→∞

(
an
bn

)
= 1.

Comparable definitions may be written down for almost sure convergence
and convergence in distribution, but we will not use these. In fact, after
this section we will not bother to use the subscript p in the stochastic order
symbols, because it will always be plain when random variables are involved.
When they are, O(·) and o(·) should be read as Op(·) and op(·).

The order symbols are very easy to manipulate, and we now present a
few useful rules for doing so. For simplicity, we restrict ourselves to functions
g(n) that are just powers of n, for that is all we use in this book. The rules
for addition and subtraction are

O(np)±O(nq) = O
(
nmax(p,q)

)
;

o(np)± o(nq) = o
(
nmax(p,q)

)
;

O(np)± o(nq) = O(np) if p ≥ q;

O(np)± o(nq) = o(nq) if p < q.

The rules for multiplication, and by implication for division, are

O(np)O(nq) = O(np+q);

o(np)o(nq) = o(np+q);

O(np)o(nq) = o(np+q).



118 Introduction to Asymptotic Theory and Methods

A comparison of (4.17) and (4.18) reveals that the behavior of the estimator
α̂ is quite different under the two different rules for sample-size extension.

There is not always a simple resolution to the sort of problem posed in
the above example. It is usually unrealistic to assume that linear time trends
of the form of τ will continue to increase forever, but it suffices to look at price
series in the twentieth century (and many other centuries) to realize that some
economic variables do not seem to have natural upper bounds. Even quan-
tity series such as real GNP or personal consumption are sometimes fruitfully
considered as being unbounded. Nevertheless, although the asymptotic theo-
ries resulting from different kinds of rules for extending DGPs to arbitrarily
large samples can be very different, it is important to be clear that deciding
among competing asymptotic theories of this sort is not an empirical issue.
For any given empirical investigation, the sample size is what it is, even if
the possibility of collecting further relevant data exists. The issue is always
one of selecting a suitable model, not only for the data that exist, but for a
set of economic phenomena, of which the data are supposed to be a mani-
festation. There is always an infinity of models (not all plausible of course)
that are compatible with any finite data set. As a consequence, the issue of
model selection among a set of such models can be decided only on the basis
of such criteria as the explanatory power of the concepts used in the model,
simplicity of expression, or ease of interpretation, but not on the basis of the
information contained in the data themselves.

Although, in the model (4.14), the assumption that the time trend vari-
able goes to infinity with the sample size may seem more plausible than the
fixed-in-repeated-samples assumption, we will throughout most of this book
assume that the DGP is of the latter rather than the former type. The problem
with allowing τt to go to infinity with the sample size is that each additional
observation gives us more information about the value of α than any of the
preceding observations. That is why Var(α̂) turned out to be O(n−3) when we
made that assumption about the DGP. It seems much more plausible in most
cases that each additional observation should, on average, give us the same
amount of information as the preceding observations. This implies that the
variance of parameter estimates will be O(n−1), as was Var(α̂) when we as-
sumed that the DGP was of the fixed-in-repeated-samples type. Our general
assumptions about DGPs will likewise lead to the conclusion that the variance
of parameter estimates is O(n−1), although we will consider DGPs that do
not lead to this conclusion in Chapter 20, which deals with dynamic models.

4.5 Consistency and Laws of Large Numbers

We begin this section by introducing the notion of consistency, one of the
most basic ideas of asymptotic theory. When one is interested in estimating
parameters from data, it is desirable that the parameter estimates should have
certain properties. In Chapters 2 and 3, we saw that, under certain regularity
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interested in the nondegenerate asymptotic distribution of the sample mean
as an estimator. We saw in Section 4.3 that for this purpose we should look at
the distribution of n1/2(m1 − µ), where m1 is the sample mean. Specifically,
we wish to study

n1/2(m1 − µ) = n−1/2
n∑

t=1

(
yt − µ

)
,

where yt − µ has variance σ2
t .

We begin by stating the following simple central limit theorem.

Theorem 4.2. Simple Central Limit Theorem. (Lyapunov)

Let {yt} be a sequence of independent, centered random variables with
variances σ2

t such that σ2 ≤ σ2
t ≤ σ2 for two finite positive constants,

σ2 and σ2, and absolute third moments µ3 such that µ3 ≤ µ̄3 for a
finite constant µ̄3. Further, let

σ2
0 ≡ lim

n→∞

(
1−
n

n∑
t=1

σ2
t

)
exist. Then the sequence {

n−1/2
n∑

t=1

yt

}
tends in distribution to a limit characterized by the normal distribu-
tion with mean zero and variance σ2

0 .

Theorem 4.2 applies directly to the example (4.26). Thus our hypotheti-
cal investigator may, within the limits of asymptotic theory, use the N(0, σ2

0)
distribution for statistical inference on the estimate m1 via the random vari-
able n1/2(m1 − µ). Knowledge of σ2

0 is not necessary, provided that it can be
estimated consistently.

Although we do not intend to offer a formal proof of even this simple
central limit theorem, in view of the technicalities that such a proof would
entail, it is not difficult to give a general idea of why the result is true. For
simplicity, let us consider the case in which all the variables yt of the sequence
{yt} have the same distribution with variance σ2. Then clearly the variable

Sn ≡ n−1/2
n∑

t=1

yt

has mean zero and variance σ2 for each n. But what of the higher moments
of Sn? By way of an example, consider the fourth moment. It is

E
(
S4
n

)
=

1

n2

n∑
r=1

n∑
s=1

n∑
t=1

n∑
u=1

E(yrysytyu). (4.27)
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Another important consequence of the definition of a conditional expec-
tation is the so-called law of iterated expectations, which can be stated as
follows:

E
(
E(y | z)

)
= E(y).

The proof of this is an immediate consequence of using the whole of Rk as the
set G in (4.29).

The definitions which follow are rather technical, as are the statements of
the laws of large numbers that make use of them. Some readers may therefore
wish to skip over them and the discussion of central limit theorems to the
definitions of the two sets of regularity conditions, which we call WULLN and
CLT, presented at the end of this section. Such readers may return to this
point when some reference to it is made later in the book.

Definition 4.10.

The sequence {yt} is said to be stationary if for all finite k the joint
distribution of the linked set {yt, yt+1, . . . , yt+k} is independent of the
index t.

Definition 4.11.

The stationary sequence {yt} is said to be ergodic if, for any two
bounded mappings Y : Rk+1 → R and Z : Rl+1 → R,

lim
n→∞

∣∣E(Y (yi, . . . , yi+k)Z(yi+n, . . . , yi+n+l)
)∣∣

=
∣∣E(Y (yi, . . . , yi+k)

)∣∣ ∣∣E(Z(yi, . . . , yi+l)
)∣∣.

Definition 4.12.

The sequence {yt} is said to be uniformly mixing, or φ--mixing, if
there is a sequence of positive numbers {φn}, convergent to zero, such
that, for any two bounded mappings Y : Rk+1 → R and Z : Rl+1 → R,∣∣E(Y (yt, . . . , yt+k) |Z(yt+n, . . . , yt+n+l)

)
−E

(
Y (yt, . . . , yt+k)

)∣∣ < φn.

The symbol E(· | ·) denotes a conditional expectation, as defined
above.

Definition 4.13.

The sequence {yt} is said to be α--mixing if there is a sequence of
positive numbers {αn}, convergent to zero, such that, if Y and Z are
as in the preceding definition, then∣∣E(Y (yt, . . . , yt+k)Z(yt+n, . . . , yt+n+l)

)
− E

(
Y (·)

)
E
(
Z(·)

)∣∣ < αn.

The last three definitions can be thought of as defining various forms of
asymptotic independence. According to them, random variables yt and ys are
more nearly independent (in some sense) the farther apart are the indices t
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Theorem 4.7. (Lindeberg-Lévy)

If the variables of the random sequence {yt} are independent and have
the same distribution with mean µ and variance v, then Sn converges
in distribution to the standard normal distribution N(0, 1).

This theorem has minimal requirements for the moments of the variables but
maximal requirements for their homogeneity. Note that, in this case,

Sn = (nv)−1/2
n∑

t=1

(yt − µ).

The next theorem allows for much heterogeneity but still requires inde-
pendence.

Theorem 4.8. (Lyapunov)

For each positive integer n let the finite sequence {ynt }nt=1 consist of
independent centered random variables possessing variances vnt . Let
s2n ≡

∑n
t=1 v

n
t and let the Lindeberg condition be satisfied, namely,

that for all ε > 0

lim
n→∞

( n∑
t=1

s−2
n E

(
(ynt )

2IG(y
n
t )
))

= 0,

where the set G used in the indicator function is {y : |y| ≥ εsn}. Then
s−1
n

∑n
t=1 y

n
t converges in distribution to N(0, 1).

Our last central limit theorem allows for dependent sequences.

Theorem 4.9. (McLeish)

For each positive integer n let the finite sequences {ynt }nt=1 be martin-
gale difference sequences with vnt ≡ Var(ynt ) <∞, and s2n ≡

∑n
t=1 v

n
t .

If for all ε > 0

lim
n→∞

(
s−2
n

n∑
t=1

E
(
(ynt )

2IG(y
n
t )
))

= 0,

where again the set G ≡ {y : |y| ≥ εsn}, and if the sequence{
n∑

t=1

(ynt )
2

s2n

}

obeys a law of large numbers and thus converges to 1, then s−1
n

∑n
t=1y

n
t

converges in distribution to N(0, 1).

See McLeish (1974). Observe the extra condition needed in this theorem,
which ensures that the variance of the limiting distribution is the same as the
limit of the variances of the variables in s−1

n

∑n
t=1 y

n
t .
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since the distribution of the ut’s has not been specified. Thus, for a sample
of size n, the model M described by (5.08) is the set of all DGPs generating
samples y of size n such that the expectation of yt conditional on some infor-
mation set Ωt that includes Zt is xt(β) for some parameter vector β ∈ Rk,
and such that the differences yt − xt(β) are independently distributed error
terms with common variance σ2, usually unknown.

It will be convenient to generalize this specification of the DGPs in M a
little, in order to be able to treat dynamic models, that is, models in which
there are lagged dependent variables. Therefore, we explicitly recognize the
possibility that the regression function xt(β) may include among its (until
now implicit) dependences an arbitrary but bounded number of lags of the
dependent variable itself. Thus xt may depend on yt−1, yt−2, . . . , yt−l, where l
is a fixed positive integer that does not depend on the sample size. When
the model uses time-series data, we will therefore take xt(β) to mean the
expectation of yt conditional on an information set that includes the entire
past of the dependent variable, which we can denote by {ys}t−1

s=1, and also the
entire history of the exogenous variables up to and including the period t, that
is, {Zs}ts=1. The requirements on the disturbance vector u are unchanged.

For asymptotic theory to be applicable, we must next provide a rule for
extending (5.08) to samples of arbitrarily large size. For models which are
not dynamic (including models estimated with cross-section data, of course),
so that there are no time trends or lagged dependent variables in the regres-
sion functions xt, there is nothing to prevent the simple use of the fixed-in-
repeated-samples notion that we discussed in Section 4.4. Specifically, we con-
sider only sample sizes that are integer multiples of the actual sample size m
and then assume that xNm+t(β) = xt(β) for N > 1. This assumption makes
the asymptotics of nondynamic models very simple compared with those for
dynamic models.3

Some econometricians would argue that the above solution is too simple-
minded when one is working with time-series data and would prefer a rule
like the following. The variables Zt appearing in the regression functions will
usually themselves display regularities as time series and may be susceptible
to modeling as one of the standard stochastic processes used in time-series
analysis; we will discuss these standard processes at somewhat greater length
in Chapter 10. In order to extend the DGP (5.08), the out-of-sample values for
the Zt’s should themselves be regarded as random, being generated by appro-
priate processes. The introduction of this additional randomness complicates
the asymptotic analysis a little, but not really a lot, since one would always
assume that the stochastic processes generating the Zt’s were independent of
the stochastic process generating the disturbance vector u.

3 Indeed, even for linear dynamic models it is by no means trivial to show that
least squares yields consistent, asymptotically normal estimates. The classic
reference on this subject is Mann and Wald (1943).
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The result (5.44) essentially proves the Gauss-Markov Theorem, since it
implies that

E(β̌ − β0)(β̌ − β0)
>

= E
((
(X>X)−1X>u+Cu

)(
(X>X)−1X>u+Cu

)>)
= σ2

0

(
X>X

)−1
+ σ2

0CC
>.

(5.45)

Thus the difference between the covariance matrices of β̌ and β̂ is σ2
0CC

>,
which is a positive semidefinite matrix. Notice that the assumption that
E(uu>) = σ2

0 I is crucial here. If instead we had E(uu>) = Ω, with Ω an
arbitrary n× n positive definite matrix, the last line of (5.45) would be(

X>X
)−1
X>ΩX

(
X>X

)−1

+CΩC>+
(
X>X

)−1
X>ΩC>+CΩX

(
X>X

)−1
,

and we could draw no conclusion about the relative efficiency of β̂ and β̌.

As a simple example of the Gauss-Markov Theorem in action, suppose
that β̌ is the OLS estimator obtained by regressing y on X and Z jointly,
where Z is a matrix of regressors such that E(y |X,Z) = E(y |X) = Xβ.
Since the information that Z does not belong in the regression is being ignored
when we construct β̌, the latter must in general be inefficient. Using the FWL
Theorem, we find that

β̌ =
(
X>MZX

)−1
X>MZy, (5.46)

where, as usual, MZ is the matrix that projects orthogonally onto S⊥(Z). If
we write β̌ as in (5.42), we obtain

β̌ =
(
X>X

)−1
X>y +

(
(X>MZX)−1X>MZ − (X>X)−1X>)y

=
(
X>X

)−1
X>y +

(
X>MZX

)−1(
X>MZ −X>MZX(X>X)−1X>)y

=
(
X>X

)−1
X>y +

(
X>MZX

)−1
(
X>MZ

(
I−X(X>X)−1X>))y

=
(
X>X

)−1
X>y +

(
X>MZX

)−1
X>MZMXy

= β̂ +Cy. (5.47)

Thus, in this case, the matrix C is the matrix (X>MZX)−1X>MZMX . We

see that the inefficient estimator β̌ is equal to the efficient estimator β̂ plus
a random component which is uncorrelated with it. That β̂ and Cy are
uncorrelated follows from the fact (required for Cy to have mean zero) that
CX = 0, which is true because MX annihilates X. Further, we see that

E(β̌ − β0)(β̌ − β0)
>= σ2

0

(
X>X

)−1

+ σ2
0

(
X>MZX

)−1
X>MZMXMZX

(
X>MZX

)−1
.

(5.48)
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the residual ût. But this expansion is still unnecessarily complicated, because
we have

X∗
t =X0t + (β̂ − β0)

>A∗
t =X0t +O(n−1/2)

by Taylor’s Theorem and the fact that β̂ − β0 = O(n−1/2); recall that At is
the Hessian of the regression function xt(β). Thus (5.56) can be written more
simply as

ût = ut − n−1/2X0t

(
n−1X0

>X0

)−1
n−1/2X0

>u+ o(n−1/2).

Since this is true for all t, we have the vector equation

û = u−X0

(
X0

>X0

)−1
X0

>u+ o(n−1/2),

where the small-order symbol is now to be interpreted as an n--vector, each
component of which is o(n−1/2). This equation can be rewritten in terms
of the projection P0 ≡ X0(X0

>X0)
−1X0

> and its complementary projection
M0 ≡ I− P0:

û = u− P0u+ o(n−1/2) =M0u+ o(n−1/2). (5.57)

This is the asymptotic equivalent of the exact result that, for linear models,
the OLS residuals are the orthogonal projection of the disturbances off the
regressors. Recall that if one runs the regression y = Xβ + u, and the DGP
is indeed a special case of this model, then we have exactly that

û =MXu. (5.58)

The result (5.57) reduces to this when the model is linear. The projection
matrix M0 is now equal to MX , and the o(n−1/2) term, which was due only
to the nonlinearity of x(β), no longer appears.

Now let us substitute the right-most expression of (5.57) into (5.53). The
latter becomes

n−1/2a>û = n−1/2a>M0u+ n−1/2
n∑

t=1

o(n−1/2). (5.59)

The first term on the right-hand side here is clearly O(1), while the second is
o(1). Thus, in contrast to what happened when we simply replaced ût by ut,
we can ignore the second term on the right-hand side of (5.59). So the result
(5.57) provides what we need if we are to undertake asymptotic analysis of
expressions like (5.53).

We should pause for a moment here in order to make clear the rela-
tion between the asymptotic result (5.57), the exact linear result (5.58), and
two other results. These other results are (1.03), which states that the OLS
residuals are orthogonal to the regressors, and (2.05), which we may express
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term. The sort of result displayed in (5.68) occurs very frequently. The
twice continuous differentiability of r(β) means that Taylor’s Theorem can
be applied to order two, and then it is possible to discover from the last term in
that expansion exactly the order of the error, in this case O(n−1), committed
by neglecting it. In future we will not be explicit about this reasoning and will
simply mention that twice continuous differentiability gives a result similar to
(5.68).

The quantities in (5.66) other than r̂ are asymptotically nonstochastic.
By this we mean that

R̂ = R0 +O(n−1/2) and X̂ =X0 +O(n−1/2). (5.69)

Again, a short Taylor-series argument, this time only to first order, produces
these results. They are to be interpreted component by component for the
matricesR andX. This is not a matter of consequence for the r×k matrixR,
but it is for the n × k matrix X. We have to be careful because in matrix
products like X̂>X̂ we run across sums of n terms, which will of course have
different orders in general from the terms of the sums. However, if we explicitly
use the fact that r̂ = O(n−1/2) to rewrite (5.66) as

(
n1/2r̂

)>(σ̂2R̂(n−1X̂>X̂)−1R̂>)−1(
n1/2r̂

)
, (5.70)

we see that we are concerned, not with X̂>X̂ itself, but rather with n−1X̂>X̂,
and the latter is asymptotically nonstochastic:

n−1(X̂>X̂)ij = n−1
n∑

t=1

X̂tiX̂tj

= n−1
n∑

t=1

(
X0

ti +O(n−1/2)
)(
X0

tj +O(n−1/2)
)

= n−1
n∑

t=1

X0
tiX

0
tj +O(n−1/2)

= n−1(X0
>X0)ij +O(n−1/2),

where X0
ti denotes the ti

th element of X0. The second line uses (5.69). The
third line follows because the sum of n terms of order n−1/2 can be at most of
order n1/2; when divided by n, it becomes of order n−1/2. Note that n−1X0

>X0

itself is O(1).

Next, we use the asymptotic normality result (5.39) to obtain a more
convenient expression for n1/2r̂. We have

n1/2r̂ = R0

(
n−1X0

>X0

)−1
n−1/2X0

>u+ o(1). (5.71)
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since P1 plays the same role for the manifold R as does P0 for X. The LM
statistic (3.48) is

1

σ̃2
(y − x̃)>P̃X(y − x̃). (5.76)

If we express the statistic in terms of quantities that are O(1), we obtain

1

σ̃2
n−1/2(y − x̃)>X̃

(
n−1X̃>X̃

)−1
n−1/2X̃>(y − x̃). (5.77)

Like X̂t, X̃t is asymptotically nonstochastic. Therefore, from (5.75),

n−1/2X̃>(y − x̃) = n−1/2
n∑

t=1

X̃t
>ũt

= n−1/2
n∑

t=1

X>
0t(M1u)t + o(1)

= n−1/2
n∑

t=1

(M1X0)tut + o(1)

= n−1/2X0
>M1u+ o(1).

The matrix n−1X̃>X̃ is asymptotically nonstochastic, just as n−1X̂>X̂
is, and so the LM statistic (5.77) is asymptotically equivalent to

u>M1X0

(
σ2
0X0

>X0

)−1
X0

>M1u = σ−2
0 u>M1P0M1u. (5.78)

Since S(X1) is a subspace of S(X0), we have P1P0 = P0P1 = P1, from which
it follows that M1P0M1 = P0 − P1. Expression (5.78) thus becomes

σ−2
0 u>(P0 − P1)u = σ−2

0 u>P2u. (5.79)

Comparison of (5.79) with (5.72) shows that the LM statistic is asymptotically
equal to the Wald statistic. Thus it too is asymptotically χ2(r) under the null
hypothesis.

The third of the three test statistics discussed in Section 3.6 was the one
based on the likelihood ratio principle, the pseudo-F statistic (3.50). Since
we are interested in asymptotic results only, we rewrite it here in a form in
which it should be asymptotically distributed as χ2(r):

1

s2
(
SSR(β̃)− SSR(β̂)

)
(5.80)

and will (somewhat loosely) refer to it as the LR statistic. We have already
seen that s2 → σ2

0 as n→ ∞. It remains to show that SSR(β̃)−SSR(β̂), when
divided by σ2

0 , is asymptotically χ2(r). From (5.64), we have

σ̂2 = 1−
n
u>M0u+ o(n−1),
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difference is that the regressand has not been divided by an estimate of σ. As
we will see below, the test statistic is no more difficult to calculate by running
(6.17) than by running (3.49).

Limiting our attention to zero restrictions makes it possible for us to gain
a little more insight into the connection between the GNR and LM tests. Using
the FWL Theorem, we see that regression (6.17) will yield exactly the same
estimates of b2, namely b̃2, and exactly the same sum of squared residuals as
the regression

y − x̃ = M̃1X̃2b2 + residuals, (6.18)

where M̃1 is the matrix that projects onto S⊥(X̃1). The regressand here is
not multiplied by M̃1 because the first-order conditions imply that y − x̃
already lies in S⊥(X̃1), which in turn implies that M̃1(y − x̃) = y − x̃. The
sum of squared residuals from regression (6.18) is

(y − x̃)>(y − x̃)− (y − x̃)>X̃2

(
X̃2

>M̃1X̃2

)−1
X̃2

>(y − x̃).

Since y − x̃ lies in S⊥(X̃1), it is orthogonal to X̃1. Thus, if we had not
included X̃2 in the regression, the SSR would have been (y − x̃)>(y − x̃).
Hence the reduction in the SSR of regression (6.17) brought about by the
inclusion of X̃2 is

(y − x̃)>X̃2

(
X̃2

>M̃1X̃2

)−1
X̃2

>(y − x̃). (6.19)

This quantity is also the explained sum of squares (around zero) from regres-
sion (6.17), again because X̃1 has no explanatory power. We can now show
directly that this quantity, divided by any consistent estimate of σ2, is asymp-
totically distributed as χ2(r) under the null hypothesis. We already showed
this in Section 5.7, but the argument that the number of degrees of freedom
is r was an indirect one.

First, observe that

n−1/2(y − x̃)>X̃2
a
= n−1/2u>M1X2 ≡ ν>,

whereM1 ≡M1(β0) andX2 ≡X2(β0). The asymptotic equality here follows
from the fact that ũ

a
=M1u, which is the result (6.09) for the case in which

the model is estimated subject to the restrictions that β2 = 0. The covariance
matrix of the r × 1 random vector ν is

E(νν>) = E
(
n−1X2

>M1uu
>M1X2

)
= n−1X2

>M1(σ
2
0 I)M1X2

= n−1σ2
0(X2

>M1X2) ≡ σ2
0V .

The consistency of β̃ and the regularity conditions for Theorem 5.1 imply that

n−1X̃2
>M̃1X̃2

a
= n−1X2

>M1X2 = V .
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since the equilibrium price depends, in part, on the error term in the demand
equation. Hence the standard assumption that error terms and regressors are
independent is violated in this (and every) system of simultaneous equations.
Thus, if we attempt to take the plim of the right-hand side of (7.14), we
will find that the second term is not zero. It follows that α̂ and β̂ will be
inconsistent.

The results of this simple example are true in general. Since they are
determined simultaneously, all the endogenous variables in a simultaneous
equation system generally depend on the error terms in all the equations.
Thus, except perhaps in a few very special cases, the right-hand side endo-
genous variables in a structural equation from such a system will always be
correlated with the error terms. As a consequence, application of OLS to such
an equation will always yield biased and inconsistent estimates.

We have now seen two important situations in which explanatory vari-
ables will be correlated with the error terms of regression equations, and are
ready to take up the main topic of this chapter, namely, the method of in-
strumental variables. This method can be used whenever the error terms
are correlated with one or more explanatory variables, regardless of how that
correlation may have arisen. It is remarkably simple, general, and powerful.

7.4 Instrumental Variables: The Linear Case

The fundamental ingredient of any IV procedure is a matrix of instrumental
variables (or simply instruments, for short). We will call this matrix W and
specify that it is n× l. The columns of W are simply exogenous and/or pre-
determined variables that are known (or at least assumed) to be independent
of the error terms u. In the context of the simultaneous equations model, a
natural choice for W is the matrix of all the exogenous and predetermined
variables in the model. There must be at least as many instruments as there
are explanatory variables in the equation to be estimated. Thus, if the equa-
tion to be estimated is the linear regression model (7.01), with X having k
columns, we require that l ≥ k. This is an identification condition; see Section
7.8 for further discussion of conditions for identification in models estimated
by IV. Some of the explanatory variables may appear among the instruments.
Indeed, as we will see below, any column of X that is known to be exogenous
or predetermined should be included inW if we want to obtain asymptotically
efficient estimates.

The intuition behind IV procedures is the following. Least squares mini-
mizes the distance between y and S(X), which leads to inconsistent estimates
because u is correlated withX. The n--dimensional space in which y is a point
can be divided into two orthogonal subspaces, S(W ) and S⊥(W ). Instrumen-
tal variables minimizes only the portion of the distance between y and S(X)
that lies in S(W ). Provided that u is independent of W, as assumed, any
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variables in the entire system. Then the second-stage regression for y can
simply be written as

y = PWXβ + residuals. (7.28)

The OLS estimator of β from this regression is just the IV estimator (7.17):

β̃ =
(
X>PWX

)−1
X>PWy.

Notice, however, that the OLS covariance matrix estimate from (7.28) is not
the estimate we want. This estimate will be

‖y − PWXβ̃‖
n− k

2(
X>PWX

)−1
, (7.29)

while the estimate (7.24) that was derived earlier can be written as

‖y −Xβ̃‖
n

2(
X>PWX

)−1
. (7.30)

These two estimates are not the same. They would be the same only if
IV and OLS were identical, that is, if X = PWX. In addition, n would
have to be replaced by n − k in (7.30). The problem is that the second-
stage OLS regression provides an incorrect estimate of σ2; it uses y−PWXβ̃
rather than y − Xβ̃ as the vector of residuals. The second-stage residuals
y − PWXβ̃ may be either too large or too small, asymptotically. Whether
they are too large or too small will depend on σ2, on the variance of the
elements ofMWXβ =Xβ−PWXβ, and on the correlation betweenMWXβ
and u. If one actually performs 2SLS in two stages, rather than relying on
a preprogrammed 2SLS or IV procedure, one must be careful to use (7.30)
rather than (7.29) for the estimated covariance matrix.2 Programs for 2SLS
estimation normally replace PWXβ̃ by Xβ̃ before calculating the explained
sum of squares, the sum of squared residuals, the R2, and other statistics that
depend on these quantities.

There has been an enormous amount of work on the finite-sample prop-
erties of 2SLS, that is, the IV estimator β̃. A few of the many papers in
this area are Anderson (1982), Anderson and Sawa (1979), Mariano (1982),
Phillips (1983), and Taylor (1983). Unfortunately, many of the results of this
literature are very model-specific. One important result (Kinal, 1980) is that
the mth moment of the 2SLS estimator exists if and only if

m < l − k + 1.

2 2SLS is a special case of a regression with what Pagan (1984b, 1986) calls “gen-
erated regressors.” Even when such regressions provide consistent parameter
estimates, they usually provide inconsistent estimates of the covariance ma-
trix of the parameter estimates. The inconsistency of (7.29) provides a simple
example of this phenomenon.
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and that these are estimated by IV using the instrument matrix W. Now
suppose that the estimates are actually obtained by two-stage least squares.
It is easy to see that the sum of squared residuals from the second-stage
regression for (7.43), in which X1 is replaced by PWX1, will be

RSSR∗ ≡ y>M1y, (7.45)

where M1 denotes the matrix that projects orthogonally onto S⊥(PWX1).
Similarly, it can be shown (doing so is a good exercise) that the sum of squared
residuals from the second-stage regression for (7.44) will be

USSR∗ ≡ y>M1y − y>M1PWX2

(
X2

>PWM1PWX2

)−1
X2

>PWM1y. (7.46)

The difference between (7.45) and (7.46) is

y>M1PWX2

(
X2

>PWM1PWX2

)−1
X2

>PWM1y, (7.47)

which bears a striking and by no means coincidental resemblance to expression
(7.41). Under the null hypothesis (7.43), y is equal toX1β1+u. Since PWM1

annihilates X1, (7.47) reduces to

u>M1PWX2

(
X2

>PWM1PWX2

)−1
X2

>PWM1u

under the null. It should be easy to see that, under reasonable assumptions,
this quantity, divided by anything which estimates σ2 consistently, will be
asymptotically distributed as χ2(r). The needed assumptions are essentially
(7.18a)–(7.18c), plus assumptions sufficient for a central limit theorem to ap-
ply to n−1/2W>u.

The problem, then, is to estimate σ2. Notice that USSR∗/(n − k) does
not estimate σ2 consistently, for the reasons discussed in Section 7.5. As we
saw there, the residuals from the second-stage regression may be either too
large or too small. Thus estimates of σ2 must be based on the set of residuals
y−Xβ̃ rather than the set y−PWXβ̃. One valid estimate is USSR/(n− k),
where

USSR ≡
∥∥y −X1β̃1 −X2β̃2

∥∥2.
The analog of (7.42) would then be

(RSSR∗ −USSR∗)/r

USSR/(n− k)

a∼ F (r, n− k). (7.48)

Notice that the numerator and denominator of this test statistic are based on
different sets of residuals. The numerator is 1/r times the difference between
the sums of squared residuals from the second-stage regressions, while the
denominator is 1/(n − k) times the sum of squared residuals that would be
printed by a program for IV estimation.
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We must now show that the SSR from regression (7.50) is asymptotically
equal to minus the second term in expression (7.49). This SSR is∥∥PW

(
y − x(β̌)− X̌b̌

)∥∥2,
where b̌ is the vector of parameter estimates from OLS estimation of (7.50).
Recall from the results of Section 6.6 on one-step estimation that (β̃ − β̌) is
asymptotically equal to the estimate b̌ from the GNR (7.38). Thus

PW

(
y − x(β̌)− X̌b̌

) a
= PWy − PWx(β̌)− PWX̌(β̃ − β̌). (7.52)

But a first-order Taylor expansion of x(β̃) about β = β̌ gives

x(β̃) ∼= x(β̌) +X(β̌)(β̃ − β̌).

Subtracting the right-hand side of this expression from y and multiplying
by PW yields the right-hand side of (7.52). Thus we see that the SSR from
regression (7.50) is asymptotically equal to∥∥PW

(
y − x(β̃)

)∥∥2,
which is the second term of (7.49). We have therefore proved that the differ-
ence between the restricted and unrestricted values of the criterion function,
expression (7.49), is asymptotically equivalent to the explained sum of squares
from the GNR (7.38). Since the latter can be used to construct a valid test
statistic, so can the former.

This result is important. It tells us that we can always construct a test
of a hypothesis about β by taking the difference between the restricted and
unrestricted values of the criterion function for IV estimation and dividing
it by anything that estimates σ2 consistently. Moreover, such a test will be
asymptotically equivalent to taking the explained sum of squares from the
GNR evaluated at β̌ and treating it in the same way. Either of these tests can
be turned into an asymptotic F test by dividing numerator and denominator
by their respective degrees of freedom, r and n− k. Whether this is actually
a good thing to do in finite samples is unclear, however.

7.8 Identification and Overidentifying Restrictions

Identification is a somewhat more complicated matter in models estimated by
IV than in models estimated by least squares, because the choice of instru-
ments affects whether the model is identified or not. A model that would not
be identified if it were estimated by least squares will also not be identified if
it is estimated by IV. However, a model that would be identified if it were es-
timated by least squares may not be identified if it is estimated by IV using a
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In words, the limiting Hessian matrix is the negative of the limiting informa-
tion matrix. An analogous result is true for individual observations:

E0

(
D2

θθ `t(y,θ0)
)
= −E0

(
Dθ

>̀
t(y,θ0)Dθ `t(y,θ0)

)
. (8.44)

The latter result clearly implies the former, given the assumptions that permit
the application of a law of large numbers to the sequences {D2

θθ `t(y,θ0)}∞t=1

and {Dθ
>̀

t(y,θ0)Dθ `t(y,θ0)}∞t=1.

The result (8.44) is proved by an argument very similar to that used at
the beginning of the last section in order to show that the expectation of the
CG matrix is zero. From the fact that

∂`t
∂θi

=
1

Lt

∂Lt

∂θi
,

we obtain after a further differentiation that

∂2`t
∂θi∂θj

=
1

Lt

∂2Lt

∂θi∂θj
− 1

L2
t

∂Lt

∂θi

∂Lt

∂θj
.

Consequently,
∂2`t
∂θi∂θj

+
∂`t
∂θi

∂`t
∂θj

=
1

Lt

∂2Lt

∂θi∂θj
. (8.45)

If now we take the expectation of (8.45) for the DGP characterized by the
same value of the parameter vector θ as that at which the functions `t and
Lt are evaluated (which as usual we denote by Eθ), we find that

Eθ

(
∂2`t
∂θi∂θj

+
∂`t
∂θi

∂`t
∂θj

)
=

∫
Lt

1

Lt

∂2Lt

∂θi∂θj
dyt

=
∂2

∂θi∂θj

∫
Lt dyt = 0,

(8.46)

provided that, as for (8.34), the interchange of the order of differentiation and
integration can be justified. The result (8.46) now establishes (8.44), since it
implies that

Eθ

(
∂2`t
∂θi∂θj

)
= 0− Eθ

(
∂`t
∂θi

∂`t
∂θj

)
= −Eθ

(
∂`t
∂θi

∂`t
∂θj

)
.

In order to establish (8.43), recall that, from (8.19) and the law of large
numbers,

Hij(θ) = lim
n→∞

(
1−
n

n∑
t=1

Eθ

(
∂2`t(θ)

∂θi∂θj

))

= − lim
n→∞

(
1−
n

n∑
t=1

Eθ

(
∂`t(θ)

∂θi

∂`t(θ)

∂θj

))
= −Iij(θ),
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where the last line follows immediately from the definition of the limiting
information matrix, (8.22). This then establishes (8.43).

By substituting either −H(θ0) for I(θ0) or I(θ0) for −H(θ0) in (8.42),
it is now easy to conclude that the asymptotic covariance matrix of the ML
estimator is given by either of the two equivalent expressions −H(θ0)

−1 and
I(θ0)

−1. Formally, we may write

V ∞(n1/2(θ̂ − θ0)
)
= I−1(θ0) = −H−1(θ0).

In order to perform any statistical inference, it is necessary to be able to
estimate I−1(θ0) or −H−1(θ0). One estimator which suggests itself at once
is I−1(θ̂), that is, the inverse of the limiting information matrix evaluated at
the MLE, θ̂. Notice that the matrix function I(θ) is not a sample-dependent
object. It can, in principle, be computed theoretically as a matrix function
of the model parameters from the (sequence of) loglikelihood functions `n.
For some models, this is an entirely feasible computation, and then it yields
what is often the preferred estimator of the asymptotic covariance matrix.
But for many models the computation, even if feasible, would be excessively
laborious, and in these cases it is convenient to have available other consistent
estimators of I(θ0) and consequently of the asymptotic covariance matrix.

One common estimator is the negative of the so-called empirical Hessian.
This matrix is defined as

Ĥ ≡ 1−
n

n∑
t=1

D2
θθ `t(y, θ̂). (8.47)

The consistency of θ̂ and the application of a law of large numbers to the
right-hand side guarantees the consistency of (8.47) for H(θ0). When the
empirical Hessian is readily available, as it will be if maximization routines
that use second derivatives are employed, minus its inverse can provide a very
convenient way to estimate the covariance matrix of θ̂. However, the Hessian
is often difficult to compute, and if it is not already being calculated for other
purposes, it probably does not make sense to compute it just to estimate a
covariance matrix.

Another commonly used estimator of the information matrix is known as
the outer-product-of-the-gradient estimator, or OPG estimator. It is based
on the definition

I(θ) ≡ lim
n→∞

(
1−
n

n∑
t=1

Eθ

(
Dθ

>̀
t(θ)Dθ`t(θ)

))
.

The OPG estimator is

ÎOPG ≡ 1−
n

n∑
t=1

Dθ
>̀

t(y, θ̂)Dθ`t(y, θ̂) =
1−
n
G>(θ̂)G(θ̂), (8.48)
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to be numerically identical if the same estimate of the information matrix
is used to calculate them. One form, originally proposed by Rao (1948), is
called the score form of the LM test, or simply the score test, and is calcu-
lated using the gradient or score vector of the unrestricted model evaluated at
the restricted estimates. The other form, which gives the test its name, was
proposed by Aitchison and Silvey (1958, 1960) and Silvey (1959). This lat-
ter form is calculated using the vector of Lagrange multipliers which emerge
if one maximizes the likelihood function subject to constraints by means of
a Lagrangian. Econometricians generally use the LM test in its score form
but nevertheless insist on calling it an LM test, perhaps because Lagrange
multipliers are so widely used in economics. References on LM tests in econo-
metrics include Breusch and Pagan (1980) and Engle (1982a, 1984). Buse
(1982) provides an intuitive discussion of the relationships among the LR,
LM, and Wald tests.

One way to maximize `(θ) subject to the exact restrictions

r(θ) = 0, (8.71)

where r(θ) is an r--vector with r ≤ k, is simultaneously to maximize the
Lagrangian

`(θ)− r>(θ)λ

with respect to θ and minimize it with respect to the r--vector of Lagrange
multipliers λ. The first-order conditions that characterize the solution to this
problem are

g(θ̃)−R>(θ̃)λ̃ = 0

r(θ̃) = 0,
(8.72)

where R(θ) is a r × k matrix with typical element ∂ri(θ)/∂θj .

We are interested in the distribution of λ̃ under the null hypothesis, so
we will suppose that the DGP satisfies (8.71) with parameter vector θ0. The
value of the vector of Lagrange multipliers λ if θ̃ were equal to θ0 would
be zero. Thus it seems natural to take a first-order Taylor expansion of the
first-order conditions (8.72) around the point (θ0,0). This yields

g(θ0) +H(θ̄)(θ̃ − θ0)−R>(θ̄)λ̃ = 0

R(θ̈)(θ̃ − θ0) = 0,

where θ̄ and θ̈ denote values of θ that lie between θ̃ and θ0. These equations
may be rewritten as[−H(θ̄) R>(θ̄)

R(θ̈) 0

][
θ̃ − θ0
λ̃

]
=

[
g(θ0)

0

]
. (8.73)

If we multiply H(θ̄) by n−1, θ̃− θ0 by n1/2, g(θ0) by n
−1/2, and λ̃ by n−1/2,

we do not change the equality in (8.73), and we render all quantities that
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The LM statistic (8.76) is numerically equal to a test based on the score
vector g(θ̃). By the first set of first-order conditions (8.72), g(θ̃) = R̃>λ̃.
Substituting g(θ̃) for R̃>λ̃ in (8.76) yields the score form of the LM test,

1−
n
g̃>Ĩ−1g̃. (8.77)

In practice, this score form is often more useful than the LM form because,
since restricted estimates are rarely obtained via a Lagrangian, g̃ is generally
readily available while λ̃ typically is not. However, deriving the test via the
Lagrange multipliers is illuminating, because this derivation makes it quite
clear why the test has r degrees of freedom.

The third of the three classical tests is the Wald test. This test is very
easy to derive. It asks whether the vector of restrictions, evaluated at the
unrestricted estimates, is close enough to a zero vector for the restrictions to
be plausible. In the case of the restrictions (8.71), the Wald test is based
on the vector r(θ̂), which should tend to a zero vector asymptotically if the
restrictions hold. As we have seen in Sections 8.5 and 8.6,

n1/2(θ̂ − θ0)
a∼ N

(
0, I−1(θ0)

)
.

A Taylor-series approximation of r(θ̂) around θ0 yields r(θ̂) ∼= R0(θ̂ − θ0).
Therefore,

V
(
n1/2r(θ̂)

) a
= R0 I

−1
0 R0

>.

It follows that an appropriate test statistic is

nr>(θ̂)
(
R̂ Î−1R̂>)−1

r(θ̂), (8.78)

where Î denotes any consistent estimate of I(θ0) based on the unrestricted
estimates θ̂. Different variants of the Wald test will use different estimates of
I(θ0). It is easy to see that given suitable regularity the test statistic (8.78)
will be asymptotically distributed as χ2(r) under the null.

The fundamental property of the three classical test statistics is that
under the null hypothesis, as n → ∞, they all tend to the same random
variable, which is distributed as χ2(r). We will prove this result in Chapter 13.
The implication is that, in large samples, it does not really matter which of
the three tests we use. If both θ̂ and θ̃ are easy to compute, it is attractive
to use the LR test. If θ̃ is easy to compute but θ̂ is not, as is often the case
for tests of model specification, then the LM test becomes attractive. If on
the other hand θ̂ is easy to compute but θ̃ is not, as may be the case when
we are interested in nonlinear restrictions on a linear model, then the Wald
test becomes attractive. When the sample size is not large, choice among the
three tests is complicated by the fact that they may have very different finite-
sample properties, which may further differ greatly among the alternative
variants of the LM and Wald tests. This makes the choice of tests rather
more complicated in practice than asymptotic theory would suggest.
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over all t and then taking the logarithm yields the Jacobian term that appears
in (8.92).

Concentrating the loglikelihood function with respect to σ yields

`c(β, γ) = C − n−
2
log

( n∑
t=1

(
yγt − β0 − β1xt

)2)

+ n log |γ|+ (γ − 1)

n∑
t=1

log(yt).

(8.93)

Maximizing this with respect to γ and β is straightforward. If a suitable
nonlinear optimization program is not available, one can simply do a one-
dimensional search over γ, calculating β0 and β1 conditional on γ by means of
least squares, so as to find the value γ̂ that maximizes (8.93). Of course, one
cannot use the OLS covariance matrix obtained in this way, since it treats γ̂ as
fixed. The information matrix is not block-diagonal between β and the other
parameters of (8.91), so one must calculate and invert the full information
matrix to obtain an estimated covariance matrix.

ML estimation works in this case because of the Jacobian term that
appears in (8.92) and (8.93). It vanishes when γ = 1 but plays an extremely
important role for all other values of γ. We saw in Section 8.1 that if one
applied NLS to (8.01) and all the yt’s were greater than unity, one would end
up with an infinitely large and negative estimate of γ. That will not happen if
one uses maximum likelihood, because the term (γ−1)

∑n
t=1 log(yt) will tend

to minus infinity as γ → −∞much faster than−n/2 times the logarithm of the
sum-of-squares term tends to plus infinity. This example illustrates how useful
ML estimation can be for dealing with modified regression models in which
the dependent variable is subject to a transformation. We will encounter other
problems of this type in Chapter 14.

ML estimation can also be very useful when it is believed that the error
terms are nonnormal. As an extreme example, consider the following model:

yt =Xtβ + αεt, f(εt) =
1

π(1 + ε2t )
, (8.94)

where β is a k--vector andXt is the t
th row of an n×k matrix. The density of

εt here is the Cauchy density (see Section 4.6) and εt therefore has no finite
moments. The parameter α is simply a scale parameter, not the standard
error of the error terms; since the Cauchy distribution has no moments, the
error terms do not have a standard error.

If we write εt as a function of yt, we find that

εt =
yt −Xtβ

α
.
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Consider the class of models

y = x(β) + u, u ∼ N
(
0,Ω(α)

)
. (9.31)

By modifying the loglikelihood function (9.03) slightly, we find that the log-
likelihood function corresponding to (9.31) is

`n(y,β,α) = − n−
2
log(2π)− 1−

2
log |Ω(α)|

− 1−
2

(
y − x(β)

)>Ω−1(α)
(
y − x(β)

)
.

(9.32)

There will be two sets of first-order conditions, one for α and one for β. The
latter will be similar to the first-order conditions (9.05) for GNLS:

X>(β̂)Ω−1(α̂)
(
y − x(β̂)

)
= 0.

The former will be rather complicated and will depend on precisely how Ω is
related to α. For a more detailed treatment, see Magnus (1978).

In Section 8.10, we saw that the information matrix for β and σ in a
nonlinear regression model with covariance matrix σ2 I is block-diagonal be-
tween β and σ. An analogous result turns out to be true for the model (9.31)
as well: The information matrix is block-diagonal between β and α. This
means that, asymptotically, the vectors n1/2(β̂ − β0) and n1/2(α̂ − α0) are
independent. Thus the fact that α̂ is estimated jointly with β̂ can be ignored,
and β̂ will have the same properties asymptotically as the GNLS estimator β̃
and the feasible GNLS estimator β̌.

The above argument does not require that the error terms ut actually be
normally distributed. All that we require is that the vectors n1/2(β̂−β0) and
n1/2(α̂−α0) be asymptotically independent and O(1) under whatever DGP
actually generated the data. It can be shown that this is in fact the case under
fairly general conditions, similar to the conditions detailed in Chapter 5 for
least squares to be consistent and asymptotically normal; see White (1982)
and Gouriéroux, Monfort, and Trognon (1984) for fundamental results in this
area. As we saw in Section 8.1, when the method of maximum likelihood
is applied to a data set for which the DGP was not in fact a special case
of the model being estimated, the resulting estimator is called a quasi-ML,
or QML, estimator. In practice, of course, almost all the ML estimators
we use are actually QML estimators, since some of the assumptions of our
models are almost always wrong. It is therefore comforting that in certain
common situations, including this one, the properties of QML estimators are
very similar to those of genuine ML estimators, although asymptotic efficiency
is of course lost.

As a concrete example of GLS, feasible GLS, and ML estimation, consider
the model

y = x(β) + u, u ∼ N(0,Ω), Ωtt = σ2wα
t , Ωts = 0 for all t 6= s. (9.33)
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introduced in (9.52), as follows:

Xi(β) =
m∑
j=1

Zj(β)ψji.

Then the stacked GNR is
(
Y − ξ(β)

)
ψ1

...(
Y − ξ(β)

)
ψm

 =

 X1(β)
...

Xm(β)

b + residuals. (9.58)

The OLS estimates from the GNR (9.58) will be defined by the first-order
conditions ( m∑

i=1

Xi
>(β)Xi(β)

)
b̈ =

m∑
i=1

Xi
>(β)

(
Y − ξ(β)

)
ψi. (9.59)

Some manipulation of (9.59) based on the definition of the Xi’s and of ψ
shows that this is equivalent to

m∑
i=1

m∑
j=1

σijZi
>(β)

(
yj − xj(β)−Zj(β)b

)
= 0. (9.60)

Thus we see that regression (9.58) has all the properties we have come to
expect from the Gauss-Newton regression. If we evaluate it at β = β̃, the
regression will have no explanatory power at all, because (9.60) is satisfied
with b = 0 by the first-order conditions (9.53). The estimated covariance
matrix from regression (9.58) with β = β̃ will be

s̃2
( m∑

i=1

m∑
j=1

σijZ̃i
>Z̃j

)−1

, (9.61)

where s̃2 is the estimate of the variance that the regression package will gen-
erate, which will evidently tend to 1 asymptotically if Σ is in fact the con-
temporaneous covariance matrix of Ut. If (9.61) is rewritten as a sum of
contributions from the successive observations, the result is

s̃2
( n∑

t=1

Ξ̃tΣ
−1Ξ̃t

>
)−1

,

from which it is clear that (9.61) is indeed the proper GNLS covariance matrix
estimator.
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the ML estimates β̂, the estimated error variance for it, ŝ2, will be equal to

1

mn− k

n∑
t=1

(
Yt − ξ̂t

)
ψ̂ψ̂>(Yt − ξ̂t

)>
=

1

mn− k

n∑
t=1

(
Yt − ξ̂t

)
Σ̂−1

(
Yt − ξ̂t

)>=
mn

mn− k
.

(9.70)

The last equality here follows from an argument almost identical to the one
used to establish (9.65). Since it is evident that (9.70) tends asymptotically
to 1, expression (9.61), which is in this case

mn

mn− k

( n∑
t=1

Ξ̂tΣ̂
−1Ξ̂t

>
)−1

,

provides a natural and very convenient way to estimate the covariance matrix
of β̂.

We have now established all the principal results of interest concerning
the estimation of multivariate nonlinear regression models. Since those results
have been in terms of a rather general and abstract model, it may help to make
them more concrete if we indicate precisely how our general notation relates
to the case of the linear expenditure system that we discussed earlier. For
concreteness, we will assume that m = 2, which means that there is a total of
three commodities. Then we see that

Yt = [st1 st2];

β = [α1
.... α2

.... γ1
.... γ2

.... γ3];

ξt(β) =

γ1p1t
Et

+
α1

Et

(
Et −

3∑
j=1

pjtγj

)
γ2p2t
Et

+
α2

Et

(
Et −

3∑
j=1

pjtγj

);

Ξt(β) =



(
Et −

∑3
j=1 pjtγj

)
/Et 0

0
(
Et −

∑3
j=1 pjtγj

)
/Et

(1− α1)p1t/Et −α2p1t/Et

−α1p2t/Et (1− α2)p2t/Et

−α1p3t/Et −α2p3t/Et


.

It may be a useful exercise to set up the GNR for testing the hypothesis that
γ1 = γ2 = γ3 = 0, where estimates subject to that restriction have been
obtained.

Our treatment of multivariate models has been relatively brief. A much
fuller treatment, but only for linear SUR models, may be found in Srivas-
tava and Giles (1987), which is also an excellent source for references to the
econometric and statistical literature on the subject.
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where X̂∗ denotes the n× k matrix of the derivatives of the vector of nonlin-
ear functions x∗(β, ρ), defined in (10.46), with respect to the elements of β,

evaluated at (β̂, ρ̂), and

V̂ (ρ̂, ω̂) =


n

1− ρ̂2
+

3ρ̂2 − 1

(1− ρ̂2)2
2ρ̂

ω̂(1− ρ̂2)

2ρ̂

ω̂(1− ρ̂2)

2n

ω̂2


−1

.

The estimated covariance matrix (10.54) is block-diagonal between β and ρ
and between β and ω (recall that we have ruled out lagged dependent vari-
ables). However, unlike the situation with regression models, it is not block-
diagonal between ρ and ω. The off-diagonal terms in the (ρ, ω) block of
the information matrix are O(1), while the diagonal terms are O(n). Thus
V (β̂, ρ̂, ω̂) will be asymptotically block-diagonal between β, ρ, and ω. This is
what we would expect, since it is only the first observation, which is asymptot-
ically negligible, that prevents (10.54) from being block-diagonal in the first
place.

It is an excellent exercise to derive the estimated covariance matrix
(10.54). One starts by taking the second derivatives of (10.51) with respect to
all of the parameters of the model to find the Hessian, then takes expectations
of minus it to obtain the information matrix. One then replaces parameters
by their ML estimates and inverts the information matrix to obtain (10.54).
Although this exercise is straightforward, there are plenty of opportunities to
make mistakes. For example, Beach and MacKinnon (1978a) fail to take all
possible expectations and, as a result, end up with an excessively complicated
estimated covariance matrix.

The preceding discussion makes it clear that taking the first observation
into account is significantly harder than ignoring it. Even if an appropriate
computer program is available, so that estimation is straightforward, one runs
into trouble when one wants to test the model. Since the transformed model is
no longer a regression model, the Gauss-Newton regression no longer applies
and cannot be used to do model specification tests; see Sections 10.8 and 10.9.
One could of course estimate the model twice, once taking account of the first
observation, in order to obtain the most efficient possible estimates, and once
dropping it, in order to be able to test the specification, but this clearly
involves some extra work. The obvious question that arises, then, is whether
the additional trouble of taking the first observation into account is worth it.

There is a large literature on this subject, including Kadiyala (1968), Rao
and Griliches (1969), Maeshiro (1976, 1979), Beach and MacKinnon (1978a),
Chipman (1979), Spitzer (1979), Park and Mitchell (1980), Ansley and New-
bold (1980), Poirier (1978a), Magee (1987), and Thornton (1987). In many
cases, retaining the first observation yields more efficient estimates but not
by very much. However, when the sample size is modest and there is one or
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in month t would affect the value of instruments maturing in months t, t+1,
and t + 2 but would not directly affect the value of instruments maturing
later, because the latter would not yet have been issued. This suggests that
the error term should be modeled by an MA(2) process; see Frankel (1980)
and Hansen and Hodrick (1980). Moving average errors also arise when data
are gathered using a survey that includes some of the same respondents in
consecutive periods, such as the labor force surveys in both the United States
and Canada, which are used to estimate unemployment rates; see Hausman
and Watson (1985).

It is generally somewhat harder to estimate regression models with mov-
ing average errors than to estimate models with autoregressive errors. To see
why, suppose that we want to estimate the model

yt = xt(β) + ut, ut = εt − αεt−1, εt ∼ IID(0, ω2). (10.61)

Compared with (10.57), we have dropped the subscript from α and changed
its sign for convenience; the sign change is of course purely a normalization.
Let us make the asymptotically innocuous assumption that the unobserved
innovation ε0 is equal to zero (techniques that do not make this assumption
will be discussed below). Then we see that

y1 = x1(β) + ε1

y2 = x2(β)− α
(
y1 − x1(β)

)
+ ε2

y3 = x3(β)− α
(
y2 − x2(β)

)
− α2

(
y1 − x1(β)

)
+ ε3,

(10.62)

and so on. By making the definitions

y∗0 = 0; y∗t = yt + αy∗t−1, t = 1, . . . , n;

x∗0 = 0; x∗t (β, α) = xt(β) + αx∗t−1(β, α), t = 1, . . . , n,
(10.63)

we can write equations (10.62) in the form

yt = −αy∗t−1 + x∗t (β, α) + εt, (10.64)

which makes it clear that we have a nonlinear regression model. But the
regression function depends on the entire sample up to period t, since y∗t−1

depends on all previous values of yt and x
∗
t depends on xt−i(β) for all i ≥ 0.

In the by no means unlikely case in which |α| = 1, the dependence of yt on
past values does not even tend to diminish as those values recede into the
distant past. If we have a specialized program for estimation with MA(1)
errors, or a smart nonlinear least squares program that allows us to define the
regression function recursively, as in (10.63), estimating (10.64) need not be
any more difficult than estimating other nonlinear regression models. But if
appropriate software is lacking, this estimation can be quite difficult.
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If we assume that the error terms are normally distributed, the model
(10.61) becomes

yt = xt(β) + ut, ut = εt − αεt−1, εt ∼ NID(0, ω2). (10.65)

We previously made the asymptotically innocuous assumption that the un-
observed innovation ε0 is equal to zero. Although asymptotically innocuous,
that assumption is clearly false, since according to (10.65) ε0 must be dis-
tributed as N(0, ω2). The simplest way to take proper account of this fact
was suggested by MacDonald and MacKinnon (1985); our treatment follows
theirs.

The concentrated loglikelihood function for the model (10.65) is

C − n−
2
log
((
y − x(β)

)>∆−1(α)
(
y − x(β)

))
− 1−

2
log |∆(α)|, (10.66)

where ω2∆(α) is the covariance matrix of the vector of error terms u, ex-
pression (10.60).4 As discussed by Box and Jenkins (1976) and others, the
Jacobian term −1

2 log |∆(α)| is

1−
2
log
(
1− α2

)
− 1−

2
log
(
1− α2n+2

)
. (10.67)

When |α| = 1, both terms in (10.67) are undefined. In that case, by using
l’Hôpital’s Rule, one can show that

lim
|α|→1

(
1−
2
log
(
1− α2

)
− 1−

2
log
(
1− α2n+2

))
= − 1−

2
log(n+ 1).

This result allows the loglikelihood function (10.66) to be evaluated for any
value of α in the invertibility region −1 ≤ α ≤ 1.

It is important to be able to deal with the case in which |α| = 1, since in
practice one not infrequently obtains ML estimates with |α̂| = 1, especially
when the sample size is small; see, for example, Osborn (1976) and Davidson
(1981). The reason for this is that if we concentrate the loglikelihood function
with respect to β and ω to obtain `c(α), we will find that `c(α) has the
same value for α and 1/α. That, of course, is the reason for imposing the
invertibility condition that |α| ≤ 1. Thus, if `c(α) is rising as α → 1 or as
α → −1, it must have a maximum precisely at α = 1 or α = −1. This
is a distinctly undesirable feature of the model (10.65). When |α̂| = 1, one
cannot make inferences about α in the usual way, since α̂ is then on the
boundary of the parameter space. Since α̂ can equal ±1 with finite probability,

4 In fact, expression (10.66) could be the concentrated loglikelihood function for a
nonlinear regression model with error terms that follow any sort of autoregres-
sive moving average, or ARMA, process, provided that ∆(α) were replaced
by the covariance matrix for u implied by that ARMA process.
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using the normal distribution to approximate its finite-sample distribution is
a somewhat dubious procedure. Thus, if α̂ is equal to or even close to 1
in absolute value, the investigator should exercise care in making inferences
about α. Of course, as n → ∞ the fact that α̂ is consistent means that the
number of times that |α̂| = 1 tends to zero, unless |α0| = 1.

It is not easy to evaluate (10.66) directly; see Pesaran (1973), Osborn
(1976), and Balestra (1980), among others.5 We therefore use a trick that
provides an alternative way to do so. Recall equations (10.62), in which we
explicitly wrote y1, . . . , yn as functions of current and lagged values of xt(β)
and lagged values of yt. We may rewrite these equations, taking account of
observation zero, as

0 = −υ + ε0

y1 = x1(β)− αυ + ε1

y2 = x2(β)− α
(
y1 − x1(β)

)
− α2υ + ε2

y3 = x3(β)− α
(
y2 − x2(β)

)
− α2

(
y1 − x1(β)

)
− α3υ + ε3,

(10.68)

and so on. Here we have added both one observation and one parameter to
equations (10.62). The extra observation is observation zero, which as written
here simply says that the unknown parameter υ is defined to equal the error
term ε0. This unknown parameter also appears in all subsequent observations,
multiplied by larger and larger powers of α, to reflect the dependence of yt
for all observations on ε0. Notice that because we have added both an extra
parameter and an extra observation, we have not changed the number of
degrees of freedom (i.e., the number of observations minus the number of
parameters estimated) at all.

If we make the definitions

y∗0 = 0; y∗t = yt + αy∗t−1, t = 1, . . . , n;

x∗0 = 0; x∗t (β, α) = xt(β) + αx∗t−1(β, α), t = 1, . . . , n;

z∗0 = −1; z∗t = αz∗t−1,

we can write equations (10.68) in the form

y∗t (α) = x∗t (β, α) + υz∗t + εt, (10.69)

making them look like very much like a nonlinear regression model. The sum
of squared residuals would then be

n∑
t=0

(
y∗t (α)− x∗t (β, α)− υz∗t

)2
. (10.70)

5 Another approach to the estimation of models with moving average errors has
been proposed by Harvey and Phillips (1979) and by Gardner, Harvey, and
Phillips (1980). It requires specialized software.
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to the one for testing against AR(q) errors. Perhaps more surprisingly, the
same artificial regression also turns out to be appropriate for testing against
ARMA(p, q) errors, with max(p, q) lags of ũ now being included in the regres-
sion. For more details, see Godfrey (1978b, 1988).

Using something very like the Gauss-Newton regression to test for serial
correlation was first suggested by Durbin (1970) in a paper that also intro-
duced what has become known as Durbin’s h test. The latter procedure,
which we will not discuss in detail, is an asymptotic test for AR(1) errors
that can be used when the null hypothesis is a linear regression model which
includes the dependent variable lagged once, and possibly more than once as
well, among the regressors. The h test can be calculated with a hand calcu-
lator from the output for the original regression printed by most regression
packages, although in some cases it cannot be calculated at all because it
would be necessary to compute the square root of a negative number. For
reasons that today seem hard to understand (but are presumably related to
the primitive state of computer hardware and econometric software in the
early 1970s), Durbin’s h test became widely used, while his so-called alter-
native procedure, a t test based on the modified GNR (10.77), was all but
ignored for quite some time.8 It was finally rediscovered and extended by
Breusch (1978) and Godfrey (1978a, 1978b). All of these papers assumed
that the error terms εt were normally distributed, and they developed tests
based on the GNR as Lagrange multiplier tests based on maximum likelihood
estimation. The normality assumption is of course completely unnecessary.

Equally unnecessary is any assumption about the presence or absence of
lagged dependent variables in the regression function xt(β). All we require
is that this function satisfy the regularity conditions of Chapter 5, in order
that nonlinear least squares estimates will be consistent and asymptotically
normal under both the null and alternative hypotheses. As the above history
implies, and as we will discuss below, many tests for serial correlation require
that xt(β) not depend on lagged dependent variables, and all of the literature
cited in the previous paragraph was written with the specific aim of handling
the case in which xt(β) is linear and depends on one or more lagged values of
the dependent variable.

The problem with tests based on the GNR is that they are valid only
asymptotically. This is true whether or not xt(β) is linear, because ũ−1 is only
an estimate of u−1. Indeed, as we saw in Section 5.6, ũ

a
=M0u, whereM0 ≡

I−X0(X0
>X0)

−1X0
> and X0 ≡ X(β0). This is just the asymptotic equality

(5.57). The asymptotic equality is replaced by an exact equality if x(β) =Xβ.

8 Maddala and Rao (1973), Spencer (1975), and Inder (1984), among others,
have provided Monte Carlo evidence on Durbin’s h test as compared with the
test based on the GNR. This evidence does not suggest any strong reason to
prefer one test over the other. Thus the greater convenience and more general
applicability of the test based on the GNR are probably the main factors in its
favor.
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underlying regression model is linear, and X contains only fixed regressors.
This distribution necessarily depends onX. The calculation uses the fact that
the d statistic can be written as

u>MXAMXu

u>MXu
, (10.82)

where A is the n× n matrix

1 −1 0 0 · · · 0 0 0

−1 2 −1 0 · · · 0 0 0

0 −1 2 −1 · · · 0 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · −1 2 −1

0 0 0 0 · · · 0 −1 1


.

From (10.82), the d statistic is seen to be a ratio of quadratic forms in nor-
mally distributed random variables, and the distributions of such ratios can be
evaluated using several numerical techniques; see Durbin and Watson (1971)
and Savin and White (1977) for references.

Most applied workers never attempt to calculate the exact distribution of
the d statistic corresponding to their particular X matrix. Instead, they use
the fact that the critical values for its distribution are known to fall between
two bounding values, dL and dU , which depend on the sample size, n, the
number of regressors, k, and whether or not there is a constant term. Tables
of dL and dU may be found in some econometrics textbooks and in papers such
as Durbin and Watson (1951) and Savin and White (1977). As an example,
when n = 50 and k = 6 (counting the constant term as one of the regressors),
for a test against ρ > 0 at the .05 level, dL = 1.335 and dU = 1.771. Thus, if
one calculated a d statistic for this sample size and number of regressors and it
was less than 1.335, one could confidently decide to reject the null hypothesis
of no serial correlation at the .05 level. If the statistic was greater than 1.771,
one could confidently decide not to reject. However, if the statistic was in
the “inconclusive region” between 1.335 and 1.771, one would be unsure of
whether to reject or not. When the sample size is small, and especially when
it is small relative to the number of regressors, the inconclusive region can
be very large. This means that the d statistic may not be very informative
when used in conjunction with the tables of dL and dU .

9 In such cases, one
may have no choice but to calculate the exact distribution of the statistic,
if one wants to make inferences from the d statistic in a small sample. A
few software packages, such as SHAZAM, allow one to do this. Of course,

9 There is reason to believe that when the regressors are slowly changing, a
situation which may often be the case with time-series data, dU provides a
better approximation than dL. See Hannan and Terrell (1966).
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the test based on (10.98) is testing against a less general alternative than the
usual form of the test. When xt(β) is linear, (10.97) can be written as

(1− ρL)yt =Xtβ − δXt−1β + εt, (10.99)

which is in general (but not when l = 1) more restrictive than equation (10.89).
Thus consideration of the nonlinear regression case reveals that there are really
two different tests of common factor restrictions when the original model is
linear. The first, which tests (10.88) against (10.89), is the F test (10.92).
It will have l degrees of freedom, where 1 ≤ l ≤ k. The second, which tests
(10.88) against (10.99), is the t test of d = 0 in the Gauss-Newton regression
(10.98). It will always have one degree of freedom. Either test might perform
better than the other, depending on how the data were actually generated;
see Chapter 12. When l = 1, the two tests will coincide, a fact that it may be
a good exercise to demonstrate.

10.10 Instrumental Variables and Serial Correlation

So far in this chapter, we have assumed that the regression function x(β) de-
pends only on exogenous and predetermined variables. However, there is no
reason for serially correlated errors not to occur in models for which current
endogenous variables appear in the regression function. As we discussed in
Chapter 7, the technique of instrumental variables (IV) estimation is com-
monly used to obtain consistent estimates for such models. In this section, we
briefly discuss how IV methods can be used to estimate univariate regression
models with errors that are serially correlated and to test for serial correlation
in such models.

Suppose that we wish to estimate the model (10.12) by instrumental
variables. Then, as we saw in Section 7.6, the IV estimates may be obtained
by minimizing, with respect to β and ρ, the criterion function(

y − x′(β, ρ)
)>PW

(
y − x′(β, ρ)

)
, (10.100)

where the regression function x′(β, ρ) is defined by (10.13), and PW is the
matrix that projects orthogonally onto the space spanned by W, a suitable
matrix of instruments. The IV form of the Gauss-Newton regression can
be used as the basis for an algorithm to minimize (10.100). Given suitable
regularity conditions on xt(β), and assuming that |ρ| < 1, these estimates
will be consistent and asymptotically normal. See Sargan (1959) for a full
treatment of the case in which x(β) is linear.

The only potential difficulty with this IV procedure is that one has to find
a “suitable” matrix of instruments W. For asymptotic efficiency, one always
wants the instruments to include all the exogenous and predetermined vari-
ables that appear in the regression function. From (10.13), we see that more
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such variables appear in the regression function x′t(β, ρ) for the transformed
model than in the original regression function xt(β). Thus the optimal choice
of instruments may differ according to whether one takes account of serial
correlation or assumes that it is absent.

To make this point more clearly, let us assume that the original model is
linear, with regression function

xt(β) = Ztβ1 + Ytβ2, (10.101)

where Zt is a row vector of explanatory variables that are exogenous or pre-
determined, and Yt is a row vector of current endogenous variables; the di-
mension of β ≡ [β1

.... β2] is k. The regression function for the transformed
model is then

x′t(β, ρ) = ρyt−1 +Ztβ1 + Ytβ2 − ρZt−1β1 − ρYt−1β2. (10.102)

In (10.101), the only exogenous or predetermined variables were the variables
in Zt. In (10.102), however, they are yt−1 and the variables in Zt, Zt−1,
and Yt−1 (the same variables may occur in more than one of these, of course;
see the discussion of common factor restrictions in the previous section). All
these variables would normally be included in the matrix of instruments W.
Since the number of these variables is almost certain to be greater than k+1,
it would not normally be necessary to include any additional instruments to
ensure that all parameters are identified.

For more discussion of the estimation of single linear equations with se-
rially correlated errors and current endogenous regressors, see Sargan (1959,
1961), Amemiya (1966), Fair (1970), Dhrymes, Berner, and Cummins (1974),
Hatanaka (1976), and Bowden and Turkington (1984).

Testing for serial correlation in models estimated by IV is straightforward
if one uses a variant of the Gauss-Newton regression. In Section 7.7, we dis-
cussed the GNR (7.38), in which the regressand and regressors are evaluated
at the restricted estimates, and showed how it can be used to calculate test
statistics. Testing for serial correlation is simply an application of this proce-
dure. Suppose we want to test a nonlinear regression model for AR(1) errors.
The alternative model is given by (10.12), for observations 2 through n, with
the null hypothesis being that ρ = 0. In this case, the GNR (7.38) is

ũ = PWX̃b+ rPW ũ−1 + residuals, (10.103)

where β̃ denotes the IV estimates under the null hypothesis of no serial correl-
ation, ũ denotes y−x(β̃), and X̃ denotesX(β̃). This is clearly the IV analog
of regression (10.76); if the two occurrences of PW were removed, (10.76) and
(10.103) would be identical. The t statistic on the estimate of r from this
regression will be a valid test statistic. This will be true both when (10.103)
is estimated explicitly by OLS and when ũ is regressed on X̃ and ũ−1 using
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where β̂ denotes the NLS estimates of β for the whole sample. The GNR
(11.04) may be written more compactly as

û = X̂b+ δ∗X̂c + residuals, (11.05)

where û has typical element yt − xt(β̂), and X̂ has typical element Xt(β̂).
Here ∗ denotes the direct product of two matrices. Since δtXti(β̂) is a typical
element of δ∗X̂, δt∗X̂t = X̂t when δt = 1 and δt∗X̂t = 0 when δt = 0. To
perform the test, we simply have to estimate the model using the entire sample
and regress the residuals from that estimation on the matrix of derivatives X̂
and on that matrix with the rows which correspond to group 1 observations
set to zero. We do not have to reorder the data. As usual, there are several
asymptotically valid test statistics, the best probably being the ordinary F
statistic for the null hypothesis that c = 0. In the usual case with k less than
min(n1, n2), that test statistic will have k degrees of freedom in the numerator
and n− 2k degrees of freedom in the denominator.

Notice that the sum of squared residuals from regression (11.05) is equal
to the SSR from the GNR

û = X̂b + residuals (11.06)

run over observations 1 to n1 plus the SSR from the same GNR run over
observations n1+1 to n. This is the unrestricted sum of squared residuals for
the F test of c = 0 in (11.05). The restricted sum of squared residuals for that
test is simply the SSR from (11.06) run over all n observations, which is the
same as the SSR from nonlinear estimation of the null hypothesis H0. Thus
the ordinary Chow test for the GNR (11.06) will be numerically identical to
the F test of c = 0 in (11.05). This provides the easiest way to calculate the
test statistic.

As we mentioned above, the ordinary Chow test (11.03) is not applicable
if min(n1, n2) < k. Using the GNR framework, it is easy to see why this is
so. Suppose that n2 < k and n1 > k, without loss of generality, since the
numbering of the two groups of observations is arbitrary. Then the matrix
δ∗X̂, which has k columns, will have n2 < k rows that are not just rows of
zeros and hence will have rank at most n2. Thus, when equation (11.05) is
estimated, at most n2 elements of c will be identifiable, and the residuals
corresponding to all observations that belong to group 2 will be zero. The
number of degrees of freedom for the numerator of the F statistic must there-
fore be at most n2. In fact, it will be equal to the rank of [X̂ δ∗X̂] minus the

rank of X̂, which might be less than n2 in some cases. The number of degrees
of freedom for the denominator will be the number of observations for which
(11.05) has nonzero residuals, which will normally be n1, minus the number of
regressors that affect those observations, which will be k, for a total of n1−k.
Thus we can use the GNR whether or not min(n1, n2) < k, provided that
we use the appropriate numbers of degrees of freedom for the numerator and
denominator of the F test.
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than the other may be seen as a deficiency of these tests. That is so only if
one misinterprets their nature. Nonnested hypothesis tests are specification
tests, and since there is almost never any reason a priori to believe that either
of the models actually generated the data, it is appropriate that nonnested
tests, like other model specification tests, may well tell us that neither model
seems to be compatible with the data.

It is important to stress that the purpose of nonnested tests is not to
choose one out of a fixed set of models as the “best” one. That is the subject
of an entirely different strand of the econometric literature, which deals with
criteria for model selection. We will not discuss the rather large literature on
model selection in this book. Two useful surveys are Amemiya (1980) and
Leamer (1983), and an interesting recent paper is Pollak and Wales (1991).

It is of interest to examine more closely the case in which both models
are linear, that is, x(β) =Xβ and z(γ) = Zγ. This will allow us to see why
the J and P tests (which in this case are identical) are asymptotically valid
and also to see why these tests may not always perform well in finite samples.
The J-test regression for testing H1 against H2 is

y =Xb+ αPZy + residuals, (11.16)

where PZ = Z(Z>Z)−1Z> and b = (1 − α)β. Using the FWL Theorem, we
see that the estimate of α from (11.16) will be the same as the estimate from
the regression

MXy = αMXPZy + residuals. (11.17)

Thus, if ś denotes the OLS estimate of σ from (11.16), the t statistic for α = 0
will be

y>PZMXy

ś(y>PZMXPZy)1/2
. (11.18)

First of all, notice that when only one column of Z, say Z1, does not
belong to S(X), it must be the case that

S(X,PZy) = S(X,Z) = S(X,Z1).

Therefore, the J-test regression (11.16) must yield exactly the same SSR as
the regression

y =Xb+ δZ1 + residuals. (11.19)

Thus, in this special case, the J test is equal in absolute value to the t statistic
on the estimate of δ from (11.19).

When two or more columns of Z do not belong to S(X), this special
result is no longer available. If the data were actually generated by H1, we
can replace y in the numerator of (11.18) byXβ+u. SinceMXXβ = 0, that
numerator becomes

β>X>PZMXu+ u>PZMXu. (11.20)
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The two terms of (11.20) are of different orders. The first term is a weighted
sum of the elements of the vector u, each of which has mean zero. Thus,
under suitable regularity conditions, it is easy to see that

n−1/2β>X>PZMXu
a∼ N

(
0, plim

n→∞

(
n−1σ2

1β
>X>PZMXPZXβ

))
.

This first term is thus O(n1/2). The second term, in contrast, is O(1), since

plim
n→∞

(
u>PZMXu

)
= plim

n→∞

(
u>PZu− u>PZPXu

)
= σ2

1k2 − σ2
1 lim
n→∞

(
Tr(PZPX)

)
,

and the trace of PZPX is O(1). Thus, asymptotically, it is only the first term
in (11.20) that matters.

Similarly, under H1 the factor in parentheses in the denominator of
(11.18) is equal to

β>X>PZMXPZXβ + 2β>X>PZMXPZu+ u>PZMXPZu. (11.21)

By arguments similar to those used in connection with the numerator, the
first of the three terms in (11.21) may be shown to be O(n), the second
O(n1/2), and the third O(1). Moreover, it is clear that ś → σ1 under H1.
Thus, asymptotically under H1, the test statistic (11.18) tends to the random
variable

β>X>PZMXu

σ1
(
β>X>PZMXPZXβ

)1/2 ,
which can be shown to be distributed asymptotically as N(0, 1).

This analysis not only makes it clear why the J and P tests are valid
asymptotically but also indicates why they may not be well behaved in finite
samples. When the sample size is small or Z contains many regressors that
are not in S(X), the quantity u>PZMXu, which is asymptotically negligible,
may actually be large and positive. Hence, in such circumstances, the J-test
statistic (11.18) may have a mean that is substantially greater than zero.

Several ways of reducing or eliminating this bias have been suggested.
The simplest, which was first proposed by Fisher and McAleer (1981) and
further studied by Godfrey (1983), is to replace γ̂ in the J-test and P -test
regressions by γ̃, which is the estimate of γ obtained by minimizing(

x̂− z(γ)
)>(x̂− z(γ)

)
.

Thus γ̃ is the NLS estimate of γ obtained when one uses the fitted values x̂
instead of the dependent variable y. In the linear case, this means that the
J-test regression (11.16) is replaced by the regression

y =Xb+ αPZPXy + residuals. (11.22)
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This regression yields what is called the JA test because Fisher and McAleer
attributed the basic idea to Atkinson (1970). Godfrey (1983) showed, using
a result of Milliken and Graybill (1970), that the t statistic on the estimate
of α from regression (11.22) actually has the t distribution in finite samples
under the usual conditions for t statistics to have this distribution (u normally
distributed, X and Z independent of u). The intuition for this result is quite
simple. The vector of fitted values PXy contains only the part of y that
lies in S(X). It must therefore be independent of MXy, which is what the
residuals from (11.22) would be if α = 0. Therefore, we can treat PZPXy (or
any other regressor that depends on y only through PXy) as if it were a fixed
regressor.4 The PA test is to the P test as the JA test is to the J test.

Unfortunately, the JA and PA tests are in many circumstances much less
powerful than the ordinary J and P tests; see Davidson and MacKinnon
(1982) and Godfrey and Pesaran (1983). Thus if, for example, the J test
rejects the null hypothesis and the JA test does not, it is hard to know whether
this is because the former is excessively prone to commit a Type I error or
because the latter is excessively prone to commit a Type II error.

A second approach is to estimate the expectation of u>MXPZu, subtract
it from y>MXPZy, and then divide it by an estimate of the square root of the
variance of the resulting quantity so as to obtain a test statistic that would be
asymptotically N(0, 1). This approach was originally proposed in a somewhat
more complicated form by Godfrey and Pesaran (1983); a simpler version may
be found in the “Reply” of MacKinnon (1983). This second approach is a good
deal harder to use than the JA test, since it involves matrix calculations that
cannot be performed by a sequence of regressions, and it does not yield an
exact test. It also requires the assumption of normality. However, it does
seem to yield a test with much better finite-sample properties under the null
than the J test and, at least in some circumstances, much better power than
the JA test.

The vector γ̃ is of interest in its own right. The original Cox test used
the fact that, under H1,

plim
n→∞

(
γ̃
)
= plim

n→∞

(
γ̂
)
.

It is possible to construct a test based directly on the difference between
γ̂ and γ̃. Such a test, originally proposed by Dastoor (1983) and developed
further by Mizon and Richard (1986), looks at whether the value of γ predicted
by theH1 model (i.e., γ̃) is the same as the value obtained by direct estimation
of H2 (i.e., γ̂). These tests are called encompassing tests, because if H1

does explain the performance of H2, it may be said to “encompass” it; see
Mizon (1984). The principle on which they are based is sometimes called the
encompassing principle.

4 By the same argument, the RESET test discussed in Section 6.5 is exact in
finite samples whenever an ordinary t test would be exact.
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This looks just like expression (7.59), with A replacing PW , and may be
derived in exactly the same way. The first factor in (11.33), (X>AX)−1, is
simply a k × k matrix with full rank, which will have no effect on any test
statistic that we might compute. Therefore, what we really want to do is test
whether the vector

n−1/2X>AMXy (11.34)

has mean zero asymptotically. This vector has k elements, but even ifAX has
full rank, not all those elements may be random variables, because MX may
annihilate some columns of AX. Suppose that k∗ is the number of linearly
independent columns of AX that are not annihilated by MX. Then testing
(11.34) is equivalent to testing whether the vector

n−1/2X∗>AMXy (11.35)

has mean zero asymptotically, where X∗ denotes k∗ columns of X with the
property that none of the columns of AX∗ is annihilated by MX.

Now consider the artificial regression

y =Xβ +AX∗δ + residuals. (11.36)

It is easily shown by using the FWL Theorem that the OLS estimate of δ is

δ́ =
(
X∗>AMXAX

∗)−1
X∗>AMXy,

and it is evident that, in general, plim(δ́) = 0 if and only if (11.35) has mean
zero asymptotically. The ordinary F statistic for δ = 0 in (11.36) is

y>PMXAX∗y/k∗

y>MX,MXAX∗y/(n− k − k∗)
, (11.37)

where PMXAX∗ is the matrix that projects onto S(MXAX
∗), andMX,MXAX∗

is the matrix that projects onto S⊥(X,MXAX
∗). If (11.27) actually gen-

erated the data, the statistic (11.37) will certainly be valid asymptotically,
since the denominator will then consistently estimate σ2. It will be exactly
distributed as F (k∗, n− k− k∗) in finite samples if the ut’s in (11.27) are nor-
mally distributed and X and A can be treated as fixed. Regression (11.36)
and expression (11.37) are essentially the same as regression (7.62) and ex-
pression (7.64), respectively; the latter are special cases of the former.

The most common type of DWH test is the one we dealt with in Sec-
tion 7.9, which asks whether least squares estimates are consistent when some
of the regressors may be correlated with the error terms. However, there are
numerous other possibilities. For example, β̌ might be the OLS estimator for
β in the model

y =Xβ +Zγ + u, (11.38)
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Similarly, when we test H0 against H2, the NCP is

Λ21 =
ρ20
σ2
0

plim
n→∞

(
1−
n
u−1

>MX(X−1β0 + u−1)
)

× plim
n→∞

(
1−
n
(X−1β0 + u−1)

>MX(X−1β0 + u−1)
)−1

× plim
n→∞

(
1−
n
(X−1β0 + u−1)

>MXu−1

)
.

This simplifies to

ρ20
σ2
0

σ2
0

(
σ2
0 + plim 1−

n

∥∥MXX−1β0

∥∥2)−1

σ2
0

= ρ20

(
1 + σ−2

0 plim 1−
n

∥∥MXX−1β0

∥∥2)−1

.

Evidently, cos2φ for the test of H0 against H2 is the right-hand expression
here divided by ρ20, which is(

1 +
plimn−1‖MXX−1β0‖2

σ2
0

)−1

. (12.34)

This last result is worth comment. We have found that cos2φ for the
test against H2 when the data were generated by H1, expression (12.34), is
identical to cos2φ for the test against H1 when the data were generated by H2,
expression (12.33). This result is true not just for this example, but for every
case in which both alternatives involve one-degree-of-freedom tests. Geomet-
rically, this equivalence simply reflects the fact that when z is a vector, the
angle between αn−1/2MXa and the projection of αn−1/2MXa onto S(X,z),
which is

αn−1/2MXz
(
z>MXz

)−1
z>MXa,

is the same as the angle between αn−1/2MXa and αn−1/2MXz. The reason
for this is that (z>MXz)

−1z>MXa is a scalar when z is a vector. Hence, if
we reverse the roles of a and z, the angle is unchanged. This geometrical fact
also results in two numerical facts. First, in the regressions

y =Xα+ γz + residuals and

z =Xβ + δy + residuals,

the t statistic on z in the first is equal to that on y in the second. Second, in
the regressions

MXy = γMXz + residuals and

MXz = δMXy + residuals,

the t statistics on γ and δ are numerically identical and so are the uncen-
tered R2’s.
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the standard normal distribution, this probability is

P (α, λ) ≡ 1− Φ(cα − λ) + Φ(−cα − λ). (12.36)

In order to find the inverse power function corresponding to (12.36), we let
P (α, λ) = π for some desired level of power π. This equation implicitly
defines the inverse power function. It is easy to check from (12.36) that
P (α,−λ) = P (α, λ). Thus, if P (α, λ) = π, then P (α,−λ) = π also. However,
the nonuniqueness of λ would not arise if we were to square the test statistic
to obtain a χ2 form. No closed-form expression exists giving the (absolute)
value of λ as a function of α and π in the present example, but for any given
arguments λ is not hard to calculate numerically.

What interpretation should we give to the resulting function λ(α, π)? If
we square the asymptotically normal statistic (12.35) in order to obtain a
χ2 form, the result will have a limiting distribution of χ2(1, Λ) with Λ = λ2.
Then it appears that Λ = (λ(α, π))2 is asymptotically the smallest NCP
needed in order that a test of size α based on the square of (12.35) should
have probability at least π of rejecting the null.

Let the nonlinear regression model be written, as usual, as

y = x(β) + u, (12.37)

where the parameter of interest θ is a component of the parameter vector β. If
we denote byXθ the derivative of the vector x(β) with respect to θ, evaluated
at the parameters β0, and by MX the projection off all the columns of X(β)

other than Xθ, then the asymptotic variance of the least squares estimator θ̂
is σ2

0(Xθ
>MXXθ)

−1, where σ2
0 is the variance of the components of u. If we

consider a DGP with a parameter θ 6= θ0, then for a given sample size n, the
parameter δ of the drifting DGP becomes n1/2(θ − θ0), and Λ = λ2 becomes

Λ =
1

σ2
0

(θ − θ0)
2Xθ

>MXXθ. (12.38)

This may be compared with the general expression (12.26). Now let θ(α, π)
be the value of θ that makes Λ in (12.38) equal to (λ(α, π))2 as given above by
the inverse power function. We see that, within an asymptotic approximation,
DGPs with values of θ closer to the θ0 of the null hypothesis than θ(α, π) will
have probability less than π of rejecting the null on a test of size α.

We should be unwilling to regard a failure to reject the null as evidence
against some other DGP or set of DGPs if, under the latter, there is not a fair
probability of rejecting the null. What do we mean by a “fair probability”
here? Some intuition on this matter can be obtained by considering what we
would learn in the present context by using a standard tool of conventional
statistical inference, namely, a confidence interval. Armed with the estimate θ̂
and an estimate of its standard error, σ̂θ, we can form a confidence interval
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both the estimate itself and the difference between the estimate and the true
value of the parameter, to be of order n−1/2. It follows that 2nτ̂2 will be of
order unity and that higher terms in the expansion of the exponential function
in (13.53) will be of lower order. Thus, if the various forms of the classical
test do indeed yield asymptotically equal expressions, we may expect that the
leading term of all of them will be 2nτ̂2.

Let us next consider the LM statistic. The essential piece of it is the
derivative of the loglikelihood function (13.49) with respect to τ , evaluated at
τ = 0. We find that

∂`

∂τ
= −n+ e−2τ

n∑
t=1

y2t and
∂`

∂τ

∣∣∣∣
τ=0

= n
(
e2τ̂ − 1

)
. (13.54)

If for the variance of ∂`/∂τ we use n times the true, constant, value of the
single element of the information matrix, 2, the LM statistic is the square of
(∂`/∂τ)|τ=0, given by (13.54), divided by 2n:

LM1 = n−
2

(
e2τ̂ − 1

)2
= 2nτ̂2 + o(1).

This variant of the LM statistic has the same leading term as the LR statistic
(13.53) but will of course differ from it in finite samples.

Instead of the true information matrix, an investigator might prefer to
use the negative of the empirical Hessian to estimate the information matrix;
see equations (8.47) and (8.49). Because the loglikelihood function is not
exactly quadratic, this estimator does not coincide numerically with the true
value. Since

∂2`

∂τ2
= −2e−2τ

n∑
t=1

y2t , (13.55)

which at τ = 0 is −2ne2τ̂, the LM test calculated in this fashion is

LM2 = n−
2
e−2τ̂

(
e2τ̂ − 1

)2
= 2nτ̂2 + o(1). (13.56)

The leading term is as in LR and LM1, but LM2 will differ from both those
statistics in finite samples.

Another possibility is to use the OPG estimator of the information ma-
trix; see equations (8.48) and (8.50). This estimator is

1−
n

n∑
t=1

(
∂`t
∂τ

)2
= 1−

n

n∑
t=1

(
y2t e

−2τ − 1
)2
,

which, when evaluated at τ = 0, is equal to

1−
n

n∑
t=1

(
y2t − 1

)2
.
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This expression cannot even be expressed as a function of τ̂ alone. To obtain
an expansion of the test statistic that makes use of it, we must make use of
the property of the normal distribution which tells us that E(y4t ) = 3σ4, or, in
terms of τ , 3e4τ .4 Using this property, we can invoke a law of large numbers
and conclude that the OPG information matrix estimator is indeed equal to
2 + o(1) at τ = 0. Thus the third variant of the LM test statistic is

LM3 =
n2
(
e2τ̂ − 1

)2∑n
t=1

(
y2t − 1

)2 = 2nτ̂2 + o(1).

Once again, the leading term is 2nτ̂2, but the form of LM3 is otherwise quite
different from that of LM1 or LM2.

Just as there are various forms of the LM test, so are there various forms of
the Wald test. Any one of these may be formed by combining the unrestricted
estimate τ̂ with some estimate of the information matrix, which in this case
is actually a scalar. The simplest choice is just the true information matrix,
that is, 2. With this we obtain

W1 = 2nτ̂2. (13.57)

It is easy to see that W2, which uses the empirical Hessian, is identical to W1,
because (13.55) evaluated at τ = τ̂ is just −2n. On the other hand, use of
the OPG estimator yields

W3 = τ̂2
n∑

t=1

(
y2t e

−2τ̂ − 1
)2
,

which is quite different from W1 and W2.

All of the above test statistics were based on τ as the single parameter
of the model, but we could just as well use σ or σ2 as the model parameter.
Ideally, we would like test statistics to be invariant to such reparametrizations.
The LR statistic is always invariant, since ˆ̀ and ˜̀ do not change when the
model is reparametrized. But all forms of the Wald statistic, and some forms
of the LM statistic, are in general not invariant, as we now illustrate.

Suppose we take σ2 to be the parameter of the model. The information
matrix is not constant in this new parametrization, and so we must evaluate
it at the estimate σ̂2. It is easy to see that the information matrix, as a

4 Note that it was not necessary to use special properties of the normal distribu-
tion in order to expand the previous statistics, which were in fact all functions
of one and only one random variable, namely τ̂ . In general, in less simple
situations, this agreeable feature of the present example is absent and special
properties must be invoked in order to discover the behavior of all the various
test statistics.
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statistic will be the same. This result assumes that we are using the efficient
score form of the LM test. If we based the test on estimates of the information
matrix, the two LM statistics might not be numerically the same, although
they would still be the same asymptotically.

Geometrically, two different alternative hypotheses are locally equivalent
if they touch at the null hypothesis. By this we mean not merely that the two
alternative hypotheses yield the same values of their respective loglikelihood
functions when restricted by the null hypothesis, as will always be the case, but
also that the gradients of the two loglikelihood functions are the same, since
the gradients are tangents to the two models that touch at the null model. In
these circumstances, the two LM tests must be numerically identical.

What does it mean for two models to touch, or, to use the nongeometrical
term for the property, to be locally equivalent? A circular definition would
simply be that their gradients are the same at all DGPs at which the two
models intersect. Statistically, it means that if one departs only slightly from
the null hypothesis while respecting one of the two alternative hypotheses,
then one departs from the other alternative hypothesis by an amount that
is of the second order of small quantities. For instance, an AR(1) process
characterized by a small autoregressive parameter ρ differs from some MA(1)
process to an extent proportional only to ρ2. To prove this formally would
entail a formal definition of the distance between two DGPs, but our earlier
circular definition is an operational one: If the gradient g̃1 calculated for the
first alternative is the same as the gradient g̃2 for the second, then the two
alternatives touch at the null. It should now be clear that this requirement is
too strong: It is enough if the components of g̃2 are all linear combinations
of those of g̃1 and vice versa. An example of this last possibility is provided
by the local equivalence, around the null of white noise errors, of regression
models with ARMA(p, q) errors on the one hand and with AR(max(p, q))
errors on the other; see Section 10.8. For more examples, see Godfrey (1981)
and Godfrey and Wickens (1982).

Both the geometrical and algebraic aspects of the invariance of LM tests
under local equivalence are expressed by means of one simple remark: The
LM test can be constructed solely on the basis of the restricted ML estimates
and the first derivatives of the loglikelihood function evaluated at those esti-
mates. This implies that the LM test takes no account of the curvature of the
alternative hypothesis near the null.

We may summarize the results of this section as follows:

1. The LR test depends only on two maximized loglikelihood functions. It
therefore cannot depend either on the parametrization of the model or
on the way in which the restrictions are formulated in terms of those
parameters.

2. The efficient score form of the LM test is constructed out of two ingre-
dients, the gradient and the information matrix, which do alter under



472 The Classical Hypothesis Tests

can be used with any model estimated by maximum likelihood. The OPG
regression was first used as a means of computing test statistics by Godfrey
and Wickens (1981). This artificial regression, which is very easy indeed to
set up for most models estimated by maximum likelihood, can be used for the
same purposes as the GNR: verification of first-order conditions for the maxi-
mization of the loglikelihood function, covariance matrix estimation, one-step
efficient estimation, and, of greatest immediate interest, the computation of
test statistics.

Suppose that we are interested in the parametrized model (13.01). Let
G(θ) be the CG matrix associated with the loglikelihood function `n(θ), with
typical element

Gti(θ) ≡
∂`t(θ)

∂θi
; t = 1, . . . , n, i = 1, . . . , k,

where k is the number of elements in the parameter vector θ. Then the OPG
regression associated with the model (13.01) can be written as

ι = G(θ)c + residuals. (13.81)

Here ι is an n--vector of which each element is unity and c is a k--vector
of artificial parameters. The product of the matrix of regressors with the
regressand is the gradient g(θ) ≡ G>(θ)ι. The matrix of sums of squares and
cross-products of the regressors, G>(θ)G(θ), when divided by n, consistently
estimates the information matrix I(θ). These two features are essentially all
that is required for (13.81) to be a valid artificial regression.6 As with the
GNR, the regressors of the OPG regression depend on the vector θ. Therefore,
before the artificial regression is run, these regressors must be evaluated at
some chosen parameter vector.

One possible choice for this parameter vector is θ̂, the ML estimator for
the model (13.01). In this case, the regressor matrix is Ĝ ≡ G(θ̂) and the
artificial parameter estimates, which we will denote by ĉ, are identically zero:

ĉ =
(
Ĝ>Ĝ

)−1
Ĝ>ι =

(
Ĝ>Ĝ

)−1
ĝ = 0.

Since ĝ here is the gradient of the loglikelihood function evaluated at θ̂, the
last equality above is a consequence of the first-order conditions for the max-
imum of the likelihood. As with the GNR, then, running the OPG regression
with θ = θ̂ provides a simple way to test how well the first-order conditions
are in fact satisfied by a set of estimates calculated by means of some com-
puter program. The t statistics again provide the most suitable check. They
should not exceed a number around 10−2 or 10−3 in absolute value if a good
approximation to the maximum has been found.

6 Precise conditions for a regression to be called “artificial” are provided by
Davidson and MacKinnon (1990); see Section 14.4.
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Curves (from highest to lowest) correspond to

λ = 1.5, 1, 0.5, 0, −0.5 and −1.

x

B(x, λ)

Figure 14.1 Box-Cox transformations for various values of λ

the regressors include a constant term, subjecting the dependent variable to a
Box-Cox transformation with λ = 1 is equivalent to not transforming it at all.
Subjecting it to a Box-Cox transformation with λ = 0 is equivalent to using
log yt as the regressand. Since these are both very plausible special cases, it is
attractive to use a transformation that allows for both of them. Even when it
is not considered plausible in its own right, the conventional Box-Cox model
provides a convenient alternative against which to test the specification of
linear and loglinear regression models; see Section 14.6.

The Box-Cox transformation is not without some serious disadvantages,
however. Consider the simple Box-Cox model

B(yt, λ) = xt(β) + ut, ut ∼ NID(0, σ2). (14.07)

For most values of λ (but not for λ = 0 or λ = 1) the value of B(yt, λ) is
bounded either from below or above; specifically, when λ > 0, B(yt, λ) cannot
be less than −1/λ and, when λ < 0, B(yt, λ) cannot be greater than −1/λ.
However, if ut is normally distributed, the right-hand side of (14.07) is not
bounded and could, at least in principle, take on arbitrarily large positive or
negative values. Thus, strictly speaking, (14.07) is logically impossible as a
model for yt. This remains true if we replace xt(β) by a regression function
that depends on λ.

One way to deal with this problem is to assume that data on yt are
observed only when the bounds are not violated, as in Poirier (1978b) and
Poirier and Ruud (1979). This leads to loglikelihood functions similar to
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The fundamental result that makes the DLR possible is that, for this
class of models, the information matrix I(θ) satisfies the equality

I(θ) = plim
n→∞

(
1−
n

(
F>(y,θ)F (y,θ) +K>(y,θ)K(y,θ)

))
(14.20)

and so can be consistently estimated by

1−
n

(
F>(y, θ̈)F (y, θ̈) +K>(y, θ̈)K(y, θ̈)

)
, (14.21)

where θ̈ is any consistent estimator of θ. We are interested in the implications
of (14.20) rather than how it is derived. The derivation makes use of some
rather special properties of the normal distribution and may be found in
Davidson and MacKinnon (1984a).

The principal implication of (14.20) is that a certain artificial regression,
which we call the DLR, has all the properties that we expect an artificial
regression to have. The DLR may be written as[

f(y,θ)
ι

]
=

[
−F (y,θ)

K(y,θ)

]
b + residuals. (14.22)

This artificial regression has 2n artificial observations. The regressand is
ft(yt,θ) for observation t and unity for observation t+ n, and the regressors
corresponding to θ are −Ft(y,θ) for observation t and Kt(y,θ) for observa-
tion t + n, where Ft and Kt denote, respectively, the tth rows of F and K.
Intuitively, the reason we need a double-length regression here is that each
genuine observation makes two contributions to the loglikelihood function: a
sum-of-squares term − 1

2f
2
t and a Jacobian term kt. As a result, the gradient

and the information matrix each involve two parts as well, and the way to
take both of these into account is to incorporate two artificial observations
into the artificial regression for each genuine one.

Why is (14.22) a valid artificial regression? As we noted when we dis-
cussed the OPG regression in Section 13.7, there are two principal conditions
that an artificial regression must satisfy. It is worth stating these conditions
somewhat more formally here.4 Let r(y,θ) denote the regressand for some
artificial regression and let R(y,θ) denote the matrix of regressors. Let the
number of rows of both r(y,θ) and R(y,θ) be n∗, which will generally be
either n or an integer multiple of n. The regression of r(y,θ) on R(y,θ) will
have the properties of an artificial regression if

R>(y,θ)r(y,θ) = ρ(θ)g(y,θ) and (14.23)

plim
n→∞

θ

(
1−
n
R>(y, θ̈)R(y, θ̈)

)
= ρ(θ) I(θ), (14.24)

4 For a fuller treatment of this topic, see Davidson and MacKinnon (1990).



14.4 Double-Length Artificial Regressions 495

where θ̈ denotes any consistent estimator of θ. The notation plimθ indicates,
as usual, that the probability limit is being taken under the DGP characterized
by the parameter vector θ, and ρ(θ) is a scalar defined as

ρ(θ) ≡ plim
n→∞

θ

(
1

n∗ r
>(y,θ)r(y,θ)

)
.

Because ρ(θ) is equal to unity for both the OPG regression and the DLR,
those two artificial regressions satisfy the simpler conditions

R>(y,θ)r(y,θ) = g(y,θ) and (14.25)

plim
n→∞

θ

(
1−
n
R>(y, θ̈)R(y, θ̈)

)
= I(θ), (14.26)

as well as the original conditions (14.23) and (14.24). However, these simpler
conditions are not satisfied by the GNR and are thus evidently too simple in
general.

It is now easy to see that the DLR (14.21) satisfies conditions (14.25) and
(14.26). For the first of these, simple calculation shows that

[
−F (y,θ)

K(y,θ)

]>[
f(y,θ)
ι

]
= −F>(y,θ)f(y,θ) +K>(y,θ)ι,

which by (14.19) is equal to the gradient g(y,θ). For the second, we see that

[
−F (y,θ)

K(y,θ)

]>[−F (y,θ)

K(y,θ)

]
= F>(y,θ)F (y,θ) +K>(y,θ)K(y,θ).

The right-hand side here is just the expression that appears in the fundamental
result (14.20). Hence it is clear that the DLR must satisfy (14.26). All this
discussion assumes, of course, that the matrices F (y,θ) and K(y,θ) satisfy
appropriate regularity conditions, which may not always be easy to verify in
practice; see Davidson and MacKinnon (1984a).

The DLR can be used in all the same ways that the GNR and the OPG
regression can be used. In particular, it can be used

(i) to verify that the first-order conditions for a maximum of the log-
likelihood function are satisfied sufficiently accurately,

(ii) to calculate estimated covariance matrices,

(iii) to calculate test statistics,

(iv) to calculate one-step efficient estimates, and

(v) as a key part of procedures for finding ML estimates.
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unidentified. However, following the procedure used to obtain the J and P
tests, we can replace the parameters of the model that is not being tested
by estimates. Thus, if we wish to test H1, we can replace γ and σ2 by ML
estimates γ̂ and σ̂2 so that HC becomes

H ′
C : (1− α)

(
yt − xt(β)

σ1

)
+ α

(
log yt − zt(γ̂)

σ̂2

)
= εt.

It is straightforward to test H1 against H ′
C by means of the DLR: (yt − x̂t)

σ̂1

1

 =

 X̂t
(yt − x̂t)

σ̂1
ẑt − log yt

0 −1 σ̂1/yt

 bs
a

+ residuals, (14.45)

where x̂t ≡ xt(β̂), X̂t ≡ Xt(β̂), and ẑt ≡ zt(γ̂). The DLR (14.45) is actually
a simplified version of the DLR that one obtains initially. First, σ̂1 times the
original regressor for σ1 has been subtracted from the original regressor for α.
Then the regressors corresponding to β and σ1 have been multiplied by σ̂1,
and the regressor corresponding to α has been multiplied by σ̂2. None of these
modifications affects the subspace spanned by the columns of the regressor,
and hence none of them affects the test statistic(s) one obtains. The last
column of the regressor matrix in (14.45) is the one that corresponds to α.
The other columns should be orthogonal to the regressand by construction.

Similarly, if we wish to test H2, we can replace β and σ1 by ML estimates
β̂ and σ̂1 so that HC becomes

H ′′
C : (1− α)

(
yt − xt(β̂)

σ̂1

)
+ α

(
log yt − zt(γ)

σ2

)
= εt.

It is then straightforward to test H2 against H ′′
C by means of the DLR log yt − ẑt

σ̂2

1

 =

 Ẑt
log yt − ẑt

σ̂2
x̂t − yt

0 −1 σ̂2yt

 bs
a

+ residuals. (14.46)

Once again, this is a simplified version of the DLR that one obtains initially,
and the last column of the regressor matrix is the one that corresponds to α.

The tests we have just discussed evidently generalize very easily to models
involving any sort of transformation of the dependent variable, including Box-
Cox models and other models in which the transformation depends on one or
more unknown parameters. For more details, see Davidson and MacKinnon
(1984a). It should be stressed that the artificial compound model (14.44) is
quite arbitrary. Unlike the similar-looking model for regression models that
was employed in Section 11.3, it does not yield tests asymptotically equivalent
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can be written as

`(β1, . . . ,βJ) =
J∑

j=1

∑
yt=j

Xtβ
j −

n∑
t=1

log

(
1 +

J∑
j=1

exp(Xtβ
j)

)
.

This function is a sum of contributions from each observation. Each con-
tribution has two terms: The first is Xtβ

j, where the index j is that for
which yt = j (or zero if j = 0), and the second is minus the logarithm of the
denominator that appears in (15.35) and (15.36).

One important property of the multinomial logit model is that

Pr(yt = l)

Pr(yt = j)
=

exp(Xtβ
l)

exp(Xtβ
j)

= exp
(
Xt(β

l − βj)
)

(15.38)

for any two responses l and j (including response zero if we interpret β0 as
a vector of zeros). Thus the odds between any two responses depend solely
on Xt and on the parameter vectors associated with those two responses.
They do not depend on the parameter vectors associated with any of the
other responses. In fact, we see from (15.38) that the log of the odds between
responses l and j is simply Xtβ

∗, where β∗ ≡ (βl − β j). Thus, conditional
on either j or l being chosen, the choice between them is determined by an
ordinary logit model with parameter vector β∗.

Closely related to the multinomial logit model is the conditional logit
model pioneered by McFadden (1974a, 1974b). See Domencich and McFadden
(1975), McFadden (1984), and Greene (1990a, Chapter 20) for detailed treat-
ments. The conditional logit model is designed to handle consumer choice
among J (not J + 1) discrete alternatives, where one and only one of the
alternatives can be chosen. Suppose that when the ith consumer chooses
alternative j, he or she obtains utility

Uij =Wijβ + εij ,

where Wij is a row vector of characteristics of alternative j as they apply to
consumer i. Let yi denote the choice made by the ith consumer. Presumably
yi = l if Uil is at least as great as Uij for all j 6= l. Then if the disturbances
εij for j = 1, . . . , J are independent and identically distributed according to
the Weibull distribution, it can be shown that

Pr(yi = l) =
exp(Wilβ)∑J
j=1 exp(Wijβ)

. (15.39)

This closely resembles (15.37), and it is easy to see that the probabilities must
add to unity.

There are two key differences between the multinomial logit and con-
ditional logit models. In the former, there is a single vector of independent
variables for each observation, and there are J different vectors of parameters.
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In the latter, the values of the independent variables vary across alternatives,
but there is just a single parameter vector β. The multinomial logit model is
a straightforward generalization of the logit model that can be used to deal
with any situation involving three or more unordered qualitative responses.
In contrast, the conditional logit model is specifically designed to handle con-
sumer choices among discrete alternatives based on the characteristics of those
alternatives.

Depending on the nature of the explanatory variables, there can be a
number of subtleties associated with the specification and interpretation of
conditional logit models. There is not enough space in this book to treat
these adequately, and so readers who intend to estimate such models are
urged to consult the references mentioned above. One important property of
conditional logit models is the analog of (15.38):

Pr(yi = l)

Pr(yi = j)
=

exp(Wilβ)

exp(Wijβ)
. (15.40)

This property is called the independence of irrelevant alternatives, or IIA,
property. It implies that adding another alternative to the model, or changing
the characteristics of another alternative that is already included, will not
change the odds between alternatives l and j.

The IIA property can be extremely implausible in certain circumstances.
Suppose that there are initially two alternatives for traveling between two
cities: flying Monopoly Airways and driving. Suppose further that half of
all travelers fly and the other half drive. Then Upstart Airways enters the
market and creates a third alternative. If Upstart offers a service identical to
that of Monopoly, it must gain the same market share. Thus, according to
the IIA property, one third of the travelers must take each of the airlines and
one third must drive. So the automobile has lost just as much market share
from the entry of Upstart Airways as Monopoly Airways has! This seems
very implausible.6 As a result, a number of papers have been devoted to the
problem of testing the independence of irrelevant alternatives property and
finding tractable models that do not embody it. See, in particular, Hausman
and Wise (1978), Manski and McFadden (1981), Hausman and McFadden
(1984), and McFadden (1987).

This concludes our discussion of qualitative response models. More de-
tailed treatments may be found in surveys by Maddala (1983), McFadden
(1984), Amemiya (1981; 1985, Chapter 9), and Greene (1990a, Chapter 20),
among others. In the next three sections, we turn to the subject of limited
dependent variables.

6 One might object that a price war between Monopoly and Upstart would con-
vince some drivers to fly instead. So it would. But if the two airlines offered
lower prices, that would change one or more elements of the Wij ’s associated
with them. The above analysis assumes that all the Wij ’s remain unchanged.
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they are related to y∗t and z∗t as follows:

yt = y∗t if z∗t > 0; yt = 0 otherwise;

zt = 1 if z∗t > 0; zt = 0 otherwise.

There are two types of observations: ones for which both yt and zt are observed
to be zero and ones for which zt = 1 and yt is equal to y

∗
t . The loglikelihood

function for this model is thus∑
zt=0

log
(
Pr(zt = 0)

)
+
∑
zt=1

log
(
Pr(zt = 1)f(y∗t | zt = 1)

)
, (15.54)

where f(y∗t | zt = 1) denotes the density of y∗t conditional on zt = 1. The
first term of (15.54) is the summation over all observations for which zt = 0
of the logarithms of the probability that zt = 0. It is exactly the same as
the corresponding term in a probit model for zt by itself. The second term
is the summation over all observations for which zt = 1 of the probability
that zt = 1 times the density of yt conditional on zt = 1. Using the fact that
we can factor a joint density any way we like, this second term can also be
written as ∑

zt=1

log
(
Pr(zt = 1 | y∗t )f(y∗t )

)
,

where f(y∗t ) is the unconditional density of y∗t , which is just a normal density
with conditional mean Xtβ and variance σ2.

The only difficulty in writing out the loglikelihood function (15.54) ex-
plicitly is to calculate Pr(zt = 1 | y∗t ). Since ut and vt are bivariate normal,
we can write

z∗t =Wtγ + ρ
(
1−σ
(
y∗t −Xtβ

))
+ εt, εt ∼ NID

(
0, (1− ρ2)

)
.

It follows that

Pr(zt = 1 | y∗t ) = Φ

(
Wtγ + ρ

(
(yt −Xtβ)/σ

)
(1− ρ2)1/2

)
,

since yt = y∗t when zt = 1. Thus the loglikelihood function (15.54) becomes∑
zt=0

log
(
Φ(−Wtγ)

)
+
∑
zt=1

log
(
1−σφ
(
(yt −Xtβ)/σ

))

+
∑
zt=1

log

(
Φ

(
Wtγ + ρ

(
(yt −Xtβ)/σ

)
(1− ρ2)1/2

))
.

(15.55)

The first term looks like the corresponding term for a probit model. The
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second term looks like the loglikelihood function for a linear regression model
with normal errors. The third term is one that we have not seen before.

Maximum likelihood estimates can be obtained in the usual way by max-
imizing (15.55). However, this maximization is relatively burdensome, and so
instead of ML estimation a computationally simpler technique proposed by
Heckman (1976) is often used. Heckman’s two-step method is based on the
fact that the first equation of (15.53) can be rewritten as

y∗t =Xtβ + ρσvt + et. (15.56)

The idea is to replace y∗t by yt and vt by its mean conditional on zt = 1 and on
the realized value ofWtγ. As can be seen from (15.42), this conditional mean
is φ(Wtγ)/Φ(Wtγ), a quantity that is sometimes referred to as the inverse
Mills ratio. Hence regression (15.56) becomes

yt =Xtβ + ρσ
φ(Wtγ)

Φ(Wtγ)
+ residual. (15.57)

It is now easy to see how Heckman’s two-step method works. In the first step,
an ordinary probit model is used to obtain consistent estimates γ̂ of the para-
meters of the selection equation. In the second step, the selectivity regressor
φ(Wtγ)/Φ(Wtγ) is evaluated at γ̂, and regression (15.57) is estimated by
OLS for the observations with zt = 1 only. This regression provides a test
for sample selectivity as well as an estimation technique. The coefficient on
the selectivity regressor is ρσ. Since σ 6= 0, the ordinary t statistic for this
coefficient to be zero can be used to test the hypothesis that ρ = 0; it will be
asymptotically distributed as N(0, 1) under the null hypothesis. Thus, if this
coefficient is not significantly different from zero, the investigator may reason-
ably decide that selectivity is not a problem for this data set and proceed to
use least squares as usual.

Even when the hypothesis that ρ = 0 cannot be accepted, OLS estimation
of regression (15.57) yields consistent estimates of β. However, the OLS
covariance matrix is valid only when ρ = 0. In this respect, the situation
is very similar to the one encountered at the end of the previous section,
when we were testing for possible simultaneity bias in models with truncated
or censored dependent variables. There are actually two problems. First of
all, the residuals in (15.57) will be heteroskedastic, since a typical residual is
equal to

ut − ρσ
φ(Wtγ)

Φ(Wtγ)
.

Secondly, the selectivity regressor is being treated like any other regressor,
when it is in fact part of the error term. One could solve the first problem by
using a heteroskedasticity-consistent covariance matrix estimator (see Chap-
ter 16), but that would not solve the second one. It is possible to obtain a
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valid covariance matrix estimate to go along with the two-step estimates of β
from (15.57). However, the calculation is cumbersome, and the estimated co-
variance matrix is not always positive definite. See Greene (1981b) and Lee
(1982) for more details.

It should be stressed that the consistency of this two-step estimator, like
that of the ML estimator, depends critically on the assumption of normality.
This can be seen from the specification of the selectivity regressor as the
inverse Mills ratio φ(Wtγ)/Φ(Wtγ). When the elements of Wt are the same
as, or a subset of, the elements of Xt, as is often the case in practice, it is
only the nonlinearity of φ(Wtγ)/Φ(Wtγ) as a function ofWtγ that makes the
parameters of the second-step regression identifiable. The exact form of the
nonlinear relationship depends critically on the normality assumption. Pagan
and Vella (1989), Smith (1989), and Peters and Smith (1991) discuss various
ways to test this crucial assumption. Many of the tests suggested by these
authors are applications of the OPG regression.

Although the two-step method for dealing with sample selectivity is
widely used, our recommendation would be to use regression (15.57) only as
a procedure for testing the null hypothesis that selectivity bias is not present.
When that hypothesis is rejected, ML estimation based on (15.55) should
probably be used in preference to the two-step method, unless it is computa-
tionally prohibitive.

15.9 Conclusion

Our treatment of binary response models in Sections 15.2 to 15.4 was reason-
ably detailed, but the discussions of more general qualitative response models
and limited dependent variable models were necessarily quite superficial. Any-
one who intends to do empirical work that employs this type of model will
wish to consult some of the more detailed surveys referred to above. All of
the methods that we have discussed for handling limited dependent variables
rely heavily on the assumptions of normality and homoskedasticity. These
assumptions should always be tested. A number of methods for doing so have
been proposed; see, among others, Bera, Jarque, and Lee (1984), Lee and
Maddala (1985), Blundell (1987), Chesher and Irish (1987), Pagan and Vella
(1989), Smith (1989), and Peters and Smith (1991).
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or, in more compact notation, as

σ2
t = α+A(L,γ)u2t +B(L, δ)σ2

t ,

where γ and δ are parameter vectors with typical elements γi and δj , respec-
tively, and A(L,γ) and B(L, δ) are polynomials in the lag operator L. In the
GARCH model, the conditional variance σ2

t depends on its own past values as
well as on lagged values of u2t . This means that σ2

t effectively depends on all
past values of u2t . In practice, a GARCH model with very few parameters of-
ten performs as well as an ARCH model with many parameters. In particular,
one simple model that often works very well is the GARCH(1, 1) model,

σ2
t = α+ γ1u

2
t−1 + δ1σ

2
t−1. (16.21)

In practice, one must solve a GARCH model to eliminate the σ2
t−j terms

from the right-hand side before one can estimate it. The problem is essentially
the same as estimating a moving average model or an ARMA model with a
moving average component; see Section 10.7. For example, the GARCH(1, 1)
model (16.21) can be solved recursively to yield

σ2
t =

α

1− δ1
+ γ1

(
u2t−1 + δ1u

2
t−2 + δ21u

2
t−3 + δ31u

2
t−4 + · · ·

)
. (16.22)

Various assumptions can be made about the presample error terms. The
simplest is to assume that they are zero, but it is more realistic to assume
that they are equal to their unconditional expectation.

It is interesting to observe that, when γ1 and δ1 are both near zero, the
solved GARCH(1, 1) model (16.22) looks like an ARCH(1) model. Because
of this, it turns out that an appropriate test for GARCH(1, 1) errors is sim-
ply to regress the squared residuals on a constant term and on the squared
residuals lagged once. In general, an LM test against GARCH(p, q) errors is
the same as an LM test against ARCH(max(p, q)) errors. These results are
completely analogous to the results for testing against ARMA(p, q) errors that
we discussed in Section 10.8.

There are three principal ways to estimate regression models with ARCH
and GARCH errors: feasible GLS, one-step efficient estimation, and maxi-
mum likelihood. In the simplest approach, which is feasible GLS, one first
estimates the regression model by ordinary or nonlinear least squares, then
uses the squared residuals to estimate the parameters of the ARCH or GARCH
process, and finally uses weighted least squares to estimate the parameters of
the regression function. This procedure can run into difficulties if the condi-
tional variances predicted by the fitted ARCH process are not all positive, and
various ad hoc methods may then be used to ensure that they are all positive.

The estimates of the ARCH parameters obtained by this sort of feasible
GLS procedure will not be asymptotically efficient. Engle (1982b) therefore
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One simply has to interpret the test columns in the regression as empirical
moments.

An interesting variant of the test regression (16.62) was suggested by
Tauchen (1985). In effect, he interchanged the regressand ι and the test
regressor m̂ so as to obtain the regression

m̂ = Ĝc∗ + b∗ι + residuals. (16.63)

The test statistic is the ordinary t statistic for b∗ = 0. It is numerically
identical to the t statistic on b in (16.62). This fact follows from a result we
obtained in section 12.7, of which we now give a different, geometrical, proof.
Apply the FWL Theorem to both (16.62) and (16.63) so as to obtain the two
regressions

M̂Gι = b(M̂Gm̂) + residuals and

M̂Gm̂ = b∗(M̂Gι) + residuals.
(16.64)

These are both univariate regressions with n observations. The single t sta-
tistic from each of them is given by the product of the same scalar factor,
(n − 1)1/2, and the cotangent of the angle between the regressand and the
regressor (see Appendix A). Since this angle is unchanged when the regressor
and regressand are interchanged, so is the t statistic. The FWL Theorem
implies that the t statistics from the first and second rows of (16.64) are equal
to those from the OPG regression (16.62) and Tauchen’s regression (16.63),
respectively, times the same degrees of freedom correction. Thus we con-
clude that the t statistics based on the latter two regressions are numerically
identical.

Since the first-order conditions for θ̂ imply that ι is orthogonal to all
of the columns of Ĝ, the OLS estimate of b∗ in (16.63) will be equal to the
sample mean of the elements of m̂. This would be so even if the regressors
Ĝ were omitted from the regression. However, because θ has been estimated,
those regressors must be included if we are to obtain a valid estimate of the
variance of the sample mean. As is the case with all the other artificial regres-
sions we have studied, omitting the regressors that correspond to parameters
estimated under the null hypothesis results in a test statistic that is too small,
asymptotically.

Let us reiterate our earlier warnings about the OPG regression. As we
stressed when we introduced it in Section 13.7, test statistics based on it often
have poor finite-sample properties. They tend to reject the null hypothesis
too often when it is true. This is just as true for CM tests as for LM tests
or C(α) tests. If possible, one should therefore use alternative tests that have
better finite-sample properties, such as tests based on the GNR, the HRGNR,
the DLR (Section 14.4), or the BRMR (Section 15.4), when these procedures
are applicable. Of course, they will be applicable in general only if the CM
test can be reformulated as an ordinary test, with an explicit alternative
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where g(θ) denotes the gradient of Q, that is, the k--vector with typical com-
ponent ∂Q(θ)/∂θj . As usual, H

∗ denotes a matrix of which the elements are
evaluated at the appropriate θ∗j .

If we are to be able to deduce the asymptotic normality of θ̂ from (17.21),
it must be possible to apply a law of large numbers to H∗ and a central limit
theorem to n1/2g(θ0). We would then obtain the result that

n1/2(θ̂ − θ0)
a
= −

(
plim
n→∞

H0

)−1

n1/2g(θ0). (17.22)

What regularity conditions do we need for (17.22)? First, in order to justify
the short Taylor expansion in (17.20), it is necessary that Q be at least twice
continuously differentiable with respect to θ. If so, then it follows that the
Hessian of Q is O(1) as n → ∞. Because of this, we denote it by H0 rather
than H; see Section 8.2. Then we need conditions that allow the application
of a law of large numbers and a central limit theorem. Rather formally, we
may state a theorem based closely on Theorem 8.3 as follows:

Theorem 17.2. Asymptotic Normality of M-Estimators

The M-estimator derived from the sequence of criterion functions Q
is asymptotically normal if it satisfies the conditions of Theorem 17.1
and if in addition

(i) for all n and for all θ ∈ Θ, Qn(yn,θ) is twice continuously differ-
entiable with respect to θ for almost all y, and the limit function
Q̄(µ,θ) is twice continuously differentiable with respect to θ for
all θ ∈ Θ and for all µ ∈ M;

(ii) for all DGPs µ ∈ M and for all sequences {θn} that tend in
probability to θ(µ) as n→ ∞, the Hessian matrix Hn(yn,θn) of
Qn with respect to θ tends uniformly in probability to a positive
definite, finite, nonrandom matrix H(µ); and

(iii) for all DGPs µ ∈ M, n1/2 times the gradient of Qn(yn,θ), or
n1/2g

(
yn,θ(µ)

)
, converges in distribution as n → ∞ to a multi-

variate normal distribution with mean zero and finite covariance
matrix V (µ).

Under these conditions, the distribution of n1/2
(
θ̂ − θ(µ)

)
tends to

N
(
0, H(µ)−1V (µ)H(µ)−1

)
.

It is not worth spending any time on the proof of Theorem 17.2. What we
must do, instead, is to return to the GMM case and investigate the conditions
under which the criterion function (17.13), suitably divided by n2, satisfies
the requirements of the theorem. Without further ado, we assume that all
of the contributions fti(yt,θ) are at least twice continuously differentiable
with respect to θ for all θ ∈ Θ, for all yt, and for all allowed values of any
predetermined or exogenous variables on which they may depend. Next, we
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The estimator (17.63) was proposed by Hansen (1982) and White and
Domowitz (1984), and was used in some of the earlier published work that
employed GMM estimation, such as Hansen and Singleton (1982). From the
point of view of theory, it is necessary to let the truncation parameter p,
usually referred to as the lag truncation parameter, go to infinity at some
suitable rate. A typical rate would be n1/4, in which case p = o(n1/4). This
ensures that, for large enough n, all the nonzero Γ (j)’s are estimated con-
sistently. Unfortunately, this type of result is not of much use in practice,
where one typically faces a given, finite n. We will return to this point a little
later, and for the meantime suppose simply that we have somehow selected
an appropriate value for p.

A much more serious difficulty associated with (17.63) is that, in finite
samples, it need not be positive definite or even positive semidefinite. If one
is unlucky enough to be working with a data set that yields a nondefinite Φ̂,
then (17.63) is unusable. There are numerous ways out of this difficulty. The
most widely used was suggested by Newey and West (1987a). It is simply to
multiply the Γ̂ (j)’s by a sequence of weights that decrease as |j| increases.
Specifically, the estimator that they propose is

Φ̂ = Γ̂ (0) +

p∑
j=1

(
1− j

p+ 1

)(
Γ̂ (j) + Γ̂ (j)>

)
. (17.64)

It can be seen that the weights 1 − j/(p + 1) decrease linearly with j from
a value of 1 for Γ̂ (0) by steps of 1/(p + 1) down to a value of 1/(p + 1) for
|j| = p. The use of such a set of weights is clearly compatible with the idea
that the impact of the autocovariance of order j diminishes with |j|.

We will not attempt even to sketch a proof of the consistency of the
Newey-West or similar estimators. We have alluded to the sort of regularity
conditions needed for consistency to hold: Basically, the autocovariance mat-
rices of the empirical moments must tend to zero quickly enough as p increases.
It would also go well beyond the scope of this book to provide a theoretical
justification for the Newey-West estimator. It rests on considerations of the
so-called “frequency domain representation” of the Ft’s and also of a number
of notions associated with nonparametric estimation procedures. Interested
readers are referred to Andrews (1991b) for a rather complete treatment of
many of the issues. This paper suggests some alternatives to the Newey-West
estimator and shows that in some circumstances they are preferable. However,
the performance of the Newey-West estimator is never greatly inferior to that
of the alternatives. Consequently, its simplicity is much in its favor.

Let us now return to the linear IV model with empirical moments given
byW>(y−Xβ). In order to be able to use (17.64), we suppose that the true
error terms ut ≡ yt−Xtβ0 satisfy an appropriate mixing condition. Then the
sample autocovariance matrices Γ̂ (j) for j = 0, . . . , p, for some given p, are
calculated as follows. A preliminary consistent estimate of β is first obtained
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where Ψ2 = Φ−1, and MΨD is the l × l orthogonal projection matrix onto
the orthogonal complement of the k columns of ΨD. By construction, the
l--vector n−1/2ΨF0

>ι has the N(0, I) distribution asymptotically. It follows,
then, that (17.68) is asymptotically distributed as chi-squared with number
of degrees of freedom equal to the rank ofMΨD, that is, l− k, the number of
overidentifying restrictions.

Hansen’s test of overidentifying restrictions is completely analogous, in
the present more general context, to the one for IV estimation discussed in
Section 7.8, based on the criterion function (7.56). It is a good exercise to work
through the derivation given above for the simple case of a linear regression
model with homoskedastic, serially uncorrelated errors, in order to see how
closely the general case mimics the simple one.2

Hansen’s test of overidentifying restrictions is perhaps as close as one can
come in econometrics to a portmanteau specification test. Because models es-
timated by GMM are subject to so few restrictions, their “specification” is not
very demanding. In particular, if nothing more is required than the existence
of the moments used to identify the parameters, then only two things are left
to test. One is the set of any overidentifying restrictions used, and the other
is parameter constancy.3 Because Hansen’s test of overidentifying restrictions
has as many degrees of freedom as there are overidentifying restrictions, it
may be possible to achieve more power by reducing the number of degrees of
freedom. However, if Hansen’s test statistic is small enough numerically, no
such test can reject, for the simple reason that Hansen’s statistic provides an
upper bound for all possible test statistics for which the null hypothesis is the
estimated model. This last fact follows from the observation that no criterion
function of the form (17.67) can be less than zero.

Tests for which the null hypothesis is not the estimated model are not
subject to the bound provided by Hansen’s statistic. This is just as well, of
course, since otherwise it would be impossible to reject a just identified model
at all. A test for parameter constancy is not subject to the bound either,
although at first glance the null hypothesis would appear to be precisely the
estimated model. The reason was discussed in Section 11.2 in connection
with tests for parameter constancy in nonlinear regression models estimated
by means of instrumental variables. Essentially, in order to avoid problems
of identification, it is necessary to double the number of instruments used, by
splitting the original ones up as in (11.09). Exactly the same considerations
apply for GMM models, of course, especially those that are just identified
or have few overidentifying restrictions. But if one uses twice as many in-
struments, the null model has effectively been changed, and for that reason,

2 Hansen’s test statistic, (17.68), is sometimes referred to as the J statistic. For
obvious reasons (see Chapter 11) we prefer not to give it that name.

3 Tests of parameter constancy in models estimated by GMM are discussed by
Hoffman and Pagan (1989) and Ghysels and Hall (1990).
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and that, as we have seen, is both Hansen’s statistic and the LM statistic in
these circumstances.

Finally, we consider C(α) tests. Let θ́ be a parameter vector satisfying
the restrictions r(θ́) = 0. Then the test statistic can be formed as though
it were the difference of two LM statistics, one for the restricted and one for
the unrestricted model, both evaluated at θ́. Suppose, for simplicity, that the
parameter vector θ can be partitioned as [θ1

.... θ2] and that the restrictions
can be written as θ2 = 0. The first term of the C(α) statistic has the form
(17.72) but is evaluated at θ́ rather than the genuine constrained estimator θ̃.
The second term should take the form of an LM statistic appropriate to the
constrained model, for which only θ1 may vary. This corresponds to replac-
ing the matrix D̃ in (17.72) by D́1, where the partition of D as [D1 D2]
corresponds to the partition of θ. The C(α) test statistic is therefore

C(α) = 1−
n
ι>F́ Φ̂−1D́

(
D́>Φ̂−1D́

)−1
D́>Φ̂−1F́>ι

− 1−
n
ι>F́ Φ̂−1D́1

(
D́1

>Φ̂−1D́1

)−1
D́1

>Φ̂−1F́>ι.
(17.75)

Here, as before, Φ̂ is a suitable estimate of Φ. To show that (17.75) is asymp-
totically equivalent to the true LM statistic, it is enough to modify the details
of the proof of the corresponding asymptotic equivalence in Section 13.7.

In the general case in which the restrictions are expressed as r(θ) = 0,
another form of the C(α) test may be more convenient, since forming a matrix
to correspond to D1 may not be simple. This other form is

ι>F́ Φ̂−1D́
(
D́>Φ̂−1D́

)−1
Ŕ>
(
Ŕ
(
D́>Φ̂−1D́

)−1
Ŕ>
)−1

Ŕ
(
D́>Φ̂−1D́

)−1
D́>Φ̂−1F́>ι.

For this statistic to be useful, the difficulty of computing the actual con-
strained estimate θ̃ must outweigh the complication of the above formula.
The formula itself can be established, at the cost of some tedious algebra, by
adapting the methods of Section 8.9. We leave the details to the interested
reader.

The treatment we have given of LM, LR, and Wald tests has largely fol-
lowed that of Newey andWest (1987b). This article may be consulted for more
details of regularity conditions sufficient for the results merely asserted here to
hold. Another paper on testing models estimated by GMM is Newey (1985b).
Nonnested hypothesis tests for models estimated by GMM are discussed by
Smith (1992). These papers do not deal with C(α) tests, however.

An interesting question is whether the conditional moment tests discussed
in the last chapter in the context of models estimated by maximum likelihood
have any counterpart for models estimated by GMM. For simplicity, suppose
that there is a single conditional moment of which the expectation is zero if
the model is correctly specified. If the corresponding empirical moment is
used as an overidentifying restriction, then it can be tested in the same way
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on asymptotic theory, and one cannot hope to obtain consistent parameter
estimates if the parameters are not asymptotically identified.

In this section, we will discuss the asymptotic identifiability of a linear
simultaneous equations model by the two-stage least squares estimator intro-
duced in Section 7.5. This may seem a very limited topic, and in a certain
sense it is indeed limited. However, it is a topic that has given rise to a truly
vast literature, to which we can in no way do justice here; see Fisher (1976) and
Hsiao (1983). There exist models that are not identified by the 2SLS estimator
but are identified by other estimators, such as the FIML estimator, and we will
briefly touch on such cases later. It is not a simple task to extend the theory
we will present in this section to the context of nonlinear models, for which
it is usually better to return to the general theory expounded in Section 5.2.

We begin with the linear simultaneous equations model, (18.01). This
model consists of DGPs that generate samples for which each observation
is a g--vector Yt of dependent variables, conditional on a set of exogenous
and lagged dependent variables Xt. Since the exogenous variables in Xt are
assumed to be weakly exogenous, their generating mechanism can be ignored.
In order to discuss identification, little needs to be assumed about the error
terms Ut. They must evidently satisfy the condition that E(Ut) = 0, and
it seems reasonable to assume that they are serially independent and that
E(Ut

>Ut) = Σt, where Σt is a positive definite matrix for all t. If inferences
are to be based on the usual 2SLS covariance matrix, it will be necessary to
make the further assumption that the error terms are homoskedastic, that is,
Σt = Σ for all t.

It is convenient to treat the identification of the parameters of a simult-
aneous equations model equation by equation, since it is entirely possible that
the parameters of some equations may be identified while the parameters of
others are not. In order to simplify notation, we will consider, without loss
of generality, only the parameters of the first equation of the system, that
is, the elements of the first columns of the matrices Γ and B. As we re-
marked in Section 18.1, restrictions must be imposed on the elements of these
matrices for identification to be possible. It is usual to assume that these
restrictions all take the form of zero restrictions on some elements. A variable
is said to be excluded from an equation if the coefficient corresponding to that
variable for that equation is restricted to be zero; otherwise, it is said to be
included in the equation. As discussed in Section 6.4, it is always possible
in the context of a single equation to perform a reparametrization such that
all restrictions take the form of zero restrictions. But in the context of a
simultaneous equations model, such reparametrizations exist in general only
if there are no cross-equation restrictions, that is, restrictions which involve
the parameters of more than one equation of the system. If there are cross-
equation restrictions, then to all intents and purposes we leave the context of
linear systems. We would in any case have to abandon the 2SLS estimator if
we wished to impose cross-equation restrictions.
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and (18.20), be expressed as

π1 −Π11γ1 = β1

π2 −Π21γ1 = 0.

The first of these two equations serves to define β1 in terms ofΠ and γ1, and
allows us to see that β1 can be identified if γ1 can be. The second equation
shows that γ1 is determined uniquely if and only if the submatrix Π21 has
full column rank, that is, if the rank of the matrix is equal to the number
of columns (see Appendix A). The submatrix Π21 has k − k1 rows and g1
columns. Therefore, if the order condition is satisfied, there are at least as
many rows as columns. The condition for the identifiability of γ1, and so also
of β1, is thus simply that the columns of Π21 in the DGP should be linearly
independent.

It is instructive to show why this last condition is equivalent to the
rank condition in terms of plim(n−1Z>PXZ). If, as we have tacitly assumed
throughout this discussion, the exogenous variables X satisfy the condition
that plim(n−1X>X) is positive definite, then plim(n−1Z>PXZ) can fail to
have full rank only if plim(n−1X>Z) has rank less than g1 + k1, the number
of columns of Z. The probability limit of the matrix n−1X>Z follows from
(18.22), with X replacing W. If, for notational simplicity, we drop the prob-
ability limit and the factor of n−1, which are not essential to the discussion,
the matrix of interest can be written as[

X1
>X1 X1

>X1Π11 +X1
>X2Π21

X2
>X1 X2

>X1Π11 +X2
>X2Π21

]
. (18.23)

This matrix does not have full column rank of g1+k1 if and only if there exists
a nonzero (g1+k1)--vector θ ≡ [θ1

.... θ2] such that postmultiplying (18.23) by θ
gives zero. If we write this condition out and rearrange slightly, we obtain[

X1
>X1 X1

>X2

X2
>X1 X2

>X2

] [
θ1 +Π11θ2
Π21θ2

]
= 0. (18.24)

The first matrix on the left-hand side here is just X>X and is therefore
nonsingular. The condition reduces to the two vector equations

θ1 +Π11θ2 = 0 (18.25)

Π21θ2 = 0. (18.26)

If these equations hold for some nonzero θ, it is clear that θ2 cannot be zero.
Consequently, the second of these equations can hold only ifΠ21 has less than
full column rank. It follows that if the rank condition in terms of Z>PXZ
does not hold, then it does not hold in terms of Π21 either. Conversely,
suppose that (18.26) holds for some nonzero g1--vector θ2. Then Π21 does
not have full column rank. Define θ1 in terms of this θ2 and Π by means
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By the same token, if the parameters of the structural model are not constant
over the entire sample, then the parameters of the URF will not be constant ei-
ther. Since the equations of the URF are estimated by ordinary least squares,
it is very easy to test them for evidence of misspecification such as serial cor-
relation, heteroskedasticity, and nonconstant coefficients. If they fail any of
these tests, then one may reasonably conclude that the structural model is
misspecified, even if one has not actually estimated it. The converse is not
true, however, since these tests may well lack power, especially if only one of
the structural equations is misspecified.

One additional misspecification test that should always be performed is
a test of any overidentifying restrictions. In Section 7.8, we discussed how
to test overidentifying restrictions for a single equation estimated by IV or
2SLS. Here we are interested in all of the overidentifying restrictions for the
entire system. The number of degrees of freedom for the test is equal to
the number of elements in the Π matrix of the URF, gk, minus the number
of free parameters in B and Γ jointly. In most cases there will be some
overidentifying restrictions, and in many cases there will be a large number
of them. The most natural way to test these is probably to use an LR test.
The restricted value of the loglikelihood function is the value of (18.30) at the
FIML estimates B̂ and Γ̂, and the unrestricted value is

− ng−−
2

(
log(2π) + 1

)
− n−

2
log
∣∣∣ 1−n(Y −XΠ̂

)>(Y −XΠ̂
)∣∣∣ , (18.33)

where Π̂ denotes the OLS estimates of the parameters of the URF. As usual,
twice the difference between the unrestricted and restricted values of the log-
likelihood function will be asymptotically distributed as χ2 with as many
degrees of freedom as there are overidentifying restrictions. If one suspects
that the overidentifying restrictions are violated and therefore does not want
to bother estimating the structural model, one could instead use a Wald test,
as suggested by Byron (1974).

We have not yet explained why the OLS estimates Π̂ are also the ML
estimates. It can easily be seen from (18.33) that, in order to obtain ML
estimates of Π, we need to minimize the determinant∣∣(Y −XΠ)>(Y −XΠ)

∣∣. (18.34)

Suppose that we evaluate this determinant at any set of estimates Π́ not
equal to Π̂. Since we can always write Π́ = Π̂ + A for some matrix A,
(18.34) becomes ∣∣(Y −XΠ̂ −XA)>(Y −XΠ̂ −XA)

∣∣
=
∣∣(MXY −XA)>(MXY −XA)

∣∣
=
∣∣Y>MXY +A>X>XA

∣∣.
(18.35)
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Because the determinant of the sum of two positive definite matrices is always
greater than the determinants of either of those matrices (see Appendix A),
it follows from (18.35) that (18.34) will exceed |Y>MXY | for all A 6= 0.
This implies that Π̂ minimizes (18.34), and so we have proved that equation-
by-equation OLS estimates of the URF are also ML estimates for the entire
system.

If one does not have access to a regression package that calculates (18.33)
easily, there is another way to do so. Consider the recursive system

y1 =Xη1 + e1

y2 =Xη2 + y1α1 + e2

y3 =Xη3 + [y1 y2]α2 + e3

y4 =Xη4 + [y1 y2 y3]α3 + e4,

(18.36)

and so on, where yi denotes the ith column of Y . This system of equations
can be interpreted as simply a reparametrization of the URF (18.03). It is
easy to see that if one estimates these equations by OLS, all the residual
vectors will be mutually orthogonal: ê2 will be orthogonal to ê1, ê3 will be
orthogonal to ê2 and ê1, and so on. According to the URF, all the yi’s are
linear combinations of the columns of X plus random errors. Therefore, the
equations of (18.36) are correct for any arbitrary choice of the α parameters:
The ηi’s simply adjust to whatever choice is made. If, however, we require
that the error terms ei should be orthogonal, then this serves to identify a
particular unique choice of the α’s. In fact, the recursive system (18.36) has
exactly the same number of parameters as the URF (18.03): g vectors ηi, each
with k elements, g − 1 vectors αi, with a total of g(g − 1)/2, and g variance
parameters, for a total of gk + (g2 + g)/2. The URF has gk parameters in
Π and (g2 + g)/2 in the covariance matrix Ω, for the same total. What has
happened is that the α parameters in (18.36) have replaced the off-diagonal
elements of the covariance matrix of V in the URF.

Since the recursive system (18.36) is simply a reparametrization of the
URF (18.03), it should come as no surprise that the loglikelihood function for
the former is equal to (18.33). Because the residuals of the various equations
in (18.36) are orthogonal, the value of the loglikelihood function for (18.36)
is simply the sum of the values of the loglikelihood functions from OLS es-
timation of the individual equations. This result, which readers can easily
verify numerically, sometimes provides a convenient way to compute the log-
likelihood function for the URF. Except for this purpose, recursive systems
are not generally of much interest. They do not convey any information that
is not already provided by the URF, and the parametrization depends on an
arbitrary ordering of the equations.
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where fi(·) is an n--vector of nonlinear functions, ui is an n--vector of error
terms, and θ is a p--vector of parameters to be estimated. In general, subject
to whatever restrictions need to be imposed for the system to be identified, all
the endogenous and exogenous variables and all the parameters may appear
in any equation.

The first step in any sort of IV procedure is to choose the instruments
to be used. If the model is nonlinear only in the parameters, the matrix of
optimal instruments is X. As we have seen, however, there is no simple way
to choose the instruments for models that are nonlinear in one or more of the
endogenous variables. The theory of Section 17.4 can be applied, of course,
but the result that it yields is not very practical. Under the usual assumptions
about the error terms, namely, that they are homoskedastic and independent
across observations but correlated across equations for each observation, one
finds that a matrix of instrumentsW will be optimal if S(W ) is equal to the
subspace spanned by the union of the columns of the E(∂fi/∂θ). This result
was originally derived by Amemiya (1977). It makes sense but is generally
not very useful in practice. For now, we simply assume that some valid n×m
matrix of instruments W is available, with m ≥ p.

A nonlinear IV procedure for full-system estimation, similar in spirit to
the single-equation NL2SLS procedure based on minimizing (18.78), was first
proposed by Jorgenson and Laffont (1974) and called nonlinear three-stage
least squares, or NL3SLS. The name is somewhat misleading, for the same
reason that the name “NL2SLS” is misleading. By analogy with (18.60), the
criterion function we would really like to minimize is

g∑
i=1

g∑
j=1

σijfi
>(Y ,X,θ)PWfj(Y ,X,θ). (18.80)

In practice, however, the elements σij of the inverse of the contemporaneous
covariance matrix Σ will not be known and will have to be estimated. This
may be done in several ways. One possibility is to use NL2SLS for each
equation separately. This will generally be easy, but it may not be possible if
some parameters are identified only by cross-equation restrictions. Another
approach which will work in that case is to minimize the criterion function

g∑
i=1

fi
>(Y ,X,θ)PWfi(Y ,X,θ), (18.81)

in which the unknown covariance matrix Σ is replaced by the identity matrix.
The estimator obtained by minimizing (18.81) will evidently be a valid GMM
estimator and thus will be consistent even though it is inefficient. Whichever
inefficient estimator is used initially, it will yield g vectors of residuals úi from
which the matrix Σ may be estimated consistently in exactly the same way
as for linear models; see (18.62). Replacing the unknown σij ’s in (18.80) by
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the elements σ́ij of the inverse of the estimate of Σ then yields the criterion
function

g∑
i=1

g∑
j=1

σ́ijfi
>(Y ,X,θ)PWfj(Y ,X,θ), (18.82)

which can actually be minimized in practice.

As usual, the minimized value of the criterion function (18.82) provides
a test statistic for overidentifying restrictions; see Sections 7.8 and 17.6. If
the model and instruments are correctly specified, this test statistic will be
asymptotically distributed as χ2(m − p); recall that m is the number of in-
struments and p is the number of free parameters. Moreover, if the model is
estimated unrestrictedly and subject to r distinct restrictions, the difference
between the two values of the criterion function will be asymptotically dis-
tributed as χ2(r). If the latter test statistic is to be employed, it is important
that the same estimate of Σ be used for both estimations, since otherwise the
test statistic may not even be positive in finite samples.

When the sample size is large, it may be less computationally demanding
to obtain one-step efficient estimates rather than actually to minimize (18.82).
Suppose the initial consistent estimates, which may be either NL2SLS esti-
mates or systems estimates based on (18.81), are denoted θ́. Then a first-order
Taylor-series approximation to fi(θ) ≡ fi(Y ,X,θ) around θ́ is

fi(θ́) + Fi(θ́)(θ − θ́),

where Fi is an n×p matrix of the derivatives of fi(θ) with respect to the p ele-
ments of θ. If certain parameters do not appear in the ith equation, the corre-
sponding columns of Fi will be identically zero. The one-step estimates, which
will be asymptotically equivalent to NL3SLS estimates, are simply θ̀ = θ́ − t́,
where t́ denotes the vector of linear 3SLS estimates

t́ =

[
g∑

i=1

g∑
j=1

σ́ijF́i
>PW F́j

]−1[ g∑
i=1

g∑
j=1

σ́ijF́i
>PW f́j

]
. (18.83)

Compare expression (18.64), for the case with no cross-equation restrictions.

It is clear that NL3SLS can be generalized to handle heteroskedasticity of
unknown form, serial correlation of unknown form, or both. For example, to
handle heteroskedasticity one would simply replace the matrix PW in (18.82)
and (18.83) by the matrix

W
(
W>ΏijW

)−1
W>,

where, by analogy with (18.76), Ώij = diag(útiútj) for i, j = 1, . . . , g. The
initial estimates θ́ need not take account of heteroskedasticity. For a more
detailed discussion of this sort of procedure, and of NL3SLS in general, see
Gallant (1987, Chapter 6).



Chapter 20

Unit Roots and Cointegration

20.1 Introduction

As we saw in the last chapter, the usual asymptotic results cannot be ex-
pected to apply if any of the variables in a regression model is generated by a
nonstationary process. For example, in the case of the linear regression model
y = Xβ + u, the usual results depend on the assumption that the matrix
n−1X>X tends to a finite, positive definite matrix as the sample size n tends
to infinity. When this assumption is violated, some very strange things can
happen, as we saw when we discussed “spurious” regressions between totally
unrelated variables in Section 19.2. This is a serious practical problem, be-
cause a great many economic time series trend upward over time and therefore
seem to violate this assumption.

Two obvious ways to keep standard assumptions from being violated
when using such series are to detrend or difference them prior to use. But
detrending and differencing are very different operations; if the former is ap-
propriate, the latter will not be, and vice versa. Detrending a time series yt
will be appropriate if it is trend-stationary, which means that the DGP for yt
can be written as

yt = γ0 + γ1t+ ut, (20.01)

where t is a time trend and ut follows a stationary ARMA process. On the
other hand, differencing will be appropriate if the DGP for yt can be written as

yt = γ1 + yt−1 + ut, (20.02)

where again ut follows a stationary ARMA process. If the ut’s were serially
independent, (20.02) would be a random walk with drift, the drift parameter
being γ1. They will generally not be serially independent, however. As we
will see shortly, it is no accident that the same parameter γ1 appears in both
(20.01) and (20.02).

The choice between detrending and differencing comes down to a choice
between (20.01) and (20.02). The main techniques for choosing between them
are various tests for what are called unit roots. The terminology comes from
the literature on time-series processes. Recall from Section 10.5 that for an AR

700
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process A(L)ut = εt, where A(L) denotes a polynomial in the lag operator,
the stationarity of the process depends on the roots of the polynomial equation
A(z) = 0. If all roots are outside the unit circle, the process is stationary.
If any root is equal to or less than 1 in absolute value, the process is not
stationary. A root that is equal to 1 in absolute value is called a unit root.
When a process has a unit root, as (20.02) does, it is said to be integrated of
order one or I(1). A series that is I(1) must be differenced once in order to
make it stationary.

The obvious way to choose between (20.01) and (20.02) is to nest them
both within a more general model. There is more than one way to do so. The
most plausible model that includes both (20.01) and (20.02) as special cases
is arguably

yt = γ0 + γ1t+ vt; vt = αvt−1 + ut

= γ0 + γ1t+ α
(
yt−1 − γ0 − γ1(t− 1)

)
+ ut, (20.03)

where ut follows a stationary process. This model was advocated by Bhargava
(1986). When |α| < 1, (20.03) is equivalent to the trend-stationary model
(20.01); when α = 1, it reduces to (20.02).

Because (20.03) is nonlinear in the parameters, it is convenient to repara-
metrize it as

yt = β0 + β1t+ αyt−1 + ut, (20.04)

where
β0 ≡ γ0(1− α) + γ1α and β1 ≡ γ1(1− α).

It is easy to verify that the estimates of α from least squares estimation of
(20.03) and (20.04) will be identical, as will the estimated standard errors of
those estimates if, in the case of (20.03), the latter are based on the Gauss-
Newton regression. The only problem with the reparametrization (20.04) is
that it hides the important fact that β1 = 0 when α = 1.

If yt−1 is subtracted from both sides, equation (20.04) becomes

∆yt = β0 + β1t+ (α− 1)yt−1 + ut, (20.05)

where ∆ is the first-difference operator. If α < 1, (20.05) is equivalent to
the model (20.01), whereas, if α = 1, it is equivalent to (20.02). Thus it
is conventional to test the null hypothesis that α = 1 against the one-sided
alternative that α < 1. Since this is a test of the null hypothesis that there
is a unit root in the stochastic process which generates yt, such tests are
commonly called unit root tests.

At first glance, it might appear that a unit root test could be accom-
plished simply by using the ordinary t statistic for α − 1 = 0 in (20.05), but
this is not so. When α = 1, the process generating yt is integrated of order
one. This means that yt−1 will not satisfy the standard assumptions needed
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Serial correlation is not the only complication that one is likely to en-
counter when trying to compute unit root test statistics. One very serious
problem is that these statistics are severely biased against rejecting the null
hypothesis when they are used with data that have been seasonally adjusted
by means of a linear filter or by the methods used by government statistical
agencies. In Section 19.6, we discussed the tendency of the OLS estimate of
α in the regression yt = β0 + αyt−1 + ut to be biased toward 1 when yt is
a seasonally adjusted series. This bias is present for all the test regressions
we have discussed. Even when α̂ is not actually biased toward 1, it will be
less biased away from 1 than the corresponding estimate using an unfiltered
series. Since the tabulated distributions of the test statistics are based on
the behavior of α̂ for the latter case, it is likely that test statistics computed
using seasonally adjusted data will reject the null hypothesis substantially less
often than they should according to the critical values in Table 20.1. That
is exactly what Ghysels and Perron (1993) found in a series of Monte Carlo
experiments.

If possible, one should therefore avoid using seasonally adjusted data to
compute unit root tests. One possibility is to use annual data. This may
cause the sample size to be quite small, but the consequences of that are not
as severe as one might fear. As Shiller and Perron (1985) point out, the power
of these tests depends more on the span of the data (i.e., the number of years
the sample covers) than on the number of observations. The reason for this is
that if α is in fact positive but less than 1, it will be closer to 1 when the data
are observed more frequently. Thus a test based on n annual observations may
have only slightly less power than a test based on 4n quarterly observations
that have not been seasonally adjusted and may have more power than a test
based on 4n seasonally adjusted observations.

If quarterly or monthly data are to be used, they should if possible not be
seasonally adjusted. Unfortunately, as we remarked in Chapter 19, seasonally
unadjusted data for many time series are not available in many countries.
Moreover, the use of seasonally unadjusted data may make it necessary to
add seasonal dummy variables to the regression and to account for fourth-
order or twelfth-order serial correlation.

A second major problem with unit root tests is that they are very sensitive
to the assumption that the process generating the data has been stable over
the entire sample period. Perron (1989) showed that the power of unit root
tests is dramatically reduced if the level or the trend of a series has changed
exogenously at any time during the sample period. Even though the series
may actually be stationary in each of the two parts of the sample, it can be
almost impossible to reject the null that it is I(1) in such cases.

Perron therefore proposed techniques that can be used to test for unit
roots conditional on exogenous changes in level or trend. His tests are per-
formed by first regressing yt on a constant, a time trend, and one or two
dummy variables that allow either the constant, the trend, or both the con-
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employed. We know that variables which are I(1) tend to diverge as n→ ∞,
because their unconditional variances are proportional to n. Thus it might
seem that such variables could never be expected to obey any sort of long-run
equilibrium relationship. But in fact it is possible for two or more variables to
be I(1) and yet for certain linear combinations of those variables to be I(0).
If that is the case, the variables are said to be cointegrated. If two or more
variables are cointegrated, they must obey an equilibrium relationship in the
long run, although they may diverge substantially from equilibrium in the
short run. The concept of cointegration is fundamental to the understanding
of long-run relationships among economic time series. It is also quite recent.
The earliest reference is probably Granger (1981), the best-known paper is
Engle and Granger (1987), and two relatively accessible articles are Hendry
(1986) and Stock and Watson (1988a).

Suppose, to keep matters simple, that we are concerned with just two
variables, yt1 and yt2, each of which is known to be I(1). Then, in the simplest
case, yt1 and yt2 would be cointegrated if there exists a vector η ≡ [1 −η2]>
such that, when the two variables are in equilibrium,

[y1 y2 ]η ≡ y1 − η2y2 = 0. (20.20)

Here y1 and y2 denote n--vectors with typical elements yt1 and yt2, respec-
tively. The 2--vector η is called a cointegrating vector. It is clearly not unique,
since it could be multiplied by any nonzero scalar without affecting the equal-
ity in (20.20).

Realistically, one might well expect yt1 and yt2 to be changing systemat-
ically as well as stochastically over time. Thus one might expect (20.20) to
contain a constant term and perhaps one or more trend terms as well. If we
write Y = [y1 y2], (20.20) can be rewritten to allow for this possibility as

Yη =Xβ, (20.21)

where, as in (20.14), X denotes a nonstochastic matrix that may or may not
have any elements. If it does, the first column will be a constant, the second,
if it exists, will be a linear time trend, the third, if it exists, will be a quadratic
time trend, and so on. Since Y could contain more than two variables, (20.21)
is actually a very general way of writing a cointegrating relationship among
any number of variables.

At any particular time t, of course, an equality like (20.20) or (20.21)
cannot be expected to hold exactly. We may therefore define the equilibrium
error νt as

νt = Ytη −Xtβ, (20.22)

where Yt and Xt denote the t
th rows of Y and X, respectively. In the special

case of (20.20), this equilibrium error would simply be yt1 − η2yt2. The m
variables yt1 through ytm are said to be cointegrated if there exists a vector η
such that νt in (20.22) is I(0).
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For the actual minimization, it is convenient to work with a transfor-
mation of η. Let S denote any m × m matrix with the property that
S>S = (Y ∗

−p)
>Y ∗

−p, and define the m × r matrix ζ as Sη. The ratio (20.41)
becomes ∣∣ζ>(S−1)>(Y ∗

−p)
>M∗Y ∗

−pS
−1ζ

∣∣∣∣ζ>ζ∣∣ . (20.42)

Since all that matters is the subspace spanned by the r columns of ζ, we
may without loss of generality choose ζ such that ζ>ζ = Ir. Let us define
the m ×m positive definite matrix A to be the matrix that appears in the
numerator of (20.42). Then we have to minimize |ζ>Aζ| with respect to ζ
subject to the constraint that ζ>ζ = I.

In order to perform this minimization, it turns out to be enough to con-
sider the eigenvalue-eigenvector problem associated with A. If we solve this
problem, we will obtain an orthogonal matrix Z, the columns of which are
orthonormalized eigenvectors of A, and a diagonal matrix Λ, the diagonal
elements of which are the eigenvalues of A, which must evidently lie between
zero and unity. Then AZ = ZΛ. If the columns of Z and Λ are arranged
in increasing order of the eigenvalues λ1, . . . , λm, we may choose the ML es-
timate ζ̂ to be the first r columns of Z. Geometrically, the columns of ζ̂
span the space spanned by the eigenvectors of A that correspond to the r
smallest eigenvalues. The fact that Z is orthogonal means that ζ̂ satisfies the
constraint, and the choice of the smallest eigenvalues serves to minimize the
determinant |ζ>Aζ|.

The ML estimate of the space of cointegrating vectors S(η) can now be
recovered from ζ̂ by the formula η̂ = S−1ζ̂. The matrix α̂ needed in order to
obtain ML estimates of the parameters contained in the matrix Π can then
be obtained as the OLS estimates from the multivariate regression of ∆Y ∗ on
Y ∗
−pη̂. Subsequently, estimates of the matrices Γi, i = 1, . . . , p − 1, can also

be obtained by OLS.

Often, we are not especially interested in the parameters of the VAR
(20.35). The focus of our interest is more likely to be testing the hypothesis
of noncointegration against an alternative of cointegration of some chosen
order. Should the null hypothesis that r = 0 be rejected, we may then wish
to test the hypothesis that r = 1 against the alternative that r = 2, and
so forth. The eigenvalues λi, i = 1, . . . ,m, provide a very convenient way
to do this, in terms of a likelihood ratio test. It is clear that if we select
some value of r, the minimized determinant |ζ>Aζ| is just the product of
the r smallest eigenvalues, λ1 · · ·λr. The minimum of (20.40) is this product
multiplied by |(∆Y ∗)>∆Y ∗|. If r = 0, then the minimum of (20.40) is simply
this last determinant. Likelihood ratios for different values of r are therefore
just products of some of the eigenvalues, raised to the power n/2; recall (9.65).
If we take logs and multiply by 2 in order to obtain an LR statistic, we obtain
−n times the sum of the logs of the appropriate eigenvalues.
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results mean that it is usually practical to perform only a small number of
experiments. These must be designed to shed as much light as possible on the
issues of interest.

The first thing to recognize is that results from Monte Carlo experiments
are necessarily random. At a minimum, this means that results must be re-
ported in a way which allows readers to appreciate the extent of experimental
randomness. Moreover, it is essential to perform enough replications so that
the results are sufficiently accurate for the purpose at hand. The number of
replications that is needed can sometimes be substantially reduced by using
variance reduction techniques, which will be discussed in the next two sec-
tions. Such techniques are by no means always readily available, however. In
this section, we consider various other aspects of the design of Monte Carlo
experiments.

We first consider the problem of determining how many replications to
perform. As an example, suppose that the investigator is interested in calcu-
lating the size of a certain test statistic (i.e., the probability of rejecting the
null hypothesis when it is true) at, say, the nominal .05 level. Let us denote
this unknown quantity by p. Each replication will generate a test statistic
that either exceeds or does not exceed the nominal critical value. These can
be thought of as independent Bernoulli trials. Suppose N replications are
performed and R rejections are obtained. Then the obvious estimator of p,
which is also the ML estimator, is R/N . The variance of this estimator is
N−1p(1− p), which can be estimated by R(N −R)/N3.

Now suppose that one wants the length of a 95% confidence interval on
the estimate of p to be approximately .01. Using the normal approximation
to the binomial, which is surely valid here since N will be a large number, we
see that the confidence interval must cover 2 × 1.96 = 3.92 standard errors.
Hence we require that

3.92

(
p(1− p)

N

)1/2
= .01. (21.02)

Assuming that p is .05, the nominal level of the test being investigated, we
can solve (21.02) for N. The result is N ∼= 7299. To be on the safe side (since
p may well exceed .05, implying that R/N may have a larger variance) the
investigator would probably choose N = 8000. This is a rather large number
of replications and may be expensive to compute. If one were willing to let
the 95% confidence interval on p have a length of .02, one could make do with
a sample one-quarter as large, or roughly 2000 replications.

If the objective of an experiment is to compare two or more estimators
or two or more test statistics, fewer replications may be needed to obtain a
given level of accuracy than would be needed to estimate the properties of
either of them with the same level of accuracy. Suppose, for example, that
we are interested in comparing the biases of two estimators, say θ̂ and θ̃, of a
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parameter the true value of which is θ0. On each replication, say the jth, we
obtain realizations θ̂j and θ̃j of each of the two estimators. The biases of the
two estimators are

B(θ̂) ≡ E(θ̂ − θ0) and B(θ̃) ≡ E(θ̃ − θ0),

which may be estimated by

B̂(θ̂) =
1−
N

N∑
j=1

(θ̂j − θ0) and B̃(θ̃) =
1−
N

N∑
j=1

(θ̃j − θ0).

The difference between B(θ̂) and B(θ̃) is

E(θ̂ − θ0)− E(θ̃ − θ0) = E(θ̂ − θ̃), (21.03)

which may be estimated by

1−
N

N∑
j=1

(θ̂j − θ̃j). (21.04)

It is possible and indeed likely that the variance of (21.04) will be substantially
smaller than the variance of either B̂(θ̂) or B̃(θ̃), because both θ̂j and θ̃j
depend on the same pseudo-random vector uj. The variance of (21.04) is

1−
N
V (θ̂) +

1−
N
V (θ̃)− 2−

N
Cov(θ̂, θ̃),

which will be smaller than the variance of either B̂(θ̂) or B̃(θ̃) whenever
Cov(θ̂, θ̃) is positive and large enough. This will very often be the case, since
it is likely that θ̂j and θ̃j will be strongly positively correlated. Thus it may
require far fewer replications to estimate (21.03) than to estimate B(θ̂) and
B(θ̃) with the same level of accuracy. Of course, this assumes that θ̂j and θ̃j
are obtained using the same set of pseudo-random variates, but that is how
the Monte Carlo experiment would normally be designed. We will encounter
an idea similar to this one when we discuss the method of antithetic variates
in the next section.

The second important thing to keep in mind when designing Monte Carlo
experiments is that the results will often be highly sensitive to certain aspects
of the experimental design and largely or totally insensitive to other aspects.
Obviously, one will want to vary the former across the experiments while
fixing the latter in a more or less arbitrary fashion. For example, many test
statistics related to regression models are invariant to the variance of the error
terms. Consider the ordinary t statistic for α = 0 in the regression

y =Xβ + αz + u. (21.05)
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tion corresponds to one experiment, the dependent variable is some quantity
that was estimated in the experiments, and the independent variables are
functions of the various parameter values, chosen by the experimenter, which
characterize each experiment. Response surfaces have been used by Hendry
(1979), Mizon and Hendry (1980), Engle, Hendry, and Trumble (1985), Er-
icsson (1991), and MacKinnon (1991), among others; they are discussed at
length in Hendry (1984). For criticisms of this approach, see Maasoumi and
Phillips (1982), along with the reply by Hendry (1982).

If a response surface that adequately explains the experimental results
can be found, this approach to summarizing Monte Carlo results has much
to recommend it. First of all, it may be a good deal easier to understand
the behavior of the estimator or test statistic of interest from the parameters
of a response surface than from several tables full of numbers. Secondly,
if the response surface is correctly specified, it eliminates, or at least greatly
reduces, what Hendry (1984) refers to as the problem of specificity. What this
means is that each individual experiment gives results for a single assumed
DGP only, and any set of Monte Carlo experiments gives results for a finite
set of assumed DGPs only. For other parameter values or values of n, the
reader must interpolate from the results in the tables, which is often difficult
to do. In contrast, a correctly specified response surface gives results for
whole families of DGPs rather than solely for the parameter values chosen by
the experimenter. The catch, of course, is that the response surface must be
correctly specified, and this is not always an easy task.

One of the most interesting features of response surfaces, which distin-
guishes them from most other applications of regression models in economics,
is that the data are generated by the experimenter. Thus, if the data are not
sufficiently informative, there is always an easy solution: Simply run more
experiments and obtain more data. In most cases, each data point for the
response surface corresponds to a single Monte Carlo experiment. The de-
pendent variable is then some quantity estimated by the experiment, such as
the mean or mean squared error of the estimates of a certain parameter or the
estimated size of a test. Because such estimates are normally accompanied by
estimates of their standard errors, estimates which should be very accurate
if the experiments involve a sufficient number of replications, the investigator
is in the unique position of being able to use GLS with a fully specified co-
variance matrix. If every experiment used a different set of random numbers,
each observation for the response surface would be independent, and this co-
variance matrix would therefore be diagonal. If the same random numbers
were used across several experiments, perhaps to increase the precision with
which differences across parameter values were estimated, the covariance ma-
trix would of course be nondiagonal, but the form of the nondiagonality would
be known, and the covariance matrix could easily be estimated.

To make the above remarks more concrete, let us denote the quantity
of interest by ψ. It must be a function of the sample size n and of the
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that this determinant is a polynomial in λ, of degree n if A is n × n. The
fundamental theorem of algebra tells us that such a polynomial has n complex
roots, say λ1, . . . , λn. To each λi there must correspond an eigenvector xi.
This eigenvector is determined only up to a scale factor, because if xi is an
eigenvector corresponding to λi, then so is αxi for any nonzero scalar α. The
eigenvector xi does not necessarily have real elements if λi itself is not real.

If A is a real symmetric matrix, it can be shown that the eigenvalues λi
are in fact all real and that the eigenvectors can be chosen to be real as well.
If A is a positive definite matrix, then all its eigenvalues are positive. This
follows from the facts that

x>Ax = λx>x

and that both x>x and x>Ax are positive. The eigenvectors of a real sym-
metric matrix can be chosen to be mutually orthogonal. If one looks at two
eigenvectors xi and xj , corresponding to two distinct eigenvalues λi and λj ,
then xi and xj are necessarily orthogonal:

λixj
>xi = xj

>Axi = (Axj)
>xi = λjxj

>xi,

which is impossible unless xj
>xi = 0. If not all the eigenvalues are distinct,

then two (or more) eigenvectors may correspond to one and the same eigen-
value. When that happens, these two eigenvectors span a space that is or-
thogonal to all other eigenvalues by the reasoning just given. Since any linear
combination of the two eigenvectors will also be an eigenvector correspond-
ing to the one eigenvalue, one may choose an orthogonal set of them. Thus,
whether or not all the eigenvalues are distinct, eigenvectors may be chosen to
be orthonormal, by which we mean that they are mutually orthogonal and
each has norm equal to 1. Thus the eigenvectors of a real symmetric matrix
provide an orthonormal basis.

Let U ≡ [x1 · · · xn ] be a matrix the columns of which are an orthonor-
mal set of eigenvectors of A, corresponding to the eigenvalues λi, i = 1, . . . , n.
Then we can write the eigenvalue relationship (A.28) for all the eigenvalues
at once as

AU = UΛ, (A.30)

where Λ is a diagonal matrix with λi as its ith diagonal element. The ith

column of AU is Axi, and the ith column of UΛ is λixi. Since the columns of
U are orthonormal, we find that U>U = I, which implies that U>= U−1. A
matrix with this property is said to be an orthogonal matrix. Postmultiplying
(A.30) by U> gives

A = UΛU>. (A.31)

This equation expresses the diagonalization of A.
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