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at Xβ̂ instead of at zero. The right angle formed by y −Xβ̂ and S(X) is the
key feature of least squares. At any other point in S(X), such as Xβ′ in the
figure, y−Xβ′ does not form a right angle with S(X) and, as a consequence,
‖y −Xβ′‖ must necessarily be larger than ‖y −Xβ̂‖.

The vector of derivatives of the SSR (1.02) with respect to the elements
of β is

−2X>(y −Xβ),

which must equal 0 at a minimum. Since we have assumed that the columns
of X are linearly independent, the matrix X>X must have full rank. This,
combined with that fact that any matrix of the form X>X is necessarily
nonnegative definite, implies that the sum of squared residuals is a strictly
convex function of β and must therefore have a unique minimum. Thus β̂ is
uniquely determined by the normal equations

X>(y −Xβ̂) = 0. (1.03)

These normal equations say that the vector y−Xβ̂ must be orthogonal to all
of the columns of X and hence to any vector that lies in the space spanned
by those columns. The normal equations (1.03) are thus simply a way of stat-
ing algebraically what Figure 1.2 showed geometrically, namely, that y −Xβ̂
must form a right angle with S(X).

Since the matrix X>X has full rank, we can always invert it to solve the
normal equations for β̂. We obtain the standard formula:

β̂ =
(
X>X

)−1
X>y. (1.04)

Even ifX is not of full rank, the fitted valuesXβ̂ are uniquely defined, because
Xβ̂ is simply the point in S(X) that is closest to y. Look again at Figure 1.2
and suppose thatX is an n×2 matrix, but of rank only one. The geometrical
point Xβ̂ is still uniquely defined. However, since β is now a 2--vector and
S(X) is just one-dimensional, the vector β̂ is not uniquely defined. Thus the
requirement that X have full rank is a purely algebraic requirement that is
needed to obtain unique estimates β̂.

If we substitute the right-hand side of (1.04) for β̂ into Xβ̂, we obtain

Xβ̂ =X
(
X>X

)−1
X>y ≡ PXy. (1.05)

This equation defines the n× n matrix PX ≡X(X>X)−1X>, which projects
the vector y orthogonally onto S(X). The matrix PX is an example of an
orthogonal projection matrix. Associated with every linear subspace of En are
two such matrices, one of which projects any point in En onto that subspace,
and one of which projects any point in En onto its orthogonal complement.
The matrix that projects onto S⊥(X) is

MX ≡ I− PX ≡ I−X
(
X>X

)−1
X>,
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The modified version is known as the centered R2, and we will denote it by
R2

c . It is defined as

R2
c ≡ 1− ‖MXy‖2

‖Mιy‖2
, (1.09)

where
Mι ≡ I− ι

(
ι>ι
)−1
ι>= I− n−1ιι>

is the matrix that projects off the space spanned by the constant vector ι,
which is simply a vector of n ones. When any vector is multiplied by Mι,
the result is a vector of deviations from the mean. Thus what the centered
R2 measures is the proportion of the total sum of squares of the regressand
around its mean that is explained by the regressors.

An alternative expression for R2
c is

‖PXMιy‖2

‖Mιy‖2
, (1.10)

but this is equal to (1.09) only if PXι = ι, which means that S(X) must
include the vector ι (so that either one column of X must be a constant, or
some linear combination of the columns of X must equal a constant). In this
case, the equality must hold, because

MXMιy =MX(I− Pι)y =MXy,

the second equality here being a consequence of the fact thatMX annihilates
Pι when ι belongs to S(X). When this is not the case and (1.10) is not valid,
there is no guarantee that R2

c will be positive. After all, there will be many
cases in which a regressand y is better explained by a constant term than
by some set of regressors that does not include a constant term. Clearly, if
(1.10) is valid, R2

c must lie between 0 and 1, since (1.10) is then simply the
uncentered R2 for a regression of Mιy on X.

The use of the centered R2 when X does not include a constant term or
the equivalent is thus fraught with difficulties. Some programs for statistics
and econometrics refuse to print an R2 at all in this circumstance; others print
R2

u (without always warning the user that they are doing so); some print R2
c ,

defined as (1.09), which may be either positive or negative; and some print
still other quantities, which would be equal to R2

c if X included a constant
term but are not when it does not. Users of statistical software, be warned!

Notice that R2 is an interesting number only because we used the least
squares estimator β̂ to estimate β. If we chose an estimate of β, say β̃, in
any other way, so that the triangle in Figure 1.3 were no longer a right-angled
triangle, we would find that the equivalents of the two definitions of R2, (1.09)
and (1.10), were not the same:

1− ‖y −Xβ̃‖2

‖y‖2
6= ‖Xβ̃‖2

‖y‖2
.
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seem to have introduced, and then reintroduced, it to econometricians. The
theorem is much more general, and much more generally useful, than a casual
reading of those papers might suggest, however. Among other things, it almost
totally eliminates the need to invert partitioned matrices when one is deriving
many standard results about ordinary (and nonlinear) least squares.

The FWL Theorem applies to any regression where there are two or
more regressors, and these can logically be broken up into two groups. The
regression can thus be written as

y =X1β1 +X2β2 + residuals, (1.18)

whereX1 is n×k1 andX2 is n×k2, withX ≡ [X1 X2] and k = k1+k2. For
example, X1 might be seasonal dummy variables or trend variables and X2

genuine economic variables. This was in fact the type of situation dealt with
by Frisch and Waugh (1933) and Lovell (1963). Another possibility is thatX1

might be regressors, the joint significance of which we desire to test, and X2

might be other regressors that are not being tested. OrX1 might be regressors
that are known to be orthogonal to the regressand, andX2 might be regressors
that are not orthogonal to it, a situation which arises very frequently when
we wish to test nonlinear regression models; see Chapter 6.

Now consider another regression,

M1y =M1X2β2 + residuals, (1.19)

where M1 is the matrix that projects off S(X1). In (1.19) we have first
regressed y and each of the k2 columns of X2 on X1 and then regressed
the vector of residuals M1y on the n × k2 matrix of residuals M1X2. The
FWL Theorem tells us that the residuals from regressions (1.18) and (1.19),
and the OLS estimates of β2 from those two regressions, will be numeric-
ally identical. Geometrically, in regression (1.18) we project y directly onto
S(X) ≡ S(X1,X2), while in regression (1.19) we first project y and all of the
columns of X2 off S(X1) and then project the residualsM1y onto the span of
the matrix of residuals, S(M1X2). The FWL Theorem tells us that these two
apparently rather different procedures actually amount to the same thing.

The FWL Theorem can be proved in several different ways. One standard
proof is based on the algebra of partitioned matrices. First, observe that the
estimate of β2 from (1.19) is(

X2
>M1X2

)−1
X2

>M1y. (1.20)

This simple expression, which we will make use of many times, follows imme-
diately from substituting M1X2 for X and M1y for y in expression (1.04)
for the vector of OLS estimates. The algebraic proof would now use results
on the inverse of a partitioned matrix (see Appendix A) to demonstrate that
the OLS estimate from (1.18), β̂2, is identical to (1.20) and would then go
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OLS estimate of γ is

γ̂ =
(
Q>Q

)−1
Q>y = Q>y,

which is trivial to compute. It is equally easy to compute the fitted values
Qγ̂ and the residuals

û = y −Qγ̂ = y −QQ>y. (1.36)

Thus, if we are simply interested in residuals and/or fitted values, we do not
need to compute β̂ at all.

Notice from (1.36) that the projection matrices PX andMX are equal to
QQ> and I −QQ>, respectively. The simplicity of these expressions follows
from the fact that Q forms an orthonormal basis for S(X). Geometrically,
nothing would change in any of the figures we have drawn if we used Q
instead of X as the matrix of regressors, since S(Q) = S(X). If we were to
show the columns of Q in the figures, each column would be a point in S(X)
located on the unit sphere (i.e., the sphere with radius one centered at the
origin) and at right angles to the points representing the other columns of Q.

In order to calculate β̂ and (X>X)−1, which, along with the residuals
and the fitted values, allow us to calculate all the main quantities of interest,
we make use of the facts that β̂ = R−1γ̂ and(

X>X
)−1

=
(
R>Q>QR

)−1
=
(
R>R

)−1
= R−1(R−1)>.

Thus, once we have computed R−1, we can very easily calculate the least
squares estimates β̂ and their estimated covariance matrix (see Chapter 2).
SinceR is a triangular matrix, its inverse is very easily and cheaply computed;
we do not even have to check for possible singularity, since R will fail to have
full rank only if X does not have full rank, and that will already have shown
up and been dealt with when we formed Q and R.

The most costly part of these procedures is forming the matrices Q and
R from X. This requires a number of arithmetic operations that is roughly
proportional to nk2. Forming the matrix of sums and cross-products, which
is the first step for methods based on solving the normal equations, also
requires a number of operations proportional to nk2, although the factor of
proportionality is smaller. Thus linear regression by any method can become
expensive when the number of regressors is large and/or the sample size is
very large. If one is going to calculate many regressions using the same large
data set, it makes sense to economize by doing the expensive calculations only
once. Many regression packages allow users first to form the matrix of sums
of squares and cross-products for all the variables in a data set and then to
calculate estimates for a variety of regressions by retrieving the relevant rows
and columns and using normal equation methods. If this approach is used, it
is particularly important that the data be scaled so that the various regressors
are not too dissimilar in mean and variance.
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if X simply consisted of a constant vector, et
>PXet would equal 1/n. Even

when there is no constant term, ht can never be 0 unless every element of
Xt is 0. However, it is evidently quite possible for ht to equal 1. Suppose,
for example, that one column of X is the dummy variable et. In that case,
ht = et

>PXet = et
>et = 1.

It is interesting to see what happens when we add a dummy variable et to
a regression. It turns out that ût will equal zero and that the tth observation
will have no effect at all on any coefficient except the one corresponding to
the dummy variable. The latter simply takes on whatever value is needed to
make ût = 0, and the remaining coefficients are those that minimize the SSR
for the remaining n − 1 observations. These results are easily established by
using the FWL Theorem.

Consider the following two regressions, where for ease of notation the
data have been ordered so that observation t is the last observation, and y(t)
and X(t) denote the first n− 1 rows of y and X, respectively:[

y(t)
yt

]
=

[
X(t)

Xt

]
β + residuals, (1.43)

and [
y(t)
yt

]
=

[
X(t) 0

Xt 1

] [
β
α

]
+ residuals. (1.44)

Regression (1.43) is simply the regression of y on X, which yields parameter
estimates β̂ and least squares residuals û. Regression (1.44) is regression
(1.43) with et as an additional regressor. By the FWL Theorem, the estimate
of β from (1.44) must be identical to the estimate of β from the regression

Mt

[
y(t)
yt

]
=Mt

[
X(t)

Xt

]
β + residuals, (1.45)

where Mt is the matrix that projects orthogonally onto S⊥(et). Multiplying
any vector by Mt merely annihilates the last element of that vector. Thus
regression (1.45) is simply[

y(t)
0

]
=

[
X(t)

0

]
β + residuals. (1.46)

The last observation, in which the regressand and all regressors are zero,
obviously has no effect at all on parameter estimates. Regression (1.46) is
therefore equivalent to regressing y(t) onX(t) and so must yield OLS estimates
β̂(t). For regression (1.46), the residual for observation t is clearly zero; the
FWL Theorem then implies that the residual for observation t from regression
(1.44) must likewise be zero, which implies that α̂ must equal yt −Xtβ̂

(t).

These results make it easy to derive the results (1.40) and (1.41), which
were earlier stated without proof. Readers who are not interested in the
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with the values of certain variables. They may be the only variables about
which we have information or the only ones that we are interested in for a
particular purpose. If we had more information about potential explanatory
variables, we might very well specify xt(β) differently so as to make use of
that additional information.

It is sometimes desirable to make explicit the fact that xt(β) represents
the conditional mean of yt, that is, the mean of yt conditional on the values
of a number of other variables. The set of variables on which yt is conditioned
is often referred to as an information set. If Ωt denotes the information set
on which the expectation of yt is to be conditioned, one could define xt(β)
formally as E(yt |Ωt). There may be more than one such information set.
Thus we might well have both

x1t(β1) ≡ E(yt |Ω1t) and x2t(β2) ≡ E(yt |Ω2t),

where Ω1t and Ω2t denote two different information sets. The functions
x1t(β1) and x2t(β2) might well be quite different, and we might want to
estimate both of them for different purposes. There are many circumstances
in which we might not want to condition on all available information. For
example, if the ultimate purpose of specifying a regression function is to use
it for forecasting, there may be no point in conditioning on information that
will not be available at the time the forecast is to be made. Even when we do
want to take account of all available information, the fact that a certain vari-
able belongs to Ωt does not imply that it will appear in xt(β), since its value
may tell us nothing useful about the conditional mean of yt, and including it
may impair our ability to estimate how other variables affect that conditional
mean.

For any given dependent variable yt and information set Ωt, one is always
at liberty to consider the difference yt−E(yt |Ωt) as the error term associated
with the tth observation. But for a regression model to be applicable, these
differences must generally have the i.i.d. property. Actually, it is possible,
when the sample size is large, to deal with cases in which the error terms are
independent, but identically distributed only as regards their means, and not
necessarily as regards their variances. We will discuss techniques for dealing
with such cases in Chapters 16 and 17, in the latter of which we will also relax
the independence assumption. As we will see in Chapter 3, however, conven-
tional techniques for making inferences from regression models are unreliable
when models lack the i.i.d. property, even when the regression function xt(β)
is “correctly” specified. Thus we are in general not at liberty to choose an
arbitrary information set and estimate a properly specified regression function
based on it if we want to make inferences using conventional procedures.

There are, however, exceptional cases in which we can choose any infor-
mation set we like, because models based on different information sets will
always be mutually consistent. For example, suppose that the vector con-
sisting of yt and each of x1t through xmt is independently and identically



Chapter 3

Inference in

Nonlinear Regression Models

3.1 Introduction

Suppose that one is given a vector y of observations on some dependent vari-
able, a vector x(β) of, in general nonlinear, regression functions, which may
and normally will depend on independent variables, and the data needed
to evaluate x(β). Then, assuming that these data allow one to identify all
elements of the parameter vector β and that one has access to a suitable com-
puter program for nonlinear least squares and enough computer time, one
can always obtain NLS estimates β̂. In order to interpret these estimates,
one generally makes the heroic assumption that the model is “correct,” which
means that y is in fact generated by a DGP from the family

y = x(β) + u, u ∼ IID(0, σ2I). (3.01)

Without this assumption, or some less restrictive variant, it would be very
difficult to say anything about the properties of β̂, although in certain special
cases one can do so.

It is clear that β̂ must be a vector of random variables, since it will
depend on y and hence on the vector of error terms u. Thus, if we are to
make inferences about β, we must recognize that β̂ is random and quan-
tify its randomness. In Chapter 5, we will demonstrate that it is reasonable,
when the sample size is large enough, to treat β̂ as being normally distributed
around the true value of β, which we may call β0. Thus the only thing we
need to know if we are to make asymptotically valid inferences about β is
the covariance matrix of β̂, say V (β̂). In the next section, we discuss how
this covariance matrix may be estimated for linear and nonlinear regression
models. In Section 3.3, we show how the resulting estimates may be used
to make inferences about β. In Section 3.4, we discuss the basic ideas that
underlie all types of hypothesis testing. In Section 3.5, we then discuss pro-
cedures for testing hypotheses in linear regression models. In Section 3.6,
we discuss similar procedures for testing hypotheses in nonlinear regression
models. The latter section provides an opportunity to introduce the three

66
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fundamental principles on which most hypothesis tests are based: the Wald,
Lagrange multiplier, and likelihood ratio principles. Finally, in Section 3.7, we
discuss the effects of imposing incorrect restrictions and introduce the notion
of preliminary test estimators.

3.2 Covariance Matrix Estimation

In the case of the linear regression model

y =Xβ + u, u ∼ IID(0, σ2I), (3.02)

it is well known that when the DGP satisfies (3.02) for specific parameter
values β0 and σ0, the covariance matrix of the vector of OLS estimates β̂ is

V (β̂) = σ2
0

(
X>X

)−1
. (3.03)

The proof of this familiar result is quite straightforward. The covariance
matrix V (β̂) is defined as the expectation of the outer product of β̂ − E(β̂)
with itself, conditional on the independent variables X. Starting with this
definition and using the fact that E(β̂) = β0, we first replace β̂ by what it is
equal to under the DGP, then take expectations conditional onX, and finally
simplify the algebra to obtain (3.03):

V (β̂) ≡ E(β̂ − β0)(β̂ − β0)
>

= E
(
(X>X)−1X>y − β0

)(
(X>X)−1X>y − β0

)>
= E

(
(X>X)−1X>(Xβ0 + u)− β0

)(
(X>X)−1X>(Xβ0 + u)− β0

)>
= E

(
β0 + (X>X)−1X>u− β0

)(
β0 + (X>X)−1X>u− β0

)>
= E

(
X>X

)−1
X>uu>X

(
X>X

)−1

=
(
X>X

)−1
X>(σ2

0I
)
X
(
X>X

)−1

= σ2
0

(
X>X

)−1
X>X

(
X>X

)−1

= σ2
0

(
X>X

)−1
.

Deriving an analogous result for the nonlinear regression model (3.01) requires
a few concepts of asymptotic analysis that we have not yet developed, plus
a certain amount of mathematical manipulation. We will therefore postpone
this derivation until Chapter 5 and merely state an approximate result here.

For a nonlinear model, we cannot in general obtain an exact expression
for V (β̂) in the finite-sample case. In Chapter 5, on the assumption that
the data are generated by a DGP which is a special case of (3.01), we will,
however, obtain an asymptotic result which allows us to state that

V (β̂) ∼= σ2
0

(
X>(β0)X(β0)

)−1
, (3.04)
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region for the entire parameter vector β, implying that l = k. For concrete-
ness, we will also assume that the estimated covariance matrix of β̂ is V̂ (β̂),
although it could just as well be Vs(β̂).

Let us denote the true (but unknown) value of β by β0. Consider the
quadratic form

(β̂ − β0)
>V̂ −1(β̂)(β̂ − β0). (3.13)

This is just a random scalar that depends on the random vector β̂. For neither
a linear nor a nonlinear regression will it actually have the χ2 distribution with
l degrees of freedom in finite samples. But it is reasonable to hope that it will
be approximately distributed as χ2(l), and in fact such an approximation is
valid when the sample is large enough; see Section 5.7. Consequently, with
just as much justification (or lack of it) as for the case of a single parameter,
the confidence region for β is constructed as if (3.13) did indeed have the χ2(l)
distribution.4

For a given set of estimates β̂, the (approximate) confidence region at
level α can be defined as the set of vectors β for which the value of (3.13)
with β0 replaced by β is less than some critical value, say cα(l). This critical
value will be such that, if z is a random variable with the χ2(l) distribution,

Pr
(
z > cα(l)

)
= α.

The confidence region is therefore the set of all β for which

(β̂ − β)>V̂ −1(β̂)(β̂ − β) ≤ cα(l). (3.14)

Since the left-hand side of this inequality is quadratic in β, the region is, for
l = 2, the interior of an ellipse and, for l > 2, the interior of an l--dimensional
ellipsoid.

Figure 3.2 illustrates what a confidence ellipse can look like in the two-
parameter case. In this case, the two parameter estimates are negatively
correlated, and the ellipse is centered at the parameter estimates (β̂1, β̂2).
Confidence intervals for β1 and β2 are also shown, and it should now be clear
why it can be misleading to consider only these rather than the confidence
ellipse. On the one hand, there are clearly many points, such as (β∗

1 , β
∗
2), that

lie outside the confidence ellipse but inside the two confidence intervals, and
on the other hand there are points, like (β′

1, β
′
2), that are contained in the

ellipse but lie outside one or both of the confidence intervals.

4 It is also possible, of course, to construct an approximate confidence region by
using the F distribution with l and n − k degrees of freedom, and this might
well provide a better approximation in finite samples. Our discussion utilizes
the χ2 distribution primarily because it simplifies the exposition.
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obtained by differentiating (3.42) with respect to β and λ and setting the
derivatives to zero are

−X>(β̃)
(
y − x(β̃)

)
+R>λ̃ = 0 (3.43)

Rβ̃ − r = 0, (3.44)

where β̃ denotes the restricted estimates and λ̃ denotes the estimated La-
grange multipliers. From (3.43), we see that

R>λ̃ = X̃>(y − x̃
)
, (3.45)

where, as usual, x̃ and X̃ denote x(β̃) and X(β̃). The expression on the
right-hand side of (3.45) is minus the k--vector of the derivatives of 1

2SSR(β)
with respect to all the elements of β, evaluated at β̃. This vector is often
called the score vector. Since y − x̃ is simply a vector of residuals, which
should converge asymptotically under H0 to the vector of error terms u, it
seems plausible that the asymptotic covariance matrix of the vector of scores is

σ2
0X

>(β0)X(β0). (3.46)

Subject to certain asymptotic niceties, that is indeed the case, and a more
rigorous version of this result will be proved in Chapter 5.

The obvious way to estimate (3.46) is to use s̃2X̃>X̃, where s̃2 is
SSR(β̃)/(n − k + r). Putting this estimate together with the expressions on
each side of (3.45), we can construct two apparently different, but numerically
identical, test statistics. The first of these is

λ̃>R
(
s̃2X̃>X̃

)−1
R>λ̃ =

1

s̃2
λ̃>R

(
X̃>X̃

)−1
R>λ̃. (3.47)

In this form, the test statistic is clearly a Lagrange multiplier statistic. Since λ̃
is an r--vector, it should not be surprising that this statistic would be asymp-
totically distributed as χ2(r). A proof that this is the case follows from
essentially the same arguments used in the case of the Wald test, since (3.47)
is a quadratic form similar to (3.37). Of course, the result depends critically
on the vector λ̃ being asymptotically normally distributed, something that
we will prove in Chapter 5.

The second test statistic, which we stress is numerically identical to the
first, is obtained by substituting X̃>(y − x̃) for R>λ̃ in (3.47). The result,
which is the score form of the LM statistic, is

1

s̃2
(y − x̃)>X̃

(
X̃>X̃

)−1
X̃>(y − x̃) = 1

s̃2
(y − x̃)>P̃X(y − x̃), (3.48)

where P̃X ≡ X̃(X̃>X̃)−1X̃>. It is evident that this expression is simply the
explained sum of squares from the artificial linear regression

1

s̃
(y − x̃) = X̃b + residuals, (3.49)
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with β20 6= 0. Then it is easy to see that the restricted estimator β̃1 will, in
general, be biased. Under this DGP,

E(β̃1) = E
((
X1

>X1

)−1
X1

>y
)

= E
((
X1

>X1

)−1
X1

>(X1β10 +X2β20 + u
))

= β10 +
(
X1

>X1

)−1
X1

>X2β20.

(3.57)

Unless X1
>X2 is a zero matrix or β20 is a zero vector, β̃1 will be a biased

estimator. The magnitude of the bias will depend on the matrices X1
>X1 and

X1
>X2 and the vector β20.

Results very similar to (3.57) are available for all types of restrictions,
not just for linear restrictions, and for all sorts of models in addition to linear
regression models. We will not attempt to deal with nonlinear models here
because that requires a good deal of technical apparatus, which will be de-
veloped in Chapter 12. Results analogous to (3.57) for nonlinear regression
models and other types of nonlinear models may be found in Kiefer and Skoog
(1984). The important point is that imposition of false restrictions on some
of the parameters of a model generally causes all of the parameter estimates
to be biased. This bias does not go away as the sample size gets larger.

Even though β̃1 is biased when the DGP is (3.56), it is still of interest
to ask how well it performs. The analog of the covariance matrix for a biased
estimator is the mean squared error matrix, which in this case is

E
(
β̃1 − β10

)(
β̃1 − β10

)>
= E

(
(X1

>X1)
−1X1

>(X2β20 + u)
)(
(X1

>X1)
−1X1

>(X2β20 + u)
)>

= σ2
0

(
X1

>X1

)−1
+
(
X1

>X1

)−1
X1

>X2β20β
>
20X2

>X1

(
X1

>X1

)−1
. (3.58)

The third line here is the sum of two matrices: the covariance matrix of β̃1

when the DGP satisfies the restrictions, and the outer product of the second
term in the last line of (3.57) with itself. It is possible to compare (3.58) with
V (β̂1), the covariance matrix of the unrestricted estimator β̂1, only if σ0 and
β20 are known. Since the first term of (3.58) is smaller in the matrix sense
than V (β̂1), it is clear that if β20 is small enough (3.58) will be smaller than
V (β̂1). Thus it may be desirable to use the restricted estimator β̃1 when the
restrictions are false, provided they are not too false.

Applied workers frequently find themselves in a situation like the one we
have been discussing. They want to estimate β1 and do not know whether or
not β2 = 0. It then seems natural to define a new estimator,

β̌1 =

{
β̃1 if Fβ2=0 < cα;

β̂1 if Fβ2=0 ≥ cα.
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Here Fβ2=0 is the usual F test statistic for the null hypothesis that β2 = 0, and
cα is the critical value for a test of size α given by the F (r, n−k) distribution.
Thus β̌1 will be the restricted estimator β̃1 when the F test does not reject
the hypothesis that the restrictions are satisfied and will be the unrestricted
estimator β̂1 when the F test does reject that hypothesis. It is an example of
what is called a preliminary test estimator or pretest estimator.

Pretest estimators are used all the time. Whenever we test some aspect
of a model’s specification and then decide, on the basis of the test results,
what version of the model to estimate or what estimation method to use, we
are employing a pretest estimator. Unfortunately, the properties of pretest
estimators are, in practice, very difficult to know. The problems can be seen
from the example we have been studying. Suppose the restrictions hold. Then
the estimator we would like to use is the restricted estimator, β̃1. But, α%
of the time, the F test will incorrectly reject the null hypothesis and β̌1 will
be equal to the unrestricted estimator β̂1 instead. Thus β̌1 must be less
efficient than β̃1 when the restrictions do in fact hold. Moreover, since the
estimated covariance matrix reported by the regression package will not take
the pretesting into account, inferences about β̌1 may be misleading.

On the other hand, when the restrictions do not hold, we may or may not
want to use the unrestricted estimator β̂1. Depending on how much power
the F test has, β̌1 will sometimes be equal to β̃1 and sometimes be equal
to β̂1. It will certainly not be unbiased, because β̃1 is not unbiased, and it
may be more or less efficient (in the sense of mean squared error) than the
unrestricted estimator. Inferences about β̌1 based on the usual estimated
OLS covariance matrix for whichever of β̃1 and β̂1 it turns out to be equal to
may be misleading, because they fail to take into account the pretesting that
occurred previously.

In practice, there is often not very much that we can do about the
problems caused by pretesting, except to recognize that pretesting adds an
additional element of uncertainty to most problems of statistical inference.
Since α, the level of the preliminary test, will affect the properties of β̌1, it
may be worthwhile to try using different values of α. Conventional signifi-
cance levels such as .05 are certainly not optimal in general, and there is a
literature on how to choose better ones in specific cases; see, for example, Toy-
oda and Wallace (1976). However, real pretesting problems are much more
complicated than the one we have discussed as an example or the ones that
have been studied in the literature. Every time one subjects a model to any
sort of test, the result of that test may affect the form of the final model, and
the implied pretest estimator therefore becomes even more complicated. It is
hard to see how this can be analyzed formally.

Our discussion of pretesting has been very brief. More detailed treat-
ments may be found in Fomby, Hill, and Johnson (1984, Chapter 7), Judge,
Hill, Griffiths, Lütkepohl, and Lee (1985, Chapter 21), and Judge and Bock
(1978). In the remainder of this book, we entirely ignore the problems caused



4.3 Rates of Convergence 111

condition. Unlike asymptotic equality, the big-O relation does not require
that the ratio f(n)/g(n) should have any limit. It may have, but it may also
oscillate boundedly for ever.

The relations we have defined so far are for nonstochastic real-valued
sequences. Of greater interest to econometricians are the so-called stochastic
order relations. These are perfectly analogous to the relations we have defined
but instead use one or other of the forms of stochastic convergence. Formally:

Definition 4.8.

If {an} is a sequence of random variables, and g(n) is a real-valued
function of the positive integer argument n, then the notation an =
op
(
g(n)

)
means that

plim
n→∞

(
an
g(n)

)
= 0.

Similarly, the notation an = Op

(
g(n)

)
means that, for all ε > 0, there

exist a constant K and a positive integer N such that

Pr

(∣∣∣∣ ang(n)

∣∣∣∣ > K

)
< ε for all n > N.

If {bn} is another sequence of random variables, the notation an
a
= bn

means that

plim
n→∞

(
an
bn

)
= 1.

Comparable definitions may be written down for almost sure convergence
and convergence in distribution, but we will not use these. In fact, after
this section we will not bother to use the subscript p in the stochastic order
symbols, because it will always be plain when random variables are involved.
When they are, O(·) and o(·) should be read as Op(·) and op(·).

The order symbols are very easy to manipulate, and we now present a
few useful rules for doing so. For simplicity, we restrict ourselves to functions
g(n) that are just powers of n, for that is all we use in this book. The rules
for addition and subtraction are

O(np)±O(nq) = O
(
nmax(p,q)

)
;

o(np)± o(nq) = o
(
nmax(p,q)

)
;

O(np)± o(nq) = O(np) if p ≥ q;

O(np)± o(nq) = o(nq) if p < q.

The rules for multiplication, and by implication for division, are

O(np)O(nq) = O(np+q);

o(np)o(nq) = o(np+q);

O(np)o(nq) = o(np+q).
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A comparison of (4.17) and (4.18) reveals that the behavior of the estimator
α̂ is quite different under the two different rules for sample-size extension.

There is not always a simple resolution to the sort of problem posed in
the above example. It is usually unrealistic to assume that linear time trends
of the form of τ will continue to increase forever, but it suffices to look at price
series in the twentieth century (and many other centuries) to realize that some
economic variables do not seem to have natural upper bounds. Even quan-
tity series such as real GNP or personal consumption are sometimes fruitfully
considered as being unbounded. Nevertheless, although the asymptotic theo-
ries resulting from different kinds of rules for extending DGPs to arbitrarily
large samples can be very different, it is important to be clear that deciding
among competing asymptotic theories of this sort is not an empirical issue.
For any given empirical investigation, the sample size is what it is, even if
the possibility of collecting further relevant data exists. The issue is always
one of selecting a suitable model, not only for the data that exist, but for a
set of economic phenomena, of which the data are supposed to be a mani-
festation. There is always an infinity of models (not all plausible of course)
that are compatible with any finite data set. As a consequence, the issue of
model selection among a set of such models can be decided only on the basis
of such criteria as the explanatory power of the concepts used in the model,
simplicity of expression, or ease of interpretation, but not on the basis of the
information contained in the data themselves.

Although, in the model (4.14), the assumption that the time trend vari-
able goes to infinity with the sample size may seem more plausible than the
fixed-in-repeated-samples assumption, we will throughout most of this book
assume that the DGP is of the latter rather than the former type. The problem
with allowing τt to go to infinity with the sample size is that each additional
observation gives us more information about the value of α than any of the
preceding observations. That is why Var(α̂) turned out to be O(n−3) when we
made that assumption about the DGP. It seems much more plausible in most
cases that each additional observation should, on average, give us the same
amount of information as the preceding observations. This implies that the
variance of parameter estimates will be O(n−1), as was Var(α̂) when we as-
sumed that the DGP was of the fixed-in-repeated-samples type. Our general
assumptions about DGPs will likewise lead to the conclusion that the variance
of parameter estimates is O(n−1), although we will consider DGPs that do
not lead to this conclusion in Chapter 20, which deals with dynamic models.

4.5 Consistency and Laws of Large Numbers

We begin this section by introducing the notion of consistency, one of the
most basic ideas of asymptotic theory. When one is interested in estimating
parameters from data, it is desirable that the parameter estimates should have
certain properties. In Chapters 2 and 3, we saw that, under certain regularity
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interested in the nondegenerate asymptotic distribution of the sample mean
as an estimator. We saw in Section 4.3 that for this purpose we should look at
the distribution of n1/2(m1 − µ), where m1 is the sample mean. Specifically,
we wish to study

n1/2(m1 − µ) = n−1/2
n∑

t=1

(
yt − µ

)
,

where yt − µ has variance σ2
t .

We begin by stating the following simple central limit theorem.

Theorem 4.2. Simple Central Limit Theorem. (Lyapunov)

Let {yt} be a sequence of independent, centered random variables with
variances σ2

t such that σ2 ≤ σ2
t ≤ σ2 for two finite positive constants,

σ2 and σ2, and absolute third moments µ3 such that µ3 ≤ µ̄3 for a
finite constant µ̄3. Further, let

σ2
0 ≡ lim

n→∞

(
1−
n

n∑
t=1

σ2
t

)
exist. Then the sequence {

n−1/2
n∑

t=1

yt

}
tends in distribution to a limit characterized by the normal distribu-
tion with mean zero and variance σ2

0 .

Theorem 4.2 applies directly to the example (4.26). Thus our hypotheti-
cal investigator may, within the limits of asymptotic theory, use the N(0, σ2

0)
distribution for statistical inference on the estimate m1 via the random vari-
able n1/2(m1 − µ). Knowledge of σ2

0 is not necessary, provided that it can be
estimated consistently.

Although we do not intend to offer a formal proof of even this simple
central limit theorem, in view of the technicalities that such a proof would
entail, it is not difficult to give a general idea of why the result is true. For
simplicity, let us consider the case in which all the variables yt of the sequence
{yt} have the same distribution with variance σ2. Then clearly the variable

Sn ≡ n−1/2
n∑

t=1

yt

has mean zero and variance σ2 for each n. But what of the higher moments
of Sn? By way of an example, consider the fourth moment. It is

E
(
S4
n

)
=

1

n2

n∑
r=1

n∑
s=1

n∑
t=1

n∑
u=1

E(yrysytyu). (4.27)
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Another important consequence of the definition of a conditional expec-
tation is the so-called law of iterated expectations, which can be stated as
follows:

E
(
E(y | z)

)
= E(y).

The proof of this is an immediate consequence of using the whole of Rk as the
set G in (4.29).

The definitions which follow are rather technical, as are the statements of
the laws of large numbers that make use of them. Some readers may therefore
wish to skip over them and the discussion of central limit theorems to the
definitions of the two sets of regularity conditions, which we call WULLN and
CLT, presented at the end of this section. Such readers may return to this
point when some reference to it is made later in the book.

Definition 4.10.

The sequence {yt} is said to be stationary if for all finite k the joint
distribution of the linked set {yt, yt+1, . . . , yt+k} is independent of the
index t.

Definition 4.11.

The stationary sequence {yt} is said to be ergodic if, for any two
bounded mappings Y : Rk+1 → R and Z : Rl+1 → R,

lim
n→∞

∣∣E(Y (yi, . . . , yi+k)Z(yi+n, . . . , yi+n+l)
)∣∣

=
∣∣E(Y (yi, . . . , yi+k)

)∣∣ ∣∣E(Z(yi, . . . , yi+l)
)∣∣.

Definition 4.12.

The sequence {yt} is said to be uniformly mixing, or φ--mixing, if
there is a sequence of positive numbers {φn}, convergent to zero, such
that, for any two bounded mappings Y : Rk+1 → R and Z : Rl+1 → R,∣∣E(Y (yt, . . . , yt+k) |Z(yt+n, . . . , yt+n+l)

)
−E

(
Y (yt, . . . , yt+k)

)∣∣ < φn.

The symbol E(· | ·) denotes a conditional expectation, as defined
above.

Definition 4.13.

The sequence {yt} is said to be α--mixing if there is a sequence of
positive numbers {αn}, convergent to zero, such that, if Y and Z are
as in the preceding definition, then∣∣E(Y (yt, . . . , yt+k)Z(yt+n, . . . , yt+n+l)

)
− E

(
Y (·)

)
E
(
Z(·)

)∣∣ < αn.

The last three definitions can be thought of as defining various forms of
asymptotic independence. According to them, random variables yt and ys are
more nearly independent (in some sense) the farther apart are the indices t
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Theorem 4.7. (Lindeberg-Lévy)

If the variables of the random sequence {yt} are independent and have
the same distribution with mean µ and variance v, then Sn converges
in distribution to the standard normal distribution N(0, 1).

This theorem has minimal requirements for the moments of the variables but
maximal requirements for their homogeneity. Note that, in this case,

Sn = (nv)−1/2
n∑

t=1

(yt − µ).

The next theorem allows for much heterogeneity but still requires inde-
pendence.

Theorem 4.8. (Lyapunov)

For each positive integer n let the finite sequence {ynt }nt=1 consist of
independent centered random variables possessing variances vnt . Let
s2n ≡

∑n
t=1 v

n
t and let the Lindeberg condition be satisfied, namely,

that for all ε > 0

lim
n→∞

( n∑
t=1

s−2
n E

(
(ynt )

2IG(y
n
t )
))

= 0,

where the set G used in the indicator function is {y : |y| ≥ εsn}. Then
s−1
n

∑n
t=1 y

n
t converges in distribution to N(0, 1).

Our last central limit theorem allows for dependent sequences.

Theorem 4.9. (McLeish)

For each positive integer n let the finite sequences {ynt }nt=1 be martin-
gale difference sequences with vnt ≡ Var(ynt ) <∞, and s2n ≡

∑n
t=1 v

n
t .

If for all ε > 0

lim
n→∞

(
s−2
n

n∑
t=1

E
(
(ynt )

2IG(y
n
t )
))

= 0,

where again the set G ≡ {y : |y| ≥ εsn}, and if the sequence{
n∑

t=1

(ynt )
2

s2n

}

obeys a law of large numbers and thus converges to 1, then s−1
n

∑n
t=1y

n
t

converges in distribution to N(0, 1).

See McLeish (1974). Observe the extra condition needed in this theorem,
which ensures that the variance of the limiting distribution is the same as the
limit of the variances of the variables in s−1

n

∑n
t=1 y

n
t .
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since the distribution of the ut’s has not been specified. Thus, for a sample
of size n, the model M described by (5.08) is the set of all DGPs generating
samples y of size n such that the expectation of yt conditional on some infor-
mation set Ωt that includes Zt is xt(β) for some parameter vector β ∈ Rk,
and such that the differences yt − xt(β) are independently distributed error
terms with common variance σ2, usually unknown.

It will be convenient to generalize this specification of the DGPs in M a
little, in order to be able to treat dynamic models, that is, models in which
there are lagged dependent variables. Therefore, we explicitly recognize the
possibility that the regression function xt(β) may include among its (until
now implicit) dependences an arbitrary but bounded number of lags of the
dependent variable itself. Thus xt may depend on yt−1, yt−2, . . . , yt−l, where l
is a fixed positive integer that does not depend on the sample size. When
the model uses time-series data, we will therefore take xt(β) to mean the
expectation of yt conditional on an information set that includes the entire
past of the dependent variable, which we can denote by {ys}t−1

s=1, and also the
entire history of the exogenous variables up to and including the period t, that
is, {Zs}ts=1. The requirements on the disturbance vector u are unchanged.

For asymptotic theory to be applicable, we must next provide a rule for
extending (5.08) to samples of arbitrarily large size. For models which are
not dynamic (including models estimated with cross-section data, of course),
so that there are no time trends or lagged dependent variables in the regres-
sion functions xt, there is nothing to prevent the simple use of the fixed-in-
repeated-samples notion that we discussed in Section 4.4. Specifically, we con-
sider only sample sizes that are integer multiples of the actual sample size m
and then assume that xNm+t(β) = xt(β) for N > 1. This assumption makes
the asymptotics of nondynamic models very simple compared with those for
dynamic models.3

Some econometricians would argue that the above solution is too simple-
minded when one is working with time-series data and would prefer a rule
like the following. The variables Zt appearing in the regression functions will
usually themselves display regularities as time series and may be susceptible
to modeling as one of the standard stochastic processes used in time-series
analysis; we will discuss these standard processes at somewhat greater length
in Chapter 10. In order to extend the DGP (5.08), the out-of-sample values for
the Zt’s should themselves be regarded as random, being generated by appro-
priate processes. The introduction of this additional randomness complicates
the asymptotic analysis a little, but not really a lot, since one would always
assume that the stochastic processes generating the Zt’s were independent of
the stochastic process generating the disturbance vector u.

3 Indeed, even for linear dynamic models it is by no means trivial to show that
least squares yields consistent, asymptotically normal estimates. The classic
reference on this subject is Mann and Wald (1943).



160 Asymptotic Methods and Nonlinear Least Squares

The result (5.44) essentially proves the Gauss-Markov Theorem, since it
implies that

E(β̌ − β0)(β̌ − β0)
>

= E
((
(X>X)−1X>u+Cu

)(
(X>X)−1X>u+Cu

)>)
= σ2

0

(
X>X

)−1
+ σ2

0CC
>.

(5.45)

Thus the difference between the covariance matrices of β̌ and β̂ is σ2
0CC

>,
which is a positive semidefinite matrix. Notice that the assumption that
E(uu>) = σ2

0 I is crucial here. If instead we had E(uu>) = Ω, with Ω an
arbitrary n× n positive definite matrix, the last line of (5.45) would be(

X>X
)−1
X>ΩX

(
X>X

)−1

+CΩC>+
(
X>X

)−1
X>ΩC>+CΩX

(
X>X

)−1
,

and we could draw no conclusion about the relative efficiency of β̂ and β̌.

As a simple example of the Gauss-Markov Theorem in action, suppose
that β̌ is the OLS estimator obtained by regressing y on X and Z jointly,
where Z is a matrix of regressors such that E(y |X,Z) = E(y |X) = Xβ.
Since the information that Z does not belong in the regression is being ignored
when we construct β̌, the latter must in general be inefficient. Using the FWL
Theorem, we find that

β̌ =
(
X>MZX

)−1
X>MZy, (5.46)

where, as usual, MZ is the matrix that projects orthogonally onto S⊥(Z). If
we write β̌ as in (5.42), we obtain

β̌ =
(
X>X

)−1
X>y +

(
(X>MZX)−1X>MZ − (X>X)−1X>)y

=
(
X>X

)−1
X>y +

(
X>MZX

)−1(
X>MZ −X>MZX(X>X)−1X>)y

=
(
X>X

)−1
X>y +

(
X>MZX

)−1
(
X>MZ

(
I−X(X>X)−1X>))y

=
(
X>X

)−1
X>y +

(
X>MZX

)−1
X>MZMXy

= β̂ +Cy. (5.47)

Thus, in this case, the matrix C is the matrix (X>MZX)−1X>MZMX . We

see that the inefficient estimator β̌ is equal to the efficient estimator β̂ plus
a random component which is uncorrelated with it. That β̂ and Cy are
uncorrelated follows from the fact (required for Cy to have mean zero) that
CX = 0, which is true because MX annihilates X. Further, we see that

E(β̌ − β0)(β̌ − β0)
>= σ2

0

(
X>X

)−1

+ σ2
0

(
X>MZX

)−1
X>MZMXMZX

(
X>MZX

)−1
.

(5.48)
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the residual ût. But this expansion is still unnecessarily complicated, because
we have

X∗
t =X0t + (β̂ − β0)

>A∗
t =X0t +O(n−1/2)

by Taylor’s Theorem and the fact that β̂ − β0 = O(n−1/2); recall that At is
the Hessian of the regression function xt(β). Thus (5.56) can be written more
simply as

ût = ut − n−1/2X0t

(
n−1X0

>X0

)−1
n−1/2X0

>u+ o(n−1/2).

Since this is true for all t, we have the vector equation

û = u−X0

(
X0

>X0

)−1
X0

>u+ o(n−1/2),

where the small-order symbol is now to be interpreted as an n--vector, each
component of which is o(n−1/2). This equation can be rewritten in terms
of the projection P0 ≡ X0(X0

>X0)
−1X0

> and its complementary projection
M0 ≡ I− P0:

û = u− P0u+ o(n−1/2) =M0u+ o(n−1/2). (5.57)

This is the asymptotic equivalent of the exact result that, for linear models,
the OLS residuals are the orthogonal projection of the disturbances off the
regressors. Recall that if one runs the regression y = Xβ + u, and the DGP
is indeed a special case of this model, then we have exactly that

û =MXu. (5.58)

The result (5.57) reduces to this when the model is linear. The projection
matrix M0 is now equal to MX , and the o(n−1/2) term, which was due only
to the nonlinearity of x(β), no longer appears.

Now let us substitute the right-most expression of (5.57) into (5.53). The
latter becomes

n−1/2a>û = n−1/2a>M0u+ n−1/2
n∑

t=1

o(n−1/2). (5.59)

The first term on the right-hand side here is clearly O(1), while the second is
o(1). Thus, in contrast to what happened when we simply replaced ût by ut,
we can ignore the second term on the right-hand side of (5.59). So the result
(5.57) provides what we need if we are to undertake asymptotic analysis of
expressions like (5.53).

We should pause for a moment here in order to make clear the rela-
tion between the asymptotic result (5.57), the exact linear result (5.58), and
two other results. These other results are (1.03), which states that the OLS
residuals are orthogonal to the regressors, and (2.05), which we may express
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term. The sort of result displayed in (5.68) occurs very frequently. The
twice continuous differentiability of r(β) means that Taylor’s Theorem can
be applied to order two, and then it is possible to discover from the last term in
that expansion exactly the order of the error, in this case O(n−1), committed
by neglecting it. In future we will not be explicit about this reasoning and will
simply mention that twice continuous differentiability gives a result similar to
(5.68).

The quantities in (5.66) other than r̂ are asymptotically nonstochastic.
By this we mean that

R̂ = R0 +O(n−1/2) and X̂ =X0 +O(n−1/2). (5.69)

Again, a short Taylor-series argument, this time only to first order, produces
these results. They are to be interpreted component by component for the
matricesR andX. This is not a matter of consequence for the r×k matrixR,
but it is for the n × k matrix X. We have to be careful because in matrix
products like X̂>X̂ we run across sums of n terms, which will of course have
different orders in general from the terms of the sums. However, if we explicitly
use the fact that r̂ = O(n−1/2) to rewrite (5.66) as

(
n1/2r̂

)>(σ̂2R̂(n−1X̂>X̂)−1R̂>)−1(
n1/2r̂

)
, (5.70)

we see that we are concerned, not with X̂>X̂ itself, but rather with n−1X̂>X̂,
and the latter is asymptotically nonstochastic:

n−1(X̂>X̂)ij = n−1
n∑

t=1

X̂tiX̂tj

= n−1
n∑

t=1

(
X0

ti +O(n−1/2)
)(
X0

tj +O(n−1/2)
)

= n−1
n∑

t=1

X0
tiX

0
tj +O(n−1/2)

= n−1(X0
>X0)ij +O(n−1/2),

where X0
ti denotes the ti

th element of X0. The second line uses (5.69). The
third line follows because the sum of n terms of order n−1/2 can be at most of
order n1/2; when divided by n, it becomes of order n−1/2. Note that n−1X0

>X0

itself is O(1).

Next, we use the asymptotic normality result (5.39) to obtain a more
convenient expression for n1/2r̂. We have

n1/2r̂ = R0

(
n−1X0

>X0

)−1
n−1/2X0

>u+ o(1). (5.71)
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since P1 plays the same role for the manifold R as does P0 for X. The LM
statistic (3.48) is

1

σ̃2
(y − x̃)>P̃X(y − x̃). (5.76)

If we express the statistic in terms of quantities that are O(1), we obtain

1

σ̃2
n−1/2(y − x̃)>X̃

(
n−1X̃>X̃

)−1
n−1/2X̃>(y − x̃). (5.77)

Like X̂t, X̃t is asymptotically nonstochastic. Therefore, from (5.75),

n−1/2X̃>(y − x̃) = n−1/2
n∑

t=1

X̃t
>ũt

= n−1/2
n∑

t=1

X>
0t(M1u)t + o(1)

= n−1/2
n∑

t=1

(M1X0)tut + o(1)

= n−1/2X0
>M1u+ o(1).

The matrix n−1X̃>X̃ is asymptotically nonstochastic, just as n−1X̂>X̂
is, and so the LM statistic (5.77) is asymptotically equivalent to

u>M1X0

(
σ2
0X0

>X0

)−1
X0

>M1u = σ−2
0 u>M1P0M1u. (5.78)

Since S(X1) is a subspace of S(X0), we have P1P0 = P0P1 = P1, from which
it follows that M1P0M1 = P0 − P1. Expression (5.78) thus becomes

σ−2
0 u>(P0 − P1)u = σ−2

0 u>P2u. (5.79)

Comparison of (5.79) with (5.72) shows that the LM statistic is asymptotically
equal to the Wald statistic. Thus it too is asymptotically χ2(r) under the null
hypothesis.

The third of the three test statistics discussed in Section 3.6 was the one
based on the likelihood ratio principle, the pseudo-F statistic (3.50). Since
we are interested in asymptotic results only, we rewrite it here in a form in
which it should be asymptotically distributed as χ2(r):

1

s2
(
SSR(β̃)− SSR(β̂)

)
(5.80)

and will (somewhat loosely) refer to it as the LR statistic. We have already
seen that s2 → σ2

0 as n→ ∞. It remains to show that SSR(β̃)−SSR(β̂), when
divided by σ2

0 , is asymptotically χ2(r). From (5.64), we have

σ̂2 = 1−
n
u>M0u+ o(n−1),
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difference is that the regressand has not been divided by an estimate of σ. As
we will see below, the test statistic is no more difficult to calculate by running
(6.17) than by running (3.49).

Limiting our attention to zero restrictions makes it possible for us to gain
a little more insight into the connection between the GNR and LM tests. Using
the FWL Theorem, we see that regression (6.17) will yield exactly the same
estimates of b2, namely b̃2, and exactly the same sum of squared residuals as
the regression

y − x̃ = M̃1X̃2b2 + residuals, (6.18)

where M̃1 is the matrix that projects onto S⊥(X̃1). The regressand here is
not multiplied by M̃1 because the first-order conditions imply that y − x̃
already lies in S⊥(X̃1), which in turn implies that M̃1(y − x̃) = y − x̃. The
sum of squared residuals from regression (6.18) is

(y − x̃)>(y − x̃)− (y − x̃)>X̃2

(
X̃2

>M̃1X̃2

)−1
X̃2

>(y − x̃).

Since y − x̃ lies in S⊥(X̃1), it is orthogonal to X̃1. Thus, if we had not
included X̃2 in the regression, the SSR would have been (y − x̃)>(y − x̃).
Hence the reduction in the SSR of regression (6.17) brought about by the
inclusion of X̃2 is

(y − x̃)>X̃2

(
X̃2

>M̃1X̃2

)−1
X̃2

>(y − x̃). (6.19)

This quantity is also the explained sum of squares (around zero) from regres-
sion (6.17), again because X̃1 has no explanatory power. We can now show
directly that this quantity, divided by any consistent estimate of σ2, is asymp-
totically distributed as χ2(r) under the null hypothesis. We already showed
this in Section 5.7, but the argument that the number of degrees of freedom
is r was an indirect one.

First, observe that

n−1/2(y − x̃)>X̃2
a
= n−1/2u>M1X2 ≡ ν>,

whereM1 ≡M1(β0) andX2 ≡X2(β0). The asymptotic equality here follows
from the fact that ũ

a
=M1u, which is the result (6.09) for the case in which

the model is estimated subject to the restrictions that β2 = 0. The covariance
matrix of the r × 1 random vector ν is

E(νν>) = E
(
n−1X2

>M1uu
>M1X2

)
= n−1X2

>M1(σ
2
0 I)M1X2

= n−1σ2
0(X2

>M1X2) ≡ σ2
0V .

The consistency of β̃ and the regularity conditions for Theorem 5.1 imply that

n−1X̃2
>M̃1X̃2

a
= n−1X2

>M1X2 = V .
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Thus, when b2 is a scalar, the t statistic on b̃2 from the GNR (6.17) is just as
valid as any of the test statistics we have been discussing.

Why does regressing residuals from the restricted model on the deriva-
tives of x(β) allow us to compute valid test statistics? Why do we need
to include all the derivatives and not merely those that correspond to the
parameters which were restricted? The above discussion has provided formal
answers to these questions, but perhaps not ones that are intuitively appeal-
ing. Let us therefore consider the matter from a slightly different point of
view. In Section 5.7, we showed that Wald, LR, and LM statistics for testing
the same set of restrictions are all asymptotically equal to the same random
variable under the null hypothesis and that this random variable is asymp-
totically distributed as χ2(r). For the nonlinear regression models we have
been discussing, the LR statistic is simply the difference between SSR(β̂) and
SSR(β̃), divided by any consistent estimate of σ2. To see why the LM statis-
tic is valid and why the GNR must include the derivatives with respect to all
parameters, we will view the LM statistic based on the GNR as a quadratic
approximation to this LR statistic. That this should be the case makes sense,
since the GNR itself is a linear approximation to the nonlinear regression
model.

One way to view the Gauss-Newton regression is to think of it as a way
of approximating the function SSR(β) by a quadratic function that has the
same first derivatives and, asymptotically, the same second derivatives at the
point β̃. This quadratic approximating function, which we will call SSR∗(β̃, b),
is simply the sum-of-squares function for the artificial regression. It is de-
fined as

SSR∗(β̃, b) = (y − x̃− X̃b)>(y − x̃− X̃b).

The explained sum of squares from the GNR is precisely the difference between
SSR(β̃) and SSR∗(β̃, b̃). If β̃ is reasonably close to β̂, SSR∗(·) should provide
a good approximation to SSR(·) in the neighborhood of β̂. Indeed, provided
that the restrictions are true and that the sample size is sufficiently large, β̃
and β̂ must be close to each other because they are both consistent for β0.
Therefore, SSR∗(·)must provide a good approximation to SSR(·). This implies
that SSR∗(β̃, b̃) will be close to SSR(β̂) and that the explained sum of squares
from the GNR will provide a good approximation to SSR(β̃)−SSR(β̂). When
we divide the explained sum of squares by a consistent estimate of σ2, the
resulting LM test statistic should therefore be similar to the LR test statistic.

It should now be clear why the GNR has to include X̃1 as well as X̃2. If
it did not, the GNR would not be minimizing SSR∗(β̃, b), but rather another
approximation to SSR(β),

SSR∗∗(β̃, b2) = (y − x̃− X̃2b2)
>(y − x̃− X̃2b2).

Although SSR∗(·) should normally provide a reasonably good approximation
to SSR(·), SSR∗∗(·) normally will not, because it does not have enough free
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since the equilibrium price depends, in part, on the error term in the demand
equation. Hence the standard assumption that error terms and regressors are
independent is violated in this (and every) system of simultaneous equations.
Thus, if we attempt to take the plim of the right-hand side of (7.14), we
will find that the second term is not zero. It follows that α̂ and β̂ will be
inconsistent.

The results of this simple example are true in general. Since they are
determined simultaneously, all the endogenous variables in a simultaneous
equation system generally depend on the error terms in all the equations.
Thus, except perhaps in a few very special cases, the right-hand side endo-
genous variables in a structural equation from such a system will always be
correlated with the error terms. As a consequence, application of OLS to such
an equation will always yield biased and inconsistent estimates.

We have now seen two important situations in which explanatory vari-
ables will be correlated with the error terms of regression equations, and are
ready to take up the main topic of this chapter, namely, the method of in-
strumental variables. This method can be used whenever the error terms
are correlated with one or more explanatory variables, regardless of how that
correlation may have arisen. It is remarkably simple, general, and powerful.

7.4 Instrumental Variables: The Linear Case

The fundamental ingredient of any IV procedure is a matrix of instrumental
variables (or simply instruments, for short). We will call this matrix W and
specify that it is n× l. The columns of W are simply exogenous and/or pre-
determined variables that are known (or at least assumed) to be independent
of the error terms u. In the context of the simultaneous equations model, a
natural choice for W is the matrix of all the exogenous and predetermined
variables in the model. There must be at least as many instruments as there
are explanatory variables in the equation to be estimated. Thus, if the equa-
tion to be estimated is the linear regression model (7.01), with X having k
columns, we require that l ≥ k. This is an identification condition; see Section
7.8 for further discussion of conditions for identification in models estimated
by IV. Some of the explanatory variables may appear among the instruments.
Indeed, as we will see below, any column of X that is known to be exogenous
or predetermined should be included inW if we want to obtain asymptotically
efficient estimates.

The intuition behind IV procedures is the following. Least squares mini-
mizes the distance between y and S(X), which leads to inconsistent estimates
because u is correlated withX. The n--dimensional space in which y is a point
can be divided into two orthogonal subspaces, S(W ) and S⊥(W ). Instrumen-
tal variables minimizes only the portion of the distance between y and S(X)
that lies in S(W ). Provided that u is independent of W, as assumed, any
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variables in the entire system. Then the second-stage regression for y can
simply be written as

y = PWXβ + residuals. (7.28)

The OLS estimator of β from this regression is just the IV estimator (7.17):

β̃ =
(
X>PWX

)−1
X>PWy.

Notice, however, that the OLS covariance matrix estimate from (7.28) is not
the estimate we want. This estimate will be

‖y − PWXβ̃‖
n− k

2(
X>PWX

)−1
, (7.29)

while the estimate (7.24) that was derived earlier can be written as

‖y −Xβ̃‖
n

2(
X>PWX

)−1
. (7.30)

These two estimates are not the same. They would be the same only if
IV and OLS were identical, that is, if X = PWX. In addition, n would
have to be replaced by n − k in (7.30). The problem is that the second-
stage OLS regression provides an incorrect estimate of σ2; it uses y−PWXβ̃
rather than y − Xβ̃ as the vector of residuals. The second-stage residuals
y − PWXβ̃ may be either too large or too small, asymptotically. Whether
they are too large or too small will depend on σ2, on the variance of the
elements ofMWXβ =Xβ−PWXβ, and on the correlation betweenMWXβ
and u. If one actually performs 2SLS in two stages, rather than relying on
a preprogrammed 2SLS or IV procedure, one must be careful to use (7.30)
rather than (7.29) for the estimated covariance matrix.2 Programs for 2SLS
estimation normally replace PWXβ̃ by Xβ̃ before calculating the explained
sum of squares, the sum of squared residuals, the R2, and other statistics that
depend on these quantities.

There has been an enormous amount of work on the finite-sample prop-
erties of 2SLS, that is, the IV estimator β̃. A few of the many papers in
this area are Anderson (1982), Anderson and Sawa (1979), Mariano (1982),
Phillips (1983), and Taylor (1983). Unfortunately, many of the results of this
literature are very model-specific. One important result (Kinal, 1980) is that
the mth moment of the 2SLS estimator exists if and only if

m < l − k + 1.

2 2SLS is a special case of a regression with what Pagan (1984b, 1986) calls “gen-
erated regressors.” Even when such regressions provide consistent parameter
estimates, they usually provide inconsistent estimates of the covariance ma-
trix of the parameter estimates. The inconsistency of (7.29) provides a simple
example of this phenomenon.
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The ultimate result is

n1/2(β̃ − β0)
a∼ N

(
0, σ2

0 plim
n→∞

(
n−1X0

>PWX0

)−1
)
, (7.34)

which closely resembles (7.23) for the linear case.

The nonlinear IV estimator based on minimizing the criterion function
(7.32) was proposed by Amemiya (1974), who very misleadingly called it the
nonlinear two-stage least squares estimator, or NL2SLS. In fact, it is not com-
puted in two stages at all. Attempting to compute an estimator analogous to
linear 2SLS would in general result in an inconsistent estimator very different
from nonlinear IV.

It is illuminating to see why this is so. We must make explicit the de-
pendence of x(β) on explanatory variables. Thus the model (7.31) may be
rewritten as

y = x(Z,β) + u, u ∼ IID(0, σ2In),

where x(Z,β) is a vector with typical element xt(Zt,β), Z being a matrix of
observations on explanatory variables, with tth row Zt, some columns of which
may be correlated with u. The Z matrix is not necessarily n × k, because
there may be more or fewer parameters than explanatory variables. A 2SLS
procedure would regress those columns of Z that are potentially correlated
with u on the matrix of instruments W so as to obtain PWZ. It would then
minimize the objective function(

y − x(PWZ,β)
)>(y − x(PWZ,β)

)
. (7.35)

This procedure would yield consistent estimates if the regression functions
xt(Zt,β) were linear in all the endogenous elements of Zt. But if the re-
gression functions were nonlinear in any of the endogenous elements of Zt,
minimizing (7.35) would not yield consistent estimates, because even though
PWZ would be asymptotically orthogonal to u, X(Z,β)PW would not be.

As a very simple example, suppose that the regression function xt(Zt,β)
were βz2t . Thus there would be just one independent variable, which is cor-
related with ut, and one parameter. The theory for linear regressions is ap-
plicable to this example, since the regression function is linear with respect
to the parameter β. What is needed to obtain a consistent estimate of β is
to minimize ‖PW (y − βz2)‖2 with respect to β, where z2 means the vector
with typical element z2t . In contrast, if one first projected z onto W in a
2SLS procedure, one would be minimizing ‖y − β(PWz)

2‖2, where (PWz)
2

means the vector with typical element (PWz)
2
t . The latter minimization is

evidently not restricted to the subspace S(W ), and so it will not in general
yield consistent estimates of β.

In many cases, the biggest problem with nonlinear IV procedures is how
to choose W. With a linear model, it is relatively easy to do so. If the equa-
tion to be estimated comes from a system of linear simultaneous equations,
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and that these are estimated by IV using the instrument matrix W. Now
suppose that the estimates are actually obtained by two-stage least squares.
It is easy to see that the sum of squared residuals from the second-stage
regression for (7.43), in which X1 is replaced by PWX1, will be

RSSR∗ ≡ y>M1y, (7.45)

where M1 denotes the matrix that projects orthogonally onto S⊥(PWX1).
Similarly, it can be shown (doing so is a good exercise) that the sum of squared
residuals from the second-stage regression for (7.44) will be

USSR∗ ≡ y>M1y − y>M1PWX2

(
X2

>PWM1PWX2

)−1
X2

>PWM1y. (7.46)

The difference between (7.45) and (7.46) is

y>M1PWX2

(
X2

>PWM1PWX2

)−1
X2

>PWM1y, (7.47)

which bears a striking and by no means coincidental resemblance to expression
(7.41). Under the null hypothesis (7.43), y is equal toX1β1+u. Since PWM1

annihilates X1, (7.47) reduces to

u>M1PWX2

(
X2

>PWM1PWX2

)−1
X2

>PWM1u

under the null. It should be easy to see that, under reasonable assumptions,
this quantity, divided by anything which estimates σ2 consistently, will be
asymptotically distributed as χ2(r). The needed assumptions are essentially
(7.18a)–(7.18c), plus assumptions sufficient for a central limit theorem to ap-
ply to n−1/2W>u.

The problem, then, is to estimate σ2. Notice that USSR∗/(n − k) does
not estimate σ2 consistently, for the reasons discussed in Section 7.5. As we
saw there, the residuals from the second-stage regression may be either too
large or too small. Thus estimates of σ2 must be based on the set of residuals
y−Xβ̃ rather than the set y−PWXβ̃. One valid estimate is USSR/(n− k),
where

USSR ≡
∥∥y −X1β̃1 −X2β̃2

∥∥2.
The analog of (7.42) would then be

(RSSR∗ −USSR∗)/r

USSR/(n− k)

a∼ F (r, n− k). (7.48)

Notice that the numerator and denominator of this test statistic are based on
different sets of residuals. The numerator is 1/r times the difference between
the sums of squared residuals from the second-stage regressions, while the
denominator is 1/(n − k) times the sum of squared residuals that would be
printed by a program for IV estimation.
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We must now show that the SSR from regression (7.50) is asymptotically
equal to minus the second term in expression (7.49). This SSR is∥∥PW

(
y − x(β̌)− X̌b̌

)∥∥2,
where b̌ is the vector of parameter estimates from OLS estimation of (7.50).
Recall from the results of Section 6.6 on one-step estimation that (β̃ − β̌) is
asymptotically equal to the estimate b̌ from the GNR (7.38). Thus

PW

(
y − x(β̌)− X̌b̌

) a
= PWy − PWx(β̌)− PWX̌(β̃ − β̌). (7.52)

But a first-order Taylor expansion of x(β̃) about β = β̌ gives

x(β̃) ∼= x(β̌) +X(β̌)(β̃ − β̌).

Subtracting the right-hand side of this expression from y and multiplying
by PW yields the right-hand side of (7.52). Thus we see that the SSR from
regression (7.50) is asymptotically equal to∥∥PW

(
y − x(β̃)

)∥∥2,
which is the second term of (7.49). We have therefore proved that the differ-
ence between the restricted and unrestricted values of the criterion function,
expression (7.49), is asymptotically equivalent to the explained sum of squares
from the GNR (7.38). Since the latter can be used to construct a valid test
statistic, so can the former.

This result is important. It tells us that we can always construct a test
of a hypothesis about β by taking the difference between the restricted and
unrestricted values of the criterion function for IV estimation and dividing
it by anything that estimates σ2 consistently. Moreover, such a test will be
asymptotically equivalent to taking the explained sum of squares from the
GNR evaluated at β̌ and treating it in the same way. Either of these tests can
be turned into an asymptotic F test by dividing numerator and denominator
by their respective degrees of freedom, r and n− k. Whether this is actually
a good thing to do in finite samples is unclear, however.

7.8 Identification and Overidentifying Restrictions

Identification is a somewhat more complicated matter in models estimated by
IV than in models estimated by least squares, because the choice of instru-
ments affects whether the model is identified or not. A model that would not
be identified if it were estimated by least squares will also not be identified if
it is estimated by IV. However, a model that would be identified if it were es-
timated by least squares may not be identified if it is estimated by IV using a
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useful when it is not clear whether it is safe to use least squares rather than
instrumental variables.

Regression (7.63) deserves further comment. It has the remarkable fea-
ture that the OLS estimates of β are numerically identical to the IV estimates
of β in the original model (7.01). Moreover, the estimated covariance matrices
are also the same, except that the OLS estimate from (7.63) uses an incon-
sistent estimator for σ2. These results are easy to obtain. Denote by M∗

the orthogonal projection onto the space S⊥(MWX
∗). Then, by the FWL

Theorem, the OLS estimates from (7.63) must be identical to those from the
regression

M∗y =M∗Xβ + residuals. (7.65)

Now
M∗X =X −MWX

∗(X∗>MWX
∗)−1

X∗>MWX.

From the fact that MWX = [MWX
∗ 0], it follows that

X∗>MWX =X∗>MW

[
X∗ 0

]
.

Consequently, we obtain

M∗X =X −
[
MWX

∗ 0
]
=X −MWX = PWX.

Then the OLS estimate of β from (7.65) is seen to be(
X>M∗X

)−1
X>M∗y =

(
X>PWX

)−1
X>PWy. (7.66)

The right-hand side of (7.66) is of course the expression for the IV or 2SLS
estimate of β, expression (7.17).

By an extension of this argument, it is easy to see that the estimated
OLS covariance matrix of β̂ from (7.63) will be

s̃2
(
X>PWX

)−1
, (7.67)

where s̃2 denotes the OLS estimate of the error variance in (7.63). Expression
(7.67) looks just like the IV covariance matrix (7.24), except that s̃2 appears
instead of σ̃2. When η is nonzero (so that IV estimation is necessary), the
variance of the errors in (7.63) will be less than σ2. As a consequence, s̃2 will
be biased downward as an estimator of σ2. Of course, it would be easy to
obtain a valid estimated covariance matrix by multiplying (7.67) by σ̃2/s̃2.

We now return to the DWH test. A variant of this test is applicable to
nonlinear models like (7.31) as well as to linear ones. The test would then be
based on a variant of the Gauss-Newton regression. If the null were that the
NLS estimates β̂ were consistent, an appropriate test statistic would be an
asymptotic F test for c = 0 in the GNR

y − x̂ = X̂b+MWX̂
∗c + residuals, (7.68)
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We leave it as an exercise to prove that a test of whether the vector (7.69)
has mean zero asymptotically may be accomplished by testing whether the
q--vector δ is equal to zero in the regression

y =Xβ + P2X
∗δ + residuals. (7.70)

Here P2X
∗ consists of the q columns of P2X that are not annihilated by

MP1X . Regression (7.70) must be estimated by IV usingW1 as the matrix of
instruments, and any of the tests discussed in Section 7.7 may then be used
to test whether δ = 0.

7.10 Conclusion

This chapter has introduced all of the important concepts associated with the
technique of instrumental variables estimation. For a more detailed treatment,
see Bowden and Turkington (1984). Another useful reference is Godfrey (1988,
Chapter 5), which discusses a large number of specification tests for both linear
and nonlinear models that have been estimated by IV.

In this chapter, we applied the method of instrumental variables only to
univariate linear and nonlinear regression models with i.i.d. errors. We will
encounter numerous other applications later in the book, notably in Chapters
17 and 18, in which we discuss GMM estimation and simultaneous equations
models, respectively. In many other cases, we will state a result in the context
of OLS or NLS estimation and point out that it goes through with minor
modification in the context of IV estimation as well.

Terms and Concepts

criterion function
Durbin-Wu-Hausman (DWH) tests
errors in variables
exactly identified (just identified)

model
Gauss-Newton regression (GNR)
generalized IV estimator
identification: local, global, and

asymptotic
instrumental variables (IV) estimator
instruments (instrumental variables)
nonlinear IV estimator
nonlinear two-stage least squares

(NL2SLS) estimator
normalization (of a simultaneous

equations model)

overidentified model
overidentifying restrictions
predetermined variable
reduced form (of a simultaneous

equations model)
restricted reduced form (RRF)
simple IV estimator
simultaneous equations bias
simultaneous equations model
structural form (of a simultaneous

equations model)
two-stage least squares (2SLS)

estimator
unrestricted reduced form (URF)
vector of contrasts
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In words, the limiting Hessian matrix is the negative of the limiting informa-
tion matrix. An analogous result is true for individual observations:

E0

(
D2

θθ `t(y,θ0)
)
= −E0

(
Dθ

>̀
t(y,θ0)Dθ `t(y,θ0)

)
. (8.44)

The latter result clearly implies the former, given the assumptions that permit
the application of a law of large numbers to the sequences {D2

θθ `t(y,θ0)}∞t=1

and {Dθ
>̀

t(y,θ0)Dθ `t(y,θ0)}∞t=1.

The result (8.44) is proved by an argument very similar to that used at
the beginning of the last section in order to show that the expectation of the
CG matrix is zero. From the fact that

∂`t
∂θi

=
1

Lt

∂Lt

∂θi
,

we obtain after a further differentiation that

∂2`t
∂θi∂θj

=
1

Lt

∂2Lt

∂θi∂θj
− 1

L2
t

∂Lt

∂θi

∂Lt

∂θj
.

Consequently,
∂2`t
∂θi∂θj

+
∂`t
∂θi

∂`t
∂θj

=
1

Lt

∂2Lt

∂θi∂θj
. (8.45)

If now we take the expectation of (8.45) for the DGP characterized by the
same value of the parameter vector θ as that at which the functions `t and
Lt are evaluated (which as usual we denote by Eθ), we find that

Eθ

(
∂2`t
∂θi∂θj

+
∂`t
∂θi

∂`t
∂θj

)
=

∫
Lt

1

Lt

∂2Lt

∂θi∂θj
dyt

=
∂2

∂θi∂θj

∫
Lt dyt = 0,

(8.46)

provided that, as for (8.34), the interchange of the order of differentiation and
integration can be justified. The result (8.46) now establishes (8.44), since it
implies that

Eθ

(
∂2`t
∂θi∂θj

)
= 0− Eθ

(
∂`t
∂θi

∂`t
∂θj

)
= −Eθ

(
∂`t
∂θi

∂`t
∂θj

)
.

In order to establish (8.43), recall that, from (8.19) and the law of large
numbers,

Hij(θ) = lim
n→∞

(
1−
n

n∑
t=1

Eθ

(
∂2`t(θ)

∂θi∂θj

))

= − lim
n→∞

(
1−
n

n∑
t=1

Eθ

(
∂`t(θ)

∂θi

∂`t(θ)

∂θj

))
= −Iij(θ),
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where the last line follows immediately from the definition of the limiting
information matrix, (8.22). This then establishes (8.43).

By substituting either −H(θ0) for I(θ0) or I(θ0) for −H(θ0) in (8.42),
it is now easy to conclude that the asymptotic covariance matrix of the ML
estimator is given by either of the two equivalent expressions −H(θ0)

−1 and
I(θ0)

−1. Formally, we may write

V ∞(n1/2(θ̂ − θ0)
)
= I−1(θ0) = −H−1(θ0).

In order to perform any statistical inference, it is necessary to be able to
estimate I−1(θ0) or −H−1(θ0). One estimator which suggests itself at once
is I−1(θ̂), that is, the inverse of the limiting information matrix evaluated at
the MLE, θ̂. Notice that the matrix function I(θ) is not a sample-dependent
object. It can, in principle, be computed theoretically as a matrix function
of the model parameters from the (sequence of) loglikelihood functions `n.
For some models, this is an entirely feasible computation, and then it yields
what is often the preferred estimator of the asymptotic covariance matrix.
But for many models the computation, even if feasible, would be excessively
laborious, and in these cases it is convenient to have available other consistent
estimators of I(θ0) and consequently of the asymptotic covariance matrix.

One common estimator is the negative of the so-called empirical Hessian.
This matrix is defined as

Ĥ ≡ 1−
n

n∑
t=1

D2
θθ `t(y, θ̂). (8.47)

The consistency of θ̂ and the application of a law of large numbers to the
right-hand side guarantees the consistency of (8.47) for H(θ0). When the
empirical Hessian is readily available, as it will be if maximization routines
that use second derivatives are employed, minus its inverse can provide a very
convenient way to estimate the covariance matrix of θ̂. However, the Hessian
is often difficult to compute, and if it is not already being calculated for other
purposes, it probably does not make sense to compute it just to estimate a
covariance matrix.

Another commonly used estimator of the information matrix is known as
the outer-product-of-the-gradient estimator, or OPG estimator. It is based
on the definition

I(θ) ≡ lim
n→∞

(
1−
n

n∑
t=1

Eθ

(
Dθ

>̀
t(θ)Dθ`t(θ)

))
.

The OPG estimator is

ÎOPG ≡ 1−
n

n∑
t=1

Dθ
>̀

t(y, θ̂)Dθ`t(y, θ̂) =
1−
n
G>(θ̂)G(θ̂), (8.48)
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to be numerically identical if the same estimate of the information matrix
is used to calculate them. One form, originally proposed by Rao (1948), is
called the score form of the LM test, or simply the score test, and is calcu-
lated using the gradient or score vector of the unrestricted model evaluated at
the restricted estimates. The other form, which gives the test its name, was
proposed by Aitchison and Silvey (1958, 1960) and Silvey (1959). This lat-
ter form is calculated using the vector of Lagrange multipliers which emerge
if one maximizes the likelihood function subject to constraints by means of
a Lagrangian. Econometricians generally use the LM test in its score form
but nevertheless insist on calling it an LM test, perhaps because Lagrange
multipliers are so widely used in economics. References on LM tests in econo-
metrics include Breusch and Pagan (1980) and Engle (1982a, 1984). Buse
(1982) provides an intuitive discussion of the relationships among the LR,
LM, and Wald tests.

One way to maximize `(θ) subject to the exact restrictions

r(θ) = 0, (8.71)

where r(θ) is an r--vector with r ≤ k, is simultaneously to maximize the
Lagrangian

`(θ)− r>(θ)λ

with respect to θ and minimize it with respect to the r--vector of Lagrange
multipliers λ. The first-order conditions that characterize the solution to this
problem are

g(θ̃)−R>(θ̃)λ̃ = 0

r(θ̃) = 0,
(8.72)

where R(θ) is a r × k matrix with typical element ∂ri(θ)/∂θj .

We are interested in the distribution of λ̃ under the null hypothesis, so
we will suppose that the DGP satisfies (8.71) with parameter vector θ0. The
value of the vector of Lagrange multipliers λ if θ̃ were equal to θ0 would
be zero. Thus it seems natural to take a first-order Taylor expansion of the
first-order conditions (8.72) around the point (θ0,0). This yields

g(θ0) +H(θ̄)(θ̃ − θ0)−R>(θ̄)λ̃ = 0

R(θ̈)(θ̃ − θ0) = 0,

where θ̄ and θ̈ denote values of θ that lie between θ̃ and θ0. These equations
may be rewritten as[−H(θ̄) R>(θ̄)

R(θ̈) 0

][
θ̃ − θ0
λ̃

]
=

[
g(θ0)

0

]
. (8.73)

If we multiply H(θ̄) by n−1, θ̃− θ0 by n1/2, g(θ0) by n
−1/2, and λ̃ by n−1/2,

we do not change the equality in (8.73), and we render all quantities that
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The LM statistic (8.76) is numerically equal to a test based on the score
vector g(θ̃). By the first set of first-order conditions (8.72), g(θ̃) = R̃>λ̃.
Substituting g(θ̃) for R̃>λ̃ in (8.76) yields the score form of the LM test,

1−
n
g̃>Ĩ−1g̃. (8.77)

In practice, this score form is often more useful than the LM form because,
since restricted estimates are rarely obtained via a Lagrangian, g̃ is generally
readily available while λ̃ typically is not. However, deriving the test via the
Lagrange multipliers is illuminating, because this derivation makes it quite
clear why the test has r degrees of freedom.

The third of the three classical tests is the Wald test. This test is very
easy to derive. It asks whether the vector of restrictions, evaluated at the
unrestricted estimates, is close enough to a zero vector for the restrictions to
be plausible. In the case of the restrictions (8.71), the Wald test is based
on the vector r(θ̂), which should tend to a zero vector asymptotically if the
restrictions hold. As we have seen in Sections 8.5 and 8.6,

n1/2(θ̂ − θ0)
a∼ N

(
0, I−1(θ0)

)
.

A Taylor-series approximation of r(θ̂) around θ0 yields r(θ̂) ∼= R0(θ̂ − θ0).
Therefore,

V
(
n1/2r(θ̂)

) a
= R0 I

−1
0 R0

>.

It follows that an appropriate test statistic is

nr>(θ̂)
(
R̂ Î−1R̂>)−1

r(θ̂), (8.78)

where Î denotes any consistent estimate of I(θ0) based on the unrestricted
estimates θ̂. Different variants of the Wald test will use different estimates of
I(θ0). It is easy to see that given suitable regularity the test statistic (8.78)
will be asymptotically distributed as χ2(r) under the null.

The fundamental property of the three classical test statistics is that
under the null hypothesis, as n → ∞, they all tend to the same random
variable, which is distributed as χ2(r). We will prove this result in Chapter 13.
The implication is that, in large samples, it does not really matter which of
the three tests we use. If both θ̂ and θ̃ are easy to compute, it is attractive
to use the LR test. If θ̃ is easy to compute but θ̂ is not, as is often the case
for tests of model specification, then the LM test becomes attractive. If on
the other hand θ̂ is easy to compute but θ̃ is not, as may be the case when
we are interested in nonlinear restrictions on a linear model, then the Wald
test becomes attractive. When the sample size is not large, choice among the
three tests is complicated by the fact that they may have very different finite-
sample properties, which may further differ greatly among the alternative
variants of the LM and Wald tests. This makes the choice of tests rather
more complicated in practice than asymptotic theory would suggest.
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same answer, if it is feasible to calculate I(θ) at all, although one approach
may be easier than the other in any given situation.

For the nonlinear regression model (8.79), the parameter vector θ is the
vector [β

.... σ]. We now calculate the limiting information matrix I(β, σ) for
this model using the second method, based on the CG matrix, which requires
only first derivatives. It is a good exercise to repeat the derivation using the
Hessian, which requires second derivatives, and verify that it yields the same
results. The first derivative of `t(yt,β, σ) with respect to βi is

∂`t
∂βi

=
1

σ2

(
yt − xt(β)

)
Xti(β) =

1

σ2
et(β)Xti(β), (8.83)

where et(β) ≡ yt − xt(β) and, as usual, Xti(β) ≡ ∂xt(β)/∂βi. The first
derivative of `t(yt,β, σ) with respect to σ is

∂`t
∂σ

= − 1
σ
+

(
yt − xt(β)

)2
σ3

= − 1
σ
+
e2t (β)

σ3
. (8.84)

Expressions (8.83) and (8.84) are all that we need to calculate the information
matrix using the CG matrix. The column of that matrix which corresponds
to σ will have typical element (8.84), while the remaining k columns, which
correspond to the βi’s, will have typical element (8.83).

The element of I(β, σ) corresponding to βi and βj is

I(βi, βj) = plim
n→∞

(
1−
n

n∑
t=1

e2t (β)

σ4
Xti(β)Xtj(β)

)
.

Since e2t (β) has expectation σ
2 under the DGP characterized by (β, σ) and is

independent of X(β), we can replace it by σ2 here to yield

I(βi, βj) = plim
n→∞

(
1−
n

n∑
t=1

1

σ2
Xti(β)Xtj(β)

)
.

Thus we see that the whole (β,β) block of the limiting information matrix is

1

σ2
plim
n→∞

(
1−
n
X>(β)X(β)

)
. (8.85)

The element of I(β, σ) corresponding to σ is

I(σ, σ) = plim
n→∞

(
1−
n

n∑
t=1

(
1

σ2
+
e4t (β)

σ6
− 2e2t (β)

σ4

))

= 1−
n

(
n

σ2
+

3nσ4

σ6
− 2nσ2

σ4

)
=

2

σ2
.

(8.86)
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over all t and then taking the logarithm yields the Jacobian term that appears
in (8.92).

Concentrating the loglikelihood function with respect to σ yields

`c(β, γ) = C − n−
2
log

( n∑
t=1

(
yγt − β0 − β1xt

)2)

+ n log |γ|+ (γ − 1)

n∑
t=1

log(yt).

(8.93)

Maximizing this with respect to γ and β is straightforward. If a suitable
nonlinear optimization program is not available, one can simply do a one-
dimensional search over γ, calculating β0 and β1 conditional on γ by means of
least squares, so as to find the value γ̂ that maximizes (8.93). Of course, one
cannot use the OLS covariance matrix obtained in this way, since it treats γ̂ as
fixed. The information matrix is not block-diagonal between β and the other
parameters of (8.91), so one must calculate and invert the full information
matrix to obtain an estimated covariance matrix.

ML estimation works in this case because of the Jacobian term that
appears in (8.92) and (8.93). It vanishes when γ = 1 but plays an extremely
important role for all other values of γ. We saw in Section 8.1 that if one
applied NLS to (8.01) and all the yt’s were greater than unity, one would end
up with an infinitely large and negative estimate of γ. That will not happen if
one uses maximum likelihood, because the term (γ−1)

∑n
t=1 log(yt) will tend

to minus infinity as γ → −∞much faster than−n/2 times the logarithm of the
sum-of-squares term tends to plus infinity. This example illustrates how useful
ML estimation can be for dealing with modified regression models in which
the dependent variable is subject to a transformation. We will encounter other
problems of this type in Chapter 14.

ML estimation can also be very useful when it is believed that the error
terms are nonnormal. As an extreme example, consider the following model:

yt =Xtβ + αεt, f(εt) =
1

π(1 + ε2t )
, (8.94)

where β is a k--vector andXt is the t
th row of an n×k matrix. The density of

εt here is the Cauchy density (see Section 4.6) and εt therefore has no finite
moments. The parameter α is simply a scale parameter, not the standard
error of the error terms; since the Cauchy distribution has no moments, the
error terms do not have a standard error.

If we write εt as a function of yt, we find that

εt =
yt −Xtβ

α
.
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Consider the class of models

y = x(β) + u, u ∼ N
(
0,Ω(α)

)
. (9.31)

By modifying the loglikelihood function (9.03) slightly, we find that the log-
likelihood function corresponding to (9.31) is

`n(y,β,α) = − n−
2
log(2π)− 1−

2
log |Ω(α)|

− 1−
2

(
y − x(β)

)>Ω−1(α)
(
y − x(β)

)
.

(9.32)

There will be two sets of first-order conditions, one for α and one for β. The
latter will be similar to the first-order conditions (9.05) for GNLS:

X>(β̂)Ω−1(α̂)
(
y − x(β̂)

)
= 0.

The former will be rather complicated and will depend on precisely how Ω is
related to α. For a more detailed treatment, see Magnus (1978).

In Section 8.10, we saw that the information matrix for β and σ in a
nonlinear regression model with covariance matrix σ2 I is block-diagonal be-
tween β and σ. An analogous result turns out to be true for the model (9.31)
as well: The information matrix is block-diagonal between β and α. This
means that, asymptotically, the vectors n1/2(β̂ − β0) and n1/2(α̂ − α0) are
independent. Thus the fact that α̂ is estimated jointly with β̂ can be ignored,
and β̂ will have the same properties asymptotically as the GNLS estimator β̃
and the feasible GNLS estimator β̌.

The above argument does not require that the error terms ut actually be
normally distributed. All that we require is that the vectors n1/2(β̂−β0) and
n1/2(α̂−α0) be asymptotically independent and O(1) under whatever DGP
actually generated the data. It can be shown that this is in fact the case under
fairly general conditions, similar to the conditions detailed in Chapter 5 for
least squares to be consistent and asymptotically normal; see White (1982)
and Gouriéroux, Monfort, and Trognon (1984) for fundamental results in this
area. As we saw in Section 8.1, when the method of maximum likelihood
is applied to a data set for which the DGP was not in fact a special case
of the model being estimated, the resulting estimator is called a quasi-ML,
or QML, estimator. In practice, of course, almost all the ML estimators
we use are actually QML estimators, since some of the assumptions of our
models are almost always wrong. It is therefore comforting that in certain
common situations, including this one, the properties of QML estimators are
very similar to those of genuine ML estimators, although asymptotic efficiency
is of course lost.

As a concrete example of GLS, feasible GLS, and ML estimation, consider
the model

y = x(β) + u, u ∼ N(0,Ω), Ωtt = σ2wα
t , Ωts = 0 for all t 6= s. (9.33)
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introduced in (9.52), as follows:

Xi(β) =
m∑
j=1

Zj(β)ψji.

Then the stacked GNR is
(
Y − ξ(β)

)
ψ1

...(
Y − ξ(β)

)
ψm

 =

 X1(β)
...

Xm(β)

b + residuals. (9.58)

The OLS estimates from the GNR (9.58) will be defined by the first-order
conditions ( m∑

i=1

Xi
>(β)Xi(β)

)
b̈ =

m∑
i=1

Xi
>(β)

(
Y − ξ(β)

)
ψi. (9.59)

Some manipulation of (9.59) based on the definition of the Xi’s and of ψ
shows that this is equivalent to

m∑
i=1

m∑
j=1

σijZi
>(β)

(
yj − xj(β)−Zj(β)b

)
= 0. (9.60)

Thus we see that regression (9.58) has all the properties we have come to
expect from the Gauss-Newton regression. If we evaluate it at β = β̃, the
regression will have no explanatory power at all, because (9.60) is satisfied
with b = 0 by the first-order conditions (9.53). The estimated covariance
matrix from regression (9.58) with β = β̃ will be

s̃2
( m∑

i=1

m∑
j=1

σijZ̃i
>Z̃j

)−1

, (9.61)

where s̃2 is the estimate of the variance that the regression package will gen-
erate, which will evidently tend to 1 asymptotically if Σ is in fact the con-
temporaneous covariance matrix of Ut. If (9.61) is rewritten as a sum of
contributions from the successive observations, the result is

s̃2
( n∑

t=1

Ξ̃tΣ
−1Ξ̃t

>
)−1

,

from which it is clear that (9.61) is indeed the proper GNLS covariance matrix
estimator.
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the ML estimates β̂, the estimated error variance for it, ŝ2, will be equal to

1

mn− k

n∑
t=1

(
Yt − ξ̂t

)
ψ̂ψ̂>(Yt − ξ̂t

)>
=

1

mn− k

n∑
t=1

(
Yt − ξ̂t

)
Σ̂−1

(
Yt − ξ̂t

)>=
mn

mn− k
.

(9.70)

The last equality here follows from an argument almost identical to the one
used to establish (9.65). Since it is evident that (9.70) tends asymptotically
to 1, expression (9.61), which is in this case

mn

mn− k

( n∑
t=1

Ξ̂tΣ̂
−1Ξ̂t

>
)−1

,

provides a natural and very convenient way to estimate the covariance matrix
of β̂.

We have now established all the principal results of interest concerning
the estimation of multivariate nonlinear regression models. Since those results
have been in terms of a rather general and abstract model, it may help to make
them more concrete if we indicate precisely how our general notation relates
to the case of the linear expenditure system that we discussed earlier. For
concreteness, we will assume that m = 2, which means that there is a total of
three commodities. Then we see that

Yt = [st1 st2];

β = [α1
.... α2

.... γ1
.... γ2

.... γ3];

ξt(β) =

γ1p1t
Et

+
α1

Et

(
Et −

3∑
j=1

pjtγj

)
γ2p2t
Et

+
α2

Et

(
Et −

3∑
j=1

pjtγj

);

Ξt(β) =



(
Et −

∑3
j=1 pjtγj

)
/Et 0

0
(
Et −

∑3
j=1 pjtγj

)
/Et

(1− α1)p1t/Et −α2p1t/Et

−α1p2t/Et (1− α2)p2t/Et

−α1p3t/Et −α2p3t/Et


.

It may be a useful exercise to set up the GNR for testing the hypothesis that
γ1 = γ2 = γ3 = 0, where estimates subject to that restriction have been
obtained.

Our treatment of multivariate models has been relatively brief. A much
fuller treatment, but only for linear SUR models, may be found in Srivas-
tava and Giles (1987), which is also an excellent source for references to the
econometric and statistical literature on the subject.
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where the matrix MD is simply the matrix that takes deviations from the
group means X̄.i for i = 1, . . . , n. Thus a typical element of MDX is

(MDX)ti =Xti − X̄.i.

This makes it easy to compute β́ even when n is so large that it would be
infeasible to run regression (9.74). One simply has to compute the group
means y.i and X.i for all i and then regress yti − ȳ.i on Xti − X̄.i for all t
and i. The estimated covariance matrix should then be adjusted to reflect
the fact that the number of degrees of freedom used in estimation is actually
n+ k rather than k.

Because the fixed-effects estimator (9.75) depends only on the deviations
of the regressand and regressors from their respective group means, it is some-
times called the within-groups estimator. As this name implies, it makes no
use of the fact that the group means are in general different for different
groups. This property of the estimator can be an advantage or a disadvan-
tage, depending on circumstances. As we mentioned above, it may well be the
case that the cross-sectional effects vi are correlated with the regressors Xti

and consequently also with the respective group means of the regressors. In
that event the OLS estimator (without fixed effects) based on the full sample
would be inconsistent, but the within-groups estimator would remain consis-
tent. However, if on the contrary the fixed effects are independent of the
regressors, the within-groups estimator is not fully efficient. In the extreme
case in which any one of the independent variables does not vary at all within
groups, but only between groups, then the coefficient corresponding to that
variable will not even be identifiable by the within-groups estimator.

An alternative inefficient estimator that uses only the variation among
the group means is called the between-groups estimator. It may be written as

β̀ =
(
X>PDX

)−1
X>PDy. (9.76)

Since PDXti = X̄.i, this estimator really involves only n distinct observations
rather than nT . It will clearly be inconsistent if the cross-sectional effects, the
vi’s, are correlated with the group means of the regressors, the X̄.i’s. The OLS
estimator can be written as a matrix-weighted average of the within-groups
and between-groups estimators:

β̂ =
(
X>X

)−1
X>y

=
(
X>X

)−1(
X>MDy +X>PDy

)
=
(
X>X

)−1
X>MDXβ́ +

(
X>X

)−1
X>PDXβ̀.

Thus we see immediately that OLS will be inconsistent whenever the between-
groups estimator (9.76) is inconsistent.
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where Ω0 is the matrix Ω(ρ) defined in (10.05), evaluated at ρ0 and ω0.
Evidently, (10.07) will in general not be consistently estimated by the OLS
covariance matrix estimator s2(X>X)−1. Except in special cases, it is not
possible to say whether the incorrect standard error estimates obtained using
OLS will be larger or smaller than the correct ones obtained by taking the
square roots of the diagonal elements of (10.07). However, analysis of spe-
cial cases suggests that for values of ρ greater than 0 (the most commonly
encountered case) the incorrect OLS standard errors are usually too small;
see, among others, Nicholls and Pagan (1977), Sathe and Vinod (1974), and
Vinod (1976).

Expression (10.07) applies to any situation in which OLS is incorrectly
used in place of GLS and not merely to situations in which the errors follow
an AR(1) process. So does the previous result that β̂ is unbiased if X is
fixed and E(X>u) = 0. But recall from Section 9.5 that, even when these
conditions are satisfied, β̂ may fail to be consistent if the errors are correlated
enough among themselves. We may conclude that, when the regressors are
fixed and the covariance matrix of the error terms is such that there is not
too much correlation of the error terms, the OLS estimates will be consistent,
but the OLS covariance matrix estimate will not be. A consistent estimate of
the covariance matrix of the OLS estimator can usually be found. However,
since the proof of the Gauss-Markov Theorem depended on the assumption
that E(uu>) = σ2 I, OLS is not the best linear unbiased estimator when this
assumption does not hold.

The preceding discussion assumed that there were no lagged dependent
variables among the columns of X. When this assumption is dropped, the
results change drastically, and OLS is seen to be both biased and inconsis-
tent. The simplest way to see this is to think about an element of X>u
corresponding to the lagged dependent variable (or to one of the lagged de-
pendent variables if there is more than one). If the dependent variable is
lagged j periods, this element is

n∑
t=1

yt−jut. (10.08)

Now recall expression (10.03), in which we expressed ut as a function of ut−j

and of all the innovations between periods t− j+1 and t. Since yt−j is equal
to Xt−jβ + ut−j , it is clear from (10.03) that (10.08) cannot possibly have
expectation zero. Thus we conclude that when X includes lagged dependent
variables and ut is serially correlated,

plim
n→∞

(
1−
n
X>u

)
6= 0, (10.09)

which implies that

plim
n→∞

(
β̂ − β0

)
= plim

n→∞

(
1−
n
X>X

)−1

plim
n→∞

(
1−
n
X>u

)
6= 0. (10.10)
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the reported covariance matrix from the Cochrane-Orcutt and Hildreth-Lu
procedures will thus be invalid in many cases. One either has to calculate the
GNR (10.29) oneself or use nonlinear least squares from the beginning so that
the regression package will do so.

When the conditional covariance matrix estimate is invalid, reported
standard errors are always too small (asymptotically). In fact, the covar-
iance matrix estimate produced by the GNR (10.29) for the estimates of β
differs from that produced by (10.27) by a positive definite matrix, if we ignore
the fact that the degrees of freedom are different. To see this, notice that the
Gauss-Newton regression (10.29) has the same regressors as (10.27), plus one
additional regressor, û−1. If we apply the FWL Theorem to (10.29), we see
that the covariance matrix estimate from it is the same as that from a regres-
sion in which all the variables are projected onto the orthogonal complement
of û−1. The residuals are unchanged by the projection and so are identical
to those of (10.27), as we saw above. The difference between the covariance
matrix estimates for β̂ from (10.29) and (10.27) is therefore proportional to(

X∗>(ρ̂)Mû−1X
∗(ρ̂)

)−1 −
(
X∗>(ρ̂)X∗(ρ̂)

)−1
, (10.32)

except for an asymptotically negligible effect due to the different degrees-of-
freedom factors. If we subtract the inverses of the two matrices in (10.32) in
the opposite order, we obtain

X∗>(ρ̂)Pû−1X
∗(ρ̂),

which is evidently positive semidefinite. It then follows from a result proved in
Appendix A that (10.32) is itself positive semidefinite. If û−1 is substantially
correlated with the columns of X∗(ρ̂), the incorrect variance estimate from
regression (10.27) may be much smaller than the correct variance estimate
from the GNR (10.29).

The Gauss-Newton regressions (10.26) and (10.29) yield estimated stan-
dard errors for ρ̂ as well as for β̂. If the covariance matrix is asymptotically
block-diagonal between ρ and β, we see from (10.31) that the asymptotic
variance of n1/2(ρ̂− ρ0) will be equal to

ω2 plim
n→∞

(
û>
−1û−1

n− 1

)−1

= ω2

(
1− ρ20
ω2

)
= 1− ρ20. (10.33)

Thus, in this special case, the variance of ρ̂ can be estimated by

1− ρ̂2

n− 1
. (10.34)

It may seem puzzling that neither the asymptotic variance 1−ρ20 nor the
estimate (10.34) depends on ω2. After all, we normally expect the variance
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where L denotes the lag operator. The lag operator L has the property that
when L multiplies anything with a time subscript, this subscript is lagged one
period. Thus

Lut = ut−1, L2ut = ut−2, Lput = ut−p,

and so on. The expression in parentheses in (10.36) is a polynomial in the
lag operator L, with coefficients 1 and −ρ1, . . . ,−ρp. If we define A(L,ρ) as
being equal to this polynomial, ρ representing the vector [ρ1

.... ρ2
.... · · · .... ρp],

we can write (10.36) even more compactly as

A(L,ρ)ut = εt, εt ∼ IID(0, ω2). (10.37)

For the same reasons that we wish to impose the condition |ρ1| < 1 on
AR(1) processes so as to ensure that they are stationary, we would like to
impose stationarity conditions on general AR(p) processes. The stationarity
condition for such processes may be expressed in several ways; one of them is
that all the roots of the polynomial equation in z,

A(z,ρ) ≡ 1− ρ1z − ρ2z
2 − · · · − ρpz

p = 0 (10.38)

must lie outside the unit circle, which simply means that all of the roots of
(10.38) must be greater than 1 in absolute value. This condition can lead to
quite complicated restrictions on ρ for general AR(p) processes.

It rarely makes sense to specify a high-order AR(p) process (i.e., one
with p a large number) when trying to model the error terms associated with
a regression model. The AR(2) process is much more flexible, but also much
more complicated, than the AR(1) process; it is often all that is needed when
the latter is too restrictive. The additional complexity of the AR(2) process
is easily seen. For example, the variance of ut, assuming stationarity, is

σ2 =
1− ρ2
1 + ρ2

× ω2

(1− ρ2)2 − ρ21
,

which is substantially more complicated than the corresponding expression
(10.02) for the AR(1) case, and stationarity now requires that three conditions
hold:

ρ1 + ρ2 < 1; ρ2 − ρ1 < 1; ρ2 > −1. (10.39)

Conditions (10.39) define a stationarity triangle. This triangle has vertices at
(−2,−1), (2,−1), and (0, 1). Provided that the point (ρ1, ρ2) lies within the
triangle, the AR(2) process will be stationary.

Autoregressive processes of order higher than 2 arise quite frequently
with time-series data that exhibit seasonal variation. It is not uncommon, for
example, for error terms in models estimated using quarterly data apparently
to follow the simple AR(4) process

ut = ρ4ut−4 + εt, εt ∼ IID(0, ω2), (10.40)
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where X̂∗ denotes the n× k matrix of the derivatives of the vector of nonlin-
ear functions x∗(β, ρ), defined in (10.46), with respect to the elements of β,

evaluated at (β̂, ρ̂), and

V̂ (ρ̂, ω̂) =


n

1− ρ̂2
+

3ρ̂2 − 1

(1− ρ̂2)2
2ρ̂

ω̂(1− ρ̂2)

2ρ̂

ω̂(1− ρ̂2)

2n

ω̂2


−1

.

The estimated covariance matrix (10.54) is block-diagonal between β and ρ
and between β and ω (recall that we have ruled out lagged dependent vari-
ables). However, unlike the situation with regression models, it is not block-
diagonal between ρ and ω. The off-diagonal terms in the (ρ, ω) block of
the information matrix are O(1), while the diagonal terms are O(n). Thus
V (β̂, ρ̂, ω̂) will be asymptotically block-diagonal between β, ρ, and ω. This is
what we would expect, since it is only the first observation, which is asymptot-
ically negligible, that prevents (10.54) from being block-diagonal in the first
place.

It is an excellent exercise to derive the estimated covariance matrix
(10.54). One starts by taking the second derivatives of (10.51) with respect to
all of the parameters of the model to find the Hessian, then takes expectations
of minus it to obtain the information matrix. One then replaces parameters
by their ML estimates and inverts the information matrix to obtain (10.54).
Although this exercise is straightforward, there are plenty of opportunities to
make mistakes. For example, Beach and MacKinnon (1978a) fail to take all
possible expectations and, as a result, end up with an excessively complicated
estimated covariance matrix.

The preceding discussion makes it clear that taking the first observation
into account is significantly harder than ignoring it. Even if an appropriate
computer program is available, so that estimation is straightforward, one runs
into trouble when one wants to test the model. Since the transformed model is
no longer a regression model, the Gauss-Newton regression no longer applies
and cannot be used to do model specification tests; see Sections 10.8 and 10.9.
One could of course estimate the model twice, once taking account of the first
observation, in order to obtain the most efficient possible estimates, and once
dropping it, in order to be able to test the specification, but this clearly
involves some extra work. The obvious question that arises, then, is whether
the additional trouble of taking the first observation into account is worth it.

There is a large literature on this subject, including Kadiyala (1968), Rao
and Griliches (1969), Maeshiro (1976, 1979), Beach and MacKinnon (1978a),
Chipman (1979), Spitzer (1979), Park and Mitchell (1980), Ansley and New-
bold (1980), Poirier (1978a), Magee (1987), and Thornton (1987). In many
cases, retaining the first observation yields more efficient estimates but not
by very much. However, when the sample size is modest and there is one or
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in month t would affect the value of instruments maturing in months t, t+1,
and t + 2 but would not directly affect the value of instruments maturing
later, because the latter would not yet have been issued. This suggests that
the error term should be modeled by an MA(2) process; see Frankel (1980)
and Hansen and Hodrick (1980). Moving average errors also arise when data
are gathered using a survey that includes some of the same respondents in
consecutive periods, such as the labor force surveys in both the United States
and Canada, which are used to estimate unemployment rates; see Hausman
and Watson (1985).

It is generally somewhat harder to estimate regression models with mov-
ing average errors than to estimate models with autoregressive errors. To see
why, suppose that we want to estimate the model

yt = xt(β) + ut, ut = εt − αεt−1, εt ∼ IID(0, ω2). (10.61)

Compared with (10.57), we have dropped the subscript from α and changed
its sign for convenience; the sign change is of course purely a normalization.
Let us make the asymptotically innocuous assumption that the unobserved
innovation ε0 is equal to zero (techniques that do not make this assumption
will be discussed below). Then we see that

y1 = x1(β) + ε1

y2 = x2(β)− α
(
y1 − x1(β)

)
+ ε2

y3 = x3(β)− α
(
y2 − x2(β)

)
− α2

(
y1 − x1(β)

)
+ ε3,

(10.62)

and so on. By making the definitions

y∗0 = 0; y∗t = yt + αy∗t−1, t = 1, . . . , n;

x∗0 = 0; x∗t (β, α) = xt(β) + αx∗t−1(β, α), t = 1, . . . , n,
(10.63)

we can write equations (10.62) in the form

yt = −αy∗t−1 + x∗t (β, α) + εt, (10.64)

which makes it clear that we have a nonlinear regression model. But the
regression function depends on the entire sample up to period t, since y∗t−1

depends on all previous values of yt and x
∗
t depends on xt−i(β) for all i ≥ 0.

In the by no means unlikely case in which |α| = 1, the dependence of yt on
past values does not even tend to diminish as those values recede into the
distant past. If we have a specialized program for estimation with MA(1)
errors, or a smart nonlinear least squares program that allows us to define the
regression function recursively, as in (10.63), estimating (10.64) need not be
any more difficult than estimating other nonlinear regression models. But if
appropriate software is lacking, this estimation can be quite difficult.
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If we assume that the error terms are normally distributed, the model
(10.61) becomes

yt = xt(β) + ut, ut = εt − αεt−1, εt ∼ NID(0, ω2). (10.65)

We previously made the asymptotically innocuous assumption that the un-
observed innovation ε0 is equal to zero. Although asymptotically innocuous,
that assumption is clearly false, since according to (10.65) ε0 must be dis-
tributed as N(0, ω2). The simplest way to take proper account of this fact
was suggested by MacDonald and MacKinnon (1985); our treatment follows
theirs.

The concentrated loglikelihood function for the model (10.65) is

C − n−
2
log
((
y − x(β)

)>∆−1(α)
(
y − x(β)

))
− 1−

2
log |∆(α)|, (10.66)

where ω2∆(α) is the covariance matrix of the vector of error terms u, ex-
pression (10.60).4 As discussed by Box and Jenkins (1976) and others, the
Jacobian term −1

2 log |∆(α)| is

1−
2
log
(
1− α2

)
− 1−

2
log
(
1− α2n+2

)
. (10.67)

When |α| = 1, both terms in (10.67) are undefined. In that case, by using
l’Hôpital’s Rule, one can show that

lim
|α|→1

(
1−
2
log
(
1− α2

)
− 1−

2
log
(
1− α2n+2

))
= − 1−

2
log(n+ 1).

This result allows the loglikelihood function (10.66) to be evaluated for any
value of α in the invertibility region −1 ≤ α ≤ 1.

It is important to be able to deal with the case in which |α| = 1, since in
practice one not infrequently obtains ML estimates with |α̂| = 1, especially
when the sample size is small; see, for example, Osborn (1976) and Davidson
(1981). The reason for this is that if we concentrate the loglikelihood function
with respect to β and ω to obtain `c(α), we will find that `c(α) has the
same value for α and 1/α. That, of course, is the reason for imposing the
invertibility condition that |α| ≤ 1. Thus, if `c(α) is rising as α → 1 or as
α → −1, it must have a maximum precisely at α = 1 or α = −1. This
is a distinctly undesirable feature of the model (10.65). When |α̂| = 1, one
cannot make inferences about α in the usual way, since α̂ is then on the
boundary of the parameter space. Since α̂ can equal ±1 with finite probability,

4 In fact, expression (10.66) could be the concentrated loglikelihood function for a
nonlinear regression model with error terms that follow any sort of autoregres-
sive moving average, or ARMA, process, provided that ∆(α) were replaced
by the covariance matrix for u implied by that ARMA process.
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using the normal distribution to approximate its finite-sample distribution is
a somewhat dubious procedure. Thus, if α̂ is equal to or even close to 1
in absolute value, the investigator should exercise care in making inferences
about α. Of course, as n → ∞ the fact that α̂ is consistent means that the
number of times that |α̂| = 1 tends to zero, unless |α0| = 1.

It is not easy to evaluate (10.66) directly; see Pesaran (1973), Osborn
(1976), and Balestra (1980), among others.5 We therefore use a trick that
provides an alternative way to do so. Recall equations (10.62), in which we
explicitly wrote y1, . . . , yn as functions of current and lagged values of xt(β)
and lagged values of yt. We may rewrite these equations, taking account of
observation zero, as

0 = −υ + ε0

y1 = x1(β)− αυ + ε1

y2 = x2(β)− α
(
y1 − x1(β)

)
− α2υ + ε2

y3 = x3(β)− α
(
y2 − x2(β)

)
− α2

(
y1 − x1(β)

)
− α3υ + ε3,

(10.68)

and so on. Here we have added both one observation and one parameter to
equations (10.62). The extra observation is observation zero, which as written
here simply says that the unknown parameter υ is defined to equal the error
term ε0. This unknown parameter also appears in all subsequent observations,
multiplied by larger and larger powers of α, to reflect the dependence of yt
for all observations on ε0. Notice that because we have added both an extra
parameter and an extra observation, we have not changed the number of
degrees of freedom (i.e., the number of observations minus the number of
parameters estimated) at all.

If we make the definitions

y∗0 = 0; y∗t = yt + αy∗t−1, t = 1, . . . , n;

x∗0 = 0; x∗t (β, α) = xt(β) + αx∗t−1(β, α), t = 1, . . . , n;

z∗0 = −1; z∗t = αz∗t−1,

we can write equations (10.68) in the form

y∗t (α) = x∗t (β, α) + υz∗t + εt, (10.69)

making them look like very much like a nonlinear regression model. The sum
of squared residuals would then be

n∑
t=0

(
y∗t (α)− x∗t (β, α)− υz∗t

)2
. (10.70)

5 Another approach to the estimation of models with moving average errors has
been proposed by Harvey and Phillips (1979) and by Gardner, Harvey, and
Phillips (1980). It requires specialized software.
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to the one for testing against AR(q) errors. Perhaps more surprisingly, the
same artificial regression also turns out to be appropriate for testing against
ARMA(p, q) errors, with max(p, q) lags of ũ now being included in the regres-
sion. For more details, see Godfrey (1978b, 1988).

Using something very like the Gauss-Newton regression to test for serial
correlation was first suggested by Durbin (1970) in a paper that also intro-
duced what has become known as Durbin’s h test. The latter procedure,
which we will not discuss in detail, is an asymptotic test for AR(1) errors
that can be used when the null hypothesis is a linear regression model which
includes the dependent variable lagged once, and possibly more than once as
well, among the regressors. The h test can be calculated with a hand calcu-
lator from the output for the original regression printed by most regression
packages, although in some cases it cannot be calculated at all because it
would be necessary to compute the square root of a negative number. For
reasons that today seem hard to understand (but are presumably related to
the primitive state of computer hardware and econometric software in the
early 1970s), Durbin’s h test became widely used, while his so-called alter-
native procedure, a t test based on the modified GNR (10.77), was all but
ignored for quite some time.8 It was finally rediscovered and extended by
Breusch (1978) and Godfrey (1978a, 1978b). All of these papers assumed
that the error terms εt were normally distributed, and they developed tests
based on the GNR as Lagrange multiplier tests based on maximum likelihood
estimation. The normality assumption is of course completely unnecessary.

Equally unnecessary is any assumption about the presence or absence of
lagged dependent variables in the regression function xt(β). All we require
is that this function satisfy the regularity conditions of Chapter 5, in order
that nonlinear least squares estimates will be consistent and asymptotically
normal under both the null and alternative hypotheses. As the above history
implies, and as we will discuss below, many tests for serial correlation require
that xt(β) not depend on lagged dependent variables, and all of the literature
cited in the previous paragraph was written with the specific aim of handling
the case in which xt(β) is linear and depends on one or more lagged values of
the dependent variable.

The problem with tests based on the GNR is that they are valid only
asymptotically. This is true whether or not xt(β) is linear, because ũ−1 is only
an estimate of u−1. Indeed, as we saw in Section 5.6, ũ

a
=M0u, whereM0 ≡

I−X0(X0
>X0)

−1X0
> and X0 ≡ X(β0). This is just the asymptotic equality

(5.57). The asymptotic equality is replaced by an exact equality if x(β) =Xβ.

8 Maddala and Rao (1973), Spencer (1975), and Inder (1984), among others,
have provided Monte Carlo evidence on Durbin’s h test as compared with the
test based on the GNR. This evidence does not suggest any strong reason to
prefer one test over the other. Thus the greater convenience and more general
applicability of the test based on the GNR are probably the main factors in its
favor.
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underlying regression model is linear, and X contains only fixed regressors.
This distribution necessarily depends onX. The calculation uses the fact that
the d statistic can be written as

u>MXAMXu

u>MXu
, (10.82)

where A is the n× n matrix

1 −1 0 0 · · · 0 0 0

−1 2 −1 0 · · · 0 0 0

0 −1 2 −1 · · · 0 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · −1 2 −1

0 0 0 0 · · · 0 −1 1


.

From (10.82), the d statistic is seen to be a ratio of quadratic forms in nor-
mally distributed random variables, and the distributions of such ratios can be
evaluated using several numerical techniques; see Durbin and Watson (1971)
and Savin and White (1977) for references.

Most applied workers never attempt to calculate the exact distribution of
the d statistic corresponding to their particular X matrix. Instead, they use
the fact that the critical values for its distribution are known to fall between
two bounding values, dL and dU , which depend on the sample size, n, the
number of regressors, k, and whether or not there is a constant term. Tables
of dL and dU may be found in some econometrics textbooks and in papers such
as Durbin and Watson (1951) and Savin and White (1977). As an example,
when n = 50 and k = 6 (counting the constant term as one of the regressors),
for a test against ρ > 0 at the .05 level, dL = 1.335 and dU = 1.771. Thus, if
one calculated a d statistic for this sample size and number of regressors and it
was less than 1.335, one could confidently decide to reject the null hypothesis
of no serial correlation at the .05 level. If the statistic was greater than 1.771,
one could confidently decide not to reject. However, if the statistic was in
the “inconclusive region” between 1.335 and 1.771, one would be unsure of
whether to reject or not. When the sample size is small, and especially when
it is small relative to the number of regressors, the inconclusive region can
be very large. This means that the d statistic may not be very informative
when used in conjunction with the tables of dL and dU .

9 In such cases, one
may have no choice but to calculate the exact distribution of the statistic,
if one wants to make inferences from the d statistic in a small sample. A
few software packages, such as SHAZAM, allow one to do this. Of course,

9 There is reason to believe that when the regressors are slowly changing, a
situation which may often be the case with time-series data, dU provides a
better approximation than dL. See Hannan and Terrell (1966).



10.9 Common Factor Restrictions 367

be less than 2k+1. The easiest way to see why this will almost always be the
case is to consider an example.

Suppose that the regression function xt(β) for the original H0 model is

β0 + β1zt + β2t+ β3zt−1 + β4yt−1, (10.93)

where zt is the tth observation on an economic time series, and t is the tth

observation on a linear time trend. The regression function for the unrestricted
H2 model which corresponds to (10.93) is

β0 + β1zt + β2t+ β3zt−1 + β4yt−1 + ρyt−1

+ γ0 + γ1zt−1 + γ2(t− 1) + γ3zt−2 + γ4yt−2.
(10.94)

This regression function appears to have 11 parameters, but 4 of them are in
fact unidentifiable. It is obvious that we cannot estimate both β0 and γ0, since
there cannot be two constant terms. Similarly, we cannot estimate both β3
and γ1, since there cannot be two coefficients on zt−1, and we cannot estimate
both β4 and ρ, since there cannot be two coefficients on yt−1. We also cannot
estimate γ2 along with β2 and the constant, because t, t− 1 and the constant
term are perfectly collinear, since t− (t− 1) = 1. Thus the version of H2 that
can actually be estimated has the regression function

δ0 + β1zt + δ1t+ δ2zt−1 + δ3yt−1 + γ3zt−2 + γ4yt−2, (10.95)

where

δ0 = β0 + γ0 − γ2; δ1 = β2 + γ2; δ2 = β3 + γ1; and δ3 = ρ+ β4.

We see that (10.95) has seven identifiable parameters: β1, γ3, γ4, and δ0
through δ3, instead of the eleven parameters, many of them not identifiable,
of (10.94). The regression function for the restricted model, H1, is

β0 + β1zt + β2t+ β3zt−1 + β4yt−1 + ρyt−1

− ρβ0 − ρβ1zt−1 − ρβ2(t− 1)− ρβ3zt−2 − ρβ4yt−2,

and it has six parameters, ρ and β0 through β4. Thus, in this case, l, the
number of restrictions that H1 imposes on H2, is just 1.

While this is a slightly extreme example, similar problems arise in almost
every attempt to test common factor restrictions. Constant terms, many
types of dummy variables (notably seasonal dummies and time trends), lagged
dependent variables, and independent variables that appear with more than
one time subscript almost always result in an unrestricted model H2 of which
not all parameters will be identifiable. Luckily, it is very easy to deal with
these problems when one does an F test; one simply has to omit the redundant
regressors when estimating H2. One can then calculate l as the number of
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parameters in H2 minus the number in H1, which is k + 1. Since many
regression packages automatically drop redundant regressors, one naive but
often effective approach is simply to attempt to estimate H2 in something
close to its original form and then to count the number of parameters that
the regression package is actually able to estimate.

The F test (10.92) is not the only way to test common factor restrictions.
Since the regression function for H2 is linear in all parameters, while the one
for H1 is nonlinear, it is natural to try to base tests on the OLS estimates of
H2 alone. One approach to this problem is discussed by Sargan (1980a), but
it is quite complicated and requires specialized computer software. A simpler
approach is to use a one-step estimator of H1. Consistent estimates of the
parameters of H1 may be obtained from the estimates of H2, as discussed in
Section 10.3, and the GNR (10.19) is then used to obtain one-step estimates.
These estimates themselves are not necessarily of interest. All that is needed
is the sum of squared residuals from the GNR, which may be used in place
of SSR1 in the formula (10.92) for the F test. However, since it is generally
neither difficult nor expensive to estimate H1 with modern computers and
software packages, situations in which there is a significant advantage from
the use of this one-step procedure are likely to be rare.

Something very like a test of common factor restrictions can be employed
even when the original (H0) model is nonlinear. In this case, the H1 model
can be written as

(1− ρL)yt = (1− ρL)xt(β) + εt. (10.96)

A version of (10.96) in which the common factor restriction does not hold is

(1− ρL)yt = (1− δL)xt(β) + εt. (10.97)

Evidently, (10.96) is just (10.97) subject to the restriction that δ = ρ. This
restriction can be tested by a Gauss-Newton regression in the usual way. This
GNR is

y − x̂− ρ̂(y−1 − x̂−1) = (X̂ − ρ̂X̂−1)b

+ r(y−1 − x̂−1) + dx̂−1 + residuals,
(10.98)

where ρ̂ and β̂ are the NLS estimates of H1, and x̂ ≡ x(β̂). Regression (10.98)
looks exactly like the GNR (10.26), which we used to calculate the covariance
matrix of β̂ and ρ̂, with the addition of the extra regressor x̂−1, the coefficient
of which is d. The t statistic for d = 0 will be an asymptotically valid test
statistic.

Notice that this GNR could be used even if xt(β) were a linear function.
Since this variant of the common factor restrictions test necessarily has only
one degree of freedom, it would not be the same as the usual form of the
test, discussed above, for any model with l > 1. The difference arises because
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the test based on (10.98) is testing against a less general alternative than the
usual form of the test. When xt(β) is linear, (10.97) can be written as

(1− ρL)yt =Xtβ − δXt−1β + εt, (10.99)

which is in general (but not when l = 1) more restrictive than equation (10.89).
Thus consideration of the nonlinear regression case reveals that there are really
two different tests of common factor restrictions when the original model is
linear. The first, which tests (10.88) against (10.89), is the F test (10.92).
It will have l degrees of freedom, where 1 ≤ l ≤ k. The second, which tests
(10.88) against (10.99), is the t test of d = 0 in the Gauss-Newton regression
(10.98). It will always have one degree of freedom. Either test might perform
better than the other, depending on how the data were actually generated;
see Chapter 12. When l = 1, the two tests will coincide, a fact that it may be
a good exercise to demonstrate.

10.10 Instrumental Variables and Serial Correlation

So far in this chapter, we have assumed that the regression function x(β) de-
pends only on exogenous and predetermined variables. However, there is no
reason for serially correlated errors not to occur in models for which current
endogenous variables appear in the regression function. As we discussed in
Chapter 7, the technique of instrumental variables (IV) estimation is com-
monly used to obtain consistent estimates for such models. In this section, we
briefly discuss how IV methods can be used to estimate univariate regression
models with errors that are serially correlated and to test for serial correlation
in such models.

Suppose that we wish to estimate the model (10.12) by instrumental
variables. Then, as we saw in Section 7.6, the IV estimates may be obtained
by minimizing, with respect to β and ρ, the criterion function(

y − x′(β, ρ)
)>PW

(
y − x′(β, ρ)

)
, (10.100)

where the regression function x′(β, ρ) is defined by (10.13), and PW is the
matrix that projects orthogonally onto the space spanned by W, a suitable
matrix of instruments. The IV form of the Gauss-Newton regression can
be used as the basis for an algorithm to minimize (10.100). Given suitable
regularity conditions on xt(β), and assuming that |ρ| < 1, these estimates
will be consistent and asymptotically normal. See Sargan (1959) for a full
treatment of the case in which x(β) is linear.

The only potential difficulty with this IV procedure is that one has to find
a “suitable” matrix of instruments W. For asymptotic efficiency, one always
wants the instruments to include all the exogenous and predetermined vari-
ables that appear in the regression function. From (10.13), we see that more
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such variables appear in the regression function x′t(β, ρ) for the transformed
model than in the original regression function xt(β). Thus the optimal choice
of instruments may differ according to whether one takes account of serial
correlation or assumes that it is absent.

To make this point more clearly, let us assume that the original model is
linear, with regression function

xt(β) = Ztβ1 + Ytβ2, (10.101)

where Zt is a row vector of explanatory variables that are exogenous or pre-
determined, and Yt is a row vector of current endogenous variables; the di-
mension of β ≡ [β1

.... β2] is k. The regression function for the transformed
model is then

x′t(β, ρ) = ρyt−1 +Ztβ1 + Ytβ2 − ρZt−1β1 − ρYt−1β2. (10.102)

In (10.101), the only exogenous or predetermined variables were the variables
in Zt. In (10.102), however, they are yt−1 and the variables in Zt, Zt−1,
and Yt−1 (the same variables may occur in more than one of these, of course;
see the discussion of common factor restrictions in the previous section). All
these variables would normally be included in the matrix of instruments W.
Since the number of these variables is almost certain to be greater than k+1,
it would not normally be necessary to include any additional instruments to
ensure that all parameters are identified.

For more discussion of the estimation of single linear equations with se-
rially correlated errors and current endogenous regressors, see Sargan (1959,
1961), Amemiya (1966), Fair (1970), Dhrymes, Berner, and Cummins (1974),
Hatanaka (1976), and Bowden and Turkington (1984).

Testing for serial correlation in models estimated by IV is straightforward
if one uses a variant of the Gauss-Newton regression. In Section 7.7, we dis-
cussed the GNR (7.38), in which the regressand and regressors are evaluated
at the restricted estimates, and showed how it can be used to calculate test
statistics. Testing for serial correlation is simply an application of this proce-
dure. Suppose we want to test a nonlinear regression model for AR(1) errors.
The alternative model is given by (10.12), for observations 2 through n, with
the null hypothesis being that ρ = 0. In this case, the GNR (7.38) is

ũ = PWX̃b+ rPW ũ−1 + residuals, (10.103)

where β̃ denotes the IV estimates under the null hypothesis of no serial correl-
ation, ũ denotes y−x(β̃), and X̃ denotesX(β̃). This is clearly the IV analog
of regression (10.76); if the two occurrences of PW were removed, (10.76) and
(10.103) would be identical. The t statistic on the estimate of r from this
regression will be a valid test statistic. This will be true both when (10.103)
is estimated explicitly by OLS and when ũ is regressed on X̃ and ũ−1 using
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where β̂ denotes the NLS estimates of β for the whole sample. The GNR
(11.04) may be written more compactly as

û = X̂b+ δ∗X̂c + residuals, (11.05)

where û has typical element yt − xt(β̂), and X̂ has typical element Xt(β̂).
Here ∗ denotes the direct product of two matrices. Since δtXti(β̂) is a typical
element of δ∗X̂, δt∗X̂t = X̂t when δt = 1 and δt∗X̂t = 0 when δt = 0. To
perform the test, we simply have to estimate the model using the entire sample
and regress the residuals from that estimation on the matrix of derivatives X̂
and on that matrix with the rows which correspond to group 1 observations
set to zero. We do not have to reorder the data. As usual, there are several
asymptotically valid test statistics, the best probably being the ordinary F
statistic for the null hypothesis that c = 0. In the usual case with k less than
min(n1, n2), that test statistic will have k degrees of freedom in the numerator
and n− 2k degrees of freedom in the denominator.

Notice that the sum of squared residuals from regression (11.05) is equal
to the SSR from the GNR

û = X̂b + residuals (11.06)

run over observations 1 to n1 plus the SSR from the same GNR run over
observations n1+1 to n. This is the unrestricted sum of squared residuals for
the F test of c = 0 in (11.05). The restricted sum of squared residuals for that
test is simply the SSR from (11.06) run over all n observations, which is the
same as the SSR from nonlinear estimation of the null hypothesis H0. Thus
the ordinary Chow test for the GNR (11.06) will be numerically identical to
the F test of c = 0 in (11.05). This provides the easiest way to calculate the
test statistic.

As we mentioned above, the ordinary Chow test (11.03) is not applicable
if min(n1, n2) < k. Using the GNR framework, it is easy to see why this is
so. Suppose that n2 < k and n1 > k, without loss of generality, since the
numbering of the two groups of observations is arbitrary. Then the matrix
δ∗X̂, which has k columns, will have n2 < k rows that are not just rows of
zeros and hence will have rank at most n2. Thus, when equation (11.05) is
estimated, at most n2 elements of c will be identifiable, and the residuals
corresponding to all observations that belong to group 2 will be zero. The
number of degrees of freedom for the numerator of the F statistic must there-
fore be at most n2. In fact, it will be equal to the rank of [X̂ δ∗X̂] minus the

rank of X̂, which might be less than n2 in some cases. The number of degrees
of freedom for the denominator will be the number of observations for which
(11.05) has nonzero residuals, which will normally be n1, minus the number of
regressors that affect those observations, which will be k, for a total of n1−k.
Thus we can use the GNR whether or not min(n1, n2) < k, provided that
we use the appropriate numbers of degrees of freedom for the numerator and
denominator of the F test.
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than the other may be seen as a deficiency of these tests. That is so only if
one misinterprets their nature. Nonnested hypothesis tests are specification
tests, and since there is almost never any reason a priori to believe that either
of the models actually generated the data, it is appropriate that nonnested
tests, like other model specification tests, may well tell us that neither model
seems to be compatible with the data.

It is important to stress that the purpose of nonnested tests is not to
choose one out of a fixed set of models as the “best” one. That is the subject
of an entirely different strand of the econometric literature, which deals with
criteria for model selection. We will not discuss the rather large literature on
model selection in this book. Two useful surveys are Amemiya (1980) and
Leamer (1983), and an interesting recent paper is Pollak and Wales (1991).

It is of interest to examine more closely the case in which both models
are linear, that is, x(β) =Xβ and z(γ) = Zγ. This will allow us to see why
the J and P tests (which in this case are identical) are asymptotically valid
and also to see why these tests may not always perform well in finite samples.
The J-test regression for testing H1 against H2 is

y =Xb+ αPZy + residuals, (11.16)

where PZ = Z(Z>Z)−1Z> and b = (1 − α)β. Using the FWL Theorem, we
see that the estimate of α from (11.16) will be the same as the estimate from
the regression

MXy = αMXPZy + residuals. (11.17)

Thus, if ś denotes the OLS estimate of σ from (11.16), the t statistic for α = 0
will be

y>PZMXy

ś(y>PZMXPZy)1/2
. (11.18)

First of all, notice that when only one column of Z, say Z1, does not
belong to S(X), it must be the case that

S(X,PZy) = S(X,Z) = S(X,Z1).

Therefore, the J-test regression (11.16) must yield exactly the same SSR as
the regression

y =Xb+ δZ1 + residuals. (11.19)

Thus, in this special case, the J test is equal in absolute value to the t statistic
on the estimate of δ from (11.19).

When two or more columns of Z do not belong to S(X), this special
result is no longer available. If the data were actually generated by H1, we
can replace y in the numerator of (11.18) byXβ+u. SinceMXXβ = 0, that
numerator becomes

β>X>PZMXu+ u>PZMXu. (11.20)
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The two terms of (11.20) are of different orders. The first term is a weighted
sum of the elements of the vector u, each of which has mean zero. Thus,
under suitable regularity conditions, it is easy to see that

n−1/2β>X>PZMXu
a∼ N

(
0, plim

n→∞

(
n−1σ2

1β
>X>PZMXPZXβ

))
.

This first term is thus O(n1/2). The second term, in contrast, is O(1), since

plim
n→∞

(
u>PZMXu

)
= plim

n→∞

(
u>PZu− u>PZPXu

)
= σ2

1k2 − σ2
1 lim
n→∞

(
Tr(PZPX)

)
,

and the trace of PZPX is O(1). Thus, asymptotically, it is only the first term
in (11.20) that matters.

Similarly, under H1 the factor in parentheses in the denominator of
(11.18) is equal to

β>X>PZMXPZXβ + 2β>X>PZMXPZu+ u>PZMXPZu. (11.21)

By arguments similar to those used in connection with the numerator, the
first of the three terms in (11.21) may be shown to be O(n), the second
O(n1/2), and the third O(1). Moreover, it is clear that ś → σ1 under H1.
Thus, asymptotically under H1, the test statistic (11.18) tends to the random
variable

β>X>PZMXu

σ1
(
β>X>PZMXPZXβ

)1/2 ,
which can be shown to be distributed asymptotically as N(0, 1).

This analysis not only makes it clear why the J and P tests are valid
asymptotically but also indicates why they may not be well behaved in finite
samples. When the sample size is small or Z contains many regressors that
are not in S(X), the quantity u>PZMXu, which is asymptotically negligible,
may actually be large and positive. Hence, in such circumstances, the J-test
statistic (11.18) may have a mean that is substantially greater than zero.

Several ways of reducing or eliminating this bias have been suggested.
The simplest, which was first proposed by Fisher and McAleer (1981) and
further studied by Godfrey (1983), is to replace γ̂ in the J-test and P -test
regressions by γ̃, which is the estimate of γ obtained by minimizing(

x̂− z(γ)
)>(x̂− z(γ)

)
.

Thus γ̃ is the NLS estimate of γ obtained when one uses the fitted values x̂
instead of the dependent variable y. In the linear case, this means that the
J-test regression (11.16) is replaced by the regression

y =Xb+ αPZPXy + residuals. (11.22)
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This regression yields what is called the JA test because Fisher and McAleer
attributed the basic idea to Atkinson (1970). Godfrey (1983) showed, using
a result of Milliken and Graybill (1970), that the t statistic on the estimate
of α from regression (11.22) actually has the t distribution in finite samples
under the usual conditions for t statistics to have this distribution (u normally
distributed, X and Z independent of u). The intuition for this result is quite
simple. The vector of fitted values PXy contains only the part of y that
lies in S(X). It must therefore be independent of MXy, which is what the
residuals from (11.22) would be if α = 0. Therefore, we can treat PZPXy (or
any other regressor that depends on y only through PXy) as if it were a fixed
regressor.4 The PA test is to the P test as the JA test is to the J test.

Unfortunately, the JA and PA tests are in many circumstances much less
powerful than the ordinary J and P tests; see Davidson and MacKinnon
(1982) and Godfrey and Pesaran (1983). Thus if, for example, the J test
rejects the null hypothesis and the JA test does not, it is hard to know whether
this is because the former is excessively prone to commit a Type I error or
because the latter is excessively prone to commit a Type II error.

A second approach is to estimate the expectation of u>MXPZu, subtract
it from y>MXPZy, and then divide it by an estimate of the square root of the
variance of the resulting quantity so as to obtain a test statistic that would be
asymptotically N(0, 1). This approach was originally proposed in a somewhat
more complicated form by Godfrey and Pesaran (1983); a simpler version may
be found in the “Reply” of MacKinnon (1983). This second approach is a good
deal harder to use than the JA test, since it involves matrix calculations that
cannot be performed by a sequence of regressions, and it does not yield an
exact test. It also requires the assumption of normality. However, it does
seem to yield a test with much better finite-sample properties under the null
than the J test and, at least in some circumstances, much better power than
the JA test.

The vector γ̃ is of interest in its own right. The original Cox test used
the fact that, under H1,

plim
n→∞

(
γ̃
)
= plim

n→∞

(
γ̂
)
.

It is possible to construct a test based directly on the difference between
γ̂ and γ̃. Such a test, originally proposed by Dastoor (1983) and developed
further by Mizon and Richard (1986), looks at whether the value of γ predicted
by theH1 model (i.e., γ̃) is the same as the value obtained by direct estimation
of H2 (i.e., γ̂). These tests are called encompassing tests, because if H1

does explain the performance of H2, it may be said to “encompass” it; see
Mizon (1984). The principle on which they are based is sometimes called the
encompassing principle.

4 By the same argument, the RESET test discussed in Section 6.5 is exact in
finite samples whenever an ordinary t test would be exact.
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For a regression model like (11.27), it is easy to compute a DWH test by
means of an artificial regression. We saw some examples of this in Section 7.9
and will discuss further examples below. However, there is another way to
compute DWH tests, and it can be more convenient in some cases. For some
model that need not necessarily be a regression model, let θ̂ denote an efficient
estimator of the model parameters and θ̌ an estimator that is less efficient but
consistent under weaker conditions than those of the model. Let us denote
the vector of contrasts between θ̌ and θ̂ by e. Then we have seen that

n1/2(θ̌ − θ0)
a
= n1/2(θ̂ − θ0) + n1/2e, (11.30)

where n1/2e is asymptotically uncorrelated with n1/2(θ̂−θ0). This result was
proved for models estimated by maximum likelihood in Section 8.8; its finite-
sample equivalent for linear regression models was proved as part of the proof
of the Gauss-Markov Theorem in Section 5.5. Because the two terms on the
right-hand side of (11.30) are asymptotically uncorrelated, the asymptotic
covariance matrix of the left-hand side is just the sum of the asymptotic
covariance matrices of those two terms. Therefore, we obtain

lim
n→∞

V
(
n1/2(θ̌ − θ0)

)
= lim

n→∞
V
(
n1/2(θ̂ − θ0)

)
+ lim

n→∞
V (n1/2e),

from which, in simplified notation, we may deduce the asymptotic covariance
matrix of the vector of contrasts:

V ∞(θ̌ − θ̂) = V ∞(θ̌)− V ∞(θ̂). (11.31)

In words, the asymptotic covariance matrix of the difference between θ̌ and θ̂
is equal to the difference of their respective asymptotic covariance matrices.
This important result is due to Hausman (1978).

The result (11.31) can be used to construct DWH tests of the form

(θ̌ − θ̂)>
(
V̌ (θ̌)− V̂ (θ̂)

)−1
(θ̌ − θ̂), (11.32)

where V̌ (θ̌) and V̂ (θ̂) denote estimates of the covariance matrices of θ̌ and θ̂,
respectively. The test statistic (11.32) will be asymptotically distributed as
chi-squared with as many degrees of freedom as the rank of V ∞(θ̌)− V ∞(θ̂).
Note that the inverse in (11.32) will have to be replaced by a generalized
inverse if, as is often the case, the rank of V ∞(θ̌)− V ∞(θ̂) is less than the
number of parameters in θ; see Hausman and Taylor (1982). There can be
practical difficulties with (11.32) if V̌ (θ̌)− V̂ (θ̂) is not positive semidefinite
or if the rank of V̌ (θ̌)− V̂ (θ̂) differs from the rank of V ∞(θ̌)− V ∞(θ̂). That
is why we emphasize the approach based on artificial regressions.

In the case of the linear regression (11.27), where the two estimators are
(11.28) and (11.29), the DWH test is based on the vector of contrasts

β̌ − β̂ =
(
X>AX

)−1
X>AMXy. (11.33)
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This looks just like expression (7.59), with A replacing PW , and may be
derived in exactly the same way. The first factor in (11.33), (X>AX)−1, is
simply a k × k matrix with full rank, which will have no effect on any test
statistic that we might compute. Therefore, what we really want to do is test
whether the vector

n−1/2X>AMXy (11.34)

has mean zero asymptotically. This vector has k elements, but even ifAX has
full rank, not all those elements may be random variables, because MX may
annihilate some columns of AX. Suppose that k∗ is the number of linearly
independent columns of AX that are not annihilated by MX. Then testing
(11.34) is equivalent to testing whether the vector

n−1/2X∗>AMXy (11.35)

has mean zero asymptotically, where X∗ denotes k∗ columns of X with the
property that none of the columns of AX∗ is annihilated by MX.

Now consider the artificial regression

y =Xβ +AX∗δ + residuals. (11.36)

It is easily shown by using the FWL Theorem that the OLS estimate of δ is

δ́ =
(
X∗>AMXAX

∗)−1
X∗>AMXy,

and it is evident that, in general, plim(δ́) = 0 if and only if (11.35) has mean
zero asymptotically. The ordinary F statistic for δ = 0 in (11.36) is

y>PMXAX∗y/k∗

y>MX,MXAX∗y/(n− k − k∗)
, (11.37)

where PMXAX∗ is the matrix that projects onto S(MXAX
∗), andMX,MXAX∗

is the matrix that projects onto S⊥(X,MXAX
∗). If (11.27) actually gen-

erated the data, the statistic (11.37) will certainly be valid asymptotically,
since the denominator will then consistently estimate σ2. It will be exactly
distributed as F (k∗, n− k− k∗) in finite samples if the ut’s in (11.27) are nor-
mally distributed and X and A can be treated as fixed. Regression (11.36)
and expression (11.37) are essentially the same as regression (7.62) and ex-
pression (7.64), respectively; the latter are special cases of the former.

The most common type of DWH test is the one we dealt with in Sec-
tion 7.9, which asks whether least squares estimates are consistent when some
of the regressors may be correlated with the error terms. However, there are
numerous other possibilities. For example, β̌ might be the OLS estimator for
β in the model

y =Xβ +Zγ + u, (11.38)
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would be to have only one column in Z, that column being proportional to a.
In practice, we are rarely in that happy position. There are normally a number
of things that we suspect might be wrong with our model and hence a large
number of regression directions in which to test. Faced with this situation,
there are at least two ways to proceed.

One approach is to test against each type of potential misspecification
separately, with each test having only one or a few degrees of freedom. If the
model is in fact wrong in one or a few of the regression directions in which
these tests are carried out, such a procedure is as likely as any to inform us of
that fact. However, the investigator must be careful to control the overall size
of the test, since when one does, say, 10 different tests each at the .05 level,
the overall size could be as high as .40; see Savin (1980). Moreover, one should
avoid jumping to the conclusion that the model is wrong in a particular way
just because a certain test statistic is significant. One must remember that
cos2φ will often be well above zero for many tests, even if only one thing is
wrong with the model.

Alternatively, it is possible to test for a great many types of misspecifi-
cation at once by putting all the regression directions we want to test against
into one big Z matrix. This maximizes cos2φ and hence maximizes the chance
that the test is consistent, and it also makes it easy to control the size of the
test. But because such a test will have many degrees of freedom, power may
be poor except when the sample size is large. Moreover, if such a test rejects
the null, that rejection gives us very little information as to what may be
wrong with the model. Of course, the coefficients on the individual columns
of Z in the test regression may well be informative.

This raises the question of what to do when one or more tests reject the
null hypothesis. That is a very difficult question, and we will discuss it in
Section 12.7.

12.6 Asymptotic Relative Efficiency

Since all consistent tests reject with probability one as the sample size tends
to infinity, it is not obvious how to compare the power of tests of which the
distributions are known only asymptotically. Various approaches have been
proposed in the statistical literature, of which the best known is probably
the concept of asymptotic relative efficiency, or ARE. This concept, which
is closely related to the idea of local alternatives, is due to Pitman (1949),
and has since been developed by many other authors; see Kendall and Stuart
(1979, Chapter 25). Suppose that we have two test statistics, say τ1 and τ2,
both of which have the same asymptotic distribution under the null and both
of which, like all the test statistics we have discussed in this chapter, are root-n
consistent. This means that, for the test to have a nondegenerate asymptotic
distribution, the drifting DGP must approach the simple null hypothesis at a
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rate proportional to n−1/2. In this case, the asymptotic efficiency of τ2 relative
to τ1 is defined as

ARE21 = lim
n→∞

(
n1
n2

)
,

where n1 and n2 are sample sizes such that τ1 and τ2 have the same power,
and the limit is taken as both n1 and n2 tend to infinity. If, for example,
ARE21 were 0.25, τ2 would asymptotically require 4 times as large a sample
as τ1 to achieve the same power.

For tests with the same number of degrees of freedom, it is easy to see
that

ARE21 =
cos2φ2
cos2φ1

.

Recall from expression (12.23) that the NCP is proportional to cos2 φ. If the
DGP did not drift, it would also be proportional to the sample size. If τ1
and τ2 are to be equally powerful in this case, they must have the same
NCP. This means that n1/n2 must be equal to cos2φ2/cos

2φ1. Suppose, for
example, that cos2φ1 = 1 and cos2φ2 = 0.5. Then the implicit alternative
hypothesis for τ1 must include the DGP, while the implicit alternative for
τ2 does not. Thus the directions in which τ1 is testing explain all of the
divergence between the null hypothesis and the DGP, while the directions in
which τ2 is testing explain only half of it. But we can compensate for this
reduced explanatory power by making n2 twice as large as n1, so as to make
both tests equally powerful asymptotically. Hence ARE21 must be 0.5. See
Davidson and MacKinnon (1987) for more on this special case.

In the more general case in which τ1 and τ2 have different numbers of
degrees of freedom, calculating the ARE becomes more complicated. The
optimal test will be one for which the implicit alternative hypothesis includes
the drifting DGP (so that cos2φ = 1) and that involves only one degree of
freedom. There may of course be many asymptotically equivalent tests that
satisfy these criteria, or there may in practice be none at all. Tests that involve
more than one degree of freedom, or have cos2φ < 1, will be asymptotically
less efficient than the optimal test and hence will have AREs less than 1.

The consequences of using tests with r > 1 and/or cos2φ < 1 are illus-
trated in Table 12.1. The effect of changing cos2φ does not depend on either
the size or power of the test, but the effect of changing r depends on both of
these; see Rothe (1981) and Saikkonen (1989). The table was calculated for a
size of .05 and powers of .90 (the first entry in each cell) and .50 (the second
entry). Each entry in the table is the ARE for the specified test relative to
that for the optimal one. Thus each entry may be interpreted as the factor
by which the sample size for the optimal test may be smaller than the sample
size for the nonoptimal test if both are to have equal asymptotic power.

From Table 12.1, we see that the cost of using a test with a needlessly
large number of degrees of freedom, or with a value of cos2φ less than 1,
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Our objective is to calculate the NCPs and corresponding values of cos2φ
for tests of H0 against both H1 and H2 when the data are generated by
(12.28). Thus we will suppose that the data are generated by a drifting DGP
that is a special case of H2. This drifting DGP can be written as

yt =Xtβ0 + α0n
−1/2(Xt−1β0 + ut−1) + ut, ut ∼ IID(0, σ2

0). (12.29)

Note that this DGP does not involve the recursive calculation of yt, as (12.28)
seems to require, because (12.29) is locally equivalent to (12.28) in the neigh-
borhood of δ = 0 and α0 = 0.

When we test H0 against H2, we will be testing in the direction of the
DGP and cos2φ will evidently be unity. Using expression (12.25), we see that
the NCP for this test is

Λ22 ≡ α2
0

σ2
0

plim
n→∞

(
1−
n

(
X−1β0 + u−1

)>MX

(
X−1β0 + u−1

))
, (12.30)

where u−1 andX−1 denote, respectively, the vector with typical element ut−1

and the matrix with typical row Xt−1. Here X−1β0 +u−1 is playing the role
of the vector a in expression (12.25). The notation Λ22 means that H2 is the
alternative against which we are testing and that the DGP belongs to H2.
Taking the probability limit, (12.30) becomes

Λ22 =
α2
0

σ2
0

(
σ2
0 + plim

n→∞

1−
n

∥∥MXX−1β0

∥∥2)
= α2

0

(
1 + σ−2

0 plim
n→∞

1−
n

∥∥MXX−1β0

∥∥2).
Now let us see what happens when we test H0 against H1. In the neigh-

borhood of H0, the latter is locally equivalent to

y =Xβ + ρu−1 + u, u ∼ IID(0, σ2I), (12.31)

which avoids the recursive calculation that (12.27) seems to require. Because
AR(1) and MA(1) processes are locally equivalent near the point where their
respective parameters are zero, this looks like a model with an MA(1) error
process. We see from (12.31) that u−1 plays the role of Z. Once again,
X−1β0 + u−1 plays the role of a. Thus, from (12.18), the NCP is given by

Λ12 =
α2
0

σ2
0

plim
n→∞

(
1−
n
(X−1β0 + u−1)

>MXu−1

)
plim
n→∞

(
1−
n
u−1

>MXu−1

)−1

× plim
n→∞

(
1−
n
u−1

>MX(X−1β0 + u−1)
)
. (12.32)
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Because

plim
n→∞

(
1−
n
(X−1β0 + u−1)

>MXu−1

)
= plim

n→∞

(
1−
n

(
β0

>X−1
>MXu−1 + u−1

>MXu−1

))
= σ2

0 ,

expression (12.32) simplifies to

α2
0

σ2
0

σ2
0(σ

−2
0 )σ2

0 = α2
0.

Since the data were generated by a special case of H2, cos2φ for the test
against H1 is simply the ratio of the NCP Λ12 to the NCP Λ22. Thus

cos2φ = α2
0

(
α2
0

(
1 + σ−2

0 plim 1−
n

∥∥MXX−1β0

∥∥2))−1

=

(
1 +

plimn−1‖MXX−1β0‖2

σ2
0

)−1

.

(12.33)

The second line of (12.33) provides a remarkably simple expression for
cos2φ for this special case. It depends only on the ratio of the probability
limit of n−1 times the squared length of the vectorMXX−1β0 to the variance
of the error terms in the DGP (12.29). As this ratio tends to zero, cos2φ
tends to unity. Conversely, as this ratio tends to infinity, cos2φ tends to zero.
The intuition is very simple. As the ratio of plimn−1‖MXX−1β0‖2 to σ2

0

tends to zero, because for instance β0 tends to zero, MXy−1 (where y−1 has
typical element yt−1) becomes indistinguishable from MXu−1. When that
happens, a test against H1 becomes indistinguishable from a test against H2.
On the other hand, as the ratio tends in the other direction toward infinity,
the correlation between yt−1 and ut−1 tends to zero, and the directions in
which H1 and H2 differ from H0 tend to become mutually orthogonal.

The foregoing analysis could just as easily have been performed under
the assumption that the data were generated by a special case of H1. The
drifting DGP would then be

yt =Xtβ0 + ρ0n
−1/2ut−1 + ut, ut ∼ IID(0, σ2

0).

When we test H0 against H1, cos
2φ is now unity, and by an even simpler

argument than the one that led to (12.32) we see that the NCP is

Λ11 =
ρ20
σ2
0

plim
n→∞

(
1−
n
u−1

>MXu−1

)
= ρ20.
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Similarly, when we test H0 against H2, the NCP is

Λ21 =
ρ20
σ2
0

plim
n→∞

(
1−
n
u−1

>MX(X−1β0 + u−1)
)

× plim
n→∞

(
1−
n
(X−1β0 + u−1)

>MX(X−1β0 + u−1)
)−1

× plim
n→∞

(
1−
n
(X−1β0 + u−1)

>MXu−1

)
.

This simplifies to

ρ20
σ2
0

σ2
0

(
σ2
0 + plim 1−

n

∥∥MXX−1β0

∥∥2)−1

σ2
0

= ρ20

(
1 + σ−2

0 plim 1−
n

∥∥MXX−1β0

∥∥2)−1

.

Evidently, cos2φ for the test of H0 against H2 is the right-hand expression
here divided by ρ20, which is(

1 +
plimn−1‖MXX−1β0‖2

σ2
0

)−1

. (12.34)

This last result is worth comment. We have found that cos2φ for the
test against H2 when the data were generated by H1, expression (12.34), is
identical to cos2φ for the test against H1 when the data were generated by H2,
expression (12.33). This result is true not just for this example, but for every
case in which both alternatives involve one-degree-of-freedom tests. Geomet-
rically, this equivalence simply reflects the fact that when z is a vector, the
angle between αn−1/2MXa and the projection of αn−1/2MXa onto S(X,z),
which is

αn−1/2MXz
(
z>MXz

)−1
z>MXa,

is the same as the angle between αn−1/2MXa and αn−1/2MXz. The reason
for this is that (z>MXz)

−1z>MXa is a scalar when z is a vector. Hence, if
we reverse the roles of a and z, the angle is unchanged. This geometrical fact
also results in two numerical facts. First, in the regressions

y =Xα+ γz + residuals and

z =Xβ + δy + residuals,

the t statistic on z in the first is equal to that on y in the second. Second, in
the regressions

MXy = γMXz + residuals and

MXz = δMXy + residuals,

the t statistics on γ and δ are numerically identical and so are the uncen-
tered R2’s.
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The analysis of power for this example illustrates the simplicity and gen-
erality of the idea of drifting DGPs. Although the case considered is rather
simple, it is very commonly encountered in applied work. Regression mod-
els with time-series data frequently display evidence of serial correlation in
the form of low Durbin-Watson statistics or other significant test statistics
for AR(1) errors. We have seen that (except when plimn−1‖MXX−1β0‖2 is
large relative to σ2

0) this evidence is almost as consistent with the hypothe-
sis that the model should have included a lagged dependent variable as with
the hypothesis that the error terms actually follow an AR(1) process. Thus
one should be very cautious indeed when one has to interpret the results of
a test against AR(1) errors that rejects the null. One would certainly want
to consider several possible alternative models in addition to the alternative
that the errors actually follow an AR(1) process. At the very least, before
even tentatively accepting that alternative, one would want to subject it to
the tests for common factor restrictions that we discussed in Section 10.9.

In the foregoing example, it was easy to evaluate analytically the values
of Λ and cos2φ in which we were interested. This will of course not always be
the case. However, it is always possible to calculate approximations to these
quantities numerically. To do this one simply has to run regression (12.20),
evaluating X(β), a, and Z at assumed (or estimated) parameter values. If a
and/or Z were stochastic, one would have to generate them randomly and
use a very large number of generated observations (which can be obtained by
repeating the actual observations as many times as necessary) so as to approx-
imate the desired probability limits. The uncentered R2 from the regression
approximates cos2φ and the explained sum of squares approximates Λ.

12.8 Test Statistics that Do Not Reject the Null

For most of this chapter, we have been concerned with how to interpret test
statistics that reject the null hypothesis. In many instances, of course, test
statistics fail to reject. Thus it is just as important to know how to interpret a
failure to reject as it is to know how to interpret a rejection. Even though we
may sometimes speak about “accepting” a null hypothesis when one or more
tests fail to reject it, any such acceptance should obviously be provisional and
tempered with caution. Just how cautious we should be depends on the power
of the test or tests that did not reject the null. We can be most confident
about the validity of the null hypothesis if tests that are known to have high
power against the alternatives of interest fail to reject it.

As we have seen, the power of a test depends on the way the data are
actually generated. In a recent paper, Andrews (1989) has suggested that, as
an aid to interpreting nonrejection of a null hypothesis by a particular test, one
might consider the power the test would have under the DGPs associated with
alternative hypotheses of interest. It seems reasonable that such alternatives
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which is
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is the same as the angle between αn−1/2MXa and αn−1/2MXz. The reason
for this is that (z>MXz)

−1z>MXa is a scalar when z is a vector. Hence, if
we reverse the roles of a and z, the angle is unchanged. This geometrical fact
also results in two numerical facts. First, in the regressions
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the standard normal distribution, this probability is

P (α, λ) ≡ 1− Φ(cα − λ) + Φ(−cα − λ). (12.36)

In order to find the inverse power function corresponding to (12.36), we let
P (α, λ) = π for some desired level of power π. This equation implicitly
defines the inverse power function. It is easy to check from (12.36) that
P (α,−λ) = P (α, λ). Thus, if P (α, λ) = π, then P (α,−λ) = π also. However,
the nonuniqueness of λ would not arise if we were to square the test statistic
to obtain a χ2 form. No closed-form expression exists giving the (absolute)
value of λ as a function of α and π in the present example, but for any given
arguments λ is not hard to calculate numerically.

What interpretation should we give to the resulting function λ(α, π)? If
we square the asymptotically normal statistic (12.35) in order to obtain a
χ2 form, the result will have a limiting distribution of χ2(1, Λ) with Λ = λ2.
Then it appears that Λ = (λ(α, π))2 is asymptotically the smallest NCP
needed in order that a test of size α based on the square of (12.35) should
have probability at least π of rejecting the null.

Let the nonlinear regression model be written, as usual, as

y = x(β) + u, (12.37)

where the parameter of interest θ is a component of the parameter vector β. If
we denote byXθ the derivative of the vector x(β) with respect to θ, evaluated
at the parameters β0, and by MX the projection off all the columns of X(β)

other than Xθ, then the asymptotic variance of the least squares estimator θ̂
is σ2

0(Xθ
>MXXθ)

−1, where σ2
0 is the variance of the components of u. If we

consider a DGP with a parameter θ 6= θ0, then for a given sample size n, the
parameter δ of the drifting DGP becomes n1/2(θ − θ0), and Λ = λ2 becomes

Λ =
1

σ2
0

(θ − θ0)
2Xθ

>MXXθ. (12.38)

This may be compared with the general expression (12.26). Now let θ(α, π)
be the value of θ that makes Λ in (12.38) equal to (λ(α, π))2 as given above by
the inverse power function. We see that, within an asymptotic approximation,
DGPs with values of θ closer to the θ0 of the null hypothesis than θ(α, π) will
have probability less than π of rejecting the null on a test of size α.

We should be unwilling to regard a failure to reject the null as evidence
against some other DGP or set of DGPs if, under the latter, there is not a fair
probability of rejecting the null. What do we mean by a “fair probability”
here? Some intuition on this matter can be obtained by considering what we
would learn in the present context by using a standard tool of conventional
statistical inference, namely, a confidence interval. Armed with the estimate θ̂
and an estimate of its standard error, σ̂θ, we can form a confidence interval
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If we write the LR statistic (13.08) in partitioned form, we obtain

LR = (θ̃ − θ̂)>I(θ̃ − θ̂)

=

[
θ̃1 − θ̂1
θ̃2 − θ̂2

]>[
I11 I12

I21 I22

][
θ̃1 − θ̂1
θ̃2 − θ̂2

]

= (θ̃1 − θ̂1)>I11(θ̃1 − θ̂1)− 2(θ̃1 − θ̂1)>I12θ̂2 + θ̂2>I22θ̂2.

where the last line uses the fact that θ̃2 = 0. Making use of the result (13.11),
the LR statistic can then be rewritten as

LR = (θ̃1 − θ̂1)>I11(θ̃1 − θ̂1)− 2(θ̃1 − θ̂1)>I11(θ̃1 − θ̂1) + θ̂2>I22θ̂2

= θ̂2
>I22θ̂2 − (θ̃1 − θ̂1)>I11(θ̃1 − θ̂1).

(13.12)

We now show that the Wald statistic is equal to (13.12). Since the re-
strictions take the form (13.09), we see that r(θ) = θ2 and r̂ = θ̂2. This
implies that the matrix R can be written as

R(θ) = [0 I ],

where the 0 matrix is r× (k− r), and the identity matrix I is r× r. Then the
expression R̂I−1R̂> that appears in the Wald statistic (13.05) is just the (2, 2)
block of the inverse matrix I−1. By the results in Appendix A on partitioned
matrices, we obtain(

R̂I−1R̂>)−1
=
(
(I−1)22

)−1
= I22 − I21I−1

11 I12. (13.13)

This result allows us to put (13.05) in the form

W = θ̂2
>(I22 − I21I−1

11 I12
)
θ̂2.

By (13.11), this last expression is equal to

θ̂2
>I22θ̂2 −

(
θ̃1 − θ̂1

)>I11(θ̃1 − θ̂1),
which is the same as (13.12). The proof of the equality of the three classical
statistics for the quadratic loglikelihood function (13.07) is therefore complete.

It is of interest to see how the three classical test statistics are re-
lated geometrically. Figure 13.1 depicts the graph of a loglikelihood function
`(y, θ1, θ2). It is drawn for a given sample vector y and consequently a given
sample size n. For simplicity, the parameter space has been supposed to be
two-dimensional. There is only one restriction, which is that the second com-
ponent of the parameter vector, θ2, is equal to zero. Therefore, the function
` can be treated as a function of the two variables θ1 and θ2 only, and its
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Thus we write for observation t

`t = `t(y
t,θ0) + n−1/2at(y

t). (13.27)

We can see from this that the log of the density of the tth observation is taken
to be as given by a parametrized model for a parameter vector θ0 satisfying
the restrictions of the null hypothesis, plus a term that vanishes with n−1/2

as n→ ∞. The fact that any density function is normalized so as to integrate
to unity means that the functions at in (13.27) must be chosen so as to obey
the normalization condition∫

exp
(
`t + n−1/2at

)
dyt = 1.

It can readily be shown that this implies that

E0

(
at(y

t)
)
= O(n−1/2), (13.28)

where E0 denotes an expectation calculated using `t(y
t,θ0) as log density. To

leading order asymptotically, then, the random variables at have mean zero.

The fact that `t is written in (13.27) as the sum of two terms does not
restrict the applicability of the analysis at all, because one can think of (13.27)
as arising from a first-order Taylor-series approximation to any drifting DGP.
An example would be the sequence of local alternatives

`t
(
yt, θ0 + n−1/2δ

)
.

By arguments similar to those of Section 12.3, one can show that a Taylor-
series approximation to this can be written in the form of (13.27).

We will now state without proof the results that correspond to equations
(12.11), (12.12), and (12.13) in the NLS context. They are discussed and
proved in Davidson and MacKinnon (1987), a paper that many readers may,
however, find somewhat difficult because of the nature of the mathematics
employed. These results provide asymptotically valid expressions for the vari-
ous ingredients of the classical test statistics under the drifting DGP specified
by (13.27). The first result is that the estimators θ̂ and θ̃ are still root-n
consistent for θ0:

θ̈ = θ0 +O(n−1/2),

from which we may conclude that Ï and R̈ are consistent for I0 and R0, just
as they are under the null hypothesis:

Ï = I0 +O(n−1/2); and R̈ = R0 +O(n−1/2).

We may also conclude from the consistency of θ̈ that all the Taylor expansions
used in developing equations (13.23), (13.25), and (13.26) are still valid, as
are these equations themselves.
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By the FWL Theorem,

β̂2 =
(
X2

>M1X2

)−1
X2

>M1y and(
(X>X)−1

)
22

=
(
X2

>M1X2

)−1
.

Thus (13.41) becomes

W = n

(
y>M1X2(X2

>M1X2)
−1X2

>M1y

y>MXy

)
= n

(
y>PM1X2y

y>MXy

)
.

From (13.37) and (13.39), we obtain

W =

(
rn

n− k

)
F ; LR = n log

(
1 +

W

n

)
. (13.42)

Since W is equal to n/(n− k) times rF , it is evident that

W = rF +O(n−1).

Finally, we turn to the LM statistic. We first observe from (8.83) that
the gradient with respect to the regression parameters β of the loglikelihood
function for a linear regression model with normal errors is

g(y,β, σ) =
1

σ2

n∑
t=1

Xt
>(yt −Xtβ) = σ−2X>(y −Xβ).

Thus, from (13.03), the LM statistic is

LM = g̃2
>(Ĩ−1

)
22
g̃2

= σ̃−4(y −Xβ̃)>X2

(
σ̃2(X2

>M1X2)
−1
)
X2

>(y −Xβ̃).
(13.43)

Since the LM test is based on the restricted model (13.35), we use the ML
estimate of σ from that model:

σ̃2 = 1−
n
y>M1y.

Substituting this into (13.43), we see that

LM = n

(
y>M1X2(X2

>M1X2)
−1X2

>M1y

y>M1y

)

= n

(
y>PM1X2

y/y>MXy

1 + y>PM1X2y/y
>MXy

)
= n

(
rF

n− k + rF

)
.

(13.44)
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from which we may derive that

e2τ̂ = σ̂2 = 1−
n

n∑
t=1

y2t . (13.50)

For this parametrization, the information matrix, which has only one element,
is constant and equal to 2:

I = − 1−
n
E(D2

τ `) =
2−
n

n∑
t=1

e−2τE(y2t ) = 2.

Notice that, although I is constant, the loglikelihood function is not a
quadratic function of τ . We now consider various classical tests for the null
hypothesis that τ = 0, or, equivalently, that σ2 = 1. Despite the simplicity of
this example, we will uncover a bewildering variety of test statistics.

Initially, we will work with the τ parametrization. It is not necessary to
do any estimation at all in order to find restricted estimates, since τ̃ = 0. For
the Wald and LR tests we need to find τ̂ . From (13.50), it is

τ̂ = 1−
2
log

(
1−
n

n∑
t=1

y2t

)
.

The restricted “maximum” of the loglikelihood function is just the value of
the function at τ = 0:

˜̀= − n−
2
log 2π − 1−

2

n∑
t=1

y2t = − n−
2
log 2π − n−

2
e2τ̂ . (13.51)

Although this is the restricted maximum, it is convenient to express it, as we
have done here, in terms of the unrestricted estimate, τ̂ . The unrestricted
maximum, ˆ̀, is given by

− n−
2
log 2π − nτ̂ − 1−

2
e−2τ̂

n∑
t=1

y2t = − n−
2
log 2π − nτ̂ − n−

2
, (13.52)

where the equality uses (13.50).

We may proceed at once to obtain the LR statistic, which is twice the
difference between (13.52) and (13.51):

LR = 2(ˆ̀− ˜̀) = n
(
e2τ̂ − 1− 2τ̂

)
= 2nτ̂2 + o(1).

(13.53)

The second line of (13.53) is a Taylor expansion of the statistic in powers of τ̂ .
This is of interest because, under the null hypothesis, we expect τ̂ , which is
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both the estimate itself and the difference between the estimate and the true
value of the parameter, to be of order n−1/2. It follows that 2nτ̂2 will be of
order unity and that higher terms in the expansion of the exponential function
in (13.53) will be of lower order. Thus, if the various forms of the classical
test do indeed yield asymptotically equal expressions, we may expect that the
leading term of all of them will be 2nτ̂2.

Let us next consider the LM statistic. The essential piece of it is the
derivative of the loglikelihood function (13.49) with respect to τ , evaluated at
τ = 0. We find that

∂`

∂τ
= −n+ e−2τ

n∑
t=1

y2t and
∂`

∂τ

∣∣∣∣
τ=0

= n
(
e2τ̂ − 1

)
. (13.54)

If for the variance of ∂`/∂τ we use n times the true, constant, value of the
single element of the information matrix, 2, the LM statistic is the square of
(∂`/∂τ)|τ=0, given by (13.54), divided by 2n:

LM1 = n−
2

(
e2τ̂ − 1

)2
= 2nτ̂2 + o(1).

This variant of the LM statistic has the same leading term as the LR statistic
(13.53) but will of course differ from it in finite samples.

Instead of the true information matrix, an investigator might prefer to
use the negative of the empirical Hessian to estimate the information matrix;
see equations (8.47) and (8.49). Because the loglikelihood function is not
exactly quadratic, this estimator does not coincide numerically with the true
value. Since

∂2`

∂τ2
= −2e−2τ

n∑
t=1

y2t , (13.55)

which at τ = 0 is −2ne2τ̂, the LM test calculated in this fashion is

LM2 = n−
2
e−2τ̂

(
e2τ̂ − 1

)2
= 2nτ̂2 + o(1). (13.56)

The leading term is as in LR and LM1, but LM2 will differ from both those
statistics in finite samples.

Another possibility is to use the OPG estimator of the information ma-
trix; see equations (8.48) and (8.50). This estimator is

1−
n

n∑
t=1

(
∂`

∂τ

)2
= 1−

n

n∑
t=1

(
y2t e

−2τ − 1
)2
,

which, when evaluated at τ = 0, is equal to

1−
n

n∑
t=1

(
y2t − 1

)2
.
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The leading term is as in LR and LM1, but LM2 will differ from both those
statistics in finite samples.
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.
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This expression cannot even be expressed as a function of τ̂ alone. To obtain
an expansion of the test statistic that makes use of it, we must make use of
the property of the normal distribution which tells us that E(y4t ) = 3σ4, or, in
terms of τ , 3e4τ .4 Using this property, we can invoke a law of large numbers
and conclude that the OPG information matrix estimator is indeed equal to
2 + o(1) at τ = 0. Thus the third variant of the LM test statistic is

LM3 =
n2
(
e2τ̂ − 1

)2∑n
t=1

(
y2t − 1

)2 = 2nτ̂2 + o(1).

Once again, the leading term is 2nτ̂2, but the form of LM3 is otherwise quite
different from that of LM1 or LM2.

Just as there are various forms of the LM test, so are there various forms of
the Wald test. Any one of these may be formed by combining the unrestricted
estimate τ̂ with some estimate of the information matrix, which in this case
is actually a scalar. The simplest choice is just the true information matrix,
that is, 2. With this we obtain

W1 = 2nτ̂2. (13.57)

It is easy to see that W2, which uses the empirical Hessian, is identical to W1,
because (13.55) evaluated at τ = τ̂ is just −2n. On the other hand, use of
the OPG estimator yields

W3 = τ̂2
n∑

t=1

(
y2t e

−2τ̂ − 1
)2
,

which is quite different from W1 and W2.

All of the above test statistics were based on τ as the single parameter
of the model, but we could just as well use σ or σ2 as the model parameter.
Ideally, we would like test statistics to be invariant to such reparametrizations.
The LR statistic is always invariant, since ˆ̀ and ˜̀ do not change when the
model is reparametrized. But all forms of the Wald statistic, and some forms
of the LM statistic, are in general not invariant, as we now illustrate.

Suppose we take σ2 to be the parameter of the model. The information
matrix is not constant in this new parametrization, and so we must evaluate
it at the estimate σ̂2. It is easy to see that the information matrix, as a

4 Note that it was not necessary to use special properties of the normal distribu-
tion in order to expand the previous statistics, which were in fact all functions
of one and only one random variable, namely τ̂ . In general, in less simple
situations, this agreeable feature of the present example is absent and special
properties must be invoked in order to discover the behavior of all the various
test statistics.



462 The Classical Hypothesis Tests

function of σ2, is 1/(2σ4). If we use this expression for the information matrix,
evaluated at σ̂2, the Wald test becomes

W1 = n−
2
σ̂−4

(
σ̂2 − 1

)2
= n−

2
e−4τ̂

(
e2τ̂ − 1

)2
= 2nτ̂2 + o(1).

Since this differs from (13.57), we have shown that different parametrizations
lead to numerically different Wald statistics even if the true information ma-
trix, evaluated at the MLE of the model parameter, is used in both cases.

As we will see in the next section, the LM test is invariant if it is based
on the true information matrix evaluated at the MLE. But if some other
information matrix estimator is used, the LM test can also be parametrization
dependent. Suppose that we use the empirical Hessian. From (13.48), the first
two derivatives of ` with respect to σ2, evaluated at σ2 = 1, are

∂`

∂σ2

∣∣∣∣
σ2=1

= − 1−
2

(
n−

n∑
t=1

y2t

)
= n−

2

(
e2τ̂ − 1

)
and

∂2`

(∂σ2)2

∣∣∣∣
σ2=1

= n−
2

(
1− 2e2τ̂

)
.

From this, we find that the statistic LM2 calculated as was (13.56) but for
the σ2 parametrization, is

LM2 =
n
(
e2τ̂ − 1

)2
2
(
2e2τ̂ − 1

) = 2nτ̂2 + o(1). (13.58)

The leading term is correct, as it must be, but (13.58) is numerically different
from (13.56).

Plainly, there are still more forms of both the LM and Wald tests, some
but not all of which will coincide with one of the versions we have already
computed. The interested reader is invited to try out, for example, the effects
of using σ itself, rather than σ2, as the model parameter.

This example illustrates the fact that there may be many different classi-
cal tests, which are numerically different but asymptotically equivalent. The
fact that there are so many different tests creates the problem of how to choose
among them. One would prefer to use tests that are easy to compute and for
which the finite-sample distribution is well approximated by the asymptotic
distribution. Unfortunately, it frequently requires considerable effort to deter-
mine the finite-sample properties of asymptotic tests. Any method of analysis
tends to be restricted to very special cases, such as the case of linear regression
models with normal errors discussed in Section 13.4. One generally applica-
ble approach is to use computer simulation (Monte Carlo experiments); see
Chapter 21.
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statistic will be the same. This result assumes that we are using the efficient
score form of the LM test. If we based the test on estimates of the information
matrix, the two LM statistics might not be numerically the same, although
they would still be the same asymptotically.

Geometrically, two different alternative hypotheses are locally equivalent
if they touch at the null hypothesis. By this we mean not merely that the two
alternative hypotheses yield the same values of their respective loglikelihood
functions when restricted by the null hypothesis, as will always be the case, but
also that the gradients of the two loglikelihood functions are the same, since
the gradients are tangents to the two models that touch at the null model. In
these circumstances, the two LM tests must be numerically identical.

What does it mean for two models to touch, or, to use the nongeometrical
term for the property, to be locally equivalent? A circular definition would
simply be that their gradients are the same at all DGPs at which the two
models intersect. Statistically, it means that if one departs only slightly from
the null hypothesis while respecting one of the two alternative hypotheses,
then one departs from the other alternative hypothesis by an amount that
is of the second order of small quantities. For instance, an AR(1) process
characterized by a small autoregressive parameter ρ differs from some MA(1)
process to an extent proportional only to ρ2. To prove this formally would
entail a formal definition of the distance between two DGPs, but our earlier
circular definition is an operational one: If the gradient g̃1 calculated for the
first alternative is the same as the gradient g̃2 for the second, then the two
alternatives touch at the null. It should now be clear that this requirement is
too strong: It is enough if the components of g̃2 are all linear combinations
of those of g̃1 and vice versa. An example of this last possibility is provided
by the local equivalence, around the null of white noise errors, of regression
models with ARMA(p, q) errors on the one hand and with AR(max(p, q))
errors on the other; see Section 10.8. For more examples, see Godfrey (1981)
and Godfrey and Wickens (1982).

Both the geometrical and algebraic aspects of the invariance of LM tests
under local equivalence are expressed by means of one simple remark: The
LM test can be constructed solely on the basis of the restricted ML estimates
and the first derivatives of the loglikelihood function evaluated at those esti-
mates. This implies that the LM test takes no account of the curvature of the
alternative hypothesis near the null.

We may summarize the results of this section as follows:

1. The LR test depends only on two maximized loglikelihood functions. It
therefore cannot depend either on the parametrization of the model or
on the way in which the restrictions are formulated in terms of those
parameters.

2. The efficient score form of the LM test is constructed out of two ingre-
dients, the gradient and the information matrix, which do alter under
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can be used with any model estimated by maximum likelihood. The OPG
regression was first used as a means of computing test statistics by Godfrey
and Wickens (1981). This artificial regression, which is very easy indeed to
set up for most models estimated by maximum likelihood, can be used for the
same purposes as the GNR: verification of first-order conditions for the maxi-
mization of the loglikelihood function, covariance matrix estimation, one-step
efficient estimation, and, of greatest immediate interest, the computation of
test statistics.

Suppose that we are interested in the parametrized model (13.01). Let
G(θ) be the CG matrix associated with the loglikelihood function `n(θ), with
typical element

Gti(θ) ≡
∂`t(θ)

∂θi
; t = 1, . . . , n, i = 1, . . . , k,

where k is the number of elements in the parameter vector θ. Then the OPG
regression associated with the model (13.01) can be written as

ι = G(θ)c + residuals. (13.81)

Here ι is an n--vector of which each element is unity and c is a k--vector
of artificial parameters. The product of the matrix of regressors with the
regressand is the gradient g(θ) ≡ G>(θ)ι. The matrix of sums of squares and
cross-products of the regressors, G>(θ)G(θ), when divided by n, consistently
estimates the information matrix I(θ). These two features are essentially all
that is required for (13.81) to be a valid artificial regression.6 As with the
GNR, the regressors of the OPG regression depend on the vector θ. Therefore,
before the artificial regression is run, these regressors must be evaluated at
some chosen parameter vector.

One possible choice for this parameter vector is θ̂, the ML estimator for
the model (13.01). In this case, the regressor matrix is Ĝ ≡ G(θ̂) and the
artificial parameter estimates, which we will denote by ĉ, are identically zero:

ĉ =
(
Ĝ>Ĝ

)−1
Ĝ>ι =

(
Ĝ>Ĝ

)−1
ĝ = 0.

Since ĝ here is the gradient of the loglikelihood function evaluated at θ̂, the
last equality above is a consequence of the first-order conditions for the max-
imum of the likelihood. As with the GNR, then, running the OPG regression
with θ = θ̂ provides a simple way to test how well the first-order conditions
are in fact satisfied by a set of estimates calculated by means of some com-
puter program. The t statistics again provide the most suitable check. They
should not exceed a number around 10−2 or 10−3 in absolute value if a good
approximation to the maximum has been found.

6 Precise conditions for a regression to be called “artificial” are provided by
Davidson and MacKinnon (1990); see Section 14.4.
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Since the estimates ĉ for regression (13.81) are zero when the regressors
are Ĝ, those regressors have no explanatory power for ι, and the sum of
squared residuals is therefore equal to the total sum of squares. Because the
latter is

ι>ι =

n∑
t=1

1 = n,

the ML estimate of the residual variance in (13.81) is just unity:

1−
n
SSR = 1−

n
ι>ι = 1−

n
n = 1.

The OLS variance estimate, which is SSR/(n− k) = n/(n− k), is asymptot-
ically equivalent to this, but it will simplify the exposition if we suppose that
the ML estimate is used. The covariance matrix estimate for the vector ĉ
from (13.81) is then (

Ĝ>Ĝ
)−1

.

It is this expression that gives the OPG regression its name, for its inverse is
precisely the OPG estimator of the information matrix; see (8.48) and (8.50).7

It follows that, as with the GNR, n−1 times the covariance matrix estimator
from the OPG regression is asymptotically equal to the covariance matrix of
n1/2(θ̂ − θ0).

The property just established is not the only one shared by the Gauss-
Newton and OPG regressions. We will now establish two further properties
of the OPG regression that are in fact shared by all regressions to which we
give the name “artificial.” The first of these properties is what allows one to
use artificial regressions to perform one-step efficient estimation. According
to this property, if the OPG regression (13.81) is evaluated at some parameter
vector θ́ that is root-n consistent for θ0, so that θ́ − θ0 = O(n−1/2), then the
artificial parameter estimates ć are such that

n1/2ć
a
= n1/2(θ̂ − θ́), (13.82)

where θ̂ is the ML estimator of θ. This result is essentially the same as the
one proved for the Gauss-Newton regression in Section 6.6.

The result (13.82) is important. Because of it, we can proceed in one
step from any root-n consistent estimator θ́ to an estimator asymptotically
equivalent to the asymptotically efficient estimator θ̂. The one-step estimator
θ̀ defined by θ̀ ≡ θ́ + ć has the property that

n1/2(θ̀ − θ0) = n1/2(θ̂ − θ0) + o(1), (13.83)

7 As we noted in Section 8.6, some authors refer to the OPG estimator of the
information matrix as the BHHH estimator, after Berndt, Hall, Hall, and Haus-
man (1974), who advocated its use, although they did not explicitly make use
of the OPG regression itself.
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Curves (from highest to lowest) correspond to

λ = 1.5, 1, 0.5, 0, −0.5 and −1.

x

B(x, λ)

Figure 14.1 Box-Cox transformations for various values of λ

the regressors include a constant term, subjecting the dependent variable to a
Box-Cox transformation with λ = 1 is equivalent to not transforming it at all.
Subjecting it to a Box-Cox transformation with λ = 0 is equivalent to using
log yt as the regressand. Since these are both very plausible special cases, it is
attractive to use a transformation that allows for both of them. Even when it
is not considered plausible in its own right, the conventional Box-Cox model
provides a convenient alternative against which to test the specification of
linear and loglinear regression models; see Section 14.6.

The Box-Cox transformation is not without some serious disadvantages,
however. Consider the simple Box-Cox model

B(yt, λ) = xt(β) + ut, ut ∼ NID(0, σ2). (14.07)

For most values of λ (but not for λ = 0 or λ = 1) the value of B(yt, λ) is
bounded either from below or above; specifically, when λ > 0, B(yt, λ) cannot
be less than −1/λ and, when λ < 0, B(yt, λ) cannot be greater than −1/λ.
However, if ut is normally distributed, the right-hand side of (14.07) is not
bounded and could, at least in principle, take on arbitrarily large positive or
negative values. Thus, strictly speaking, (14.07) is logically impossible as a
model for yt. This remains true if we replace xt(β) by a regression function
that depends on λ.

One way to deal with this problem is to assume that data on yt are
observed only when the bounds are not violated, as in Poirier (1978b) and
Poirier and Ruud (1979). This leads to loglikelihood functions similar to
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The fundamental result that makes the DLR possible is that, for this
class of models, the information matrix I(θ) satisfies the equality

I(θ) = plim
n→∞

(
1−
n

(
F>(y,θ)F (y,θ) +K>(y,θ)K(y,θ)

))
(14.20)

and so can be consistently estimated by

1−
n

(
F>(y, θ̈)F (y, θ̈) +K>(y, θ̈)K(y, θ̈)

)
, (14.21)

where θ̈ is any consistent estimator of θ. We are interested in the implications
of (14.20) rather than how it is derived. The derivation makes use of some
rather special properties of the normal distribution and may be found in
Davidson and MacKinnon (1984a).

The principal implication of (14.20) is that a certain artificial regression,
which we call the DLR, has all the properties that we expect an artificial
regression to have. The DLR may be written as[

f(y,θ)
ι

]
=

[
−F (y,θ)

K(y,θ)

]
b + residuals. (14.22)

This artificial regression has 2n artificial observations. The regressand is
ft(yt,θ) for observation t and unity for observation t+ n, and the regressors
corresponding to θ are −Ft(y,θ) for observation t and Kt(y,θ) for observa-
tion t + n, where Ft and Kt denote, respectively, the tth rows of F and K.
Intuitively, the reason we need a double-length regression here is that each
genuine observation makes two contributions to the loglikelihood function: a
sum-of-squares term − 1

2f
2
t and a Jacobian term kt. As a result, the gradient

and the information matrix each involve two parts as well, and the way to
take both of these into account is to incorporate two artificial observations
into the artificial regression for each genuine one.

Why is (14.22) a valid artificial regression? As we noted when we dis-
cussed the OPG regression in Section 13.7, there are two principal conditions
that an artificial regression must satisfy. It is worth stating these conditions
somewhat more formally here.4 Let r(y,θ) denote the regressand for some
artificial regression and let R(y,θ) denote the matrix of regressors. Let the
number of rows of both r(y,θ) and R(y,θ) be n∗, which will generally be
either n or an integer multiple of n. The regression of r(y,θ) on R(y,θ) will
have the properties of an artificial regression if

R>(y,θ)r(y,θ) = ρ(θ)g(y,θ) and (14.23)

plim
n→∞

θ

(
1−
n
R>(y, θ̈)R(y, θ̈)

)
= ρ(θ) I(θ), (14.24)

4 For a fuller treatment of this topic, see Davidson and MacKinnon (1990).
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where θ̈ denotes any consistent estimator of θ. The notation plimθ indicates,
as usual, that the probability limit is being taken under the DGP characterized
by the parameter vector θ, and ρ(θ) is a scalar defined as

ρ(θ) ≡ plim
n→∞

θ

(
1

n∗ r
>(y,θ)r(y,θ)

)
.

Because ρ(θ) is equal to unity for both the OPG regression and the DLR,
those two artificial regressions satisfy the simpler conditions

R>(y,θ)r(y,θ) = g(y,θ) and (14.25)

plim
n→∞

θ

(
1−
n
R>(y, θ̈)R(y, θ̈)

)
= I(θ), (14.26)

as well as the original conditions (14.23) and (14.24). However, these simpler
conditions are not satisfied by the GNR and are thus evidently too simple in
general.

It is now easy to see that the DLR (14.21) satisfies conditions (14.25) and
(14.26). For the first of these, simple calculation shows that

[
−F (y,θ)

K(y,θ)

]>[
f(y,θ)
ι

]
= −F>(y,θ)f(y,θ) +K>(y,θ)ι,

which by (14.19) is equal to the gradient g(y,θ). For the second, we see that

[
−F (y,θ)

K(y,θ)

]>[−F (y,θ)

K(y,θ)

]
= F>(y,θ)F (y,θ) +K>(y,θ)K(y,θ).

The right-hand side here is just the expression that appears in the fundamental
result (14.20). Hence it is clear that the DLR must satisfy (14.26). All this
discussion assumes, of course, that the matrices F (y,θ) and K(y,θ) satisfy
appropriate regularity conditions, which may not always be easy to verify in
practice; see Davidson and MacKinnon (1984a).

The DLR can be used in all the same ways that the GNR and the OPG
regression can be used. In particular, it can be used

(i) to verify that the first-order conditions for a maximum of the log-
likelihood function are satisfied sufficiently accurately,

(ii) to calculate estimated covariance matrices,

(iii) to calculate test statistics,

(iv) to calculate one-step efficient estimates, and

(v) as a key part of procedures for finding ML estimates.
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Hence the DLR for the simple Box-Cox model, (14.04) with τ(yt, λ) given by
the Box-Cox transformation, is[ 1−σut(yt,β, λ)

1

]
(14.33)

=

 1−σXt(β)
−(λyλt log yt − yλt + 1)

σλ2
ut(yt,β, λ)

σ2

0 log yt − 1−σ


 ba
s

 + residuals,

where b is a k--vector of coefficients corresponding to β, a and s are scalar
coefficients corresponding to λ and σ, and

ut(yt,β, λ) ≡ B(yt, λ)− xt(β).

If the DLR (14.33) is evaluated at unrestricted ML estimates θ̂ ≡ (β̂, λ̂, σ̂), all
the estimated coefficients will be zero. Since the first-order conditions for σ
imply that

σ̂ =

(
1−
n

n∑
t=1

û2t

)1/2
,

the total sum of squares from the artificial regression will be 2n. Thus the
OLS covariance matrix estimate will simply be

(
2n/(2n − k − 2)

)
(R̂>R̂)−1,

where R̂ denotes the matrix of regressors that appears in (14.33), evaluated
at the ML estimates. By the fundamental result (14.20), this OLS covariance
matrix provides a valid estimate of the asymptotic covariance matrix of the
ML estimator θ̂.

It is clear from (14.33) that this asymptotic covariance matrix is not
block-diagonal between β and the other parameters. Forming the matrix
R>R, dividing by n, and taking probability limits, we see that the (β,β)
block of the information matrix I(θ) is simply

σ−2 plim
n→∞

(
1−
n
X>(β)X(β)

)
, (14.34)

as it would be if this were a nonlinear regression model. The (σ, σ) element is
simply 2/σ2, which again is what it would be if this were a nonlinear regression
model. But I(θ) also contains a (λ, λ) element, a (λ, σ) element, and a (β, λ)
row and column, all of which are clearly nonzero. For example, the element
corresponding to βi and λ is

− plim
n→∞

(
1

nσ2λ2

n∑
t=1

Xti(β)
(
λyλt log yt − yλt + 1

))
.

The (λ, λ) and (λ, σ) elements can also be obtained in a straightforward fash-
ion and are easily seen to be nonzero.
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unidentified. However, following the procedure used to obtain the J and P
tests, we can replace the parameters of the model that is not being tested
by estimates. Thus, if we wish to test H1, we can replace γ and σ2 by ML
estimates γ̂ and σ̂2 so that HC becomes

H ′
C : (1− α)

(
yt − xt(β)

σ1

)
+ α

(
log yt − zt(γ̂)

σ̂2

)
= εt.

It is straightforward to test H1 against H ′
C by means of the DLR: (yt − x̂t)

σ̂1

1

 =

 X̂t
(yt − x̂t)

σ̂1
ẑt − log yt

0 −1 σ̂1/yt

 bs
a

+ residuals, (14.45)

where x̂t ≡ xt(β̂), X̂t ≡ Xt(β̂), and ẑt ≡ zt(γ̂). The DLR (14.45) is actually
a simplified version of the DLR that one obtains initially. First, σ̂1 times the
original regressor for σ1 has been subtracted from the original regressor for α.
Then the regressors corresponding to β and σ1 have been multiplied by σ̂1,
and the regressor corresponding to α has been multiplied by σ̂2. None of these
modifications affects the subspace spanned by the columns of the regressor,
and hence none of them affects the test statistic(s) one obtains. The last
column of the regressor matrix in (14.45) is the one that corresponds to α.
The other columns should be orthogonal to the regressand by construction.

Similarly, if we wish to test H2, we can replace β and σ1 by ML estimates
β̂ and σ̂1 so that HC becomes

H ′′
C : (1− α)

(
yt − xt(β̂)

σ̂1

)
+ α

(
log yt − zt(γ)

σ2

)
= εt.

It is then straightforward to test H2 against H ′′
C by means of the DLR log yt − ẑt

σ̂2

1

 =

 Ẑt
log yt − ẑt

σ̂2
x̂t − yt

0 −1 σ̂2yt

 bs
a

+ residuals. (14.46)

Once again, this is a simplified version of the DLR that one obtains initially,
and the last column of the regressor matrix is the one that corresponds to α.

The tests we have just discussed evidently generalize very easily to models
involving any sort of transformation of the dependent variable, including Box-
Cox models and other models in which the transformation depends on one or
more unknown parameters. For more details, see Davidson and MacKinnon
(1984a). It should be stressed that the artificial compound model (14.44) is
quite arbitrary. Unlike the similar-looking model for regression models that
was employed in Section 11.3, it does not yield tests asymptotically equivalent
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the regularity conditions needed for the ML estimates β̂ to be consistent and
asymptotically normal, with asymptotic covariance matrix given by the in-
verse of the information matrix in the usual way. See, for example, Gouriéroux
and Monfort (1981). In the case of the logit model, the first-order conditions
(15.10) simplify to

n∑
t=1

(
yt − Λ(Xtβ̂)

)
Xti = 0, i = 1, . . . , k,

because λ(x) = Λ(x)
(
1− Λ(x)

)
. Notice that conditions (15.10) look just like

the first-order conditions for weighted least squares estimation of the nonlinear
regression model

yt = F (Xtβ) + et, (15.11)

with weights given by (
F (Xtβ)

(
1− F (Xtβ)

))−1/2

.

This makes sense, since the variance of the error term in (15.11) is

E(e2t ) = E
(
yt − F (Xtβ)

)2
= F (Xtβ)

(
1− F (Xtβ)

)2
+
(
1− F (Xtβ)

)(
F (Xtβ)

)2
= F (Xtβ)

(
1− F (Xtβ)

)
.

Thus one way to obtain ML estimates of any binary response model is to
apply iteratively reweighted nonlinear least squares to (15.11) or to whatever
nonlinear regression model is appropriate if the index function is notXtβ. For
most models, however, this is generally not the best approach, and a better
one is discussed in the next section.

Using the fact that ML is equivalent to a form of weighted NLS for
binary response models, it is obvious that the asymptotic covariance matrix
for n1/2(β̂ − β0) must be (

1−
n
X>Ψ(β0)X

)−1

,

where X is an n× k matrix with typical row Xt and typical element Xti, and
Ψ(β) is a diagonal matrix with typical diagonal element

Ψ(Xtβ) =
f 2(Xtβ)

F (Xtβ)
(
1− F (Xtβ)

) . (15.12)

The numerator reflects the fact that the derivative of F (Xtβ) with respect to
βi is f(Xtβ)Xti, and the denominator is simply the variance of et in (15.11).
In the logit case, Ψ(Xtβ) simplifies to λ(Xtβ).
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15.4 An Artificial Regression

There exists a very simple and very useful artificial regression for binary re-
sponse models. Like other artificial regressions, it can be used for a variety of
purposes, including parameter estimation, covariance matrix estimation, and
hypothesis testing. This artificial regression was suggested by Engle (1984)
and Davidson and MacKinnon (1984b). It can be derived in several ways,
of which the easiest is to treat it as a modified version of the Gauss-Newton
regression.

As we have seen, the binary response model (15.03) can be written in the
form of the nonlinear regression model (15.11), that is, as yt = F (Xtβ) + et.
We have also seen that the error term et has variance

V (Xtβ) ≡ F (Xtβ)
(
1− F (Xtβ)

)
, (15.19)

which implies that (15.11) must be estimated by GNLS. The ordinary GNR
corresponding to (15.11) would be

yt − F (Xtβ) = f(Xtβ)Xtb + residual, (15.20)

but this is clearly inappropriate because of the heteroskedasticity of the et’s.
Instead, we must multiply both sides of (15.20) by the square root of the
inverse of (15.19). This yields the artificial regression(
V (Xtβ)

)−1/2(
yt−F (Xtβ)

)
=
(
V (Xtβ)

)−1/2
f(Xtβ)Xtb + residual, (15.21)

which looks like the GNR for a nonlinear regression model estimated by
weighted least squares (see Section 9.4). Regression (15.21) is a special case of
what we will call the binary response model regression, or BRMR. This form
of the BRMR is valid for any binary response model of the form (15.03).4 In
the case of the logit model, it simplifies to(

λ(Xtβ)
)−1/2(

yt − Λ(Xtβ)
)
=
(
λ(Xtβ)

)1/2
Xtb + residual.

The BRMR satisfies the general properties of artificial regressions that we
discussed in Section 14.4. In particular, it is closely related both to the gradi-
ent of the loglikelihood function (15.09) and to the information matrix. The

4 Some authors write the BRMR in other ways. For example, in Davidson and
MacKinnon (1984b), the regressand was defined as

yt

(
1− F (Xtβ)

F (Xtβ)

)1/2
+ (yt − 1)

(
F (Xtβ)

1− F (Xtβ)

)1/2
.

It is a good exercise to verify that this is just another way of writing the
regressand of (15.21).
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so and is probably to be preferred, since the factor of s2 in (15.23) simply
introduces additional randomness into the estimate of the covariance matrix.

As usual, the covariance matrix of β̂ can also be estimated as minus the
inverse of the numerical Hessian or as the inverse of the outer product of the
CG matrix, Ĝ>Ĝ. In the case of the logit model, minus the numerical Hessian
is actually equal to the estimated information matrix X>Ψ̂X, because

∂2`(β)

∂βi∂βj
=

∂

∂βj

( n∑
t=1

(
yt − Λ(Xtβ)

)
Xti

)
= −

n∑
t=1

λ(Xtβ)XtiXtj .

However, in the case of most other binary response models, including the
probit model, minus the Hessian will differ from, and generally be more com-
plicated than, the information matrix.

Like all artificial regressions, the BRMR is particularly useful for hy-
pothesis testing. Suppose that β is partitioned as [β1

.... β2], where β1 is a
(k− r)--vector and β2 is an r--vector. If β̃ denotes the vector of ML estimates
subject to the restriction that β2 = 0, we can test that restriction by running
the BRMR

Ṽ
−1/2
t (yt − F̃t) = Ṽ

−1/2
t f̃tXt1b1 + Ṽ

−1/2
t f̃tXt2b2 + residual, (15.24)

where F̃t ≡ F (Xtβ̃), f̃t ≡ f(Xtβ̃), and Ṽt ≡ V (Xtβ̃). Here Xt has been par-
titioned into two vectors,Xt1 andXt2, corresponding to the partitioning of β.
The regressors that correspond to β1 are orthogonal to the regressand, while
those that correspond to β2 are not. All the usual test statistics for b2 = 0
are valid. However, in contrast to the case of the Gauss-Newton regression,
there is no particular reason to use an F test, because there is no variance
parameter to estimate. The best test statistic to use in finite samples, accord-
ing to Monte Carlo results obtained by Davidson and MacKinnon (1984b),
is probably the explained sum of squares from regression (15.24). It will be
asymptotically distributed as χ2(r) under the null hypothesis. Note that nR2

will not be equal to the explained sum of squares in this case, because the
total sum of squares will not be equal to n.

In one very special case, the BRMR (15.24) becomes extremely simple.
Suppose the null hypothesis is that all the slope coefficients are zero. In
this case, Xt1 is just unity, Xtβ̃ = β̃1 = F−1(ȳ), and, in obvious notation,
regression (15.24) becomes

V̄ −1/2(yt − F̄ ) = V̄ −1/2f̄ b1 + V̄ −1/2f̄Xt2b2 + residual.

Neither subtracting a constant from the regressand nor multiplying the re-
gressand and regressors by a constant has any effect on the F statistic for
b2 = 0. Thus it is clear that we can test the all-slopes-zero hypothesis simply
by calculating an F statistic for c2 = 0 in the linear regression

y = c1 +X2c2 + residuals.
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can be written as

`(β1, . . . ,βJ) =
J∑

j=1

∑
yt=j

Xtβ
j −

n∑
t=1

log

(
1 +

J∑
j=1

exp(Xtβ
j)

)
.

This function is a sum of contributions from each observation. Each con-
tribution has two terms: The first is Xtβ

j, where the index j is that for
which yt = j (or zero if j = 0), and the second is minus the logarithm of the
denominator that appears in (15.35) and (15.36).

One important property of the multinomial logit model is that

Pr(yt = l)

Pr(yt = j)
=

exp(Xtβ
l)

exp(Xtβ
j)

= exp
(
Xt(β

l − βj)
)

(15.38)

for any two responses l and j (including response zero if we interpret β0 as
a vector of zeros). Thus the odds between any two responses depend solely
on Xt and on the parameter vectors associated with those two responses.
They do not depend on the parameter vectors associated with any of the
other responses. In fact, we see from (15.38) that the log of the odds between
responses l and j is simply Xtβ

∗, where β∗ ≡ (βl − β j). Thus, conditional
on either j or l being chosen, the choice between them is determined by an
ordinary logit model with parameter vector β∗.

Closely related to the multinomial logit model is the conditional logit
model pioneered by McFadden (1974a, 1974b). See Domencich and McFadden
(1975), McFadden (1984), and Greene (1990a, Chapter 20) for detailed treat-
ments. The conditional logit model is designed to handle consumer choice
among J (not J + 1) discrete alternatives, where one and only one of the
alternatives can be chosen. Suppose that when the ith consumer chooses
alternative j, he or she obtains utility

Uij =Wijβ + εij ,

where Wij is a row vector of characteristics of alternative j as they apply to
consumer i. Let yi denote the choice made by the ith consumer. Presumably
yi = l if Uil is at least as great as Uij for all j 6= l. Then if the disturbances
εij for j = 1, . . . , J are independent and identically distributed according to
the Weibull distribution, it can be shown that

Pr(yi = l) =
exp(Wilβ)∑J
j=1 exp(Wijβ)

. (15.39)

This closely resembles (15.37), and it is easy to see that the probabilities must
add to unity.

There are two key differences between the multinomial logit and con-
ditional logit models. In the former, there is a single vector of independent
variables for each observation, and there are J different vectors of parameters.



15.5 Models for More than Two Discrete Responses 533

In the latter, the values of the independent variables vary across alternatives,
but there is just a single parameter vector β. The multinomial logit model is
a straightforward generalization of the logit model that can be used to deal
with any situation involving three or more unordered qualitative responses.
In contrast, the conditional logit model is specifically designed to handle con-
sumer choices among discrete alternatives based on the characteristics of those
alternatives.

Depending on the nature of the explanatory variables, there can be a
number of subtleties associated with the specification and interpretation of
conditional logit models. There is not enough space in this book to treat
these adequately, and so readers who intend to estimate such models are
urged to consult the references mentioned above. One important property of
conditional logit models is the analog of (15.38):

Pr(yi = l)

Pr(yi = j)
=

exp(Wilβ)

exp(Wijβ)
. (15.40)

This property is called the independence of irrelevant alternatives, or IIA,
property. It implies that adding another alternative to the model, or changing
the characteristics of another alternative that is already included, will not
change the odds between alternatives l and j.

The IIA property can be extremely implausible in certain circumstances.
Suppose that there are initially two alternatives for traveling between two
cities: flying Monopoly Airways and driving. Suppose further that half of
all travelers fly and the other half drive. Then Upstart Airways enters the
market and creates a third alternative. If Upstart offers a service identical to
that of Monopoly, it must gain the same market share. Thus, according to
the IIA property, one third of the travelers must take each of the airlines and
one third must drive. So the automobile has lost just as much market share
from the entry of Upstart Airways as Monopoly Airways has! This seems
very implausible.6 As a result, a number of papers have been devoted to the
problem of testing the independence of irrelevant alternatives property and
finding tractable models that do not embody it. See, in particular, Hausman
and Wise (1978), Manski and McFadden (1981), Hausman and McFadden
(1984), and McFadden (1987).

This concludes our discussion of qualitative response models. More de-
tailed treatments may be found in surveys by Maddala (1983), McFadden
(1984), Amemiya (1981; 1985, Chapter 9), and Greene (1990a, Chapter 20),
among others. In the next three sections, we turn to the subject of limited
dependent variables.

6 One might object that a price war between Monopoly and Upstart would con-
vince some drivers to fly instead. So it would. But if the two airlines offered
lower prices, that would change one or more elements of the Wij ’s associated
with them. The above analysis assumes that all the Wij ’s remain unchanged.
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h ≡ 1/σ, and the loglikelihood function can be shown to be globally concave in
the latter parametrization. This implies that it must have a unique maximum
no matter how it is parametrized. The (k+ 1)× (k+ 1) covariance matrix of
the ML estimates may as usual be estimated in several ways. Unfortunately,
as with the truncated regression model discussed in the previous section, the
only artificial regression that is presently known to be applicable to this model
is the OPG regression.

There is an interesting relationship among the tobit, truncated regression,
and probit models. Suppose, for simplicity, that xt(β) =Xtβ. Then the tobit
loglikelihood function can be rewritten as

∑
yt>0

log

(
1−σφ
(
1−σ
(
yt −Xtβ

)))
+
∑
yt=0

log

(
Φ
(
− 1−σXtβ

))
. (15.49)

Now let us both add and subtract the term
∑

yt>0 log
(
Φ(Xtβ/σ)

)
in (15.49),

which then becomes∑
yt>0

log

(
1−σφ
(
1−σ
(
yt −Xtβ

)))
−
∑
yt>0

log

(
Φ
(
1−σXtβ

))

+
∑
yt=0

log

(
Φ
(
− 1−σXtβ

))
+
∑
yt>0

log

(
Φ
(
1−σXtβ

))
.

(15.50)

The first line here is the loglikelihood function for a truncated regression
model; it is just (15.43) with y l = 0 and xt(β) = Xtβ and with the set
of observations to which the summations apply adjusted appropriately. The
second line is the loglikelihood function for a probit model with index function
Xtβ/σ. Of course, if all we had was the second line here, we could not
identify β and σ separately, but since we also have the first line, that is not a
problem.

Expression (15.50) makes it clear that the tobit model is like a truncated
regression model combined with a probit model, with the coefficient vectors in
the latter two models restricted to be proportional to each other. Cragg (1971)
argued that this restriction may sometimes be unreasonable and proposed
several more general models as plausible alternatives to the tobit model. It
may sometimes be desirable to test the tobit model against one or more of
these more general models; see Lin and Schmidt (1984) and Greene (1990a,
Chapter 21).

As we mentioned earlier, it is easy to modify the tobit model to handle
different types of censoring. For example, one possibility is a model with
double censoring. Suppose that

y∗t = xt(β) + ut, ut ∼ NID(0, σ2),

yt = y∗t if y l
t ≤ y∗t ≤ yut ; yt = y l

t if y∗t < y l
t ; yt = yut if y∗t > yut .
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they are related to y∗t and z∗t as follows:

yt = y∗t if z∗t > 0; yt = 0 otherwise;

zt = 1 if z∗t > 0; zt = 0 otherwise.

There are two types of observations: ones for which both yt and zt are observed
to be zero and ones for which zt = 1 and yt is equal to y

∗
t . The loglikelihood

function for this model is thus∑
zt=0

log
(
Pr(zt = 0)

)
+
∑
zt=1

log
(
Pr(zt = 1)f(y∗t | zt = 1)

)
, (15.54)

where f(y∗t | zt = 1) denotes the density of y∗t conditional on zt = 1. The
first term of (15.54) is the summation over all observations for which zt = 0
of the logarithms of the probability that zt = 0. It is exactly the same as
the corresponding term in a probit model for zt by itself. The second term
is the summation over all observations for which zt = 1 of the probability
that zt = 1 times the density of yt conditional on zt = 1. Using the fact that
we can factor a joint density any way we like, this second term can also be
written as ∑

zt=1

log
(
Pr(zt = 1 | y∗t )f(y∗t )

)
,

where f(y∗t ) is the unconditional density of y∗t , which is just a normal density
with conditional mean Xtβ and variance σ2.

The only difficulty in writing out the loglikelihood function (15.54) ex-
plicitly is to calculate Pr(zt = 1 | y∗t ). Since ut and vt are bivariate normal,
we can write

z∗t =Wtγ + ρ
(
1−σ
(
y∗t −Xtβ

))
+ εt, εt ∼ NID

(
0, (1− ρ2)

)
.

It follows that

Pr(zt = 1 | y∗t ) = Φ

(
Wtγ + ρ

(
(yt −Xtβ)/σ

)
(1− ρ2)1/2

)
,

since yt = y∗t when zt = 1. Thus the loglikelihood function (15.54) becomes∑
zt=0

log
(
Φ(−Wtγ)

)
+
∑
zt=1

log
(
1−σφ
(
(yt −Xtβ)/σ

))

+
∑
zt=1

log

(
Φ

(
Wtγ + ρ

(
(yt −Xtβ)/σ

)
(1− ρ2)1/2

))
.

(15.55)

The first term looks like the corresponding term for a probit model. The
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second term looks like the loglikelihood function for a linear regression model
with normal errors. The third term is one that we have not seen before.

Maximum likelihood estimates can be obtained in the usual way by max-
imizing (15.55). However, this maximization is relatively burdensome, and so
instead of ML estimation a computationally simpler technique proposed by
Heckman (1976) is often used. Heckman’s two-step method is based on the
fact that the first equation of (15.53) can be rewritten as

y∗t =Xtβ + ρσvt + et. (15.56)

The idea is to replace y∗t by yt and vt by its mean conditional on zt = 1 and on
the realized value ofWtγ. As can be seen from (15.42), this conditional mean
is φ(Wtγ)/Φ(Wtγ), a quantity that is sometimes referred to as the inverse
Mills ratio. Hence regression (15.56) becomes

yt =Xtβ + ρσ
φ(Wtγ)

Φ(Wtγ)
+ residual. (15.57)

It is now easy to see how Heckman’s two-step method works. In the first step,
an ordinary probit model is used to obtain consistent estimates γ̂ of the para-
meters of the selection equation. In the second step, the selectivity regressor
φ(Wtγ)/Φ(Wtγ) is evaluated at γ̂, and regression (15.57) is estimated by
OLS for the observations with zt = 1 only. This regression provides a test
for sample selectivity as well as an estimation technique. The coefficient on
the selectivity regressor is ρσ. Since σ 6= 0, the ordinary t statistic for this
coefficient to be zero can be used to test the hypothesis that ρ = 0; it will be
asymptotically distributed as N(0, 1) under the null hypothesis. Thus, if this
coefficient is not significantly different from zero, the investigator may reason-
ably decide that selectivity is not a problem for this data set and proceed to
use least squares as usual.

Even when the hypothesis that ρ = 0 cannot be accepted, OLS estimation
of regression (15.57) yields consistent estimates of β. However, the OLS
covariance matrix is valid only when ρ = 0. In this respect, the situation
is very similar to the one encountered at the end of the previous section,
when we were testing for possible simultaneity bias in models with truncated
or censored dependent variables. There are actually two problems. First of
all, the residuals in (15.57) will be heteroskedastic, since a typical residual is
equal to

ut − ρσ
φ(Wtγ)

Φ(Wtγ)
.

Secondly, the selectivity regressor is being treated like any other regressor,
when it is in fact part of the error term. One could solve the first problem by
using a heteroskedasticity-consistent covariance matrix estimator (see Chap-
ter 16), but that would not solve the second one. It is possible to obtain a
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valid covariance matrix estimate to go along with the two-step estimates of β
from (15.57). However, the calculation is cumbersome, and the estimated co-
variance matrix is not always positive definite. See Greene (1981b) and Lee
(1982) for more details.

It should be stressed that the consistency of this two-step estimator, like
that of the ML estimator, depends critically on the assumption of normality.
This can be seen from the specification of the selectivity regressor as the
inverse Mills ratio φ(Wtγ)/Φ(Wtγ). When the elements of Wt are the same
as, or a subset of, the elements of Xt, as is often the case in practice, it is
only the nonlinearity of φ(Wtγ)/Φ(Wtγ) as a function ofWtγ that makes the
parameters of the second-step regression identifiable. The exact form of the
nonlinear relationship depends critically on the normality assumption. Pagan
and Vella (1989), Smith (1989), and Peters and Smith (1991) discuss various
ways to test this crucial assumption. Many of the tests suggested by these
authors are applications of the OPG regression.

Although the two-step method for dealing with sample selectivity is
widely used, our recommendation would be to use regression (15.57) only as
a procedure for testing the null hypothesis that selectivity bias is not present.
When that hypothesis is rejected, ML estimation based on (15.55) should
probably be used in preference to the two-step method, unless it is computa-
tionally prohibitive.

15.9 Conclusion

Our treatment of binary response models in Sections 15.2 to 15.4 was reason-
ably detailed, but the discussions of more general qualitative response models
and limited dependent variable models were necessarily quite superficial. Any-
one who intends to do empirical work that employs this type of model will
wish to consult some of the more detailed surveys referred to above. All of
the methods that we have discussed for handling limited dependent variables
rely heavily on the assumptions of normality and homoskedasticity. These
assumptions should always be tested. A number of methods for doing so have
been proposed; see, among others, Bera, Jarque, and Lee (1984), Lee and
Maddala (1985), Blundell (1987), Chesher and Irish (1987), Pagan and Vella
(1989), Smith (1989), and Peters and Smith (1991).
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16.3 Covariance Matrix Estimation

At first glance, the generalized OLS covariance matrix estimator and its NLS
analog (16.08) do not seem to be very useful. To compute them we need
to know Ω, but if we knew Ω, we could use GLS or GNLS and obtain
more efficient estimates. This was the conventional wisdom among econo-
metricians until a decade ago. But an extremely influential paper by White
(1980) showed that it is in fact possible to obtain an estimator of the co-
variance matrix of least squares estimates that is asymptotically valid when
there is heteroskedasticity of unknown form.2 Such an estimator is a called a
heteroskedasticity-consistent covariance matrix estimator, or HCCME.

The key to obtaining an HCCME is to recognize that we do not have
to estimate Ω consistently. That would indeed be an impossible task, since
Ω has n diagonal elements to estimate. The asymptotic covariance matrix
of a vector of NLS estimates, under heteroskedasticity, is given by expression
(16.08), which can be rewritten as

plim
n→∞

(
1−
n
X0

>X0

)−1

plim
n→∞

(
1−
n
X0

>ΩX0

)
plim
n→∞

(
1−
n
X0

>X0

)−1

. (16.09)

The first and third factors here are identical, and we can easily estimate them
in the usual way. A consistent estimator is

1−
n
X̂>X̂,

where X̂ ≡ X(β̂). The only tricky thing, then, is to estimate the second
factor. White showed that this second factor can be estimated consistently by

1−
n
X̂>Ω̂X̂, (16.10)

where Ω̂ may be any of several different inconsistent estimators of Ω. The
simplest version of Ω̂, and the one that White proposed in the context of linear
regression models, has tth diagonal element equal to û2t , the t

th squared least
squares residual.

Unlike Ω, the middle factor of (16.09) has only 1
2 (k

2 + k) distinct ele-
ments, whatever the sample size. That is why it is possible to estimate it
consistently. A typical element of this matrix is

plim
n→∞

(
1−
n

n∑
t=1

ω2
tXtiXtj

)
, (16.11)

2 Precursors of White’s paper in the statistics literature include Eicker (1963,
1967) and Hinkley (1977), as well as some of the early papers on bootstrapping
(see Chapter 21).
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where Xti ≡ Xti(β0). On the other hand, a typical element of (16.10) is

1−
n

n∑
t=1

û2t X̂tiX̂tj . (16.12)

Because β̂ is consistent for β0, ût is consistent for ut, û
2
t is consistent for

u2t , and X̂ti is consistent for Xti. Thus expression (16.12) is asymptotically
equal to

1−
n

n∑
t=1

u2tXtiXtj . (16.13)

Under our assumptions, we can apply a law of large numbers to (16.13); see
White (1980, 1984) and Nicholls and Pagan (1983) for some technical details.
It follows immediately that (16.13), and so also (16.12), tends in probability
to (16.11). Consequently, the matrix(

n−1X̂>X̂
)−1(

n−1X̂>Ω̂X̂
)(
n−1X̂>X̂

)−1
(16.14)

consistently estimates (16.09). Of course, in practice one ignores the factors
of n−1 and uses the matrix(

X̂>X̂
)−1
X̂>Ω̂X̂

(
X̂>X̂

)−1
(16.15)

to estimate the covariance matrix of β̂.

Asymptotically valid inferences about β may be based on the HCCME
(16.15) in the usual way. However, one must be cautious when n is not large.
There is a good deal of evidence that this HCCME is somewhat unreliable in
finite samples. After all, the fact that (16.14) estimates (16.09) consistently
does not imply that the former always estimates the latter very well in finite
samples.

It is possible to modify the HCCME (16.15) so that it has better finite-
sample properties. The major problem is that the squared least squares resid-
uals û2t are not unbiased estimates of the squared error terms u2t . The easiest
way to improve the HCCME is simply to multiply (16.15) by n/(n− k). This
is analogous to dividing the sum of squared residuals by n−k rather than n to
obtain the OLS variance estimator s2. A second, and better, approach is to de-
fine the tth diagonal element of Ω̂ as û2t/(1− ĥt), where ĥt ≡ X̂t(X̂

>X̂)−1X̂t
>

is the tth diagonal element of the “hat” matrix P̂X that projects orthogonally
onto the space spanned by the columns of X̂. Recall from Section 3.2 that, in
the OLS case with constant variance σ2, the expectation of û2t is σ2(1 − ht).
Thus, in the linear case, dividing û2t by 1−ht would yield an unbiased estimate
of σ2 if the error terms were actually homoskedastic.

A third possibility is to use a technique called the “jackknife” that we will
not attempt to discuss here; see MacKinnon and White (1985). The resulting
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or, in more compact notation, as

σ2
t = α+A(L,γ)u2t +B(L, δ)σ2

t ,

where γ and δ are parameter vectors with typical elements γi and δj , respec-
tively, and A(L,γ) and B(L, δ) are polynomials in the lag operator L. In the
GARCH model, the conditional variance σ2

t depends on its own past values as
well as on lagged values of u2t . This means that σ2

t effectively depends on all
past values of u2t . In practice, a GARCH model with very few parameters of-
ten performs as well as an ARCH model with many parameters. In particular,
one simple model that often works very well is the GARCH(1, 1) model,

σ2
t = α+ γ1u

2
t−1 + δ1σ

2
t−1. (16.21)

In practice, one must solve a GARCH model to eliminate the σ2
t−j terms

from the right-hand side before one can estimate it. The problem is essentially
the same as estimating a moving average model or an ARMA model with a
moving average component; see Section 10.7. For example, the GARCH(1, 1)
model (16.21) can be solved recursively to yield

σ2
t =

α

1− δ1
+ γ1

(
u2t−1 + δ1u

2
t−2 + δ21u

2
t−3 + δ31u

2
t−4 + · · ·

)
. (16.22)

Various assumptions can be made about the presample error terms. The
simplest is to assume that they are zero, but it is more realistic to assume
that they are equal to their unconditional expectation.

It is interesting to observe that, when γ1 and δ1 are both near zero, the
solved GARCH(1, 1) model (16.22) looks like an ARCH(1) model. Because
of this, it turns out that an appropriate test for GARCH(1, 1) errors is sim-
ply to regress the squared residuals on a constant term and on the squared
residuals lagged once. In general, an LM test against GARCH(p, q) errors is
the same as an LM test against ARCH(max(p, q)) errors. These results are
completely analogous to the results for testing against ARMA(p, q) errors that
we discussed in Section 10.8.

There are three principal ways to estimate regression models with ARCH
and GARCH errors: feasible GLS, one-step efficient estimation, and maxi-
mum likelihood. In the simplest approach, which is feasible GLS, one first
estimates the regression model by ordinary or nonlinear least squares, then
uses the squared residuals to estimate the parameters of the ARCH or GARCH
process, and finally uses weighted least squares to estimate the parameters of
the regression function. This procedure can run into difficulties if the condi-
tional variances predicted by the fitted ARCH process are not all positive, and
various ad hoc methods may then be used to ensure that they are all positive.

The estimates of the ARCH parameters obtained by this sort of feasible
GLS procedure will not be asymptotically efficient. Engle (1982b) therefore
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Next, we derive a useful and general result that will allow us to replace
the vector of derivatives µ0 in (16.54) by something more manageable. The
moment condition under test is given by (16.48). The moment can be written
out explicitly as

Eθ

(
mt(yt,θ)

)
=

∫ ∞

−∞
mt(yt,θ)Lt(yt,θ)dyt. (16.55)

Differentiating the right-hand side of (16.55) with respect to the components
of θ, we obtain, by the same sort of reasoning as led to the information matrix
equality (8.44),

Eθ

(
mt(θ)Gt(θ)

)
= −Eθ

(
Nt(θ)

)
. (16.56)

Here Gt(θ) is the contribution made by observation t to the gradient of the
loglikelihood function, and the 1 × k row vector Nt(θ) has typical element
∂mt(θ)/∂θi.

5 The most useful form of our result is obtained by summing
(16.56) over t. Let m(θ) be an n--vector with typical element mt(θ), and let
N(θ) be an n× k matrix with typical row Nt(θ). Then

1−
n
Eθ

(
G>(θ)m(θ)

)
= − 1−

n
Eθ

(
N>(θ)ι

)
, (16.57)

where, as usual, G(θ) denotes the CG matrix. In (16.54), µ0 = n−1N0
>ι,

where N0 ≡ N(θ0). By the law of large numbers, this will converge to the
limit of the right-hand side of (16.57), and so also to the limit of the left-hand
side. Thus, if G0 ≡ G(θ0), we can assert that

µ0 = 1−
n
N0

>ι
a
= − 1−

n
G0

>m0. (16.58)

We next make use of the very well-known result (13.18) on the relation-
ship between ML estimates, the information matrix, and the score vector:

n1/2(θ̂ − θ0)
a
= I−1

0 n−1/2g0. (16.59)

Since the information matrix I0 is asymptotically equal to n−1G0
>G0 (see

Section 8.6), and g0 = G0
>ι, (16.59) becomes

n1/2(θ̂ − θ0)
a
=
(
n−1G0

>G0

)−1
n−1/2G0

>ι.

This result, combined with (16.58), allows us to replace the right-hand side
of (16.54) by

n−1/2m0
>ι− n−1m0

>G0

(
n−1G0

>G0

)−1
n−1/2G0

>ι = n−1/2m0
>MGι, (16.60)

where MG denotes the matrix that projects orthogonally onto S⊥(G0).

5 Our usual notation would have been Mt(θ) instead of Nt(θ), but this would
conflict with the standard notation for complementary orthogonal projections.
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The result (16.60) makes clear just what the difference is between the
empirical moment evaluated at the unknown θ0 and evaluated at the ML
estimates θ̂, that is, between n−1/2m0

>ι and n−1/2m̂>ι. The effect of using
the estimates is an implicit orthogonal projection of the vector m0 onto the
orthogonal complement of the space S(G0) associated with the model para-
meters. This projection is what causes the variance of the expression that we
can actually calculate to be smaller than the variance of the corresponding
expression based on the true parameters. The variances used in the skewness
and kurtosis tests discussed in the last section can also be computed using
(16.60).

We are now ready to obtain an appropriate expression for the asymptotic
variance of n−1/2m̂>ι. We require, as we suggested earlier, that n−1/2m0

>ι
should satisfy CLT and that, in a neighborhood of θ0, n

−1m>(θ)Gi(θ) should
satisfy WULLN (Definition 4.17) for all i = 1, . . . , k. The asymptotic variance
is then clearly plim(n−1m0

>MGm0), which can be consistently estimated by
n−1m̂>M̂Gm̂. This suggests using the test statistic

n−1/2m̂>ι(
n−1m̂>M̂Gm̂

)1/2 =
m̂>ι(

m̂>M̂Gm̂
)1/2 , (16.61)

which will be asymptotically distributed as N(0, 1).

The connection with the OPG regression is now evident. The test statistic
(16.61) is almost the t statistic on the coefficient b from the following OPG
regression:

ι = Ĝc+ bm̂ + residuals. (16.62)

Asymptotically, the statistic (16.61) and the t statistic from (16.62) are equiv-
alent, because the sum of squared residuals from (16.62) tends to n for large
sample sizes under the null hypothesis: The regressors Ĝ are always orthog-
onal to ι, and m̂ is orthogonal to ι if the moment condition is satisfied. This
result is very satisfactory. Without the regressor m̂, which is the vector that
serves to define the empirical moment, regression (16.62) would be just the
OPG regression associated with the original model, and the SSR would always
be equal to n. Thus the OPG version of the CM test, like all the other tests
we have discussed that are implemented by artificial regressions, is just a test
for the significance of the coefficients on one or more test regressors.

It is now plain how to extend CM tests to a set of two or more moment
conditions. One simply creates a test regressor for each of the empirical
moments so as to produce an n× r matrix R̂ ≡ R(θ̂), where r is the number
of moment conditions. One then uses the explained sum of squares from the
OPG regression

ι = Ĝc+ R̂b + residuals

or any other asymptotically equivalent test of the artificial hypothesis b = 0.
It is now clear that, as we suggested above, any test capable of being car-
ried out by means of an OPG regression can be interpreted as a CM test.
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One simply has to interpret the test columns in the regression as empirical
moments.

An interesting variant of the test regression (16.62) was suggested by
Tauchen (1985). In effect, he interchanged the regressand ι and the test
regressor m̂ so as to obtain the regression

m̂ = Ĝc∗ + b∗ι + residuals. (16.63)

The test statistic is the ordinary t statistic for b∗ = 0. It is numerically
identical to the t statistic on b in (16.62). This fact follows from a result we
obtained in section 12.7, of which we now give a different, geometrical, proof.
Apply the FWL Theorem to both (16.62) and (16.63) so as to obtain the two
regressions

M̂Gι = b(M̂Gm̂) + residuals and

M̂Gm̂ = b∗(M̂Gι) + residuals.
(16.64)

These are both univariate regressions with n observations. The single t sta-
tistic from each of them is given by the product of the same scalar factor,
(n − 1)1/2, and the cotangent of the angle between the regressand and the
regressor (see Appendix A). Since this angle is unchanged when the regressor
and regressand are interchanged, so is the t statistic. The FWL Theorem
implies that the t statistics from the first and second rows of (16.64) are equal
to those from the OPG regression (16.62) and Tauchen’s regression (16.63),
respectively, times the same degrees of freedom correction. Thus we con-
clude that the t statistics based on the latter two regressions are numerically
identical.

Since the first-order conditions for θ̂ imply that ι is orthogonal to all
of the columns of Ĝ, the OLS estimate of b∗ in (16.63) will be equal to the
sample mean of the elements of m̂. This would be so even if the regressors
Ĝ were omitted from the regression. However, because θ has been estimated,
those regressors must be included if we are to obtain a valid estimate of the
variance of the sample mean. As is the case with all the other artificial regres-
sions we have studied, omitting the regressors that correspond to parameters
estimated under the null hypothesis results in a test statistic that is too small,
asymptotically.

Let us reiterate our earlier warnings about the OPG regression. As we
stressed when we introduced it in Section 13.7, test statistics based on it often
have poor finite-sample properties. They tend to reject the null hypothesis
too often when it is true. This is just as true for CM tests as for LM tests
or C(α) tests. If possible, one should therefore use alternative tests that have
better finite-sample properties, such as tests based on the GNR, the HRGNR,
the DLR (Section 14.4), or the BRMR (Section 15.4), when these procedures
are applicable. Of course, they will be applicable in general only if the CM
test can be reformulated as an ordinary test, with an explicit alternative
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and evaluate it at the ML estimates θ̂ to obtain Ẑ. Then one performs an OPG
regression, with regressors Ĝ and Ẑ, and uses n minus the SSR as the test
statistic. Provided the matrix [Ĝ Ẑ ]>[Ĝ Ẑ ] has full rank asymptotically,
the test statistic will be asymptotically distributed as χ2

(
1
2k(k + 1)

)
. When

some of the columns of Ĝ and Ẑ are perfectly collinear, as quite often happens,
the number of degrees of freedom for the test must of course be reduced
accordingly.

It is illuminating to consider as an example the univariate nonlinear re-
gression model

yt = xt(β) + ut, ut ∼ NID(0, σ2),

where xt(β) is a twice continuously differentiable function that depends on β,
a p--vector of parameters, and also on exogenous and predetermined vari-
ables which vary across observations. Thus the total number of parameters is
k = p+ 1. For this model, the contribution to the loglikelihood function from
the tth observation is

`t(β, σ) = − 1−
2
log(2π)− log(σ)− 1

2σ2

(
yt − xt(β)

)2
.

Thus the contribution from the tth observation to the regressor corresponding
to the ith element of β is

Gti(β, σ) =
1

σ2

(
yt − xt(β)

)
Xti(β), (16.66)

where, as usual, Xti(β) denotes the derivative of xt(β) with respect to βi.
Similarly, the contribution from the tth observation to the regressor corre-
sponding to σ is

Gt,k(β, σ) = − 1

σ
+

1

σ3

(
yt − xt(β)

)2
. (16.67)

Using (16.66) and (16.67), it is easy to work out the regressors for the
OPG version of the IM test. We make the definitions

êt ≡
1

σ̂

(
yt − xt(β̂)

)
, X̂ti ≡ Xti(β̂), and X∗

tij(β) ≡
∂Xti(β)

∂βj
.

Then, up to multiplicative factors that can have no effect on the fit of the
regression, and hence no effect on the value of the IM test statistic, the re-
gressors for the test regression are

for βi : êtX̂ti; (16.68)

for σ : ê2t − 1; (16.69)

for βi × βj : (ê2t − 1)X̂tiX̂tj + σ̂êtX̂
∗
tij ; (16.70)

for σ × βi : (ê3t − 3êt)X̂ti; (16.71)

for σ × σ : ê4t − 5ê2t + 2. (16.72)
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Expressions (16.68) and (16.69) give the elements of each row of Ĝ, while
expressions (16.70)–(16.72) give the elements of each row of Ẑ. When the
original regression contains a constant term, (16.69) will be perfectly collinear
with (16.70) when i and j both index the constant. Therefore, the latter will
have to be dropped and the degrees of freedom for the test reduced by one to
1
2 (p+ 2)(p+ 1)− 1.

Expressions (16.68)–(16.72) show what forms of misspecification the IM
test is testing for in the nonlinear regression context. It is evident from (16.71)
that the (βi, σ) regressors are those corresponding to skewness interacting with
the X̂ti’s. It appears that such skewness, if present, would bias the estimates
of the covariances of β̂ and σ̂. If we add five times (16.69) to (16.72), the result
is ê4t − 3, from which we see that the linearly independent part of the (σ, σ)
regressor is testing in the kurtosis direction. Either platykurtosis or leptokur-
tosis would lead to bias in the estimate of the variance of σ̂. It is evident from
(16.70) that if xt(β) were linear, the (βi, βj) regressors would be testing for
heteroskedasticity of exactly the type that White’s (1980) test is designed to
detect; see Section 16.5. In the nonlinear regression case considered here, how-
ever, these regressors are testing at the same time for misspecification of the
regression function. For more details on the special case of linear regression
models, see Hall (1987).

The above analysis suggests that, in the case of regression models, it
is probably more attractive to test directly for heteroskedasticity, skewness,
kurtosis, and misspecification of the regression function than to use an IM test.
We have already seen how to test for each of these types of misspecification
individually. Individual tests may well be more powerful and more informative
than an IM test, especially if only a few things are actually wrong with the
model. If one is primarily interested in inferences about β, then testing for
skewness and kurtosis may be optional.

There is one very serious problem with IM tests based on the OPG re-
gression. In finite samples, they tend to reject the null hypothesis much
too often when it is true. In this respect, IM tests seem to be even worse
than other specification tests based on the OPG regression. Monte Carlo
results demonstrating the dreadful finite-sample performance of the OPG ver-
sion of the IM test may be found in Taylor (1987), Kennan and Neumann
(1988), Orme (1990a), Hall (1990), Chesher and Spady (1991), and David-
son and MacKinnon (1992a). In some of these papers, there are cases in
which OPG IM tests reject correct null hypotheses virtually all the time. The
problem seems to grow worse as the number of degrees of freedom increases,
and it does not go away quickly as the sample size increases. One extreme
example, given in Davidson and MacKinnon (1992a), is a linear regression
model with 10 regressors, and thus 65 degrees of freedom, for which the OPG
form of the IM test rejects the true null hypothesis at the nominal 5% level
an amazing 99.9% of the time when n = 200 and 92.7% of the time even
when n = 1000.
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where g(θ) denotes the gradient of Q, that is, the k--vector with typical com-
ponent ∂Q(θ)/∂θj . As usual, H

∗ denotes a matrix of which the elements are
evaluated at the appropriate θ∗j .

If we are to be able to deduce the asymptotic normality of θ̂ from (17.21),
it must be possible to apply a law of large numbers to H∗ and a central limit
theorem to n1/2g(θ0). We would then obtain the result that

n1/2(θ̂ − θ0)
a
= −

(
plim
n→∞

H0

)−1

n1/2g(θ0). (17.22)

What regularity conditions do we need for (17.22)? First, in order to justify
the short Taylor expansion in (17.20), it is necessary that Q be at least twice
continuously differentiable with respect to θ. If so, then it follows that the
Hessian of Q is O(1) as n → ∞. Because of this, we denote it by H0 rather
than H; see Section 8.2. Then we need conditions that allow the application
of a law of large numbers and a central limit theorem. Rather formally, we
may state a theorem based closely on Theorem 8.3 as follows:

Theorem 17.2. Asymptotic Normality of M-Estimators

The M-estimator derived from the sequence of criterion functions Q
is asymptotically normal if it satisfies the conditions of Theorem 17.1
and if in addition

(i) for all n and for all θ ∈ Θ, Qn(yn,θ) is twice continuously differ-
entiable with respect to θ for almost all y, and the limit function
Q̄(µ,θ) is twice continuously differentiable with respect to θ for
all θ ∈ Θ and for all µ ∈ M;

(ii) for all DGPs µ ∈ M and for all sequences {θn} that tend in
probability to θ(µ) as n→ ∞, the Hessian matrix Hn(yn,θn) of
Qn with respect to θ tends uniformly in probability to a positive
definite, finite, nonrandom matrix H(µ); and

(iii) for all DGPs µ ∈ M, n1/2 times the gradient of Qn(yn,θ), or
n1/2g

(
yn,θ(µ)

)
, converges in distribution as n → ∞ to a multi-

variate normal distribution with mean zero and finite covariance
matrix V (µ).

Under these conditions, the distribution of n1/2
(
θ̂ − θ(µ)

)
tends to

N
(
0, H(µ)−1V (µ)H(µ)−1

)
.

It is not worth spending any time on the proof of Theorem 17.2. What we
must do, instead, is to return to the GMM case and investigate the conditions
under which the criterion function (17.13), suitably divided by n2, satisfies
the requirements of the theorem. Without further ado, we assume that all
of the contributions fti(yt,θ) are at least twice continuously differentiable
with respect to θ for all θ ∈ Θ, for all yt, and for all allowed values of any
predetermined or exogenous variables on which they may depend. Next, we
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A0 by A(y), and Φij by expression (17.29) without the probability limit.
Although this yields a consistent estimate of (17.30), it is often a very noisy
one. We will discuss this issue further in Section 17.5, but it is still far from
being completely resolved.

It is interesting to illustrate (17.31) for the case of the IV estimator
defined by (17.08). The result will enable us to construct a heteroskedasticity-
consistent estimate of the covariance matrix of the latter. We merely have
to establish some notational equivalences between the IV case and the more
general case discussed above. In the IV case, the elements of the matrix F
become fti =Wti(yt −Xtβ). Therefore,

D = −plim
n→∞

(
1−
n
W>X

)
(17.33)

and

A0 = plim
n→∞

(
1−
n
W>W

)−1

. (17.34)

The matrix Φ is obtained from (17.29):

Φ = plim
n→∞

(
1−
n

n∑
t=1

(
yt −Xtβ

)2
Wt

>Wt

)
= plim

n→∞

(
1−
n
W>ΩW

)
, (17.35)

where Ω is the diagonal matrix with typical element E(yt −Xtβ)
2. By sub-

stituting (17.33), (17.34), and (17.35) into (17.31), we obtain the following
expression for the asymptotic covariance matrix of the IV estimator:

plim
n→∞

((
1−
n
X>PWX

)−1
1−
n
X>PWΩPWX

(
1−
n
X>PWX

)−1
)
. (17.36)

The matrix (17.36) is clearly analogous for IV estimation to (16.08) for NLS
estimation: It provides the asymptotic covariance matrix in the presence of
heteroskedasticity of unknown form. Thus we see that HCCMEs of the sort
discussed in Section 16.3 are available for the IV estimator. One can use any of
the inconsistent estimators Ω̂ suggested there in order to obtain a consistent
estimator of plim

(
n−1X>PWΩPWX

)
.

Readers may reasonably wonder why we have obtained a covariance ma-
trix robust only to heteroskedasticity and not also to serial correlation of
the error terms. The answer is that the covariance matrix V of (17.30) is
valid only if condition CLT is satisfied by the contributions to the empiri-
cal moments. That condition will not be satisfied if the error terms have an
arbitrary pattern of correlation among themselves. In Section 17.5, we will
discuss methods for dealing with serial correlation, but these will take us out
of the asymptotic framework we have used up to now.
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17.3 Efficient GMM Estimators

It is not completely straightforward to answer the question of whether GMM
estimators are asymptotically efficient, since a number of separate issues are
involved. The first issue was raised at the beginning of the last section, in
connection with estimation by instrumental variables. We saw there that, for
a given set of empirical moments W>(y −Xβ), a whole family of estimators
can be generated by different choices of the weighting matrix A(y) used to
construct a quadratic form from the moments. Asymptotically, the most effi-
cient of these estimators is obtained by choosing A(y) such that it tends to a
nonrandom probability limit proportional to the inverse of the limiting covar-
iance matrix of the empirical moments, suitably weighted by an appropriate
power of the sample size n. This turns out to be true quite generally, as we
now show.

Theorem 17.3. A Necessary Condition for Efficiency

A necessary condition for the estimator obtained by minimizing the
quadratic form (17.13) to be asymptotically efficient is that it should
be asymptotically equal to the estimator defined by minimizing (17.13)
withA(y) independent of y and equal to the inverse of the asymptotic
covariance matrix of the empirical moments n−1/2F>(θ)ι.

Note that, when the necessary condition holds, the form of the asymptotic
covariance matrix of the GMM estimator θ̂ becomes much simpler. For arbi-
trary limiting weighting matrix A0, that matrix was given by (17.31). If
the necessary condition is satisfied, then A0 in (17.31) may be replaced by
the inverse of Φ, which, according to its definition (17.29), is the asymptotic
covariance of the empirical moments. Substituting A0 = Φ−1 into (17.31)
gives the simple result that

V
(
n1/2(θ̂ − θ0)

)
=
(
D>Φ−1D

)−1
.

Theorem 17.3 will be proved if we can show that, for all symmetric,
positive definite matrices A0, the difference(

D>A0D
)−1
D>A0ΦA0D

(
D>A0D

)−1 −
(
D>Φ−1D

)−1
(17.37)

is positive semidefinite. To show this, we rewrite (17.37) as(
D>A0D

)−1
D>A0

(
Φ−D

(
D>Φ−1D

)−1
D>
)
A0D

(
D>A0D

)−1
. (17.38)

Since the matrix D>A0D is nonsingular, (17.38) is positive definite if the
matrix in large parentheses is. Since Φ is a positive definite, symmetric l × l
matrix, we can find another positive definite, symmetric l × l matrix Ψ such
that Ψ2 = Φ−1. In terms of Ψ, the matrix in large parentheses becomes

Ψ−1
(
I− PΨD

)
Ψ−1 = Ψ−1MΨDΨ

−1, (17.39)
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require of course that l ≥ k, where the parameter vector θ̂ has k elements. The
empirical moment conditions that we use for estimation can be expressed as

W>f(θ) = 0, (17.47)

where f is an n--vector with typical component ft. If l = k, the estimator
θ̂ is obtained by solving the k equations (17.47). If l > k, it is obtained by
minimizing the quadratic form constructed from the components of the left-
hand side of (17.47) and an estimate of their covariance matrix. Let Ω denote
the covariance matrix of the ft’s. Thus, if the DGP is denoted by µ and the
true parameter vector by θ0,

Ωts = Eµ

(
ft(θ0)fs(θ0) |Ωt

)
for all t ≤ s.

Then the conditional covariance matrix of the empirical moments in (17.47)
is Φ ≡W>ΩW.

In the usual case, with l > k, the criterion function used for obtaining
parameter estimates is

f(θ)>W
(
W>ΩW

)−1
W>f(θ).

The asymptotic covariance matrix of this estimator is given by the probability
limit of (D>Φ−1D)−1, where

Dij = plim
n→∞

(
1−
n

n∑
t=1

Wti
∂ft
∂θj

)
. (17.48)

Let J(y,θ) denote the n × k matrix with typical element ∂ft(yt,θ)/∂θj .
1

Then the right-hand side of (17.48) is the limit of n−1W>J. Thus the asymp-
totic covariance matrix of n1/2(θ̂ − θ0) reduces to the limit of((

1−
n
J>W

)(
1−
n
W>ΩW

)−1(
1−
n
W>J

))−1

. (17.49)

The first result about how to choose the instruments W optimally is
simple and intuitive. It is that if we increase the number of instruments, the
limiting covariance matrix (17.49) cannot increase. Imagine that instead of
the empirical moment conditions (17.47) we use a set of linear combinations
of them. That is, we replace (17.47) by

B>W>f(θ) = 0,

1 The notation J was chosen because the matrix is the Jacobian of f with respect
to θ and because F was previously used to denote something else.
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for some l × p matrix B, where p ≤ l. It is easy to see that this corresponds
to replacing D by B>D and Φ by B>ΦB. Consider the difference

D>Φ−1D −D>B
(
B>ΦB

)−1
B>D

between the inverses of the k×k asymptotic covariance matrices corresponding
to the instrumentsW andWB, respectively. If, as before, we denote by Ψ a
symmetric l × l matrix such that Ψ2 = Φ−1, this difference is

D>Ψ
(
I− Ψ−1B

(
B>Ψ−2B

)−1
B>Ψ−1

)
ΨD. (17.50)

This matrix is clearly positive semidefinite, because the matrix in large paren-
theses is the orthogonal projection off the columns of Ψ−1B. For any two
symmetric, positive definite matrices P and Q of the same dimension, P −Q
is positive semidefinite if and only if Q−1 − P−1 is positive semidefinite (see
Appendix A). Thus the fact that (17.50) is positive semidefinite establishes
our first result.

This result might seem to suggest that one should always use as many
instruments as possible in order to get as efficient estimates as possible. Such
a conclusion is generally wrong, however. Recall the discussion in Section 7.5,
illustrated by Figure 7.1. There we saw that, in the ordinary IV context,
there is a trade-off between asymptotic efficiency and bias in finite samples.
The same trade-off arises in the GMM case as well. Using a large number
of overidentifying restrictions may lead to a smaller asymptotic covariance
matrix, but the estimates may be seriously biased. Another argument against
the use of too many instruments is simply that there are inevitably diminishing
returns, on account of the existence of the GMM bound.

The second result shows how to choose the instruments W optimally. It
says that if we set W = Ω−1J in (17.47), then the asymptotic covariance
matrix that results is smaller than the one given by any other choice. From
(17.49) it then follows that the GMM bound for the asymptotic covariance
matrix is plim (n−1J>Ω−1J)−1. Unfortunately, as we will see, this result is
not always useful in practice.

The proof is very simple. As with the first result, it is easiest to work
with the inverses of the relevant covariance matrices. Let the symmetric
n × n matrix Υ be defined so that Υ 2 ≡ Ω. Then, suppressing limits and
factors of n for the moment, we see that

J>Ω−1J − J>W
(
W>ΩW

)−1
W>J

= J>Υ−1
(
I− ΥW

(
W>Υ 2W

)−1
W>Υ

)
Υ−1J .

(17.51)

Since the matrix in large parentheses is the orthogonal projection off the
columns of ΥW, this expression is positive semidefinite, and the second result
is established.
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This equation defines an ordinary IV estimator in terms of the transformed
variables y∗ and X∗ and the transformed instruments Z. Thus the estimator
defined by (17.53) can be calculated with no more difficulty than the GLS
estimator. It is appropriate to use it when GLS or feasible GLS would have
been appropriate except for possible correlation of the error terms with the
regressors.

The estimator defined by (17.53) bears a close resemblance to the H2SLS
estimator (17.44) defined in the last section. In fact, replacing W in the lat-
ter by Ω−1W yields the former. The theory developed in this section shows
that if it is possible to chooseW as the conditional expectations of the regres-
sorsX (or linear combinations of them), then the estimator defined by (17.53)
is asymptotically efficient, and the H2SLS estimator is not. The advantage
of H2SLS is that it can be calculated in the presence of heteroskedasticity
of unknown form, since n−1W>ΩW can be estimated consistently by use
of inconsistent estimators of Ω. (17.53), on the other hand, can be formu-
lated only if Ω itself can be consistently estimated, because expressions like
n−1W>Ω−1W and n−1W>Ω−1y cannot be estimated consistently without
a consistent estimate of Ω. Thus both estimators are useful, but in different
circumstances.

The concept of the GMM bound was introduced, not under that name,
by Hansen (1985), who also provided conditions for optimal instruments. The
arguments used in order to derive the bound have a longer history, however,
and Hansen traces the history of the search for efficient instruments back as
far as Basmann (1957) and Sargan (1958).

17.5 Covariance Matrix Estimation

In previous sections, we mentioned the difficulties that can arise in estimat-
ing covariance matrices in the GMM context. In fact, problems occur at two
distinct points: once for the choice of the weighting matrix to be used in
constructing a criterion function and again for estimating the asymptotic co-
variance matrix of the estimates. Fortunately, similar considerations apply to
both problems, and so we can consider them together.

Recall from (17.31) that the asymptotic covariance matrix of a GMM
estimator computed using a weighting matrix A0 is(

D>A0D
)−1
D>A0ΦA0D

(
D>A0D

)−1
,

in the notation of Section 17.2. If the necessary condition for efficiency of
Theorem 17.3 is to be satisfied, it is required that A0

a
= Φ−1, where Φ is the

l × l asymptotic covariance matrix of the empirical moments n−1/2F>(θ)ι
with typical element

n−1/2
n∑

t=1

fti(yt,θ).
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The estimator (17.63) was proposed by Hansen (1982) and White and
Domowitz (1984), and was used in some of the earlier published work that
employed GMM estimation, such as Hansen and Singleton (1982). From the
point of view of theory, it is necessary to let the truncation parameter p,
usually referred to as the lag truncation parameter, go to infinity at some
suitable rate. A typical rate would be n1/4, in which case p = o(n1/4). This
ensures that, for large enough n, all the nonzero Γ (j)’s are estimated con-
sistently. Unfortunately, this type of result is not of much use in practice,
where one typically faces a given, finite n. We will return to this point a little
later, and for the meantime suppose simply that we have somehow selected
an appropriate value for p.

A much more serious difficulty associated with (17.63) is that, in finite
samples, it need not be positive definite or even positive semidefinite. If one
is unlucky enough to be working with a data set that yields a nondefinite Φ̂,
then (17.63) is unusable. There are numerous ways out of this difficulty. The
most widely used was suggested by Newey and West (1987a). It is simply to
multiply the Γ̂ (j)’s by a sequence of weights that decrease as |j| increases.
Specifically, the estimator that they propose is

Φ̂ = Γ̂ (0) +

p∑
j=1

(
1− j

p+ 1

)(
Γ̂ (j) + Γ̂ (j)>

)
. (17.64)

It can be seen that the weights 1 − j/(p + 1) decrease linearly with j from
a value of 1 for Γ̂ (0) by steps of 1/(p + 1) down to a value of 1/(p + 1) for
|j| = p. The use of such a set of weights is clearly compatible with the idea
that the impact of the autocovariance of order j diminishes with |j|.

We will not attempt even to sketch a proof of the consistency of the
Newey-West or similar estimators. We have alluded to the sort of regularity
conditions needed for consistency to hold: Basically, the autocovariance mat-
rices of the empirical moments must tend to zero quickly enough as p increases.
It would also go well beyond the scope of this book to provide a theoretical
justification for the Newey-West estimator. It rests on considerations of the
so-called “frequency domain representation” of the Ft’s and also of a number
of notions associated with nonparametric estimation procedures. Interested
readers are referred to Andrews (1991b) for a rather complete treatment of
many of the issues. This paper suggests some alternatives to the Newey-West
estimator and shows that in some circumstances they are preferable. However,
the performance of the Newey-West estimator is never greatly inferior to that
of the alternatives. Consequently, its simplicity is much in its favor.

Let us now return to the linear IV model with empirical moments given
byW>(y−Xβ). In order to be able to use (17.64), we suppose that the true
error terms ut ≡ yt−Xtβ0 satisfy an appropriate mixing condition. Then the
sample autocovariance matrices Γ̂ (j) for j = 0, . . . , p, for some given p, are
calculated as follows. A preliminary consistent estimate of β is first obtained
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by the ordinary IV procedure. Next, the residuals ût are combined with the
instruments in the direct product V̂ ≡ û∗W. Then Γ̂ (j) is n−1 times the
l × l matrix of inner products of the columns of V̂ with these same columns
lagged j times, the initial unobserved elements being replaced by zeros. As
we saw above, Γ̂ (0) is just n−1W>Ω̂W, where Ω̂ = diag(û2t ). Finally, Φ̂ is
formed by use of (17.64).

As before, the Φ̂ thus obtained can be used for two purposes. One is
to form what is called a heteroskedasticity and autocorrelation consistent, or
HAC, covariance matrix estimator for the ordinary IV estimator. Since the IV
estimator is based on the empirical momentsW>(y−Xβ) and the weighting
matrix (W>W )−1, as can be seen from (17.09), the HAC covariance matrix
estimator is found by applying the formula (17.31) to the present case and
using (17.33) and (17.34). We obtain(
X>PWX

)−1
X>W

(
W>W

)−1
nΦ̂
(
W>W

)−1
W>X

(
X>PWX

)−1
. (17.65)

In the simple case in whichW =X, this rather complicated formula becomes(
X>X

)−1
nΦ̂
(
X>X

)−1
.

When there is no serial correlation, implying that nΦ̂ = W>Ω̂W, this sim-
plifies to the familiar HCCME (16.15), specialized to the case of a linear
regression model. It is a good exercise to see what (17.65) reduces to when
there is no serial correlation and W 6=X.

More interesting than the HAC covariance matrix estimator is the esti-
mator analogous to the H2SLS estimator, (17.44). For this, instead of using
(W>W )−1 as weighting matrix, we use the inverse of Φ̂, calculated in the
manner described above by use of the ordinary IV estimator as the preliminary
consistent estimator. The criterion function becomes

(y −Xβ)>WΦ̂−1W>(y −Xβ),

and the estimator, which is sometimes called two-step two-stage least squares,
is therefore

β̂ =
(
X>WΦ̂−1W>X

)−1
X>WΦ̂−1W>y. (17.66)

This is very similar to (17.44), in which the matrix Φ̂ is replaced byW>Ω̂W.
Indeed, in the absence of autocorrelation, n−1W>Ω̂W is the appropriate
estimator of Φ. It is easier to obtain an estimate of the asymptotic covariance
matrix of (17.66) than of the ordinary IV estimator. It is simply

V̂ (β̂) =
(
X>WΦ̂−1W>X

)−1
.

So far, there is very little practical experience of the estimator (17.66).
One reason for this is that econometricians often prefer to model dynamics ex-
plicitly (see Chapter 19) rather than leaving all the dynamics in the error term
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and employing a specification-consistent estimator. Even if the latter provides
consistent estimates of some parameters, it may say nothing about the most
interesting ones and may allow serious specification errors to go undetected.
Another reason is that there is little evidence concerning the properties of
(17.66) in finite samples. The results of Cragg (1983) and Tauchen (1986) for
related estimators suggest that these may sometimes be poor.

One important practical problem is how to choose the lag truncation
parameter p. Theory is signally unhelpful here. As we mentioned earlier, there
are results establishing rates at which p may tend to infinity as the sample
size tends to infinity. But if an investigator has a sample of precisely 136 ob-
servations, what value of p should be chosen? Andrews (1991b) confronts this
problem directly and provides data-dependent methods for choosing p, based
on the estimation of an optimal value of a parameter he defines. It is fair to
say that none of his methods is elementary, and we cannot discuss them here.
Perhaps the most encouraging outcome of his investigations is that, in the
neighborhood of the optimal value of p, variations in p have little influence on
the performance of the HAC estimator.

Andrews (1991b) also provides valuable evidence about HAC covariance
matrix estimators, (17.64) and others, from Monte Carlo experiments. Per-
haps the most important finding is that none of the HAC estimators he con-
siders is at all reliable for sample sizes up to 250 or so if the errors follow an
AR(1) process with autocorrelation parameter greater than 0.9. This disap-
pointing result is related to the fact that AR(1) processes with parameters
near unity are close to having what is called a unit root. This phenomenon is
studied in Chapter 20, and we will see that unit roots throw most conventional
econometric theory into confusion.

If we stay away from unit roots and near-unit roots, things are more
orderly. We saw in Chapter 16 that it is possible to use HCCMEs even in the
presence of homoskedasticity with little loss of accuracy, provided that one of
the better HCCMEs is used. It appears that much the same is true for HAC
estimators. With an ordinary regression model with serially uncorrelated,
homoskedastic errors, the loss of precision due to the use of the Newey-West
estimator, say, as opposed to the usual OLS estimator, σ̂2(X>X)−1, is small.
With some of the other HAC estimators considered by Andrews, the loss is
smaller still, which implies that the Newey-West estimator is generally not
the best available. Similarly, if the errors are heteroskedastic but still serially
uncorrelated, then an HCCME is much better than the OLS estimator but
only very slightly better than the HAC estimator.

If the errors are autocorrelated at order one and homoskedastic, both the
OLS estimator and the HCCME are dominated not only by the HAC estima-
tor, as one would expect, but also by the straightforward estimator computed
by estimating the autocorrelation parameter ρ and using the covariance matrix
estimator of a feasible GLS procedure. This last estimator is in these circum-
stances preferable to the HAC ones. In fact, it is only when the errors are
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both heteroskedastic and serially correlated that the HAC estimators really
come into their own. Even in these circumstances, it is possible, with some
patterns of heteroskedasticity, that the feasible GLS estimator, which takes no
account of possible heteroskedasticity, can outperform the HAC estimators.
But that is probably the exception rather than the rule, for Andrews finds
other patterns of heteroskedasticity, which, in combination with serial correl-
ation, require the use of HAC estimators for reasonably accurate inference.

Clearly, the last word on HAC estimators has by no means been said.
For instance, in the usual implementation of the Newey-West estimator for
linear IV models, we have that Γ̂ (0) is just n−1W>Ω̂W, with Ω̂ the rather
poor estimator associated with the HC0 form of the HCCME. It would seem
reasonable to suppose that it would be better to use other forms of Ω in the
Newey-West estimator, just as it is in HCCMEs, and to find similar ways of
improving the estimators Γ̂ (j) for j 6= 0. At the time of writing, however, no
evidence is available on whether these conjectures are justified. A quite differ-
ent approach, which we do not have space to discuss, was recently suggested
by Andrews and Monahan (1992).

In the next section, we will leave behind the “grubby details” of covar-
iance matrix estimation, assume that a suitable covariance matrix estimator
is available, and turn our attention to asymptotic tests of overidentifying re-
strictions and other aspects of specification testing in GMM models.

17.6 Inference with GMM Models

In this section, we undertake an investigation of how hypotheses may be tested
in the context of GMMmodels. We begin by looking at tests of overidentifying
restrictions and then move on to develop procedures akin to the classical tests
studied in Chapter 13 for models estimated by maximum likelihood. The
similarities to procedures we have already studied are striking. There is one
important difference, however: We will not be able to make any great use of
artificial linear regressions in order to implement the tests we discuss. The
reason is simply that such artificial regressions have not yet been adequately
developed. They exist only for some special cases, and their finite-sample
properties are almost entirely unknown. However, there is every reason to
hope and expect that in a few years it will be possible to perform inference
on GMM models by means of artificial regressions still to be invented.

In the meantime, there are several testing procedures for GMM models
that are not difficult to perform. The most important of these is a test of the
overidentifying restrictions that are usually imposed. Suppose that we have
estimated a vector θ of k parameters by minimizing the criterion function

ι>F (θ)Φ̂−1F>(θ)ι, (17.67)

in which the empirical moment matrix F (θ) has l > k columns. Observe that
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where Ψ2 = Φ−1, and MΨD is the l × l orthogonal projection matrix onto
the orthogonal complement of the k columns of ΨD. By construction, the
l--vector n−1/2ΨF0

>ι has the N(0, I) distribution asymptotically. It follows,
then, that (17.68) is asymptotically distributed as chi-squared with number
of degrees of freedom equal to the rank ofMΨD, that is, l− k, the number of
overidentifying restrictions.

Hansen’s test of overidentifying restrictions is completely analogous, in
the present more general context, to the one for IV estimation discussed in
Section 7.8, based on the criterion function (7.56). It is a good exercise to work
through the derivation given above for the simple case of a linear regression
model with homoskedastic, serially uncorrelated errors, in order to see how
closely the general case mimics the simple one.2

Hansen’s test of overidentifying restrictions is perhaps as close as one can
come in econometrics to a portmanteau specification test. Because models es-
timated by GMM are subject to so few restrictions, their “specification” is not
very demanding. In particular, if nothing more is required than the existence
of the moments used to identify the parameters, then only two things are left
to test. One is the set of any overidentifying restrictions used, and the other
is parameter constancy.3 Because Hansen’s test of overidentifying restrictions
has as many degrees of freedom as there are overidentifying restrictions, it
may be possible to achieve more power by reducing the number of degrees of
freedom. However, if Hansen’s test statistic is small enough numerically, no
such test can reject, for the simple reason that Hansen’s statistic provides an
upper bound for all possible test statistics for which the null hypothesis is the
estimated model. This last fact follows from the observation that no criterion
function of the form (17.67) can be less than zero.

Tests for which the null hypothesis is not the estimated model are not
subject to the bound provided by Hansen’s statistic. This is just as well, of
course, since otherwise it would be impossible to reject a just identified model
at all. A test for parameter constancy is not subject to the bound either,
although at first glance the null hypothesis would appear to be precisely the
estimated model. The reason was discussed in Section 11.2 in connection
with tests for parameter constancy in nonlinear regression models estimated
by means of instrumental variables. Essentially, in order to avoid problems
of identification, it is necessary to double the number of instruments used, by
splitting the original ones up as in (11.09). Exactly the same considerations
apply for GMM models, of course, especially those that are just identified
or have few overidentifying restrictions. But if one uses twice as many in-
struments, the null model has effectively been changed, and for that reason,

2 Hansen’s test statistic, (17.68), is sometimes referred to as the J statistic. For
obvious reasons (see Chapter 11) we prefer not to give it that name.

3 Tests of parameter constancy in models estimated by GMM are discussed by
Hoffman and Pagan (1989) and Ghysels and Hall (1990).



17.6 Inference with GMM Models 619

and that, as we have seen, is both Hansen’s statistic and the LM statistic in
these circumstances.

Finally, we consider C(α) tests. Let θ́ be a parameter vector satisfying
the restrictions r(θ́) = 0. Then the test statistic can be formed as though
it were the difference of two LM statistics, one for the restricted and one for
the unrestricted model, both evaluated at θ́. Suppose, for simplicity, that the
parameter vector θ can be partitioned as [θ1

.... θ2] and that the restrictions
can be written as θ2 = 0. The first term of the C(α) statistic has the form
(17.72) but is evaluated at θ́ rather than the genuine constrained estimator θ̃.
The second term should take the form of an LM statistic appropriate to the
constrained model, for which only θ1 may vary. This corresponds to replac-
ing the matrix D̃ in (17.72) by D́1, where the partition of D as [D1 D2]
corresponds to the partition of θ. The C(α) test statistic is therefore

C(α) = 1−
n
ι>F́ Φ̂−1D́

(
D́>Φ̂−1D́

)−1
D́>Φ̂−1F́>ι

− 1−
n
ι>F́ Φ̂−1D́1

(
D́1

>Φ̂−1D́1

)−1
D́1

>Φ̂−1F́>ι.
(17.75)

Here, as before, Φ̂ is a suitable estimate of Φ. To show that (17.75) is asymp-
totically equivalent to the true LM statistic, it is enough to modify the details
of the proof of the corresponding asymptotic equivalence in Section 13.7.

In the general case in which the restrictions are expressed as r(θ) = 0,
another form of the C(α) test may be more convenient, since forming a matrix
to correspond to D1 may not be simple. This other form is

ι>F́ Φ̂−1D́
(
D́>Φ̂−1D́

)−1
Ŕ>
(
Ŕ
(
D́>Φ̂−1D́

)−1
Ŕ>
)−1

Ŕ
(
D́>Φ̂−1D́

)−1
D́>Φ̂−1F́>ι.

For this statistic to be useful, the difficulty of computing the actual con-
strained estimate θ̃ must outweigh the complication of the above formula.
The formula itself can be established, at the cost of some tedious algebra, by
adapting the methods of Section 8.9. We leave the details to the interested
reader.

The treatment we have given of LM, LR, and Wald tests has largely fol-
lowed that of Newey andWest (1987b). This article may be consulted for more
details of regularity conditions sufficient for the results merely asserted here to
hold. Another paper on testing models estimated by GMM is Newey (1985b).
Nonnested hypothesis tests for models estimated by GMM are discussed by
Smith (1992). These papers do not deal with C(α) tests, however.

An interesting question is whether the conditional moment tests discussed
in the last chapter in the context of models estimated by maximum likelihood
have any counterpart for models estimated by GMM. For simplicity, suppose
that there is a single conditional moment of which the expectation is zero if
the model is correctly specified. If the corresponding empirical moment is
used as an overidentifying restriction, then it can be tested in the same way
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and k exogenous or predetermined variables. Then the model can be written
in matrix form as

YΓ =XB +U. (18.01)

Here Y denotes an n× g matrix of endogenous variables, X denotes an n× k
matrix of exogenous or predetermined variables, Γ denotes a g × g matrix of
coefficients, B denotes a k× g matrix of coefficients, and U denotes an n× g
matrix of error terms.

It is at once clear that the model (18.01) contains too many coefficients
to estimate. A typical observation for the l th equation can be written as

g∑
i=1

ΓilYti =
k∑

j=1

BjlXtj + utl.

Multiplying all of the Γil’s and Bjl’s by any nonzero constant would simply
have the effect of multiplying utl by that same constant for all t, but would
not change the pattern of the error terms across observations at all. Thus it
is necessary to impose some sort of normalization on each of the equations
of the model. The obvious one is to set Γii = 1 for all i; each endogenous
variable, y1 through yg, would then have a coefficient of unity in one and only
one equation. However, as we saw in Section 7.3, many other normalizations
could be used. We could, for example, set Γ1l = 1 for all l; the coefficient on
the first endogenous variable would then be unity in every equation.

The model (18.01) makes no sense if the matrix Γ cannot be inverted,
since otherwise it would be impossible to determine Y uniquely as a function
of X and U. We may therefore postmultiply both sides of (18.01) by Γ−1 to
obtain

Y =XBΓ−1 +UΓ−1 (18.02)

=XΠ + V . (18.03)

Expression (18.02) is the restricted reduced form, or RRF, and expression
(18.03) is the unrestricted reduced form, or URF. The restrictions are that
Π = BΓ−1. Notice that, even in the unlikely event that the columns of U
were independent, the columns of V would not be. Thus the various equations
of the reduced form are almost certain to have correlated errors.

The imposition of normalization restrictions is necessary but not sufficient
to obtain estimates of Γ and B. The problem is that, unless we impose some
restrictions on it, the model (18.01) has too many coefficients to estimate.
The matrix Γ contains g2 − g coefficients, because of the g normalization
restrictions, while the matrix B contains gk. There are thus g2 + gk − g
structural coefficients in total. But the matrix Π in the unrestricted reduced
form contains only gk coefficients. It is obviously impossible to determine
the g2 + gk− g structural coefficients uniquely from the gk coefficients of the
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they restrict themselves to fully specified parametric models capable of being
estimated by maximum likelihood. We will, however, make use of one of their
specific examples as a concrete illustration of a number of points.

Let the 1 × g vector Yt denote the tth observation on a set of variables
that we wish to model as a simultaneous process, and let the 1× k vector Xt

be the tth observation on a set of explanatory variables, some or all of which
may be lagged Yt’s. We may write an, in general nonlinear, simultaneous
equations model as

ht(Yt,Xt,θ) = Ut, (18.04)

where ht is a 1× g vector of functions, somewhat analogous to the regression
function of a univariate model, θ is a p--vector of parameters, and Ut is a 1×g
vector of error terms. The linear model (18.01) is seen to be a special case of
(18.04) if we rewrite it as

YtΓ =XtB +Ut

and define θ so that it consists of all the elements of Γ and B which have to
be estimated. Here Xt and Yt are the tth rows of the matrices X and Y . A
set of (conditional) moment conditions could be based on (18.04), by writing

E
(
ht(Yt,Xt,θ)

)
= 0,

where the expectation could be interpreted as being conditional on some ap-
propriate information set.

Definition 18.1.

The explanatory variables Xt are predetermined in equation i of the
model (18.04), for i = 1, . . . , g, if, for all t = 1, . . . , n,

Xt
‖ ui,t+s for all s ≥ 0.

Here the symbol ‖ is used to express statistical independence. The definition
applies to any context, such as the time-series one, in which there is a natural
ordering of the observations. The next concept does not require this.

Definition 18.2.

The explanatory variables Xt are strictly exogenous in equation i of
(18.04) if, for all t = 1, . . . , n,

Xt
‖ Us for all s = 1, . . . , n.

If (18.04) represents a structural form, then either predeterminedness
or strict exogeneity allows us to treat this form as a characterization of the
process generating Yt conditional on Xt. Thus we may, for example, write
down a loglikelihood function based on (18.04), which can be maximized in
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order to provide consistent estimates of the parameters θ; see Section 18.4. If
(18.04) is thought of as providing conditional moment conditions, then either
predeterminedness or strict exogeneity allows us to use the columns of the
matrixX as instruments for the estimation of θ by some sort of IV procedure,
such as 2SLS, 3SLS, or GMM. In claiming this, we assume of course that there
are enough instruments in X to identify all of the parameters in θ.

Unfortunately, the concept of strict exogeneity is much too restrictive, at
least for time-series applications. In this context, very few variables are strictly
exogenous, although many are predetermined. However, as we now show, a
variable can be predetermined or not in one and the same model depending
on how the model is parametrized. Furthermore, predeterminedness is not
always necessary for consistent estimation. Thus predeterminedness is not a
very satisfactory concept.

Consider the following simultaneous model, taken from Engle, Hendry,
and Richard (1983):

yt = βxt + ε1t (18.05)

xt = δ1xt−1 + δ2yt−1 + ε2t, (18.06)

where the error terms are normally, independently, and identically distributed
for each t, with covariance matrix

Σ ≡
[
σ11 σ12
σ12 σ22

]
.

If σ12 6= 0, xt is correlated with ε1t and estimation of (18.05) by OLS will not
be consistent because xt is not predetermined in (18.05).

Now let us consider the expectation of yt conditional on xt and all lagged
yt’s and xt’s. We have

E(yt |xt, yt−1, xt−1 · · ·) = βxt + E(ε1t |xt, yt−1, xt−1 · · ·). (18.07)

Notice that ε2t is defined by (18.06) as a linear combination of the conditioning
variables. Thus the conditional expectation of ε1t in (18.07) is

E(ε1t | ε2t) =
σ12
σ22

ε2t =
σ12
σ22

(xt − δ1xt−1 − δ2yt−1).

We may therefore write

yt = bxt + c1xt−1 + c2yt−1 + vt, (18.08)

with
b = β +

σ12
σ22

, c1 = − δ1
σ12
σ22

, c2 = − δ2
σ12
σ22

, (18.09)

and with vt independent of xt. Thus xt is predetermined in (18.08), whatever
the value of σ12, even though it is not predetermined in (18.05) when σ12 6= 0.
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on asymptotic theory, and one cannot hope to obtain consistent parameter
estimates if the parameters are not asymptotically identified.

In this section, we will discuss the asymptotic identifiability of a linear
simultaneous equations model by the two-stage least squares estimator intro-
duced in Section 7.5. This may seem a very limited topic, and in a certain
sense it is indeed limited. However, it is a topic that has given rise to a truly
vast literature, to which we can in no way do justice here; see Fisher (1976) and
Hsiao (1983). There exist models that are not identified by the 2SLS estimator
but are identified by other estimators, such as the FIML estimator, and we will
briefly touch on such cases later. It is not a simple task to extend the theory
we will present in this section to the context of nonlinear models, for which
it is usually better to return to the general theory expounded in Section 5.2.

We begin with the linear simultaneous equations model, (18.01). This
model consists of DGPs that generate samples for which each observation
is a g--vector Yt of dependent variables, conditional on a set of exogenous
and lagged dependent variables Xt. Since the exogenous variables in Xt are
assumed to be weakly exogenous, their generating mechanism can be ignored.
In order to discuss identification, little needs to be assumed about the error
terms Ut. They must evidently satisfy the condition that E(Ut) = 0, and
it seems reasonable to assume that they are serially independent and that
E(Ut

>Ut) = Σt, where Σt is a positive definite matrix for all t. If inferences
are to be based on the usual 2SLS covariance matrix, it will be necessary to
make the further assumption that the error terms are homoskedastic, that is,
Σt = Σ for all t.

It is convenient to treat the identification of the parameters of a simult-
aneous equations model equation by equation, since it is entirely possible that
the parameters of some equations may be identified while the parameters of
others are not. In order to simplify notation, we will consider, without loss
of generality, only the parameters of the first equation of the system, that
is, the elements of the first columns of the matrices Γ and B. As we re-
marked in Section 18.1, restrictions must be imposed on the elements of these
matrices for identification to be possible. It is usual to assume that these
restrictions all take the form of zero restrictions on some elements. A variable
is said to be excluded from an equation if the coefficient corresponding to that
variable for that equation is restricted to be zero; otherwise, it is said to be
included in the equation. As discussed in Section 6.4, it is always possible
in the context of a single equation to perform a reparametrization such that
all restrictions take the form of zero restrictions. But in the context of a
simultaneous equations model, such reparametrizations exist in general only
if there are no cross-equation restrictions, that is, restrictions which involve
the parameters of more than one equation of the system. If there are cross-
equation restrictions, then to all intents and purposes we leave the context of
linear systems. We would in any case have to abandon the 2SLS estimator if
we wished to impose cross-equation restrictions.
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and (18.20), be expressed as

π1 −Π11γ1 = β1

π2 −Π21γ1 = 0.

The first of these two equations serves to define β1 in terms ofΠ and γ1, and
allows us to see that β1 can be identified if γ1 can be. The second equation
shows that γ1 is determined uniquely if and only if the submatrix Π21 has
full column rank, that is, if the rank of the matrix is equal to the number
of columns (see Appendix A). The submatrix Π21 has k − k1 rows and g1
columns. Therefore, if the order condition is satisfied, there are at least as
many rows as columns. The condition for the identifiability of γ1, and so also
of β1, is thus simply that the columns of Π21 in the DGP should be linearly
independent.

It is instructive to show why this last condition is equivalent to the
rank condition in terms of plim(n−1Z>PXZ). If, as we have tacitly assumed
throughout this discussion, the exogenous variables X satisfy the condition
that plim(n−1X>X) is positive definite, then plim(n−1Z>PXZ) can fail to
have full rank only if plim(n−1X>Z) has rank less than g1 + k1, the number
of columns of Z. The probability limit of the matrix n−1X>Z follows from
(18.22), with X replacing W. If, for notational simplicity, we drop the prob-
ability limit and the factor of n−1, which are not essential to the discussion,
the matrix of interest can be written as[

X1
>X1 X1

>X1Π11 +X1
>X2Π21

X2
>X1 X2

>X1Π11 +X2
>X2Π21

]
. (18.23)

This matrix does not have full column rank of g1+k1 if and only if there exists
a nonzero (g1+k1)--vector θ ≡ [θ1

.... θ2] such that postmultiplying (18.23) by θ
gives zero. If we write this condition out and rearrange slightly, we obtain[

X1
>X1 X1

>X2

X2
>X1 X2

>X2

] [
θ1 +Π11θ2
Π21θ2

]
= 0. (18.24)

The first matrix on the left-hand side here is just X>X and is therefore
nonsingular. The condition reduces to the two vector equations

θ1 +Π11θ2 = 0 (18.25)

Π21θ2 = 0. (18.26)

If these equations hold for some nonzero θ, it is clear that θ2 cannot be zero.
Consequently, the second of these equations can hold only ifΠ21 has less than
full column rank. It follows that if the rank condition in terms of Z>PXZ
does not hold, then it does not hold in terms of Π21 either. Conversely,
suppose that (18.26) holds for some nonzero g1--vector θ2. Then Π21 does
not have full column rank. Define θ1 in terms of this θ2 and Π by means
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By the same token, if the parameters of the structural model are not constant
over the entire sample, then the parameters of the URF will not be constant ei-
ther. Since the equations of the URF are estimated by ordinary least squares,
it is very easy to test them for evidence of misspecification such as serial cor-
relation, heteroskedasticity, and nonconstant coefficients. If they fail any of
these tests, then one may reasonably conclude that the structural model is
misspecified, even if one has not actually estimated it. The converse is not
true, however, since these tests may well lack power, especially if only one of
the structural equations is misspecified.

One additional misspecification test that should always be performed is
a test of any overidentifying restrictions. In Section 7.8, we discussed how
to test overidentifying restrictions for a single equation estimated by IV or
2SLS. Here we are interested in all of the overidentifying restrictions for the
entire system. The number of degrees of freedom for the test is equal to
the number of elements in the Π matrix of the URF, gk, minus the number
of free parameters in B and Γ jointly. In most cases there will be some
overidentifying restrictions, and in many cases there will be a large number
of them. The most natural way to test these is probably to use an LR test.
The restricted value of the loglikelihood function is the value of (18.30) at the
FIML estimates B̂ and Γ̂, and the unrestricted value is

− ng−−
2

(
log(2π) + 1

)
− n−

2
log
∣∣∣ 1−n(Y −XΠ̂

)>(Y −XΠ̂
)∣∣∣ , (18.33)

where Π̂ denotes the OLS estimates of the parameters of the URF. As usual,
twice the difference between the unrestricted and restricted values of the log-
likelihood function will be asymptotically distributed as χ2 with as many
degrees of freedom as there are overidentifying restrictions. If one suspects
that the overidentifying restrictions are violated and therefore does not want
to bother estimating the structural model, one could instead use a Wald test,
as suggested by Byron (1974).

We have not yet explained why the OLS estimates Π̂ are also the ML
estimates. It can easily be seen from (18.33) that, in order to obtain ML
estimates of Π, we need to minimize the determinant∣∣(Y −XΠ)>(Y −XΠ)

∣∣. (18.34)

Suppose that we evaluate this determinant at any set of estimates Π́ not
equal to Π̂. Since we can always write Π́ = Π̂ + A for some matrix A,
(18.34) becomes ∣∣(Y −XΠ̂ −XA)>(Y −XΠ̂ −XA)

∣∣
=
∣∣(MXY −XA)>(MXY −XA)

∣∣
=
∣∣Y>MXY +A>X>XA

∣∣.
(18.35)
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Because the determinant of the sum of two positive definite matrices is always
greater than the determinants of either of those matrices (see Appendix A),
it follows from (18.35) that (18.34) will exceed |Y>MXY | for all A 6= 0.
This implies that Π̂ minimizes (18.34), and so we have proved that equation-
by-equation OLS estimates of the URF are also ML estimates for the entire
system.

If one does not have access to a regression package that calculates (18.33)
easily, there is another way to do so. Consider the recursive system

y1 =Xη1 + e1

y2 =Xη2 + y1α1 + e2

y3 =Xη3 + [y1 y2]α2 + e3

y4 =Xη4 + [y1 y2 y3]α3 + e4,

(18.36)

and so on, where yi denotes the ith column of Y . This system of equations
can be interpreted as simply a reparametrization of the URF (18.03). It is
easy to see that if one estimates these equations by OLS, all the residual
vectors will be mutually orthogonal: ê2 will be orthogonal to ê1, ê3 will be
orthogonal to ê2 and ê1, and so on. According to the URF, all the yi’s are
linear combinations of the columns of X plus random errors. Therefore, the
equations of (18.36) are correct for any arbitrary choice of the α parameters:
The ηi’s simply adjust to whatever choice is made. If, however, we require
that the error terms ei should be orthogonal, then this serves to identify a
particular unique choice of the α’s. In fact, the recursive system (18.36) has
exactly the same number of parameters as the URF (18.03): g vectors ηi, each
with k elements, g − 1 vectors αi, with a total of g(g − 1)/2, and g variance
parameters, for a total of gk + (g2 + g)/2. The URF has gk parameters in
Π and (g2 + g)/2 in the covariance matrix Ω, for the same total. What has
happened is that the α parameters in (18.36) have replaced the off-diagonal
elements of the covariance matrix of V in the URF.

Since the recursive system (18.36) is simply a reparametrization of the
URF (18.03), it should come as no surprise that the loglikelihood function for
the former is equal to (18.33). Because the residuals of the various equations
in (18.36) are orthogonal, the value of the loglikelihood function for (18.36)
is simply the sum of the values of the loglikelihood functions from OLS es-
timation of the individual equations. This result, which readers can easily
verify numerically, sometimes provides a convenient way to compute the log-
likelihood function for the URF. Except for this purpose, recursive systems
are not generally of much interest. They do not convey any information that
is not already provided by the URF, and the parametrization depends on an
arbitrary ordering of the equations.
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Solving for γ̂1 then yields

γ̂1 =
(
Y1

>(M1 − κ̂MX)Y1

)−1
Y1

>(M1 − κ̂MX)y.

Since X1 ∈ S(X), M1 − κ̂MX =M1(I− κ̂MX). Using this fact and a little
algebra, which we leave as an exercise, it can be shown that γ̂1 can also be
computed using the formula[

β̂1

γ̂1

]
=

[
X1

>X1 X1
>Y1

Y1
>X1 Y1

>(I− κ̂MX)Y1

]−1[
X1

>y

Y1
>(I− κ̂MX)y

]
, (18.53)

which yields β̂1 as well. Then if we define Z as [X1 Y1] and δ as [β1
.... γ1],

as in (18.18), (18.53) can be written in the very simple form

δ̂ =
(
Z>(I− κ̂MX)Z

)−1
Z>(I− κ̂MX)y. (18.54)

Equation (18.53) is one way of writing LIML as a member of what is
called theK-class of estimators; see Theil (1961) and Nagar (1959). Equation
(18.54) is a simpler way of doing the same thing. The K-class consists of
all estimators that can be written in either of these two forms, but with an
arbitrary scalar K replacing κ̂. We use K rather than the more traditional k
to denote this scalar in order to avoid confusion with the number of exogenous
variables in the system. The LIML estimator is thus a K-class estimator with
K = κ̂. Similarly, as is evident from (18.54), the 2SLS estimator is a K-class
estimator with K = 1, and the OLS estimator is a K-class estimator with
K = 0. Since κ̂ = 1 for a structural equation that is just identified, it follows
immediately from (18.54) that the LIML and 2SLS estimators coincide in this
special case.

It can be shown that K-class estimators are consistent whenever K tends
to 1 asymptotically at a rate faster than n−1/2; see Schmidt (1976), among
others. Even though the consistency of LIML follows from general results
for ML estimators, it is interesting to see how this result for the K-class
applies to it. We have already seen that n log(κ̂) is the LR test statistic
for the null hypothesis that the overidentifying restrictions on the structural
equation being estimated are valid. If we Taylor expand the logarithm, we
find that n log(κ̂) ∼= n(κ̂ − 1). Since this test statistic has an asymptotic
χ2 distribution, it must be O(1), and so κ̂ − 1 must be O(n−1). This then
establishes the consistency of LIML.

There are many other K-class estimators. For example, Sawa (1973)
has suggested a way of modifying the 2SLS estimator to reduce bias, and
Fuller (1977) and Morimune (1978, 1983) have suggested modified versions of
the LIML estimator. Fuller’s estimator, which is the simplest of these, uses
K = κ̂ − α/(n − k), where α is a positive constant that must be chosen by
the investigator. One good choice is α = 1, since it yields estimates that
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In order to make (18.61) operational, we need to estimate the covariance
matrix Σ of the error terms. In the case of an SUR model, we could use OLS
on each equation individually. Since OLS is inconsistent for simultaneous
equations models, we use 2SLS on each equation instead. Thus the first two
“stages” of 3SLS are simply the two stages of 2SLS, applied to each separate
equation of (18.01). The covariances of the error terms are then estimated
from the 2SLS residuals:

σ̃ij =
1−
n

n∑
t=1

ũtiũtj . (18.62)

Of course, these residuals must be the genuine 2SLS residuals, not the res-
iduals from OLS estimation of the second-stage regressions; see Section 7.5.
Thus we see that the 3SLS estimators δ̃1 through δ̃g must jointly solve the
first-order conditions

g∑
j=1

σ̃ijZi
>PX

(
yj −Zj δ̃j

)
= 0. (18.63)

The solution is easy to write down. If δ ≡ [δ1
.... · · · .... δg] and matrices enclosed

in square brackets [·] denote partitioned matrices characterized by a typical
block, then the 3SLS estimator δ̃ can be written very compactly as

δ̃ =
[
σ̃ijZi

>PXZj

]−1

[
g∑

j=1

σ̃ijZi
>PXyj

]
. (18.64)

It is more common to see the 3SLS estimator written using an alternative
notation that involves Kronecker products; see almost any econometrics text-
book. Although Kronecker products can sometimes be useful (Magnus and
Neudecker, 1988), we prefer the compact notation of (18.64).

The 3SLS estimator is closely related both to the 2SLS estimator and
to the GLS estimator for multivariate SUR models in which the explanatory
variables are all exogenous or predetermined. If we assume thatΣ is diagonal,
conditions (18.63) become simply

σ̃iiZi
>PX

(
yi −Ziδi

)
= 0,

which are equivalent to the conditions for equation-by-equation 2SLS. Thus
3SLS and 2SLS will be asymptotically (but not numerically) equivalent when
the structural form errors are not contemporaneously correlated. It is also
easy to see that the SUR estimator for linear models is just a special case
of the 3SLS estimator. Since all regressors can be used as instruments in
the SUR case, it is no longer necessary to use 2SLS in the preliminary stage.
Equivalently, the fact that each regressor matrix Zi is just a submatrix of the
full regressor matrix, X, implies that PXZi = Zi. Thus (18.63) simplifies to

g∑
j=1

σ̃ijZi
>(yj −Zjδj

)
= 0,
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Consequently, the matrix (18.69), evaluated at the ML estimates, becomes

−Ŷ>(YΓ̂ −XB̂)Σ̂−1.

Now at last we can select the elements of the two partial derivative ma-
trices which are actually zero when evaluated at the ML estimates. The
parameters that appear in the ith equation are found in the ith columns of
the matrices Γ and B, and so the appropriate partial derivatives are found in
the ith columns of the partial derivative matrices. For the matrix correspond-
ing to B, this column is X>(YΓ̂ −XB̂)(Σ̂−1)i. From this column we wish to
select only those rows for which the corresponding element of the column Bi

is unrestricted, that is, the elements corresponding to the n × ki matrix Xi.
Since in order to select rows of a matrix product, we need only select the
corresponding rows of the left-most factor, the zero elements are those of the
ki--vector Xi

>(YΓ̂ −XB̂)(Σ̂−1)i.

By exactly similar reasoning, we find that, for each i = 1, . . . , g, the
gi--vector Ŷi

>(YΓ̂ −XB̂)(Σ̂−1)i is zero, where Ŷi contains only those columns
of Ŷ that correspond to the matrix Yi of endogenous variables included as
regressors in the ith equation. If we write Ẑi ≡ [Xi Ŷi], then all the first-
order conditions corresponding to the parameters of the ith equation can be
written as

Ẑi
>(YΓ̂ −XB̂

)
(Σ−1)i = 0.

These conditions can be further simplified. Note that

(YΓ̂ −XB̂)(Σ̂−1)i =

g∑
j=1

σ̂ij
(
YΓ̂j −XB̂j

)
=

g∑
j=1

σ̂ij
(
yj −Zj δ̂j

)
.

The full set of first-order conditions defining the FIML estimates can thus be
written as

g∑
j=1

σ̂ijẐi
>(yj −Zj δ̂j

)
= 0, for i = 1, . . . , g. (18.72)

The conditions (18.72) are now in a form very similar indeed to that of
the conditions (18.63) that define the 3SLS estimator. In fact, if we let Ȳi

denote the n× gi matrix of fitted values from the unrestricted reduced form,
so that Ȳi = PXYi for i = 1, . . . , g, then

PXZi = PX

[
Xi Yi

]
=
[
Xi Ȳi

]
≡ Z̄i.

Thus the conditions (18.63) that define the 3SLS estimator can be written as

g∑
j=1

σ̃ijZ̄i
>(yj −Zj δ̃j

)
= 0. (18.73)
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where fi(·) is an n--vector of nonlinear functions, ui is an n--vector of error
terms, and θ is a p--vector of parameters to be estimated. In general, subject
to whatever restrictions need to be imposed for the system to be identified, all
the endogenous and exogenous variables and all the parameters may appear
in any equation.

The first step in any sort of IV procedure is to choose the instruments
to be used. If the model is nonlinear only in the parameters, the matrix of
optimal instruments is X. As we have seen, however, there is no simple way
to choose the instruments for models that are nonlinear in one or more of the
endogenous variables. The theory of Section 17.4 can be applied, of course,
but the result that it yields is not very practical. Under the usual assumptions
about the error terms, namely, that they are homoskedastic and independent
across observations but correlated across equations for each observation, one
finds that a matrix of instrumentsW will be optimal if S(W ) is equal to the
subspace spanned by the union of the columns of the E(∂fi/∂θ). This result
was originally derived by Amemiya (1977). It makes sense but is generally
not very useful in practice. For now, we simply assume that some valid n×m
matrix of instruments W is available, with m ≥ p.

A nonlinear IV procedure for full-system estimation, similar in spirit to
the single-equation NL2SLS procedure based on minimizing (18.78), was first
proposed by Jorgenson and Laffont (1974) and called nonlinear three-stage
least squares, or NL3SLS. The name is somewhat misleading, for the same
reason that the name “NL2SLS” is misleading. By analogy with (18.60), the
criterion function we would really like to minimize is

g∑
i=1

g∑
j=1

σijfi
>(Y ,X,θ)PWfj(Y ,X,θ). (18.80)

In practice, however, the elements σij of the inverse of the contemporaneous
covariance matrix Σ will not be known and will have to be estimated. This
may be done in several ways. One possibility is to use NL2SLS for each
equation separately. This will generally be easy, but it may not be possible if
some parameters are identified only by cross-equation restrictions. Another
approach which will work in that case is to minimize the criterion function

g∑
i=1

fi
>(Y ,X,θ)PWfi(Y ,X,θ), (18.81)

in which the unknown covariance matrix Σ is replaced by the identity matrix.
The estimator obtained by minimizing (18.81) will evidently be a valid GMM
estimator and thus will be consistent even though it is inefficient. Whichever
inefficient estimator is used initially, it will yield g vectors of residuals úi from
which the matrix Σ may be estimated consistently in exactly the same way
as for linear models; see (18.62). Replacing the unknown σij ’s in (18.80) by
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the elements σ́ij of the inverse of the estimate of Σ then yields the criterion
function

g∑
i=1

g∑
j=1

σ́ijfi
>(Y ,X,θ)PWfj(Y ,X,θ), (18.82)

which can actually be minimized in practice.

As usual, the minimized value of the criterion function (18.82) provides
a test statistic for overidentifying restrictions; see Sections 7.8 and 17.6. If
the model and instruments are correctly specified, this test statistic will be
asymptotically distributed as χ2(m − p); recall that m is the number of in-
struments and p is the number of free parameters. Moreover, if the model is
estimated unrestrictedly and subject to r distinct restrictions, the difference
between the two values of the criterion function will be asymptotically dis-
tributed as χ2(r). If the latter test statistic is to be employed, it is important
that the same estimate of Σ be used for both estimations, since otherwise the
test statistic may not even be positive in finite samples.

When the sample size is large, it may be less computationally demanding
to obtain one-step efficient estimates rather than actually to minimize (18.82).
Suppose the initial consistent estimates, which may be either NL2SLS esti-
mates or systems estimates based on (18.81), are denoted θ́. Then a first-order
Taylor-series approximation to fi(θ) ≡ fi(Y ,X,θ) around θ́ is

fi(θ́) + Fi(θ́)(θ − θ́),

where Fi is an n×p matrix of the derivatives of fi(θ) with respect to the p ele-
ments of θ. If certain parameters do not appear in the ith equation, the corre-
sponding columns of Fi will be identically zero. The one-step estimates, which
will be asymptotically equivalent to NL3SLS estimates, are simply θ̀ = θ́ − t́,
where t́ denotes the vector of linear 3SLS estimates

t́ =

[
g∑

i=1

g∑
j=1

σ́ijF́i
>PW F́j

]−1[ g∑
i=1

g∑
j=1

σ́ijF́i
>PW f́j

]
. (18.83)

Compare expression (18.64), for the case with no cross-equation restrictions.

It is clear that NL3SLS can be generalized to handle heteroskedasticity of
unknown form, serial correlation of unknown form, or both. For example, to
handle heteroskedasticity one would simply replace the matrix PW in (18.82)
and (18.83) by the matrix

W
(
W>ΏijW

)−1
W>,

where, by analogy with (18.76), Ώij = diag(útiútj) for i, j = 1, . . . , g. The
initial estimates θ́ need not take account of heteroskedasticity. For a more
detailed discussion of this sort of procedure, and of NL3SLS in general, see
Gallant (1987, Chapter 6).
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The other full-systems estimation method that is widely used is nonlinear
FIML. For this, it is convenient to write the equation system to be estimated
not as (18.79) but rather as

ht(Yt,Xt,θ) = Ut, Ut ∼ NID(0,Σ), (18.84)

where θ is still a p--vector of parameters, ht is a 1 × g vector of nonlinear
functions, and Ut is a 1 × g vector of error terms. There need be no conflict
between (18.79) and (18.84) if we think of the ith element of ht(·) as being
the same as the tth element of fi(·).

The density of the vector Ut is

(2π)−g/2|Σ|−1/2 exp
(
− 1−

2
UtΣ

−1Ut
>
)
.

To obtain the density of Yt, we must replace Ut by ht(Yt,Xt,θ) and multiply
by the Jacobian factor |detJt|, where Jt ≡ ∂ht(θ)/∂Yt, that is, the g × g
matrix of derivatives of ht with respect to the elements of Yt. The result is

(2π)−g/2|detJt||Σ|−1/2 exp
(
− 1−

2
ht(Yt,Xt,θ)Σ

−1ht
>(Yt,Xt,θ)

)
.

It follows immediately that the loglikelihood function is

`(θ,Σ) = − ng−−
2
log(2π) +

n∑
t=1

log |detJt| − n−
2
log |Σ|

− 1−
2

n∑
t=1

ht(Yt,Xt,θ)Σ
−1ht

>(Yt,Xt,θ).

(18.85)

This may then be maximized with respect to Σ and the result substituted
back in to yield the concentrated loglikelihood function

`c(θ) = − ng−−
2

(
log(2π) + 1

)
+

n∑
t=1

log |detJt|

− n−
2
log
∣∣∣ 1−n n∑

t=1

ht
>(Yt,Xt,θ)ht(Yt,Xt,θ)

∣∣∣. (18.86)

Inevitably, there is a strong resemblance between (18.85) and (18.86) and their
counterparts (18.28) and (18.30) for the linear case. The major difference is
that the Jacobian term in (18.85) and (18.86) is the sum of the logs of n dif-
ferent determinants. Thus every time one evaluates one of these loglikelihood
functions, one has to calculate n different determinants. This can be very
expensive if g or n is large. Of course, the problem goes away if the model is
linear in the endogenous variables, since Jt will then be the same for all t.



Chapter 20

Unit Roots and Cointegration

20.1 Introduction

As we saw in the last chapter, the usual asymptotic results cannot be ex-
pected to apply if any of the variables in a regression model is generated by a
nonstationary process. For example, in the case of the linear regression model
y = Xβ + u, the usual results depend on the assumption that the matrix
n−1X>X tends to a finite, positive definite matrix as the sample size n tends
to infinity. When this assumption is violated, some very strange things can
happen, as we saw when we discussed “spurious” regressions between totally
unrelated variables in Section 19.2. This is a serious practical problem, be-
cause a great many economic time series trend upward over time and therefore
seem to violate this assumption.

Two obvious ways to keep standard assumptions from being violated
when using such series are to detrend or difference them prior to use. But
detrending and differencing are very different operations; if the former is ap-
propriate, the latter will not be, and vice versa. Detrending a time series yt
will be appropriate if it is trend-stationary, which means that the DGP for yt
can be written as

yt = γ0 + γ1t+ ut, (20.01)

where t is a time trend and ut follows a stationary ARMA process. On the
other hand, differencing will be appropriate if the DGP for yt can be written as

yt = γ1 + yt−1 + ut, (20.02)

where again ut follows a stationary ARMA process. If the ut’s were serially
independent, (20.02) would be a random walk with drift, the drift parameter
being γ1. They will generally not be serially independent, however. As we
will see shortly, it is no accident that the same parameter γ1 appears in both
(20.01) and (20.02).

The choice between detrending and differencing comes down to a choice
between (20.01) and (20.02). The main techniques for choosing between them
are various tests for what are called unit roots. The terminology comes from
the literature on time-series processes. Recall from Section 10.5 that for an AR

700
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process A(L)ut = εt, where A(L) denotes a polynomial in the lag operator,
the stationarity of the process depends on the roots of the polynomial equation
A(z) = 0. If all roots are outside the unit circle, the process is stationary.
If any root is equal to or less than 1 in absolute value, the process is not
stationary. A root that is equal to 1 in absolute value is called a unit root.
When a process has a unit root, as (20.02) does, it is said to be integrated of
order one or I(1). A series that is I(1) must be differenced once in order to
make it stationary.

The obvious way to choose between (20.01) and (20.02) is to nest them
both within a more general model. There is more than one way to do so. The
most plausible model that includes both (20.01) and (20.02) as special cases
is arguably

yt = γ0 + γ1t+ vt; vt = αvt−1 + ut

= γ0 + γ1t+ α
(
yt−1 − γ0 − γ1(t− 1)

)
+ ut, (20.03)

where ut follows a stationary process. This model was advocated by Bhargava
(1986). When |α| < 1, (20.03) is equivalent to the trend-stationary model
(20.01); when α = 1, it reduces to (20.02).

Because (20.03) is nonlinear in the parameters, it is convenient to repara-
metrize it as

yt = β0 + β1t+ αyt−1 + ut, (20.04)

where
β0 ≡ γ0(1− α) + γ1α and β1 ≡ γ1(1− α).

It is easy to verify that the estimates of α from least squares estimation of
(20.03) and (20.04) will be identical, as will the estimated standard errors of
those estimates if, in the case of (20.03), the latter are based on the Gauss-
Newton regression. The only problem with the reparametrization (20.04) is
that it hides the important fact that β1 = 0 when α = 1.

If yt−1 is subtracted from both sides, equation (20.04) becomes

∆yt = β0 + β1t+ (α− 1)yt−1 + ut, (20.05)

where ∆ is the first-difference operator. If α < 1, (20.05) is equivalent to
the model (20.01), whereas, if α = 1, it is equivalent to (20.02). Thus it
is conventional to test the null hypothesis that α = 1 against the one-sided
alternative that α < 1. Since this is a test of the null hypothesis that there
is a unit root in the stochastic process which generates yt, such tests are
commonly called unit root tests.

At first glance, it might appear that a unit root test could be accom-
plished simply by using the ordinary t statistic for α − 1 = 0 in (20.05), but
this is not so. When α = 1, the process generating yt is integrated of order
one. This means that yt−1 will not satisfy the standard assumptions needed
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These are often called augmented Dickey-Fuller tests, or ADF tests. They
were proposed originally by Dickey and Fuller (1979) under the assumption
that the error terms follow an AR process of known order. Subsequent work
by Said and Dickey (1984) and Phillips and Perron (1988) showed that they
are asymptotically valid under much less restrictive assumptions. Consider
the test regressions (20.05), (20.06), (20.07), or (20.11). We can write any of
these regressions as

∆yt =Xtβ + (α− 1)yt−1 + ut, (20.14)

whereXt consists of whatever set of nonstochastic regressors is included in the
test regression: nothing at all for (20.06), a constant for (20.07), a constant
and a linear trend for (20.05), and so on.

Now suppose, for simplicity, that the error term ut in (20.14) follows the
stationary AR(1) process ut = ρut−1 + εt. Then (20.14) would become

∆yt =Xtβ − ρXt−1β + (ρ+ α− 1)yt−1 − αρyt−2 + εt

=Xtβ
∗ + (ρ+ α− 1− αρ)yt−1 + αρ(yt−1 − yt−2) + εt (20.15)

=Xtβ
∗ + (α− 1)(1− ρ)yt−1 + αρ∆yt−1 + εt. (20.16)

We are able to replace Xtβ − ρXt−1β by Xtβ
∗ in (20.15), for some choice

of β∗, because every column of Xt−1 lies in S(X). This is a consequence of
the fact that Xt can include only such deterministic variables as a constant, a
linear trend, and so on (see Section 10.9). Thus each element of β∗ is a linear
combination of the elements of β.

Equation (20.16) is a linear regression of ∆yt on Xt, yt−1, and ∆yt−1.
This is just the original regression (20.14), with one additional regressor,
∆yt−1. Adding this regressor has caused the serially dependent error term ut
to be replaced by the serially independent error term εt. The ADF version of
the τ statistic, which we will refer to as the τ ′ statistic, is simply the ordinary
t statistic for the coefficient on yt−1 in (20.16) to be zero. If the serial correla-
tion in the error terms of (20.14) were fully accounted for by an AR(1) process,
this τ ′ statistic would have exactly the same asymptotic distribution as the
ordinary DF τ statistic for the same specification of Xt. The fact that the
coefficient on yt−1 is (α−1)(1−ρ) rather than α−1 does not matter. Because
it is assumed that |ρ| < 1, this coefficient can be zero only if α = 1. Thus a
test for the coefficient on yt−1 to be zero is equivalent to a test for α = 1.

It is evidently very easy to compute τ ′ statistics using regressions like
(20.16), but it is not so easy to compute the corresponding z′ statistics. If the
coefficient of yt−1 were multiplied by n, the result would be n(α̂ − 1)(1 − ρ̂)
rather than n(α̂ − 1). This test statistic clearly would not have the same
asymptotic distribution as z. Thus, in order to compute a valid z′ statistic
from regression (20.16), it is necessary to divide the coefficient of yt−1 by 1−ρ̂;
see Dickey, Bell, and Miller (1986).
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Serial correlation is not the only complication that one is likely to en-
counter when trying to compute unit root test statistics. One very serious
problem is that these statistics are severely biased against rejecting the null
hypothesis when they are used with data that have been seasonally adjusted
by means of a linear filter or by the methods used by government statistical
agencies. In Section 19.6, we discussed the tendency of the OLS estimate of
α in the regression yt = β0 + αyt−1 + ut to be biased toward 1 when yt is
a seasonally adjusted series. This bias is present for all the test regressions
we have discussed. Even when α̂ is not actually biased toward 1, it will be
less biased away from 1 than the corresponding estimate using an unfiltered
series. Since the tabulated distributions of the test statistics are based on
the behavior of α̂ for the latter case, it is likely that test statistics computed
using seasonally adjusted data will reject the null hypothesis substantially less
often than they should according to the critical values in Table 20.1. That
is exactly what Ghysels and Perron (1993) found in a series of Monte Carlo
experiments.

If possible, one should therefore avoid using seasonally adjusted data to
compute unit root tests. One possibility is to use annual data. This may
cause the sample size to be quite small, but the consequences of that are not
as severe as one might fear. As Shiller and Perron (1985) point out, the power
of these tests depends more on the span of the data (i.e., the number of years
the sample covers) than on the number of observations. The reason for this is
that if α is in fact positive but less than 1, it will be closer to 1 when the data
are observed more frequently. Thus a test based on n annual observations may
have only slightly less power than a test based on 4n quarterly observations
that have not been seasonally adjusted and may have more power than a test
based on 4n seasonally adjusted observations.

If quarterly or monthly data are to be used, they should if possible not be
seasonally adjusted. Unfortunately, as we remarked in Chapter 19, seasonally
unadjusted data for many time series are not available in many countries.
Moreover, the use of seasonally unadjusted data may make it necessary to
add seasonal dummy variables to the regression and to account for fourth-
order or twelfth-order serial correlation.

A second major problem with unit root tests is that they are very sensitive
to the assumption that the process generating the data has been stable over
the entire sample period. Perron (1989) showed that the power of unit root
tests is dramatically reduced if the level or the trend of a series has changed
exogenously at any time during the sample period. Even though the series
may actually be stationary in each of the two parts of the sample, it can be
almost impossible to reject the null that it is I(1) in such cases.

Perron therefore proposed techniques that can be used to test for unit
roots conditional on exogenous changes in level or trend. His tests are per-
formed by first regressing yt on a constant, a time trend, and one or two
dummy variables that allow either the constant, the trend, or both the con-
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employed. We know that variables which are I(1) tend to diverge as n→ ∞,
because their unconditional variances are proportional to n. Thus it might
seem that such variables could never be expected to obey any sort of long-run
equilibrium relationship. But in fact it is possible for two or more variables to
be I(1) and yet for certain linear combinations of those variables to be I(0).
If that is the case, the variables are said to be cointegrated. If two or more
variables are cointegrated, they must obey an equilibrium relationship in the
long run, although they may diverge substantially from equilibrium in the
short run. The concept of cointegration is fundamental to the understanding
of long-run relationships among economic time series. It is also quite recent.
The earliest reference is probably Granger (1981), the best-known paper is
Engle and Granger (1987), and two relatively accessible articles are Hendry
(1986) and Stock and Watson (1988a).

Suppose, to keep matters simple, that we are concerned with just two
variables, yt1 and yt2, each of which is known to be I(1). Then, in the simplest
case, yt1 and yt2 would be cointegrated if there exists a vector η ≡ [1 −η2]>
such that, when the two variables are in equilibrium,

[y1 y2 ]η ≡ y1 − η2y2 = 0. (20.20)

Here y1 and y2 denote n--vectors with typical elements yt1 and yt2, respec-
tively. The 2--vector η is called a cointegrating vector. It is clearly not unique,
since it could be multiplied by any nonzero scalar without affecting the equal-
ity in (20.20).

Realistically, one might well expect yt1 and yt2 to be changing systemat-
ically as well as stochastically over time. Thus one might expect (20.20) to
contain a constant term and perhaps one or more trend terms as well. If we
write Y = [y1 y2], (20.20) can be rewritten to allow for this possibility as

Yη =Xβ, (20.21)

where, as in (20.14), X denotes a nonstochastic matrix that may or may not
have any elements. If it does, the first column will be a constant, the second,
if it exists, will be a linear time trend, the third, if it exists, will be a quadratic
time trend, and so on. Since Y could contain more than two variables, (20.21)
is actually a very general way of writing a cointegrating relationship among
any number of variables.

At any particular time t, of course, an equality like (20.20) or (20.21)
cannot be expected to hold exactly. We may therefore define the equilibrium
error νt as

νt = Ytη −Xtβ, (20.22)

where Yt and Xt denote the t
th rows of Y and X, respectively. In the special

case of (20.20), this equilibrium error would simply be yt1 − η2yt2. The m
variables yt1 through ytm are said to be cointegrated if there exists a vector η
such that νt in (20.22) is I(0).
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determinant to be minimized can be expressed as a function of η and α
alone, as follows: ∣∣∣(∆Y − Y−pηα

>)>M∆

(
∆Y − Y−pηα

>)∣∣∣. (20.38)

Let us write Y ∗
−p for M∆Y−p and ∆Y ∗ for M∆∆Y . Then (20.38) can be

expressed as ∣∣∣(∆Y ∗ − Y ∗
−pηα

>)>(∆Y ∗ − Y ∗
−pηα

>)∣∣∣. (20.39)

It is now easy to concentrate this expression with respect to α, for, if we
hold η fixed, the residuals in (20.39) depend linearly on α. If V ≡ Y ∗

−pη, we
obtain the determinant ∣∣(∆Y ∗)>MV ∆Y

∗∣∣. (20.40)

By use of the same trick we had recourse to in Section 18.5, we can
treat (20.40) as one factor in the decomposition of the determinant of a larger
matrix. Consider ∣∣∣∣ (∆Y ∗)>∆Y ∗ (∆Y ∗)>V

V >∆Y ∗ V>V

∣∣∣∣ .
By the result (A.26) of Appendix A, this matrix can be factorized either as∣∣V>V

∣∣∣∣(∆Y ∗)>MV ∆Y
∗∣∣

or as ∣∣(∆Y ∗)>∆Y ∗∣∣∣∣V>M∗V
∣∣,

where M∗ projects orthogonally onto S⊥(∆Y ∗). Since |(∆Y ∗)>∆Y ∗| does
not depend on η, we see that minimizing (20.40) is equivalent to minimizing
the ratio

|V>M∗V |
|V>V |

=

∣∣η>(Y ∗
−p)

>M∗Y ∗
−pη

∣∣∣∣η>(Y ∗
−p)

>Y ∗
−pη

∣∣ (20.41)

with respect to η. The minimum of (20.40) is then the minimum of (20.41)
times |(∆Y ∗)>∆Y ∗|.

The least variance ratio problem that had to be solved in the LIML
context (see (18.49)) involved a ratio of quadratic forms rather than the de-
terminants that appear in (20.41). Even so, the present problem can be solved
by the same technique as (18.49), namely, by converting the problem into an
eigenvalue-eigenvector problem. Before we go into details, notice that (20.41)
is invariant if η is replaced by ηB, for any nonsingular r× r matrix B. This
is precisely what we noted earlier in speaking of the nonuniqueness of (20.36).
We therefore cannot expect to obtain a unique minimizing η but only an
r--dimensional subspace.



20.8 Vector Autoregressions and Cointegration 729

For the actual minimization, it is convenient to work with a transfor-
mation of η. Let S denote any m × m matrix with the property that
S>S = (Y ∗

−p)
>Y ∗

−p, and define the m × r matrix ζ as Sη. The ratio (20.41)
becomes ∣∣ζ>(S−1)>(Y ∗

−p)
>M∗Y ∗

−pS
−1ζ

∣∣∣∣ζ>ζ∣∣ . (20.42)

Since all that matters is the subspace spanned by the r columns of ζ, we
may without loss of generality choose ζ such that ζ>ζ = Ir. Let us define
the m ×m positive definite matrix A to be the matrix that appears in the
numerator of (20.42). Then we have to minimize |ζ>Aζ| with respect to ζ
subject to the constraint that ζ>ζ = I.

In order to perform this minimization, it turns out to be enough to con-
sider the eigenvalue-eigenvector problem associated with A. If we solve this
problem, we will obtain an orthogonal matrix Z, the columns of which are
orthonormalized eigenvectors of A, and a diagonal matrix Λ, the diagonal
elements of which are the eigenvalues of A, which must evidently lie between
zero and unity. Then AZ = ZΛ. If the columns of Z and Λ are arranged
in increasing order of the eigenvalues λ1, . . . , λm, we may choose the ML es-
timate ζ̂ to be the first r columns of Z. Geometrically, the columns of ζ̂
span the space spanned by the eigenvectors of A that correspond to the r
smallest eigenvalues. The fact that Z is orthogonal means that ζ̂ satisfies the
constraint, and the choice of the smallest eigenvalues serves to minimize the
determinant |ζ>Aζ|.

The ML estimate of the space of cointegrating vectors S(η) can now be
recovered from ζ̂ by the formula η̂ = S−1ζ̂. The matrix α̂ needed in order to
obtain ML estimates of the parameters contained in the matrix Π can then
be obtained as the OLS estimates from the multivariate regression of ∆Y ∗ on
Y ∗
−pη̂. Subsequently, estimates of the matrices Γi, i = 1, . . . , p − 1, can also

be obtained by OLS.

Often, we are not especially interested in the parameters of the VAR
(20.35). The focus of our interest is more likely to be testing the hypothesis
of noncointegration against an alternative of cointegration of some chosen
order. Should the null hypothesis that r = 0 be rejected, we may then wish
to test the hypothesis that r = 1 against the alternative that r = 2, and
so forth. The eigenvalues λi, i = 1, . . . ,m, provide a very convenient way
to do this, in terms of a likelihood ratio test. It is clear that if we select
some value of r, the minimized determinant |ζ>Aζ| is just the product of
the r smallest eigenvalues, λ1 · · ·λr. The minimum of (20.40) is this product
multiplied by |(∆Y ∗)>∆Y ∗|. If r = 0, then the minimum of (20.40) is simply
this last determinant. Likelihood ratios for different values of r are therefore
just products of some of the eigenvalues, raised to the power n/2; recall (9.65).
If we take logs and multiply by 2 in order to obtain an LR statistic, we obtain
−n times the sum of the logs of the appropriate eigenvalues.
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results mean that it is usually practical to perform only a small number of
experiments. These must be designed to shed as much light as possible on the
issues of interest.

The first thing to recognize is that results from Monte Carlo experiments
are necessarily random. At a minimum, this means that results must be re-
ported in a way which allows readers to appreciate the extent of experimental
randomness. Moreover, it is essential to perform enough replications so that
the results are sufficiently accurate for the purpose at hand. The number of
replications that is needed can sometimes be substantially reduced by using
variance reduction techniques, which will be discussed in the next two sec-
tions. Such techniques are by no means always readily available, however. In
this section, we consider various other aspects of the design of Monte Carlo
experiments.

We first consider the problem of determining how many replications to
perform. As an example, suppose that the investigator is interested in calcu-
lating the size of a certain test statistic (i.e., the probability of rejecting the
null hypothesis when it is true) at, say, the nominal .05 level. Let us denote
this unknown quantity by p. Each replication will generate a test statistic
that either exceeds or does not exceed the nominal critical value. These can
be thought of as independent Bernoulli trials. Suppose N replications are
performed and R rejections are obtained. Then the obvious estimator of p,
which is also the ML estimator, is R/N . The variance of this estimator is
N−1p(1− p), which can be estimated by R(N −R)/N3.

Now suppose that one wants the length of a 95% confidence interval on
the estimate of p to be approximately .01. Using the normal approximation
to the binomial, which is surely valid here since N will be a large number, we
see that the confidence interval must cover 2 × 1.96 = 3.92 standard errors.
Hence we require that

3.92

(
p(1− p)

N

)1/2
= .01. (21.02)

Assuming that p is .05, the nominal level of the test being investigated, we
can solve (21.02) for N. The result is N ∼= 7299. To be on the safe side (since
p may well exceed .05, implying that R/N may have a larger variance) the
investigator would probably choose N = 8000. This is a rather large number
of replications and may be expensive to compute. If one were willing to let
the 95% confidence interval on p have a length of .02, one could make do with
a sample one-quarter as large, or roughly 2000 replications.

If the objective of an experiment is to compare two or more estimators
or two or more test statistics, fewer replications may be needed to obtain a
given level of accuracy than would be needed to estimate the properties of
either of them with the same level of accuracy. Suppose, for example, that
we are interested in comparing the biases of two estimators, say θ̂ and θ̃, of a
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parameter the true value of which is θ0. On each replication, say the jth, we
obtain realizations θ̂j and θ̃j of each of the two estimators. The biases of the
two estimators are

B(θ̂) ≡ E(θ̂ − θ0) and B(θ̃) ≡ E(θ̃ − θ0),

which may be estimated by

B̂(θ̂) =
1−
N

N∑
j=1

(θ̂j − θ0) and B̃(θ̃) =
1−
N

N∑
j=1

(θ̃j − θ0).

The difference between B(θ̂) and B(θ̃) is

E(θ̂ − θ0)− E(θ̃ − θ0) = E(θ̂ − θ̃), (21.03)

which may be estimated by

1−
N

N∑
j=1

(θ̂j − θ̃j). (21.04)

It is possible and indeed likely that the variance of (21.04) will be substantially
smaller than the variance of either B̂(θ̂) or B̃(θ̃), because both θ̂j and θ̃j
depend on the same pseudo-random vector uj. The variance of (21.04) is

1−
N
V (θ̂) +

1−
N
V (θ̃)− 2−

N
Cov(θ̂, θ̃),

which will be smaller than the variance of either B̂(θ̂) or B̃(θ̃) whenever
Cov(θ̂, θ̃) is positive and large enough. This will very often be the case, since
it is likely that θ̂j and θ̃j will be strongly positively correlated. Thus it may
require far fewer replications to estimate (21.03) than to estimate B(θ̂) and
B(θ̃) with the same level of accuracy. Of course, this assumes that θ̂j and θ̃j
are obtained using the same set of pseudo-random variates, but that is how
the Monte Carlo experiment would normally be designed. We will encounter
an idea similar to this one when we discuss the method of antithetic variates
in the next section.

The second important thing to keep in mind when designing Monte Carlo
experiments is that the results will often be highly sensitive to certain aspects
of the experimental design and largely or totally insensitive to other aspects.
Obviously, one will want to vary the former across the experiments while
fixing the latter in a more or less arbitrary fashion. For example, many test
statistics related to regression models are invariant to the variance of the error
terms. Consider the ordinary t statistic for α = 0 in the regression

y =Xβ + αz + u. (21.05)
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repeated samples, but it may yield results that depend on the idiosyncratic
characteristics of the particular set of Xt’s which was drawn.

Another possibility is to use genuine economic data for the Xt’s. If these
data are chosen with care, this approach can ensure that the Xt’s are indeed
typical of those which appear in econometric models. However, it raises a
problem of how to vary the sample size. If one uses either genuine data or a
single set of generated data, the matrix n−1X>X will change as the sample
size n changes. This may make it difficult to separate the effects of changes in
n from the effects of changes in n−1X>X. One solution to this problem is to
pick, or generate, a single set of Xt’s for a sample of size m and then repeat
these as many times as necessary to create Xt’s for samples of larger sizes.
This requires that n = cm, where c is an integer. Obvious choices for m are
50 and 100; n could then be any integer multiple of 50 or 100. The problem
with this approach, of course, is that no matter how many replications are
performed, all the results will depend on the choice of the initial set of Xt’s.

In many cases, how the Xt’s are chosen will not matter much. However,
there are cases for which it can have a substantial impact on the results. For
example, MacKinnon and White (1985) used Monte Carlo experiments to ex-
amine the finite-sample performance of various heteroskedasticity-consistent
covariance matrix estimators (HCCMEs; see Section 16.3). They used 50 ob-
servations on genuine economic data for the Xt’s, repeating these 50 observa-
tions as many times as necessary for each sample size. As Chesher and Jewitt
(1987) subsequently showed, the performance of the estimators depends crit-
ically on the ht’s, that is, the diagonal elements of the matrix PX ; the larger
are the largest ht’s, the worse will be the finite-sample performance of tests
based on all HCCMEs. When the X matrix is generated the way MacKinnon
and White generated it, with n = 50c, all of the ht’s must approach zero at
a rate proportional to 1/c (and hence also to 1/n). Thus MacKinnon and
White were guaranteed to find that results improved rapidly as the sample
size was increased. In contrast, Cragg (1983), doing Monte Carlo experiments
on a related issue (see Section 17.3), generated the Xt’s randomly from the
lognormal distribution. This distribution has a long right-hand tail and thus
occasionally throws up large values of certain Xt’s. These produce relatively
large values of ht, and as a result the largest values of ht tend to zero at a rate
very much slower than 1/n. Thus, as the Chesher-Jewitt analysis would have
predicted, Cragg found that finite-sample performance improved only slowly
as the sample size was increased.

More recently, Chesher and Peters (1994) have shown that the distribu-
tions of many estimators of interest to econometricians depend crucially on
the way the regressors are distributed. If the regressors are symmetrically
distributed about their medians, these estimators will have special properties
that do not hold in general. Since regressors used in Monte Carlo experiments
might well be symmetrically distributed, there is a risk that the results of such
experiments could be seriously misleading.
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be impossible to compute β̈ from a real data set, but in the context of a
Monte Carlo experiment, it is perfectly easy to do so. We know β0 and hence
X0 ≡ X(β0). Using these and the error vector uj that we generate at each
replication, we can easily compute β̈j.

Suppose that θ ≡ θ(β̂) is some scalar quantity of which we wish to
calculate the mean using the results of the Monte Carlo experiment. For
example, if we were interested in the bias of β̂2, θ would be β̂2 − β20; if we
were interested in the mean squared error of β̂3, θ would be (β̂3 − β30)

2; if we
were interested in the size of a test, θ would be 1 if the test rejected and 0
otherwise; and so on. On each replication, we obtain tj , a realization of θ,
which is equal to θ(β̂j). We also obtain a control variate τj , which would
normally be some function of β̈. The τj ’s must be known to have mean zero
and finite variance, which need not be known. If we were interested in the
bias of β̂2, for example, the natural choice for τ would be β̈2. In some other
cases, it is not so obvious how to choose τ , however, and there may be several
possible choices.

If the control variate τ were not available, we would estimate θ by

θ̄ ≡ 1−
N

N∑
j=1

tj ,

and this naive estimator would have variance V (θ̄) = N−1V (t), which could
be estimated by

V̂ (θ̄) =
1

N(N − 1)

N∑
j=1

(
tj − θ̄

)2
.

When the control variate τ is available, θ̄ will in most cases no longer be
optimal. Consider instead the control variate (CV) estimator

θ̈(λ) ≡ θ̄ − λτ̄ , (21.10)

where τ̄ is the sample mean of the τj ’s. This estimator involves subtracting
from θ̄ some multiple λ of the sample mean of the control variates; how λ
may be chosen will be discussed in the next paragraph. On average, what is
subtracted will be zero, since τj has population mean zero. This implies that
θ̈(λ) must have the same population mean as θ̄. But, in any given sample, the
mean of the τj ’s will be nonzero. If, for example, it is positive, and if τj and tj
are strongly positively correlated, it is very likely that θ̄ will also exceed its
population mean. Thus, by subtracting from θ̄ a multiple of the mean of the
τj ’s, we are likely to obtain a better estimate of θ.

The variance of the CV estimator (21.10) is

V
(
θ̈(λ)

)
= V (θ̄) + λ2V (τ̄)− 2λCov(θ̄, τ̄). (21.11)
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tion corresponds to one experiment, the dependent variable is some quantity
that was estimated in the experiments, and the independent variables are
functions of the various parameter values, chosen by the experimenter, which
characterize each experiment. Response surfaces have been used by Hendry
(1979), Mizon and Hendry (1980), Engle, Hendry, and Trumble (1985), Er-
icsson (1991), and MacKinnon (1991), among others; they are discussed at
length in Hendry (1984). For criticisms of this approach, see Maasoumi and
Phillips (1982), along with the reply by Hendry (1982).

If a response surface that adequately explains the experimental results
can be found, this approach to summarizing Monte Carlo results has much
to recommend it. First of all, it may be a good deal easier to understand
the behavior of the estimator or test statistic of interest from the parameters
of a response surface than from several tables full of numbers. Secondly,
if the response surface is correctly specified, it eliminates, or at least greatly
reduces, what Hendry (1984) refers to as the problem of specificity. What this
means is that each individual experiment gives results for a single assumed
DGP only, and any set of Monte Carlo experiments gives results for a finite
set of assumed DGPs only. For other parameter values or values of n, the
reader must interpolate from the results in the tables, which is often difficult
to do. In contrast, a correctly specified response surface gives results for
whole families of DGPs rather than solely for the parameter values chosen by
the experimenter. The catch, of course, is that the response surface must be
correctly specified, and this is not always an easy task.

One of the most interesting features of response surfaces, which distin-
guishes them from most other applications of regression models in economics,
is that the data are generated by the experimenter. Thus, if the data are not
sufficiently informative, there is always an easy solution: Simply run more
experiments and obtain more data. In most cases, each data point for the
response surface corresponds to a single Monte Carlo experiment. The de-
pendent variable is then some quantity estimated by the experiment, such as
the mean or mean squared error of the estimates of a certain parameter or the
estimated size of a test. Because such estimates are normally accompanied by
estimates of their standard errors, estimates which should be very accurate
if the experiments involve a sufficient number of replications, the investigator
is in the unique position of being able to use GLS with a fully specified co-
variance matrix. If every experiment used a different set of random numbers,
each observation for the response surface would be independent, and this co-
variance matrix would therefore be diagonal. If the same random numbers
were used across several experiments, perhaps to increase the precision with
which differences across parameter values were estimated, the covariance ma-
trix would of course be nondiagonal, but the form of the nondiagonality would
be known, and the covariance matrix could easily be estimated.

To make the above remarks more concrete, let us denote the quantity
of interest by ψ. It must be a function of the sample size n and of the
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that this determinant is a polynomial in λ, of degree n if A is n × n. The
fundamental theorem of algebra tells us that such a polynomial has n complex
roots, say λ1, . . . , λn. To each λi there must correspond an eigenvector xi.
This eigenvector is determined only up to a scale factor, because if xi is an
eigenvector corresponding to λi, then so is αxi for any nonzero scalar α. The
eigenvector xi does not necessarily have real elements if λi itself is not real.

If A is a real symmetric matrix, it can be shown that the eigenvalues λi
are in fact all real and that the eigenvectors can be chosen to be real as well.
If A is a positive definite matrix, then all its eigenvalues are positive. This
follows from the facts that

x>Ax = λx>x

and that both x>x and x>Ax are positive. The eigenvectors of a real sym-
metric matrix can be chosen to be mutually orthogonal. If one looks at two
eigenvectors xi and xj , corresponding to two distinct eigenvalues λi and λj ,
then xi and xj are necessarily orthogonal:

λixj
>xi = xj

>Axi = (Axj)
>xi = λjxj

>xi,

which is impossible unless xj
>xi = 0. If not all the eigenvalues are distinct,

then two (or more) eigenvectors may correspond to one and the same eigen-
value. When that happens, these two eigenvectors span a space that is or-
thogonal to all other eigenvalues by the reasoning just given. Since any linear
combination of the two eigenvectors will also be an eigenvector correspond-
ing to the one eigenvalue, one may choose an orthogonal set of them. Thus,
whether or not all the eigenvalues are distinct, eigenvectors may be chosen to
be orthonormal, by which we mean that they are mutually orthogonal and
each has norm equal to 1. Thus the eigenvectors of a real symmetric matrix
provide an orthonormal basis.

Let U ≡ [x1 · · · xn ] be a matrix the columns of which are an orthonor-
mal set of eigenvectors of A, corresponding to the eigenvalues λi, i = 1, . . . , n.
Then we can write the eigenvalue relationship (A.28) for all the eigenvalues
at once as

AU = UΛ, (A.30)

where Λ is a diagonal matrix with λi as its ith diagonal element. The ith

column of AU is Axi, and the ith column of UΛ is λixi. Since the columns of
U are orthonormal, we find that U>U = I, which implies that U>= U−1. A
matrix with this property is said to be an orthogonal matrix. Postmultiplying
(A.30) by U> gives

A = UΛU>. (A.31)

This equation expresses the diagonalization of A.
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