introduced in (9.52), as follows:

$$m{X}_i(m{eta}) = \sum_{j=1}^m m{Z}_j(m{eta}) \psi_{ji}.$$

Then the stacked GNR is

$$\begin{bmatrix} (Y - \xi(\beta))\psi_1 \\ \vdots \\ (Y - \xi(\beta))\psi_m \end{bmatrix} = \begin{bmatrix} X_1(\beta) \\ \vdots \\ X_m(\beta) \end{bmatrix} b + \text{residuals.}$$
 (9.58)

The OLS estimates from the GNR (9.58) will be defined by the first-order conditions

$$\left(\sum_{i=1}^{m} \mathbf{X}_{i}^{\mathsf{T}}(\boldsymbol{\beta}) \mathbf{X}_{i}(\boldsymbol{\beta})\right) \ddot{\boldsymbol{b}} = \sum_{i=1}^{m} \mathbf{X}_{i}^{\mathsf{T}}(\boldsymbol{\beta}) (\boldsymbol{Y} - \boldsymbol{\xi}(\boldsymbol{\beta})) \boldsymbol{\psi}_{i}. \tag{9.59}$$

Some manipulation of (9.59) based on the definition of the X_i 's and of ψ shows that this is equivalent to

$$\sum_{i=1}^{m} \sum_{j=1}^{m} \sigma^{ij} \mathbf{Z}_{i}^{\mathsf{T}}(\boldsymbol{\beta}) (\mathbf{y}_{j} - \mathbf{x}_{j}(\boldsymbol{\beta}) - \mathbf{Z}_{j}(\boldsymbol{\beta}) \mathbf{b}) = \mathbf{0}.$$
 (9.60)

Thus we see that regression (9.58) has all the properties we have come to expect from the Gauss-Newton regression. If we evaluate it at $\beta = \tilde{\beta}$, the regression will have no explanatory power at all, because (9.60) is satisfied with b = 0 by the first-order conditions (9.53). The estimated covariance matrix from regression (9.58) with $\beta = \tilde{\beta}$ will be

$$\tilde{s}^2 \left(\sum_{i=1}^m \sum_{j=1}^m \sigma^{ij} \tilde{\mathbf{Z}}_i^{\top} \tilde{\mathbf{Z}}_j \right)^{-1}, \tag{9.61}$$

where \tilde{s}^2 is the estimate of the variance that the regression package will generate, which will evidently tend to 1 asymptotically if Σ is in fact the contemporaneous covariance matrix of U_t . If (9.61) is rewritten as a sum of contributions from the successive observations, the result is

$$\tilde{s}^2 \left(\sum_{t=1}^n \tilde{\boldsymbol{\Xi}}_t \boldsymbol{\Sigma}^{-1} \tilde{\boldsymbol{\Xi}}_t^{\top} \right)^{-1},$$

from which it is clear that (9.61) is indeed the proper GNLS covariance matrix estimator.