

Sequence, *continued*
 vector-valued, 136

Sequence of local alternatives, 409
 and drifting DGP, 410

Sequence of local DGPs (drifting DGP), 409

Serial correlation, 60
 appearance of due to misspecification, 331
 consequences for least squares estimator, 329–31
 and instrumental variables estimation, 369–71
 introduction, 327–29
 and lagged dependent variables, 330–31
 testing for, 357–64
 and unit root tests, 710–15

Sigma-algebra, 793

Significance level (of a test), 79

Simple null hypothesis and drifting DGP, 410

Simultaneous equations bias (of least squares estimator), 214, 215

Simultaneous equations model
 estimation methods, 637–38
 FIML estimation, 637–43
 identification, 623–24, 631–37
K-class estimators, 649–51
 LIML estimation, 644–51
 linear, 212–15, 622–24, 631–61
 misspecification, 641–42
 nonlinear, 625, 661–67
 normalization, 213, 623
 OLS estimation of URF, 642–43
 recursive system, 643
 restricted reduced form (RRF), 213–14, 623
 structural form, 212–13
 unrestricted reduced form (URF), 214, 623, 642–43

Singular equation system, 307–8
 and serial correlation, 372

Size-power tradeoff curve, 405–7, 414–15

Size of a test, 79, 405–7

Skedastic directions, 434, 564–67
 tests in, 557

Skedastic function, 291, 396

Skewness, 62
 example of skewed residuals, 480–81
 and IM tests, 580
 tests for, 567–71

Slope (of a simple linear regression function), 55

Smoothness priors, 678
 and seasonally varying coefficients, 698

and VARs, 686

Span (of time-series data), 714

Span of a matrix, 4, 778

Specificity (problem of), 756

Spurious regressions, 669–673

Standard deviation, 798

Standard error, 798
 Standard normal distribution, 802–4
 density of, 803
 moments of, 803–4

Standardized Wiener process, 706–7

Stationarity condition
 for AR(1) process, 327–28
 for AR(p) process, 342

Stationarity region
 for AR(1) process, 347
 for AR(p) process, 351

Stationarity triangle (for AR(2) process), 342

Stationary sequence, 132

Stieltjes integral, 797

Stochastic expansion, 163

Stochastic process, 114–15, 152
 explosive, 151, 153

Stochastic restrictions, 676–79
 and VARs, 686

Stone-Geary utility function, 306–7

Stopping rules (for minimization algorithms), 205–7

Strict exogeneity, 147, 624–26

Strictly exogenous variable, 624–26

Strong asymptotic identifiability, 155, 594–95

Strong exogeneity, 631

Strongly exogenous variable, 631

Structural change, 375–81
 and unit root tests, 714–15

Student's t distribution, 810
 noncentral, 413–14, 810
 relation to Cauchy distribution, 810
 relation to F distribution, 84–85
 relation to normal distribution, 810

Subspace of Euclidean space, 4
 codimension of, 6
 dimension of, 6, 777–78
 orthogonal complement of, 6, 778
 orthogonal decomposition of, 10
 orthonormal basis for, 30

Sum of squared residuals (SSR), 8, 13

Sum-of-squares function, 43, 44, 50, 147–48, 298
 average, 147
 limiting, 148

Super-consistent estimator, 718–19

Super exogeneity, 631

Support (of a density function), 802