
460 The Classical Hypothesis Tests

both the estimate itself and the difference between the estimate and the true
value of the parameter, to be of order n−1/2. It follows that 2nτ̂2 will be of
order unity and that higher terms in the expansion of the exponential function
in (13.53) will be of lower order. Thus, if the various forms of the classical
test do indeed yield asymptotically equal expressions, we may expect that the
leading term of all of them will be 2nτ̂2.

Let us next consider the LM statistic. The essential piece of it is the
derivative of the loglikelihood function (13.49) with respect to τ , evaluated at
τ = 0. We find that
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If for the variance of ∂`/∂τ we use n times the true, constant, value of the
single element of the information matrix, 2, the LM statistic is the square of
(∂`/∂τ)|τ=0, given by (13.54), divided by 2n:
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This variant of the LM statistic has the same leading term as the LR statistic
(13.53) but will of course differ from it in finite samples.

Instead of the true information matrix, an investigator might prefer to
use the negative of the empirical Hessian to estimate the information matrix;
see equations (8.47) and (8.49). Because the loglikelihood function is not
exactly quadratic, this estimator does not coincide numerically with the true
value. Since
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which at τ = 0 is −2ne2τ̂, the LM test calculated in this fashion is
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The leading term is as in LR and LM1, but LM2 will differ from both those
statistics in finite samples.

Another possibility is to use the OPG estimator of the information ma-
trix; see equations (8.48) and (8.50). This estimator is
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which, when evaluated at τ = 0, is equal to
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