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Similarly, when we test Hy against Hs, the NCP is
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This simplifies to
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Evidently, cos?¢ for the test of Hy against Hy is the right-hand expression
here divided by pZ, which is
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This last result is worth comment. We have found that cos?¢ for the
test against H, when the data were generated by H;, expression (12.34), is
identical to cos?¢ for the test against H; when the data were generated by Ho,
expression (12.33). This result is true not just for this example, but for every
case in which both alternatives involve one-degree-of-freedom tests. Geomet-
rically, this equivalence simply reflects the fact that when z is a vector, the
angle between an~'/2Myxa and the projection of an~'/2Mxa onto 8(X, z),
which is

om_l/QMXz(zTMXz)_lzTan,

is the same as the angle between an~2Mxa and an~'/2Mxz. The reason
for this is that (2" Mxz) '2TMxa is a scalar when z is a vector. Hence, if
we reverse the roles of a and z, the angle is unchanged. This geometrical fact
also results in two numerical facts. First, in the regressions

y = Xa + vz + residuals and
z = X3 + 0y + residuals,

the ¢ statistic on z in the first is equal to that on y in the second. Second, in
the regressions

Mxy = yMxz + residuals and

Mxz = 6 Mxy + residuals,

the ¢ statistics on v and ¢ are numerically identical and so are the uncen-
tered R%’s.



