
Supplement

S.1 Introduction

This Supplement to Estimation and Inference in Econometrics, by Russell
Davidson and James G. MacKinnon, is being written over a period of several
years following the publication of the book. It contains a variety of material
that was not included in the book at all, or that appeared originally in a
different form. Eventually, if there is a second edition, most of this material
will find a home there.

This Supplement is copyright c© 1996 by Russell Davidson and James G.
MacKinnon. It is intended solely for the use of those who own or have legal
access to copies of Estimation and Inference in Econometrics.

The following section is new. The material it discusses applies to all
root-n consistent, asymptotically normal estimators. It might be logical
to include this section in Chapter 5.

S.2 Functions of Parameter Estimates

In a great many cases, econometricians want to estimate, and make inferences
about, functions of parameter estimates. As long as the estimator has the
usual properties and asymptotic theory provides a good guide to them, this
is very easy to do.

For simplicity, let us start with the single parameter case. Suppose that
we have estimated a scalar parameter θ and that we are interested in γ ≡ g(θ),
where g(·) is a monotonic function that is continuously differentiable. Assum-
ing that the parameter estimate θ̂ is root-n consistent and asymptotically
normal, as most of the estimators discussed in this book are under standard
regularity conditions, we know that

n1/2(θ̂ − θ0)
a∼ N

(
0, V∞(θ̂)

)
, (S.01)

where θ0 denotes the true value of θ and V∞(θ̂) is a shorthand way of writing
V∞(

n1/2(θ̂ − θ0)
)
, that is, the asymptotic variance of the expression on the

left-hand side of (S.01).

The obvious estimator of γ is γ̂ ≡ g(θ̂). To determine how γ̂ is distributed
asymptotically, we may Taylor expand g(θ̂) around θ0 to obtain

γ̂ = g(θ0) + g′(θ∗)(θ̂ − θ0), (S.02)
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where g′ is the first derivative of g and, as usual, θ∗ is a convex combination
of θ0 and θ̂. Since the consistency of θ̂ implies that θ∗ → θ0 as n →∞, we can
replace θ∗ by θ0 without affecting the asymptotic validity of equation (S.02).
Rearranging this equation and multiplying both sides by n1/2, we conclude
that

n1/2(γ̂ − γ0)
a= g′0n1/2(θ̂ − θ0), (S.03)

where γ0 ≡ g(θ0) and g′0 ≡ g′(θ0).
From equation (S.03), it is obvious that n1/2(γ̂ − γ0) is asymptotically

normally distributed with mean zero, since it is just g′0 times a quantity that
is asymptotically normal with mean zero; recall (S.01). It is also obvious that
the variance of n1/2(γ̂ − γ0) is (g′0)

2V∞(θ̂). Thus we conclude that

n1/2(γ̂ − γ0)
a∼ N

(
0, (g′0)

2V∞(θ̂)
)
. (S.04)

This result is very simple, and it leads immediately to a practical procedure
for making inferences about γ. If the estimated variance of θ̂ is V̂ (θ̂), then
the estimated variance of γ̂ will be

V̂ (γ̂) = g′(θ̂)2V̂ (θ̂). (S.05)

This method of estimating the variance is sometimes called the delta method.
Although the result (S.04) is simple and practical, it reveals one of the

problems with asymptotic theory. Whenever the relationship between θ̂ and
γ̂ is a nonlinear one, it is impossible that they should both be normally dis-
tributed in finite samples. Suppose that θ̂ really did happen to be normally
distributed. Then, unless g(·) were linear, γ̂ could not possibly be normally,
or even symmetrically, distributed, and vice versa. This implies that confi-
dence intervals or test statistics based on asymptotic theory may not always
be reliable in finite samples.

There is more than one way to construct confidence intervals for θ and γ.
Asymptotic theory suggests that we should use symmetric confidence inter-
vals, based on the normal distribution, for both of them. However, that would
not be a good thing to do if one of them had an asymmetric finite-sample dis-
tribution, which at least one of them must have when g(·) is sufficiently non-
linear. Suppose, for example, that for θ̂ the normality assumption is a good
one, that V̂ (θ̂) provides an accurate estimate of the variance of θ̂, and that,
in consequence, the level α confidence interval for θ is reasonably accurate.
This interval is given by

θ̂ − cα Ŝ(θ̂) to θ̂ + cα Ŝ(θ̂), (S.06)

where cα is a two-tail critical value based on the N(0, 1) distribution (see
Section 3.3), and Ŝ(θ̂) is the square root of V̂ (θ̂). For example, if α were .05,
cα would be 1.96.
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A standard asymptotic confidence interval for γ is

γ̂ − cα Ŝ(γ̂) to γ̂ + cα Ŝ(γ̂), (S.07)

where Ŝ(γ̂) is the square root of V̂ (γ̂). Instead of using (S.07), however, we
could transform the confidence interval (S.06) into a confidence interval for γ.
Assuming, for concreteness, that g′ > 0, the result would be

g
(
θ̂ − cα Ŝ(θ̂)

)
to g

(
θ̂ + cα Ŝ(θ̂)

)
. (S.08)

Similarly, we could transform the confidence interval (S.07) into a confidence
interval for θ. If g(·) is nonlinear, confidence intervals like (S.08) will be
asymmetric. Whether it is better to use a generally asymmetric confidence
interval like (S.08) instead of a symmetric interval like (S.07) depends on
the finite-sample distributions of both θ̂ and γ̂. We need to know a good
deal about both these distributions before we can make an informed decision
about which approach to follow.

The result (S.04) can easily be extended to the case in which both θ̂ and
γ̂ are vectors. Suppose that the former is a k--vector and the latter is an
l--vector, with l ≤ k. The relation between θ and γ is γ = g(θ), where g(·) is
an l--vector of monotonic functions that are continuously differentiable. The
vector equivalent of (S.01) is

n1/2(θ̂ − θ0)
a∼ N

(
0,V ∞(θ̂)

)
, (S.09)

where V ∞(θ̂) is the k× k asymptotic covariance matrix of n1/2(θ̂− θ0). It is
a straightforward exercise to show that the vector equivalent of (S.04) is

n1/2(γ̂ − γ0)
a∼ N

(
0, G0V

∞(θ̂)G0
>)

, (S.10)

where G0 is an l×k matrix with typical element ∂gi(θ)/∂θj , evaluated at θ0.
The asymptotic covariance matrix that appears in (S.10) is l × l, and it will
generally have full rank l if the matrix of derivatives G0 has full rank l.

In practice, by analogy with (S.05), the covariance matrix of γ̂ may be
estimated by

V̂ (γ̂) = ĜV̂ (θ̂)Ĝ>, (S.11)

where V̂ (θ̂) is the estimated covariance matrix of θ̂ and Ĝ ≡ G(θ̂). This
can be a very useful result in many applications, but, like all results based on
asymptotic theory, it should be used with caution.
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The following section is new. The material it discusses applies to essen-
tially all asymptotically efficient estimators, including OLS, NLS, ML,
and efficient GMM.

S.3 Independence of Tests of Nested Hypotheses

In many cases, the hypotheses that we wish to test may be nested to a depth
of more than two. For example, as we saw in Chapter 10, we may test a
linear regression model with serially independent errors against a model with
AR(1) errors, and we may in turn test the latter against a model with AR(2)
errors. In a rather different context, we may use a DWH test to test the null
hypothesis that consistent estimates can be obtained by OLS, and we may
then test the overidentifying restrictions that are implicit in 2SLS estimation;
see Chapter 7. In each of these cases, the models we are interested in form a
sequence of nested hypotheses.

In the first example above, the nested hypotheses in the sequence can be
written as:

H0 : yt = Xtβ + ut,

H1 : yt = ρ1yt−1 + Xtβ − ρ1Xt−1β + ut, and

H2 : yt = ρ1yt−1 + ρ2yt−2 + Xtβ − ρ1Xt−1β − ρ2Xt−2β + ut,

where in each case ut is assumed to be IID(0, σ2). Under the most restrictive
hypothesis, H0, ρ1 = ρ2 = 0, while under the least restrictive hypothesis,
H2, there are no restrictions on any of the parameters. The hypothesis H1

is more restrictive than H2 but less restrictive than H0. We may write the
relationship among these hypotheses as: H0 ⊂ H1 ⊂ H2.

There are many other examples of sequences of nested hypotheses. One
is testing the hypothesis of serially independent errors against the hypothesis
that the errors follow some AR process, and then testing the latter against a
model that relaxes the common factor restrictions; see Chapter 10. A second
is testing a restricted model estimated by instrumental variables or the gen-
eralized method of moments against an unrestricted model, and then testing
the overidentifying restrictions on the latter; see Chapter 7 or Chapter 17. A
third is testing a restricted simultaneous equations model estimated by FIML
against an unrestricted model, and then testing the overidentifying restric-
tions on the entire system; see Chapter 18. A fourth is testing for structural
change in a regression model and then testing whether the error variance is the
same for the two parts of the sample in the unrestricted model; see Chapter 11
and Phillips and McCabe (1983). A fifth example is testing a VAR(p) model
against a VAR(p+1) model, and then testing the latter against a VAR(p+2)
model; see Chapter 19.

There may, of course, be more than three nested hypotheses in a sequence.
In general, when there are l + 1 nested hypotheses, we can write

H0 ⊂ H1 ⊂ H2 ⊂ · · · ⊂ Hl.
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Tests of the hypotheses in such a sequence have a very interesting property.
Asymptotically, under H0, the test of H0 against H1 is independent of the
test of H1 against H2, both of these are independent of the test of H2 against
H3, and so on. For simplicity, we shall henceforth assume that there are just
three hypotheses. If the result is true for three hypotheses, then it must be
true for any number.

The independence property of tests in a nested sequence has two useful
implications. First of all, for test statistics that are asymptotically χ2, the test
of H0 against H2 either can be computed as the sum of the two component
tests or is asymptotically equivalent to a test that can be computed in this
way. This implies that, at least asymptotically, each of the component test
statistics is bounded above by the test statistic for H0 against H2. Secondly,
because the tests are independent, it is very easy to control their overall size.
If we want the overall size to be α, the size of the two independent tests, say
α∗, must be such that α = 1− (1− α∗)2. This implies that

α∗ = 1− (1− α)1/2.

Thus if, for example, α = .05, we find that α∗ = .02532. Mizon (1977) makes
extensive use of the independence property in the context of model selection.

The result that tests of nested hypotheses are asymptotically indepen-
dent is true for all of the efficient estimation methods discussed in this book:
ordinary least squares (Chapter 3), nonlinear least squares (Chapter 5), gen-
eralized least squares (Chapter 9), maximum likelihood (Chapters 8 and 13),
instrumental variables (Chapter 7), and efficient GMM estimation (Chap-
ter 17). However, we shall prove it only for two cases: ordinary least squares
and maximum likelihood.

The simplest case is that of the linear regression model

y = X0β0 + X1β1 + X2β2 + u, u ∼ IID(0, σ2I).

Let H2 denote the unrestricted model, H1 denote the restricted model with
β2 = 0, and H0 denote the doubly restricted model with β1 = 0 and β2 = 0.
Thus H0 ⊂ H1 ⊂ H2, as required. Let k0, k1, and k2 denote the number of
parameters in β0, β1, and β2, respectively.

Using the FWL Theorem, it is straightforward to show that the F statistic
for H0 against H1 can be written as

F01 =
y>M0X1

(
X1

>M0X1

)−1
X1

>M0y/k1

y>M01y/(n− k0 − k1)
, (S.12)

where M01 projects orthogonally on to S⊥([X0 X1]); see Section 3.5. Simi-
larly, the F statistic for H1 against H2 can be written as

F12 =
y>M01X2

(
X2

>M01X2

)−1
X2

>M01y/k2

y>M012y/(n− k0 − k1 − k2)
, (S.13)
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where M012 projects orthogonally on to S⊥([X0 X1 X2]).
Under H0, the numerators of F01 and F12 are idempotent quadratic forms

in u. Asymptotically, their denominators do not matter, since they just tend
to σ2. In fact, we know that k1 times F01 will be asymptotically distributed
as χ2(k1), and that k2 times F12 will be asymptotically distributed as χ2(k2).
The product of the two idempotent matrices is

M0X1

(
X1

>M0X1

)−1
X1

>M0M01X2

(
X2

>M01X2

)−1
X2

>M01 (S.14)

Since M0M01 = M01 and X1M01 = 0, expression (S.14) is equal to zero.
This implies that the numerators of (S.12) and (S.13) are independent, and
so the two test statistics, when expressed in χ2 form, must be asymptotically
independent.

In the linear regression case with NID errors, F statistics for nested hypo-
thesis tests are actually independent in finite samples. Phillips and McCabe
(1983) cite the following result from Hogg and Tanis (1963):
If the random variables x1, x2, and x3 are independently distributed as χ2(d1),
χ2(d2), and χ2(d3), then

F1 ≡ x2/d2

x1/d1

is independent of

F2 ≡ x3/d3

(x1 + x2)/(d1 + d2)
.

If we make the definitions

x1 ≡ y>M012y/σ2,

x2 ≡ y>M01X2

(
X2

>M01X2

)−1
X2

>M01y/σ2, and

x3 ≡ y>M0X1

(
X1

>M0X1

)−1
X1

>M0y/σ2,

and let d1 = n− k0 − k1 − k2 and d2 = k2, then F12 plays the role of F1 and
F01 plays the role of F2. Thus F01 and F12 are seen to be exactly independent.

Tests of nested hypotheses are exactly independent only in very special
cases, notably the one just considered. However, such tests are asymptotically
independent in many cases. Consider the case of the three classical tests (LR,
LM, and Wald), which were introduced in Chapter 8 and discussed in depth
in Chapter 13. Let the test statistic for Hi against Hj be denoted by τij .
Then, for the LR statistic, we have τ02 = τ01 + τ12 by the way the statistic
is constructed. For the other statistics, the same equality must hold asymp-
totically. We know that τ01 is asymptotically distributed as χ2(k1), that τ12

is asymptotically distributed as χ2(k2), and that τ02 is asymptotically dis-
tributed as χ2(k1 + k2). By a standard result, if we knew that τ01 and τ12

were asymptotically independent, we could assert that τ02 must be asymptot-
ically distributed as χ2(k1 +k2). What we need to do is to turn this standard
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result around, in order to deduce the asymptotic independence of τ01 and τ12

from the fact that τ02 is asymptotically distributed as χ2(k1 + k2).
Any random variable that is distributed as χ2 can be represented as a

sum of squares of standard normal variates. Let τ∗ij represent the random
variable that τij tends to asymptotically. Then we have

τ∗01 =
k1∑

j=1

x2
j , τ∗12 =

k1+k2∑

j=k1+1

x2
j ,

where
x1 ≡ [x1 . . . xk1 ]>∼ N(0, Ik1), and

x2 ≡ [xk1+1 . . . xk1+k2 ]>∼ N(0, Ik2).

Further, the two vectors x1 and x2 are subvectors of a longer vector x, which
is also multivariate normal:

x ≡ [x1
.... x2] ∼ N

(
0,

[
Ik1 C

C> Ik2

])
.

The assumption of multivariate normality is potentially restrictive, but it will
be satisfied automatically by classical test statistics and in many other testing
situations. Recall from Section 13.3 that all the classical tests can be written,
asymptotically, as quadratic forms in the gradient vector.

The characteristic function of a χ2(k) random variable is (1 − 2it)−k/2.
More generally, if x ∼ N(0, V ), the characteristic function of x>x can be
written as

k∏

j=1

(
1 + 2ivjt

)−1/2
, (S.15)

where the vj ’s are the eigenvalues of the covariance matrix V , which are real
and positive. For our problem, k = k1 + k2, and

V =
[
Ik1 C

C> Ik2

]
. (S.16)

Clearly, x>x = τ∗01 + τ∗12, and so the characteristic function of τ∗01 + τ∗12
is given by (S.15) with the vj ’s being the eigenvalues of (S.16). Now suppose
that the sum τ∗01+τ∗12 is known to have the χ2(k1+k2) distribution. Therefore,
its characteristic function must be

(
1 + 2it

)−k/2
. (S.17)

In order for (S.17) and (S.15) to be equal for all real t, it is necessary that
vj = 1 for all j = 1, . . . , k. But this means that V = Ik, and consequently that
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C = 0. Thus x1 and x2 are uncorrelated, and, being multivariate normal,
they are therefore stochastically independent. The independence of τ∗01 and
τ∗12 now follows immediately.

What we have just proved is that any two test statistics τ01 and τ12 are
asymptotically independent whenever they tend asymptotically to random
variables τ∗01 and τ∗12 distributed as χ2(k1) and χ2(k2), respectively, and which
sum to a random variable τ∗02 that is distributed as χ2(k1 + k2). This result
evidently applies to tests of nested hypotheses based on OLS, NLS, IV, and
GMM estimation as well as to those based on ML estimation. Thus the
independence result discussed in this section is a very general one.

The following section is new. Most of the material it discusses logically
belongs in Chapters 5 and 8.

S.4 Sandwich Covariance Matrices

The asymptotic covariance matrices that are encountered in this book all have
one of two general forms. Suppose that θ̂ is a root-n consistent, asymptotically
normal estimator of a k--vector of parameters. Then, much of the time, the
asymptotic covariance matrix of θ̂ has the simple form

V ∞(
n1/2(θ̂ − θ0)

)
= aA−1, (S.18)

where a is a scalar, which may of course be equal to 1, and A is a k × k
positive definite matrix. In quite a few other cases, however, the asymptotic
covariance matrix of θ̂ is more complicated and can be written as

V ∞(
n1/2(θ̂ − θ0)

)
= aA−1BA−1, (S.19)

where B is also a k × k positive definite matrix. This form of covariance
matrix is often called a sandwich covariance matrix, for the obvious reason
that B is sandwiched between the two instances of A−1.

Sandwich covariance matrices are discussed in Chapters 16 and 17, al-
though not under that name. Section 16.3 deals with heteroskedasticity-
consistent covariance matrices (HCCMEs) for linear and nonlinear regression
models, and Section 17.5 deals with heteroskedasticity and autocorrelation
consistent (HAC) covariance matrices for models estimated by GMM. Both
the HCCME and HAC covariance matrix estimators have the sandwich form
of (S.19), and they may therefore be referred to as sandwich estimators. Un-
fortunately, the book does not provide an adequate treatment of this type of
covariance matrix estimator. In particular, it fails to make it clear that co-
variance matrices like (S.18) arise only in special cases, while ones like (S.19)
arise much more generally. Also, although it derives the sandwich covariance
matrix for models estimated by maximum likelihood, it fails to discuss the



884 Supplement

corresponding sandwich estimator. In this section of the Supplement, we at-
tempt to remedy these two deficiencies.

We first discuss the asymptotic covariance matrix of the NLS estimator β̂
for the univariate nonlinear regression model y = x(β) + u. The asymptotic
covariance matrix for this model was derived in Section 5.4 under the standard
assumption that E(uu>) = σ2

0I. For the moment, however, we do not wish
to make any assumption about E(uu>).

Recall that ssrn(y, β) denotes n−1
(
y − x(β)

)>(y − x(β)
)
, which is n−1

times the sum of squared residuals, written as a function of y and β. The key
equation in Section 5.4 is (5.32), which writes n1/2(β̂ − β0) as a function of
the first and second derivatives of ssrn(y,β) with respect to β. This equation
implies that

n1/2(β̂ − β0)
a= −H−1(y, β0)n1/2g(y, β0), (S.20)

where g(y, β) denotes the k--vector of first derivatives of ssrn(y,β) with re-
spect to β, and H(y,β) denotes the k × k matrix of second derivatives. The
notation emphasizes the fact that g is the gradient and H is the Hessian of
ssrn. Equation (S.20) is obtained from (5.32) by evaluating H at the true
parameter vector β0 instead of at β∗, a vector that lies between β̂ and β0.
The consistency of β̂ implies that (S.20) holds asymptotically, but it does not
hold as an equality in finite samples.

The covariance matrix of the vector n1/2(β̂−β0) is the expectation of the
vector times itself transposed. Asymptotically, this is equal to the expectation
of the vector on the right-hand side of (S.20) times itself transposed. Thus

V ∞(
n1/2(β̂ − β0)

)
= E

(
H−1

0 (ng0g0
>)H−1

0

)
, (S.21)

where g0 ≡ g(y, β0) and H0 ≡ H(y, β0). It is easy to see that, under the
DGP characterized by β0,

g(y, β0) = − 2−
n
X0
>(y − x(β0)

)
= − 2−

n
X0
>u. (S.22)

We saw in Section 5.4 that

plim
n→∞

0 H(y, β0) = 2 plim
n→∞

0

(
1−
n
X0
>X0

)
, (S.23)

where plim0 means that we are taking the probability limit under the DGP
characterized by β0. The three factors inside the expectations operator in
(S.21) are all O(1), and, under reasonable assumptions, they all tend to non-
stochastic probability limits. Therefore, we can substitute (S.23) and the plim
of (S.22) into (S.21), dropping the expectations operator, so as to obtain

V ∞(
n1/2(β̂ − β0)

)
=

plim
n→∞

0

(
1−
n
X0
>X0

)−1

plim
n→∞

0

(
1−
n
X0
>uu>X0

)
plim
n→∞

0

(
1−
n
X0
>X0

)−1

.
(S.24)
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Thus the asymptotic covariance matrix of β̂ is of the sandwich form.
Of course, as we saw in Section 5.4, when E(uu>) = σ2

0I, expression
(S.24) simplifies to the more familiar result (5.25), which does not have the
sandwich form. It is not a coincidence that this simplification is available
only in the case for which NLS is asymptotically efficient; see Section 5.5. In
general, covariance matrices like (S.18) are available only for estimators that
are asymptotically efficient within some class of estimators.

The theoretical result (S.24) can be made to yield operational covariance
matrix estimators if we can find ways to estimate the middle matrix consis-
tently. That is precisely what the HCCMEs discussed in Section 16.3 do in
the case of errors that are heteroskedastic but serially uncorrelated and what
the HAC estimators discussed in Section 17.5 do in the more general case
where there is both heteroskedasticity and serial correlation. The former is
probably the best-known example of a sandwich estimator in econometrics.

We now turn our attention to maximum likelihood estimation. The
asymptotic covariance matrix of the ML estimator θ̂ was derived in Sec-
tion 8.5. The key equation in this section is (8.38). It can be rewritten
in slightly simpler notation as

n1/2(θ̂ − θ0)
a= −H−1

0 n−1/2g0, (S.25)

where H0 denotes the expectation of 1/n times the matrix of second deriva-
tives of the loglikelihood function with respect to the parameter values, eval-
uated at θ0, and g0 denotes the gradient of the loglikelihood function, also
evaluated at θ0. As we showed in Section 8.5, equation (S.25) implies that

V ∞(
n1/2(θ̂ − θ0)

)
= H−1

0 I0H−1
0 , (S.26)

where I0 is the limiting information matrix evaluated at θ0. Equation (S.26),
which is just equation (8.42) rewritten, shows that the asymptotic covariance
matrix of θ̂ is of the sandwich form.

After obtaining the theoretical result (S.26) in Section 8.5, we went on
in Section 8.6 to prove the information matrix equality. This famous result
tells us that, for a correctly specified model, I0 = −H0. Obviously, if this
equality holds, there is no reason to use a sandwich estimator. However,
as White (1982) and Gouriéroux, Monfort, and Trognon (1984) showed, the
information matrix equality generally will not hold when the DGP is not a
special case of the model being estimated, even in cases for which maximum
likelihood yields a quasi-ML, or QML, estimator that is consistent. In such
cases, the sandwich estimator

H−1(θ̂) G>(θ̂)G(θ̂)H−1(θ̂) (S.27)

should be used instead of the estimators (8.49), (8.50), or (8.51) that are
discussed in Section 8.6. At present, little seems to be known about the
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performance, in finite samples and for particular classes of models, of the
sandwich estimator (S.27) relative to the performance of more conventional
covariance matrix estimators. However, if (8.49), (8.50), and (S.27) all yield
substantially different estimates, it would seem prudent to rely on the last
of these. Of course, in this circumstance, it would also seem prudent to
investigate the possibility that the model may be misspecified.

The following section is new. The material it discusses applies to all
root-n consistent estimators. It might logically be included in Chapter 4.

S.5 Properties of Root-n Consistent Estimators

Although almost all of the estimators we study in this book are root-n con-
sistent under standard regularity conditions (which, however, are not always
applicable; see Chapter 20), the properties of root-n consistent estimators are
never discussed. In fact, the concept is not even mentioned in Chapter 4,
where other types of consistency are discussed in some detail. In this section,
we therefore discuss some of the properties of root-n consistent estimators.

Suppose that θ̂ denotes a k--vector of parameter estimates and θ0 denotes
the vector of true parameter values. Then θ̂ is root-n consistent if

θ̂ − θ0 = O(n−1/2). (S.28)

In words, an estimator is root-n consistent if the difference between the es-
timator and the true value is (stochastically) proportional to n−1/2; see Sec-
tion 4.3. This implies that the covariance matrix of θ̂ must be O(n−1), as
can be seen by taking the expectation of θ̂ − θ0 times itself transposed. From
(S.28), each element of the resulting matrix must be the expectation of the
product of two things that are O(n−1/2). Unless these expectations happen
to be zero, they must be O(n−1).

Although root-n consistency does not imply asymptotic normality, the
vast majority of root-n consistent estimators that we will encounter are asymp-
totically normally distributed. That is,

n1/2(θ̂ − θ0)
a∼ N

(
0, V ∞(

n1/2(θ̂ − θ0)
))

, (S.29)

where V ∞(
n1/2(θ̂ − θ0)

)
denotes the asymptotic covariance matrix of the

vector n1/2(θ̂ − θ0). Since this asymptotic covariance matrix is O(1), it is
obvious in this case that the covariance matrix of θ̂ itself must be O(n−1).

In Section 4.5, we showed that a consistent estimator might not be asymp-
totically unbiased. That is not the case for root-n consistent estimators that
are asymptotically normal. In fact, for such estimators, we can be sure that,
if they are not unbiased, then their bias is at most O(n−1). From (S.29), we
observe that the mean of n1/2(θ̂ − θ0) must be equal to 0, asymptotically.
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But that could not be the case if θ̂ were biased at O(n−1/2) or greater, since
then n1/2 times the bias would be O(1) or greater. Thus any bias in θ̂ must
be o(n−1/2).

The above argument does not quite establish what we set out to show.
To do this, we must suppose that θ̂ admits a stochastic expansion in powers
of n−1/2. Under standard regularity conditions, this will be the case. This
expansion can be written as

θ̂ = θ0 + n−1/2w1 + n−1w2 + O(n−3/2), (S.30)

where w1 and w2 are random k--vectors that are O(1) and independent of n.
Multiplying both sides of (S.30) by n1/2 and rearranging yields

n1/2(θ̂ − θ0) = w1 + n−1/2w2 + O(n−1). (S.31)

It is clear from (S.31) that w1 is the random vector to which n1/2(θ̂ − θ0)
tends asymptotically. By (S.29), this random vector must have mean vector
0. Therefore, the O(n−1/2) term in (S.30) cannot contribute to any bias in θ̂.
The first term that can do so is n−1w2. Thus the bias is at most O(n−1).

Many estimators that are commonly encountered in econometrics are
in fact biased at O(n−1). Consider, for example, the maximum likelihood
estimator of the error variance σ2 in a linear regression model. As we saw
in Section 3.2, dividing SSR by n − k yields an unbiased estimator of σ2.
However, the ML estimator divides SSR by n instead of by n − k, and it is
easy to see that this induces a bias that is O(n−1):

E
(

1−
n
SSR

)
− σ2

0 =
(n− k)σ2

0

n
− σ2

0 = − k−
n

σ2
0 .

There are many other examples of estimators that are biased at O(n−1). These
include least squares estimators of dynamic regression models (Section 19.4),
least squares estimators of time series models (Shaman and Stine, 1988), and
maximum likelihood estimators of probit and logit models (Amemiya, 1980b).

Suppose, as is often the case, that the bias of a root-n consistent, asymp-
totically normal estimator is O(n−1). As we have seen, its covariance matrix
is also O(n−1). Therefore, its mean squared error matrix must be dominated
by the latter. Recall that the mean squared error matrix of θ̂ is

E
(
(θ̂ − θ0)(θ̂ − θ0)>

)
= V (θ̂) +

(
E(θ̂ − θ0)

)(
E(θ̂ − θ0)

)>. (S.32)

The first matrix on the right-hand side of (S.32) is O(n−1). In contrast, the
second is O(n−2), since it is the product of two vectors, each of which is
O(n−1). Therefore, for large sample sizes, we can be confident that the mean
squared error which arises from the bias of θ̂ will be small relative to the mean
squared error which arises from its variance.



888 Supplement

Several readers have suggested that the material on the noncentral chi-
squared distribution, which is discussed in Sections 12.4 and B.4, should
be supplemented by a figure. That is done in this very short section.

S.6 The Noncentral Chi-squared Distribution

Figure S.1 shows the density of the noncentral χ2 distribution with 3 de-
grees of freedom for noncentrality parameters of 0, 2, 5, 10, and 20. As the
NCP increases, both the mean and the variance increase, and the distribu-
tion becomes more symmetrical. The .05 critical value for the central χ2(3)
distribution, which is 7.81, is shown in the figure. If a test statistic has the
noncentral χ2(3) distribution, the probability that the null hypothesis will be
rejected at the .05 level is the probability mass to the right of 7.81. It is evi-
dent from the figure that this probability will be quite small for small values
of the NCP. In contrast, for an NCP of 20, it is .975.
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Figure S.1 Densities of noncentral χ2 distributions
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