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To our students



Preface

When we began writing this book, longer ago than we care to admit, our goal
was to write a text that could be used for the second and third semesters
of a typical graduate sequence in econometrics. We perceived a lack of any
textbook that addressed the needs of students trying to acquire a solid un-
derstanding of what we think of as the “modern” approach to econometrics.
By this we mean an approach that goes beyond the well-known linear re-
gression model, stresses the essential similarities of all the leading estimation
methods, and puts as much emphasis on testing and model specification as
on estimation.

We soon realized that this plan had a fatal flaw. In order to write a book
for the second course in econometrics, one must be confident of what will have
been covered in the first course. Since there was not then, and is not now,
a widely accepted standard syllabus for the first course in econometrics, we
decided that we would have to start there. We therefore changed our plan,
and this book now attempts to develop econometric theory from the ground
up. Readers are of course expected to have some acquaintance with element-
ary econometrics before starting, but no more than would be part of a typical
undergraduate curriculum. They are also expected to have the mathematical
maturity appropriate to graduate students in economics, although we do pro-
vide two appendices that cover the mathematical and statistical prerequisites
for understanding the material.

Almost all of the econometric theory we present is asymptotic, which
means that it is exactly true only in the limit as the sample size tends to
infinity, but is thought (or rather hoped) to be approximately true in finite
samples. In recent years, researchers have found it increasingly necessary to
go beyond the confines of the standard linear regression model, in which re-
strictive classical assumptions lead to exact results about the distributions
of the ordinary least squares estimator and of the familiar t and F statistics.
Greater generality in model specification, however, carries the price that exact
finite-sample results are very rarely available. Happily, asymptotic economet-
ric theory is now at a mature stage of development, and it provides the main
theoretical foundation for the present book.

Our first chapter does not really discuss econometrics at all. Instead,
it presents those aspects of the geometry of least squares that are needed in
the rest of the book. A key result in this context is the theorem that we
have dubbed the Frisch-Waugh-Lovell Theorem. We have found that get-
ting students to understand this theorem, although often a rather challenging
task, does a great deal to develop intuition about estimation and testing in
econometrics. A particular application of the theorem, which we present in
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Chapter 1, is to the question of leverage and influence in regression models.
Existing treatments of this important topic have typically been algebraically
difficult and unintuitive. Use of the FWL Theorem makes it possible to de-
velop a much simpler treatment. Chapter 1 also briefly discusses the compu-
tation of ordinary least squares estimates, a subject about which too many
students of econometrics are completely ignorant.

One of our aims in this book is to emphasize nonlinear estimation. In
Chapters 2 and 3, we therefore plunge directly into a treatment of the non-
linear regression model. It turns out that it is scarcely any more difficult to
develop the essential notions of least-squares estimation, and of statistical in-
ference based on such estimation, in a nonlinear context than it is in the more
usual linear one. In fact, the essential notions are often easier to come to
grips with if one is not distracted by the great wealth of detailed but special
results that enrich the linear theory.

After the largely intuitive treatment of Chapters 2 and 3, we provide
in Chapters 4 and 5 a fuller and more rigorous account of the asymptotic
theory that underlies the nonlinear regression model. Just how far to go
in the quest for rigor has been a thorny problem at many points. Much of
the recent literature in theoretical econometrics appears to be inaccessible to
many students, in large part, we believe, because rigor has taken precedence
over the communication of fundamental ideas. We have therefore deliberately
not aimed at the same standards of rigor. On the other hand, some rigor is
needed in any account that is not merely anecdotal. It is in Chapters 4 and 5,
and later in Chapter 8, which lays the foundations of the theory of maximum
likelihood, that we have gone as far as we felt we could in the direction of a
formal rigorous treatment. At times we even adopt a “theorem-proof” format,
something that we have generally avoided in the book. Many instructors will
prefer to skim these chapters, especially in a first course, although we hope
that most will choose not to omit them entirely.

Although we stress nonlinear models throughout the book, we also em-
phasize another point that has emerged in the last fifteen years and that has
been a central focus of much of our own research over that period. In order
to perform statistical inference on the results of a nonlinear estimation pro-
cedure, it is almost always possible to make use of artificial linear regressions
for the purposes of computing test statistics. Chapter 6 is the first chapter
in which we discuss an artificial linear regression, and it is a key chapter for
understanding much subsequent material. We show how the so-called Gauss-
Newton regression can be used for a variety of purposes, most notably the
calculation of Lagrange multiplier tests and related test statistics, the compu-
tation of nonlinear least squares estimates, and the computation of one-step
efficient estimates. The use of artificial regressions for doing diagnostic tests of
model specification is emphasized. Other artificial regressions are introduced
later in the book for use in contexts more general than that of nonlinear
regression models, but the intuition is always the same.
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Our treatment of the linear simultaneous equations model begins in Chap-
ter 7, where we discuss single-equation instrumental variables estimation. In
line with our emphasis on nonlinear models, we do not stick with linear in-
strumental variables models only, but also treat the estimation of nonlinear
models by instrumental variables and show how the Gauss-Newton regression
generalizes to such models. We also introduce the important idea of tests of
overidentifying restrictions. However, we do not attempt a full treatment of
the linear simultaneous equations model at this point. We have deliberately
left this topic, often thought of as the centerpiece of econometric theory, until
very late in the book. It is our feeling that modern theory and practice are
drifting away from the linear simultaneous equations model, in favor of a more
flexible approach in which instrumental variables continue to play a large role
but in a much more general context.

The presentation of standard maximum likelihood theory in Chapter 8
relies as much as possible on insights developed earlier for the nonlinear regres-
sion model. The basic concepts of consistency and asymptotic normality are
already available and can therefore be dealt with quite swiftly. New concepts
arise in connection with the information matrix equality and the Cramér-Rao
lower bound. In Chapter 9, maximum likelihood methods find their first ma-
jor application as we develop the methods of generalized least squares. These
methods lead naturally to a discussion of multivariate, but not simultaneous,
models. We also devote a section of this chapter to problems particular to the
analysis of panel data.

Chapter 10 deals with a topic of great concern to all econometricians who
work with time series: serial correlation. Few topics in econometrics have been
the subject of so vast a literature, much of which is now somewhat outdated.
Although we make no attempt to give a complete account of this literature,
this chapter is nevertheless one of the longest. It provides a first treatment
of time-series methods, since it is here that we describe autoregressive and
moving average processes. Methods of testing for the presence of these pro-
cesses in the error terms of regression equations, and performing estimation
in their presence, are discussed. Again, we highlight the possibility of us-
ing artificial linear regressions for these purposes. One section is devoted to
the important, and in many texts surprisingly neglected, subject of common
factor restrictions.

Hypothesis testing and diagnostic testing, always a primary concern, take
center stage again in Chapter 11, which discusses tests based on the Gauss-
Newton regression. Nonnested hypothesis testing is discussed here, and the
principle of Durbin-Wu-Hausman tests, introduced earlier in Chapter 7, is
taken up more fully. In addition, a heteroskedasticity-robust version of the
Gauss-Newton regression is developed, providing a first look at issues that
will be taken up in much more detail in Chapters 16 and 17.

Chapter 12 contains material not found in any other textbook treatment,
to our knowledge. Here, in the simple context of the regression model, we
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discuss the determinants of test power. We show how tests often have power
to reject false hypotheses or ill-specified models even when the alternative
hypothesis underlying the test is also wrongly specified. The unifying concept
is that of a drifting DGP, a generalization of the Pitman drift of standard
statistical analysis. This concept makes it possible to develop an asymptotic
theory of test power, based on asymptotic noncentrality parameters. The
asymptotic power of a test is shown to depend on just two things: its non-
centrality parameter and its number of degrees of freedom. We also devote a
section to the inverse power function, which has recently been proposed as a
useful and powerful tool for the interpretation of test results. We suspect that
some instructors will choose to skip this chapter, but we feel strongly that any
student who aims to be a specialist in econometrics should be familiar with
this material.

In Chapter 13, we turn again to maximum likelihood estimation and
develop, rather formally, the theory of the classical hypothesis tests, relying
for intuition on some of the material of the preceding two chapters. We treat
not only the well-known trio of the likelihood ratio, Lagrange multiplier, and
Wald tests, but also the C(α) test of Neyman, which is now emerging from
some decades of neglect. The latter test turns out to be particularly easy to
implement by means of artificial regressions. It is in this chapter that the
well-known OPG regression is introduced.

From Chapter 14 until the end of the book, most chapters constitute
relatively self-contained units. In these chapters, we try to discuss many of
the topics of importance in modern econometrics. It is here that some readers
may well feel that we have been hopelessly misguided in our selection and
have left out the one thing that all econometricians must know. In a field as
rapidly growing as econometrics is at the moment, they may well be right. We
have been guided largely by our own interests and tastes, which are inevitably
fallible. Two topics that we could well have discussed if space had permitted
are nonparametric and semiparametric techniques and Bayesian methods. We
apologize to specialists in these fields, offering only the lame excuse that we
are not ourselves specialists in them, and would no doubt have failed to do
them justice.

Chapters 14 and 15 deal respectively with models involving transforma-
tions of the dependent variable and models involving qualitative and limited
dependent variables. Both chapters rely heavily on the theory of estimation
and testing for models estimated by maximum likelihood. Courses with an
applied orientation might want to emphasize these chapters, and theoretical
courses might omit them entirely in favor of more advanced topics.

Chapter 16 deals with a variety of topics, including heteroskedasticity,
skewness and kurtosis, conditional moment tests, and information matrix
tests. Many relatively recent developments are discussed in this chapter,
which leads naturally to Chapter 17, on the generalized method of moments, or
GMM. This important estimation technique has not, to our knowledge, been



Preface xi

discussed in any detail in previous textbooks. Our treatment depends heavily
on earlier results for instrumental variables and generalized least squares. It
contains both general results for models estimated by means of any set of
moment conditions, and specific results for linear regression models. For the
latter, we present estimators that are more efficient than ordinary and two-
stage least squares in the presence of heteroskedasticity of unknown form.

A full treatment of the linear simultaneous equations model does not
occur until Chapter 18. One advantage of leaving it until late in the book is
that previous results on instrumental variables, maximum likelihood, and the
generalized method of moments are then available. Thus, in Chapter 18, we
are able to provide reasonably advanced discussions of LIML, FIML, and 3SLS
estimation as applications of general techniques that students have already
learned. The GMM framework also allows us to introduce a variant of 3SLS
that is efficient in the presence of heteroskedasticity of unknown form.

Chapters 19 and 20 complete our discussion of time-series issues. The
first deals with a number of topics that are important for applied work, in-
cluding spurious regressions, dynamic models, and seasonality. The second
deals with two related topics of substantial current interest that have not to
our knowledge been treated in previous textbooks, namely, unit roots and
cointegration. These chapters could be covered immediately after Chapter 10
in a course oriented toward applications, although they do make use of results
from some intervening chapters.

Finally, Chapter 21 provides a reasonably detailed introduction to Monte
Carlo methods in econometrics. These methods are already widely used, and
we believe that their use will increase greatly over the next few years as
computers become cheaper and more powerful.

One possible way in which this book can be used is to start at the be-
ginning and continue until the end. If three semesters are available, such an
approach is not only possible but desirable. If less time is available, however,
there are many possible options. One alternative would be to go only as far
as Chapter 13 and then, if time remains, select a few chapters or topics from
the remainder of the book. Depending on the focus of the course, it is also
possible to skip some earlier chapters, such as Chapters 10 and 12, along with
parts of Chapters 9, 11, and 13.

In some courses, it may be preferable to skip much of the theoretical
material entirely and concentrate on the techniques for estimation and in-
ference, without the underlying theory. In that event, we would recommend
that Chapters 4, 5, and 8 be covered lightly, and that Chapter 13 be skipped
entirely. For Chapter 4, the notions of consistency and asymptotic normality
would need to be treated at some level, but it is possible to be content with
simple definitions. A good deal of conceptual material without much math-
ematical formalism can be found in Section 4.4, in which the key idea of a
data-generating process is defined and discussed. For Chapter 5, the results
on the consistency and asymptotic normality of the nonlinear least squares
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estimator should be stated and discussed but need not be proved. The Gauss-
Markov Theorem could also be discussed. In Chapter 8, the first two sections
contain the material necessary for later chapters and are not at all formal
in content. The next six sections could then be skipped. Section 8.9, on
testing, could serve as a simpler replacement for the whole of Chapter 13.
Finally, Section 8.10 forges the link between maximum likelihood theory and
the previously covered material on the nonlinear regression model.

One of us teaches in France, where for several years he has used material
from this book as the basis for a series of courses at the upper undergraduate
and master’s levels. The students have already taken basic courses in math-
ematics and statistics when they enter the program. In the first year, they
are presented with material from the first three chapters and a brief discus-
sion of the main issues of Chapters 4 and 5, followed by Chapters 6 and 7,
and accompanied by problem sets to be worked out on the computer. The
second year embarks on maximum likelihood theory from Chapters 8 and 9,
skips most of Chapter 10 (although the model with AR(1) errors is used as an
important example of the uses of the Gauss-Newton regression), and takes up
the testing material of Chapters 11, 12, and 13, with relatively little emphasis
placed on the last of these. Numerous problem sets accompany the material
of these chapters. The third-year course, which is shorter and is joined by
students from other programs, varies more in content, although Chapter 13 is
always used as a focus for presentation and revision of maximum likelihood
methods and testing procedures. Recently, in fact, the first chapter to be
discussed was the last, Chapter 21, on Monte Carlo methods.

It is our hope that this book will be useful, not only to students, but also
to established researchers in econometrics as a work of reference. Many of
the techniques we describe, especially those based on artificial regressions, are
difficult to find in the literature or can be found only in exceedingly technical
articles. We would especially like to draw attention to Chapter 12, in which
we discuss the determinants of test power and the correct interpretation of
test statistics; Chapter 17, which is one of very few textbook treatments of
the generalized method of moments; and Chapter 21, on Monte Carlo experi-
ments. In these chapters, we think that the book makes a unique contribution.
Much of the material in the rest of the book, notably Chapters 6, 11, 16, and
20, is also not to be found in other texts. Even when the material we cover is
relatively familiar, we believe that our way of treating it is often novel enough
to be enlightening.

One advantage of a book over the research literature is that a coher-
ent approach and, perhaps of even greater importance, a coherent notation
can be developed. Thus readers can more readily perceive the relations and
similarities between seemingly disparate techniques and arguments. We will
not pretend either that our notation is always absolutely consistent or that
it was easy to make it even as consistent as it is. For example, the study of
time series has for a long time generated a literature distinctly separate from
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the mainstream of econometrics, and within this literature notational habits
have evolved that are incompatible with those that most econometricians are
used to. Many people, however, would be taken aback if time series results
were presented in a notation too markedly different from that used in the
time series literature. We have tried very hard to use notation that is at once
consistent and intuitive. The reader will be the judge of the extent to which
we have succeeded.

It is inconceivable that a book as long and technical as this one should
be free from errors. All the corrections incorporated in this printing and ones
discovered later are available in electronic form via the Internet; see page 875.
There would have been far more errors if we had not had the help of a great
many people in reading preliminary drafts. They pointed out a disconcert-
ingly large number of mistakes, most merely typographical, but some quite
serious. We are indebted to our students, in both Canada and France, in this
respect. We thank especially Dirk Eddelbüttel, Niels Hansen, Doug Tattrie,
Colin Telmer, and John Touchie for the many hours they devoted to going
through chapter after chapter with a fine-tooth comb. Many of our colleagues
have made extremely valuable suggestions to us. Some suggested topics that
we might otherwise have left out, and others were good enough to provide us
with detailed comments on our preliminary efforts. Our thanks go to Richard
Blundell, Colin Cameron, Gordon Fisher, John Galbraith, Bill Greene, Al-
lan Gregory, Mark Kamstra, Peter Sephton, Gregor Smith, Thanasis Stengos,
Timo Teräsvirta, and Diana Whistler. We are also indebted to an anony-
mous reader, who urged us to refocus the book when our original plan proved
infeasible.

It is customary for authors to thank their secretaries for unflagging sup-
port, both technical and moral, in the preparation of their manuscript. This
custom imposes on us the pleasant duty of thanking each other, since the
manuscript was prepared, in TEX, by our own unaided efforts. At times, it
seemed that the intricacies of this peerless computer program would take us
more time to master than the whole of econometrics itself. We owe a debt
of gratitude to Donald Knuth, the original author of TEX, and to the many
other people who have contributed to its development.

Finally, we must give thanks where it is due for a great deal of moral
support, and for much more besides, during the long period when we talked
book, more book, and yet more book. It is with much gratitude that we
record our thanks to our wives, Pamela and Susan.
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Estimation and Inference in Econometrics



Chapter 1

The Geometry of Least Squares

1.1 Introduction

The most commonly used, and in many ways the most important, estimation
technique in econometrics is least squares. It is useful to distinguish between
two varieties of least squares, ordinary least squares, or OLS, and nonlinear
least squares, or NLS. In the case of OLS the regression equation that is to
be estimated is linear in all of the parameters, while in the case of NLS it is
nonlinear in at least one parameter. OLS estimates can be obtained by direct
calculation in several different ways (see Section 1.5), while NLS estimates
require iterative procedures (see Chapter 6). In this chapter, we will discuss
only ordinary least squares, since understanding linear regression is essential
to understanding everything else in this book.

There is an important distinction between the numerical and the statis-
tical properties of estimates obtained using OLS. Numerical properties are
those that hold as a consequence of the use of ordinary least squares, regard-
less of how the data were generated. Since these properties are numerical, they
can always be verified by direct calculation. An example is the well-known
fact that OLS residuals sum to zero when the regressors include a constant
term. Statistical properties, on the other hand, are those that hold only under
certain assumptions about the way the data were generated. These can never
be verified exactly, although in some cases they can be tested. An example is
the well-known proposition that OLS estimates are, in certain circumstances,
unbiased.

The distinction between numerical properties and statistical properties is
obviously fundamental. In order to make this distinction as clearly as possible,
we will in this chapter discuss only the former. We will study ordinary least
squares purely as a computational device, without formally introducing any
sort of statistical model (although we will on occasion discuss quantities that
are mainly of interest in the context of linear regression models). No statistical
models will be introduced until Chapter 2, where we will begin discussing
nonlinear regression models, of which linear regression models are of course
a special case.

By saying that we will study OLS as a computational device, we do not
mean that we will discuss computer algorithms for calculating OLS estimates
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4 The Geometry of Least Squares

(although we will do that to a limited extent in Section 1.5). Instead, we mean
that we will discuss the numerical properties of ordinary least squares and, in
particular, the geometrical interpretation of those properties. All of the nu-
merical properties of OLS can be interpreted in terms of Euclidean geometry.
This geometrical interpretation often turns out to be remarkably simple, in-
volving little more than Pythagoras’ Theorem and high-school trigonometry,
in the context of finite-dimensional vector spaces. Yet the insight gained from
this approach is very great. Once one has a thorough grasp of the geometry
involved in ordinary least squares, one can often save oneself many tedious
lines of algebra by a simple geometrical argument. Moreover, as we hope the
remainder of this book will illustrate, understanding the geometrical proper-
ties of OLS is just as fundamental to understanding nonlinear models of all
types as it is to understanding linear regression models.

1.2 The Geometry of Least Squares

The essential ingredients of a linear regression are a regressand y and a matrix
of regressorsX ≡ [x1 . . .xk]. The regressand y is an n--vector, and the matrix
of regressors X is an n × k matrix, each column xi of which is an n--vector.
The regressand y and each of the regressors x1 through xk can be thought of
as points in n--dimensional Euclidean space, En. The k regressors, provided
they are linearly independent, span a k--dimensional subspace of En. We will
denote this subspace by S(X).1

The subspace S(X) consists of all points z in En such that z = Xγ for
some γ, where γ is a k--vector. Strictly speaking, we should refer to S(X) as
the subspace spanned by the columns of X, but less formally we will often
refer to it simply as the span of X. The dimension of S(X) is always equal
to ρ(X), the rank of X (i.e., the number of columns of X that are linearly
independent). We will assume that k is strictly less than n, something which
it is reasonable to do in almost all practical cases. If n were less than k, it
would be impossible for X to have full column rank k.

A Euclidean space is not defined without defining an inner product. In
this case, the inner product we are interested in is the so-called natural inner
product. The natural inner product of any two points in En, say zi and zj ,
may be denoted 〈zi, zj〉 and is defined by

〈zi, zj〉 ≡
n∑

t=1

zitzjt ≡ zi>zj ≡ zj>zi.

1 The notation S(X) is not a standard one, there being no standard notation that
we are comfortable with. We believe that this notation has much to recommend
it and will therefore use it hereafter.
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We remark that the natural inner product is not the only one that could be
used; we might, for example, choose to give a different, positive, weight to
each element of the sum, as in

n∑
t=1

wtzitzjt.

As we will see in Chapter 9, performing a linear regression using this in-
ner product would correspond to using a particular form of generalized least
squares. For the rest of the book, unless otherwise specified, whenever we
speak of an inner product we will mean the natural Euclidean one.

If a point z (which is of course an n--vector) belongs to S(X), we can
always write z as a linear combination of the columns of X:

z =
k∑

i=1

γixi = Xγ,

where γ1 through γk are scalars and γ is a k--vector with typical element γi.
Thus a vector of k coefficients like γ identifies any point in S(X). Provided
that the columns of X are linearly independent, it does so uniquely. The
vectors x1 through xk are linearly independent if we cannot write any one of
them as a linear combination of the others.

If the k regressors are not linearly independent, then they will span a
subspace of dimension less than k, say k′, where k′ is the largest number
of columns of X that are linearly independent of each other, that is, ρ(X).
In this case, S(X) will be identical to S(X ′), where X ′ is an n × k′ matrix
consisting of any k′ linearly independent columns of X. For example, consider
the following X matrix, which is 6× 3:

1 0 1
1 2 0
1 0 1
1 2 0
1 0 1
1 0 1

.

The columns of this matrix are not linearly independent, since

x1 = .5x2 + x3.

However, any two of the columns are linearly independent, and so

S(X) = S(x1,x2) = S(x1,x3) = S(x2,x3).

We have introduced a new notation here: S(x1,x2) denotes the subspace
spanned by the two vectors x1 and x2 jointly. More generally, the notation
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S(Z,W ) will denote the subspace spanned by the columns of the matrices Z
and W taken together; thus S(Z,W ) means the same thing as S

(
[Z W ]

)
.

Note that, in many cases, S(Z,W ) will be a space of dimension less than the
sum of the ranks of Z and W, since some of the columns of Z may lie in
S(W ) and vice versa. For the remainder of this chapter, unless the contrary
is explicitly assumed, we will, however, assume that the columns of X are
linearly independent.

The first thing to note about S(X) is that we can subject X to any rank-
preserving linear transformation without in any way changing the subspace
spanned by the transformed X matrix. If z = Xγ and

X∗ = XA,

where A is a nonsingular k × k matrix, it follows that

z = X∗A−1γ ≡X∗γ∗.

Thus any point z that can be written as a linear combination of the columns
of X can just as well be written as a linear combination of any linear trans-
formation of those columns. We conclude that if S(X) is the space spanned
by the columns of X, it must also be the space spanned by the columns of
X∗ = XA. This means that we could give the same space an infinite number
of names, in this case S(X), S(X∗), or whatever. Some authors (e.g., Seber,
1980; Fisher, 1981) have therefore adopted a notation in which the subspace
that we have called S(X) is named without any explicit reference to X at all.
We have avoided this coordinate-free notation because it tends to obscure
the relationship between the results and the regression(s) they concern and
because in most cases there is a natural choice for the matrix whose span we
are interested in. As we will see, however, many of the principal results about
linear regression are coordinate-free in the sense that they depend on X only
through S(X).

The orthogonal complement of S(X) in En, which is denoted S⊥(X), is
the set of all points w in En such that, for any z in S(X),w>z = 0. Thus
every point in S⊥(X) is orthogonal to every point in S(X) (two points are
said to be orthogonal if their inner product is zero). Since the dimension of
S(X) is k, the dimension of S⊥(X) is n − k. It is sometimes convenient to
refer not to the dimension of a linear subspace but to its codimension. A
linear subspace of En is said to have codimension j if the dimension of its
orthogonal complement is j. Thus, in this case, S(X) has dimension k and
codimension n− k, and S⊥(X) has dimension n− k and codimension k.

Before discussing Figure 1.1, which illustrates these concepts, we must
say a word about geometrical conventions. The simplest way to represent an
n--dimensional vector, say z, in a diagram is simply to show it as a point in an
n--dimensional space; n of course must be limited to 2 or 3. It is often more
intuitive, however, explicitly to show z as a vector, in the geometrical sense.
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S(X)

S⊥(X)

Figure 1.1 The spaces S(X) and S⊥(X)

This is done by connecting the point z with the origin and putting an arrow-
head at z. The resulting arrow then shows graphically the two things about a
vector that matter, namely, its length and its direction. The Euclidean length
of a vector z is

‖z‖ ≡
( n∑

t=1

z2t

)1/2
=
∣∣(z>z)1/2

∣∣,
where the notation emphasizes that ‖z‖ is the positive square root of the sum
of the squared elements of z. The direction is the vector itself normalized
to have length unity, that is, z/‖z‖. One advantage of this convention is
that if we move one of the arrows, being careful to change neither its length
nor its direction, the new arrow represents the same vector, even though the
arrowhead is now at a different point. It will often be very convenient to do
this, and we therefore adopt this convention in most of our diagrams.

Figure 1.1 illustrates the concepts discussed above for the case n = 2 and
k = 1. The matrix of regressors X has only one column in this case, and it is
therefore represented by a single vector in the figure. As a consequence, S(X)
is one-dimensional, and since n = 2, S⊥(X) is also one-dimensional. Notice
that S(X) and S⊥(X) would be the same if X were any point on the straight
line which is S(X), except for the origin. This illustrates the fact that S(X)
is invariant to any nonsingular transformation of X.

As we have seen, any point in S(X) can be represented by a vector of the
form Xβ for some k--vector β. If one wants to find the point in S(X) that is
closest to a given vector y, the problem to be solved is that of minimizing,
with respect to the choice of β, the distance between y and Xβ. Minimizing
this distance is evidently equivalent to minimizing the square of this distance.
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Xβ′

y −Xβ′

Figure 1.2 The projection of y onto S(X)

Thus, solving the problem

min
β
‖y −Xβ‖2 (1.01)

will find the closest point to y in S(X). The value of β that solves (1.01),
which is the OLS estimate, will be denoted β̂.

The squared distance between y and Xβ can also be written as

n∑
t=1

(yt −Xtβ)2 = (y −Xβ)>(y −Xβ), (1.02)

where yt and Xt denote, respectively, the tth element of the vector y and
the tth row of the matrix X.2 Since the difference between yt and Xtβ is
commonly referred to as a residual, this quantity is generally called the sum
of squared residuals, or SSR. It is also sometimes called the residual sum
of squares, which more closely parallels the terminology for its counterpart,
the explained sum of squares. The acronyms would then be RSS and ESS.
Unfortunately, some authors use the former to stand for the regression sum
of squares and the latter for the error sum of squares, making it unclear what
the acronyms RSS and ESS stand for. When we refer to SSR and ESS, there
should be no such ambiguity.

The geometry of ordinary least squares is illustrated in Figure 1.2, which
is Figure 1.1 with a few additions. The regressand is now shown as the
vector y. The vector Xβ̂, which is often referred to as the vector of fitted
values, is the closest point in S(X) to y; note that β̂ is a scalar in this case. It
is evident that the line joining y and Xβ̂ must form a right angle with S(X)
at Xβ̂. This line is simply the vector y −Xβ̂, translated so that its origin is

2 We refer to the tth row of X as Xt rather than as xt to avoid confusion with
the columns of X, which we have referred to as x1, x2, and so on.
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at Xβ̂ instead of at zero. The right angle formed by y −Xβ̂ and S(X) is the
key feature of least squares. At any other point in S(X), such as Xβ′ in the
figure, y−Xβ′ does not form a right angle with S(X) and, as a consequence,
‖y −Xβ′‖ must necessarily be larger than ‖y −Xβ̂‖.

The vector of derivatives of the SSR (1.02) with respect to the elements
of β is

−2X>(y −Xβ),

which must equal 0 at a minimum. Since we have assumed that the columns
of X are linearly independent, the matrix X>X must have full rank. This,
combined with that fact that any matrix of the form X>X is necessarily
nonnegative definite, implies that the sum of squared residuals is a strictly
convex function of β and must therefore have a unique minimum. Thus β̂ is
uniquely determined by the normal equations

X>(y −Xβ̂) = 0. (1.03)

These normal equations say that the vector y−Xβ̂ must be orthogonal to all
of the columns of X and hence to any vector that lies in the space spanned
by those columns. The normal equations (1.03) are thus simply a way of stat-
ing algebraically what Figure 1.2 showed geometrically, namely, that y −Xβ̂
must form a right angle with S(X).

Since the matrix X>X has full rank, we can always invert it to solve the
normal equations for β̂. We obtain the standard formula:

β̂ =
(
X>X

)−1
X>y. (1.04)

Even ifX is not of full rank, the fitted valuesXβ̂ are uniquely defined, because
Xβ̂ is simply the point in S(X) that is closest to y. Look again at Figure 1.2
and suppose that X is an n×2 matrix, but of rank only one. The geometrical
point Xβ̂ is still uniquely defined. However, since β is now a 2--vector and
S(X) is just one-dimensional, the vector β̂ is not uniquely defined. Thus the
requirement that X have full rank is a purely algebraic requirement that is
needed to obtain unique estimates β̂.

If we substitute the right-hand side of (1.04) for β̂ into Xβ̂, we obtain

Xβ̂ = X
(
X>X

)−1
X>y ≡ PXy. (1.05)

This equation defines the n× n matrix PX ≡X(X>X)−1X>, which projects
the vector y orthogonally onto S(X). The matrix PX is an example of an
orthogonal projection matrix. Associated with every linear subspace of En are
two such matrices, one of which projects any point in En onto that subspace,
and one of which projects any point in En onto its orthogonal complement.
The matrix that projects onto S⊥(X) is

MX ≡ I− PX ≡ I−X
(
X>X

)−1
X>,
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where I is the n × n identity matrix. We say that S(X) is the range of the
projection PX while S⊥(X) is the range of MX . Note that both PX and MX

are symmetric matrices and that

MX + PX = I.

Any point in En, say z, is therefore equal to MXz + PXz. Thus these two
projection matrices define an orthogonal decomposition of En, because the
two vectors MXz and PXz lie in two orthogonal subspaces.

Throughout this book, we will use P and M subscripted by matrix ex-
pressions to denote the matrices that respectively project onto and off the
subspaces spanned by the columns of those matrix expressions. Thus PZ

would be the matrix that projects onto S(Z), MX,W would be the matrix
that projects off S(X,W ), and so on. These projection matrices are of no
use whatsoever for computation, because they are of dimension n× n, which
makes them much too large to work with on a computer except when the
sample size is quite small. But they are nevertheless extremely useful. It is
frequently very convenient to express the quantities that arise in econometrics
using these matrices, partly because the resulting expressions are relatively
compact and partly because the properties of projection matrices often make
it easy to understand what those expressions mean.

In the case of any linear regression with regressors X, the projection
matrices of primary interest are PX and MX . These matrices have several
important properties which can all be seen clearly from Figure 1.2. One
property, which is often extremely convenient, is that they are idempotent.
An idempotent matrix is one that, when multiplied by itself, yields itself again.
Thus

PXPX = PX and MXMX = MX .

These results are easily proved by a little algebra, but the geometry of the
situation makes them obvious. If one takes any point, projects it onto S(X),
and then projects it onto S(X) again, the second projection can have no effect,
because the point is already in S(X). This implies that PXPXz = PXz for
any vector z; therefore, PXPX = PX . A similar argument holds for MX .

A second important property of PX and MX is that

PXMX = 0. (1.06)

Thus PX and MX annihilate each other. Again, this can easily be proved
algebraically using the definitions of PX and MX , but such a proof is quite
unnecessary. It should be obvious that (1.06) must hold, because PX projects
onto S(X) and MX projects onto S⊥(X). The only point that belongs to
both S(X) and S⊥(X) is the origin, i.e., the zero vector. Thus, if we attempt
to project any vector onto both S(X) and its orthogonal complement, we get
the zero vector.
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In fact, MX annihilates not just PX but all points that lie in S(X),
and PX annihilates not just MX but all points that lie in S⊥(X). These
properties can again be proved by straightforward algebra, but the geometry
of the situation is even simpler. Consider Figure 1.2 again. It is evident that
if we project any point in S⊥(X) orthogonally onto S(X), we end up at the
origin (which is just a vector of zeros), as we do if we project any point in
S(X) orthogonally onto S⊥(X).

Since the space spanned by the columns of X is invariant to nonsingular
linear transformations of the columns ofX, so must be the projection matrices
PX and MX . This can also be seen algebraically. Consider what happens
when we postmultiply X by any nonsingular k × k matrix A. The matrix
that projects onto the span of XA is

PXA = XA
(
A>X>XA

)−1
A>X>

= XAA−1
(
X>X

)−1
(A>)−1A>X>

= X
(
X>X

)−1
X>= PX .

This result suggests that perhaps the best way to characterize a linear subspace
is by the matrix that projects orthogonally onto it, with which it is in a one-
to-one correspondence.

If the rank of the matrix X is k, then so is the rank of PX . This follows
from the fact that the range of the projection matrix PX is just S(X), the
span ofX, which has dimension equal to ρ(X). Thus, although PX is an n×n
matrix, its rank is in general much smaller than n. This crucial fact permits us
to make much greater use of simple geometry than might at first seem possible.
Since we are working with vectors that lie in an n--dimensional space, with n
almost always greater than 3, it might seem that diagrams like Figure 1.2
would almost never be applicable. But most of the time we will be interested
only in a small-dimensional subspace of the n--dimensional space in which
the regressand and regressors are located. The small-dimensional subspace of
interest will generally be either the space spanned by the regressors only or the
space spanned by the regressand along with the regressors. These subspaces
will have dimensions k and k + 1, respectively, whatever the sample size n.
The former subspace is uniquely characterized by the orthogonal projection
PX, and the latter by the orthogonal projection PX,y.

When we look at a figure that is two-dimensional, possibly intended as
a two-dimensional projection of a three-dimensional image, the two or three
dimensions that we can visualize will therefore be those of S(X) or S(X,y).
What we lose in collapsing the original n dimensions into just two or three
is the possibility of drawing coordinate axes that correspond to the separate
observations of a sample. For that to be possible, it would indeed be necessary
to restrict ourselves to samples of two or three. But this seems a small price to
pay for the possibility of seeing the geometrical interpretation of a great many
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of the algebraic results in econometrics. That such geometrical interpretations
are possible is due to the fact that lengths, angles, inner products, and in fact
everything that does not depend explicitly on the individual observations on a
set of k linearly independent variables, remain unchanged when we ignore the
n − k dimensions orthogonal to the space spanned by the k variables. Thus
if, for example, two variables are orthogonal in n dimensions, they are also
orthogonal in the two-dimensional space that they span.

Let us now make use of geometrical interpretations to establish some
important properties of the linear regression model. We have already seen
from (1.05) that PXy is the vector of fitted values from a regression of y
on X. This implies that MXy = y −PXy is the vector of residuals from the
same regression. Property (1.06) tells us that

(PXy)>(MXy) = 0;

it follows that the residuals must be orthogonal to the fitted values. Indeed,
the residuals must be orthogonal to every vector that lies in S(X), including
all of the regressors and all linear transformations of those regressors. Thus,
when X includes a constant term or the equivalent of a constant term, the
residuals must sum to zero.

Notice that the fitted values PXy and residuals MXy depend on X
only through the projection matrices PX and MX . Thus they depend only
on S(X) and not on any characteristics of X that do not affect S(X); in
particular, they are invariant to any nonsingular linear transformation of the
columns of X. Among other things, this implies that for any regression we
can multiply any or all of the regressors by any nonzero constant, and in any
regression that includes a constant term we can add any constant amount
to any or all of the regressors, without affecting the OLS residuals or fitted
values at all. As an example, the following two apparently quite dissimilar
regressions must yield exactly the same fitted values and residuals:3

y = β1x1 + β2x2 + β3x3 + residuals;

y = α1(x1 + x2) + α2(2x2 − x3) + α3(3x1 − 2x2 + 5x3) + residuals.

These two regressions have the same explanatory power (that is, the same
fitted values and residuals), because the regressors span exactly the same
subspace in each case. Notice that if we let X∗ represent the regressor matrix

3 Here and elsewhere, when we write an equation ending with “+ residuals,” we
simply mean by residuals whatever the difference between the regressand and
the regression function happens to be. These residuals will be OLS residuals
only if the parameters of the regression function are evaluated at the OLS
estimates. We avoid the more common notation “+ u” in this context to avoid
any suggestion that the residuals have any statistical properties.
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Figure 1.3 The orthogonal decomposition of y

from the second equation, then we see that X∗ = XA for the matrix

A =

 1 0 3
1 2 −2
0 −1 5

.
The idempotency of PX andMX often makes expressions associated with

least squares regression very simple. For example, when evaluated at β̂, the
sum of squared residuals (1.02) is

(y −Xβ̂)>(y −Xβ̂) = (MXy)>(MXy)

= y>MXMXy = y>MXy = ‖MXy‖2.
(1.07)

Similarly, the explained sum of squares is

(Xβ̂)>(Xβ̂) = (PXy)>(PXy)

= y>PXPXy = y>PXy = ‖PXy‖2.
(1.08)

The right-most expression in each of (1.07) and (1.08) makes it clear that
the sum of squared residuals and the explained sum of squares are simply the
squared lengths of certain vectors, namely, the projections of y onto the ranges
of the two projections MX and PX, which are S⊥(X) and S(X), respectively.

This is shown in Figure 1.3, which is Figure 1.2 redrawn and relabelled.
Although the figure is only two-dimensional, it is perfectly general. The two-
dimensional space depicted is that spanned by the regressand y and the vector
of fitted values PXy. These two vectors form, as shown, two sides of a right-
angled triangle. The distance between y and PXy is ‖MXy‖, the distance
between the origin and PXy is ‖PXy‖, and the distance between the origin
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and y is of course ‖y‖. By applying Pythagoras’ Theorem,4 we immediately
conclude that

‖y‖2 = ‖PXy‖2 + ‖MXy‖2.

Thus the total sum of squares, or TSS, of the regressand is equal to the ex-
plained sum of squares plus the sum of squared residuals. This result depends
crucially on the fact that MXy is orthogonal to S(X), since otherwise we
would not have a right-angled triangle and Pythagoras’ Theorem would not
apply.

The fact that the total variation in the regressand can be divided into
two parts, one “explained” by the regressors and one not explained, suggests
a natural measure of how well a regression fits. This measure, formally called
the coefficient of determination but universally referred to as the R2, actually
has several variants. The simplest variant (but not the one most commonly
encountered) is the uncentered R2:

R2
u =
‖PXy‖2

‖y‖2
= 1− ‖MXy‖2

‖y‖2
.

It is evident that R2
u is unit-free and that it must take on a value between 0

and 1. From Figure 1.3, it is easy to see that R2
u has a simple geometrical

interpretation. The cosine of the angle between the vectors y and PXy, which
is marked φ in the figure, is

cosφ =
‖PXy‖
‖y‖

.

This is the (uncentered) correlation coefficient between y and PXy. Hence
we see that

R2
u = cos2φ.

When y actually lies in S(X), the angle between PXy and y must be 0, since
they will be the same vector, and R2

u will thus be 1. In the other extreme,
when y lies in S⊥(X), the angle between PXy and y will be 90◦, and R2

u will
evidently be 0.

Anything that changes the angle φ in Figure 1.3 will change the uncen-
tered R2. In particular, it is evident that adding a constant to y will normally
change that angle, and that this is true even if X includes a constant term. If
the R2 is to be used as a measure of how well a regression fits, it seems unde-
sirable for it to change when we do something as simple as adding a constant
to the regressand. It is easy to modify the R2 to get around this problem.

4 Pythagoras’ Theorem, it will be recalled, simply says that for a right-angled
triangle the square of the length of the hypotenuse is equal to the sum of the
squares of the lengths of the other two sides.
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The modified version is known as the centered R2, and we will denote it by
R2

c . It is defined as

R2
c ≡ 1− ‖MXy‖2

‖Mιy‖2
, (1.09)

where
Mι ≡ I− ι

(
ι>ι
)−1
ι>= I− n−1ιι>

is the matrix that projects off the space spanned by the constant vector ι,
which is simply a vector of n ones. When any vector is multiplied by Mι,
the result is a vector of deviations from the mean. Thus what the centered
R2 measures is the proportion of the total sum of squares of the regressand
around its mean that is explained by the regressors.

An alternative expression for R2
c is

‖PXMιy‖2

‖Mιy‖2
, (1.10)

but this is equal to (1.09) only if PXι = ι, which means that S(X) must
include the vector ι (so that either one column of X must be a constant, or
some linear combination of the columns of X must equal a constant). In this
case, the equality must hold, because

MXMιy = MX(I− Pι)y = MXy,

the second equality here being a consequence of the fact that MX annihilates
Pι when ι belongs to S(X). When this is not the case and (1.10) is not valid,
there is no guarantee that R2

c will be positive. After all, there will be many
cases in which a regressand y is better explained by a constant term than
by some set of regressors that does not include a constant term. Clearly, if
(1.10) is valid, R2

c must lie between 0 and 1, since (1.10) is then simply the
uncentered R2 for a regression of Mιy on X.

The use of the centered R2 when X does not include a constant term or
the equivalent is thus fraught with difficulties. Some programs for statistics
and econometrics refuse to print an R2 at all in this circumstance; others print
R2

u (without always warning the user that they are doing so); some print R2
c ,

defined as (1.09), which may be either positive or negative; and some print
still other quantities, which would be equal to R2

c if X included a constant
term but are not when it does not. Users of statistical software, be warned!

Notice that R2 is an interesting number only because we used the least
squares estimator β̂ to estimate β. If we chose an estimate of β, say β̃, in
any other way, so that the triangle in Figure 1.3 were no longer a right-angled
triangle, we would find that the equivalents of the two definitions of R2, (1.09)
and (1.10), were not the same:

1− ‖y −Xβ̃‖
2

‖y‖2
6= ‖Xβ̃‖

2

‖y‖2
.
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If we chose to define R2 in terms of the residuals, using the first of these
expressions, we could not guarantee that it would be positive, and if we chose
to define it in terms of the fitted values, using the second, we could not
guarantee that it would be less than 1. Thus, when anything other than
least squares is used to estimate a regression, one should either ignore what
is reported as the R2 or make sure that one knows exactly how the reported
number was computed.

1.3 Restrictions and Reparametrizations

We have stressed the fact that S(X) is invariant to any nonsingular linear
transformation of the columns of X. This implies that we can always repara-
metrize any regression in whatever way is convenient, without in any way
changing the ability of the regressors to explain the regressand. Suppose that
we wished to run the regression

y = Xβ + residuals (1.11)

and compare the results of this regression with those from another regression
in which β is subject to the r (≤ k) linearly independent restrictions

Rβ = r, (1.12)

where R is an r× k matrix of rank r and r is an r--vector. While it is not dif-
ficult to do this by restricted least squares, it is often easier to reparametrize
the regression so that the restrictions are zero restrictions. The restricted
regression can then be estimated in the usual way by OLS. The reparametriz-
ation can be done as follows.

First, rearrange the columns of X so that the restrictions (1.12) can be
written as

R1β1 +R2β2 = r, (1.13)

where R ≡ [R1 R2] and β ≡ [β1
.... β2],5 R1 being a nonsingular r×r matrix

and R2 an r× (k− r) matrix. It must be possible to do this if the restrictions
are in fact distinct. Solving equations (1.13) for β1 yields

β1 = R−11 r −R−11 R2β2.

5 The notation [β1
.... β2] means that β1 and β2 are column vectors that are

stacked to form another column vector, in this case β. A more common notation
would be [β1

> β2
>]>, but this is distinctly cumbersome. We are introducing

the former notation because one often wants to stack column vectors, and
we believe that the new notation is enough of an improvement to be worth
introducing.
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Thus the original regression (1.11), with the restrictions imposed, can be
written as

y = X1(R−11 r −R−11 R2β2) +X2β2 + residuals.

This is equivalent to

y −X1R
−1
1 r = (X2 −X1R

−1
1 R2)β2 + residuals,

which, if we define y∗ as y −X1R
−1
1 r and Z2 as X2 −X1R

−1
1 R2, can be

rewritten more compactly as

y∗ = Z2β2 + residuals. (1.14)

This is a restricted version of regression (1.11). To obtain a regression equiv-
alent to the original, we have to add back in r regressors that together with
Z2 will span the same space as X. There is an infinite number of ways to
do this. Let the new regression function be written as Zγ. We have already
defined Z2, and Z1 can be any matrix of r columns which along with Z2 span
S(X). Further we must have γ2 = β2. The new regression is thus

y∗ = Z1γ1 +Z2γ2 + residuals. (1.15)

It should be clear from the way Z2 was constructed that S(X1,Z2) = S(X),
and so one possible choice for Z1 is just X1. The fact that the regressand has
also been transformed can have no effect on the residuals from the regression,
because y∗ = y −X1R

−1
1 r, and the vector X1R

−1
1 r lies in S(X).

As a concrete example of the procedure just described, consider the re-
gression

y = β1x1 + β2x2 + residuals, (1.16)

which is to be estimated subject to the restriction that β1 + β2 = 1. The
restricted regression, equivalent to (1.14), is thus

y − x1 = β2(x2 − x1) + residuals,

and the unrestricted regression in the new parametrization, equivalent to
(1.15), is

y∗ = γ1z1 + γ2z2 + residuals, (1.17)

in which y∗ ≡ y − x1, z1 ≡ x1, z2 ≡ x2 − x1, and γ2 ≡ β2. The restriction
that γ1 = 0 is equivalent to the original restriction that β1 + β2 = 1.

This example is illustrated in Figure 1.4, which should be viewed in three
dimensions. The figure depicts the span of the two regressors x1 and x2, which
span the plane marked S(X) in the figure, and of the regressand y, which is
here shown as being above the plane S(X). Unrestricted OLS estimation
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Figure 1.4 Restricted and unrestricted estimation

corresponds to projecting y orthogonally onto the surface of the plane, at the
point Xβ̂. The restriction that β1 + β2 = 1 requires the fitted values to lie
on the line AB in the figure, and when we project y orthogonally onto this
line, we obtain the point Xβ̃, which corresponds to the vector of fitted values
from the restricted estimation.

The reparametrization from (1.16) to (1.17) does not change S(X) at
all, but since the regressand is now y − x1 rather than y, the location of the
regressand has changed relative to the origin. Figure 1.5 is essentially the

............................
............................

............................
............................

............................
............................

............................
............................

............................
.............................................

........................................................................................................................................................................................................................................................................................................................................................................................................... ........................
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
.............................

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

...................

.............

...............................................................................................................................................................................................................................................................................................................

..........................................................................................................................................................................................................................................................................



................
.........
......

............
........
......

........................

O

A

B

z1

S(X)

S⊥(X)

z2
Zγ̃

y∗ ≡ y − x1

Zγ̂

Figure 1.5 Estimation after reparametrization



1.4 The Frisch-Waugh-Lovell Theorem 19

..................................
..................................

..................................
..................................

..................................
..................................

..................................
..................................

..................................
..................................

..................................
..................................

..................................
..................................

..................................
..................................

..................................
..................................

..................................
..................................

..................................
..................................

..................................
..................................

..

............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
........

...........
...........
...........
.....................................

..........................
...........
.......

..........................
...........
.......

..........................
...........
.......

....................................

↖φ1 = φ3

.......................................

φ2↘

........................................
........................................

........................................
........................................

........................................
........................................

........................................
........................................

............................ ..................

.............................................................................................................................................................................................................................................................................................................................................................................. ..................

...............................................................................................................................
.
.............
.....

........................................
........................................

............................ ..................

........................................................................................................
........................................................................................................

........................................................................................................
........................................................................................................

........................................................................................................
................................................. ..................

...............................................................................................................................
.
.............
.....

........................................
........................................

.......................................................... ..................

................................................................................................................................................. ..................

.......................................................................................................................................................................
.
.............
.....

O

S(X)S⊥(X)

y1

y2

y3

Figure 1.6 Effects on R2 of different regressands

same as Figure 1.4, except that everything has been labelled in terms of the
new parametrization. In fact, Figure 1.5 results from Figure 1.4 by shifting
the origin to the tip of the arrow representing the variable x1. The vector z1
is thus the old x1 translated so as to start from the new origin. The second
new regressor, z2, lies within the line AB, which in Figure 1.5 passes through
the origin. This makes it clear that the restriction means that γ1 must be
zero. Consequently, the vector of fitted values must also lie on the line AB.

We have seen that the residuals from the reparametrized regression (1.15)
will be exactly the same as the residuals from (1.11), and this fact is evident
from Figures 1.4 and 1.5. This will not be true of either the centered or the
uncentered R2, however, since the total sum of squares depends on how the
regressand is expressed. This is another reason to be wary of all variants
of the R2: Equivalent regressions can have very different R2’s. To see this
geometrically, consider Figure 1.6, which is similar to Figure 1.3 except that
now three different regressands, y1, y2, and y3, are shown. The second of
these, y2, was obtained from y1 by shifting the latter to the northeast parallel
to S(X) so that MXy2 = MXy1. Notice that φ1 is different from φ2, which
implies that the R2’s will be different. On the other hand, y3 was obtained
by moving y1 outward while keeping φ constant. As a result, MXy3 will be
larger than MXy1, but the two regressions will have the same (uncentered)
R2. If we interpreted S(X) in the figure as S(MιX) and y as Mιy, then
cos2φ would be the centered R2 instead of the uncentered one.

1.4 The Frisch-Waugh-Lovell Theorem

We now discuss an extremely important and useful property of least squares
estimates, which, although widely known, is not as widely appreciated as it
should be. We will refer to it as the Frisch-Waugh-Lovell Theorem, or FWL
Theorem, after Frisch and Waugh (1933) and Lovell (1963), since those papers
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seem to have introduced, and then reintroduced, it to econometricians. The
theorem is much more general, and much more generally useful, than a casual
reading of those papers might suggest, however. Among other things, it almost
totally eliminates the need to invert partitioned matrices when one is deriving
many standard results about ordinary (and nonlinear) least squares.

The FWL Theorem applies to any regression where there are two or
more regressors, and these can logically be broken up into two groups. The
regression can thus be written as

y = X1β1 +X2β2 + residuals, (1.18)

where X1 is n×k1 and X2 is n×k2, with X ≡ [X1 X2] and k = k1 +k2. For
example, X1 might be seasonal dummy variables or trend variables and X2

genuine economic variables. This was in fact the type of situation dealt with
by Frisch and Waugh (1933) and Lovell (1963). Another possibility is that X1

might be regressors, the joint significance of which we desire to test, and X2

might be other regressors that are not being tested. OrX1 might be regressors
that are known to be orthogonal to the regressand, andX2 might be regressors
that are not orthogonal to it, a situation which arises very frequently when
we wish to test nonlinear regression models; see Chapter 6.

Now consider another regression,

M1y = M1X2β2 + residuals, (1.19)

where M1 is the matrix that projects off S(X1). In (1.19) we have first
regressed y and each of the k2 columns of X2 on X1 and then regressed
the vector of residuals M1y on the n × k2 matrix of residuals M1X2. The
FWL Theorem tells us that the residuals from regressions (1.18) and (1.19),
and the OLS estimates of β2 from those two regressions, will be numeric-
ally identical. Geometrically, in regression (1.18) we project y directly onto
S(X) ≡ S(X1,X2), while in regression (1.19) we first project y and all of the
columns of X2 off S(X1) and then project the residuals M1y onto the span of
the matrix of residuals, S(M1X2). The FWL Theorem tells us that these two
apparently rather different procedures actually amount to the same thing.

The FWL Theorem can be proved in several different ways. One standard
proof is based on the algebra of partitioned matrices. First, observe that the
estimate of β2 from (1.19) is(

X2
>M1X2

)−1
X2
>M1y. (1.20)

This simple expression, which we will make use of many times, follows imme-
diately from substituting M1X2 for X and M1y for y in expression (1.04)
for the vector of OLS estimates. The algebraic proof would now use results
on the inverse of a partitioned matrix (see Appendix A) to demonstrate that
the OLS estimate from (1.18), β̂2, is identical to (1.20) and would then go
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on to demonstrate that the two sets of residuals are likewise identical. We
leave this as an exercise for the reader and proceed, first with a simple semi-
geometric proof and then with a more detailed discussion of the geometry of
the situation.

Let β̂ ≡ [β̂1
.... β̂2] denote the OLS estimates from (1.18). Then

y = PXy +MXy = X1β̂1 +X2β̂2 +MXy. (1.21)

Multiplying y and the right-hand expression in (1.21), which is equal to y,
by X2

>M1, where M1 ≡ I−X1(X1
>X1)−1X1

>, we obtain

X2
>M1y = X2

>M1X2β̂2. (1.22)

The first term on the right-hand side of (1.21) has dropped out because M1

annihilates X1. The last term has dropped out because M1X2 = X2−P1X2

belongs to S(X), which implies that

MXM1X2 = 0. (1.23)

Solving (1.22) for β̂2, we see immediately that

β̂2 =
(
X2
>M1X2

)−1
X2
>M1y,

which is expression (1.20). This proves the second part of the theorem.

If we had multiplied (1.21) by M1 instead of by X2
>M1, we would have

obtained
M1y = M1X2β̂2 +MXy. (1.24)

The regressand here is the regressand from regression (1.19). Because β̂2 is
the estimate of β2 from (1.19), the first term on the right-hand side of (1.24)
is the vector of fitted values from that regression. Thus the second term must
be the vector of residuals from regression (1.19). But MXy is also the vector
of residuals from regression (1.18), and this therefore proves the first part of
the theorem.

Let us now consider the geometry of the situation in more detail. Because
S(X1) and S(X2) are not in general mutually orthogonal subspaces, the first
two terms in the right-hand expression in (1.21), X1β̂1 and X2β̂2, are not in
general mutually orthogonal either. If we decompose X2β̂2 as follows:

X2β̂2 = P1X2β̂2 +M1X2β̂2 (1.25)

and regroup the terms of (1.21), we obtain

y = (X1β̂1 + P1X2β̂2) +M1X2β̂2 +MXy

= P1(X1β̂1 +X2β̂2) +M1X2β̂2 +MXy

= P1y +M1PXy +MXy,

(1.26)
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because X1β̂1 +P1X2β̂2 is evidently P1PXy = P1y, while M1X2β̂2 is equal

toM1(X1β̂1+X2β̂2), which can be rewritten asM1PXy. The last expression
in (1.26) makes it clear that y is the sum of three mutually orthogonal terms.
The result (1.26) then implies that

M1y = y − P1y = M1PXy +MXy. (1.27)

Consider now Figure 1.7, in which this is illustrated for the simplest case
to which the theorem applies, namely, the case k1 = k2 = 1. In panel (a) of
the figure, which is intended to represent three dimensions, the vector y is
shown along with its projection PXy onto the span of the two regressors X1

and X2, depicted as the horizontal plane, and the complementary (vertical)
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projection MXy. Also shown is the projection P1y of y onto the direction
of the first regressor X1 and its complement M1y. Observe that the triangle
ABC, formed by the point y itself, the point PXy, and the point P1y, is a
right-angled triangle in the vertical plane perpendicular to the direction ofX1.

The two-dimensional panel (b) depicts the horizontal plane that is the
range S(X) of the projection PX . The oblique decomposition of PXy as

X1β̂1 +X2β̂2 is shown via the parallelogram ODBE, where the sides OE and
DB represent X1β̂1, and the sides OD and EB represent X2β̂2. The trian-
gle EBC shows the decomposition (1.25) of X2β̂2 into the sum of P1X2β̂2,
represented by EC, and M1X2β̂2 = M1PXy, represented by CB. Note that
both of these vectors lie in S(X). The fact that the second of these does so
follows from equation (1.23). Lastly, panel (c) shows in two dimensions the
triangle ABC. This represents the decomposition of M1y, given in (1.27),
into M1PXy, corresponding to CB, and MXy, corresponding to BA.

This last panel can now be used to illustrate the FWL Theorem. The
point to grasp is that the orthogonal decomposition (1.27) of M1y into the
sum of MXy and M1PXy = M1X2β̂2 is the orthogonal decomposition that
is effected by the regression of M1y, the vector decomposed, on the columns
of M1X2, in short, the regression (1.19). This should be clear geometrically;

algebraically, it follows, first, from the fact that the termM1X2β̂2 is evidently
a linear combination of the columns of M1X2 and, second, from the fact that
the other term, MXy, is orthogonal to all these columns. This second fact
follows from the relation MXM1 = MX , which is true because S⊥(X) is a
subspace of S⊥(X1), for then, as we saw in equation (1.23),

MXM1X2 = MXX2 = 0,

which implies that y>MXM1X2 = 0. Thus we have shown that

PM1X2
M1y = M1X2β̂2 and (1.28)

MM1X2M1y = MXy. (1.29)

One part of the FWL Theorem states that regressions (1.18) and (1.19)
have the same residuals. These common residuals are constituted by the
vector MXy, as is plain from (1.21) for regression (1.18) and from (1.29) for
regression (1.19). The other part of the theorem states that the estimates
of β̂2 are the same from the two regressions. This is now immediate from
(1.28), in which the β̂2 from regression (1.18) yields the vector of fitted values
PM1X2

M1y for regression (1.19).

We will encounter many applications of the FWL Theorem throughout
this book. A simple example is the use of dummy variables for seasonal ad-
justment, which was Lovell’s (1963) original application. Many economic time
series that are collected on a monthly or quarterly basis display systematic
seasonal variation. One way to model this is to add a set of seasonal dummy
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variables to a regression. For example, suppose that the data are quarterly
and that seasonal dummy variables D1 through D3 are defined as follows:

D1 =



1
0
0
−1

1
0
0
−1
...


D2 =



0
1
0
−1

0
1
0
−1
...


D3 =



0
0
1
−1

0
0
1
−1
...


.

Notice that these dummy variables have been defined in such a way that they
sum to zero over each full year. Consider the regressions

y = Xβ +Dγ + residuals and (1.30)

MDy = MDXβ + residuals, (1.31)

where D ≡ [D1 D2 D3] and MD is the matrix that projects orthogonally
onto S⊥(D). In (1.30) we include seasonal dummy variables in a regression
in which all the data are unadjusted. In (1.31) we seasonally adjust the
data by regressing them on dummy variables and then run a regression on
the “seasonally adjusted” data. The FWL Theorem implies that these two
procedures will yield identical estimates of β.

The regressand MDy and regressors MDX that appear in (1.31) can
be thought of as seasonally adjusted versions of y and X, because all of
the variation in y and X that can be attributed to systematic differences in
the quarterly means has been eliminated from MDy and MDX. Thus the
equivalence of (1.30) and (1.31) is often used to justify the idea that it does
not matter whether one uses “raw” or seasonally adjusted data in estimating
a regression model with time-series data. Unfortunately, such a conclusion is
unwarranted. Official seasonal adjustment procedures are almost never based
on regression; using official seasonally adjusted data is therefore not equivalent
to using residuals from regression on a set of dummy variables. Moreover, if
(1.30) is not a sensible specification (and it would not be if, for example, the
seasonal pattern were not constant over time), then (1.31) is not a sensible
specification either. Seasonality is actually a difficult practical problem in
applied work with time series data; see Chapter 19.

In this book, our principal use of the FWL Theorem will be to facilitate
the derivation of theoretical results. It is generally much easier to deal with
an equation like (1.19), in which there is a single matrix of regressors, rather
than one like (1.18), in which the matrix of regressors is partitioned. An
example of how the FWL Theorem may be used to derive theoretical results
is found in Section 1.6.
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1.5 Computing OLS Estimates

In this section, we will briefly discuss how OLS estimates are actually calcu-
lated using digital computers. This is a subject that most students of econo-
metrics, and not a few econometricians, are largely unfamiliar with. The vast
majority of the time, well-written regression programs will yield reliable re-
sults, and applied econometricians therefore do not need to worry about how
those results are actually obtained. But not all programs for OLS regression
are written well, and even the best programs can run into difficulties if the
data are sufficiently ill-conditioned. We therefore believe that every user of
software for least squares regression should have some idea of what the soft-
ware is actually doing. Moreover, the particular method for OLS regression
on which we will focus is interesting from a purely theoretical perspective.

Before we discuss algorithms for least squares regression, we must say
something about how digital computers represent real numbers and how this
affects the accuracy of calculations carried out on such computers. With rare
exceptions, the quantities of interest in regression problems —y, X, β̂, and so
on — are real numbers rather than integers or rational numbers. In general,
it requires an infinite number of digits to represent a real number exactly,
and this is clearly infeasible. Trying to represent each number by as many
digits as are necessary to approximate it with “sufficient” accuracy would
mean using a different number of digits to represent different numbers; this
would be difficult to do and would greatly slow down calculations. Computers
therefore normally deal with real numbers by approximating them using a
fixed number of digits (or, more accurately, bits, which correspond to digits
in base 2). But in order to handle numbers that may be very large or very
small, the computer has to represent real numbers as floating-point numbers.6

The basic idea of floating-point numbers is that any real number x can
always be written in the form (

bc
)
m,

where m, the mantissa (or fractional part), is a signed number less than 1 in
absolute value, b is the base of the system of floating-point numbers, and c
is the exponent, which may be of either sign. Thus 663.725 can be written
using base 10 as

0.663725× 103.

Storing the mantissa 663725 and the exponent 3 separately provides a conven-
ient way for the computer to store the number 663.725. The advantage of this
scheme is that very large and very small numbers can be stored just as easily
as numbers of more moderate magnitudes; numbers such as −0.192382×10−23

and 0.983443 × 1017 can be handled just as easily as a number like 3.42
(= 0.342× 101).

6 Our introduction to this topic is necessarily very superficial. For more details,
see Knuth (1981) or Sterbenz (1974).
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In practice, modern computers do not use 10 as a base; instead, they al-
ways use a base that is a power of 2 (2, 4, 8, and 16 are all employed as bases
in computers that are quite widely used), but the principle is the same. The
only complication is that numbers which can be represented exactly in base 10
often (indeed, usually) cannot be represented exactly in the base used by the
computer. Thus it is quite common to enter a value of, say, 6.8, into a com-
puter program and see it printed out as 6.799999. What has happened is that
6.8 has been converted into the base used by the computer and then converted
back again for printing, and a small error was introduced during this process.

Very few real numbers can be represented exactly using any base, and
even fewer numbers can be represented exactly using a particular base. Thus
most numbers can be stored only as approximations. How accurate such an
approximation is depends principally on the number of bits used to store
the mantissa. Typically, programmers have two choices: single precision
and double precision. On most computers, the mantissa of a single-precision
floating-point number will be able to hold at most 21 or 22 significant bits,
while that of a double-precision number will be able to hold between 50 and
54 significant bits. These translate into 6 or maybe 7 and roughly 15 or 16
decimal digits, respectively.7

The chief problem with floating-point arithmetic is not that numbers are
stored as approximations. Since most economic data are not accurate to as
many as six digits anyway, single precision is generally adequate to represent
such data. The real difficulty is that when arithmetic operations are carried
out on floating-point numbers, errors build up. As we will see below, these
errors can easily get so large that the answer may be accurate to no digits at
all! The worst type of problem occurs when numbers of different sizes and
signs are added together. For example, consider the expression

2, 393, 121− 1.0235− 2, 393, 120, (1.32)

which is equal to −0.0235. Suppose we attempt to evaluate this expression
using a computer that uses base 10 and stores six digits in the mantissa. If
we evaluate it in the order in which it is written, we obtain the answer

0.239312× 107 − 0.102350× 101 − 0.239312× 107 ∼= 0.000000× 101,

7 Different computers store floating-point numbers in different ways. Most mod-
ern computers use 32-bit single-precision and 64-bit double-precision floating-
point numbers. Some of these bits are used to store the exponent and the sign
of the mantissa. Depending on the base employed, some of the bits used to
store the mantissa may not always contain useful information, hence the num-
bers in the text for meaningful bits in the mantissa. A few computers use more
than 32 bits to represent single-precision numbers: 36, 48, 60, and 64 are all in
use. On these machines, both single- and double-precision arithmetic will be
correspondingly more accurate than on 32-bit machines.
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or zero, since 0.239312 × 107 − 0.102350 × 101 ∼= 0.239312 × 107, where “∼=”
denotes equality in the arithmetic used by the computer. Alternatively, we
could change the order of evaluation so as to obtain

0.239312× 107 − 0.239312× 107 − 0.102350× 101 ∼= −0.102350× 101,

or −1.0235. Neither of these answers would be acceptable for many purposes.

Obviously, we can make this problem less severe by using double preci-
sion instead of single precision. In this case, if we had used floating-point
numbers with at least 11 digits in the mantissa, we would have obtained the
correct answer. But it is clear that no matter how many digits we use in our
calculations, there will always be problems similar to (1.32) but with even
larger and smaller numbers involved, where those numbers are such that it is
impossible for the computer to obtain an acceptable answer. Such problems
may be referred to loosely as ill-conditioned.

The fundamental limitation of floating-point arithmetic that we have just
discussed is of considerable practical importance to econometricians. Suppose,
for example, that we wish to calculate the sample mean and variance of a
sequence of numbers yt, t = 1, . . . , n. Every student of statistics knows that

ȳ = 1−
n

n∑
t=1

yt

and that an unbiased estimate of the variance of the yt’s is

1

n− 1

n∑
t=1

(yt − ȳ)2 (1.33)

=
1

n− 1

( n∑
t=1

y2t − nȳ2
)
. (1.34)

The equality here is true algebraically, but it is not true when calculations
are done using floating-point arithmetic. The first expression, (1.33), can
in general be evaluated reasonably accurately, so long as the yt’s are not
greatly different in magnitude from ȳ. Expression (1.34), however, involves
subtracting nȳ2 from

∑
y2t , and when ȳ is large relative to the variance of

the yt’s, the difference between these two quantities can be very large. Thus, in
this situation, expression (1.34) may calculate the variance very inaccurately.
Such expressions are often referred to as numerically unstable, because they
are prone to error when evaluated using floating-point arithmetic.

The magnitude of numerical problems that one can encounter may be
illustrated by a simple numerical example. We first generated 1000 pseudo-
random numbers from the normal distribution (see Chapter 21) and then
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Table 1.1 Absolute Errors in Calculating the Sample Variance

µ (1.33) single (1.33) double (1.34) single (1.34) double

0 0.880 × 10−4 0.209 × 10−13 0.880 × 10−4 0.209 × 10−13

10 0.868 × 10−4 0.207 × 10−13 0.126 × 100 0.281 × 10−11

102 0.553 × 10−4 0.208 × 10−13 0.197 × 101 0.478 × 10−9

103 0.756 × 10−3 0.194 × 10−13 0.410 × 102 0.859 × 10−8

104 0.204 × 100 0.179 × 10−13 0.302 × 104 0.687 × 10−6

105 0.452 × 102 0.180 × 10−14 0.733 × 106 0.201 × 10−3

normalized them so that the sample mean was exactly µ and the sample var-
iance was exactly unity.8 We then calculated the sample variance for various
values of µ using both single and double precision and using both (1.33) and
(1.34).9 The results, expressed as the absolute value of the difference between
the calculated variance and the true variance of unity (and presented using
floating-point notation, since these differences varied greatly in magnitude),
are presented in Table 1.1.

This example illustrates two important points. First of all, except when
µ = 0 so that no serious numerical problems arise for either formula, expres-
sion (1.33) yields much more accurate results than expression (1.34), as our
previous discussion suggested. Secondly, double-precision arithmetic yields
very much more accurate results than single-precision arithmetic. One is ac-
tually better off to evaluate the numerically unstable expression (1.34) using
double precision than to evaluate the numerically stable expression (1.33) us-
ing single precision. The best results are of course achieved by evaluating
expression (1.33) using double-precision arithmetic. With this approach, ac-
curacy is excellent for all values of µ in the table (it does begin to deteriorate
gradually once µ significantly exceeds 106). In contrast, when µ is 105, both
formulas yield nonsense when evaluated using single-precision arithmetic, and

8 Actually, the normalization was not exact, but it was extremely accurate be-
cause we used quadruple precision, which is about twice as accurate as double
precision. Quadruple-precision arithmetic is not available on many comput-
ers (especially smaller computers) and is typically much slower than double-
precision arithmetic, but it can yield much more accurate results. We are con-
fident that the series we started with does indeed have mean µ and variance 1
to at least 30 decimal digits.

9 All calculations were performed using FORTRAN VS on an IBM mainframe
running VM/CMS. Results on other machines, even if they also use 32 and 64
bits to represent single- and double-precision floating-point numbers, would be
somewhat different. In particular, most personal computers would give more
accurate results.
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(1.34) yields a seriously inaccurate answer even when double precision is em-
ployed.

We hope this example makes it clear that attempts to compute estimates
by evaluating standard algebraic expressions without regard for issues of ma-
chine precision and numerical stability are extremely unwise. The best rule to
follow is always to use software written by experts who have taken such con-
siderations into account. If such software is not available, one should probably
always use double precision, with higher precision (if available) being used for
sensitive calculations.10 As the example indicates, even numerically stable
procedures may give nonsense results with 32-bit single precision if the data
are ill-conditioned.

Let us now return to the principal topic of this section, which is the
computation of ordinary least squares estimates. Many good references on
this subject exist — see, among others, Chambers (1977), Kennedy and Gentle
(1980), Maindonald (1984), Farebrother (1988), and Golub and Van Loan
(1989) — and we will therefore not go into many details.

The obvious way to obtain β̂ is first to form a matrix of sums of squares
and cross-products of the regressors and the regressand or, equivalently, the
matrix X>X and the vector X>y. One would then invert the former by a
general matrix inversion routine and postmultiply (X>X)−1 by X>y. Un-
fortunately, this procedure has all the disadvantages of expression (1.34). It
may work satisfactorily if double precision is used throughout, all the columns
of X are similar in magnitude, and the X>X matrix is not too close to being
singular, but it cannot be recommended for general use.

There are two principal approaches to computing least squares estimates
that can be recommended. One approach is essentially a more sophisticated
version of the naive one just described. It still involves constructing a matrix of
sums of squares and cross-products of the regressors and regressand, but this
is done in a way that reduces numerical problems. One good way to avoid
such problems is to subtract the means of all variables before the squares
and cross-products are taken. Doing this requires two passes through the
data, however, which can be undesirable if the data set is too large to fit in
the computer’s main memory, and an alternative technique that is almost as
accurate may be used instead; see Maindonald (1984). With either of these
techniques, the original matrix of sums of squares and cross-products is then
reconstructed, and the normal equations are subsequently solved using either
a variant of the Cholesky decomposition or conventional Gaussian elimination.
It is important for numerical accuracy to solve the normal equations, which

10 A classic example is calculating an inner product. This is normally done in
a loop, with the value of the inner product being accumulated in a scalar
variable. The numerical properties of such a procedure can be greatly improved
by storing this variable in the highest possible precision, even if all the other
calculations are done using less precise arithmetic.
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can produce the inverse of X>X as a by-product, rather than simply to invert
X>X and then form β̂ by multiplication. Using the Cholesky decomposition
takes advantage of the fact that X>X is a positive definite, symmetric matrix
and may therefore be somewhat more efficient than Gaussian elimination. For
details, see Maindonald (1984).

The second approach to computing least squares estimates involves find-
ing an orthonormal basis for the subspace spanned by the columns of X.
This is another n × k matrix, say Q, with the properties that S(Q) = S(X)
and Q>Q = I. This approach is the one we will focus on, partly because it
yields the most accurate results (although at a significant penalty in terms
of computer time) and partly because it is interesting from a theoretical per-
spective. It is the only approach that is recommended by Chambers (1977),
and it is also the approach that Maindonald (1984) recommends if accuracy
is of paramount importance. Readers should consult these references for the
many details that our discussion will omit.

For any matrix of regressors X with rank k, it is possible to perform
what is called a QR decomposition. This means finding an n × k matrix Q
and a k × k upper-triangular matrix R such that

X = QR and Q>Q = I. (1.35)

The second condition here implies that the columns of Q are orthonormal:
They each have Euclidean length unity, and they are mutually orthogonal.
The fact that R is triangular implies that the columns of Q are related recur-
sively. The first column of Q is just the first column of X, rescaled to have
length unity; the second column of Q is a linear transformation of the first
two columns of X that is orthogonal to the first column of Q and also has
length unity; and so on. There are several ways to find Q and R, of which
the two principal ones are the Gram-Schmidt method and the Householder
transformation. These are computationally quite similar, and descriptions
may be found in the Chambers and Maindonald references. Both techniques
are simple and numerically stable, provided that a method is available for
dealing with cases in which X does not have full rank.

Deciding when X does not have full rank is a difficult problem for every
least squares algorithm, since because of round-off errors computers cannot
reliably distinguish between numbers that are actually zero and numbers that
are very close to zero. This is one of the reasons for which it is important that
the data be scaled similarly. When m columns of X are linearly dependent on
the remaining columns, the algorithm must be modified so that Q has k−m
columns and R is (k−m)×k. The estimates β̂ are then usually made unique
by arbitrarily setting the coefficients of the last m of the linearly dependent
regressors to zero.

Let us suppose that we have found Q and R which satisfy (1.35). It is
then very easy to calculate all the quantities that interest us. The regression
function Xβ may be written as QRβ = Qγ, and it is easy to see that the
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OLS estimate of γ is

γ̂ =
(
Q>Q

)−1
Q>y = Q>y,

which is trivial to compute. It is equally easy to compute the fitted values
Qγ̂ and the residuals

û = y −Qγ̂ = y −QQ>y. (1.36)

Thus, if we are simply interested in residuals and/or fitted values, we do not
need to compute β̂ at all.

Notice from (1.36) that the projection matrices PX and MX are equal to
QQ> and I −QQ>, respectively. The simplicity of these expressions follows
from the fact that Q forms an orthonormal basis for S(X). Geometrically,
nothing would change in any of the figures we have drawn if we used Q
instead of X as the matrix of regressors, since S(Q) = S(X). If we were to
show the columns of Q in the figures, each column would be a point in S(X)
located on the unit sphere (i.e., the sphere with radius one centered at the
origin) and at right angles to the points representing the other columns of Q.

In order to calculate β̂ and (X>X)−1, which, along with the residuals
and the fitted values, allow us to calculate all the main quantities of interest,
we make use of the facts that β̂ = R−1γ̂ and(

X>X
)−1

=
(
R>Q>QR

)−1
=
(
R>R

)−1
= R−1(R−1)>.

Thus, once we have computed R−1, we can very easily calculate the least
squares estimates β̂ and their estimated covariance matrix (see Chapter 2).
SinceR is a triangular matrix, its inverse is very easily and cheaply computed;
we do not even have to check for possible singularity, since R will fail to have
full rank only if X does not have full rank, and that will already have shown
up and been dealt with when we formed Q and R.

The most costly part of these procedures is forming the matrices Q and
R from X. This requires a number of arithmetic operations that is roughly
proportional to nk2. Forming the matrix of sums and cross-products, which
is the first step for methods based on solving the normal equations, also
requires a number of operations proportional to nk2, although the factor of
proportionality is smaller. Thus linear regression by any method can become
expensive when the number of regressors is large and/or the sample size is
very large. If one is going to calculate many regressions using the same large
data set, it makes sense to economize by doing the expensive calculations only
once. Many regression packages allow users first to form the matrix of sums
of squares and cross-products for all the variables in a data set and then to
calculate estimates for a variety of regressions by retrieving the relevant rows
and columns and using normal equation methods. If this approach is used, it
is particularly important that the data be scaled so that the various regressors
are not too dissimilar in mean and variance.
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1.6 Influential Observations and Leverage

Each element of the vector of OLS estimates β̂ is simply a weighted average
of the elements of the vector y. To see this, define ci as the ith row of the
matrix (X>X)−1X> and observe from (1.04) that

β̂i = ciy.

Since each element of β̂ is a weighted average, some observations may have
a much greater influence on β̂ than others. If one or a few observations
are extremely influential, in the sense that deleting them would change some
elements of β̂ substantially, the careful econometrician will normally want to
scrutinize the data carefully. It may be that these influential observations are
erroneous or for some reason untypical of the rest of the sample. As we will
see, even a single erroneous observation can have an enormous effect on β̂
in some cases. Thus it may be extremely important to identify and correct
such observations if they are influential. Even if the data are all correct, the
interpretation of the results may change substantially if it is known that one
or a few observations are primarily responsible for those results, especially if
those observations differ systematically in some way from the rest of the data.

The literature on detecting influential observations is relatively recent,
and it has not yet been fully assimilated into econometric practice and avail-
able software packages. References include Belsley, Kuh, and Welsch (1980),
Cook and Weisberg (1982), and Krasker, Kuh, and Welsch (1983). In this
section, we merely introduce a few basic concepts and results with which
all econometricians should be familiar. Proving those results provides a nice
example of how useful the FWL Theorem can be.

The effect of a single observation on β̂ can be seen by comparing β̂
with β̂(t), the estimate of β that would be obtained if OLS were used on a
sample from which the tth observation was omitted. The difference between β̂
and β̂(t) will turn out to depend crucially on the quantity

ht ≡Xt

(
X>X

)−1
Xt
>, (1.37)

which is the tth diagonal element of the matrix PX . The notation ht comes
from the fact that PX is sometimes referred to as the hat matrix; because
ŷ ≡ PXy, PX “puts a hat on” y. Notice that ht depends solely on the
regressor matrix X and not at all on the regressand y.

It is illuminating to rewrite ht as

ht = et
>PXet = ‖PXet‖2, (1.38)

where et denotes the n--vector with 1 in the tth position and 0 everywhere
else. Expression (1.38) follows from (1.37), the definition of PX and the
fact that et

>X = Xt. The right-most expression here shows that ht is the
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squared length of a certain vector, which ensures that ht ≥ 0. Moreover,
since ‖et‖ = 1, and since the length of the vector PXet can be no greater
than the length of et itself, it must be the case that ht = ‖PXet‖2 ≤ 1. Thus
(1.38) makes it clear that

0 ≤ ht ≤ 1. (1.39)

Suppose that ût denotes the tth element of the vector of least squares
residuals MXy. We may now state the fundamental result that

β̂(t) = β̂ −
(

1

1− ht

)(
X>X

)−1
Xt
>ût. (1.40)

This expression makes it clear that when ût is large and/or when 1 − ht is
small, the effect of the tth observation on at least some elements of β̂ is likely
to be substantial. We will prove this result below.

It is particularly illuminating to see how omitting the tth observation
from the regression affects the fitted value for that observation. From (1.40)
it is easily derived that

Xtβ̂
(t) = Xtβ̂ −

(
ht

1− ht

)
ût. (1.41)

In practice it can be tedious, using (1.40), to check whether each observation
is influential by seeing whether its omission substantially affects any of the
β̂i’s. But an observation must certainly be influential if omitting it has a large
effect on its own fitted value. From (1.41) we see that the change in the tth

fitted value resulting from the omission of observation t is −ûtht/(1− ht). It
follows immediately that the change in the tth residual is(

ht
1− ht

)
ût. (1.42)

An easy way to detect observations that are influential in the sense of affecting
fitted values and residuals is thus to plot expression (1.42) against t.

These results suggest that we should examine the quantities ht more
closely. We have already established in (1.39) that the ht’s are all between
0 and 1. In fact, they sum to k, a result that is easily shown by using the
properties of the trace operator (see Appendix A):

n∑
t=1

ht = Tr(PX) = Tr
(
X(X>X)−1X>

)
= Tr

(
(X>X)−1X>X

)
= Tr(Ik) = k.

Thus, on average, the ht’s must equal k/n. When there is a constant term,
no ht can be less than 1/n, a fact that is easily seen from (1.38), because
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if X simply consisted of a constant vector, et
>PXet would equal 1/n. Even

when there is no constant term, ht can never be 0 unless every element of
Xt is 0. However, it is evidently quite possible for ht to equal 1. Suppose,
for example, that one column of X is the dummy variable et. In that case,
ht = et

>PXet = et
>et = 1.

It is interesting to see what happens when we add a dummy variable et to
a regression. It turns out that ût will equal zero and that the tth observation
will have no effect at all on any coefficient except the one corresponding to
the dummy variable. The latter simply takes on whatever value is needed to
make ût = 0, and the remaining coefficients are those that minimize the SSR
for the remaining n − 1 observations. These results are easily established by
using the FWL Theorem.

Consider the following two regressions, where for ease of notation the
data have been ordered so that observation t is the last observation, and y(t)
and X(t) denote the first n− 1 rows of y and X, respectively:[

y(t)
yt

]
=

[
X(t)

Xt

]
β + residuals, (1.43)

and [
y(t)
yt

]
=

[
X(t) 0

Xt 1

] [
β
α

]
+ residuals. (1.44)

Regression (1.43) is simply the regression of y on X, which yields parameter
estimates β̂ and least squares residuals û. Regression (1.44) is regression
(1.43) with et as an additional regressor. By the FWL Theorem, the estimate
of β from (1.44) must be identical to the estimate of β from the regression

Mt

[
y(t)
yt

]
= Mt

[
X(t)

Xt

]
β + residuals, (1.45)

where Mt is the matrix that projects orthogonally onto S⊥(et). Multiplying
any vector by Mt merely annihilates the last element of that vector. Thus
regression (1.45) is simply[

y(t)
0

]
=

[
X(t)

0

]
β + residuals. (1.46)

The last observation, in which the regressand and all regressors are zero,
obviously has no effect at all on parameter estimates. Regression (1.46) is
therefore equivalent to regressing y(t) onX(t) and so must yield OLS estimates
β̂(t). For regression (1.46), the residual for observation t is clearly zero; the
FWL Theorem then implies that the residual for observation t from regression
(1.44) must likewise be zero, which implies that α̂ must equal yt −Xtβ̂

(t).

These results make it easy to derive the results (1.40) and (1.41), which
were earlier stated without proof. Readers who are not interested in the
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proofs may wish to skip the next three paragraphs. However, these proofs
illustrate the power of simple algebra, combined with the FWL Theorem and
an understanding of the geometry involved. It might therefore be instructive
to contrast them with conventional proofs such as those in Appendix 2A of
Belsley, Kuh, and Welsch (1980).

Using the results we have just proved, we see that the fitted values from
regression (1.44) are Xβ̂(t) + etα̂, while those from regression (1.43) are Xβ̂.
Minus their difference, which is equal to the difference between the residuals
from (1.43) and (1.44), is Xβ̂ −Xβ̂(t) − etα̂. Premultiplying this difference
by MX (where of course X ≡ [X(t)

.... Xt]) yields

MX

(
X(β̂ − β̂(t))− etα̂

)
= MX

(
û(t) − û

)
= û(t) − û = −MXet α̂,

(1.47)

where û(t) denotes the residuals from (1.44). We now premultiply both sides
of the last equality in (1.47) by −et>. As we demonstrated above, û

(t)
t = 0,

which implies that et
>û(t) = 0. The result of the premultiplication is therefore

et
>MXet α̂ = ût. (1.48)

By definition, et
>MXet = 1− ht. Thus (1.48) implies that

α̂ =
ût

1− ht
. (1.49)

Since α̂ is yt −Xtβ̂
(t), the result (1.49) gives us almost everything that

we need. The change in the tth residual brought about by omitting the tth

observation must be

α̂− ût =
ût

1− ht
− ût =

(
ht

1− ht

)
ût,

which is expression (1.42). The change in the tth fitted value must be minus
the change in the tth residual. Hence,

Xtβ̂
(t) −Xtβ̂ = −

(
ht

1− ht

)
ût,

from which the result (1.41) follows immediately.

We can now derive (1.40). Using (1.47), we see that

û− û(t) = Xβ̂(t) + etα̂−Xβ̂.

Premultiplying this by (X>X)−1X> yields

0 =
(
X>X

)−1
X>Xβ̂(t) −

(
X>X

)−1
X>Xβ̂ +

(
X>X

)−1
X>etα̂

= β̂(t) − β̂ +
(
X>X

)−1
X>etα̂,
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where the left-hand side is zero because û − û(t) lies in S⊥(X). Solving for
β̂(t) and using (1.49), we obtain the fundamental result (1.40):

β̂(t) = β̂ −
(
X>X

)−1
X>et(1− ht)−1ût

= β̂ −
(

1

1− ht

)(
X>X

)−1
Xt
>ût.

We have seen that the quantities ht must be no smaller than 0 and no
larger than 1 and must on average equal k/n. We have also seen that when
ht is relatively large, dropping observation t will have a relatively large effect
on β̂, unless ût is very close to zero. Thus the quantities ht may be used to
measure the leverage, or potential effect on β̂, of each of the observations.
Observations for which ht is relatively large (say, greater than 2k/n) may be
said to have high leverage, or to be leverage points. If all the ht’s were equal
to k/n, as they would be for example if the only regressor were a constant
term, then every observation would have the same leverage. This situation,
which is sometimes referred to as a balanced design, is in some ways the most
desirable one, but since in econometrics the design of the X matrix is rarely
under the control of the investigator, it is rarely encountered. Notice that
observation t can have high leverage but not be very influential, if ht is large
but ût is small. A leverage point is potentially influential, but whether the
potential is actually realized depends on yt.

One way to think about leverage is to use the fact that ht = et
>PXet.

From this we see that ht will be large if the matrix of regressors X has a lot of
explanatory power for the dummy variable et and small if it does not. Imagine
that we were to replace y by y+ δet, thereby adding δ to yt for observation t
only. If observation t had little leverage (small ht), β̂ would not change by
very much and ût would have to change by almost the full change in yt, that
is δ. On the other hand, if observation t had a lot of leverage (large ht), at
least one element of β̂ would change by a lot and ût would change by much
less than δ. Thus the value of yt will have a much greater impact on β̂, and
a much smaller impact on ût, the greater is the leverage of observation t.

Figure 1.8 illustrates a case for which k = 1, that is, there is only one
regressor, and for which the second observation has much more leverage than
the first. Exceptionally, the two axes, horizontal and vertical, drawn in the
figure do represent the first two observations. Thus, what we are looking at
is the projection of the vector representing the regressor X onto the space
spanned by the two vectors e1 and e2 that correspond to the first two ob-
servations, as indicated by the fact that these two vectors are contained in
the two axes. The projection of X is the vector denoted by P1,2X in the
figure. When as here there is only one regressor, the quantities ht become
simply X2

t /‖X‖2, as can be seen from (1.38). Thus the ratio of h2 to h1,
or the leverage of observation 2 relative to that of observation 1, is just the
ratio of the squared lengths of the vectors X1e1 and X2e2 in the figure. The
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Figure 1.8 Observation 2 has relatively high leverage

greater leverage of observation 2 means that X2 must be much larger than X1,
as drawn. If on the contrary X1 and X2 were roughly equal, so that P1,2X
formed approximately the same angle with both axes, then h1 and h2 would
be roughly equal.

We now use a numerical example to illustrate the enormous influence
that a single erroneous observation can have. The example also shows that
examining leverage points can be extremely useful in identifying data errors
which affect the estimates substantially. The correct data set, including the
ût’s and ht’s, is shown in Table 1.2. The corresponding OLS estimates are

β̂1 = 1.390, β̂2 = 1.223, R2 = 0.7278. (1.50)

Table 1.2 Numerical Example: Correct Data Set

t Xt yt ût ht ûtht/(1 − ht)

1 1 1.51 2.88 −0.357 0.203 −0.091
2 1 2.33 3.62 −0.620 0.105 −0.073
3 1 3.57 5.64 −0.116 0.536 −0.134
4 1 2.12 3.43 −0.553 0.101 −0.062
5 1 1.54 3.21 −0.064 0.194 −0.015
6 1 1.71 4.49 1.008 0.151 0.179
7 1 2.68 4.50 −0.168 0.156 −0.031
8 1 2.25 4.28 −0.138 0.101 0.016
9 1 1.32 2.98 −0.025 0.269 −0.009

10 1 2.80 5.57 0.755 0.186 0.173
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Table 1.3 Numerical Example: Incorrect Data Set

t Xt yt ût ht ûtht/(1 − ht)

1 1 1.51 2.88 −0.900 0.143 −0.150
2 1 2.33 3.62 −0.356 0.104 −0.041
3 1 3.57 5.64 1.369 0.125 0.195
4 1 2.12 3.43 −0.496 0.110 −0.061
5 1 1.54 3.21 −0.578 0.141 −0.095
6 1 1.71 4.49 0.662 0.130 0.099
7 1 7.68 4.50 −0.751 0.883 −5.674
8 1 2.25 4.28 0.323 0.106 0.038
9 1 1.32 2.98 −0.755 0.158 −0.142

10 1 2.80 5.57 1.482 0.100 0.165

The largest ht here is 0.536, for observation 3. It is over 5 times as large
as the smallest ht and is greater than 2k/n (= 0.40 in this case). Thus
observation 3 is a leverage point. This is not surprising, since the value of
X2t for observation 3 is by far the largest value of X2t. However, since two
other observations also have values of ht greater than 0.20, observation 3 is
certainly not a point of extreme leverage. As the last column of the table
shows, it is also not particularly influential.

Now let us see what happens when we deliberately introduce an error
into X. Suppose that X2t for observation 7 is accidentally changed from 2.68
to 7.68. The resulting data set, together with the ût’s and ht’s, is shown in
Table 1.3. The corresponding OLS estimates are

β̂1 = 3.420, β̂2 = 0.238, R2 = 0.1996.

These estimates differ dramatically from the earlier ones (1.50). The strong
relationship between X2t and yt that was apparent before has all but vanished
as a result of the error in observation 7.11 Examination of the residuals alone
would not tell us that there is anything amiss with that observation, since
û7 is by no means the largest residual. But examination of the ht’s would
suggest looking at that observation more closely; because h7 is more than 5
times as large as any of the other ht’s, observation 7 is clearly a point of very

11 Since we are, in this chapter, discussing only the numerical aspects of least
squares, we have not presented estimated standard errors or t statistics for
this example. We note, however, that the difference between the two sets of
estimates using the correct and incorrect data is large relative to conventionally
calculated standard errors; for example, the t statistic for the correct β̂2 of 1.223
is 4.62, while the t statistic for the β̂2 of 0.238 obtained using the incorrect data
is only 1.41.
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high leverage indeed. It is also highly influential, as the last column of the
table shows. Thus, in this case, anyone looking at either ht or ûtht/(1 − ht)
would, in all likelihood, be led to discover the harmful data error.

This example suggests that the careful econometrician will routinely want
to look at the quantities ht and ûtht/(1− ht). Unfortunately, not all regres-
sion packages make this easy to do. This is surprising, because the ht’s are
very easily calculated if the OLS estimates are computed using the QR de-
composition. Since PX = QQ>, it is easily seen that

ht =
k∑

i=1

Q2
ti.

Thus the calculation is trivial once Q is known. Once computed, ht and/or
ûtht/(1 − ht) may easily be plotted against t. If there are leverage points
and/or unduly influential observations, then it would be wise to check the ac-
curacy of the data for those observations and to see whether removing them
from the sample affects the results appreciably. Such informal procedures for
detecting influential observations, especially those due to data errors, gener-
ally work well. More formal procedures are discussed in Belsley, Kuh, and
Welsch (1980) and Krasker, Kuh, and Welsch (1983).

1.7 Further Reading and Conclusion

The use of geometry as an aid to the understanding of linear regression has
a long history; see Herr (1980). Early and important papers include Fisher
(1915), Durbin and Kendall (1951), Kruskal (1961, 1968, 1975), and Seber
(1964). One valuable reference on linear models that takes the geometric
approach is Seber (1980), although that book may be too terse for many
readers. A recent expository paper that is quite accessible is Bryant (1984).
The approach has not been used as much in econometrics as it has in statistics,
but a number of econometrics texts — notably Malinvaud (1970a) and also
Madansky (1976), Pollock (1979), and Wonnacott and Wonnacott (1979) —
use it to a greater or lesser degree. Our approach could be termed semi-
geometric, since we have not emphasized the coordinate-free nature of the
analysis quite as much as some authors; see Kruskal’s papers, the Seber book
or, in econometrics, Fisher (1981, 1983) and Fisher and McAleer (1984).

In this chapter, we have entirely ignored statistical models. Linear regres-
sion has been treated purely as a computational device which has a geometrical
interpretation, rather than as an estimation procedure for a family of statis-
tical models. All the results discussed have been true numerically, as a con-
sequence of how ordinary least squares estimates are computed, and have not
depended in any way on how the data were actually generated. We emphasize
this, because conventional treatments of the linear regression model often fail
to distinguish between the numerical and statistical properties of least squares.
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In the remainder of this book, we will move on to consider a variety of
statistical models, some of them regression models and some of them not,
which are of practical use to econometricians. For most of the book, we will
focus on two classes of models: ones that can be treated as linear and nonlinear
regression models and ones that can be estimated by the method of maximum
likelihood (the latter being a very broad class of models indeed). As we will
see, understanding the geometrical properties of linear regression turns out to
be central to understanding both nonlinear regression models and the method
of maximum likelihood. We will therefore assume throughout our discussion
that readers are familiar with the basic results that were presented in this
chapter.

Terms and Concepts

balanced design
base, exponent and mantissa (of

floating-point numbers)
codimension (of a linear subspace)
coefficient of determination (R2)
coordinate-free results
dimension (of a linear subspace)
direction (of a vector)
Euclidean n--space, En

explained sum of squares, ESS
fitted values
floating-point numbers
Frisch-Waugh-Lovell (FWL) Theorem
hat matrix
ht (diagonals of hat matrix)
idempotent matrix
ill-conditioned problem
influential observations
inner product
least squares residuals
length (of a vector)
leverage
leverage points
linear independence (of vectors)
linear regression models
natural inner product
nonlinear least squares (NLS)
nonlinear regression models
normal equations

numerical vs. statistical properties
numerically unstable formulas
ordinary least squares (OLS)
orthogonal complement (of a

subspace)
orthogonal decomposition
orthogonal projection matrix
orthogonal vectors
orthonormal basis
precision of floating-point numbers

(single, double, quadruple)
projection
Pythagoras’ Theorem (and least

squares)
QR decomposition
R2, centered and uncentered
range of a projection
rank of a matrix
regressand
regression, linear and nonlinear
regressors
reparametrization (of a regression)
residuals
restricted least squares
seasonal dummy variables
span of, or subspace spanned by the

columns of, a matrix
sum of squared residuals, SSR
total sum of squares, TSS



Chapter 2

Nonlinear Regression Models and

Nonlinear Least Squares

2.1 Introduction

In Chapter 1, we discussed in some detail the geometry of ordinary least
squares and its properties as a computational device. That material is impor-
tant because many commonly used statistical models are usually estimated
by some variant of least squares. Among these is the most commonly encoun-
tered class of models in econometrics, the class of regression models, of which
we now begin our discussion. Instead of restricting ourselves to the famil-
iar territory of linear regression models, which can be estimated directly by
OLS, we will consider the much broader family of nonlinear regression mod-
els, which may be estimated by nonlinear least squares, or NLS. Occasionally
we will specifically treat linear regression models if there are results which are
true for them that do not generalize to the nonlinear case.

In this and the next few chapters on regression models, we will restrict
our attention to univariate models, meaning models in which there is a single
dependent variable. These are a good deal simpler to deal with than multivari-
ate models, in which there are several jointly dependent variables. Univariate
models are far more commonly encountered in practice than are multivariate
ones, and a good understanding of the former is essential to understanding
the latter. Extending results for univariate models to the multivariate case is
quite easy to do, as we will demonstrate in Chapter 9.

We begin by writing the univariate nonlinear regression model in its
generic form as

yt = xt(β) + ut, ut ∼ IID(0, σ2), t = 1, . . . , n. (2.01)

Here yt is the tth observation on the dependent variable, which is a scalar
random variable, and β is a k--vector of (usually) unknown parameters. The
scalar function xt(β) is a (generally nonlinear) regression function that deter-
mines the mean value of yt conditional on β and (usually) on certain indepen-
dent variables. The latter have not been shown explicitly in (2.01), but the
t subscript of xt(β) does indicate that this function varies from observation to

41
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observation. In most cases, the reason for this is that xt(β) depends on one
or more independent variables that do so. Thus xt(β) should be interpreted
as the mean of yt conditional on the values of those independent variables.
More precisely, as we will see in Section 2.4, it should be interpreted as the
mean of yt conditional on some information set to which those independent
variables belong.1

In some cases, xt(β) may also depend on lagged values of yt. A model
for which that is the case is called a dynamic model, and dealing with such
models complicates the analysis somewhat. We will assume for the time being
that xt(β) does not depend on lagged values of yt, as it would if (2.01) were
a dynamic model, but we will relax this assumption in Chapter 5 when we
provide a first treatment of the asymptotic theory of nonlinear least squares.
As the term is used in this book, asymptotic results are ones that are strictly
true only in the limit as the sample size n tends to infinity. Most of the stan-
dard analytical results for nonlinear regression models, and nonlinear models
in general, are asymptotic ones, because finite-sample results that are readily
interpreted are often extremely hard to obtain.

The feature that distinguishes regression models from all other statistical
models is that the only way in which randomness affects the dependent vari-
able is through an additive error term or disturbance. In the case of (2.01),
this error term is called ut, and the notation “ut ∼ IID(0, σ2)” is a shorthand
way of saying that the error terms ut are assumed to be independent and
identically distributed, or i.i.d., with mean zero and variance σ2. By this,
we will not necessarily mean that the random variables ut have distributions
identical in all respects but merely that they all have mean zero and the same
variance σ2. In this respect, readers should perhaps be warned that we depart
from standard usage. As we will see in Section 2.6, the properties of these
error terms are extremely important, for they determine all the statistical
properties of a model and, indeed, whether or not a regression model can sen-
sibly be used at all. However, since NLS estimates (like OLS estimates) can
be computed regardless of how the data were generated, we will discuss the
computation of NLS estimates before we discuss their statistical properties.

The remainder of this chapter treats a number of aspects of nonlinear
least squares and nonlinear regression models. In Section 2.2, we discuss
nonlinear least squares as a computational procedure that is an extension of
ordinary least squares. We demonstrate that minimizing the sum of squared

1 Readers should be aware that the notation we have used here is slightly non-
standard. Many authors use ft(β) where we have used xt(β). We prefer our
notation for two reasons. First of all, it lets us use the notation f(·) to stand for
things other than regression functions without creating ambiguity. Secondly,
with our notation it is natural to let Xti(β) denote ∂xt(β)/∂βi (see Section 2.2
below). The matrix with typical element Xti(β) is in fact very closely related to
the ordinary X matrix used in most treatments of the linear regression model,
and we hope the similarity of notation will help to keep this fact in mind.
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residuals for a nonlinear regression model like (2.01) is very similar, in terms of
the geometry involved, to running a linear regression. A nonlinear regression
model must be identified if unique parameter estimates are to be obtained.
We therefore discuss the important concept of identification in Section 2.3.
In the second half of the chapter, we begin to consider the statistical (and
economic) aspects of nonlinear regression models. In Section 2.4, we discuss
how regression equations like (2.01) can be interpreted and the distinction
between models and data-generating processes. Examples of linear and non-
linear regression functions are then discussed in Section 2.5, while error terms
are discussed in Section 2.6. Making inferences from models estimated by
NLS will be the topic of Chapter 3.

2.2 The Geometry of Nonlinear Least Squares

By far the most common way to estimate nonlinear as well as linear regression
models is to minimize the sum of squared residuals, or SSR, as a function of β.
For the model (2.01), the sum-of-squares function is

SSR(β) =

n∑
t=1

(
yt − xt(β)

)2
.

It is usually more convenient to write this in matrix notation as

SSR(β) =
(
y − x(β)

)>(y − x(β)
)
, (2.02)

where y is an n--vector of observations yt and x(β) is an n--vector of regres-
sion functions xt(β). As we saw in Chapter 1, another notation, which is
perhaps not so convenient to work with algebraically but is more compact
and emphasizes the geometry involved, is

SSR(β) =
∥∥y − x(β)

∥∥2, (2.03)

where ‖y − x(β)‖ is the length of the vector y − x(β). Expression (2.03)
makes it clear that when we minimize SSR(β), we are in fact minimizing the
Euclidean distance between y and x(β), an interpretation that we will discuss
at length below.

The sum-of-squares function (2.02) can be rewritten as

SSR(β) = y>y − 2y>x(β) + x>(β)x(β).

Differentiating this expression with respect to the components of the k--vector
β and setting all the partial derivatives to zero yields first-order conditions
that must be satisfied by any NLS estimates β̂ which correspond to an interior
minimum of SSR(β). These first-order conditions, or normal equations, are

−2X>(β̂)y + 2X>(β̂)x(β̂) = 0, (2.04)



44 Nonlinear Regression Models and Nonlinear Least Squares

where the n× k matrix X(β) has typical element

Xti(β) ≡ ∂xt(β)

∂βi
.

Since each of the vectors in (2.04) has k elements, there are k normal equations
to determine the k elements of β.

The matrix X(β) will reappear many times in our discussion of nonlinear
least squares. Each element of this matrix is the partial derivative of an
element of x(β) with respect to an element of β. As the notation we have
used should suggest, the matrix X(β) corresponds precisely to the X matrix
in the linear regression case. Thus when the regression function x(β) is the
linear function Xβ, we see immediately that X(β) = X.

The first-order conditions (2.04) may be simplified slightly by collecting
terms, dropping the factor of −2, and making the definitions x̂ ≡ x(β̂) and

X̂ ≡X(β̂).2 The result is

X̂>(y − x̂) = 0. (2.05)

These normal equations simply say that the residuals y−x̂must be orthogonal
to the matrix of derivatives X̂. This is directly analogous to the result for
linear regression models that the residuals y − Xβ̂ must be orthogonal to
the X matrix. The nonlinear case differs from the linear one in that both
the vector of fitted values x̂ and the matrix X̂ now depend on β̂. Thus we
cannot, in general, hope to solve (2.05) analytically for β̂, although this may
be possible in some special cases, including of course the linear one.

Notice that satisfying the first-order conditions (2.05) is necessary but
not sufficient for β̂ to be an interior global minimum of the sum-of-squares
function. There may be many values of β that satisfy (2.05) but represent
local minima, stationary points, or even local maxima. This is illustrated in
Figure 2.1 for a case in which there is only one parameter, and β is therefore
a scalar. In the figure the global minimum is at β̂, but there is another local
minimum at β′, a local maximum at β′′, and a stationary point at β∗.

No decent minimization algorithm will be fooled into stopping at a local
maximum or a stationary point, because it is easy to check that the second-
order conditions for a minimum are not satisfied at such points. But an
algorithm may well stop at the wrong local minimum. Based only on local
information, no algorithm can tell the difference between a local minimum
like β′ and a global minimum like β̂. In order to find the global minimum, it

2 It is often convenient to indicate in this way the dependence of a vector or
matrix on a vector of parameters that may have been estimated. Thus if α0

were a set of true parameters, and α̂ and α̃ were two different sets of estimates,
we might let Z0 denote Z(α0), Ẑ denote Z(α̂), and Z̃ denote Z(α̃).
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β

SSR(β)

β̂ β′′ β′ β∗

Figure 2.1 A sum-of-squares function

may therefore be necessary to minimize SSR(β) a number of times, beginning
at a variety of different starting points. In the case illustrated here, a good
algorithm should be able to find β̂ if it starts anywhere to the left of β′′ but
may not be able to find it otherwise. In the one-dimensional case, it is easy to
make sure that one finds a global minimum, since a graph like Figure 2.1 will
show where it is. In higher-dimensional cases, however, graphical methods are
generally not applicable, and even if one starts an algorithm at a number of
starting places, there is no guarantee that one will find the global minimum
if there are several local minima. Methods of computing NLS estimates will
be discussed further in Chapter 6.

It is instructive to consider the analog of Figures 1.1 and 1.3 for the non-
linear regression case. Recall that y can be thought of as a point in the space
of observations En and that the linear regression function Xβ then defines
a k--dimensional linear subspace of that space. In Figure 1.3 we illustrated,
for the simplest possible case of n = 2 and k = 1, how ordinary least squares
projects y orthogonally onto S(X), the subspace spanned by the columns
of X. When the regression function x(β) is nonlinear, but everywhere dif-
ferentiable, it defines a k--dimensional manifold,3 or smooth surface, which in
general is no longer a linear subspace. Every point on this manifold, which we
will denote X, corresponds (by assumption) to a different value of β, and so a
particular point that corresponds to β1, say, may be referred to as X(β1). It is
essential that every component of the vector x(β) be differentiable everywhere
for X to be smooth everywhere. At any arbitrary point, say β̄, the matrix
X̄ ≡X(β̄) defines a tangent space S∗(X̄), which is simply the k--dimensional

3 For formal definitions of a manifold, and thorough discussion of the properties
of manifolds, see, among others, Spivak (1965) for an elementary approach and
Lang (1972) for a more advanced one.



46 Nonlinear Regression Models and Nonlinear Least Squares

..................
.....................

.............................
.............................................................................................................................................................................................................

.............................
.....................

...................
.................
................
.................
...............
..............
...............
...............
...............
..............
.............
...............
...............
.............
..............
.............
..............
.............
..............
.............
..............
.............
...

....................................................
....................................................

....................................................
....................................................

.................................................

.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
..........

....................................................
....................................................

....................................................
....................................................

.................................................

.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
......

.......... ..........

....................
....................

.......... ..........

.....................
....................

O

X

X(β̄1)

X(β̄2)

S∗(X̄1)

S∗(X̄2)
S(X̄2)
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Figure 2.2 Tangent spaces to a curved manifold

linear subspace S(X̄) displaced so that the origin is at the point X(β̄). This
means that S∗(X̄) is tangent to X at this point.

Figure 2.2 illustrates these ideas for the case k = 1. In order to be able
to draw x(β) on the page, we suppose that it lies, locally at least, in a two-
dimensional subspace of Rn. The figure shows the curved manifold X, the
tangent spaces S∗(X̄1) and S∗(X̄2) at two arbitrary points X(β̄1) and X(β̄2),
and the corresponding linear subspaces S(X̄1) and S(X̄2). The latter, as the
arrows in the figure indicate, are, respectively, parallel to S∗(X̄1) and S∗(X̄2)
but are not parallel to each other. If X were straight, as it would be if the
regression function were linear, then of course there would be no distinction
between X, S(X̄1), S(X̄2), S∗(X̄1), and S∗(X̄2). It is the presence of such
distinctions that makes nonlinear models harder to deal with than linear ones.
Notice also that although the manifold defined by a linear regression function
always includes the origin, that is not true in general for a nonlinear one, as
can be seen in the figure.

Figure 2.3 shows the same regression manifold X as Figure 2.2, but S(X̄1),
S(X̄2), S∗(X̄1), and S∗(X̄2) are no longer shown. A regressand y is now
shown, and it is projected orthogonally onto X at the point X̂ ≡ X(β̂). Notice
that since S∗(X̂) is tangent to X at β̂, y− x̂ must be orthogonal to S∗(X̂) as
well as to X at the point X̂, which is precisely what the first-order conditions
(2.05) require. Because in this figure the regression function x(β) is only
moderately nonlinear, and hence also the manifold X, there is just one point,
X̂, that satisfies the first-order conditions. It is clear from the figure that y
can be projected at right angles onto X at X̂ and at no other point.

In contrast, consider Figure 2.4. In this figure, the manifold X is highly
nonlinear, and there are three points, X̂, X′, and X′′ (corresponding to β̂, β′,
and β′′), at which the first-order conditions are satisfied. At each one of these
points, denoted generically by X̄, y− x̄ forms a right angle with X̄ and hence
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Figure 2.3 A regressand y projected onto a nonlinear manifold

also with S∗(X̄). However, in this case it is evident that X̂ corresponds to
a global minimum, X′′ to a local minimum, and X′ to a local maximum of
SSR(β). Thus we see once again that a point which satisfies the first-order
conditions does not necessarily yield NLS estimates.

It should be clear from these figures that the amount of nonlinearity in
the regression function x(β) is very important. When x(β) is almost linear,
nonlinear least squares is very similar to ordinary least squares. When x(β)
is very nonlinear, however, all sorts of strange things can happen. Figure 2.4
only hints at these, since there are many different ways for multiple values
of β to satisfy the first-order conditions (2.05) when X is a high-dimensional
manifold.
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Figure 2.4 A highly nonlinear manifold
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2.3 Identification in Nonlinear Regression Models

If we are to minimize SSR(β) successfully, it is necessary that the model be
identified. Identification is a geometrically simple concept that applies to a
very wide variety of models and estimation techniques. Unfortunately, the
term identification has come to be associated in the minds of many students
of econometrics with the tedious algebra of the linear simultaneous equations
model. Identification is indeed an issue in such models, and there are some
special problems that arise for them (see Chapters 7 and 18), but the concept
is applicable to every econometric model. Essentially, a nonlinear regression
model is identified by a given data set if, for that data set, we can find a
unique β̂ that minimizes SSR(β). If a model is not identified by the data
being used, then there will be more than one β̂, perhaps even an infinite
number of them. Some models may not be identifiable by any conceivable
data set, while other models may be identified by some data sets but not by
others.

There are two types of identification, local and global. The least squares
estimate β̂ will be locally identified if whenever β̂ is perturbed slightly, the
value of SSR(β) increases. This may be stated formally as the requirement
that the function SSR(β) be strictly convex at β̂. Thus

SSR(β̂) < SSR(β̂ + δ)

for all “small” perturbations δ. Recall that strict convexity is guaranteed if
the Hessian matrix H(β), of which a typical element is

Hij(β) ≡ ∂2SSR(β)

∂βi∂βj
,


..........
.........
.........
..........
..........
..........
..........
...........
...........
...........
...........
...........
...........
............
............
............
............
............
............
............
.............

.............
.............

.............
.............

.............
..............

..............
..............

..............
...............

...............
................

.................
..................

....................
...................................................

................................................................................................................................................................................................................................................................................................................................................................................................................
.........
.........
..........
..........
..........
...........
...........
...........
...........
...........
............
............
............
............
............
.............

.............
.............

.............
.............

..............
..............

..............
...............

................
................

..................
......................

................................

...............................................................................................................................................................................................................................................................................................
.........
..........
..........
...........
...........
...........
...........
............
............
............
............
.............

.............
.............

..............
..............

...............
................

..................
....................................

.............................................................................................................................................................................
..........
..........
...........
...........
............
............
.............

.............
..............

...............
..................

...................



.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

......................

................

•

β1

β2

β̂

←− Contours of SSR(β)

Figure 2.5 Identified minimum of a sum-of-squares function
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Figure 2.6 Unidentified minimum of a sum-of-squares function

is positive definite at β̂. Strict convexity implies that SSR(β) is curved in every
direction; no flat directions are allowed. If SSR(β) were flat in some direction
near β̂, we could move away from β̂ in that direction without changing the
value of the sum of squared residuals at all (remember that the first derivatives
of SSR(β) are zero at β̂, which implies that SSR(β) must be equal to SSR(β̂)
everywhere in the flat region). Hence β̂ would not be the unique NLS estima-
tor but merely one of an infinite number of points that all minimize SSR(β).
Figure 2.5 shows the contours of SSR(β) for the usual case in which β̂ is a
unique local minimum, while Figure 2.6 shows them for a case in which the
model is not identified, because all points along the line AB minimize SSR(β).

Local identification is necessary but not sufficient for us to obtain unique
estimates β̂. A more general requirement is global identification, which may
be stated formally as

SSR(β̂) < SSR(β∗) for all β∗ 6= β̂.

This definition of global identification is really just a restatement of the con-
dition that β̂ be the unique minimizer of SSR(β̂). Notice that even if a model
is locally identified, it is quite possible for it to have two (or more) distinct
estimates, say β̂1 and β̂2, with SSR(β̂1) = SSR(β̂2). As an example, consider
the model

yt = βγ + γ2zt + ut. (2.06)

It is obvious that if (β̂, γ̂) minimizes the SSR for the model (2.06), then so will
(−β̂,−γ̂). Hence this model is globally unidentifiable by any data set, even
though the first- and second-order conditions are satisfied at both minima.
This example may seem silly, but exactly the same phenomenon arises in
many models that economists use all the time. One example is any time
series model with a moving average error component; see Chapter 10.
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Figure 2.7 A case for which β is locally but not globally identified

Figure 2.7 illustrates what the sum-of-squares function can look like for
a model that is locally but not globally identified in the way described above.
The sum-of-squares function has only one argument, β, and is symmetric
about the origin of β. The minimum of SSR is therefore achieved both at β1

and β2. Each of these potential estimates is locally identified, but the model
is globally unidentified.

It is also quite possible for a model to be globally identified but never-
theless to fail to satisfy, for certain values of β̂ only, the local identification
condition that the Hessian matrix be positive definite. This type of lack of
identification causes no difficulties if a realized β̂ is not near these values, and
we succeed in finding it, but it may make estimating the model difficult. As
an example, consider the regression function

xt(β) = β1 + β2z
β3

t . (2.07)

It is obvious that a model incorporating this regression function will be uniden-
tified whenever β̂2 = 0, because β3 will then have no effect on the value of
xt(β) and hence no effect on SSR(β). Consequently, any value of β3 would
serve as well as any other for β̂3. Similarly, the model will also be unidentified
whenever β̂3 = 0, because zβ3

t will then be indistinguishable from the constant
term. Because β̂2 or β̂3 will be precisely zero only for most unusual data sets,
this model will in fact be identified by all but those unusual data sets.

The regression function (2.07) serves as an example of something which
is much more common in practice than models that are unidentified, namely,
models that are poorly identified. A poorly identified model is one for which
the Hessian matrix H(β) is not actually singular but is close to being singular
for values of β near β̂. Those are the values of β that we care most about, since
the minimization algorithm will necessarily encounter them when trying to
minimize SSR(β). Although SSR(β) is not actually flat for a poorly identified
model, it is close to being flat, and as a result the algorithm that is trying
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to minimize SSR(β) may have a difficult time doing so. In the context of
linear regression models this phenomenon is often referred to as collinearity
or multicollinearity (although the prefix seems redundant), and it shows up
as an X>X matrix that is close to being singular.

The continuity of the regression function implies that a model incor-
porating the regression function (2.07) will be poorly identified whenever the
true value of either β2 or β3 is close, but not actually equal, to zero. In fact,
it is likely to be poorly identified even for values of these parameters that
are far from zero, because, for most sets of data on zt, the Hessian for this
model will be fairly close to singular. As we will demonstrate in Chapter 5,
for nonlinear regression models the Hessian H(β) is, for values of β near β̂,
generally approximated quite well by the matrix

2X>(β)X(β).

For the regression function (2.07), the tth row of the matrix X(β) is[
1 zβ3

t β2z
β3

t log(zt)
]
.

The third column of X(β) is thus very similar to the second column, each
element of the latter being equal to the corresponding element of the former
times a constant and log(zt). Unless the range of zt is very great, or there are
some values of zt very close to zero, zβ3

t and β2z
β3

t log(zt) will tend to be very
highly correlated. Thus the matrix X>(β)X(β), and hence in most cases the
Hessian as well, will often be close to singular. This example will be discussed
in more detail in Chapter 6.

The concepts of local and global identification discussed above are differ-
ent from the corresponding concepts of asymptotic identification, which we
will discuss in Chapter 5. A model is asymptotically identified in either the
local or the global sense if, as the sample size n tends to infinity, the model is
always identified in the appropriate sense. This is a property of the model and
of the way in which the data are generated (see Section 2.4 for a discussion of
data-generating processes) rather than a property of the model and a given
data set. As we will see in Chapter 5, it is quite possible for a model to be
identified in finite samples by almost all data sets and yet to be asymptotic-
ally unidentified; and it is likewise possible for a model to be asymptotically
identified and yet not be identified by many actual data sets.

2.4 Models and Data-Generating Processes

In economics, it is probably not often the case that a relationship like (2.01)
actually represents the way in which a dependent variable is generated, as it
might if xt(β) were a physical response function and ut merely represented
errors in measuring yt. Instead, it is usually a way of modeling how yt varies
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with the values of certain variables. They may be the only variables about
which we have information or the only ones that we are interested in for a
particular purpose. If we had more information about potential explanatory
variables, we might very well specify xt(β) differently so as to make use of
that additional information.

It is sometimes desirable to make explicit the fact that xt(β) represents
the conditional mean of yt, that is, the mean of yt conditional on the values
of a number of other variables. The set of variables on which yt is conditioned
is often referred to as an information set. If Ωt denotes the information set
on which the expectation of yt is to be conditioned, one could define xt(β)
formally as E(yt |Ωt). There may be more than one such information set.
Thus we might well have both

x1t(β1) ≡ E(yt |Ω1t) and x2t(β2) ≡ E(yt |Ω2t),

where Ω1t and Ω2t denote two different information sets. The functions
x1t(β1) and x2t(β2) might well be quite different, and we might want to
estimate both of them for different purposes. There are many circumstances
in which we might not want to condition on all available information. For
example, if the ultimate purpose of specifying a regression function is to use
it for forecasting, there may be no point in conditioning on information that
will not be available at the time the forecast is to be made. Even when we do
want to take account of all available information, the fact that a certain vari-
able belongs to Ωt does not imply that it will appear in xt(β), since its value
may tell us nothing useful about the conditional mean of yt, and including it
may impair our ability to estimate how other variables affect that conditional
mean.

For any given dependent variable yt and information set Ωt, one is always
at liberty to consider the difference yt−E(yt |Ωt) as the error term associated
with the tth observation. But for a regression model to be applicable, these
differences must generally have the i.i.d. property. Actually, it is possible,
when the sample size is large, to deal with cases in which the error terms are
independent, but identically distributed only as regards their means, and not
necessarily as regards their variances. We will discuss techniques for dealing
with such cases in Chapters 16 and 17, in the latter of which we will also relax
the independence assumption. As we will see in Chapter 3, however, conven-
tional techniques for making inferences from regression models are unreliable
when models lack the i.i.d. property, even when the regression function xt(β)
is “correctly” specified. Thus we are in general not at liberty to choose an
arbitrary information set and estimate a properly specified regression function
based on it if we want to make inferences using conventional procedures.

There are, however, exceptional cases in which we can choose any infor-
mation set we like, because models based on different information sets will
always be mutually consistent. For example, suppose that the vector con-
sisting of yt and each of x1t through xmt is independently and identically
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distributed according to the multivariate normal distribution. Then if x∗t de-
notes a vector consisting of any subset of x1t through xmt, we can always
write

yt = β∗0 + x∗tβ
∗ + ut, ut ∼ NID(0, σ2

∗), (2.08)

where the notation “ut ∼ NID(0, σ2
∗)” is a shorthand way of saying that the

ut’s are normally and independently distributed, or n.i.d., with mean zero
and variance σ2

∗. This is true for any subset of the xit’s because any linear
combination of variables that are jointly distributed as multivariate normal is
itself normally distributed. Thus the error term ut implicitly defined by (2.08)
will be normally and independently distributed, regardless of what xit’s we
include in x∗t , and can always be made to have mean zero by choosing β∗0
appropriately. This is true even if x∗t is a null vector, since then (2.08) just
says that yt is equal to its mean plus a random variable ut which is n.i.d. with
mean zero, and yt is itself normally distributed. For more on this and other
special cases, and for a much more extensive treatment of the interpretation
of regression models, see Spanos (1986).

A model such as (2.01) should be distinguished from a data-generating
process, or DGP, such as

yt = xt(β0) + ut, ut ∼ NID(0, σ2
0), t = 1, . . . , n. (2.09)

A regression model such as (2.01) specifies that the mean of yt conditional
on a specified set of variables Zt is a given function of Zt and the (generally
unknown) parameters β. It also specifies that the yt’s are mutually indepen-
dent and have the same variance around their conditional means. On the
other hand, a DGP is a complete characterization of the statistical properties
of the dependent variable. If the DGP is known, then both the values of all
parameters and the distributions of all random quantities must be specified.

Thus there are two important differences between the model (2.01) and
the DGP (2.09). The former involves an unknown vector of coefficients β,
while the latter involves a specific coefficient vector β0, which would be known
if we knew the DGP. The error terms ut for the model are merely specified
to be independent and identically distributed, with mean zero and unknown
variance σ2. In contrast, those for the DGP have been specified to be normally
and independently distributed with known variance σ2

0 , which implies that we
could actually generate a sequence of ut’s if we wanted to. Of course, we could
just as well have specified a DGP with errors that follow some distribution
other than the normal; what matters is that the distribution be specified
completely. On the other hand, we may be interested in what happens under
a whole family of DGPs, and in such cases a complete specification would be
inappropriate.

A model can thus be viewed as a set of DGPs. In the process of estimating
a model, what we are doing is to try to obtain some estimated characterization
of the DGP that actually did generate the data; in the case of the nonlinear
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regression model (2.01), the desired characterization is a set of parameter esti-
mates, that is, estimates of the unknown parameters β of the regression func-
tion, plus an estimate of the error variance, σ2. Since in a nonlinear regression
only the mean and variance of the errors are specified, the characterization of
the DGP obtained by estimating the model is partial, or incomplete. Later in
the book, in Chapter 8, we will discuss another estimation method, that of
maximum likelihood, which yields a complete characterization of a DGP after
estimation. Thus we can say that this method produces a unique estimated
DGP, whereas any method used to estimate a nonlinear regression model will
produce a set of DGPs, all satisfying the estimated characterization.

This set of DGPs, or the single estimated DGP when appropriate, be-
longs of course to the set of DGPs defined by the model itself. Statistical
estimation can therefore be regarded as a procedure by which from a given
set of DGPs, called the model, a subset is selected. The selection is of course
a random procedure, since a single DGP belonging to the model can generate
different sets of random observations that yield different random estimated
characterizations. One can then discuss the probability, for a given DGP, that
the estimated characterization is close, in some sense, to the DGP itself. Dif-
ferent estimation procedures can be ranked by these probabilities, and we will
usually prefer efficient estimation procedures, that is, those for which the prob-
ability is high that the subset selected by the procedure is close to the DGP,
always assuming, of course, that the DGP actually does belong to the model.

It is impossible to say anything of interest about the statistical properties
of estimators and test statistics without specifying both the model and the
process that generated the data. In practice, of course, we almost never
know the DGP, unless we are conducting a Monte Carlo experiment and
have the privilege of generating the data ourselves (see Chapter 21). Thus,
when we actually estimate models, we cannot reasonably expect the process
that actually generated the data to be a special case of the model we have
estimated, as (2.09) is of (2.01), unless we are exceptionally fortunate. In the
course of this book, we will nevertheless frequently assume that this is indeed
the case, because it is then easy to obtain definite results. But we will also
explicitly deal with many situations in which the DGP is not a special case
of the model being estimated.

The additive structure of the nonlinear regression model makes it nat-
ural to discuss the model’s two component parts separately. We first discuss
regression functions, which determine the conditional mean of yt, and then
discuss error terms, which determine all of its higher conditional moments. It
is important to remember that every time we estimate a model like (2.01),
we are, implicitly if not explicitly, making what are usually rather strong
assumptions about both xt(β) and ut. Since it is typically impossible using
standard techniques to make valid inferences if these assumptions are false,
it is important to be aware of them and, of course, to test them against the
evidence provided by the data.
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2.5 Linear and Nonlinear Regression Functions

The general regression function xt(β) can be made specific in a very large
number of ways. It is worthwhile to consider a number of special cases so
as to get some idea of the variety of specific regression functions that are
commonly used in practice.

The very simplest regression function is

xt(β) = β1ιt = β1, (2.10)

where ιt is the tth element of an n--vector ι, each element of which is 1. In
this case, the model (2.01) says that the conditional mean of yt is simply a
constant. While this is a trivial example of a regression function, since xt(β)
is the same for all t, it is nevertheless a good example to start with and to
keep in mind. All regression functions are simply fancier versions of (2.10).
And any regression function that cannot fit the data at least as well as (2.10)
should be considered a highly unsatisfactory one.

The next-simplest regression function is the simple linear regression func-
tion

xt(β) = β1 + β2zt, (2.11)

where zt is a single independent variable. Actually, an even simpler model
would be one with a single independent variable and no constant term. How-
ever, in most applied problems it does not make sense to omit the constant
term. Many linear regression functions are used as approximations to un-
known conditional mean functions, and such approximations will rarely be
accurate if they are constrained to pass through the origin. Equation (2.11)
has two parameters, an intercept β1 and a slope β2. This function is linear
in both variables (ιt and zt, or just zt if one chooses not to call ιt a variable)
and parameters (β1 and β2). Although this model is often too simple, it does
have some advantages. Because it is very easy to graph yt against zt, we can
use such a graph to see what the regression function looks like, how well the
model fits, and whether a linear relationship adequately describes the data.
“Eyeballing” the data in this way is harder, and therefore much less often
done, when a model involves more than one independent variable.

One obvious generalization of (2.11) is the multiple linear regression func-
tion

xt(β) = β1zt1 + β2zt2 + β3zt3 + · · ·+ βkztk, (2.12)

where zt1 through ztk are independent variables, and zt1 may or may not be
a constant term. This regression function could also have been written more
compactly as

xt(β) = Ztβ,

where Zt is a 1×k vector and β is a k×1 vector. Notice that (2.12) embodies
what may be a very strong assumption, namely, that the effect of a change
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in any particular independent variable on yt is independent of the values of
all the other independent variables. When this assumption is inappropriate,
multiple linear regression models may be seriously misleading.

Next come a whole array of regression functions like

xt(β) = β1zt1 + β2zt2 + β3z
2
t2 + β4zt1zt2,

which are linear in the parameters but have some of the independent variables
entering in a nonlinear fashion. Models involving this sort of regression func-
tion can be handled like any other linear regression model, simply by defining
new regressors in an appropriate fashion. Here, for example, one might define
zt3 as z2t2 and zt4 as zt1zt2. Using this type of function allows one to avoid
assuming that all effects are additive, as implied by (2.12), but may easily re-
quire one to estimate more parameters than is practical with many data sets.
Because of this, unless there is some theoretical reason to expect powers or
products of independent variables to appear in the regression function, most
applied econometricians tend to ignore this type of specification.

A regression function that allows all the independent variables to interact
without requiring the estimation of additional parameters is the multiplicative
function

xt(β) = eβ1zβ2

t2 z
β3

t3 . (2.13)

Observe that this function can be evaluated only when zt2 and zt3 are positive
for all t. It is the first genuinely nonlinear regression function we have seen,
since it is clearly linear neither in parameters nor in variables. However, a
nonlinear model like

yt = eβ1zβ2

t2 z
β3

t3 + ut (2.14)

is very rarely estimated in practice. The reason is that the assumption of
identically distributed, additive error terms is both implausible and inconven-
ient. It is implausible because the zti’s enter multiplicatively, which implies
that their effects depend on the levels of all the other variables, while the
error terms enter additively, which implies that their effect does not depend
on the level of any of the independent variables. It is inconvenient because
(2.14) has to be estimated by nonlinear rather than ordinary least squares.

It is easy to modify (2.14) so that the error terms enter multiplicatively.
The most obvious such model is

yt =
(
eβ1zβ2

t2 z
β3

t3

)
(1 + vt) ≡ eβ1zβ2

t2 z
β3

t3 + ut, (2.15)

where the disturbances 1 + vt, which are dimensionless quantities, are multi-
plicative. Although the underlying errors vt are i.i.d., the additive errors ut
are now proportional to the regression function. If the model fits reasonably
well, the vt’s should be quite small (say, less than about 0.05). Now recall
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that ew ∼= 1 + w for w close to zero. Hence, for models that fit reasonably
well, (2.15) will be very similar to the model

yt = eβ1zβ2

t2 z
β3

t3 e
vt . (2.16)

Now suppose we take logarithms of both sides of (2.16). The result is

log(yt) = β1 + β2 log(zt2) + β3 log(zt3) + vt, (2.17)

which is a linear regression model. It is obvious that this model, which is linear
in the parameters and in the logarithms of all the variables, will be very much
easier to estimate than the nonlinear model (2.14). The above arguments
suggest that it is, if anything, more plausible. Thus it should come as no
surprise to learn that loglinear regression models, like (2.17), are estimated
very frequently in practice, while multiplicative models with additive error
terms, like (2.14), are very rarely estimated.

A purely multiplicative model like (2.16) can be made linear by taking
logarithms. However, a model that mixes additive and multiplicative com-
ponents cannot be transformed to a linear model. Thus, no matter how one
specifies the error terms, models involving regression functions like

xt(β) = β1 + β2z
β3

t2 + β4zt3 and (2.18)

xt(β) = β1 + β2z
β3

t2 z
β4

t3 (2.19)

must inevitably be estimated by nonlinear methods. As one might expect,
such models are not estimated nearly as frequently as linear or loglinear mod-
els, partly out of laziness, no doubt, but mainly because there are often neither
theoretical nor empirical reasons to choose this type of specification over more
conventional ones. Indeed, regression functions like (2.18) and (2.19) are no-
toriously difficult to deal with because it is hard to estimate all the parameters
jointly with any degree of precision. Recall the discussion of how models based
on the regression function (2.07), which is very similar to these, are likely to
be poorly identified.

The final example of a nonlinear regression function that we will consider
is very different in spirit from ones like (2.18). Consider the regression function

xt(β) = β1 + β2(zt2 − β3zt3) + β4(zt4 − β3zt5). (2.20)

This function is linear in the independent variables ιt and zt2 through zt5, but
it is nonlinear in the parameters β1 through β4. It is in fact a linear regression
function with a single nonlinear restriction on the coefficients. To see this,
consider the unrestricted linear regression function

xt(β) = γ1 + γ2zt2 + γ3zt3 + γ4zt4 + γ5zt5.
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If we impose the nonlinear restriction

γ3

γ5
=
γ2

γ4
, (2.21)

and then reparametrize so that

β1 = γ1, β2 = γ2, β3 = −
γ5

γ4
, and β4 = γ4,

we obtain (2.20). Note that the restriction (2.21) can be written in many
equivalent ways, including

γ3 =
γ2γ5

γ4
, γ2 =

γ3γ4

γ5
, and

γ2

γ3
=
γ4

γ5
.

It is typical of nonlinear restrictions that they can be written in many differ-
ent but equivalent ways, and in consequence the regression function can be
parametrized in many different ways.

Regression functions like (2.20) are very commonly encountered in econo-
metrics. They arise, for example, in many models with rational expecta-
tions — see Hoffman and Schmidt (1981) or Gregory and Veall (1985, 1987) —
and in models with serial correlation (see Chapter 10). Such models are gen-
erally not particularly difficult to estimate, provided that the restrictions are
more or less true.

2.6 Error Terms

When we specify a regression model, we must specify two things: the regres-
sion function xt(β) and at least some of the properties of the error terms ut.
We have already seen how important the second of these can be. When we
added errors with constant variance to the multiplicative regression function
(2.13), we obtained a genuinely nonlinear regression model. But when we
added errors that were proportional to the regression function, as in (2.15),
and made use of the approximation ew ∼= 1 + w, which is a very good one
when w is small, we obtained a loglinear regression model. It should be clear
from this example that how we specify the error terms will have a major effect
on the model which is actually estimated.

In (2.01) we specified that the error terms were independent with identical
means of zero and variances σ2, but we did not specify how they were actually
distributed. Even these assumptions may often be too strong. They rule out
any sort of dependence across observations and any type of variation over
time or with the values of any of the independent variables. They also rule
out distributions where the tails are so thick that the error terms do not have
a finite variance. One such distribution is the Cauchy distribution. A random
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variable that is distributed as Cauchy not only has no finite variance but no
finite mean either. See Chapter 4 and Appendix B.

There are several meanings of the word independence in the literature
on statistics and econometrics. Two random variables z1 and z2 are said to
be stochastically independent if their joint probability distribution function
F (z1, z2) is equal to the product of their two marginal distribution functions
F (z1,∞) and F (∞, z2). This is sometimes called independence in probability,
but we will employ the former, more modern, terminology. Some authors say
that two random variables z1 and z2 are linearly independent if E(z1z2) =
E(z1)E(z2), a weaker condition, which is implied by stochastic independence
but does not imply it. This terminology is unfortunate, because this meaning
of “linearly independent” is not the same as its usual meaning in linear algebra,
and we will therefore not use it. Instead, in this situation we will merely say
that z1 and z2 are uncorrelated, or have zero covariance. If either z1 or z2
has mean zero and they are uncorrelated, E(z1z2) = 0. There is a sense in
which z1 and z2 are orthogonal in this situation, and we will sometimes use
this terminology as well.

When we say that the ut’s are independent, we mean that they are
stochastically independent. This implies not only that E(utus) = 0 for all
t 6= s, but also that E

(
h1(ut)h2(us)

)
= 0 for all (measurable) functions h1(·)

and h2(·). Error terms that are independent and have the same means and
variances are sometimes said to be white noise. This terminology, which is
taken from the engineering literature, refers to the fact that, just as white light
contains equal amounts of light of all frequencies, white noise errors contain
equal amounts of randomness of all frequencies. Numerous different defini-
tions of white noise are in use in econometrics and in other disciplines, and
the term is often used in ways that are not in accord with its strict meaning.

Notice the important distinction between error terms and residuals. Any
linear or nonlinear regression generates a vector of residuals, whether it makes
sense or not. Residuals will have certain properties simply as a result of how
they are obtained, regardless of how the data were actually generated. For
example, OLS residuals will always be orthogonal to all the regressors, and
NLS residuals will always be orthogonal to the matrix X̂. Error terms, on
the other hand, are unobservable (but estimable) quantities about which we
have to make certain assumptions as part of the specification of the model.
We will of course often want to test those assumptions and will often do so
by calculating test statistics that depend on the residuals.

A large part of the literature on the specification and testing of regression
models is concerned with testing for particular violations of the assumption
of i.i.d. errors. When such violations are found, it may then be possible to
transform a model with non-i.i.d. errors into one where the transformed errors
are i.i.d. Either the independence assumption or the assumption of identical
means and variances, or both at once, may be violated. The independence
assumption is commonly violated when one uses time-series data; successive
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error terms ut may appear to be correlated with each other, giving rise to
the phenomenon of serial correlation. The assumption of identical distribu-
tions is commonly violated when one uses cross-section data; different ut’s
may seem to come from the same family of distributions but to have different
variances, giving rise to the phenomenon of heteroskedasticity. The opposite
of heteroskedasticity, incidentally, is homoskedasticity. Whenever error terms
have a common variance, they are said to be homoskedastic; when they do
not, they are said to be heteroskedastic. Of course, correlation of error terms
across observations is by no means a feature only of time-series data, and
heteroskedasticity is by no means a feature only of cross-section data. Both
these phenomena can occur with all types of data sets, although serial cor-
relation is necessarily associated with time-series data and heteroskedasticity
is particularly common with cross-section data.

We will deal with serial correlation and heteroskedasticity at length in
subsequent chapters (notably in Chapters 9, 10, 11, and 16). For the moment,
as an illustration, consider a simple form of heteroskedasticity:

ut = wtvt, vt ∼ IID(0, σ2
v),

where wt is an independent variable that is always nonzero. This specification
implies that ut has mean zero and variance σ2

vw
2
t . Now suppose that the

regression function to which the errors ut adhere additively is

xt(β) = β1 + β2zt + β3wt.

Evidently we can obtain a model with i.i.d. errors by dividing the dependent
variable and all the independent variables, including the constant term, by wt.
This transformed model is

yt
wt

= β1
1

wt
+ β2

zt
wt

+ β3 + vt. (2.22)

Notice that the regressors are now 1/wt, zt/wt, and a constant, but the coef-
ficient on the constant in (2.22) is actually the coefficient on wt in the original
model, while the coefficient on 1/wt is the constant in the original model.
Thus it is very easy to eliminate heteroskedasticity in a case like this, but one
has to be careful in interpreting the coefficients of the transformed model.

As we will discuss in Chapter 8, it is common in econometrics to make
the rather strong assumption that

ut ∼ NID(0, σ2), t = 1, . . . , n,

which says that the ut’s are normally and independently distributed with
mean zero and variance σ2. Thus each individual ut is assumed to follow the
normal distribution with probability density function

f(ut) =
1√
2π

1
σ

exp

(
− u2t

2σ2

)
.
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The joint density of the n--vector u (of which a typical element is ut) is there-
fore assumed to be

f(u) =
n∏
t=1

f(ut) =

(
1

2π

)n/2
1

σn
exp

(
− 1

2σ2

n∑
t=1

u2t

)
.

There are three principal reasons for assuming normality. The first reason is
that because of its computational convenience and familiar properties we often
want to use least squares to estimate regression models, and the justification
for doing so is much stronger when the errors are normally distributed than
when they are not. As we will see in Chapter 8, least squares applied to
a regression model has excellent asymptotic properties when the errors are
normal, but when the errors have some other known distribution, its properties
are no longer so good. The second reason is that when we assume normality,
we can often obtain much stronger results than when we merely make an i.i.d.
assumption. In particular, for linear regression models with fixed regressors
and normal errors, we can obtain exact finite-sample results (see Chapter 3);
such results are not available even for linear models when the errors are merely
assumed to be i.i.d. The third reason is that once we leave the realm of
regression models and try to deal with more general nonlinear models, it
often becomes necessary to make distributional assumptions, and the normal
distribution is frequently the most convenient one to work with.

None of these practical reasons for assuming that error terms are nor-
mally distributed provides any justification for making such an assumption.
The usual argument is that error terms represent the combined effects of many
omitted variables and many different measurement errors. Central limit the-
orems (which are discussed in Chapter 4) tell us, very roughly, that when
we average a large number of random variables, the resulting average is ap-
proximately normally distributed, more or less regardless of how the original
random variables are distributed. The usual argument is that the normality
assumption makes sense because we may think of the error terms in regression
models as being such an average.

There are at least two problems with this line of argument. First of all,
as we will see in Chapter 4, central limit theorems require moderately strong
assumptions. They apply to situations in which many random variables, no
one of which is “large” relative to the others, are being averaged. It is easy
to think of economic variables that might well be omitted from regression
models, and therefore form part of the error terms, but which would often be
large relative to those error terms. In the case of time-series models, strikes,
elections or other political events, and hurricanes or other extreme weather
conditions are a few examples that come to mind. There is certainly no
reason a priori to expect the effects of such events to be responsible for only
a small part of the overall error term for any given observation. In the case
of cross-section models, the argument for normality is probably even weaker.
Whenever we have a large sample of individuals or firms, we are bound to have
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some observations included in the sample that really do not belong there.
Consider, for example, the effect on a cross-section model of the demand
for meat of including a few individuals who are vegetarians! Inevitably, the
error terms associated with such observations will be large, making it highly
unlikely that the distribution of the error terms for the model as a whole will
be normal.

The second problem with the central limit theorem argument is that
many central limit theorems do not apply to situations in which the number
of random variables being averaged is itself random. But since we do not know
what variables were omitted and thrown into the error term, we have no real
reason for thinking that the number is the same from one observation to the
next. Thus we cannot always legitimately invoke a central limit theorem.

These arguments are not intended to suggest that it is silly to assume
normality. But whether we have explicitly assumed normality or not, it makes
sense to see whether the error terms are in fact approximately normal. If they
are not approximately normal, then the wisdom of using least squares is ques-
tionable. There are, of course, an infinite number of nonnormal distributions
and hence an infinite number of types of nonnormality to look for. Most tests
for nonnormality, however, focus on two properties of the normal distribution.
If ε ∼ N(µ, σ2), then

E
(
(ε− µ)3

)
= 0 and (2.23)

E
(
(ε− µ)4

)
= 3σ4. (2.24)

Expression (2.23) tells us that for the normal distribution, the third central
moment (that is, the moment about the mean) is zero. This moment is
commonly used to measure skewness. If it is positive, the distribution is
skewed to the right, and if it is negative, the distribution is skewed to the left.
Figure 2.8 shows two skewed distributions and, for comparison, a symmetric
distribution. Testing for skewness is quite easy; such tests will be discussed
in Chapter 16.

Expression (2.24) tells us that the fourth central moment of a normal
random variable is 3 times the square of its variance. A random variable with
a fourth moment larger than 3 times the square of the second moment has
thicker tails than a normally distributed random variable. It may be said to
display excess kurtosis, or to be leptokurtic. On the other hand, a random
variable with a fourth moment less than 3 times the square of the second
moment has thinner tails than a normally distributed random variable. Such
random variables are sometimes referred to as platykurtic. Similarly, ran-
dom variables that follow the normal distribution are sometimes said to be
mesokurtic. Readers who are familiar with Greek may think that these defi-
nitions are in error, since lepto means slim and platy means fat. As explained
by Kendall and Stuart (1977, p. 88), these terms were originally used to refer
not to the tails but to the central part of the distribution; thus leptokurtic
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Right skewed →

← Left skewed

Figure 2.8 Skewed distributions

distributions got their name not because they have thick tails but because
they have a (relatively) thin central part, and platykurtic distributions got
their name not because they have thin tails but because they have a (rela-
tively) fat central part. However, it is the tails that modern statisticians are
referring to when they use these terms. Figure 2.9 illustrates leptokurtic and
platykurtic distributions. The standard normal distribution (dotted) is shown
for comparison.
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Figure 2.9 Leptokurtic and platykurtic distributions
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Thin tails are not much of a problem (and are also not very often en-
countered), but thick tails can cause serious difficulties for estimation and
inference. If the error terms follow a distribution with much thicker tails than
the normal distribution, then unusually large error terms will occur by chance
relatively often. The least squares procedure weights these large error terms
heavily and may therefore yield highly inefficient parameter estimates.

It is quite easy to test for excess kurtosis; see Chapter 16. What one
should do if one finds a substantial amount of it is not entirely clear, however.
It would certainly be advisable to examine the specification of the model,
since heteroskedasticity may lead to the appearance of kurtosis, as may an
incorrectly specified regression function. If one is confident that the regres-
sion function is correctly specified, and that there is no heteroskedasticity,
then one should probably consider using estimation methods other than least
squares. There is a large literature on what statisticians call “robust” esti-
mation methods, which give less weight to outliers than least squares does;
see Krasker, Kuh, and Welsch (1983) for a review of this literature. Alterna-
tively, one could postulate some other distribution than the normal, one with
thicker tails, and then apply the method of maximum likelihood, which will
be discussed extensively in Chapter 8 and subsequent chapters.

2.7 Conclusion

This chapter has provided a nonrigorous introduction to nonlinear regression
models, focusing on basic concepts such as the geometry of nonlinear regres-
sion. Books that provide more rigorous treatments include Gallant (1987),
Bates and Watts (1988), and Seber and Wild (1989). The next chapter deals
with how to make inferences from nonlinear regression models and introduces
the basic ideas of hypothesis testing in the context of such models. The next
step is to provide a treatment of the asymptotic properties of nonlinear least
squares, and that is done in Chapters 4 and 5. Then Chapter 6 discusses an
“artificial” linear regression called the Gauss-Newton regression, which is as-
sociated with every nonlinear regression model. This artificial regression will
prove to be very useful for a variety of purposes, including the computation
of NLS estimates and the calculation of test statistics.
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Terms and Concepts

asymptotic identification
asymptotic results
central limit theorems
central moments
collinearity (multicollinearity)
conditional mean
cross-section data
data-generating process (DGP);

relation to models
dynamic models
efficient estimation methods
error terms (disturbances)
error variance
heteroskedasticity
homoskedasticity
identification by a given data set
identification: local and global
independence: stochastic and linear
independent and identically

distributed (i.i.d.) random variables
information set
intercept and slope (of a simple linear

regression function)
kurtosis: leptokurtosis, mesokurtosis,

platykurtosis, excess kurtosis
minima: local and global
minimization algorithm

model: a set of DGPs
nonlinear least squares (NLS)
nonlinear restrictions
normal distribution
normally and independently

distributed (n.i.d.) random
variables

orthogonal random variables
parameter estimates
poorly identified model
regression functions: linear and

nonlinear; simple and multiple
regression manifold
regression models: linear and

nonlinear; univariate and
multivariate

residuals
serial correlation
skewness
stationary point
sum-of-squares function
tangent space
time-series data
uncorrelated random variables
variables: dependent and independent
white noise



Chapter 3

Inference in

Nonlinear Regression Models

3.1 Introduction

Suppose that one is given a vector y of observations on some dependent vari-
able, a vector x(β) of, in general nonlinear, regression functions, which may
and normally will depend on independent variables, and the data needed
to evaluate x(β). Then, assuming that these data allow one to identify all
elements of the parameter vector β and that one has access to a suitable com-
puter program for nonlinear least squares and enough computer time, one
can always obtain NLS estimates β̂. In order to interpret these estimates,
one generally makes the heroic assumption that the model is “correct,” which
means that y is in fact generated by a DGP from the family

y = x(β) + u, u ∼ IID(0, σ2I). (3.01)

Without this assumption, or some less restrictive variant, it would be very
difficult to say anything about the properties of β̂, although in certain special
cases one can do so.

It is clear that β̂ must be a vector of random variables, since it will
depend on y and hence on the vector of error terms u. Thus, if we are to
make inferences about β, we must recognize that β̂ is random and quan-
tify its randomness. In Chapter 5, we will demonstrate that it is reasonable,
when the sample size is large enough, to treat β̂ as being normally distributed
around the true value of β, which we may call β0. Thus the only thing we
need to know if we are to make asymptotically valid inferences about β is
the covariance matrix of β̂, say V (β̂). In the next section, we discuss how
this covariance matrix may be estimated for linear and nonlinear regression
models. In Section 3.3, we show how the resulting estimates may be used
to make inferences about β. In Section 3.4, we discuss the basic ideas that
underlie all types of hypothesis testing. In Section 3.5, we then discuss pro-
cedures for testing hypotheses in linear regression models. In Section 3.6,
we discuss similar procedures for testing hypotheses in nonlinear regression
models. The latter section provides an opportunity to introduce the three

66
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fundamental principles on which most hypothesis tests are based: the Wald,
Lagrange multiplier, and likelihood ratio principles. Finally, in Section 3.7, we
discuss the effects of imposing incorrect restrictions and introduce the notion
of preliminary test estimators.

3.2 Covariance Matrix Estimation

In the case of the linear regression model

y = Xβ + u, u ∼ IID(0, σ2I), (3.02)

it is well known that when the DGP satisfies (3.02) for specific parameter
values β0 and σ0, the covariance matrix of the vector of OLS estimates β̂ is

V (β̂) = σ2
0

(
X>X

)−1
. (3.03)

The proof of this familiar result is quite straightforward. The covariance
matrix V (β̂) is defined as the expectation of the outer product of β̂ − E(β̂)
with itself, conditional on the independent variables X. Starting with this
definition and using the fact that E(β̂) = β0, we first replace β̂ by what it is
equal to under the DGP, then take expectations conditional on X, and finally
simplify the algebra to obtain (3.03):

V (β̂) ≡ E(β̂ − β0)(β̂ − β0)>

= E
(
(X>X)−1X>y − β0

)(
(X>X)−1X>y − β0

)>
= E

(
(X>X)−1X>(Xβ0 + u)− β0

)(
(X>X)−1X>(Xβ0 + u)− β0

)>
= E

(
β0 + (X>X)−1X>u− β0

)(
β0 + (X>X)−1X>u− β0

)>
= E

(
X>X

)−1
X>uu>X

(
X>X

)−1
=
(
X>X

)−1
X>
(
σ2
0I
)
X
(
X>X

)−1
= σ2

0

(
X>X

)−1
X>X

(
X>X

)−1
= σ2

0

(
X>X

)−1
.

Deriving an analogous result for the nonlinear regression model (3.01) requires
a few concepts of asymptotic analysis that we have not yet developed, plus
a certain amount of mathematical manipulation. We will therefore postpone
this derivation until Chapter 5 and merely state an approximate result here.

For a nonlinear model, we cannot in general obtain an exact expression
for V (β̂) in the finite-sample case. In Chapter 5, on the assumption that
the data are generated by a DGP which is a special case of (3.01), we will,
however, obtain an asymptotic result which allows us to state that

V (β̂) ∼= σ2
0

(
X>(β0)X(β0)

)−1
, (3.04)
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where ∼= means “is approximately equal to,” and X(β0) is the matrix of
partial derivatives of the regression functions introduced in (2.04). How good
this approximation is will depend on the model and on the sample size; it
will generally be better for models that are closer to linearity and for larger
sample sizes.

In practice, of course, we cannot use (3.04) because we do not know σ2
0

or β0; we have to estimate these. The only sensible way to estimate β0 in
this context is to use β̂, but there are at least two ways to estimate σ2

0 . As a
result, there are two ways to estimate V (β̂). One is to use

V̂ (β̂) ≡ σ̂2
(
X̂>X̂

)−1
, (3.05)

where σ̂2 ≡ n−1SSR(β̂), and the other is to use

Vs(β̂) ≡ s2
(
X̂>X̂

)−1
, (3.06)

where s2 ≡ (n− k)−1SSR(β̂).

The first of these estimators, expression (3.05), employs the maximum
likelihood estimator of σ2 (see Chapter 8), which is biased downward. To see

this, notice that, because SSR(β̂) minimizes SSR(β),

SSR(β̂) ≤ SSR(β0).

Moreover, under the assumed DGP,

E
(
SSR(β0)

)
= nσ2

0 ,

because SSR(β0) is then simply
∑n
t=1 u

2
t , and u2t has expectation σ2

0 . Thus,
by using σ̂2 in (3.05), we tend to underestimate σ2 and hence tend to under-
estimate the variability of the parameter estimates.

This suggests that we should use s2 rather than σ̂2 when estimating
covariance matrices for parameter estimates from nonlinear regression models,
despite the fact that there is no exact finite-sample justification for doing so.
There seems to be an emerging consensus in favor of this approach, although
some nonlinear regression packages still use σ̂2. The reason for using s2 is that
in the linear regression case it yields an unbiased estimate of σ2. Common
sense, asymptotic theory (to be discussed in Section 5.6), and evidence from
Monte Carlo experiments all suggest that it will typically yield a less biased
estimate in the nonlinear case as well.

The result that s2 provides an unbiased estimate of σ2 in the linear regres-
sion case is undoubtedly familiar to most readers. However, it is sufficiently
important that we now sketch the argument. For the linear regression case in
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which x(β) = Xβ,

SSR(β̂) ≡ (y −Xβ̂)>(y −Xβ̂)

=
(
y −X(X>X)−1X>y

)>(y −X(X>X)−1X>y
)

= y>
(
I−X(X>X)−1X>

)
y

= y>MXy.

(3.07)

Under the DGP we have been using, y>MXy becomes

(Xβ0 + u)>MX(Xβ0 + u).

But recall that MX annihilates everything that lies in S(X). Since the con-
ditional mean Xβ0 certainly lies in S(X), SSR(β̂) reduces to

u>MXu.

The expectation of this expression is

E(u>MXu) = E
(
Tr(u>MXu)

)
= E

(
Tr(MXuu

>)
)

= Tr
(
MXσ

2
0 I
)

= σ2
0Tr
(
MX

)
= σ2

0(n− k),

(3.08)

where the second and last lines of (3.08) both make use of a convenient prop-
erty of the trace operator that we previously used in Section 1.6. Readers
who are not familiar with the result in (3.08) will probably wish to consult
Appendix A.

The intuition of expression (3.08) is clear. It tells us that, on average, the
squared residuals are (n− k)/n times as large as the original squared errors.
In effect, then, each one of the k dimensions of the span of X “eats up” one
of the original error terms. This “eating up” is depicted in Figure 3.1 for
the case of a linear regression model with k = 1. Here y is actually equal to
Xβ0 + u. The length of the vector û = MXy is less than the length of the
true error vector u, because the former is orthogonal to S(X) while the latter
is not.

This “eating up” of the original error terms gives rise to the errors that
least squares makes in estimating the coefficient vector. Components of u that
are not orthogonal to X get projected onto S(X) and hence end up in β̂. This
happens to the different elements of u to different degrees. As the discussion
of leverage in Section 1.6 should have made clear, some squared residuals will
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Figure 3.1 Residuals are smaller than error terms

be less than (n − k)/n times as large as the corresponding squared errors,
while others will be greater than (n − k)/n times as large. In fact, a little
algebra shows that

E(û2t ) = E(yt −Xtβ̂)2

= E(yt −Xtβ0 +Xtβ0 −Xtβ̂)2

= E
(
ut −Xt(β̂ − β0)

)2
= E(u2t )− 2E

(
utXt(X

>X)−1X>u
)

+ E
(
Xt(X

>X)−1X>uu>X(X>X)−1Xt
>)

= σ2
0 − 2σ2

0Xt(X
>X)−1Xt

>+ σ2
0Xt(X

>X)−1Xt
>

= σ2
0

(
1−Xt(X

>X)−1Xt
>)

= σ2
0Mtt,

where Xt is the tth row of X. Here Mtt, the tth diagonal element of MX ,
is equal to 1 − ht, ht being the tth diagonal element of PX . This result uses
the fact that E(utus) = 0 for t 6= s. For observations that have high leverage
(i.e., large ht) the expectation of the squared residual û2t will be substantially
smaller than

(
(n− k)/n

)
σ2
0 .

From (3.08), it is clear that the estimator

s2 ≡ y
>MXy

n− k
(3.09)

will have expectation σ2
0 if the data were actually generated by a special case of

(3.02). This estimator therefore seems a reasonable one to use in the context
of ordinary least squares, and it is what virtually all ordinary least squares
regression programs use when calculating the OLS covariance matrix. But
notice that although s2 is unbiased for σ2, s is not unbiased for σ, because
taking the square root of s2 is a nonlinear operation.
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These results make it clear that, in the case of linear regression models,
the standard OLS covariance estimator,

Vs(β̂) ≡ s2
(
X>X

)−1
, (3.10)

provides an unbiased estimate of the true covariance matrix σ2
0(X>X)−1.

However, in sharp contrast to the linear case, any attempt to draw inferences
from estimates of nonlinear regression models will be hampered by the facts
that (3.04) is itself only an approximation and that (3.06) is merely an esti-
mate of (3.04). Despite this fact, most applied workers treat (3.06), or even
(3.05), in exactly the same way as they treat the usual OLS covariance ma-
trix (3.10), to form confidence intervals for and test hypotheses about various
elements of β. Because (3.06) is only an estimate, this is a risky thing to do.
Nevertheless, in the next two sections, we discuss what is involved in doing so.

3.3 Confidence Intervals and Confidence Regions

A confidence interval for a single parameter at some level α (between 0 and 1)
is an interval of the real line constructed in such a way that we are confident
that the true value of the parameter will lie in that interval (1 − α)% of the
time. A confidence region is conceptually the same, except that it is a region in
an l--dimensional space (usually the l--dimensional analog of an ellipse) which
is constructed so that we are confident that the true values of an l--vector of
parameters will lie in that region (1−α)% of the time. Notice that, when we
find a confidence interval or region, we are not making a statement about the
distribution of the parameter itself but rather about the probability that our
random interval, because of the way it is constructed in terms of the estimates
of the parameters and of their covariance matrix, will include the true value.

In the context of regression models, we normally construct a confidence
interval by using an estimate of the single parameter in question, an estimate
of its standard error, and, in addition, a certain critical value taken from
either the normal or the Student’s t distribution. The estimated standard
error is of course simply the square root of the appropriate diagonal element
of the estimated covariance matrix. The critical value depends on 1− α, the
probability that the confidence interval will include the true value; if we want
this probability to be very close to one, the critical value must be relatively
large, and hence so must be the confidence interval.

Suppose that the parameter we are interested in is β1, that the NLS
estimate of it is β̂1, and that the estimated standard error of the estimator is

Ŝ(β̂1) ≡ s
(
(X̂>X̂)11

)−1/2
.

We first need to know how long our confidence interval has to be in terms
of the estimated standard errors Ŝ(β̂1). We therefore look up α in a table of
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two-tail critical values of the normal or Student’s t distributions or look up
α/2 in a table of one-tail critical values.1 This gives us a critical value cα. We
then find an approximate confidence interval

β̂1 − cαŜ(β̂1) to β̂1 + cαŜ(β̂1), (3.11)

that will include the true value of β1 roughly (1 − α)% of the time. For
example, if α were .05 and we used tables for the normal distribution, we
would find that a two-tail critical value was 1.96. This means that for the
normal distribution with mean µ and variance ω2, 95% of the probability mass
of this distribution lies between µ− 1.96ω and µ+ 1.96ω. Hence, in this case,
our approximate confidence interval would be

β̂1 − 1.96Ŝ(β̂1) to β̂1 + 1.96Ŝ(β̂1).

We are obviously making some very strong assumptions when we create
a confidence interval in this way. First, we are assuming that β̂1 is normally
distributed, something that is strictly justified only if we are dealing with a
linear regression model with fixed regressors and normal errors.2 Second, we
are assuming that Ŝ(β̂1) is the true standard deviation of β̂1, which will never
actually be the case. Unless the DGP is a special case of the model we have
estimated, our estimate of the covariance matrix of β̂, (3.06), will generally
not be valid, even as an approximation. Even if it is valid, s2 is only an
estimate of σ2 and X̂>X̂ is only an estimate of X>(β0)X(β0). Thus Ŝ(β̂1)
may be quite a poor estimate of S(β̂1).

In the linear case, it is customary to deal with one (but only one) of these
problems, namely, the problem that s2 is only an estimate of σ2. As we will
show in Section 3.5 below, for linear regression models with fixed regressors
and normal errors, the quantity

β̂i − β0i
Ŝ(β̂i)

(3.12)

is distributed as Student’s t with n−k degrees of freedom when the DGP is a
special case of the model being estimated. Thus, by taking the critical values
we used in (3.11) from the t(n − k) distribution instead of from the N(0, 1)
distribution, we can get an exact confidence interval in this very special case.

1 Actually, nowadays we would probably let a computer do this. Any good
statistics program should be able to find the critical value associated with any
significance level α, and the significance level associated with any critical value,
for the normal, t, F, and χ2 distributions.

2 It is justified in this case because β̂ − β0 = (X>X)−1X>u, which implies
that β̂ − β0 is simply a linear combination of the normally distributed random
variables u and must therefore be normally distributed itself.
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Using the t distribution automatically takes into account the fact that s is a
biased estimator.

When dealing with a nonlinear model, it is usually more reliable to use
the t(n − k) distribution rather than the standard normal distribution. The
resulting confidence interval will be a little wider, but in many cases it will still
not be wide enough. Most (but not all) of the time, the problems mentioned
above result in estimated confidence intervals that are too narrow. Thus it is
good practice mentally to reduce the level of confidence attached to any such
interval. This is especially important when the model is highly nonlinear,
when the error terms may be substantially nonnormal, and when the sample
size is small. Unfortunately, there is no easy rule of thumb that can tell us
how much to reduce the level of confidence in most given cases. All we can
usually do is to rely on experience, evidence from Monte Carlo simulations,
and common sense.

When we are interested in two or more parameters, it can be very mis-
leading to look at the confidence intervals for the individual parameters rather
than at the confidence region for all the parameters jointly. To see why this is
so, we must understand why a joint confidence region for l parameters has the
form of the l--dimensional analog of an ellipse. One of the results presented
in Appendix B is that if x is an l--vector distributed normally with (vector)
mean zero and covariance matrix a nonsingular l× l matrix V , then the scalar
random variable given by the quadratic form x>V −1x has the χ2 distribution
with l degrees of freedom. We can construct a confidence region for any subset
of the components of β by using this result.

Suppose that we wish to construct a confidence region for the first l
components of the k--vector β, where l > 1. To do this, we will need an
estimate of the covariance matrix of the first l elements of β̂. If l = k, we
can use either V̂ (β̂) or Vs(β̂), as given by (3.05) and (3.06). If l < k, we
must use an l × l submatrix of one of these estimated covariance matrices.
This submatrix can be obtained by the use of a formula for the inverse of
a partitioned matrix (see Appendix A) or, more easily, by use of the FWL
theorem.3 If we partition the complete parameter vector β as [β1

.... β2],
with β1 denoting the subvector of interest, and let σ̂2 be the estimate of σ2,
we obtain

V̂ (β̂1) = σ̂2
(
X̂1
>M̂2X̂1

)−1
,

where M̂2 projects off S(X̂2). It is thus just as easy to deal with the case
l < k as the case l = k. To keep the notation simple, however, we will for
the remainder of this discussion assume that we are constructing a confidence

3 While it is clear that the FWL Theorem can be used here if we are interested
in a linear regression model, it may not at this point be clear that it is also
applicable when the model is nonlinear. In the nonlinear case we must apply
the FWL Theorem to the Gauss-Newton regression that will be discussed in
Chapter 6.
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region for the entire parameter vector β, implying that l = k. For concrete-
ness, we will also assume that the estimated covariance matrix of β̂ is V̂ (β̂),
although it could just as well be Vs(β̂).

Let us denote the true (but unknown) value of β by β0. Consider the
quadratic form

(β̂ − β0)>V̂ −1(β̂)(β̂ − β0). (3.13)

This is just a random scalar that depends on the random vector β̂. For neither
a linear nor a nonlinear regression will it actually have the χ2 distribution with
l degrees of freedom in finite samples. But it is reasonable to hope that it will
be approximately distributed as χ2(l), and in fact such an approximation is
valid when the sample is large enough; see Section 5.7. Consequently, with
just as much justification (or lack of it) as for the case of a single parameter,
the confidence region for β is constructed as if (3.13) did indeed have the χ2(l)
distribution.4

For a given set of estimates β̂, the (approximate) confidence region at
level α can be defined as the set of vectors β for which the value of (3.13)
with β0 replaced by β is less than some critical value, say cα(l). This critical
value will be such that, if z is a random variable with the χ2(l) distribution,

Pr
(
z > cα(l)

)
= α.

The confidence region is therefore the set of all β for which

(β̂ − β)>V̂ −1(β̂)(β̂ − β) ≤ cα(l). (3.14)

Since the left-hand side of this inequality is quadratic in β, the region is, for
l = 2, the interior of an ellipse and, for l > 2, the interior of an l--dimensional
ellipsoid.

Figure 3.2 illustrates what a confidence ellipse can look like in the two-
parameter case. In this case, the two parameter estimates are negatively
correlated, and the ellipse is centered at the parameter estimates (β̂1, β̂2).
Confidence intervals for β1 and β2 are also shown, and it should now be clear
why it can be misleading to consider only these rather than the confidence
ellipse. On the one hand, there are clearly many points, such as (β∗1 , β

∗
2), that

lie outside the confidence ellipse but inside the two confidence intervals, and
on the other hand there are points, like (β′1, β

′
2), that are contained in the

ellipse but lie outside one or both of the confidence intervals.

4 It is also possible, of course, to construct an approximate confidence region by
using the F distribution with l and n − k degrees of freedom, and this might
well provide a better approximation in finite samples. Our discussion utilizes
the χ2 distribution primarily because it simplifies the exposition.
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Figure 3.2 Confidence ellipses and confidence intervals

It is worth spending a little more time on Figure 3.2 in order to see
more precisely the relation between a confidence ellipse and one-dimensional
confidence intervals. It is tempting to think that the latter should be given
by the extreme points of the confidence ellipse, which would imply that, for
example, the confidence interval for β1 in the figure would be given by the
line segment CD. This is, however, incorrect, a fact that can be seen in two
different, and illuminating, ways.

The first argument is as follows. The right-hand side of (3.14) is a critical
value for a χ2 distribution with, in the case of the figure, two degrees of
freedom. If one is interested in a confidence interval for one single parameter,
the relevant χ2 distribution would have only one degree of freedom. For a
given confidence level α, the critical value is an increasing function of the
number of degrees of freedom. In the present case, the 5% critical value for a
χ2 variable with one degree of freedom is 3.84, and for two degrees of freedom
it is 5.99. Therefore the ratio of the length of the confidence interval for
β1, AB in the figure, to the length of the extension of the ellipse in the β1
direction, CD in the figure, is the square root of the ratio of 3.84 to 5.99.

The second argument is more general. Recall that a confidence region
is defined so that it contains the true parameter value(s) with probability
1− α. But we can reverse the roles of β and β̂. If the true parameter values
were given by β, the region defined by (3.14) would be a region in which
the random variable β̂ would be realized with probability 1 − α. Thus the
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Figure 3.3 Why confidence ellipses are elliptical

confidence ellipse contains a probability mass of 1−α. So does the confidence
interval for β1: It too must contain a probability mass of 1 − α. In the
two-dimensional framework of Figure 3.2, the entire infinitely high rectangle
bounded by the vertical lines through the points A and B must have this
probability mass, since we are willing to allow β2 to take on any real value.
Because the infinite rectangle and the confidence ellipse must contain the same
probability mass, neither can contain the other, and we see why the ellipse
must protrude outside the region defined by the one-dimensional confidence
interval.

It is clear from (3.13) that the orientation of the confidence ellipse and
the relative lengths of its axes are determined by the estimated covariance
matrix V̂ (β̂). If the latter were diagonal, the axes of the ellipse would be
parallel to the coordinate axes. And if all the diagonal elements were equal,
the confidence region would be a sphere. There is, however, another way of
representing a confidence region geometrically, a way in which it will always
take the form of the l--dimensional analog of a sphere. This representation is
quite illuminating. For simplicity, we will restrict our attention to the case of
linear regression models with n observations and two parameters, β1 and β2.

Consider the n--dimensional space in which variables are represented as
vectors. Now restrict attention to the two-dimensional subset of the origi-
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nal n--dimensional space spanned by the two vectors X1 and X2. This two-
dimensional space is shown in panel (a) of Figure 3.3, in which we also see the
vector of fitted values, Xβ̂. We claim that the circle drawn round Xβ̂ with
radius σ̂

√
cα(2) corresponds to the confidence ellipse for β1 and β2. In fact,

this is easy to see. The equation of the circle is

‖y −Xβ̂‖ = σ̂
√
cα(2). (3.15)

Any vector y that belongs to S(X) can be expressed as Xβ for some β. Thus
(3.15) can be written as

‖Xβ −Xβ̂‖ = σ̂
√
cα(2)

or, on squaring,

(β̂ − β)>X>X(β̂ − β) = σ̂2cα(2). (3.16)

Since the estimate of the covariance matrix of β̂ is σ̂2(X>X)−1, (3.16) is just
the equation of the boundary of the confidence ellipse for β; compare (3.14).

What this means is that we have two possible geometrical representations
of the space in which β is situated. One of these is the straightforward one
shown in Figure 3.2 and in panel (b) of Figure 3.3, in which there are two
mutually perpendicular axes for the directions of the two parameters β1 and
β2, and in which the confidence region has an elliptical shape. The second is
the one seen in panel (a) of Figure 3.3, in which a point β is represented by
the vector Xβ. In a sense, it is the second representation that is more natural,
for in it the confidence region is perfectly symmetrical in all directions. Of
course, this symmetry depends on the assumption that all the error terms
have the same variance, σ2, and would no longer obtain if E(u2t |Xt) were a
function of Xt. The key point is that the circle in panel (a) and the ellipse in
panel (b) both contain the same confidence region.

Our discussion of confidence intervals and confidence regions has been
brief and geometrically oriented. For a more traditional treatment, interested
readers may wish to consult a standard reference such as Kendall and Stuart
(1979, Chapter 20). It provides a much more detailed discussion of the mean-
ing of confidence intervals and of how to construct various types of confidence
intervals and regions when the sampling distribution of the parameter esti-
mates is known. The problem with nonlinear regression models is that this
sampling distribution is never known exactly. As a result, unless the sample is
very large, there is often not much point in trying to construct sophisticated
forms of confidence intervals and confidence regions.
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3.4 Hypothesis Testing: Introduction

Economists frequently wish to test hypotheses about the regression models
they estimate. Such hypotheses normally take the form of equality restrictions
on some of the parameters. They might involve testing whether a single
parameter takes on a certain value (say, β2 = 1), whether two parameters
are related in a specific way (say, β3 = 2β4), whether a nonlinear restriction
such as β1/β3 = β2/β4 holds, or perhaps whether a whole set of linear and/or
nonlinear restrictions holds. The hypothesis that the restriction or set of
restrictions to be tested does in fact hold is called the null hypothesis and is
often denoted H0. The model in which the restrictions do not hold is usually
called the alternative hypothesis, or sometimes the maintained hypothesis,
and may be denoted H1. The terminology “maintained hypothesis” reflects
the fact that in a statistical test only the null hypothesis H0 is under test.
Rejecting H0 does not in any way oblige us to accept H1, since it is not H1

that we are testing. Consider what would happen if the DGP were not a
special case of H1. Clearly both H0 and H1 would then be false, and it is
quite possible that a test of H0 would lead to its rejection. Other tests might
well succeed in rejecting the false H1, but only if it then played the role of
the null hypothesis and some new maintained hypothesis were found.

All the hypothesis tests discussed in this book involve generating a test
statistic. A test statistic, say T , is a random variable of which the probability
distribution is known, either exactly or approximately, under the null hypo-
thesis. We then see how likely the observed value of T is to have occurred,
according to that probability distribution. If T is a number that could easily
have occurred by chance, then we have no evidence against the null hypothe-
sis H0. However, if it is a number that would occur by chance only rarely, we
do have evidence against the null, and we may well decide to reject it.

The classical way to perform a test is to divide the set of possible values
of T into two regions, the acceptance region and the rejection region (or
critical region). If T falls into the acceptance region, the null hypothesis is
accepted (or at any rate not rejected), while if it falls into the rejection region,
it is rejected.5 For example, if T were known to have a χ2 distribution, the
acceptance region would consist of all values of T equal to or less than a
certain critical value, say C, and the rejection region would then consist of all
values greater than C. If instead T were known to have a normal distribution,
then for a two-tailed test the acceptance region would consist of all absolute
values of T less than or equal to C. Thus the rejection region would consist of

5 The terms “acceptance region” and “rejection region” are also used to refer
to subsets of the sample space. Any given sample, say y, generates a test
statistic T . If T falls within its rejection region, then so does y, and similarly
if T falls within its acceptance region. In this way, the entire sample space can
be divided into two regions that correspond to acceptance and rejection of the
null hypothesis.
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two parts, one part containing values greater than C and one part containing
values less than −C.

The size of a test is the probability that the test statistic will reject the
null hypothesis when the latter is true. Let θ denote the vector of parameters
to be tested; Θ0, the set of values of θ that satisfy H0; and R, the rejection
region. Then the size of the test T is

α ≡ Pr (T ∈ R | θ ∈ Θ0).

The size of a test is also called its significance level. Conventionally it is
chosen to be a small number, generally in the range of .001 to .10. It is often
chosen more or less arbitrarily, and as we discuss below this feature of classical
hypothesis testing is sometimes rather unsatisfactory.

We perform tests in the hope that they will reject the null hypothesis
when it is false. Accordingly, the power of a test is of great interest. The power
of a test statistic T is the probability that T will reject the null hypothesis
when the latter is not true. Formally, it may be defined as

Pr (T ∈ R | θ 6∈ Θ0).

Power will obviously depend on how the data were actually generated. If the
null hypothesis were only slightly false, we would expect power to be lower
than if it were grossly false. We would also expect power to increase with
the sample size, n. If for any θ in a certain region of the parameter space,
say Θ1, the power of a test tends to unity as n → ∞, that test is said to
be consistent against alternatives in Θ1. Of course a test may be consistent
against some alternatives and not against others. Just what determines the
power of test statistics, when the DGP is and is not a special case of the
alternative hypothesis, will be discussed in Chapters 12 and 13.

The classical way to perform a test is first to choose its size and then to use
that size to determine a critical value by looking at tables of the appropriate
distribution. For example, if a test statistic is distributed as χ2(1) under the
null, a critical value at the .05 (or 5%) level is 3.84, because the probability
of obtaining a random drawing from a χ2(1) distribution that is greater than
3.84 is .05. Then if the test statistic turned out to be, say, 3.51, we would
not reject the null at the .05 level, while if it turned out to be, say, 5.43, we
would reject the null at that level.

There are two problems with this procedure. First, the choice of test size
is more or less arbitrary. It simply reflects how willing we are to make the
mistake of rejecting a null hypothesis when it is true (or committing a Type I
error) rather than accepting the null when it is false (or committing a Type II
error). If we want very badly to avoid Type I errors, we will use a very low sig-
nificance level, certainly no more than .01 and probably .001 or even less. If we
are more concerned with Type II errors, we will use a higher level, like .05 or
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even .10. If one investigator decides to conduct a test at the .05 level and an-
other decides to conduct the same test at the .01 level, they may come up with
different results. This creates serious problems for readers who are trying to
interpret those results, especially if only the outcomes of the tests (rather than
the actual values of the test statistics) have been reported. Reporting only
the outcomes of tests is a practice that we abhor and strongly advise against.

This brings up the second problem. If an investigator actually reports the
values of test statistics, readers can potentially draw their own conclusions,
but it may require some effort on their part to convert reported test statistics
into meaningful numbers. It is much easier for readers if authors adopt an
alternative way of reporting the results of tests, which is now becoming quite
common. This is to report the P value (or marginal significance level) associ-
ated with every test statistic, either in addition to or instead of the statistics
themselves, since the latter contain no more information than the P values.
The P value is the probability, if the test statistic really were distributed as
it would be under the null hypothesis, of observing a test statistic no less
extreme than the one actually observed. If it is less than α, then we would
reject at the α level.

It is not usually possible to calculate P values from tables of distributions,
but it is easy to do so if one has appropriate computer software (which should
be included in most modern regression packages); the increasingly widespread
use of more and more powerful computers probably accounts for the growing
popularity of the P value approach. In the example above, instead of reporting
test statistics of 3.51 and 5.43, the investigator would use the fact that these
are supposed to have come from a χ2(1) distribution under the null and report
P values of .0610 and .0198, respectively. These P values tell us that for the
χ2(1) distribution, numbers as large or larger than 3.51 would occur by chance
about 6.1% of the time, while numbers as large or larger than 5.43 would occur
by chance just under 2% of the time.

The P value approach does not necessarily force us to make a decision
about the null hypothesis. If we obtain a P value of, say, .000001, we will
almost certainly want to reject the null. But if we obtain a P value of, say, .04
or even .004, we are not obliged to reject it. We may simply file the result away
as information that casts some doubt on the null hypothesis, but that is not,
by itself, conclusive. We believe that this somewhat agnostic attitude toward
test statistics, in which they are merely regarded as pieces of information that
we may or may not want to act upon, is usually the most sensible one to
take. It is perhaps especially appropriate in the case of nonlinear regression
models, where P values are generally only approximate (and sometimes rather
inaccurate).

It is important to be clear that a P value is not the probability that the
null hypothesis is correct. By itself, it cannot let us deduce this probability.
In the classical framework of hypothesis testing, a hypothesis either is or is
not true, and we cannot speak about the probability that it is true. In the
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Bayesian framework, which we will not employ in this book, one can talk
about the probability that a hypothesis is true, but one has to make use
of prior information on this probability, and one has to specify what other
hypotheses might be true. Then given the prior probability that a hypothesis
is true and the evidence from the test statistic, one can compute a posterior
probability that the hypothesis holds. The latter may be very much larger
than the P value.6

As we indicated above, the distribution that a test statistic is supposed
to have under the null hypothesis may or may not be known precisely. If
it is known, then the test is commonly referred to as an exact test; if not,
the test will usually be based on a distribution that is known to apply only
asymptotically and so may be referred to as an asymptotic test. Exact tests
are rarely available for nonlinear regression models. However, there is a very
special case in which exact tests of linear restrictions are available. The re-
gression function must be linear, it must be possible to treat the regressors as
if they were fixed in repeated samples, and the error terms must be normally
and independently distributed. In the next section, we will define the term
“fixed in repeated samples” and discuss this special case. Then, in Section
3.6, we will discuss the three basic principles that underlie the construction of
most test statistics and show how they may be applied to nonlinear regression
models.

3.5 Hypothesis Testing in Linear Regression Models

All students of econometrics are familiar with t statistics for testing hypo-
theses about a single parameter and F statistics for testing hypotheses about
several parameters jointly. If β̂i denotes the least squares estimate of the para-
meter βi, the t statistic for testing the hypothesis that βi is equal to some
specified value β0i is simply expression (3.12), that is, β̂i− β0i divided by the
estimated standard error of β̂i. If β̂ denotes a set of unrestricted least squares
estimates and β̃ denotes a set of estimates subject to r distinct restrictions,
then the F statistic for testing those restrictions may be calculated as(

SSR(β̃)− SSR(β̂)
)
/r

SSR(β̂)/(n− k)
=

1

rs2
(
SSR(β̃)− SSR(β̂)

)
. (3.17)

Tests based on t and F statistics may be either exact or approximate. In
the very special case referred to at the end of the last section, in which the
regression model and the restrictions are both linear in the parameters, the
regressors are (or can be treated as) fixed in repeated samples, and the error
terms are normally and independently distributed, ordinary t and F statistics

6 For discussion of the relationship between P values and Bayesian inference, see
Lindley (1957), Shafer (1982), and Berger and Sellke (1987), among others.
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actually are distributed in finite samples under the null hypotheses according
to their namesake distributions. Although this case is not encountered nearly
as often as one might hope, these results are sufficiently important that they
are worth a separate section. Moreover, it is useful to keep the linear case
firmly in mind when considering the case of nonlinear regression models.

Consider the restricted model

y = X1β1 + u (3.18)

and the unrestricted model

y = X1β1 +X2β2 + u, (3.19)

where the error terms u are assumed to follow the multivariate normal dis-
tribution with mean vector zero and covariance matrix σ2I. The parameter
vector β has been divided into two subvectors, β1 and β2, with k − r and r
components, respectively. We are interested in testing the null hypothesis
that β2 = 0. The restricted estimates are β̃ = [β̃1

.... 0], and the unrestricted
ones are β̂ = [β̂1

.... β̂2]. By limiting our attention to a test of zero restric-
tions, we in no way limit the generality of our results, since, as we showed in
Section 1.3, any set of linear restrictions on a linear model can always, by a
suitable reparametrization, be rewritten as a set of zero restrictions.

It follows from expression (3.07) that SSR(β̃) = y>M1y, where M1 de-
notes the projection onto S⊥(X1), the orthogonal complement of the span of

X1. Similarly, SSR(β̂) = y>MXy, where MX denotes the projection onto
S⊥(X), the orthogonal complement of the span of X ≡ [X1 X2]. By the
FWL Theorem (see Section 1.4), y>MXy, which is the sum of squared resid-
uals from regression (3.19), is identical to the SSR from the regression

M1y = M1X2β2 + residuals.

Thus we see that

SSR(β̂) ≡ y>MXy = y>M1y − y>M1X2

(
X2
>M1X2

)−1
X2
>M1y. (3.20)

From (3.07) and (3.20), it then follows that r times the numerator of the F
statistic (3.17) is

y>M1X2

(
X2
>M1X2

)−1
X2
>M1y =

∥∥PM1X2y
∥∥2, (3.21)

where PM1X2 ≡M1X2(X2
>M1X2)−1X2

>M1 is the matrix that projects onto
S(M1X2). Under the DGP

y = X1β10 + u, u ∼ N(0, σ2
0 I), (3.22)
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the two sides of expression (3.21) become

u>M1X2

(
X2
>M1X2

)−1
X2
>M1u =

∥∥PM1X2
u
∥∥2, (3.23)

because M1 annihilates X1β10.

Expression (3.23), which is r times the numerator of the F statistic under
the DGP (3.22), can be thought of as a quadratic form in the random r--vector

v ≡X2
>M1u, (3.24)

which is normally distributed (since it is just a linear combination of the
normally distributed random variables that are the elements of u) with mean
zero and covariance matrix

Ω ≡ E
(
X2
>M1uu

>M1X2

)
= σ2

0X2
>M1X2. (3.25)

Thus, using (3.24) and (3.25), the left-hand side of expression (3.23) becomes

σ2
0v
>Ω−1v. (3.26)

This is σ2
0 times a quadratic form in the r--vector v, which is multivariate

normal with mean vector zero, and in the inverse of its covariance matrix, Ω.
Thus from the familiar result on quadratic forms in normal random vectors
that was used previously in Section 3.3, we conclude that 1/σ2

0 times (3.26)
is distributed as χ2(r).

If the sample size were infinitely large, we could stop at this point. The
estimate s2 would be indistinguishable from the true value σ2

0 . Therefore,
under the null hypothesis, r times the F statistic (3.17) would be equal to

1

σ2
0

u>M1X2

(
X2
>M1X2

)−1
X2
>M1u,

and we have just seen that this quantity is distributed as χ2(r) under H0.
In a finite sample, however, s2 will be a random variable that estimates σ2

0

with precision that increases with n− k. We must therefore consider how the
denominator of the F statistic (3.17) is distributed. Under the DGP (3.22),
(n− k)s2 is, by equation (3.09), equal to

u>MXu. (3.27)

In Appendix B, we demonstrate that any idempotent quadratic form in in-
dependent standard normal random variables has the χ2 distribution with
number of degrees of freedom equal to the rank of the idempotent matrix.
Clearly u>MXu/σ

2
0 is such an idempotent quadratic form, and since the rank

ofMX is n−k, we conclude that 1/σ2
0 times the denominator of the F statistic

is distributed as χ2(n− k).
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Thus the F statistic (3.17) is (n − k)/r times the ratio of two random
variables, the numerator being distributed as χ2(r) and the denominator as
χ2(n − k). Provided that these two random variables are independent of
each other, their ratio will be distributed as F (r, n − k) (see Appendix B).
A sufficient condition for them to be independent is that

MXPM1X2
= 0.

This is indeed the case, because S(M1X2), the space spanned by M1X2, is
a subspace of S(X), the space spanned by X1 and X2 jointly; to see this,
observe that M1X2 = X2 − P1X2. Thus MX annihilates PM1X2 .

A more intuitive explanation of why the quadratic forms (3.23) and (3.27)
are independent is the following. The quadratic form that appears in the de-
nominator, (3.27), is the sum of squared residuals from the unrestricted model
(3.19). Those residuals are what is left after u is projected off everything that
lies in S(X). In contrast, the quadratic form that appears in the numerator,
(3.23), is the sum of squared reductions in the residuals from the restricted
model achieved by adding X2 to the regression. Those reductions must lie
in S(X). As a result, the random variables that appear in the numerator lie
in a subspace orthogonal to the one in which lie the random variables that
appear in the denominator. These two sets of random variables are therefore
independent. This can be seen quite clearly in Panel (a) of Figure 1.7, for the
case r = 1 and k = 2.

We have now verified that the F statistic (3.17) does indeed have the F
distribution with r and n− k degrees of freedom for the case of linear models
subject to linear restrictions and normally distributed error terms. A simple
corollary of this result is that for the same case, the ordinary t statistic (3.12)
has the Student’s t distribution with n − k degrees of freedom. To see this,
suppose that X2 consists of a single column, which we will call x2. Then, by
the FWL Theorem, the estimate of β2 from (3.19) is identical to the estimate
from the regression

M1y = M1x2β2 + residuals,

which is equal to (
x2
>M1x2

)−1
x2
>M1y.

The estimated standard error of β̂2 is s(x2
>M1x2)−1/2. Thus the t statistic

for β2 = 0 is

x2
>M1y

s(x2
>M1x2)1/2

.

The square of this t statistic is

1

s2
y>M1x2

(
x2
>M1x2

)−1
x2
>M1y, (3.28)



3.5 Hypothesis Testing in Linear Regression Models 85

which is evidently just the F statistic (3.17) for the special case r = 1. Since
the square root of a random variable that has the F (1, n−k) distribution has
the t(n − k) distribution (see Appendix B), we have proved the corollary we
set out to prove.

The geometry of t and F statistics is interesting. The square of the t
statistic we have been looking at is given by (3.28). It depends on s, the OLS
estimate of σ, which is given by

s ≡
(
y>MXy

n− k

)1/2
. (3.29)

From the FWL Theorem we know that

y>MXy = y>M1MM1x2M1y, (3.30)

where MM1x2
denotes the matrix that projects off S(M1x2). In words, this

result simply says that the sum of squared residuals from regressing y on X
is the same as the sum of squared residuals from regressing M1y on M1x2.
Using (3.29) and (3.30), we can rewrite the squared t statistic (3.28) as

(n− k)
y>M1x2

(
x2
>M1x2

)−1
x2
>M1y

y>M1MM1x2
M1y

= (n− k)
y>M1PM1x2

M1y

y>M1MM1x2
M1y

,

(3.31)

and the t statistic itself can therefore be written as

sign(y>M1x2)(n− k)1/2
‖PM1x2

M1y‖
‖MM1x2

M1y‖
.

We thus see that t statistics have a simple geometric interpretation. If we
interpret y in Figure 1.3 as representing M1y and S(X) as representing
S(M1x2), then it is evident that the t statistic on β2 is just (n− k)1/2 times
the cotangent of the angle φ (see Appendix A). When that angle is zero, so
that M1x2 explains M1y perfectly, the t statistic is either plus or minus in-
finity, depending on the sign of β̂2. On the other hand, when that angle is
90◦, so that M1x2 has no explanatory power at all for M1y, the t statistic
is zero. For any angle φ that is neither zero nor 90◦, the magnitude of the t
statistic will be proportional to (n − k)1/2. Thus, if M1x2 does in fact have
some ability to explain M1y, we would expect the t statistic to allow us to
reject the null hypothesis with probability one when the sample size is large
enough.
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The above results evidently apply with slight modification to F statistics
as well. If X2 has r columns instead of one, the F statistic for testing β2 = 0
can be written in a form equivalent to (3.31) as

n− k
r
×
y>M1X2

(
X2
>M1X2

)−1
X2
>M1y

y>M1MM1X2
M1y

=
n− k
r
× ‖PM1X2M1y‖2

‖MM1X2
M1y‖2

.

(3.32)

Hence the F statistic is equal to (n− k)/r times the squared cotangent of
the angle φ between the vectors M1y and PM1X2M1y; see Figure 1.3 again,
keeping in mind that M1y now plays the role of y and S(M1X2) plays the
role of S(X). As we saw in Chapter 1, the squared cosine of φ is the R2 for
the regression of, in this case, M1y on M1X2. This suggests that there must
be a close relationship between F statistics and R2. That is indeed the case.

A common use of the F test is to test the null hypothesis that all coef-
ficients except the constant term are zero. This is a test for β2 = 0 in the
regression model

y = β1 +X2β2 + u, (3.33)

where X2 is now n × (k − 1). By the FWL Theorem, the SSR from this
regression is identical to the SSR from the regression

Mιy = MιX2β2 + residuals,

which is
y>Mιy − y>MιX2

(
X2
>MιX2

)−1
X2
>Mιy.

Thus the difference between the restricted and unrestricted sums of squared
residuals is

y>MιX2

(
X2
>MιX2

)−1
X2
>Mιy =

∥∥PMιX2
Mιy

∥∥2,
and the F statistic for the hypothesis that β2 = 0 is

n− k
k − 1

× ‖PMιX2
Mιy‖2

‖MMιX2Mιy‖2
, (3.34)

which is a special case of (3.32).

Because (3.33) does contain a constant term, the centered R2 for that
regression is

R2
c =
‖PMιX2Mιy‖2

‖Mιy‖2
.

Evidently this is, as usual, the squared cosine of the angle between PMιX2Mιy
and Mιy, while the F statistic (3.34) is equal to (n − k)/(k − 1) times the
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squared cotangent of the same angle. It is thus possible to express this F
statistic as

n− k
k − 1

× R2
c

1−R2
c

.

This result can be shown by using the fact that cot2φ = cos2φ/(1 − cos2φ)
or by simple algebra from the definitions of F and R2

c . Note, however, that
one should normally avoid computing an F statistic in this way, unless both
R2
c and 1−R2

c are known to at least as many digits of accuracy as are desired
for the F statistic. Many regression packages report the R2 as a three or four
digit number, and 1−R2 may then be accurate to only one or two digits.

It is possible to express the centered R2 as

R2
c = 1− ‖MMιX2

Mιy‖2

‖Mιy‖2
= 1− ‖MXy‖2/n

‖Mιy‖2/n
.

The numerator of the second term on the right-hand side here is simply σ̂2,
which we have seen is a biased estimate of σ2. The denominator is likewise a
biased estimate of the variance of yt around its unconditional mean. It seems
natural to replace these biased estimates by unbiased ones. Doing so yields
R̄2, the adjusted R2, which is defined by

R̄2 = 1− ‖MXy‖2/(n− k)

‖Mιy‖2/(n− 1)
= 1− n− 1

n− k
‖MXy‖2

‖Mιy‖2
.

One almost never sees an uncentered version of R̄2, and so we have omitted
the c subscript here.

The quantity R̄2 is reported by virtually all regression packages. In most
cases, however, it is not an estimate of any model parameter (since for most
models the variance of yt around its unconditional mean will depend on the
distribution of the right-hand side variables), and it is not particularly useful
in practice. The widespread use of R̄2 dates from the early days of economet-
rics, when sample sizes were often small and investigators were often overly
impressed with models that fit well in the sense of having a large R2

c . Peo-
ple quickly found that adding extra regressors to a linear regression always
increased the ordinary (centered or uncentered) R2, especially when the sam-
ple size was small. This led some investigators to estimate severely over-
parametrized models. The use of R̄2 rather than R2

c was advocated as a way
to deal with this problem, because adding an extra regressor will increase R̄2

only if the proportional reduction in the SSR is greater than the proportional
reduction in n− k.

As we remarked at the beginning of this section, all of the exact results
on the distribution of t and F statistics (and on the finite-sample distribu-
tion of OLS estimators in general) require that the error terms be normally
distributed. They also require that the regressors either be fixed in repeated
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samples or can be treated as if they were. The latter possibility requires some
comment. The reason it is convenient to assume fixed regressors is that we
want to be able to treat matrix expressions which depend on the regressors as
constants for the purpose of taking expectations. Thus with this assumption
we can, for example, assert that

E
(
(X>X)−1X>u

)
=
(
X>X

)−1
X>E(u) = 0. (3.35)

The fixed regressors assumption certainly allows us to do this, but it is un-
comfortably strong in most econometric applications.

A weaker assumption which has the same effect is to assume that all
expectations we take are conditional on the X matrix; thus, for example,
E(u) in (3.35) is to be interpreted as E(u |X). Since we are conditioning
on X, we are in effect treating it as fixed. However, unless the X matrix is
genuinely independent of the errors u, the t and F statistics will no longer
be distributed according to their nominal distributions. This problem arises
in the case of a dynamic model, in which u cannot be independent of lagged
values of the dependent variable.

3.6 HypothesisTesting inNonlinearRegressionModels

There are at least three different ways that we can derive test statistics for
hypotheses about the parameters of nonlinear regression models. They are
to utilize the Wald principle, the Lagrange multiplier principle, and the like-
lihood ratio principle. These yield what are often collectively referred to as
the three “classical” test statistics. In this section, we introduce these three
principles and show how they yield test statistics for hypotheses about β
in nonlinear regression models (and implicitly in linear regression models as
well, since linear models are simply a special case of nonlinear ones). The
three principles are very widely applicable and will reappear in other contexts
throughout the book.7 A formal treatment of these tests in the context of
least squares will be provided in Chapter 5. They will be reintroduced in
the context of maximum likelihood estimation in Chapter 8, and a detailed
treatment in that context will be provided in Chapter 13. Valuable references
include Engle (1984) and Godfrey (1988), and an illuminating introductory
discussion may be found in Buse (1982).

7 We refer to tests based on the “Lagrange multiplier principle,” “Wald prin-
ciple,” and “likelihood ratio principle” rather than to “Lagrange multiplier
tests,” “Wald tests,” and “likelihood ratio tests” because many authors use the
latter terms in a rather narrow sense to refer only to tests for models estimated
by the method of maximum likelihood (see Chapters 8 and 13). We believe
this narrow usage of the terms is likely to diminish over time as the general
applicability of the three principles becomes more widely recognized.
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The Wald principle, which is due to Wald (1943), is to construct a test
statistic based on unrestricted parameter estimates and an estimate of the
unrestricted covariance matrix. If the hypothesis involves just one restriction,
say that βi = β∗i , then one can calculate the pseudo-t statistic

β̂i − β∗i
Ŝ(β̂i)

. (3.36)

We refer to this as a “pseudo-t” statistic because it will not actually have the
Student’s t distribution with n− k degrees of freedom in finite samples when
xt(β) is nonlinear in the parameters, xt(β) depends on lagged values of yt, or
the errors ut are not normally distributed. However, it will be asymptotically
distributed as N(0, 1) under quite weak conditions (see Chapter 5), and its
finite-sample distribution is frequently approximated quite well by t(n− k).

In the more general case in which there are r restrictions rather than
just one to be tested, Wald tests make use of the fact that if v is a random
r--vector which is normally distributed with mean vector zero and covariance
matrix Λ, then the quadratic form

v>Λ−1v (3.37)

must be distributed as χ2(r). This result is proved in Appendix B, and we
used it in Sections 3.3 and 3.5 above.

To construct an asymptotic Wald test, then, we simply have to find a
vector of random variables that should under the null hypothesis be asymp-
totically normally distributed with mean vector zero and a covariance matrix
which we can estimate. For example, suppose that β is subject to the r (≤ k)
linearly independent restrictions

Rβ = r, (3.38)

where R is an r × k matrix of rank r and r is an r--vector. We have assumed
that the restrictions are linear purely for simplicity, not because Wald tests
cannot handle nonlinear restrictions. However, because Wald tests are not
invariant to nonlinear reparametrizations of the model or the restrictions, one
must exercise caution when testing nonlinear restrictions by means of such
tests. This will be discussed in Chapter 13; see Gregory and Veall (1985),
Lafontaine and White (1986), and Phillips and Park (1988). Thus it seems
appropriate to restrict attention to the linear case for now.

Suppose that we evaluate the vector Rβ−r at the vector of unrestricted
estimates β̂ so as to obtain the random r--vector

Rβ̂ − r. (3.39)

As we will prove in Chapter 5, if the data were actually generated by the
model being tested, the vector of estimates β̂ would tend asymptotically to
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the true parameter vector β0, and the covariance matrix of β̂ around β0 could

be validly estimated by s2(X̂>X̂)−1. If the restriction (3.38) does in fact hold,
it must be the case that

Rβ̂ − r = R(β̂ − β0) +Rβ0 − r = R(β̂ − β0).

This shows that each element of Rβ̂ − r is just a linear combination of the
elements of β̂ − β0. Thus the covariance matrix of (3.39) must be

V
(
R(β̂ − β0)

)
= RV (β̂)R>,

which can be estimated by the matrix

s2R
(
X̂>X̂

)−1
R>. (3.40)

Putting together (3.39) and (3.40), we obtain the Wald statistic

(Rβ̂ − r)>
(
s2R(X̂>X̂)−1R>

)−1
(Rβ̂ − r)

=
1

s2
(Rβ̂ − r)>

(
R(X̂>X̂)−1R>

)−1
(Rβ̂ − r).

(3.41)

Provided that β̂ is asymptotically normally distributed and that V (β̂) does
indeed converge asymptotically to its true covariance matrix, it should be clear
that (3.41) will be asymptotically distributed as χ2(r). If we were testing the
simple hypothesis that βi = β∗i , R would be a row vector with 1 in the ith

position and zeros everywhere else, and r would be equal to β∗i . In this case,
the square of the pseudo-t statistic (3.36) is precisely the Wald statistic (3.41).

The second approach to calculating test statistics is to estimate the model
subject to the restrictions that are to be tested and then to base a test statistic
on those restricted estimates. This is often referred to as the Lagrange mul-
tiplier (or LM) principle, because one way to derive restricted least squares
estimates is to set up a Lagrangian that is simultaneously minimized with
respect to the parameters and maximized with respect to the Lagrange mul-
tipliers. If the restrictions were in fact true, one would expect the estimated
Lagrange multipliers to have mean zero (at least asymptotically); the idea of
LM tests is to see whether this is in fact the case.

To estimate a model like (3.01) subject to the restrictions (3.38), we may
set up the Lagrangian

1−
2

(
y − x(β)

)>(y − x(β)
)

+ (Rβ − r)>λ, (3.42)

where λ is an r--vector of Lagrange multipliers, and the function SSR(β) has
been multiplied by one-half to simplify the algebra. The first-order conditions
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obtained by differentiating (3.42) with respect to β and λ and setting the
derivatives to zero are

−X>(β̃)
(
y − x(β̃)

)
+R>λ̃ = 0 (3.43)

Rβ̃ − r = 0, (3.44)

where β̃ denotes the restricted estimates and λ̃ denotes the estimated La-
grange multipliers. From (3.43), we see that

R>λ̃ = X̃>
(
y − x̃

)
, (3.45)

where, as usual, x̃ and X̃ denote x(β̃) and X(β̃). The expression on the
right-hand side of (3.45) is minus the k--vector of the derivatives of 1

2SSR(β)
with respect to all the elements of β, evaluated at β̃. This vector is often
called the score vector. Since y − x̃ is simply a vector of residuals, which
should converge asymptotically under H0 to the vector of error terms u, it
seems plausible that the asymptotic covariance matrix of the vector of scores is

σ2
0X
>(β0)X(β0). (3.46)

Subject to certain asymptotic niceties, that is indeed the case, and a more
rigorous version of this result will be proved in Chapter 5.

The obvious way to estimate (3.46) is to use s̃2X̃>X̃, where s̃2 is
SSR(β̃)/(n − k + r). Putting this estimate together with the expressions on
each side of (3.45), we can construct two apparently different, but numerically
identical, test statistics. The first of these is

λ̃>R
(
s̃2X̃>X̃

)−1
R>λ̃ =

1

s̃2
λ̃>R

(
X̃>X̃

)−1
R>λ̃. (3.47)

In this form, the test statistic is clearly a Lagrange multiplier statistic. Since λ̃
is an r--vector, it should not be surprising that this statistic would be asymp-
totically distributed as χ2(r). A proof that this is the case follows from
essentially the same arguments used in the case of the Wald test, since (3.47)
is a quadratic form similar to (3.37). Of course, the result depends critically
on the vector λ̃ being asymptotically normally distributed, something that
we will prove in Chapter 5.

The second test statistic, which we stress is numerically identical to the
first, is obtained by substituting X̃>(y − x̃) for R>λ̃ in (3.47). The result,
which is the score form of the LM statistic, is

1

s̃2
(y − x̃)>X̃

(
X̃>X̃

)−1
X̃>(y − x̃) =

1

s̃2
(y − x̃)>P̃X(y − x̃), (3.48)

where P̃X ≡ X̃(X̃>X̃)−1X̃>. It is evident that this expression is simply the
explained sum of squares from the artificial linear regression

1

s̃
(y − x̃) = X̃b + residuals, (3.49)
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where b is a k--vector of artificial parameters. In regression (3.49), the residuals
y − x̃ are each divided by s̃, the estimated standard error of the restricted
regression, and then regressed on the matrix X̃. This regression is an example
of the Gauss-Newton regression, or GNR, which will be discussed at length
in Chapter 6. It is clear that the score form of the LM statistic can easily
be calculated once the restricted estimates β̃ have been obtained, whether or
not the Lagrangian (3.42) was explicitly used to obtain them. LM tests can
almost always be calculated by means of artificial linear regressions, as we
will see in Chapter 6 for nonlinear regression models and in Chapters 13, 14,
and 15 for models estimated by maximum likelihood.

The third and final approach to testing hypotheses about β is to estimate
the model both subject to the restrictions and unrestrictedly, thus obtaining
two values of SSR(β), which we will denote SSR(β̃) and SSR(β̂). A pseudo-F
statistic may then be calculated as(

SSR(β̃)− SSR(β̂)
)
/r

SSR(β̂)/(n− k)
=

SSR(β̃)− SSR(β̂)

rs2
. (3.50)

We have already seen that this test statistic has exactly the F (r, n−k) distri-
bution when it is used to test linear restrictions on linear models with normal
errors. We will prove in Chapter 5 that it has in general the F (r, n− k) dis-
tribution (and also that r times it has the χ2(r) distribution), asymptotically.
As we will see in Chapter 6, asymptotically valid pseudo-F statistics may also
be calculated from artificial regressions similar to (3.49) but in which the re-
gressand has not necessarily been divided by s̃. We simply replace SSR(β̂) in
(3.50) by the sum of squared residuals from the artificial regression.

The basic idea of the test statistic (3.50) is to look at the difference
between the values of the objective function SSR(β) at the restricted and un-
restricted estimates. The denominator simply serves as a normalizing factor.
Later in the book, when we discuss maximum likelihood estimation, we will
find that hypothesis tests can also be based on the difference between the re-
stricted and unrestricted values of the log of the likelihood function. Because
the difference of two logarithms is the logarithm of a ratio (in this case, the
ratio of the unrestricted to the restricted value of the likelihood function),
these are known as likelihood ratio tests, or LR tests. It may be stretching
terminology somewhat to call (3.50) an LR test, but it is certainly reasonable
to say that (3.50) is based on the likelihood ratio principle if the latter is
broadly defined to mean basing a test on the difference between the values of
an objective function at the restricted and unrestricted estimates.

One of the remarkable features of the LM, LR, and Wald principles is
that tests based on them are asymptotically equivalent. Intuitively, what
this means is that if the sample size were large enough and the hypothesis
being tested were either true or almost true (in a sense to be made precise in
Chapters 12 and 13), then test statistics of the same null hypothesis based on
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any of the three principles would yield exactly the same results. Of course, in
finite samples and with models that may not be true, the three principles can
sometimes yield tests that give quite different results. As a result, the choice
among tests often depends on which test has a finite-sample distribution that
is most closely approximated by its large-sample distribution.

A proof of the asymptotic equivalence of LM, LR, and Wald tests in the
context of nonlinear regression models is well beyond the scope of this chapter.
However, for the special case of linear regression models, such a proof is quite
easy. For simplicity, we will assume the situation of Section 3.5, without the
normality assumption, since we are no longer trying to derive exact results.
The null hypothesis is that β2 = 0 in the regression

y = Xβ + u = X1β1 +X2β2 + u, u ∼ IID(0, σ2I).

As we saw in Section 3.5, application of the likelihood ratio principle to this
testing problem yields the F statistic

‖PM1X2
y‖2

rs2
, (3.51)

r times which would be asymptotically distributed as χ2(r). Of course, there
is nothing in the LR principle to require us to use an F test rather than a χ2

test, and nothing in the Wald or LM principles to require us to employ χ2 tests
rather than F tests. The choice between the F and χ2 forms should normally
be based on finite-sample considerations, which generally favor the F form.

Now let us see what happens when we apply the Wald and LM principles.
The general formula for the Wald test of a nonlinear regression model is (3.41).
In this case, Rβ̂ − r is just β̂2. We can use the FWL Theorem to derive an
expression for the latter, thereby obtaining

Rβ̂ − r = β̂2 =
(
X2
>M1X2

)−1
X2
>M1y.

In this case, the matrix R is just [0k−r Ir]. Thus R(X>X)−1R>, which we
need to calculate the Wald statistic, is just the lower right-hand r× r block of
the matrix (X>X)−1. We can easily find this using the FWL Theorem or the
formulas for partitioned inverses in Appendix A; it is simply (X2

>M1X2)−1.
Hence the Wald statistic (3.41) is

1

s2
y>M1X2

(
X2
>M1X2

)−1
X2
>M1X2

(
X2
>M1X2

)−1
X2
>M1y

=
1

s2
y>M1X2

(
X2
>M1X2

)−1
X2
>M1y =

1

s2
∥∥PM1X2

y
∥∥2, (3.52)

which is equal to r times (3.51). Thus, in this case, the Wald and LR principles
yield essentially the same test statistics. The only difference is that we chose
to write the Wald statistic (3.52) in χ2 form and the LR statistic (3.51) in F
form.
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What about the LM principle? We have seen that the LM statistic (3.48)
is equal to the explained sum of squares from the artificial regression (3.49),
which in this case is

1

s̃
M1y = X1b1 +X2b2 + residuals. (3.53)

Since the regressand here is orthogonal to X1, the explained sum of squares
from (3.53) must, by the FWL Theorem, be equal to the explained sum of
squares from the regression

1

s̃
M1y = M1X2b2 + residuals,

which is

1

s̃2
y>M1X2

(
X2
>M1X2

)−1
X2
>M1y =

1

s̃2
∥∥PM1X2

y
∥∥2.

Thus, for linear restrictions on linear regression models, the only difference
between the LM statistic and the Wald and LR statistics is that the former
uses s̃2 to estimate σ2 while both of the latter use s2. If σ2 were known, all
three test statistics would be identical. If the null hypothesis holds, both s̃2

and s2 should tend to σ2 as the sample size becomes large. Thus all three test
statistics are seen to be asymptotically equivalent. Even in finite samples,
one would expect s̃2 and s2 to be quite similar when H0 is true unless the
sample is extremely small. If the null were in fact true, substantial differences
between the three statistics would therefore be unlikely. Of course, if the null
were false, s̃2 and s2 could differ substantially, and hence the LM statistic
could be quite different from the other two test statistics in that case.

3.7 Restrictions and Pretest Estimators

In the preceding three sections, we have discussed hypothesis testing at some
length, but we have not said anything about one of the principal reasons for
imposing and testing restrictions. In many cases, restrictions are not implied
by any economic theory but are imposed by the investigator in the hope
that a restricted model will be easier to estimate and will yield more efficient
estimates than an unrestricted model. Tests of this sort of restriction include
DWH tests (Chapter 7), tests for serial correlation (Chapter 10), common
factor restriction tests (Chapter 10), tests for structural change (Chapter 11),
and tests on the length of a distributed lag (Chapter 19). In these and many
other cases, restrictions are tested in order to decide which model to use as a
basis for inference about the parameters of interest and to weed out models
that appear to be incompatible with the data. However, because estimation
and testing are based on the same data, the properties of the final estimates
may be very difficult to analyze. This is the problem of pretesting.
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For simplicity, we will in this section consider only the case of linear
regression models with fixed regressors, some coefficients of which are subject
to zero restrictions. The restricted model will be (3.18), in which y is regressed
on an n × (k − r) matrix X1, and the unrestricted model will be (3.19), in
which y is regressed on X1 and an n × r matrix X2. The OLS estimates of
the parameters of the restricted model are

β̃1 =
(
X1
>X1

)−1
X1
>y.

The OLS estimates of these same parameters in the unrestricted model can
easily be found by using the FWL Theorem. They are

β̂1 =
(
X1
>M2X1

)−1
X1
>M2y,

where M2 denotes the matrix that projects orthogonally onto S⊥(X2).

It is natural to ask how well the estimators β̃1 and β̂1 perform relative
to each other. If the data are actually generated by the DGP (3.22), which
is a special case of the restricted model, they are evidently both unbiased.
However, as we will demonstrate in a moment, the restricted estimator β̃1 is
more efficient than the unrestricted estimator β̂1. One estimator is said to be
more efficient than another if the covariance matrix of the inefficient estimator
minus the covariance matrix of the efficient one is a positive semidefinite
matrix; see Section 5.5. If β̃1 is more efficient than β̂1 in this sense, then any
linear combination of the elements of β̃1 must have variance no larger than
the corresponding linear combination of the elements of β̂1.

The proof that β̃1 is more efficient than β̂1 under the DGP (3.22) is very
simple. The difference between the covariance matrices of β̂1 and β̃1 is

σ2
0

(
X1
>M2X1

)−1 − σ2
0

(
X1
>X1

)−1
. (3.54)

It is easy to show that this difference is a positive semidefinite matrix by
using a result proved in Appendix A. According to this result, the difference
between two symmetric, positive definite matrices is positive semidefinite if
and only if the difference of their inverses reversed is positive semidefinite.
Therefore, consider the difference

X1
>X1 −X1

>M2X1 = X1
>P2X1, (3.55)

where P2 = I −M2. Since the right-hand side of (3.55) is clearly a positive
semidefinite matrix, so must be (3.54).

We have just established that the restricted estimator β̃1 is more efficient
(or, at least, no less efficient) than the unrestricted estimator β̂1 when the
DGP satisfies the restrictions. But what happens when it does not satisfy
them? Suppose the DGP is

y = X1β10 +X2β20 + u, u ∼ N(0, σ2
0 I), (3.56)



96 Inference in Nonlinear Regression Models

with β20 6= 0. Then it is easy to see that the restricted estimator β̃1 will, in
general, be biased. Under this DGP,

E(β̃1) = E
((
X1
>X1

)−1
X1
>y
)

= E
((
X1
>X1

)−1
X1
>(X1β10 +X2β20 + u

))
= β10 +

(
X1
>X1

)−1
X1
>X2β20.

(3.57)

Unless X1
>X2 is a zero matrix or β20 is a zero vector, β̃1 will be a biased

estimator. The magnitude of the bias will depend on the matrices X1
>X1 and

X1
>X2 and the vector β20.

Results very similar to (3.57) are available for all types of restrictions,
not just for linear restrictions, and for all sorts of models in addition to linear
regression models. We will not attempt to deal with nonlinear models here
because that requires a good deal of technical apparatus, which will be de-
veloped in Chapter 12. Results analogous to (3.57) for nonlinear regression
models and other types of nonlinear models may be found in Kiefer and Skoog
(1984). The important point is that imposition of false restrictions on some
of the parameters of a model generally causes all of the parameter estimates
to be biased. This bias does not go away as the sample size gets larger.

Even though β̃1 is biased when the DGP is (3.56), it is still of interest
to ask how well it performs. The analog of the covariance matrix for a biased
estimator is the mean squared error matrix, which in this case is

E
(
β̃1 − β10

)(
β̃1 − β10

)>
= E

(
(X1
>X1)−1X1

>(X2β20 + u)
)(

(X1
>X1)−1X1

>(X2β20 + u)
)>

= σ2
0

(
X1
>X1

)−1
+
(
X1
>X1

)−1
X1
>X2β20β

>
20X2

>X1

(
X1
>X1

)−1
. (3.58)

The third line here is the sum of two matrices: the covariance matrix of β̃1

when the DGP satisfies the restrictions, and the outer product of the second
term in the last line of (3.57) with itself. It is possible to compare (3.58) with
V (β̂1), the covariance matrix of the unrestricted estimator β̂1, only if σ0 and
β20 are known. Since the first term of (3.58) is smaller in the matrix sense
than V (β̂1), it is clear that if β20 is small enough (3.58) will be smaller than
V (β̂1). Thus it may be desirable to use the restricted estimator β̃1 when the
restrictions are false, provided they are not too false.

Applied workers frequently find themselves in a situation like the one we
have been discussing. They want to estimate β1 and do not know whether or
not β2 = 0. It then seems natural to define a new estimator,

β̌1 =

{
β̃1 if Fβ2=0 < cα;

β̂1 if Fβ2=0 ≥ cα.
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Here Fβ2=0 is the usual F test statistic for the null hypothesis that β2 = 0, and
cα is the critical value for a test of size α given by the F (r, n−k) distribution.
Thus β̌1 will be the restricted estimator β̃1 when the F test does not reject
the hypothesis that the restrictions are satisfied and will be the unrestricted
estimator β̂1 when the F test does reject that hypothesis. It is an example of
what is called a preliminary test estimator or pretest estimator.

Pretest estimators are used all the time. Whenever we test some aspect
of a model’s specification and then decide, on the basis of the test results,
what version of the model to estimate or what estimation method to use, we
are employing a pretest estimator. Unfortunately, the properties of pretest
estimators are, in practice, very difficult to know. The problems can be seen
from the example we have been studying. Suppose the restrictions hold. Then
the estimator we would like to use is the restricted estimator, β̃1. But, α%
of the time, the F test will incorrectly reject the null hypothesis and β̌1 will
be equal to the unrestricted estimator β̂1 instead. Thus β̌1 must be less
efficient than β̃1 when the restrictions do in fact hold. Moreover, since the
estimated covariance matrix reported by the regression package will not take
the pretesting into account, inferences about β̌1 may be misleading.

On the other hand, when the restrictions do not hold, we may or may not
want to use the unrestricted estimator β̂1. Depending on how much power
the F test has, β̌1 will sometimes be equal to β̃1 and sometimes be equal
to β̂1. It will certainly not be unbiased, because β̃1 is not unbiased, and it
may be more or less efficient (in the sense of mean squared error) than the
unrestricted estimator. Inferences about β̌1 based on the usual estimated
OLS covariance matrix for whichever of β̃1 and β̂1 it turns out to be equal to
may be misleading, because they fail to take into account the pretesting that
occurred previously.

In practice, there is often not very much that we can do about the
problems caused by pretesting, except to recognize that pretesting adds an
additional element of uncertainty to most problems of statistical inference.
Since α, the level of the preliminary test, will affect the properties of β̌1, it
may be worthwhile to try using different values of α. Conventional signifi-
cance levels such as .05 are certainly not optimal in general, and there is a
literature on how to choose better ones in specific cases; see, for example, Toy-
oda and Wallace (1976). However, real pretesting problems are much more
complicated than the one we have discussed as an example or the ones that
have been studied in the literature. Every time one subjects a model to any
sort of test, the result of that test may affect the form of the final model, and
the implied pretest estimator therefore becomes even more complicated. It is
hard to see how this can be analyzed formally.

Our discussion of pretesting has been very brief. More detailed treat-
ments may be found in Fomby, Hill, and Johnson (1984, Chapter 7), Judge,
Hill, Griffiths, Lütkepohl, and Lee (1985, Chapter 21), and Judge and Bock
(1978). In the remainder of this book, we entirely ignore the problems caused
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by pretesting, not because they are unimportant but because, in practice,
they are generally intractable.

3.8 Conclusion

This chapter has provided an introduction to several important topics: esti-
mation of covariance matrices for NLS estimates, the use of such covariance
matrix estimates for constructing confidence intervals, basic ideas of hypothe-
sis testing, the justification for testing linear restrictions on linear regression
models by means of t and F tests, the three classical principles of hypothesis
testing and their application to nonlinear regression models, and pretesting.
At a number of points we were forced to be a little vague and to refer to
results on the asymptotic properties of nonlinear least squares estimates that
we have not yet proved. Proving those results will be the object of the next
two chapters. Chapter 4 discusses the basic ideas of asymptotic analysis,
including consistency, asymptotic normality, central limit theorems, laws of
large numbers, and the use of “big-O” and “little-o” notation. Chapter 5
then uses these concepts to prove the consistency and asymptotic normality
of nonlinear least squares estimates of univariate nonlinear regression models
and to derive the asymptotic distributions of the test statistics discussed in
this chapter. It also proves a number of related asymptotic results that will
be useful later on.

Terms and Concepts

acceptance region
adjusted R2, or R̄2

artificial regressions
asymptotic test
asymptotically equivalent tests
confidence ellipses: relation to

confidence intervals
confidence intervals and regions, exact

and approximate
consistent test
covariance matrix (of a vector of

parameter estimates)
critical region, or rejection region
critical value (for a test statistic)
efficient estimator
exact test
F statistic and F distribution
fixed in repeated samples
Gauss-Newton regression (GNR)
hypotheses: null and alternative

Lagrange multiplier (LM) principle
likelihood ratio (LR) principle
maintained hypothesis
maximum likelihood
mean squared error matrix
P value, or marginal significance level
posterior probability
power (of a test)
preliminary test (pretest) estimator
pretesting
prior information
pseudo-F and pseudo-t statistics
score form (of the LM statistic)
score vector
significance level (of a test)
size (of a test)
t statistic and Student’s t distribution
test statistics
Type I and Type II errors
Wald principle



Chapter 4

Introduction to

Asymptotic Theory and Methods

4.1 Introduction

Once one leaves the context of ordinary (linear) least squares with fixed re-
gressors and normally distributed errors, it is frequently impossible, or at
least impractical, to obtain exact statistical results. It is therefore necessary
to resort to asymptotic theory, that is, theory which applies to the case in
which the sample size is infinitely large. Infinite samples are not available
in this finite universe, and only if they were would there be a context in
which asymptotic theory was exact. Of course, since statistics itself would be
quite unnecessary if samples were infinitely large, asymptotic theory would
not be useful if it were exact. In practice, asymptotic theory is used as an
approximation — sometimes a good one, sometimes not so good.

Most of the time, it is a pious hope rather than a firmly founded belief that
asymptotic results have some relevance to the data with which one actually
works. Unfortunately, more accurate approximations are available only in the
simplest cases. At this time, it is probably fair to say that the principal means
of getting evidence on these matters is to use Monte Carlo experiments, which
we will discuss in the last chapter of this book. Since one cannot resort to
a Monte Carlo experiment every time one obtains a test statistic or a set
of estimates, a thorough knowledge of asymptotic theory is necessary in the
present state of the art and science of econometrics. The purpose of this
chapter is therefore to embark on the study of the asymptotic theory that will
be used throughout the rest of the book. All of this theory is ultimately based
on laws of large numbers and central limit theorems, and we will therefore
spend considerable time discussing these fundamental results.

In this chapter, we discuss the basic ideas of, and mathematical prere-
quisites to, asymptotic theory in econometrics. We begin the next section by
treating the fundamental notion of an infinite sequence, either of random or
of nonrandom elements. Much of this material should be familiar to those
who have studied calculus, but it is worth reviewing because it leads directly
to the fundamental notions of limits and convergence, which allow us to state
and prove a simple law of large numbers. In Section 4.3, we introduce the
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“big-O,” “little-o” notation and show how the idea of a limit can be used to
obtain more precise and detailed results than were obtained in Section 4.2.
Data-generating processes capable of generating infinite sequences of data are
introduced in Section 4.4, and this necessitates a little discussion of stochastic
processes. Section 4.5 then introduces the property of consistency of an esti-
mator and shows how this property can often be established with the help of
a law of large numbers. Asymptotic normality is the topic of Section 4.6, and
this property is obtained for some simple estimators by use of a central limit
theorem. Then, in Section 4.7, we provide, mostly for the sake of later refer-
ence, a collection of definitions and theorems, the latter being laws of large
numbers and central limit theorems much more sophisticated than those ac-
tually discussed in the text. In addition, we present in Section 4.7 two sets
of conditions, one centered on a law of large numbers, the other on a central
limit theorem, which will be very useful subsequently as a summary of the
regularity conditions needed for results proved in later chapters.

4.2 Sequences, Limits, and Convergence

The concept of infinity is one of unending fascination for mathematicians.
One noted twentieth-century mathematician, Stanislaw Ulam, wrote that the
continuing evolution of various notions of infinity is one of the chief driving
forces behind research in mathematics (Ulam, 1976). However that may be,
seemingly impractical and certainly unattainable infinities are at the heart of
almost all valuable and useful applications of mathematics presently in use,
among which we may count econometrics.

The reason for the widespread use of infinity is that it can provide work-
able approximations in circumstances in which exact results are difficult or
impossible to obtain. The crucial mathematical operation which yields these
approximations is that of passage to the limit, the limit being where the notion
of infinity comes in. The limits of interest may be zero, finite, or infinite. Zero
or finite limits usually provide the approximations that are sought: Things
difficult to calculate in a realistic, finite, context are replaced by their limits
as an approximation.

The first and most frequently encountered mathematical construct which
may possess a limit is that of a sequence. A sequence is a countably infi-
nite collection of things, such as numbers, vectors, matrices, or more general
mathematical objects, and thus by its mere definition cannot be represented in
the actual physical world. But some sequences are nevertheless very familiar.
Consider the most famous sequence of all: the sequence

{1, 2, 3, . . .}

of the natural numbers. This is a simple-minded example perhaps, but one
that exhibits some of the important properties which sequences may possess.
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The first of these is that a sequence must embody a rule that defines it. In
the physical world, we may define a collection by indicating or pointing to all
of its members, for these must be finite in number, but that is impossible for
an infinite collection. Consequently there must be a method of generating the
members of a sequence, and the rule performs this function. For the natural
numbers, the rule is simple: One goes from any member of the sequence to
its successor by adding 1.

This last remark illustrates another property of sequences as opposed to
other infinite collections: A sequence is ordered. Thus one can speak of the
first, second, third, and so forth members of the sequence, and the rule that
defines the sequence must be capable of generating the nth member, for any
positive integer n.

The natural number sequence is in a certain sense the model for all se-
quences, because it expresses the notion of the succession of elements, that
is, the notion of going from one element to the next, its successor. Formally,
a sequence can be defined as a mapping from the set or sequence of natural
numbers to some other set, for example, the real numbers or the set of n×m
matrices, from which the members of the sequence are drawn. This mapping
embodies the defining rule of the sequence, since it associates to any inte-
ger n the nth member of the sequence. If the action of this mapping can be
expressed simply, then it provides a very convenient notation for sequences.
One simply encloses in braces the nth element of the sequence, and, just as
one does with the summation sign, one may optionally indicate the range of
the sequence. Thus the natural number sequence can be denoted as {n} or as
{n}∞n=1. Note that the “first” element of a sequence need not have the index 1:
We may perfectly well consider the sequence {n}∞n=m of integers greater than
or equal to m.

As we indicated above, for asymptotic analysis we will primarily be in-
terested in sequences that have finite limits. The natural number sequence
does not possess such a limit, but it is not hard to find sequences that do.
For example, {1/n}, {e−n}, {1/ log n}, and {n−2} all have limits of zero. The
following sequences, on the other hand, all have nonzero finite limits:{

n

n+ 1

}
,
{
n sin

(
1−
n

)}
,
{

1 + 1−
n

}
,
{
n
(
y1/n − 1

)}
.

If the reader cannot calculate the values of these limits, it would be very useful
to learn how to do so. The last one is not too easy, but, as we will see in
Chapter 14, it is sometimes quite useful in econometric modeling.

The limits of these sequences are the limits as n tends to infinity. We
may sometimes say instead that n becomes infinitely large, or even, by abuse
of language, just large. Another possibility is to talk of the limit for large n.
In all cases, the meaning should be clear. The formal definition of the limit
of a real-valued sequence, that is, a sequence of which the elements are real
numbers, is as follows:
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Definition 4.1.

The real-valued sequence {an} has the real number a for its limit, or
converges to a, if for any positive ε, no matter how small, it is possible
to find a positive integer N such that for all integers n greater than
N, |an − a| < ε.

In other words, as n becomes large, we can always reach a point in the sequence
beyond which all the members of the sequence are closer to the limit than any
prespecified tolerance level.

In Definition 4.1, we used the important word converge. If sequences have
limits, they are said to converge to them. A sequence that converges is in turn
said to be convergent. Alternatively, a sequence that has no limit may diverge,
or be divergent, if the absolute values of the members of the sequence increase
without bound as n gets larger. There are other possibilities, especially if the
members of the sequence are more complicated entities than real numbers,
such as matrices. The convergence or otherwise of a sequence can be discussed
only if the elements of the sequence belong to a set on which the idea of
closeness is defined, because of the need to speak of the elements becoming
arbitrarily close to the limit as n tends to infinity. Thus, for a sequence of
vectors or matrices to converge, we need to be able to say whether or not
any two vectors or matrices are, to a given tolerance level, close or not. For
vectors, this is easy: We can use the nonnegative real number ‖v1 − v2‖, the
Euclidean distance, as a measure of the closeness or otherwise of two vectors
v1 and v2 in a Euclidean space. For matrices, a comparable measure is the
norm of the difference between two matrices; see Appendix A for the definition
of the norm of a matrix, and recall also that the notation used for it is usually
‖ · ‖, just as for Euclidean distance. This fact will make for conciseness in
writing definitions.

The general discussion of closeness is the subject matter of the mathe-
matical discipline of topology. Convergence and limits are defined only on
topological spaces. The set of real numbers and Euclidean spaces have what
are called natural topologies. Those are what we used in Definition 4.1 for
real numbers and can use in the extension of the definition to vectors and
matrices based on the use of the Euclidean norm ‖ · ‖. These topologies are
in fact so natural that, when speaking of the convergence of real-, vector-
or matrix-valued sequences, it is quite unnecessary to be explicit about any
topological matters. This is unfortunately not the case when we consider
sequences of random variables.1 To make matters worse, there is no single
natural topology for random variables; at least three or four are in regular
use.

It is not necessary and would be undesirable in a book of this sort to
give formal definitions of the different topologies used with random variables,
and we will not do so. For readers who are consequently unsatisfied, we

1 For a discussion of the meaning of the term random variable, see Appendix B.
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may recommend the two books by Billingsley (1968, 1979). But anything
of any importance to us about a topology is known if we can say whether a
given sequence converges or not for that topology, and so we will do perfectly
well if we provide definitions of the different kinds of convergence for random
variables.

Probably the most useful kind of stochastic convergence, that is, conver-
gence for random variables, is convergence in probability. We begin with the
formal definition:

Definition 4.2.

The sequence {an} of real- or vector-valued random variables tends
in probability to the limiting random variable a if for all ε and δ > 0
there is an N such that for all n > N ,

Pr
(
‖an − a‖ > ε

)
< δ. (4.01)

In this case, a is called the limit in probability or the probability limit or
simply the plim of the sequence {an}. One writes

plim
n→∞

an = a or an
p−→ a.

Note the absence of the braces in these last expressions. Note also that,
for real-valued random variables, the Euclidean norm ‖ · ‖ simplifies to the
ordinary absolute value | · |.

Condition (4.01) says, in effect, that for any given tolerance level ε, one
can go to a member far enough down the sequence that, beyond that member,
the probability of finding a discrepancy exceeding the tolerance level between
an element of the sequence and the limit random variable is below another
arbitrarily prespecified tolerance level δ. Note that although the above def-
inition defined the probability limit a to be a random variable (or vector of
random variables), it may in fact be an ordinary nonrandom number or vector,
in which case it is said to be nonstochastic, or constant.

A well-worn example of a nonstochastic probability limit is given by con-
sidering the limit of the sequence of proportions of heads in a series of inde-
pendent tosses of an unbiased coin. It is worth demonstrating formally that
the probability limit is indeed one-half, since this will give us the opportunity
to see some useful techniques of proof and acquire some intuition about how
probability limits differ from ordinary ones.

For each coin toss, then, define a random variable yt equal to 1 if the
outcome is heads and 0 if it is tails. This means that {yt} is a sequence of
random variables, provided that we can imagine the coin tossing going on ad
infinitum. Then, after n tosses, the proportion of heads is just

an ≡ 1−
n

n∑
t=1

yt, (4.02)
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and, of course, an is a real (in fact rational) number contained in the unit
interval [0,1]. Expression (4.02) defines another sequence of random variables
{an}, and it is the limit in probability of this sequence that we wish to calcu-
late.

We first calculate the mean and variance of an. The statement that the
coin is unbiased means that, for all t, Pr(yt = 1) = 1

2 and Pr(yt = 0) = 1
2 .

Since the operation of taking expectations is linear, and all the expectations
are the same,

E(an) = 1−
n

n∑
t=1

E(yt) = E(yt) = 1−
2
.

Calculating the variance is a little harder. We see that

Var(an) = E
(
an − E(an)

)2
= E

(
an − 1

2

)2
= E

(
1−
n

n∑
t=1

(
yt − 1−

2

))2
.

Before proceeding, let us define a new sequence of independent random
variables {zt} by the rule zt = yt − 1

2 . Because E(zt) = 0, {zt} is a cen-
tered sequence, by which we mean that every element of the sequence has
expectation zero, we then find that

an − E(an) = 1−
n

n∑
t=1

yt − 1−
2

= 1−
n

n∑
t=1

(
yt − 1−

2

)
= 1−
n

n∑
t=1

zt.

We can define another centered sequence {bn} by the rule

bn = an − E(an) = an − 1−
2

(4.03)

and see that Var(an) = Var(bn). We also see that

bn = 1−
n

n∑
t=1

zt. (4.04)

Because the zt’s are mutually independent,

Var(bn) =
1

n2

n∑
t=1

Var(zt) = n−1Var(zt).

It is simple to see that

Var(zt) =
(
1
2

)2(
Pr(zt = 1

2 )
)

+
(
− 1

2

)2(
Pr(zt = − 1

2 )
)

= 1
4 ,

from which it follows that

Var(an) = Var(bn) =
1

4n
. (4.05)
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This result is crucial to the result we are seeking, since it implies that

lim
n→∞

Var(an) = 0, (4.06)

and it is thus intuitively obvious that the limit of the sequence {an} is nonran-
dom. But formally we are still a few steps away from establishing the needed
result, which, by application of (4.01) to the present circumstances, is that
for any ε and δ > 0, there is an N such that

Pr
(
|an − 1

2 | > ε
)
< δ for all n > N. (4.07)

The main gap between (4.06) and (4.07) is filled by the use of the Cheby-
shev inequality (see Appendix B). This inequality tells us that if a random
variable y of zero mean possesses a variance V, then for any positive number α

Pr
(
|y| > α

)
<

V

α2
.

If we apply this to the variable bn, then from (4.05) we get

Pr
(
|bn| > ε

)
<

1

4nε2
.

From the definition (4.03) of bn, this means that

Pr
(
|an − 1

2 | > ε
)
<

1

4nε2
.

Thus (4.07) will be true if we choose, for a given ε, a critical value of N equal
to the next integer greater than (4ε2δ)−1. The convergence in probability of
{an} to 1

2 ,

plim
n→∞

an = 1−
2
, (4.08)

is, finally, rigorously proved.

As a by-product of the preceding proof, we see that the Chebyshev in-
equality shows that any centered sequence of which the variance tends to zero
tends in probability to zero. Suppose that the sequence {yn} is centered, that
vn = Var(yn), and that vn → 0 as n → ∞. By Definition 4.1 of the limit of
a sequence, this last supposition means that for all η > 0, an N(η) can be
found such that vn < η for all n > N(η). Then we look at the probability
that appears in Definition 4.2 of convergence in probability. For some ε > 0,

Pr
(
|yn| > ε

)
< vnε

−2, by the Chebyshev inequality.

Now consider for any positive δ the critical index N(δε2), which is such that,
for all n > N(δε2), vn < δε2. For such n we find that

Pr
(
|yn| > ε

)
< δε2ε−2 = δ,

exactly as required by Definition 4.2.
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The result (4.08) is a first example of what is called a law of large num-
bers. The idea behind this example is in fact the same as that behind all laws
of large numbers, and so it is worthwhile to spend a moment considering it
more closely. The members of the sequence {an} are all averages, the propor-
tion of the time that a coin has come up heads in a given run of tosses. As
we go to increasing values of n, we expect that the average calculated from
any random sample of size n will be a more and more accurate measure of
something. Here the something is just the number 1

2 , the reciprocal of the
number of sides the coin has. If we threw dice instead of tossing coins, we
would expect to get 1

6 instead of 1
2 .

Evidently, the same sort of result will prevail if we measure something of
more interest to economists than the proportion of times that a coin comes up
heads. We might, for example, be interested in measuring the proportion who
own their own homes, say α, of some group of people. Assuming that we can
devise a method of sampling randomly from the relevant population (which
is often by no means an easy task), we may ask all the people in the sample
whether they own their homes or not. Each response may then be treated
just like the toss of a coin; we let the random variable yt equal 1 for the home-
owning respondents and 0 for the others. What the law of large numbers then
tells us is that, as the number of responses becomes large, we should expect
the proportion of respondents who own their homes, an ≡ n−1

∑n
t=1 yt, to

converge to the true value α. Intuitively, the reason for the increasing accuracy
is that each successive toss provides another piece of information about α.

We can introduce some standard terminology at this point. The form of
law of large numbers that we have just proved for the coin-tossing example, in
which we showed that the probability limit of the proportion of heads tends
to one-half, is called a weak law of large numbers, because the kind of conver-
gence proved is convergence in probability. There exist strong laws of large
numbers, which use, as the term suggests, a stronger notion of convergence
of random variables, called almost sure convergence. Here is the definition:

Definition 4.3.

The sequence {an} of real- or vector-valued random variables an is
said to converge almost surely (a.s.) to a limiting random variable a if

Pr
(

lim
n→∞

an = a
)

= 1. (4.09)

One writes

lim
n→∞

an = a a.s. or an
a.s.−→ a or an → a a.s.,

and a is called the almost sure limit of {an}.
A full understanding of the above definition requires some deeper acquain-

tance with probability theory than we are willing to require of our readers,
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and so we will discuss it no further. Similarly, a proof of the strong law of
large numbers, even for the simple coin-tossing example, is beyond the scope
of this book. A rigorous and imaginative proof can be found in the first chap-
ter of Billingsley (1979), and the classical treatment is given in Feller (1968).
In the remainder of the book, we will be content to employ weak laws of large
numbers, even if strong ones might be available, since the distinction between
the two forms has no practical implications for econometrics.

A third form of stochastic convergence is called convergence in distri-
bution, or sometimes convergence in law, following the usage by which the
distribution of a random variable is termed its law. It is convergence in dis-
tribution that is usually proved in a central limit theorem, as we will see later
in this chapter.

Definition 4.4.

The sequence {an} of real- or vector-valued random variables an is
said to converge in distribution to a limiting random variable a if

lim
n→∞

Pr(an ≤ b) = Pr(a ≤ b) (4.10)

for all real numbers or vectors b such that the limiting distribution
function Pr(a ≤ b′) is continuous in b′ at b′ = b. One writes:

an
D−→ a.

The inequalities in (4.10) are to be interpreted, in the case of vector-
valued random variables, as valid for each component of the vectors sepa-
rately. This is exactly as in the formal definition in Appendix B of the joint
probability distribution of a set of random variables. The requirement in
the definition that Pr(a ≤ b′) be continuous in b′ at b′ = b is evidently
unnecessary in the case of continuous distributions, for which the definition
requires simply that the distribution functions of the an’s converge pointwise
to the distribution function of a. But if the limiting random variable is non-
stochastic, this requirement is necessary. The reason is that the cumulative
distribution function (c.d.f. for short) is necessarily discontinuous in this case.
Consider the following example.

Let xn be normally distributed as N(0, n−1). Clearly, {xn} converges
to zero in any useful sense, and, in particular, it must do so in distribution.
Because the variance of xn is n−1, its c.d.f. is Φ(n1/2x), in the sense that

Pr(xn < x) = Φ(n1/2x) for all real x.

Here Φ(·) is the c.d.f. of the standard normal, or N(0, 1) distribution; see
Appendix B for details. For fixed x we have

lim
n→∞

n1/2x =

{ ∞ if x > 0;
0 if x = 0;

−∞ if x < 0.
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Since

lim
x→∞

Φ(x) = 1, lim
x→−∞

Φ(x) = 0, and Φ(0) = 1
2 ,

we obtain

lim
n→∞

Pr(xn < x) =


0 if x < 0;
1
2 if x = 0;

1 if x > 0.

The above limit almost coincides with the c.d.f. for a “random” variable x0
that is in fact always equal to zero. This c.d.f., which is said to correspond to
a degenerate distribution concentrated at 0, is

Pr(x0 < x) =
{

0 if x ≤ 0;
1 if x > 0.

It is only at x = 0 that the limit of the c.d.f.’s of the xn’s is not equal to
the c.d.f. of the constant random variable. But it is precisely here that the
latter is necessarily discontinuous, hence the exception explicitly made in the
definition. A c.d.f. that has discontinuities at certain points is said to have
atoms at these points. Note that a c.d.f. with atoms may perfectly well be
the limit of a sequence of c.d.f.’s that have none and are therefore continuous
everywhere.

We will conclude this section by stating without proof the relations among
the three kinds of stochastic convergence we have so far introduced. Almost
sure convergence is, as the name strong law of large numbers suggests, the
strongest kind. If {an} converges almost surely to a limiting variable a,
then it also converges to a in probability and in distribution. Convergence
in probability, while not necessarily implying almost sure convergence, does
imply convergence in distribution. Convergence in distribution is the weakest
of the three and does not necessarily imply either of the other two.

4.3 Rates of Convergence

We covered a lot of ground in the last section, so much so that we have by now,
even if very briefly, touched on all the important purely mathematical topics
to be discussed in this chapter. What remains is to flesh out the treatment of
some matters and to begin to apply our theory to statistics and econometrics.
The subject of this section is rates of convergence. In treating it we will
introduce some very important notation, called the O,o notation, which is
read as “big-O, little-o notation.” Here O and o stand for order and are
often referred to as order symbols. Roughly speaking, when we say that some
quantity is, say, O(x), we mean that is of the same order, asymptotically, as
the quantity x, while when we say that it is o(x), we mean that it is of lower
order than the quantity x. Just what this means will be made precise below.
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In the last section, we discussed the random variable bn at some length
and saw from (4.05) that its variance converged to zero, because it was pro-
portional to n−1. This implies that the sequence converges in probability to
zero, and it can be seen that the higher moments of bn, the third, fourth,
and so on, must also tend to zero as n→∞. A somewhat tricky calculation,
which interested readers are invited to try for themselves, reveals that the
fourth moment of bn is

E(b4n) = 3−−
16
n−2 − 1−

8
n−3, (4.11)

that is, the sum of two terms, one proportional to n−2 and the other to
n−3. The third moment of bn, like the first, is zero, simply because the
random variable is symmetric about zero, a fact which implies that all its
odd-numbered moments vanish. Thus the second, third, and fourth moments
of bn all converge to zero, but at different rates. Again, the two terms in the
fourth moment (4.11) converge at different rates, and it is the term which is
proportional to n−2 that has the greatest importance asymptotically.

The word “asymptotically” has here been used in a slightly wider sense
than we have used up to now. In Section 4.1, we said that asymptotic theory
dealt with limits as some index, usually the sample size in econometrics, tends
to infinity. Here we are concerned with rates of convergence rather than limits
per se. Limits can be used to determine the rates of convergence of sequences
as well as their limits: These rates of convergence can be defined as the limits
of other sequences. For example, in the comparison of n−2 and n−3, the
other sequence that interests us is the sequence of the ratio of n−3 to n−2,
that is, the sequence {n−1}. This last sequence has a limit of zero, and so,
asymptotically, we can treat n−3, or anything proportional to it, as zero in the
presence of n−2, or anything proportional to it. All of this can be expressed by
the little-o notation, which expresses what is called the small-order relation:
We write n−3 = o(n−2), meaning that n−3 is of lower order than n−2. In
general, we have the following definition:

Definition 4.5.

If f(·) and g(·) are two real-valued functions of the positive integer
variable n, then the notation

f(n) = o
(
g(n)

)
[optionally, as n→∞]

means that

lim
n→∞

(
f(n)

g(n)

)
= 0.

One may say that f(n) is of smaller order than g(n) asymptotically or as n
tends to infinity.

Note that g(n) itself may have any sort of behavior as n→∞. It may or
may not have a limit, and if it has, the limit may be zero, finite and nonzero,
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or infinite. What is important is the comparison performed by the ratio. Most
often g(n) is a power of n, which may be positive, negative, or zero. In the
last case, since n0 = 1 for all n, we would write f(n) = o(1), and this would
mean by the definition that

lim
n→∞

(
f(n)

1

)
= lim

n→∞

(
f(n)

)
= 0;

in other words, simply that f(n) tends to zero as n tends to infinity. But if we
say that f(n) = o(n−1), for instance, or that f(n) is o(n−1), it means that
f(n) goes to zero faster than n−1. We could also say that f(n) is o(n), and
then we do not know whether f(n) has a limit as n → ∞ or not. But we do
know that if it tends to infinity, it does so less rapidly than n.

The big-O notation, which expresses the same-order relation, is more
precise than the little-o notation, since it tells us the greatest rate at which
things may change with n. Here is the definition.

Definition 4.6.

If f(·) and g(·) are two real-valued functions of the positive integer
variable n, then the notation

f(n) = O
(
g(n)

)
means that there exists a constant K > 0, independent of n, and a
positive integer N such that |f(n)/g(n)| < K for all n > N .

We say that f(n) and g(n) are of the same order asymptotically or as n→∞.
Once again it is the ratio of f(n) and g(n) that is in question. The definition
does not exclude the possibility that the limit of the ratio should be zero, and
so the verbal expression “of the same order” can be misleading.

Another relation exists which avoids this uncertainty: We call it asymp-
totic equality.

Definition 4.7.

If f(·) and g(·) are two real-valued functions of the positive integer
variable n, then they are asymptotically equal if

lim
n→∞

(
f(n)

g(n)

)
= 1.

We write this as f(n)
a
= g(n). The standard notation for this relation (outside

of econometrics) is not
a
=, but ∼. Since the symbol ∼ is used to denote the

distribution of a random variable, it will be plain why we do not use this
notation in this book.

Asymptotic equality avoids the difficulty we have alluded to in connection
with the big-O or same-order relation, at the expense of imposing a stronger
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condition. Unlike asymptotic equality, the big-O relation does not require
that the ratio f(n)/g(n) should have any limit. It may have, but it may also
oscillate boundedly for ever.

The relations we have defined so far are for nonstochastic real-valued
sequences. Of greater interest to econometricians are the so-called stochastic
order relations. These are perfectly analogous to the relations we have defined
but instead use one or other of the forms of stochastic convergence. Formally:

Definition 4.8.

If {an} is a sequence of random variables, and g(n) is a real-valued
function of the positive integer argument n, then the notation an =
op
(
g(n)

)
means that

plim
n→∞

(
an
g(n)

)
= 0.

Similarly, the notation an = Op

(
g(n)

)
means that, for all ε > 0, there

exist a constant K and a positive integer N such that

Pr

(∣∣∣∣ ang(n)

∣∣∣∣ > K

)
< ε for all n > N.

If {bn} is another sequence of random variables, the notation an
a
= bn

means that

plim
n→∞

(
an
bn

)
= 1.

Comparable definitions may be written down for almost sure convergence
and convergence in distribution, but we will not use these. In fact, after
this section we will not bother to use the subscript p in the stochastic order
symbols, because it will always be plain when random variables are involved.
When they are, O(·) and o(·) should be read as Op(·) and op(·).

The order symbols are very easy to manipulate, and we now present a
few useful rules for doing so. For simplicity, we restrict ourselves to functions
g(n) that are just powers of n, for that is all we use in this book. The rules
for addition and subtraction are

O(np)±O(nq) = O
(
nmax(p,q)

)
;

o(np)± o(nq) = o
(
nmax(p,q)

)
;

O(np)± o(nq) = O(np) if p ≥ q;
O(np)± o(nq) = o(nq) if p < q.

The rules for multiplication, and by implication for division, are

O(np)O(nq) = O(np+q);

o(np)o(nq) = o(np+q);

O(np)o(nq) = o(np+q).
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Although these rules cover all simple cases adequately, they do not cover
cases in which quantities that are all of a certain order are summed. Such
cases arise frequently. Provided the number of terms in the sum is independent
of n, the sum has the same order as the highest-order summand, by one of the
rules above. But if the number of terms is proportional to a power of n, the
order of the sum depends on the number of terms. The simplest case is that
in which n terms, each O(1), are summed. The answer is then O(n), unless
the terms all have zero mean and a central limit theorem can be applied (see
Section 4.6). When that is so, the order of the sum is just O(n1/2). Thus,
if xt has mean µ and a central limit theorem applies to it,

n∑
t=1

xt = O(n) and
n∑

t=1

(xt − µ) = O(n1/2).

Let us now use the coin-tossing example of Section 4.2 to illustrate the
use of these order symbols. If we denote the second moment of the random
variable bn by v(bn), then by (4.05) we see that

v(bn) = 1−
4
n−1 = O(n−1).

Similarly, from (4.11), we see that the fourth moment, E(b4n), is the sum of
two terms, one of them O(n−2) and the second O(n−3). Thus we conclude
that the fourth moment itself is O(n−2).

These results for bn use the ordinary, not the stochastic, order relations.
But now recall that

plim
n→∞

an = 1−
2

and plim
n→∞

bn = 0,

which allows us to write

an = O(1) and bn = o(1).

Notice the difference here. The sequence an is of the same order as unity
whereas bn is of smaller order. Yet the only difference between the two is
that bn is centered and an is not. Both sequences have nonstochastic plims,
and so the limiting variance is zero. But the limiting mean, which is just the
plim itself, is zero for bn and nonzero for an. The order of a random variable
can thus be seen to depend on (at least) the first and second moments of the
variable. It is precisely the subtraction of the first moment, the centering,
which takes place in the definition of bn, that allows us to see that the second
moment is of smaller order than unity.

Recall now the example we used in Section 4.2 to illustrate convergence
in distribution to a nonstochastic limit. We looked at a sequence of random
variables {xn} such that xn was distributed as N(0, n−1). Note that the
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variance n−1 is proportional to the variance of bn, which is 1
4n
−1; see (4.05).

In deriving the c.d.f. of the random variables xn we saw that n1/2xn had the
standard normal distribution, which was described by its c.d.f. Φ. Clearly,
then, the sequence {xn}, multiplied by n1/2, yields a new sequence of which
the limit is a random variable distributed as N(0, 1). Thus we have discovered
that n1/2xn = O(1), which of course implies that xn = o(1) but is not implied
by it. This construction has given us the rate of convergence of the sequence
{xn}, since we can now assert that xn = O(n−1/2).

We will now try the same maneuver with the sequence {bn}, by consid-
ering the new sequence {n1/2bn}. From (4.04) we get

n1/2bn = n−1/2
n∑

t=1

zt.

Evidently, E(n1/2bn) = 0. Moreover, either directly or from (4.05), we see
that

Var(n1/2bn) = 1−
4
. (4.12)

Thus we conclude that n1/2bn is O(1), which implies that bn itself is O(n−1/2).
The random variables an and bn are in this respect typical of the many vari-
ables which resemble sample averages that arise in econometrics. The former,
which is the average of n quantities that have a common nonzero mean, is
O(1), while the latter, which is the average of n quantities that have a zero
mean, is O(n−1/2).

The result (4.12) further indicates that if the sequence {n1/2bn} has a
limit, it will be a nondegenerate one, that is, it will not be a simple nonrandom
number. We will see in Section 4.6 that this sequence does indeed have a limit,
at least in distribution, and moreover that this limit is a normal random
variable. The added fact of normality will be the conclusion of a central
limit theorem. Such theorems, along with the laws of large numbers, are
fundamental to all asymptotic theory in statistics and econometrics.

4.4 Data-GeneratingProcesses andAsymptoticTheory

In this section, we apply the mathematical theory developed in the preceding
sections to econometric estimation and testing from an asymptotic point of
view. In order to say anything about how estimators and test statistics are
distributed, we have to specify how the data of which they are functions are
generated. That is why we introduced the idea of a data-generating process,
or DGP, in Section 2.4. But what precisely do we mean by a data-generating
process in an asymptotic context? When we spoke of DGPs before, it was
enough to restrict our attention to a particular given sample size and char-
acterize a DGP by the law of probability that governs the random variables
in a sample of that size. But, since when we say “asymptotic” we refer to a
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limiting process in which the sample size goes to infinity, it is clear that such
a restricted characterization will no longer suffice. It is in order to resolve
this difficulty that we make use of the notion of a stochastic process. Since
this notion allows us to consider an infinite sequence of random variables, it
is well adapted to our needs.

In full generality, a stochastic process is a collection of random variables
indexed by some suitable index set. This index set may be finite, in which
case we have no more than a vector of random variables, or it may be infinite,
with either a discrete or a continuous infinity of elements. We are interested
here almost exclusively in the case of a discrete infinity of random variables,
in fact with sequences of random variables such as those we have already
discussed at length in the preceding sections. To fix ideas, let the index set be
N, the set {1, 2, . . .} of the natural numbers. Then a stochastic process is just
a mapping from N to a set of random variables. It is in fact precisely what
we previously defined as a sequence of random variables, and so we see that
these sequences are special cases of stochastic processes. They are the only
kind of stochastic process that we will need in this book; the more general
notion of stochastic process is introduced here only so that we may use the
numerous available results on stochastic processes for our own purposes.

The first of these results, which we will present in a moment, has to do
with existence. Existence is seldom a serious issue when one sticks with finite
mathematics, but it almost always is once infinity slips in. It is easy enough
to define a finite set by pointing at things and deciding whether they do or
do not belong to the set. In the case of an infinite set, such a procedure must
be replaced by a rule, as we remarked earlier in our discussion of sequences.
Rules are all very well; they certainly themselves exist, but it is not at all
evident that any given rule necessarily defines anything interesting or indeed
anything at all — hence the question of existence.

For stochastic processes in general, the matter of existence is settled
by a famous theorem due to the eminent Soviet mathematician, probabilist,
and physicist, A. N. Kolmogorov. Because he has put his stamp on many
fields of research, readers may well have encountered his name before. The
content of his theorem is that a sequence of random variables is well defined
by a rule if the rule generates for every finite subsequence a joint finite-
dimensional probability distribution that is compatible, in a certain sense,
with those generated for all the other finite subsequences. Thus it is never
necessary to consider infinite-dimensional distributions, even supposing that
a way could be found to do so. Instead, Kolmogorov’s existence theorem tells
us that if two compatibility conditions are satisfied, a well-defined random
sequence exists.

These two compatibility conditions are very clear intuitively. The first
requires that if one asks for the distribution of the random variables indexed
by a finite set of indices {t1, t2, . . . , tn}, say, and then asks again for the dis-
tribution of the random variables indexed by a permutation or jumbling-up of
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the same set, then one must get the appropriate answer. The second condition
requires that if one asks for the distribution function of the variables indexed
by some finite set {t1, t2, . . . , tn}, and then asks again for the distribution of
the variables indexed by a subset of {t1, t2, . . . , tn}, then one must get the
marginal distribution that would be calculated in the standard way from the
first answer for the variables in the subset.

These two simple and easily checked conditions are sufficient to take care
of the matter of existence. We consider, then, a sequence of possibly vector
random variables that we can denote in the usual way by {yt}∞t=1. For this
sequence to be a well-defined stochastic process, by Kolmogorov’s existence
theorem it is enough that one should be able to define the joint probabil-
ity distribution of any finite subset of the elements yt of the sequence in a
way compatible with all other joint probability distributions of finite subsets
of the yt’s. It turns out that this is equivalent to two simple requirements.
First, we must be able to define the joint probability distribution of the ran-
dom variables contained in any finite-sized sample, by which we mean a subset
of the form yn ≡ {yt}nt=1, for some finite sample size n.2 Second, the dis-
tribution of the sample of size n should be the distribution obtained from
the distribution of the sample of size n + 1 by integrating out the last vari-
able. Since we should in any conceivable set of circumstances wish to impose
these requirements, we have the good fortune that the mathematical idea of a
stochastic process or random sequence corresponds exactly to what is needed
if we are to construct an asymptotic theory in econometrics.

In order to be able to do asymptotic theory, we must be able to define a
DGP. In order to do that, we must be able to specify the joint distribution of
the set of random variables corresponding to the observations contained in a
sample of arbitrarily large size. This is plainly a very strong requirement. In
econometrics, or any other empirical discipline for that matter, we deal exclu-
sively with finite samples. How then can we, even theoretically, treat infinite
samples? The answer is the same one that allowed us to deal with infinite
sequences in general: We must in some way create a rule that allows one to
generalize from finite samples to an infinite stochastic process. Unfortunately,
for any observational framework, there is an infinite number of ways in which
such a rule can be constructed, and different rules can lead to widely different
asymptotic conclusions.

The following simple example illustrates the points at issue. It is frequent
practice to include a time trend τ ≡ [1

.... 2
.... 3 · · ·n] among the regressors of a

linear regression model. The time trend can also be defined by the definition
of each of its components:

τt = t, t = 1, 2, 3 · · · . (4.13)

2 We will use this sort of notation rather generally. A subscript index will refer
to a particular observation, while a superscript index will refer to the sample
size.
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The example is a model in which this time trend is the only regressor:

y = ατ + u, E(uu>) = σ2 I. (4.14)

The estimate of the parameter α is then

α̂ =
(
τ>τ

)−1
τ>y. (4.15)

Assuming that the DGP is indeed (4.14) with α = α0 and σ2 = σ2
0 , it is easy

to see that this estimate becomes

α̂ = α0 +
(
τ>τ

)−1
τ>u. (4.16)

Evidently, the properties of the estimate (4.15) will depend on the prop-
erties of the random term (τ>τ )−1τ>u. If the sample size is n, then

τ>τ =
n∑

t=1

t2 = 1−
6
n(2n+ 1)(n+ 1) = O(n3).

The expression used here for the sum
∑n

t=1 t
2 is easily shown to be correct by

induction. The second factor in expression (4.16), τ>u, will have mean zero
as usual (implying that α̂ must certainly be unbiased) and variance σ2

0τ
>τ .

Thus the variance of α̂ itself is

Var(α̂) = σ2
0

(
τ>τ

)−1
= O(n−3). (4.17)

In this example, it is natural to extend the trend τ to arbitrarily large sample
sizes by means of the rule (4.13), and it was by so doing that we obtained the
result that the variance of α̂ is O(n−3). But this is not the sort of rule always
employed in asymptotic analysis. Rather, the assumption is frequently made,
as we did in Section 3.5 in connection with exact properties of test statistics,
that the regressors are fixed in repeated samples. In the present context this
means that the rule used to extend a finite sample to an arbitrarily large one
is the following: For observed sample size m one considers only samples of
size n ≡ Nm, for positive integers N . Clearly, as N → ∞ the sample size n
tends to infinity as well. Then in each repetition of the sample (hence the
terminology “repeated samples”) the regressors are assumed to be the same
as they were in the observed sample, and only the random disturbances are
supposed to be different. In fact, for any sample size n, one typically assumes
that u is an n--vector such that u ∼ IID(0, σ2

0In) where In is the identity
matrix of order n and σ2

0 is some constant variance.

This fixed-in-repeated-samples idea is of course excellent for cross-section
data, that is, data sets in which the separate observations are all recorded at
one time. These observations will typically be on members of a population
assumed to be characterized by certain statistical regularities that one wishes



4.4 Data-Generating Processes and Asymptotic Theory 117

to estimate, or the existence of which one wishes to test. In that case, the
fixed-in-repeated-samples idea corresponds to assuming that, as one gathers
more data, they will be “more of the same.” To put it somewhat differently,
it amounts to assuming that the sample one already has is sufficiently rep-
resentative of the population under study. Many of the data sets used in
microeconometrics are cross sections. They will often consist of data on indi-
vidual economic agents such as firms or households, as in the home-ownership
example of Section 4.2.

The difficulties discussed in this section about how to extend DGPs to
arbitrarily large samples generally do not concern cross-section data.3 They
do, however, concern time-series data. For such data sets, the separate ob-
servations are temporally ordered; to each observation there corresponds a
date, perhaps just a year, but perhaps a quarter, month, day, or even, as in
the case of some data sets on financial markets, an hour or a minute. The
difficulties of sample extension arise with even more force in the case of what
are called panel data; see Section 9.10. Such data are obtained when a cross
section is observed at several different times. Thus the same member of the
population being studied, usually either a household or a firm, can be traced
through time. To perform asymptotic analysis for such data, it is necessary
to define a rule for extending the sample size to infinity in two different ways,
one corresponding to the cross-section dimension and the other to the time-
series dimension of the data. In our subsequent discussion of the difficulties
of extending DGPs to large samples, we will always, explicitly or implicitly,
be discussing time-series data or the time-series dimension of panel data.

Suppose that we now make the fixed-in-repeated-samples assumption for
the model (4.14). Then, if the observed sample size were m, for a sample of
size n = Nm we should have

α̂ = α0 +
(
N(τm)>τm

)−1 N∑
k=1

(τm)>uk,

where τm denotes a trend with just m elements, and the uk, k = 1, 2, . . . , N ,
are independent random m--vectors with the usual properties. Then

N(τm)>τm = 1−
6
n(2m+ 1)(m+ 1) = O(n) and

Var

( N∑
k=1

(τm)>uk

)
= 1−

6
σ2
0n(2m+ 1)(m+ 1) = O(n),

which imply that

Var(α̂) = σ2
0

(
1−
6
n(2m+ 1)(m+ 1)

)−1
= O(n−1). (4.18)

3 This statement may be too sanguine. Consider, for example, a cross section of
countries. If we have a data set with information on all of the OECD countries,
it is hard to imagine any rule at all for extending the sample!
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A comparison of (4.17) and (4.18) reveals that the behavior of the estimator
α̂ is quite different under the two different rules for sample-size extension.

There is not always a simple resolution to the sort of problem posed in
the above example. It is usually unrealistic to assume that linear time trends
of the form of τ will continue to increase forever, but it suffices to look at price
series in the twentieth century (and many other centuries) to realize that some
economic variables do not seem to have natural upper bounds. Even quan-
tity series such as real GNP or personal consumption are sometimes fruitfully
considered as being unbounded. Nevertheless, although the asymptotic theo-
ries resulting from different kinds of rules for extending DGPs to arbitrarily
large samples can be very different, it is important to be clear that deciding
among competing asymptotic theories of this sort is not an empirical issue.
For any given empirical investigation, the sample size is what it is, even if
the possibility of collecting further relevant data exists. The issue is always
one of selecting a suitable model, not only for the data that exist, but for a
set of economic phenomena, of which the data are supposed to be a mani-
festation. There is always an infinity of models (not all plausible of course)
that are compatible with any finite data set. As a consequence, the issue of
model selection among a set of such models can be decided only on the basis
of such criteria as the explanatory power of the concepts used in the model,
simplicity of expression, or ease of interpretation, but not on the basis of the
information contained in the data themselves.

Although, in the model (4.14), the assumption that the time trend vari-
able goes to infinity with the sample size may seem more plausible than the
fixed-in-repeated-samples assumption, we will throughout most of this book
assume that the DGP is of the latter rather than the former type. The problem
with allowing τt to go to infinity with the sample size is that each additional
observation gives us more information about the value of α than any of the
preceding observations. That is why Var(α̂) turned out to be O(n−3) when we
made that assumption about the DGP. It seems much more plausible in most
cases that each additional observation should, on average, give us the same
amount of information as the preceding observations. This implies that the
variance of parameter estimates will be O(n−1), as was Var(α̂) when we as-
sumed that the DGP was of the fixed-in-repeated-samples type. Our general
assumptions about DGPs will likewise lead to the conclusion that the variance
of parameter estimates is O(n−1), although we will consider DGPs that do
not lead to this conclusion in Chapter 20, which deals with dynamic models.

4.5 Consistency and Laws of Large Numbers

We begin this section by introducing the notion of consistency, one of the
most basic ideas of asymptotic theory. When one is interested in estimating
parameters from data, it is desirable that the parameter estimates should have
certain properties. In Chapters 2 and 3, we saw that, under certain regularity
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conditions, the OLS estimator is unbiased and follows a normal distribution
with a covariance matrix that is known up to a factor of the error variance,
which factor can itself be estimated in an unbiased manner. We were not able
in those chapters to prove any corresponding results for the NLS estimator,
and it was remarked that asymptotic theory would be necessary in order to
do so. Consistency is the first of the desirable asymptotic properties that
an estimator may possess. In Chapter 5 we will provide conditions under
which the NLS estimator is consistent. Here we will content ourselves with
introducing the notion itself and illustrating the close link that exists between
laws of large numbers and proofs of consistency.

An estimator β̂ of a vector of parameters β is said to be consistent if it
converges to its true value as the sample size tends to infinity. That statement
is not false or even seriously misleading, but it implicitly makes a number of
assumptions and uses undefined terms. Let us try to rectify this and, in so
doing, gain a better understanding of what consistency means.

First, how can an estimator converge? It can do so if we convert it to
a sequence. To this end, we write β̂n for the estimator that results from
a sample of size n and then define the estimator β̂ itself as the sequence
{β̂n}∞n=m. The lower limit m of the sequence will usually be assumed to be
the smallest sample size that allows β̂n to be computed. For example, if we
denote the regressand and regressor matrix for a linear regression done on a
sample of size n by yn and Xn, respectively, and if Xn is an n × k matrix,
then m cannot be any smaller than k, the number of regressors. For n > k we
have as usual that β̂n =

(
(Xn)>Xn

)−1
(Xn)>yn, and this formula embodies

the rule which generates the sequence β̂.

An element of a sequence β̂ is a random variable. If it is to converge
to a true value, we must say what kind of convergence we have in mind,
since we have seen that more than one kind is available. If we use almost sure
convergence, we will say that we have strong consistency or that the estimator
is strongly consistent. Sometimes such a claim is possible. More frequently
we use convergence in probability and so obtain only weak consistency. Here
“strong” and “weak” are used in the same sense as in the definitions of strong
and weak laws of large numbers.

Next, what is meant by the “true value”? We answer this question in
detail in the next chapter, but here we must at least note that convergence of
a sequence of random variables to any kind of limit depends on the rule, or
DGP, which generated the sequence. For example, if the rule ensures that, for
any sample size n, the regressand and regressor matrix of a linear regression
are in fact related by the equation

yn = Xnβ0 + un, (4.19)

for some fixed vector β0, with un an n--vector of white noise errors, then the
true value for this DGP will be β0. The estimator β̂, to be consistent, should
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converge, under the DGP (4.19), to β0 whatever the fixed value β0 happens
to be. However, if the DGP is such that (4.19) does not hold for any β0 at all,
then we cannot give any meaning to the term “consistency” as we are using
it at present.

After this preamble, we can finally investigate consistency in a particular
case. We could take as an example the linear regression (4.19), but that would
lead us into consideration of too many side issues that will be dealt with in
the next chapter. Instead, we will consider the very instructive example that
is afforded by the Fundamental Theorem of Statistics, a simple version of
which we will now prove. This theorem, which is indeed fundamental to
all statistical inference, states that if we sample randomly with replacement
from a population, the empirical distribution function is consistent for the
population distribution function.

Let us formalize this statement and then prove it. The term population is
used in its statistical sense of a set, finite or infinite, from which independent
random draws can be made. Each such draw is a member of the population.
By random sampling with replacement is meant a procedure which ensures
that in each draw the probability that any given member of the population is
drawn is unchanging. A random sample will be a finite set of draws. Formally,
the population is represented by a c.d.f. F (x) for a scalar random variable x.
The draws from the population are identified with different, independent,
realizations of x.

A random sample of size n can be denoted by {Yt}nt=1, where the Yt’s are
independent realizations. Then, by the empirical distribution function gener-
ated by the sample, we mean the following cumulative distribution function

F̂n(x) ≡ 1−
n

n∑
t=1

I(−∞,x)(Yt). (4.20)

The indicator function I associated with the interval (−∞, x) takes the value 1
if its argument is contained in the interval and 0 otherwise. (Indicator func-
tions can be defined similarly for any subset of the real line or of any other
space in which random variables can take their values.) We leave it as an
exercise to show that expression (4.20) does indeed define the cumulative dis-
tribution function for the discrete distribution which allocates a probability
mass of n−1 to each realization contained in the sample {Yt}nt=1.

Next, we pass from the empirical distribution function (4.20), associated
with a given sample, to a random distribution function. To this end, the
realizations Yt are replaced by random variables yt. As we supposed that the
different draws in an actual sample were independent, so we now suppose that
the different random variables yt are independent. In effect, we are dealing
with a DGP that can generate random sequences {yt}nt=1 of arbitrary length n.
For any given n, then, we have a random c.d.f. as follows:

F̂n(x) = 1−
n

n∑
t=1

I(−∞,x)(yt). (4.21)
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The empirical distribution function of a random sample {Yt}nt=1 is thus a
realization of (4.21). To prove the Fundamental Theorem of Statistics, we
must show that, for all real x, F̂n(x) tends in probability to F (x) as n→∞.

First, let us fix some real value of x. Then we may observe that each
term in the sum on the right-hand side of (4.21) depends only on the single
variable yt. Since the yt’s are mutually independent, so then are these terms.
Each term uses the same fixed value of x, and so in each term we have
the same function. Since the yt’s all follow the same distribution, so then
must the terms of the sum. Thus (4.21) is the mean of n random terms, all
mutually independent and all with the same distribution. This distribution
is not difficult to describe. An indicator function, by construction, can take
on one of only two values, 0 and 1. We will have described the distribution
completely, then, if we give the probability of each of these two values. By
the definition of I,

Pr
(
I(−∞,x)(yt) = 1

)
= Pr

(
yt ∈ (−∞, x)

)
= Pr

(
yt < x

)
= F (x),

(4.22)

where the last line follows from the definition of the c.d.f. F (·). The comple-
mentary probability, Pr

(
I(−∞,x)(yt) = 0

)
, is then of course just 1− F (x).

In Section 4.2, we proved a weak law of large numbers for a coin-tossing
example. We looked at the mean of a sequence of independent and identically
distributed random variables with a distribution similar to that of the indica-
tor functions here, such that only two values, 0 and 1, were possible. Because
of the assumption that the coin was unbiased, there was the added restriction
that each of those values had probability one-half. The problem here, then,
is plainly identical to the problem of the limiting proportion of heads in a
sequence of tosses of a biased coin. It would be simple to modify the proof of
Section 4.2 in order to make it apply to this case. Instead, we prefer to prove
now a more general (weak) law of large numbers, which will encompass this
case but also many others.

Theorem 4.1. Simple Weak Law of Large Numbers. (Chebyshev)

Suppose that for each positive integer n we have a set of independent
scalar random variables {yn1 , yn2 , . . . , ynn}. Let

Sn ≡
n∑

i=1

yni ,

and suppose further that E(yni ) = mn
i and that Var(yni ) = vni . Then

the limit in probability as n→∞ of the sequence{
N−1n

(
Sn −

n∑
i=1

mn
i

)}
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is zero for all nonrandom sequences of positive real numbers Nn that
tend to infinity with n and are such that

Vn ≡
n∑

i=1

vni = o(N2
n ).

Proof : The technique of proof is the same as that for the weak law proved
in Section 4.2 for the coin-tossing example: We make use of the Chebyshev
inequality. Note first that

Var

(
N−1n

(
Sn −

n∑
i=1

mn
i

))
= N−2n Vn ≡ wn.

It is clear that as n → ∞, wn → 0, because Vn = o(N2
n ), and as n tends

to infinity, so does Nn. But we observed in Section 4.2 that any centered
sequence of random variables for which the variances tend to zero as n tends
to infinity, tends in probability to zero. Thus the proof is complete.

Note that this theorem requires the existence of both the first and second
moments of the variables yni . In Section 4.7, we will list, but not prove,
theorems with weaker regularity conditions. On the other hand, we have
introduced a fair degree of generality. Our random variables yni must still be
independent (that requirement too will be relaxed in Section 4.7), but they
may have their own means and variances, and of course their own higher
moments, to the extent that these exist at all. Moreover, the explicit n-
dependence in yni means that, as a sample size grows, the random variables
indexed by low values of n are not inexorably the same as they were in the
earlier, smaller samples.

Plainly Theorem 4.1 gives more than we need to conclude that{
1−
n

n∑
t=1

I(−∞,x)(yt)− F (x)

}
tends in probability to zero as n→∞. From (4.22) we find that

E
(
I(−∞,x)(yt)

)
= F (x) and

Var
(
I(−∞,x)(yt)

)
= F (x)

(
1− F (x)

)
.

Thus the variance Vn in this case is nF (x)
(
1 − F (x)

)
. This last quantity is

O(n), and hence also o(n2), as required by the theorem with Nn = n. We have
therefore completed the proof of our version of the Fundamental Theorem of
Statistics.

This proof can serve as a model for proofs of consistency of a great many
simple estimators. For example, one often wishes to estimate the moments of
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a given distribution. If x is a random variable that follows this distribution,
then by definition the kth moment of the distribution is µk ≡ E(xk). The
most intuitive estimator for µk is the corresponding sample moment. The
kth sample moment Mk from a realized sample {Yt}nt=1 is defined as the kth

moment of the empirical distribution of the sample, which is easily seen to be

Mk = 1−
n

n∑
t=1

Y k
t .

If as before we replace the realizations Yt in the above summation by random
variables yt, and the realized moment Mk by a random variable mk, we can
see that mk consistently estimates µk by considering mk − µk, which is

mk − µk = 1−
n

n∑
t=1

(
ykt − E(ykt )

)
.

The random variables ykt − E(ykt ) are centered, and so we see that the right-
hand side of this equation will satisfy the conditions of Theorem 4.1 if the
(2k)th population moment exists. Thus, under this fairly weak condition, we
conclude that sample moments consistently estimate population moments.

Just as it is almost mandatory in finite-sample analysis to prove that
an estimator is unbiased, it is almost mandatory in asymptotic analysis to
prove that an estimator is consistent. Although one may be tempted to infer
from this that consistency is the asymptotic equivalent of unbiasedness, that
is not the case. Consistency neither implies nor is implied by unbiasedness.
An estimator may be unbiased and consistent, biased but consistent, unbiased
but inconsistent, or biased and inconsistent! Consider the following examples,
which all deal with estimating the mean of a population characterized by a
mean µ and a variance σ2, based on a sample of n observations yt. The
sample mean m1 has already been seen to be consistent and unbiased. But
now consider the estimators

µ̃ =
1

n− 3

n∑
t=1

yt, (4.23)

µ̈ = 1−
2
y1 +

1

2(n− 1)

n∑
t=2

yt, and (4.24)

µ̌ =
2

n

n∑
t=1

yt. (4.25)

The first of these, (4.23), is clearly biased, because

E(µ̃) =
1

n− 3

n∑
t=1

µ =
n

n− 3
µ,
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but it is nevertheless consistent, because µ̃ =
(
n/(n−3)

)
m1 and n/(n−3)→ 1

as n → ∞. On the other hand, the second estimator, (4.24), is unbiased,
because

E(µ̈) = 1−
2
µ+

1

2(n− 1)

n∑
t=2

µ = µ.

However, µ̈ is inconsistent, because it has a variance that does not tend to 0
as n→∞, since y1 always gets a finite weight no matter how large the sample
size. This means that µ̈ cannot possibly have a nonstochastic plim, which any
consistent estimator must have. Finally, the third estimator, (4.25), is clearly
biased, and it is inconsistent since it will converge to 2µ instead of to µ.

The relationship between consistency and asymptotic unbiasedness is
rather more subtle, because at first sight there are two possible definitions
for the latter concept. The first is that an estimator is asymptotically un-
biased if the mean of its asymptotic distribution is the true value of the
parameter. The second is that an estimator is asymptotically unbiased if the
limit of the means of the random variables constituting the estimator (a se-
quence, remember) is the true value of the parameter. These two definitions
are not equivalent. The technical reason for this inequivalence is that in none
of the topologies induced on sets of random variables by the different kinds
of stochastic convergence we have considered does the operation of taking a
moment of a random variable induce a continuous mapping from the set of
random variables to R.

To see how the problem arises, consider the following “pathological” ex-
ample. Here is a distinctly odd estimator of a scalar parameter θ:

θ̂n ≡
{
θ with probability 1− n−1

2nθ with probability n−1.

This estimator is clearly consistent: For any ε > 0 whatsoever,

Pr
(
|θ̂n − θ| > ε

)
≤ Pr

(
θ̂n = 2nθ

)
= n−1,

which is less than δ for all n > δ−1. The mean of the estimator exists:

E
(
θ̂n
)

= 3θ − n−1θ,

and this mean tends to a well-defined limit of 3θ as n → ∞. The limit of
the mean is therefore not the true value of the parameter. However, the
asymptotic distribution of the estimator, by which we mean the distribution
of the limiting random variable to which the sequence {θ̂n} tends, has a quite
different, and correct, mean of θ. It is a useful exercise to write out the
c.d.f. of θ̂n and show that it converges pointwise to a degenerate distribution
concentrated at θ.
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It is clear from this example that the definition which we will want for
asymptotic unbiasedness is the one using the limit of the means, not the lim-
iting mean, since the latter is a property of a random variable never actually
realized in the finite world. Asymptotics does not provide useful approxima-
tions when there are discontinuities at infinity! With this definition, however,
consistency does not imply asymptotic unbiasedness, unless one can rule out
pathological examples like this one. Such examples often can be ruled out, of
course. In this particular example, the variance of θ̂n is O(n) as n→∞ and
thus does not tend to a finite limit. This pathology cannot arise with a con-
sistent estimator, like mk for µk above, that satisfies a law of large numbers
like Theorem 4.1. In such a case, the centering of the sequence carried out for
finite sample sizes guarantees that the mean of the limiting distribution and
the limit of the means are the same. An exactly similar issue will arise in the
next section in the context of central limit theorems and limiting variances.

4.6 AsymptoticNormality andCentral LimitTheorems

There is the same sort of close connection between the property of asymptotic
normality and central limit theorems as there is between consistency and laws
of large numbers. The easiest way to demonstrate this close connection is by
means of an example. Suppose that samples are generated by random draw-
ings from distributions with an unknown mean µ and unknown and variable
variances. For example, it might be that the variance of the distribution from
which the tth observation is drawn is

σ2
t ≡ ω2

(
1 + 1−

2

(
t(mod 3)

))
. (4.26)

Then σ2
t will take on the values ω2, 1.5ω2, and 2ω2 with equal probability.

Thus σ2
t varies systematically with t but always remains within certain limits,

in this case ω2 and 2ω2.

We will suppose that the investigator does not know the exact relation
(4.26) and is prepared to assume only that the variances σ2

t vary between two
positive bounds and average out asymptotically to some value σ2

0 , which may
or not be known, defined as

σ2
0 ≡ lim

n→∞

(
1−
n

n∑
t=1

σ2
t

)
.

The sample mean may still be used as an estimator of the population mean,
since our law of large numbers, Theorem 4.1, is applicable. The investigator
is also prepared to assume that the distributions from which the observations
are drawn have absolute third moments that are bounded, and so we too will
assume that this is so. The investigator wishes to perform asymptotic statis-
tical inference on the estimate derived from a realized sample and is therefore
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interested in the nondegenerate asymptotic distribution of the sample mean
as an estimator. We saw in Section 4.3 that for this purpose we should look at
the distribution of n1/2(m1 − µ), where m1 is the sample mean. Specifically,
we wish to study

n1/2(m1 − µ) = n−1/2
n∑

t=1

(
yt − µ

)
,

where yt − µ has variance σ2
t .

We begin by stating the following simple central limit theorem.

Theorem 4.2. Simple Central Limit Theorem. (Lyapunov)

Let {yt} be a sequence of independent, centered random variables with
variances σ2

t such that σ2 ≤ σ2
t ≤ σ2 for two finite positive constants,

σ2 and σ2, and absolute third moments µ3 such that µ3 ≤ µ̄3 for a
finite constant µ̄3. Further, let

σ2
0 ≡ lim

n→∞

(
1−
n

n∑
t=1

σ2
t

)
exist. Then the sequence {

n−1/2
n∑

t=1

yt

}
tends in distribution to a limit characterized by the normal distribu-
tion with mean zero and variance σ2

0 .

Theorem 4.2 applies directly to the example (4.26). Thus our hypotheti-
cal investigator may, within the limits of asymptotic theory, use the N(0, σ2

0)
distribution for statistical inference on the estimate m1 via the random vari-
able n1/2(m1 − µ). Knowledge of σ2

0 is not necessary, provided that it can be
estimated consistently.

Although we do not intend to offer a formal proof of even this simple
central limit theorem, in view of the technicalities that such a proof would
entail, it is not difficult to give a general idea of why the result is true. For
simplicity, let us consider the case in which all the variables yt of the sequence
{yt} have the same distribution with variance σ2. Then clearly the variable

Sn ≡ n−1/2
n∑

t=1

yt

has mean zero and variance σ2 for each n. But what of the higher moments
of Sn? By way of an example, consider the fourth moment. It is

E
(
S4
n

)
=

1

n2

n∑
r=1

n∑
s=1

n∑
t=1

n∑
u=1

E(yrysytyu). (4.27)
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Since all the yt’s are mutually independent and have mean zero, no term in
the quadruple sum of (4.27) can be nonzero unless the indices either are all
the same or fall into pairs (with, for instance, r = t and s = u with r 6= s).
If all the indices are the same, then the value of the corresponding term is
just the fourth moment of the distribution of the yt’s. But there can only
be n such terms. With the factor of n−2 in (4.27), we see that these terms
contribute to (4.27) only to order n−1. On the other hand, the number of
terms for which the indices fall in pairs is 3n(n − 1),4 which is O(n2). Thus
the latter terms contribute to (4.27) to the order of unity. But, and this is the
crux of the argument, the value of each of these terms is just the square of
the variance of each yt, or σ4. Thus, to leading order, the fourth moment of
Sn depends only on the variance of the yt’s; it does not depend on the fourth
moment of the distribution of the yt’s.

5

A similar argument applies to all the moments of Sn of order higher
than 2. Thus, to leading order, all these moments depend only on the var-
iance σ2 and not on any other property of the distribution of the yt’s. This
being so, if it is legitimate to characterize a distribution by its moments,
then the limiting distribution of the sequence {Sn}∞n=1 depends only on σ2.
Consequently, the limiting distribution must be the same for all possible dis-
tributions with the variance of yt equal to σ2, regardless of other properties of
that distribution. This means that we may calculate the limiting distribution
making use of whatever distribution we choose, provided it has mean 0 and
variance σ2, and the answer will be independent of our choice.

The simplest choice is the normal distribution, N(0, σ2). The calculation
of the limiting distribution is very easy for this choice: Sn is just a sum
of n independent normal variables, namely, the n−1/2yt’s, all of which have
mean 0 and variance n−1σ2. Consequently, Sn itself is distributed as N(0, σ2)
for all n. If the distribution is N(0, σ2) for all n independent of n, then the
limiting distribution is just the N(0, σ2) distribution as well. But if this is
so for normal summands, we may conclude by our earlier argument that the
limiting distribution of any sequence Sn made up from independent mean-zero
summands, all with variance σ2, will be N(0, σ2).

The above discussion has ignored many vital technical details, but it
captures the essential fact that drives all proofs of central limit theorems. We
may reiterate here that the most important aspect of the central limit result
is that the limiting distribution is normal.

In practice, we typically wish to estimate a vector of random variables,
say β. Let β̂n denote the estimate for a sample of size n and β0 denote

4 There are three ways of pairing up the four indices, n ways of choosing the
index of the first pair, and n − 1 ways of choosing a different index for the
second pair.

5 The value of this fourth moment is n−2 times 3n(n − 1) times σ4, which to
highest order is just 3σ4. This is the fourth moment of the normal distribution.
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← n = 5

n = 10 −→

n = 50 −→
← n = 500

Figure 4.1 The normal approximation for different values of n

the true value. Then, as we will demonstrate in the next chapter, applica-
tion of a suitable central limit theorem will generally allow us to conclude
that n1/2(β̂n − β0) is asymptotically distributed as multivariate normal with
mean vector zero and some specified covariance matrix that can be estimated
consistently.

Central limit theorems are useful in practice because, in many cases,
they provide good approximations even when n is not very large. This is
illustrated in Figure 4.1, which deliberately deals with a case in which the un-
derlying random variables are highly nonnormal, and a central limit theorem
can therefore be expected to work relatively badly. Each of the underlying
random variables yt is distributed as χ2(1), a distribution that exhibits ex-
treme right skewness: The mode of the distribution is zero, there are no values
less than zero, and there is a very long right-hand tail. The figure shows the
density of

n−1/2
n∑

t=1

yt − µ
σ

,

where, in this case, µ = 1 and σ =
√

2, for n = 5, n = 10, n = 50, and
n = 500. For comparison, the density of the standard normal distribution is
also shown as a dotted line. It is clear that the central limit theorem works
very well for n = 500 and reasonably well for n = 50, despite the highly
nonnormal distribution of the yt’s. In many other cases, for example when
the yt’s are uniformly distributed, convergence to asymptotic normality is
very much faster.
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Of course, not every estimator is consistent and asymptotically normal.
Sometimes no central limit theorem applies, and, less often, no law of large
numbers applies either. In particular, neither is applicable when the summand
random variables in the random sequence fail to possess even a first moment.
We now illustrate such a case. We let the random variables be distributed ac-
cording to the Cauchy distribution, which can be characterized by its density
function,

f(x) =
1

π(1 + x2)
.

The Cauchy distribution is related to the normal distribution by the fact
that the ratio of two independent standard normal variates is distributed as
Cauchy; see Appendix B. The distribution has no moments of order 1 or
greater, as can be seen from the fact that the integral∫ ∞

−∞

x

π(1 + x2)
dx (4.28)

diverges at both of its limits. An indefinite integral of the integrand in (4.28) is

1

2π
log(1 + x2),

which tends to infinity as x→ ±∞.

Another property of the Cauchy distribution is the one that gives point
to our present example. It is that if one takes the average of any finite number
of independent Cauchy random variables, the average itself follows the same
Cauchy distribution. We will not take the time to prove this fact but simply
take note of some of its consequences.

Suppose that we have a random sample of observations that are drawings
from a translated Cauchy distribution. That is, there is a translation para-
meter µ, which can no longer be called the mean of the distribution, such that
for each observation yt, the quantity yt − µ follows the Cauchy distribution.
Now let us look at the properties of the sample mean m1, which of course
always exists, as an estimator of the parameter µ. We have

m1 = 1−
n

n∑
t=1

yt = 1−
n

n∑
t=1

(µ+ ut),

where, by definition, ut ≡ yt − µ is a Cauchy random variable. Thus

m1 = µ+ 1−
n

n∑
t=1

ut.

The second term on the right-hand side of the above equation is just an average
of independent Cauchy variables, and so it follows the Cauchy distribution by
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the result cited above. Clearly, then, m1 is not consistent for µ, since, for
any n, m1 has a translated Cauchy distribution. It is as if the factor 1/n were
the proper one, not for the law of large numbers, but for a form of the central
limit theorem, since it is the sum of the ut’s divided by n rather than by n1/2

that has a nondegenerate asymptotic distribution. Of course, this asymptotic
distribution is Cauchy rather than normal. Although m1 is not a satisfactory
estimator of the parameter µ, since µ is both the median and the mode of
the distribution, there are other ways that we can estimate it, and in fact the
sample median, for example, does provide a consistent estimator.

4.7 Some Useful Results

This section is intended to serve as a reference for much of the rest of the
book. We will essentially make a list (with occasional commentary but with-
out proofs) of useful definitions and theorems. At the end of this we will
present two sets of regularity conditions that will each have a set of desirable
implications. Later, we will be able to make assumptions by which one or
other of these whole sets of regularity conditions is satisfied and thereby be
able to draw without further ado a wide variety of useful conclusions.

To begin with, we will concentrate on laws of large numbers and the
properties that allow them to be satisfied. In all of these theorems, we consider
a sequence of sums {Sn} where

Sn ≡ 1−
n

n∑
t=1

yt.

The random variables yt will be referred to as the (random) summands. First,
we present a theorem with very little in the way of moment restrictions on
the random summands but very strong restrictions on their homogeneity.

Theorem 4.3. (Khinchin)

If the random variables yt of the sequence {yt} are mutually inde-
pendent and all distributed according to the same distribution, which
possesses a mean of µ, then

Pr
(

lim
n→∞

Sn = µ
)

= 1.

Only the existence of the first moment is required, but all the summands must
be identically distributed. Notice that the identical mean of the summands
means that we need not bother to center the variables yt.

Next, we present a theorem due to Kolmogorov, which still requires inde-
pendence of the summands, and now existence of their second moments, but
very little else in the way of homogeneity.
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Theorem 4.4. (Kolmogorov)

Let the sequence of mutually independent centered random variables
{yt} have the property that

lim
n→∞

(
n−2

n∑
t=1

Var(yt)

)
<∞.

Then Sn → 0 almost surely.

This is a very strong result, since because of the factor n−2 it is not hard
to satisfy the specified condition. Bounded variances easily satisfy it, for
example.

In the following theorems, the assumption of the independence of the
summands is relaxed. Some regularity is of course still needed, and for this
reason we need a few definitions. Recall at this point the definition of an
indicator function, which will now be used for a vector of random variables:
If the random variable y is realized in Rk and G is any subset of Rk for which
Pr(y ∈ G) is well defined, then

IG(y) =
{

1 if y ∈ G
0 otherwise.

Next, we define the important notion of a conditional expectation. We
will make use of this concept extensively throughout the book.

Definition 4.9.

The expectation of the random variable y conditional on the vector of
random variables z is a random variable w which is a deterministic
function of the conditioning variables z and which possesses the fol-
lowing defining property. For all G ⊆ Rk such that Pr(z ∈ G) is well
defined,

E
(
wIG(z)

)
= E

(
yIG(z)

)
. (4.29)

The conditional expectation w is denoted by E(y | z).

Observe that a conditional expectation is a random variable, being a func-
tion of the conditioning variables z. The ordinary unconditional expectation,
which of course is not random, can be considered as the expectation condi-
tional on a nonstochastic variable. On the other hand, the expectation of a
variable conditional on itself is just the variable itself.

An expectation taken conditional on a set of conditioning variables z will
be the same as the expectation taken conditional on another set z′ if there
is one-to-one correspondence associating the set z to the set z′, for then any
function of z can be transformed into a function of z′. A simple consequence
is that the expectation of a function h(y) of a random variable y, conditional
on y, is just h(y).
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Another important consequence of the definition of a conditional expec-
tation is the so-called law of iterated expectations, which can be stated as
follows:

E
(
E(y | z)

)
= E(y).

The proof of this is an immediate consequence of using the whole of Rk as the
set G in (4.29).

The definitions which follow are rather technical, as are the statements of
the laws of large numbers that make use of them. Some readers may therefore
wish to skip over them and the discussion of central limit theorems to the
definitions of the two sets of regularity conditions, which we call WULLN and
CLT, presented at the end of this section. Such readers may return to this
point when some reference to it is made later in the book.

Definition 4.10.

The sequence {yt} is said to be stationary if for all finite k the joint
distribution of the linked set {yt, yt+1, . . . , yt+k} is independent of the
index t.

Definition 4.11.

The stationary sequence {yt} is said to be ergodic if, for any two
bounded mappings Y : Rk+1 → R and Z : Rl+1 → R,

lim
n→∞

∣∣E(Y (yi, . . . , yi+k)Z(yi+n, . . . , yi+n+l)
)∣∣

=
∣∣E(Y (yi, . . . , yi+k)

)∣∣ ∣∣E(Z(yi, . . . , yi+l)
)∣∣.

Definition 4.12.

The sequence {yt} is said to be uniformly mixing, or φ--mixing, if
there is a sequence of positive numbers {φn}, convergent to zero, such
that, for any two bounded mappings Y : Rk+1 → R and Z : Rl+1 → R,∣∣E(Y (yt, . . . , yt+k) |Z(yt+n, . . . , yt+n+l)

)
−E

(
Y (yt, . . . , yt+k)

)∣∣ < φn.

The symbol E(· | ·) denotes a conditional expectation, as defined
above.

Definition 4.13.

The sequence {yt} is said to be α--mixing if there is a sequence of
positive numbers {αn}, convergent to zero, such that, if Y and Z are
as in the preceding definition, then∣∣E(Y (yt, . . . , yt+k)Z(yt+n, . . . , yt+n+l)

)
− E

(
Y (·)

)
E
(
Z(·)

)∣∣ < αn.

The last three definitions can be thought of as defining various forms of
asymptotic independence. According to them, random variables yt and ys are
more nearly independent (in some sense) the farther apart are the indices t
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and s. For more on these concepts and their implications, see White (1984)
and Spanos (1986, Chapter 8). A useful aspect of the mixing and ergodic
properties is that if the sequence {yt} has one of the properties, so do se-
quences of functions of the yt’s, {Y (yt)}, in the same way that functions of
two independent random variables are themselves independent. A stronger
result is also true. A sequence of the form {Y (yt, . . . , yt+i)} also preserves the
mixing or ergodic property and, in the case of the ergodic property, the range
of dependence i may be infinite. The property of φ--mixing is the strongest: It
implies α--mixing, which in turn implies ergodicity for stationary sequences.

The mixing properties are important if one wishes to deal with nonsta-
tionary sequences. In this book, we will have little to say about the latter
(except in Chapter 20), and therefore we prefer to present the next theorem,
which is for stationary sequences and has the weakest regularity condition,
namely, ergodicity. This theorem, due to the celebrated American mathe-
matician G. D. Birkhoff, is in fact famous in the mathematical literature and
many other literatures besides that of econometrics.

Theorem 4.5. Ergodic Theorem.

If the stationary sequence {yt} is ergodic in the sense of Definition
4.11 and if the expectation µ of yt exists and is finite, then Sn tends
to µ almost surely as n→∞.

Again in this theorem no centering is necessary, since the stationarity property
ensures that all the yt’s have the same mean.

Some more definitions are needed before the next theorem can be stated.

Definition 4.14.

A sequence {yt} of random variables is called a martingale if, for all t,
E(|yt|) exists and is finite and if, for all t,

E
(
yt+1 | yt, . . . , y1

)
= yt.

Martingales are very important types of sequences. A simple example is
provided by a sequence {Zn} of sums of independent centered random vari-
ables yt:

E
(
Zn+1 |Zn, . . . , Z1

)
= E

(n+1∑
t=1

yt |Zn, . . . , Z1

)
= E

(n+1∑
t=1

yt | yn, . . . , y1
)
,

since each of the sets {Zn, . . . , Z1} and {yn, . . . , y1} determines the other
uniquely. Then, as required,

E

(n+1∑
t=1

yt | yn, . . . , y1
)

= E
(
yn+1 | yn, . . . , y1

)
+

n∑
t=1

yt

= E(yn+1) +

n∑
t=1

yt = Zn.
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Martingales do crop up as such from time to time in econometrics, but
a more immediately applicable notion is that of a martingale difference se-
quence.

Definition 4.15.

A sequence {yt} is said to be a martingale difference sequence if

E
(
yt+1 | yt, . . . , y1

)
= 0.

This definition is very short because the condition implies not only the ex-
istence of the unconditional expectations E(yt) but also that these are zero,
and the sequence is therefore centered. See Spanos (1986, Chapter 8).

Theorem 4.6. (Chow)

If {yt} is a martingale difference sequence and there is an r ≥ 1 such
that the series

∞∑
t=1

t−(1+r)E
(
|yt|2r

)
converges, then Sn → 0 almost surely.

The regularity condition is quite weak, because of the factor of t−(1+r). Note
that

∞∑
t=1

t−(1+r)

converges for all r > 0. In particular the condition is satisfied if the (2k)th

absolute moments of the yt’s, E(|yt|2r), are uniformly bounded, by which we
mean that there is a constant K, independent of t, such that E(|yt|2r) < K
for all t. See Stout (1974) and Y. S. Chow (1960, 1967).

We are now ready to move on to a selection of central limit theorems. A
useful procedure, analogous to the centering we used so often in our discussion
of laws of large numbers, is that of standardizing a sequence. For this to be
possible, each variable of the sequence {yt} must have both a first and second
moment. Then if µt and vt denote, respectively, the mean and the variance
of yt, the sequence with typical element zt ≡ (yt − µt)/

√
vt is said to be

standardized. Thus every variable in such a sequence has zero mean and
unit variance. For the purposes of our collection of central limit theorems,
the variable Sn associated with a sequence {yt} will be redefined as follows,
where µt and vt are, respectively, the mean and variance of yt:

Sn ≡
∑n

t=1(yt − µt)(∑n
t=1 vt

)1/2 .
It is clear that {Sn} is standardized if the yt’s are independent.
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Theorem 4.7. (Lindeberg-Lévy)

If the variables of the random sequence {yt} are independent and have
the same distribution with mean µ and variance v, then Sn converges
in distribution to the standard normal distribution N(0, 1).

This theorem has minimal requirements for the moments of the variables but
maximal requirements for their homogeneity. Note that, in this case,

Sn = (nv)−1/2
n∑

t=1

(yt − µ).

The next theorem allows for much heterogeneity but still requires inde-
pendence.

Theorem 4.8. (Lyapunov)

For each positive integer n let the finite sequence {ynt }nt=1 consist of
independent centered random variables possessing variances vnt . Let
s2n ≡

∑n
t=1 v

n
t and let the Lindeberg condition be satisfied, namely,

that for all ε > 0

lim
n→∞

( n∑
t=1

s−2n E
(
(ynt )2IG(ynt )

))
= 0,

where the set G used in the indicator function is {y : |y| ≥ εsn}. Then
s−1n

∑n
t=1 y

n
t converges in distribution to N(0, 1).

Our last central limit theorem allows for dependent sequences.

Theorem 4.9. (McLeish)

For each positive integer n let the finite sequences {ynt }nt=1 be martin-
gale difference sequences with vnt ≡ Var(ynt ) <∞, and s2n ≡

∑n
t=1 v

n
t .

If for all ε > 0

lim
n→∞

(
s−2n

n∑
t=1

E
(
(ynt )2IG(ynt )

))
= 0,

where again the set G ≡ {y : |y| ≥ εsn}, and if the sequence{
n∑

t=1

(ynt )2

s2n

}

obeys a law of large numbers and thus converges to 1, then s−1n

∑n
t=1y

n
t

converges in distribution to N(0, 1).

See McLeish (1974). Observe the extra condition needed in this theorem,
which ensures that the variance of the limiting distribution is the same as the
limit of the variances of the variables in s−1n

∑n
t=1 y

n
t .
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We are now ready to assemble our collection of suitable regularity condi-
tions for use in the next chapter and elsewhere. It is convenient to begin with
the collection we call CLT, because it includes a central limit theorem.

Definition 4.16.

A sequence {yt} of centered random variables is said to satisfy con-
dition CLT if it satisfies a central limit theorem as follows: Let
Var(yt) = σ2

t and s2n ≡
∑n

t=1 σ
2
t , with

plim
n→∞

(
s−2n

n∑
t=1

y2t

)
= 1.

Then s−1n

∑n
t=1 yt tends in distribution to N(0, 1).

We do not specify which central limit theorem justifies the conclusion; we
require only that some such theorem does. The extra condition is imposed so
that it is possible to obtain consistent estimates of the variances of asymptot-
ically normal random variables. More precisely, it requires that the variance
of n−1/2

∑n
t=1 yt be consistently estimated by n−1

∑n
t=1 y

2
t .

In practice, we will frequently wish to apply condition CLT to a vector-
valued sequence. For example, if we have a scalar-valued function of several
parameters, it may be interesting to apply CLT to the vector of its partial
derivatives. In this context, the following theorem is extremely useful:

Theorem 4.10. (Multivariate Normality)

If a collection {z1, . . . , zm} of normally distributed random variables
has the property that any linear combination of the set is also normally
distributed, then {z1, . . . , zm} are jointly distributed according to a
multivariate normal distribution.

See Rao (1973), among others, for references and a proof. The arguments that
lead to a conclusion of asymptotic normality for a collection of limiting random
variables taken separately will almost always apply to linear combinations of
the summands, and so the step to the multivariate normality of a collection
of limiting variables is usually short. We will sometimes not bother even to
mention the issue later in the book and will speak of condition CLT applying
directly to a vector-valued sequence.

The second of our two collections of conditions introduces a new idea,
that of uniform convergence of a sequence, which can be used if the members
of the sequence are functions of (nonrandom) variables or parameters. This
situation will crop up repeatedly when we look in the next chapter at estima-
tion procedures. We will treat sequences of random variables that depend on
unknown model parameters and that are required in consequence to satisfy a
law of large numbers for any set of values of these parameters in some neigh-
borhood. Uniform convergence is a strengthening of the notion of convergence
that allows one to draw conclusions like the continuity or integrability with



4.8 Conclusion 137

respect to the parameters of limiting functions if the functions in the sequence
are themselves continuous or integrable.

We will give the formal definition next for the purposes of later reference.
The details of the definition are not important for present purposes: The
point that should be grasped now is that some strengthening of the property
of convergence is necessary if functions that are limits of sequences of func-
tions are to inherit from the elements of these sequences useful properties like
continuity or integrability.

Definition 4.17.

A sequence of random functions {yt(β)} of a vector of arguments
β ∈ Rk is said to satisfy condition WULLN (weak uniform law of large
numbers) in some neighborhood R contained in Rk if the expectations
E
(
yt(β)

)
exist for all t and β ∈ R, if

ȳ(β) ≡ lim
n→∞

(
1−
n

n∑
t=1

E
(
yt(β)

))
(4.30)

exists and is finite for all β ∈ R, and if the convergence in (4.30) is
uniform in the following sense: For all ε > 0 there exists an N such
that, for all β ∈ R,

∣∣∣ 1−n n∑
t=1

E
(
yt(β)

)
− ȳ(β)

∣∣∣ < ε for all n > N, and (4.31)

Pr

(
max
β∈R

∣∣∣ 1−n n∑
t=1

yt(β)− ȳ(β)
∣∣∣ > ε

)
< ε for all n > N.

We explicitly include in this condition the possibility that the distributions of
the yt’s used to calculate the expectations in (4.31) and (4.30) may themselves
depend on β.

4.8 Conclusion

We have tried in this chapter to provide an intuitive approach to the tools,
mathematical and probabilistic, used in asymptotic theory. Some of the
material, especially that of Section 4.7, need not at this stage be perfectly
grasped. It is there in order that we may refer to it later in the book, when
its purpose will be more evident. The absolutely essential concepts of this
chapter are those of laws of large numbers and central limit theorems. It is
necessary that these be understood intuitively before the next chapter can
safely be embarked on. The ideas of consistency and asymptotic normality
are probably more familiar, and in any case they will be discussed at some
length in the next chapter.
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In selecting the theorems presented in this chapter, we have leaned heavily
on the books by Billingsley (1979) and White (1984). See also Stout (1974)
and Lukacs (1975). These are, however, not exactly elementary texts and
are recommended for further reading rather than for clarification of anything
which, despite our best efforts, is unclear here. Spanos (1986) provides a
treatment of much of this material at a less technically demanding level.

Terms and Concepts

almost sure convergence
almost sure limit
as n tends to infinity
asymptotic equality
asymptotic independence
asymptotic normality
asymptotic theory
asymptotic unbiasedness
atoms, for a c.d.f.
Cauchy distribution, ordinary and

translated
centered sequence
central limit theorem
Chebyshev inequality
closeness
condition CLT
condition WULLN
conditional expectation
consistency, strong and weak
convergence in distribution (or in law)
convergence in probability
cross-section data
degenerate distribution
empirical distribution function
ergodic (of a sequence)
Fundamental Theorem of Statistics
indicator function
Kolmogorov’s existence theorem
law (of a random variable)
law of iterated expectations
law of large numbers, weak and

strong
limit in probability, or probability

limit (plim)
limits, finite and infinite
Lindeberg condition
martingale
martingale difference sequence
mixing (of a sequence)

moments (of a distribution)
multivariate normality
natural topology
nondegenerate plim
nonstochastic plim
normal distribution
order symbols, ordinary and

stochastic
ordered (a sequence is)
O, o notation
panel data
passage to the limit
population
random draw
random sample
random variable
rates of convergence
real-valued sequence
rule (for defining a stochastic process

or DGP)
same-order relation
sample moments
sample size
sequences, convergent and divergent
small-order relation
standardizing a sequence
stationary sequence
stochastic order relations
stochastic process
successor (in a sequence)
symmetric distribution
time-series data
time trend
topological space
translation parameter
unbiasedness (and consistency)
uniform convergence (of a sequence)
uniform mixing
vector-valued sequence



Chapter 5

Asymptotic Methods

and Nonlinear Least Squares

5.1 Introduction

In the preceding chapter, we introduced some of the fundamental ideas of
asymptotic analysis and stated some essential results from probability theory.
In this chapter, we use those ideas and results to prove a number of important
properties of the nonlinear least squares estimator.

In the next section, we discuss the concept of asymptotic identifiability
of parametrized models and, in particular, of models to be estimated by NLS.
In Section 5.3, we move on to treat the consistency of the NLS estimator for
asymptotically identified models. In Section 5.4, we discuss its asymptotic
normality and also derive the asymptotic covariance matrix of the NLS esti-
mator. This leads, in Section 5.5, to the asymptotic efficiency of NLS, which
we prove by extending the well-known Gauss-Markov Theorem for linear re-
gression models to the nonlinear case. In Section 5.6, we deal with various
useful properties of NLS residuals. Finally, in Section 5.7, we consider the
asymptotic distributions of the test statistics introduced in Section 3.6 for
testing restrictions on model parameters.

5.2 Asymptotic Identifiability

When we speak in econometrics of models to be estimated or tested, we refer
to sets of DGPs. When we indulge in asymptotic theory, the DGPs in question
must be stochastic processes, for the reasons laid out in Chapter 4. Without
further ado then, let us denote a model that is to be estimated, tested, or
both, as M and a typical DGP belonging to M as µ. Precisely what we mean
by this notation should become clear shortly.

The simplest model in econometrics is the linear regression model, but
even for it there are several different ways in which it can be specified. One
possibility is to write

y = Xβ + u, u ∼ N(0, σ2In), (5.01)

139
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where y and u are n--vectors and X is a nonrandom n× k matrix. Then the
(possibly implicit) assumptions are made that X can be defined by some rule
(see Section 4.2) for all positive integers n larger than some suitable value and
that, for all such n, y follows the N(Xβ, σ2In) distribution. This distribution
is unique if the parameters β and σ2 are specified. We may therefore say that
the DGP is completely characterized by the model parameters. In other
words, knowledge of the model parameters β and σ2 uniquely identify an
element µ of M.

On the other hand, the linear regression model can also be written as

y = Xβ + u, u ∼ IID(0, σ2In), (5.02)

with no assumption of normality. Many aspects of the theory of linear re-
gressions are just as applicable to (5.02) as to (5.01); for instance, the OLS
estimator is unbiased, and its covariance matrix is σ2(X>X)−1. But the dis-
tribution of the vector u, and hence also that of y, is now only partially
characterized even when β and σ2 are known. For example, the errors ut
could be skewed to the left or to the right, could have fourth moments larger
or smaller than 3σ4, or might even possess no moments of order higher than,
say, the sixth. DGPs with all sorts of properties, some of them very strange,
are special cases of the linear regression model if it is defined by (5.02) rather
than (5.01).

We may call the sets of DGPs associated with (5.01) and (5.02) M1 and
M2, respectively. These sets of DGPs are different, M1 being in fact a proper
subset of M2. Although for any DGP µ ∈ M2 there is a β and a σ2 that
correspond to, and partially characterize, µ, the inverse relation does not
exist. For a given β and σ2 there is an infinite number of DGPs in M2 (only
one of which is in M1) that all correspond to the same β and σ2. Thus we
must for our present purposes consider (5.01) and (5.02) as different models
even though the parameters used in them are the same.

The vast majority of statistical and econometric procedures for estimating
models make use, as does the linear regression model, of model parameters.
Typically, it is these parameters that we will be interested in estimating.
As with the linear regression model, the parameters may or may not fully
characterize a DGP in the model. In either case, it must be possible to
associate a parameter vector in a unique way to any DGP µ in the model M,
even if the same parameter vector is associated with many DGPs.

It will be convenient if our notation makes clear the association between
the DGPs of a model and the model parameters. Accordingly, we define the
parameter-defining mapping θ of the model M. By θ(µ) we will mean the
parameter vector associated with the DGP µ. For example, if M is a linear
regression model, of either type, and µ is a DGP contained in the model,
then θ(µ) = (β, σ2) for the appropriate values of the regression function
parameters β and the error variance σ2. The reader may wonder why we
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have used the complicated term “parameter-defining mapping” instead of the
simple word “parametrization.” The reason is that, in formal mathemat-
ical theory, a parametrization is a mapping that goes in the other direction;
therefore, in this case, it would associate a DGP to a given parameter vector.
Since we specifically wish to allow a single parameter vector to refer to a set
of DGPs, we have preferred the clumsier term.

In general, the mapping θ acts from the model M to a parameter space Θ,
which will usually be either Rk or a subset of Rk. Here k is a positive integer:
It gives the dimensionality, or just the dimension, of the parameter space Θ.
The relation among the mapping θ, its domain M, and its range Θ is denoted
as θ : M → Θ. We may write θ0 ≡ θ(µ0) if the parameter vector associated
with the DGP µ0 is θ0. If we refer to a particular DGP as, say, µ0 or µ1,
then we can follow our usual practice and write simply θ0 for θ(µ0) or θ1 for
θ(µ1). We will use the notation (M,θ) for a model along with its associated
parameter-defining mapping and call the pair (M,θ) a parametrized model.

The introduction of the mapping θ allows us to treat, in the asymptotic
context, the question of the identification of the parametrized model (M,θ) or,
more precisely here, of the model parameters θ. Before we present the formal
definition of asymptotic identification, a preliminary remark. The mere fact
that θ is to be defined as a mapping from M to Θ means that only one
parameter vector can ever be associated with a given DGP µ. Thus we have
ruled out from the very beginning the possibility of regression models with a
regression function like (2.07). An example of such a model is

yt = β1 + β2X
β3

t2 + ut, ut ∼ IID(0, σ2). (5.03)

In this case, if β2 = 0, one and the same DGP is associated with a whole set
of parameter vectors, since the choice of the value of β3 is then irrelevant.
Similarly, if β3 = 0, there will be no way to identify β1 and β2 separately,
and an infinite number of parameter vectors may again be associated with
the same DGP. Since models like (5.03) crop up rather frequently in applied
work, it is important to remember that the results we are about to derive
in this chapter do not apply to them, at least not without the imposition of
some further conditions. In the case of (5.03), a simple solution is to define
the parameter space Θ of the model so as to exclude the values β2 = 0 and
β3 = 0, and a well-behaved parameter-defining mapping would then exist for
the model restricted in this way. On other occasions it may be possible to
find a reparametrization of the model for which a parameter-defining mapping
exists.

In Section 2.3, for models that were to be estimated by nonlinear least
squares, a model was said to be identified by a given data set if the model sum-
of-squares function for the data set had a unique global minimum achieved at
a unique parameter vector. We now wish to extend the concept of identifica-
tion by a data set to the notion of asymptotic identification. First, observe
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that in Chapter 2 identification was defined in terms of the sum-of-squares
function, which is used to define the NLS estimator. Since we do not wish to
restrict ourselves permanently to the nonlinear regression model, we will for
the moment simply speak of an estimator θ̂, without discussing where it came
from. Of course, by “estimator” we mean a sequence of random variables,
{θ̂n}∞n=m, as discussed in Chapter 4, for which the elements of the sequence
take their values in the parameter space Θ. The nth element of the sequence
is a function of a sample of size n. Formally, we may write

θ̂n(yn) ∈ Θ,

where the superscript n denotes an entire sample of n observations. For ease
of notation, however, we will generally drop the n superscripts unless it is
important to make explicit the dependence on the sample size.

A distinction that is not always made clearly in econometrics but that
can sometimes be valuable is the distinction between an estimator and an
estimate. The distinction is identical to that made between a random vari-
able (the estimator) and a realization of that random variable (the estimate).
Thus the estimator θ̂n(yn) is a function of the random sample yn, while the
estimate θ̂ for a given sample y is the value of the estimator when it is eval-
uated at y. The notation θ̂ does not distinguish between an estimator and
an estimate. This may in some ways be unfortunate, but any disadvantages
are usually outweighed by the simplicity and generality of the “hat” notation.
We will simply make the distinction, when it is important, in words.

The issue of identification of a parameter vector θ by an estimator θ̂
has to do with whether or not θ̂(y) is uniquely determined for any arbitrary
sample y, or indeed whether it even exists as an element of the parameter
space Θ. As we saw in Section 2.3, for a given sample y, the sum-of-squares
function SSR(β) may not attain a global minimum for any finite parameter
vector β at all, may attain it at a forbidden value such as β2 = 0 for model
(5.03), or may take on a global minimum value at more than one parameter
vector. In any of these cases, the sample y does not identify the parameter
vector β. Ruling out this sort of thing more generally can be achieved by a
slight extension of the definition of identification used in Chapter 2. We have:

Definition 5.1.

The parametrized model (M,θ) is identified by the sample y and by
the estimator θ̂n if θ̂n(y) exists and is unique.

Note that this definition applies separately to each possible realized sample
y, and so it defines a property of that sample rather than of the estimator
θ̂n(yn). This is not the case for the concept of asymptotic identifiability,
which is a property only of the parametrized model (M,θ).

Definition 5.2.

A parametrized model (M,θ) is said to be asymptotically identified
if for any θ1, θ2 ∈ Θ with θ1 6= θ2 there exists some sequence of
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functions {Qn} such that

plim
n→∞

1Qn(yn) 6= plim
n→∞

2Qn(yn), (5.04)

where at least one of the plims exists and is a finite constant.

The notation
plim
n→∞

j for j = 1, 2

means of course that the plim is calculated by means of DGPs characterized by
parameter vectors θj. The definition extends the idea that only one parameter
vector can be associated to a given DGP and requires that any two DGPs
characterized by different parameters should be different not only for finite
samples but asymptotically. By this is meant that one can always find a
sequence Q which can distinguish between the two asymptotically. If no Q
satisfying (5.04) existed, the limiting properties of any statistics, be they
estimators or test statistics, would be identical under the two DGPs, and in
that case we would wish to consider the DGPs as asymptotically equivalent.
Definition 5.2 specifically excludes the possibility that DGPs associated with
different parameter vectors should be asymptotically equivalent in this sense.

The most obvious choice for the sequence of functionsQ in (5.04) is simply
the ith component of a “well-behaved” estimator θ̂ of the model parameters,
(assuming that such exists), where of course i has to be chosen so that θ1i 6= θ2i .
If the estimator is indeed well-behaved, we would certainly expect that

plim
n→∞

1

(
θ̂i
)
6= plim
n→∞

2

(
θ̂i
)
,

and the estimator θ̂i therefore distinguishes asymptotically between θ1 and θ2.
Thus the idea of the asymptotic identifiability of a model is clearly linked to
the possibility of finding a well-behaved estimator for the model parameters.
If a model is not asymptotically identified, then there exist at least two DGPs
of the model, characterized by different parameters, which are such that no
estimator exists capable of distinguishing asymptotically between them.

The following example provides a case of a model which in finite samples
is identified by any data set, but is nevertheless unidentified asymptotically.
It is in effect the time-trend example (4.14) stood on its head:

yt = α 1−
t

+ ut, (5.05)

with the error terms ut distributed NID(0, σ2) for a sample of size n. The
NLS estimator of α for sample size n is

α̂n =

( n∑
t=1

t−2
)−1( n∑

t=1

t−1yt

)
.
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This is of course just the OLS estimator, since (5.05) is a linear regression,
and so we can be sure that α̂n is the unique global minimizer of the sum-of-
squares function. That is, the parameter α is identified by any data set yn.
If the true DGP is given by (5.05) with α = α0, then we find in the usual way
that

α̂n = α0 +

( n∑
t=1

t−2
)−1( n∑

t=1

t−1ut

)
. (5.06)

In an ordinary regression model, theX>X matrix is O(n). But here theX>X
matrix is the scalar quantity

∑n
t=1 t

−2, and the series
∑n
t=1 t

−2 converges

to the limit π2/6 as n → ∞.1 The random factor
∑n
t=1 t

−1ut is normally
distributed with mean zero, since all the ut’s are, and has variance equal to
σ2
∑n
t=1 t

−2, a quantity that tends to σ2π2/6. Thus α̂n equals α0 plus a
mean-zero normal random variable with a variance that tends to 6σ2/π2 as
n→∞. This limiting variance is not zero, and the plim of the estimator α̂ is
therefore nondegenerate: It is not a nonstochastic constant. To be sure, the
plim is different for different values of α0, but Definition 5.2 requires functions
Q that have nonstochastic plims.

It would be quite tedious to show that there can exist no Q satisfying
the conditions of definition 5.2 and capable of distinguishing different values
of the parameter α of (5.05). More important than such a formal proof is
an intuitive understanding of why (5.05) is asymptotically unidentified, since
readers may very well feel that the business of requiring a nonstochastic plim
is just a quibble. The point is simply that for a linear regression model of
the form (5.01) in which X>X = O(n) as n → ∞, the covariance matrix of
the estimated parameters tends to zero as n → ∞. This means that, as the
sample size grows, the precision2 of the OLS estimator becomes arbitrarily
large. This is the case also for the NLS estimator, as the rest of this chapter
will show. In contrast, as we saw from (5.06), the precision of α̂ in the model
(5.05) tends to a finite limit, no matter how large the sample becomes. It
is in order to rule out models such as (5.05) that Definition 5.2 contains the
conditions it does.

A parametrized model may be asymptotically identified but not asymp-
totically identified by a particular estimator. Any satisfactory estimator
should be able, like the Q of Definition 5.2, to distinguish between DGPs
characterized by different parameter vectors if it is expected to estimate the
parameter vector. Of course, this is not possible if the model is not itself

1 See, for instance, Abramowitz and Stegun (1965), equation 23.2.24, page 807,
or any discussion of the Riemann zeta function.

2 The precision of a random variable is simply the reciprocal of its variance,
and the precision matrix of a vector-valued random variable is the inverse of
its covariance matrix. Despite the simplicity of the relation between the two
concepts, it is sometimes more intuitive to think in terms of precision than in
terms of variance.
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asymptotically identified, but if it is, a satisfactory estimator must be able to
identify the model parameters asymptotically. The property required of the
estimator is that of consistency, which we discussed in Section 4.5. Formally:

Definition 5.3.

An estimator θ̂ ≡ {θ̂n} consistently estimates the parameters of the
parametrized model (M,θ), or is consistent for those parameters, if
for any µ0 ∈M,

plim
n→∞

0

(
θ̂n
)

= θ0. (5.07)

The notation “plim0” simply means that we are taking the probability limit
under the DGP µ0, characterized by θ0.

A consistent estimator clearly provides a Q for Definition 5.2, since for
µ1 and µ2 ∈ M such that θ1 ≡ θ(µ1) 6= θ(µ2) ≡ θ2, we immediately have
from (5.07) that

plim
n→∞

1

(
θ̂
)

= θ1 6= θ2 = plim
n→∞

2

(
θ̂
)
,

as required by the definition. Thus any parametrized model for which a con-
sistent estimator exists is, a fortiori, asymptotically identified. On the other
hand, not all conceivable estimators of an asymptotically identified model
succeed in asymptotically identifying it. In practice, this is seldom an impor-
tant issue. Rarely is one faced with two serious estimation procedures, one
of which asymptotically identifies the parameters of a parametrized model
while the other does not. But one curious and important exception to this
remark is that the NLS estimator does not identify the error variance σ2, since
the sum-of-squares function, which defines the NLS estimator, does not even
depend on σ2. This does not matter a great deal, since we can estimate σ2

anyway, but it does distinguish NLS estimation from other methods, such as
maximum likelihood, which do identify the error variance.

In the next section, we will turn our attention to the NLS estimator and
demonstrate that when a model is asymptotically identified by this estimator,
the estimator is consistent.

5.3 Consistency of the NLS Estimator

A univariate “nonlinear regression model” has up to now been expressed in
the form

y = x(β) + u, u ∼ IID(0, σ2In), (5.08)

where y, x(β), and u are n--vectors for some sample size n. The model
parameters are therefore β and either σ or σ2. The regression function xt(β),
which is the tth element of x(β), will in general depend on a row vector of
variables Zt. The specification of the vector of error terms u is not complete,
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since the distribution of the ut’s has not been specified. Thus, for a sample
of size n, the model M described by (5.08) is the set of all DGPs generating
samples y of size n such that the expectation of yt conditional on some infor-
mation set Ωt that includes Zt is xt(β) for some parameter vector β ∈ Rk,
and such that the differences yt − xt(β) are independently distributed error
terms with common variance σ2, usually unknown.

It will be convenient to generalize this specification of the DGPs in M a
little, in order to be able to treat dynamic models, that is, models in which
there are lagged dependent variables. Therefore, we explicitly recognize the
possibility that the regression function xt(β) may include among its (until
now implicit) dependences an arbitrary but bounded number of lags of the
dependent variable itself. Thus xt may depend on yt−1, yt−2, . . . , yt−l, where l
is a fixed positive integer that does not depend on the sample size. When
the model uses time-series data, we will therefore take xt(β) to mean the
expectation of yt conditional on an information set that includes the entire
past of the dependent variable, which we can denote by {ys}t−1s=1, and also the
entire history of the exogenous variables up to and including the period t, that
is, {Zs}ts=1. The requirements on the disturbance vector u are unchanged.

For asymptotic theory to be applicable, we must next provide a rule for
extending (5.08) to samples of arbitrarily large size. For models which are
not dynamic (including models estimated with cross-section data, of course),
so that there are no time trends or lagged dependent variables in the regres-
sion functions xt, there is nothing to prevent the simple use of the fixed-in-
repeated-samples notion that we discussed in Section 4.4. Specifically, we con-
sider only sample sizes that are integer multiples of the actual sample size m
and then assume that xNm+t(β) = xt(β) for N > 1. This assumption makes
the asymptotics of nondynamic models very simple compared with those for
dynamic models.3

Some econometricians would argue that the above solution is too simple-
minded when one is working with time-series data and would prefer a rule
like the following. The variables Zt appearing in the regression functions will
usually themselves display regularities as time series and may be susceptible
to modeling as one of the standard stochastic processes used in time-series
analysis; we will discuss these standard processes at somewhat greater length
in Chapter 10. In order to extend the DGP (5.08), the out-of-sample values for
the Zt’s should themselves be regarded as random, being generated by appro-
priate processes. The introduction of this additional randomness complicates
the asymptotic analysis a little, but not really a lot, since one would always
assume that the stochastic processes generating the Zt’s were independent of
the stochastic process generating the disturbance vector u.

3 Indeed, even for linear dynamic models it is by no means trivial to show that
least squares yields consistent, asymptotically normal estimates. The classic
reference on this subject is Mann and Wald (1943).
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In the case of dynamic models, there is little doubt that the second
method of extending DGPs, based on finding standard time-series represent-
ations for all the variables that enter in the regression functions, is more in-
tuitively satisfying than the fixed-in-repeated-samples notion. The regression
equation (5.08) is then to be interpreted as a stochastic difference equation,
defining the stochastic process that generates the vector of observations on
the dependent variable, y, in terms of the realizations of Z and the innova-
tions u. The latter will always be assumed to be white noise, that is, to have
the property u ∼ IID(0, σ2In) for any sample size n. Further, we will assume
that the stochastic process generating the innovations is independent of the
stochastic processes generating the Zt’s and that the latter processes are the
same for all DGPs in the model. Thus the actual values of the model para-
meters have no effect on the processes generating any variables other than the
dependent variable.

The issue of how the variables on which regression functions depend are
related to the dependent variable(s) has been a major subject of research
in econometrics. The assumptions we have made about the Zt’s imply that
they are exogenous or, to use the terminology of Engle, Hendry, and Richard
(1983), strictly exogenous. Numerous definitions of exogeneity are available,
as will be clear from a perusal of that paper. We will consider the matter
at greater length when we come to discuss simultaneous equations models in
Chapter 18.

With the above preamble, we are now ready to discuss the consistency of
the NLS estimator. For this purpose, as well as for the treatment of asymptotic
identification, we study the properties of the sum-of-squares function as the
sample size n tends to infinity. Since this function does not depend on σ2,
we will simplify by assuming that, although any DGP µ in the model M
under consideration must be such that all the observations are characterized
by a single (unknown) error variance σ2, this parameter is not defined by the
parameter-defining mapping, which for obvious reasons we will now call β
rather than θ. By thus excluding σ2 from the list of model parameters we
may concentrate on the question of whether the NLS estimator identifies the
other model parameters, namely, those in the regression function.

We will make explicit the dependence of the sum-of-squares function on
the sample size n and sample y:

SSRn(y,β) ≡
n∑
t=1

(
yt − xt(β)

)2
. (5.09)

This function is the sum of n nonnegative terms which will not usually tend
to zero as n→∞, and so in general it tends to infinity with n. Since infinity
is not usually an interesting limit, we prefer to work with the average of these
terms rather than with their sum. Thus we define

ssrn(y,β) ≡ n−1SSRn(y,β). (5.10)
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Since the function ssrn is defined as an average, we may expect to be able to
apply a law of large numbers to it. If we can, then we can make the following
definition:

ssr(β, µ) ≡ plim
n→∞

µssr
n(y,β) = lim

n→∞
Eµ
(
ssrn(y,β)

)
, (5.11)

where plimµ and Eµ indicate that we are taking plims or expectations under
the DGP µ.

The question of asymptotic identifiability of a nonlinear regression model
can be expressed in terms of the limiting function ssr, if it exists, just as the
question of ordinary identifiability is expressed in terms of SSRn or, equiv-
alently, ssrn. Does ssr exist in general? At the level of generality we have
assumed so far, that is, of general dynamic models, the answer is no. We will
discuss this point in more detail below. Unless ssr does exist, however, the
discussion of this chapter is inapplicable. There are models for which ssr does
not exist but which are, nevertheless, asymptotically identified by the NLS
estimator; Chapter 20 provides some examples. For such models, however, the
NLS estimator will not have the standard properties of asymptotic normality
and root-n consistency that we demonstrate in the next section.

The property of ssr that gives us the consistency of the NLS estimator is
the following. Let β0 and σ0 denote the values of β and σ under the DGP µ0

that actually generated the data. Then, under suitable regularity conditions,
it can be shown that

ssr(β0, µ0) < ssr(β, µ0) for all β 6= β0. (5.12)

In words, the limit of the average of the squared residuals is minimized when
the residuals are calculated using the true parameter vector β0. Why does
this imply consistency? Without going into technical detail, we can see why
if we accept that the limit of the finite-sample NLS estimators β̂n, defined so
as to minimize ssrn, is the value of β which minimizes the limiting function
ssr. For then this value, by (5.12), is just the true value β0.

For all its plausibility, this argument is deceptively simple. When we
make a very similar argument in Chapter 8, in the context of maximum likeli-
hood estimation, we will be a little more careful about things, without, how-
ever, being fully rigorous. For now, we will content ourselves with presenting
a theorem in which we assume enough regularity for the passage from (5.12)
to the consistency of the NLS estimator to be justified. We will then discuss
for some important practical cases when and why ssr exists, and when and
why, if it does, (5.12) is true or not true.

Theorem 5.1. Consistency Theorem for Nonlinear Least Squares.

Suppose that

(i) the nonlinear regression model (5.08), considered as a parame-
trized model (M,β), with parameter space Θ, is asymptotically
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identified by the function ssr. Thus, for all µ0 ∈M,

ssr(β0, µ0) 6= ssr(β, µ0) (5.13)

for all β ∈ Θ such that β 6= β0;

(ii) the sequence {n−1
∑n
t=1 xt(β)ut} satisfies condition WULLN of

Definition 4.17 with probability limit of zero, for each µ0 ∈ M
and for all β ∈ Θ; and

(iii) the probability limit of the sequence {n−1
∑n
t=1 xt(β)xt(β

′)}, for

any β′ ∈ Θ, is finite, continuous in β and β′, nonstochastic, and
uniform with respect to β and β′,

then the NLS estimator β̂ is consistent for the parameters β0.

We will not prove this theorem but will now present a discussion in which we
try to make clear intuitively what function is served by the various regularity
conditions of the theorem. First, observe that in condition (i) of the theorem,
we require that the model should be asymptotically identified by ssr. This
function is not an estimator, as the other functions playing the role of Q in
Definition 5.2 have been up to now, but it is the function that defines the
NLS estimator asymptotically, and so it is convenient to express the asymp-
totic identifiability condition in terms of it. Condition (5.13) is a little more
complicated than (5.04). The reason is that ssr(β, µ0), as a scalar function,
will take on the same value at many different values of β 6= β0. But we need
only that these values all be different from ssr(β0, µ0).

Now let us look a little more closely at ssr and at the inequality (5.12).
From (5.08), (5.09), and (5.10) we have

ssrn(y,β) = 1−
n

n∑
t=1

(
xt(β0)− xt(β) + ut

)2
(5.14)

= 1−
n

n∑
t=1

(
xt(β0)− xt(β)

)2
+ 2−

n

n∑
t=1

(
xt(β0)− xt(β)

)
ut + 1−

n

n∑
t=1

u2t .

The last term of the last expression here is the easiest to treat. Since the
random variables ut are i.i.d. under µ0, Theorem 4.3, the simplest of all of
the laws of large numbers, can immediately be applied to yield

plim
n→∞

0

(
1−
n

n∑
t=1

u2t

)
= E(u2t ) = σ2

0 .

We turn next to the second term in the last expression of (5.14). Any
randomness in the regression functions xt must be due either to the presence of
lagged dependent variables or to randomness of theZt’s, the other variables on
which the regression functions may depend, which would then be independent
of the disturbances ut. Lagged dependent variables at period t can depend
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only on the disturbances contained in the sequence {us}t−1s=1, and these are of
course independent of ut itself. Thus in all circumstances the two factors in
each term of the sum

2−
n

n∑
t=1

(
xt(β0)− xt(β)

)
ut = 2−

n

n∑
t=1

xt(β0)ut − 2−
n

n∑
t=1

xt(β)ut (5.15)

are independent, and so each term of this sum has zero expectation, since ut
has. The successive terms are, however, not necessarily mutually independent,
since the presence of lagged dependent variables in xt(β0)−xt(β) would lead to
possible correlation of this expression with the terms indexed by t−1, . . . , t−i
of the sum (5.15), and most representations of the Zt’s as time-series will lead
to such correlations as well. Thus, if we are to use a law of large numbers in
order to conclude that the probability limit of (5.15) is zero, we must explicitly
make assumptions sufficient to ensure that such a law of large numbers applies.
What is required is that we should be able to apply a uniform law of large
numbers to

1−
n

n∑
t=1

xt(β)ut (5.16)

for all β ∈ Θ. That is why condition (ii) of Theorem 5.1 was imposed.

For the first term in the last expression in (5.14) we wish to be able to
apply a uniform law of large numbers to

1−
n

n∑
t=1

xt(β)xt(β
′) (5.17)

for arbitrary β,β′ ∈ Θ, and this accounts for condition (iii) of the theorem.

Under the conditions of the theorem, then, we obtain the result

ssr(β, µ0) = σ2
0 + plim

n→∞
0

(
1−
n

n∑
t=1

(
xt(β0)− xt(β)

)2)
. (5.18)

It is immediately evident from (5.18) that ssr(β, µ0) is minimized by β = β0,
and so we have established that (5.12) holds with weak inequality. The strong
inequality required for the consistency of the NLS estimator is provided by
condition (i) of the theorem, the asymptotic identification condition.

Can we find easily understood sufficient conditions for the conditions of
Theorem 5.1? Yes, but unfortunately conditions that are easily understood
tend to be quite restrictive. One of the simplest assumptions is just that
the regression functions xt(β) are independent and uniformly bounded. This
permits the use of the law of large numbers of Theorem 4.4, from which we
can conclude that

plim
n→∞

0

(
1−
n

n∑
t=1

(
xt(β0)− xt(β)

)
ut

)
= 0
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and also that

plim
n→∞

0

(
1−
n

n∑
t=1

(
xt(β0)− xt(β)

)2)
(5.19)

exists and is a nonnegative, nonstochastic quantity. If the model is asymp-
totically identified, this quantity will be strictly positive for all β 6= β0.

The assumption of independence is of course often much too strong. More
generally, we would like to consider the case of a regression function xt(β)
that depends only on nonrandom variables and on a finite number of lagged
dependent variables:

xt(β) = xt(Zt, yt−1, . . . , yt−i;β). (5.20)

Unfortunately, the form (5.20) is not in general such that a law of large
numbers can be applied to (5.16) and (5.17). The most clear-cut case is
provided by an explosive process, of which a particularly simple example is
provided by the DGP

yt = αyt−1 + ut, ut ∼ IID(0, σ2) (5.21)

for any α with |α| > 1. That this specification gives rise to an explosive
process is easy to see: Suppose that the variance of y1 is σ2

1 , and calculate the
variance of yt. We find that

Var(yt) = Var(αyt−1 + ut)

= α2Var(yt−1) + σ2

= α4Var(yt−2) + σ2
(
1 + α2

)
= α2(t−1)σ2

1 + σ2
(
α2 − 1

)−1(
α2(t−1) − 1

)
,

(5.22)

where the last line in (5.22) is obtained by repeated substitution of the result
contained in the first line. One sees immediately that, since |α| > 1, the
variance of yt tends to infinity with t. The term which corresponds to xt(β)ut
for the regression function αyt−1 of (5.21) is αyt−1ut, and we see that the
variance of this term likewise tends to infinity with t. Thus no law of large
numbers can in general apply to (5.16).

Econometricians usually take good care that the regression functions they
use do not give rise to explosive processes like the one just considered. If we
require that |α| < 1 in (5.21), we find that the process is not explosive.4 In
order to deal with this case, and more generally with the regression function
(5.20) when it does not lead to an explosive process, the most useful law of

4 Such processes will be discussed in Chapter 10 in connection with our discussion
of serial correlation.
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large numbers is the martingale one, Theorem 4.6. Note first that this theorem
can be applied directly to the terms xt(β)ut, since the expectation of xt(β)ut,
conditional on {xs(β)us}t−1s=1, is zero, because ut is independent of both us and
xs(β) for all s ≤ t. Thus the only further requirement of the theorem is very
weak and can be guaranteed by requiring that the expectations of the xt(β)’s
be uniformly bounded.

There remains the question of whether we can be sure that expression
(5.19) exists and is nonstochastic. This is a question that can only be answered
once the regression function and the DGP have been specified in detail. We
will therefore adopt the attitude that (5.19) must exist and be nonstochastic
if the process defined by the regression function (5.20) is not to be explosive.
Thus when we say that a process is not explosive, we will mean that (5.19)
exists and is finite and nonstochastic. By this means one can consider nonlin-
ear regression models with regression functions like (5.20) as they occur one
by one and determine whether or not they are explosive.

As an example, consider the simple model of (5.21), but now with |α| < 1.
For this specification, (5.19) becomes

(α0 − α)2plim
n→∞

0

(
1−
n

n∑
t=1

y2t−1

)
. (5.23)

For our purposes the factor (α0 − α)2 is irrelevant, and we have to investi-
gate the actual probability limit. Unfortunately, this is not particularly easy
without more general asymptotic theory of stochastic processes than we have
given up to now, or indeed intend to give in this book.5 But we will see in
Chapter 10 that the sequence {yt} generated by (5.21) is what is called an
autoregressive process of order 1, or an AR(1) process for short, and that for
|α| < 1 it is stationary and ergodic. The same properties hold therefore for the
sequence {y2t }. Consequently, we may apply the ergodic theorem, Theorem
4.5, in order to obtain the desired result that the process (5.21) with |α| < 1
is not explosive. The nonlinear least squares estimator of the parameter α
in (5.21), which here is simply the OLS estimator, of course, is therefore
consistent. This follows from Theorem 5.1, since the required uniformity of
convergence can be shown to be a consequence of the structure of (5.23) as a
product of a factor dependent only on the parameter α and a factor dependent
only on the random process {yt}.

If the above discussion seems a little cavalier about whether or not pro-
cesses are explosive, it is unfortunately necessary in the present state of know-
ledge that it be so. It is often extremely difficult to tell, sometimes even if
one has unlimited computer time to try a variety of simulations, whether or
not the stochastic process generated by some given regression function of the
form (5.20) is explosive. Interested readers are urged to consult White (1984)

5 See Lamperti (1977) for a general discussion of stochastic processes at an ad-
vanced level.
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to get an idea of the mathematical complexity involved. Outside the context
of the standard time-series processes (which do not contain variables other
than the dependent variable itself; see Chapter 10) not very much can be said
in general. Practicing econometricians may be forgiven for feeling that the
mathematical complexity is not worth it, since the issue is not an empirical
one but only one of how best to model data. We will discuss a number of
issues relating to nonstationary processes in Chapter 20.

5.4 Asymptotic Normality of the NLS Estimator

In this section, we discuss the asymptotic normality of the nonlinear least
squares estimator. For this, we will require a bit more regularity than was
needed for consistency, as we will see. First, a formal definition of asymptotic
normality:

Definition 5.4.

A consistent estimator β̂ ≡ {β̂n} of the parameters of the asymp-
totically identified parametrized model (M,β) is asymptotically nor-
mal if for every DGP µ0 ∈ M, the sequence of random variables
{n1/2(β̂n − β0)} tends in distribution to a (multivariate) normal dis-
tribution, with mean zero and finite covariance matrix.

The crucial difference between the property of asymptotic normality and that
of consistency discussed in the preceding section is the factor of n1/2. This
factor “blows up” β̂ − β0, which, if β̂ is consistent for β0, tends to zero as n
tends to infinity. Thus the product n1/2(β̂−β0) tends to a vector of nonzero
random variables. Asymptotic normality, when it holds, will of course imply
consistency, since if n1/2(β̂ − β0) is O(1), it follows that β̂ − β0 must be
O(n−1/2). If the estimator β̂ satisfies the latter property, it is said to be root-
n consistent, meaning that the difference between the estimator and the true
value is proportional to one over

√
n. An estimator that is root-n consistent

must also be weakly consistent, since plim(β̂ − β0) = 0. Not all consistent
estimators are root-n consistent, however.

As in the last section, we will first state a theorem which gives conditions
sufficient for the asymptotic normality of the NLS estimator and then discuss
the circumstances in which we may hope that the conditions are satisfied.
First, some notation. As usual we let Xt(β) ≡ Dβ xt(β) denote the row vector
of partial derivatives of the regression function xt(β); thenAt(β) ≡ Dββ xt(β)
will denote the Hessian of xt(β), and Ht(yt,β) ≡ Dββ(yt−xt(β))2 will denote
the Hessian of the contribution to the sum-of-squares function from observa-
tion t. This last is readily seen to be

Ht(yt,β) = 2
(
Xt
>(β)Xt(β)−At(β)

(
yt − xt(β)

))
. (5.24)

Evidently, the Hessian At of the regression function will be a zero matrix if
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the regression function xt is linear, and Xt(β) will just be Xt. In that case,
Ht(yt,β) will simplify to 2(Xt

>Xt), which is necessarily positive semidefinite.

Theorem 5.2. Asymptotic Normality Theorem for Nonlinear Least Squares.

If the nonlinear regression model (5.08) is asymptotically identified
and satisfies the regularity conditions of Theorem 5.1, so that the
NLS estimator for the model is consistent, and if in addition, for all
µ0 ∈M,

(i) the sequence {n−1
∑n
t=1Ht(yt,β)} satisfies condition WULLN of

Definition 4.17 for β in the neighborhood of β0, and

(ii) the sequence {n−1/2
∑n
t=1Xt

>(β)ut} satisfies condition CLT of
Definition 4.16, and

(iii) the Hessian of the limiting sum-of-squares function evaluated at
the true parameters, Dββ ssr(β0, µ0), is a positive definite matrix,
which ensures that the second-order sufficient condition for the
minimum in (5.12) is satisfied,

then, under all DGPs µ0 such that β0 is contained in the interior of
the parameter space Θ, the NLS estimator β̂ is asymptotically normal
as in Definition 5.4. Further, if σ2

0 is the error variance associated
with µ0, the asymptotic covariance matrix of n1/2(β̂ − β0) is

σ2
0 plim
n→∞

0

(
n−1X0

>X0

)−1
. (5.25)

Here X0 ≡X(β0) denotes the n× k matrix with typical row Xt(β0).

We start our discussion of this theorem from the requirement that the
DGP, which we will denote µ0, must be such that β0 is in the interior of the
parameter space Θ. If that is the case, then with probability arbitrarily close
to unity, so will be the estimator β̂ for large enough n, since we have supposed
that β̂ is consistent. This means that β̂ must satisfy the first-order necessary
condition for an interior minimum:

Dβ ssr
n(y, β̂) = 0. (5.26)

The consistency of β̂ means that it must be close to β0 if n is large. Accord-
ingly we will expand (5.26) in a short Taylor series about β0, as follows:

0 = Dβ ssr
n(y,β0) + (β̂ − β0)>Dββ ssr

n(y,β∗). (5.27)

Here β∗ is a convex combination of β̂ and β0, which may be different for each
row of the equation, as required by Taylor’s Theorem.

Our next step is to consider the limit of the right-hand side of (5.27) as
n → ∞. The Hessian Dββ ssr

n(y,β), evaluated at arbitrary β ∈ Θ, can be
written as

Dββ ssr
n(y,β) = 1−

n

n∑
t=1

Dββ
(
yt − xt(β)

)2
= 1−

n

n∑
t=1

Ht(yt,β). (5.28)
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This has the form required for the application of a law of large numbers,
whence condition (i) of Theorem 5.2. We may also conclude that

plim
n→∞

0

(
Dββ ssr

n(y,β)
)

= Dββ ssr(β, µ0). (5.29)

To see this, recall that WULLN permits integrability to be preserved when
one passes to the limit as n → ∞. The sequence {Dββ ssrn(y,β)} can be
integrated to {ssrn(y,β)}, which converges to ssr(β, µ0) under µ0. Thus the
limit of {Dββ ssrn(y,β)} under µ0 must integrate up to ssr(β, µ0), and since
ssr(β, µ0) can have only one Hessian, we obtain (5.29).

Since β∗ is a convex combination of β̂ and β0, and β̂ is consistent for β0,
then so must be β∗. Thus we have, on account of the uniformity of convergence
guaranteed by WULLN,

plim
n→∞

0

(
Dββ ssr

n(y,β∗)
)

= Dββ ssr(β0, µ0).

If condition (iii) of Theorem 5.2 is satisfied, this last matrix is positive definite
and therefore also nonsingular and invertible. This condition can be referred
to as a condition for strong asymptotic identifiability, since it requires not only
that (5.12) be satisfied but also that the sufficient second-order condition be
satisfied at the minimum. The result is that under condition (iii) we can
rewrite (5.27) as

β̂ − β0 = −
(
Dββ ssr

n(y,β∗)
)−1

Dβ
>ssrn(y,β0), (5.30)

where the inverse matrix on the right-hand side will exist with probability
arbitrarily close to one, for n large enough, and satisfies

plim
n→∞

0

(
Dββ ssr

n(y,β∗)
)−1

=
(
Dββ ssr(β0, µ0)

)−1
. (5.31)

The argument of the preceding paragraph used a law of large numbers.
If we multiply (5.30) by n1/2, we can also use a central limit theorem. The
result of the multiplication is

n1/2(β̂ − β0) = −
(
Dββ ssr

n(y,β∗)
)−1(

n1/2Dβ
>ssrn(y,β0)

)
. (5.32)

The second factor on the right-hand side of this equation is

n1/2Dβ
>ssrn(y,β0) = n−1/2

n∑
t=1

Dβ
>(yt − xt(β0)

)2
= −2n−1/2

n∑
t=1

Xt
>(β0)ut.

(5.33)
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The reason for condition (ii) of Theorem 5.2 is now clear: Under that condition
(5.33) has a normal, zero-mean asymptotic distribution. Further, its limiting
covariance matrix will be

lim
n→∞

(
4−
n

n∑
t=1

E0

(
u2tXt

>(β0)Xt(β0)
))
.

But since, for any β, ut is independent of xt(β) and hence also of Xt(β), this
covariance matrix becomes just

4σ2
0 plim
n→∞

0

(
n−1X0

>X0

)
. (5.34)

Condition (i) of Theorem 5.2 allows us to assume that WULLN holds for
{n−1

∑n
t=1Ht(yt,β)}. From (5.24) we see that {n−1

∑n
t=1Xt

>(β)X(β)} is

part of {n−1
∑n
t=1Ht(yt,β)}, and so we can assume that WULLN applies to

it as well.

We now have enough to compute the limiting distribution of the left-hand
side of (5.32), that is, of n1/2(β̂ − β0). From (5.31) and (5.34) we see that
this distribution is normal, with expectation zero and covariance matrix

4σ2
0

(
Dββ ssr(β0, µ0)

)−1
plim
n→∞

0

(
n−1X0

>X0

)(
Dββ ssr(β0, µ0)

)−1
. (5.35)

This expression can be simplified. From (5.24) and (5.28),

Dββ ssr
n(y,β0) = 1−

n

n∑
t=1

Ht(yt,β0)

= 1−
n

n∑
t=1

2
(
Xt
>(β0)Xt(β0)−At(β0)ut

)
.

(5.36)

Because ut and At(β0) are independent, as are ut and Xt(β0),

E0

(
At(β0)ut

)
= 0. (5.37)

Since condition (i) of Theorem 5.2 allows us to use a law of large numbers on
(5.36), it follows from (5.37) that

Dββ ssr(β0, µ0) = plim
n→∞

0

(
Dββ ssr

n(y,β0)
)

= plim
n→∞

0

(
1−
n

n∑
t=1

2
(
Xt
>(β0)Xt(β0)−At(β0)ut

))
= 2 plim

n→∞
0

(
n−1X0

>X0

)
.

(5.38)
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Consequently, the limiting covariance matrix of n1/2(β̂ − β0) is, from (5.35)
and (5.38),

σ2
0 plim
n→∞

0

(
n−1X0

>X0

)−1
.

Since this is expression (5.25), we have now demonstrated the last part of
Theorem 5.2.

It will be useful to rewrite (5.32) in the light of (5.33) and (5.38). It
becomes

n1/2(β̂ − β0) =
(
n−1X0

>X0

)−1
n−1/2X0

>u+ o(1). (5.39)

For the case of a linear regression model with x(β) = Xβ, the equality would
be exact without the o(1) term. All the factors of powers of n are unnecessary
in that case, and we obtain the familiar result

β̂ − β0 =
(
X>X

)−1
X>u. (5.40)

The result (5.39) is thus seen to be the asymptotic counterpart of (5.40) for
nonlinear regression models. We will make use of (5.39) and other results of
this section in Section 5.6 in order to establish the properties of NLS residuals.
Meanwhile, in the next section, we study another important property of the
NLS estimator, asymptotic efficiency.

5.5 Asymptotic Efficiency of Nonlinear Least Squares

Up to this point, we have said nothing at all about how well either the OLS or
the NLS estimator compares with other estimators. One estimator is said to
be more efficient than another if, on average, the first estimator yields more
accurate estimates than the second. The reason for the terminology is that
an estimator which yields more accurate estimates can be said to utilize the
information available in the sample more efficiently. We could define efficiency
in as many different ways as we could think of to evaluate the relative accuracy
of two estimators, and there are thus many definitions of efficiency in the
literature. We will deal with only two of the most widely used ones here.

Suppose that θ̂ and θ̌ are two unbiased estimators of a k--vector of para-
meters θ, with true value θ0, and that these two estimators have covariance
matrices

V (θ̂) ≡ E(θ̂ − θ0)(θ̂ − θ0)> and

V (θ̌) ≡ E(θ̌ − θ0)(θ̌ − θ0)>,

respectively. Then we have:

Definition 5.5.

The unbiased estimator θ̂, with covariance matrix V (θ̂), is said to be
more efficient than the unbiased estimator θ̌, with covariance matrix
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V (θ̌), if and only if V (θ̌)− V (θ̂), the difference of the two covariance
matrices, is a positive semidefinite matrix.

If θ̂ is more efficient than θ̌ in the sense of this definition, then every individual
parameter in the vector θ, and every linear combination of those parameters,
is estimated at least as efficiently by θ̂ as by θ̌, by which we mean that
the variance of the estimator based on θ̂ is never greater than that of the
estimator based on θ̌. To see this, consider an arbitrary linear combination of
the parameters in θ, say w>θ, where w is a k--vector. Then the variances of
the two estimates of this quantity are w>V (θ̌)w and w>V (θ̂)w, and so the
difference between them is

w>V (θ̌)w −w>V (θ̂)w = w>
(
V (θ̌)− V (θ̂)

)
w.

Since V (θ̌) − V (θ̂) is a positive semidefinite matrix, this quantity must be
either positive or zero. Thus whatever parameter or linear combination of
parameters we are trying to estimate, we can be sure that θ̂ will yield an
estimator at least as good as θ̌ if the difference between their covariance
matrices is positive semidefinite. In practice, when one estimator is more
efficient than another, this difference is very often positive definite. When
that is the case, every parameter or linear combination of parameters will in
fact be estimated more efficiently using θ̂.

When estimating nonlinear regression models and other types of nonlinear
models, we rarely encounter unbiased estimates, and we are rarely able to work
out the finite-sample covariance matrices of estimators. It is therefore natural
to seek an asymptotic concept comparable to efficiency in the finite-sample
case. The appropriate concept is asymptotic efficiency, which is defined as
follows:

Definition 5.6.

Suppose that θ̂ and θ̌ are two consistent estimators of the same para-
meter vector θ. Let the asymptotic covariance matrices of these two
estimators be

V ∞
(
n1/2(θ̂ − θ0)

)
≡ lim
n→∞

E0

(
n(θ̂ − θ0)(θ̂ − θ0)>

)
and

V ∞
(
n1/2(θ̌ − θ0)

)
≡ lim
n→∞

E0

(
n(θ̌ − θ0)(θ̌ − θ0)>

)
.

Then the estimator θ̂ is asymptotically more efficient than the esti-
mator θ̌ if

V ∞
(
n1/2(θ̌ − θ0)

)
− V ∞

(
n1/2(θ̂ − θ0)

)
is a positive semidefinite matrix.
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A famous result on efficiency is the Gauss-Markov Theorem. This theo-
rem applies to the linear regression model

y = Xβ + u, E(uu>) = σ2 I, (5.41)

where the regressors X are fixed or can be treated as fixed because we are
conditioning on them (see Section 3.5). It is as follows:

Theorem 5.3. Gauss-Markov Theorem.

The OLS estimator β̂ ≡ (X>X)−1X>y of the parameters β of the
linear regression model (5.41) is the best linear unbiased estimator,
or BLUE for short. This means that if V (β̂) is the covariance matrix
of β̂ under a DGP belonging to the model (5.41), and if V (β̌) is the
covariance matrix of any other unbiased estimator β̌, linear in the
vector y, then V (β̌)− V (β̂) is a positive semidefinite matrix.

The proof of this theorem is both easy and illuminating. Since β̌ is a linear
function of y, we can write it as

β̌ = Ay =
(
X>X

)−1
X>y +Cy, (5.42)

where C is defined as A− (X>X)−1X>. We assume that the data are gener-
ated by a DGP that is a special case of (5.41), with β = β0 and σ2 = σ2

0 . We
can thus substitute Xβ0 + u for y in (5.42) to obtain

β̌ =
(
(X>X)−1X>+C

)(
Xβ0 + u

)
= β0 +CXβ0 +

(
X>X

)−1
X>u+Cu.

(5.43)

It is clear from (5.43) that E(β̌) can equal β0 only if CXβ0 is equal to a zero
vector. That can be guaranteed for all values of β0 only if CX = 0. Thus
the requirement that β̌ be a linear unbiased estimator implies, first, that the
second term on the right-hand side of (5.42), Cy, has mean zero because
CXβ0 = 0, and second, that the two terms on the right-hand side of (5.42)
have zero covariance. To see this second point, observe that

E
(
(X>X)−1X>yy>C>

)
= E

((
β0 + (X>X)−1X>u

)
u>C>

)
= σ2

0

(
X>X

)−1
X>C>

= 0.

(5.44)

Consequently, equation (5.42) says that the unbiased linear estimator β̌ is
equal to the least squares estimator β̂ plus a random component Cy which is

uncorrelated with β̂. As we will see below and in Chapter 8, something very
like this is true in general: Asymptotically, an inefficient estimator is always
equal to an efficient estimator plus an independent random noise term.
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The result (5.44) essentially proves the Gauss-Markov Theorem, since it
implies that

E(β̌ − β0)(β̌ − β0)>

= E
((

(X>X)−1X>u+Cu
)(

(X>X)−1X>u+Cu
)>)

= σ2
0

(
X>X

)−1
+ σ2

0CC
>.

(5.45)

Thus the difference between the covariance matrices of β̌ and β̂ is σ2
0CC

>,
which is a positive semidefinite matrix. Notice that the assumption that
E(uu>) = σ2

0 I is crucial here. If instead we had E(uu>) = Ω, with Ω an
arbitrary n× n positive definite matrix, the last line of (5.45) would be(

X>X
)−1
X>ΩX

(
X>X

)−1
+CΩC>+

(
X>X

)−1
X>ΩC>+CΩX

(
X>X

)−1
,

and we could draw no conclusion about the relative efficiency of β̂ and β̌.

As a simple example of the Gauss-Markov Theorem in action, suppose
that β̌ is the OLS estimator obtained by regressing y on X and Z jointly,
where Z is a matrix of regressors such that E(y |X,Z) = E(y |X) = Xβ.
Since the information that Z does not belong in the regression is being ignored
when we construct β̌, the latter must in general be inefficient. Using the FWL
Theorem, we find that

β̌ =
(
X>MZX

)−1
X>MZy, (5.46)

where, as usual, MZ is the matrix that projects orthogonally onto S⊥(Z). If
we write β̌ as in (5.42), we obtain

β̌ =
(
X>X

)−1
X>y +

(
(X>MZX)−1X>MZ − (X>X)−1X>

)
y

=
(
X>X

)−1
X>y +

(
X>MZX

)−1(
X>MZ −X>MZX(X>X)−1X>

)
y

=
(
X>X

)−1
X>y +

(
X>MZX

)−1(
X>MZ

(
I−X(X>X)−1X>

))
y

=
(
X>X

)−1
X>y +

(
X>MZX

)−1
X>MZMXy

= β̂ +Cy. (5.47)

Thus, in this case, the matrix C is the matrix (X>MZX)−1X>MZMX . We

see that the inefficient estimator β̌ is equal to the efficient estimator β̂ plus
a random component which is uncorrelated with it. That β̂ and Cy are
uncorrelated follows from the fact (required for Cy to have mean zero) that
CX = 0, which is true because MX annihilates X. Further, we see that

E(β̌ − β0)(β̌ − β0)>= σ2
0

(
X>X

)−1
+ σ2

0

(
X>MZX

)−1
X>MZMXMZX

(
X>MZX

)−1
.

(5.48)
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The second term on the right-hand side of (5.48) will in general be a positive
semidefinite matrix, as expected. It will be a zero matrix if Z is orthogonal to
X, in which caseMZX = X andMXMZX = 0. Thus we obtain the familiar
result that adding explanatory variables which do not belong in a regression
will reduce efficiency except in the rare case in which the extra variables are
orthogonal to those that do belong.

It is important to keep in mind the limitations of the Gauss-Markov
Theorem. It does not say that the OLS estimator β̂ is better than every
conceivable estimator. Estimators which are nonlinear and/or biased may
well perform better than OLS in certain circumstances. In particular, as we
will see in Chapter 8, only with the assumption of normally distributed error
terms will OLS generally coincide with the maximum likelihood estimator,
which will be asymptotically “best” under fairly general conditions when the
distribution of the error terms is known. Moreover, the theorem applies only
to a correctly specified model with homoskedastic errors.

To see the importance of correct specification, let us reconsider the linear
regression example in which E(y |X,Z) = Xβ. If one does not know that the
expectation of y conditional on X and Z is independent of Z, it is reasonable
to estimate the regression model

y = Xβ +Zγ + u. (5.49)

The OLS estimator of β, (5.46), is, by the Gauss-Markov Theorem, asymptot-
ically efficient for the complete model (5.49), which admits DGPs for which
the value of γ is nonzero. But it is inefficient relative to the estimator
(X>X)−1X>y for the class of DGPs for which γ = 0. This is, however,
a restricted class of DGPs, and the estimator (X>X)−1X>y is in general in-
consistent for DGPs satisfying (5.49) with γ 6= 0. Its greater efficiency has
been bought at the cost of supposing that γ = 0 and risking inconsistency if
this supposition is false.

It is plain that the Gauss-Markov Theorem cannot be applied to the
NLS estimator, since that estimator is in general neither linear nor unbiased.
Nevertheless, it is asymptotically efficient (Definition 5.6) in a certain sense.
Recall the result (5.39) from Section 5.4, which we can rewrite slightly as

n1/2(β̂ − β0)
a
= plim
n→∞

(
n−1X0

>X0

)−1
n−1/2X0

>u.

It is possible to consider a class of estimators, which we may again denote
by β̌, with the property that

n1/2(β̌ − β0)
a
=
(

plim
n→∞

(
n−1X0

>X0

)−1(
n−1/2X0

>)+ n−1/2C
)
u, (5.50)

where each element of the k× n matrix C (which may depend on β) is O(1),
and it is assumed that

plim
n→∞

(
n−1Cu

)
= 0 and plim

n→∞

(
n−1CX0

)
= 0.
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Notice that, according to (5.50), n1/2(β̌−β0) is asymptotically a linear func-
tion of the vector of error terms u. These assumptions are sufficient to ensure
that β̌ is consistent if β̂ is. Demonstrating that

V ∞
(
n1/2(β̌ − β0)

)
− V ∞

(
n1/2(β̂ − β0)

)
is a positive semidefinite matrix is then an exercise extremely similar to prov-
ing the Gauss-Markov Theorem. Hence we conclude that NLS is asymptot-
ically more efficient than any estimator of the form (5.50). We will refer to
such estimators as consistent and asymptotically linear, with NLS seen to be
the best consistent and asymptotically linear estimator.

This result may not seem very meaningful because, up to this point, we
have not seen any other estimators that are consistent and asymptotically
linear. However, it should be clear from the similarity of NLS and OLS that
if we were to estimate the model

y = x(β,γ) + u, E(uu>) = σ2 I,

where x(β,0) = x(β), we would obtain an estimator that satisfies (5.50)
asymptotically. The particular form of (5.50) would be similar to expression
(5.47) for the linear case. Other consistent and asymptotically linear estima-
tors include the generalized nonlinear least squares estimator to be considered
in Chapter 9 and the nonlinear instrumental variables estimator to be consid-
ered in Chapter 7.

A stronger result on the efficiency of NLS is available if we assume that
the error terms are normally distributed. In that case the NLS estimator of
the parameter vector β is also the maximum-likelihood estimator. As we will
see in Chapter 8, the ML estimator is asymptotically efficient in a very strong
sense, provided that the entire stochastic structure of the model is correctly
specified. What this implies is that the NLS estimator is asymptotically ef-
ficient relative to a very wide class of estimating techniques for the class of
nonlinear regression models with disturbances which are homoskedastic, in-
dependent, and normally distributed.

5.6 Properties of Nonlinear Least Squares Residuals

We have by now discussed most of the points of interest concerning the asymp-
totic properties of the nonlinear least squares estimator. In this section, we
wish to discuss the properties of the NLS residuals, that is, the sequence
{yt − x̂t}. These properties are important for a variety of reasons, not least
because the residuals will be used to estimate the error variance σ2.

In order to obtain the asymptotic properties of the NLS residuals, we
begin by making a Taylor expansion of a typical residual around β = β0.
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This expansion is

ût ≡ yt − xt(β̂) = yt − x0t −X∗t (β̂ − β0)

= ut −X∗t (β̂ − β0),
(5.51)

where, as usual, X∗t ≡ Xt(β
∗) for some convex combination β∗ of β̂ and

β0. Under the conditions of Theorem 5.2, β̂ − β0 = O(n−1/2). Thus we can
conclude immediately that

ût = ut +O(n−1/2), (5.52)

which implies that the residuals consistently estimate the actual disturbances.

The simple result (5.52) is immensely valuable, but it is not detailed
enough for all purposes. To see why not, consider the expression

n−1/2a>û = n−1/2
n∑
t=1

atût (5.53)

for some vector a with elements forming a nonstochastic sequence {at}. If
each at is of order unity, then substituting (5.52) into (5.53) shows that the
latter is equal to

n−1/2
n∑
t=1

atut + n−1/2
n∑
t=1

O(n−1/2). (5.54)

If a central limit theorem applies to the first term of (5.54), then this term
is of order unity. But the second term is also of order unity, on account
of the summation over t of n terms, and therefore cannot be ignored if we
wish to elucidate the properties of (5.53). This is an extremely important
result, for we will very often in asymptotic analysis be interested in quantities
like (5.53). The result tells us that for such purposes we cannot ignore the
distinction between the error terms ut and the residuals ût.

For this reason, we will now obtain a refinement of the result (5.52). In
order to do this, we use the main asymptotic normality result (5.39). It can
be rewritten as

β̂ − β0 = n−1/2
((
n−1X0

>X0

)−1
n−1/2X0

>u+ o(1)
)
. (5.55)

Substituting (5.55) into the second line of (5.51) gives

ût = ut − n−1/2X∗t
(
n−1X0

>X0

)−1
n−1/2X0

>u+ o(n−1/2). (5.56)

It should be clear that the first term is O(1) and the second is O(n−1/2). Thus
(5.56) gives the first two terms in what is called the stochastic expansion of
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the residual ût. But this expansion is still unnecessarily complicated, because
we have

X∗t = X0t + (β̂ − β0)>A∗t = X0t +O(n−1/2)

by Taylor’s Theorem and the fact that β̂ − β0 = O(n−1/2); recall that At is
the Hessian of the regression function xt(β). Thus (5.56) can be written more
simply as

ût = ut − n−1/2X0t

(
n−1X0

>X0

)−1
n−1/2X0

>u+ o(n−1/2).

Since this is true for all t, we have the vector equation

û = u−X0

(
X0
>X0

)−1
X0
>u+ o(n−1/2),

where the small-order symbol is now to be interpreted as an n--vector, each
component of which is o(n−1/2). This equation can be rewritten in terms
of the projection P0 ≡ X0(X0

>X0)−1X0
> and its complementary projection

M0 ≡ I− P0:

û = u− P0u+ o(n−1/2) = M0u+ o(n−1/2). (5.57)

This is the asymptotic equivalent of the exact result that, for linear models,
the OLS residuals are the orthogonal projection of the disturbances off the
regressors. Recall that if one runs the regression y = Xβ + u, and the DGP
is indeed a special case of this model, then we have exactly that

û = MXu. (5.58)

The result (5.57) reduces to this when the model is linear. The projection
matrix M0 is now equal to MX , and the o(n−1/2) term, which was due only
to the nonlinearity of x(β), no longer appears.

Now let us substitute the right-most expression of (5.57) into (5.53). The
latter becomes

n−1/2a>û = n−1/2a>M0u+ n−1/2
n∑
t=1

o(n−1/2). (5.59)

The first term on the right-hand side here is clearly O(1), while the second is
o(1). Thus, in contrast to what happened when we simply replaced ût by ut,
we can ignore the second term on the right-hand side of (5.59). So the result
(5.57) provides what we need if we are to undertake asymptotic analysis of
expressions like (5.53).

We should pause for a moment here in order to make clear the rela-
tion between the asymptotic result (5.57), the exact linear result (5.58), and
two other results. These other results are (1.03), which states that the OLS
residuals are orthogonal to the regressors, and (2.05), which we may express
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as X̂>û = 0, and which states that the NLS residuals are orthogonal to X(β̂).
This second pair of results yields numerical properties of OLS and NLS that
must hold regardless of how the data were generated. In contrast, (5.57) and
(5.58) are statistical results that hold only if the DGP actually does belong
to the appropriate regression model. Both OLS and NLS perform, perfectly
mechanically, what may be called an orthogonal projection; that is what the
results (1.03) and (2.05) tell us. If in addition the DGP belongs to the linear
or nonlinear model under consideration, this projection corresponds to the
projection of the actual disturbance vector u off the subspace S(X0). It is
because this projection annihilates only a fixed, finite number of directions
(k in the notation we have been using) that we obtain the simple result (5.52).

The annihilated directions of u, P0u, correspond asymptotically (in the
linear case, exactly) to the errors committed in estimating the parameters.
To see this, we may rewrite (5.55) as

β̂ − β0
a
=
(
X0
>X0

)−1
X0
>u, (5.60)

whence
X0(β̂ − β0)

a
= P0u. (5.61)

Rewriting (5.57) using the same simplified notation, we see that

û
a
= u− P0u = M0u. (5.62)

It is thus quite intuitive that, since the variance of the estimator β̂ tends to
zero as the sample size tends to infinity, the disturbances are better and better
estimated by the residuals as the sample size increases.

The asymptotic results (5.60), (5.61), and (5.62) are the essential statis-
tical results on which the asymptotic study of NLS is based, if the DGP is
assumed to belong to the nonlinear regression model that is estimated. Of
course, if it does not, these results no longer hold. We will for the most part
make this assumption, however implausible it may be. However, when we dis-
cuss what determines the power of tests in Chapter 12, we will consider what
happens when the DGP almost belongs to the model that is estimated. And
in Chapter 11, in the context of what is called nonnested hypothesis testing,
we will encounter a case in which the analysis depends on the properties of
least squares fitted values when the DGP does not belong to the model that
is estimated at all.

One important use of the residuals ût is to estimate the error variance σ2.
The two principal estimators that were suggested in Chapter 2 are

σ̂2 ≡ 1

n

n∑
t=1

(
yt − xt(β̂)

)2
and

s2 ≡ 1

n− k

n∑
t=1

(
yt − xt(β̂)

)2
.
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We will now demonstrate that both these estimators are consistent but that
s2 is preferable to σ̂2.

The fundamental asymptotic result for NLS residuals, equation (5.57),
can be rewritten as

û = M0u+ o(n−1/2)a (5.63)

for some random n--vector a, each element of which is O(1). The notation
here means that each element of a is multiplied by a scalar which is o(n−1/2).
Using (5.63), we see that

σ̂2 ≡ n−1û>û

= n−1u>M0u+ 2n−1o(n−1/2)a>M0u+ n−1o(n−1)a>a

= n−1u>u− n−1u>P0u+ 2o(n−3/2)a>M0u+ o(n−2)a>a.

(5.64)

The last line here can be used to provide several interesting results.

The first term in the last line of (5.64) is evidently O(1). Moreover, since
this term is just n−1 times the sum of n independent squared error terms, a
law of large numbers will apply to it under mild regularity conditions. Thus
the plim of this first term is just σ2

0 . We will show in a moment that the other
three terms in the last line of (5.64) are either O(n−1) or o(n−1). Thus the
plim of σ̂2 is simply the plim of the first term, and so we conclude that σ̂2 is
consistent for σ2

0 . Because s2 =
(
n/(n − k)

)
σ̂2 and the plim of n/(n − k) is

unity, s2 is evidently also a consistent estimator.

The second term in the last line of (5.64) can be rewritten as

n−1
(
n−1/2u>X0

)(
n−1X0

>X0

)−1(
n−1/2X0

>u
)
.

This is n−1 times the product of three factors, each of which is O(1), which
implies that the second term as a whole must be O(n−1).

The third and fourth terms are of even lower order. The fourth term
is easy to deal with. The quantity a>a must be O(n), because it is sim-
ply the sum of n squares, each of which is O(1). Thus the fourth term is
evidently o(n−1). If the components of the vector a were nonstochastic, it
would be equally easy to deal with the third term. By arguments similar to
the ones used in connection with (5.59), one could show that 2n−1a>M0u
was O(n−1/2). It would then follow immediately that the third term was
o(n−1). The problem is that the vector a is not in fact nonstochastic, since
it will depend on β̂. It is nevertheless possible to prove that the third term
in the last line of (5.64) is indeed of order less than n−1. The proof requires
a second-order Taylor expansion of ût ≡ yt − xt(β̂) around β0 and makes use
of the fundamental result (5.39). We leave it as an exercise for the interested
reader.

Using the above results on the orders of the four terms in the last line
of (5.64), we can now compare the properties of σ̂2 and s2 to order n−1.
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We have already seen that both these estimators are consistent. Using fa-
miliar techniques, similar to those used in (3.08), it is easy to show that
E(n−1u>P0u) = (k/n)σ2

0 . Therefore, to order n−1,

E(σ̂2) =
n− k
n

σ2
0 .

Thus, as we already knew, σ̂2 is biased downward. In contrast, it is easy to
see that, to the same order, s2 is unbiased. This result strongly suggests that
one should employ s2 rather than σ̂2 when estimating the variance of the error
terms of a nonlinear regression model, just as one would do in the case of a
linear model. Of course, the fact that s2 is unbiased to order n−1 does not
imply that it will have no bias at all. It will, in general, be biased to lower
order than n−1.

The proof of the consistency of s2 (or σ̂2) was very different from the
proof for β̂, because although σ2 is a parameter of the nonlinear regression
model, it is not an argument of the sum-of-squares function. As we mentioned
earlier, the parameter σ2 is not identified, asymptotically or otherwise, by the
NLS procedure. Consequently, a quite different estimation strategy, in fact
a thoroughly ad hoc one, has to be used. One unfortunate consequence of
this ad hoc method is that no estimate of the variance of s2 is automatically
provided, and so statistical inference on σ2 is as yet impossible. In fact, in
order for it to be possible, it would be necessary to know or be able to estimate
the fourth moment of the disturbances ut, as can be seen from the following
argument. We construct, by analogy with results for the estimator β̂, the
random variable n1/2(s2−σ2

0). From (5.64) and the arguments that follow it,
we conclude that û>û = u>u+O(1). Thus we can write

n1/2(s2 − σ2
0) = n−1/2

n∑
t=1

(u2t − σ2
0) +O(n−1/2).

Since one can immediately apply a central limit theorem to the first term
on the right-hand side of this relation, we can in fact conclude that s2 is
asymptotically normal. But the asymptotic variance is just Var(u2t ), and in
order to calculate that we would need to know the fourth moment of ut.

The fourth moment of ut could of course be estimated, but we will not
pursue this possibility here. The important point for now is that σ2 is not
a parameter of the nonlinear regression model in the usual sense, and one
must therefore leave the nonlinear regression context if one wishes to perform
statistical inference on σ2. As there are other estimation methods than NLS,
for which σ2 does not have this special status, this point should be kept
in mind when working with NLS. One of these other methods is of course
that of maximum likelihood, and when we come in Chapters 8 and 9 to look
at regression models from the perspective of that method, we will see that
assumptions about the distribution of the disturbances, of a sort not made in
the purely NLS context, are indeed necessary.
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5.7 Test Statistics Based on NLS Estimates

In this section, we provide proofs of some of the results in Section 3.6 about
the asymptotic distributions of test statistics based on NLS estimates. Most of
the results turn out to be immediate consequences of the asymptotic normality
of the NLS estimator, the form (5.25) of its limiting covariance matrix, and
the consistency of σ̂2.

We will generalize slightly over the treatment given in Section 3.6 by
considering a set of nonlinear restrictions on the parameters β of a nonlinear
regression model. We may write these restrictions as

r(β) = 0, (5.65)

where the number of restrictions is r (< k), and the (at least) twice contin-
uously differentiable mapping r acts from the parameter space Θ to Rr. We
will denote the r × k Jacobian of r(β) by the matrix R(β) and assume that
this matrix has full rank r. If it did not, either some of the restrictions would
be redundant or the set of restrictions would be impossible to satisfy. If R(β)
is evaluated at β0, the parameter vector corresponding to the DGP, we will
as usual write R0 for R(β0). Since we assume that the DGP satisfies the
restrictions, r0 ≡ r(β0) = 0.

The easiest test statistic to deal with is the Wald statistic, expression
(3.41). For the nonlinear restrictions (5.65), it may be written as

1

σ̂2
r̂>
(
R̂(X̂>X̂)−1R̂>

)−1
r̂, (5.66)

where, as usual, r̂ ≡ r(β̂), X̂ ≡X(β̂), and R̂ ≡ R(β̂). We now need to make
a Taylor expansion around β0 of the quantities appearing in (5.66). We will
first treat a single component of the vector-valued function r(β), as follows:

ri(β̂) = ri(β0) +Ri.(β0)(β̂ − β0) + 1−
2

(β̂ − β0)>
(
D2ri(β

∗)
)
(β̂ − β0), (5.67)

where Ri. denotes the ith row of the Jacobian R, and D2ri denotes the k × k
Hessian of ri. As usual in a short Taylor expansion, β∗ is some convex com-
bination of β̂ and β0. Because β̂ − β0 = O(n−1/2), the second and third
terms on the right-hand side of (5.67) are O(n−1/2) and O(n−1), respectively.
Since ri(β0) is zero by (5.65), we may multiply (5.67) by n1/2 to obtain an
equation in which the terms of leading order are O(1). If we work only to
leading order, we can treat the whole vector r at once and obtain

n1/2r(β̂) = R0n
1/2(β̂ − β0) +O(n−1/2). (5.68)

The first term on the right-hand side of (5.68) is just a linearization of
r(β̂). If the restrictions were linear, (5.68) would be true without theO(n−1/2)
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term. The sort of result displayed in (5.68) occurs very frequently. The
twice continuous differentiability of r(β) means that Taylor’s Theorem can
be applied to order two, and then it is possible to discover from the last term in
that expansion exactly the order of the error, in this case O(n−1), committed
by neglecting it. In future we will not be explicit about this reasoning and will
simply mention that twice continuous differentiability gives a result similar to
(5.68).

The quantities in (5.66) other than r̂ are asymptotically nonstochastic.
By this we mean that

R̂ = R0 +O(n−1/2) and X̂ = X0 +O(n−1/2). (5.69)

Again, a short Taylor-series argument, this time only to first order, produces
these results. They are to be interpreted component by component for the
matrices R and X. This is not a matter of consequence for the r×k matrix R,
but it is for the n × k matrix X. We have to be careful because in matrix
products like X̂>X̂ we run across sums of n terms, which will of course have
different orders in general from the terms of the sums. However, if we explicitly
use the fact that r̂ = O(n−1/2) to rewrite (5.66) as

(
n1/2r̂

)>(σ̂2R̂(n−1X̂>X̂)−1R̂>
)−1(

n1/2r̂
)
, (5.70)

we see that we are concerned, not with X̂>X̂ itself, but rather with n−1X̂>X̂,
and the latter is asymptotically nonstochastic:

n−1(X̂>X̂)ij = n−1
n∑
t=1

X̂tiX̂tj

= n−1
n∑
t=1

(
X0
ti +O(n−1/2)

)(
X0
tj +O(n−1/2)

)
= n−1

n∑
t=1

X0
tiX

0
tj +O(n−1/2)

= n−1(X0
>X0)ij +O(n−1/2),

where X0
ti denotes the tith element of X0. The second line uses (5.69). The

third line follows because the sum of n terms of order n−1/2 can be at most of
order n1/2; when divided by n, it becomes of order n−1/2. Note that n−1X0

>X0

itself is O(1).

Next, we use the asymptotic normality result (5.39) to obtain a more
convenient expression for n1/2r̂. We have

n1/2r̂ = R0

(
n−1X0

>X0

)−1
n−1/2X0

>u+ o(1). (5.71)
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β0

S(X1)

↑
R

←− X

←− S(X0)

Figure 5.1 The linear subspace S(X1) of S(X0)

If we substitute (5.71) into (5.70) and use the facts that R̂ and n−1X̂>X̂
are asymptotically nonstochastic, and that σ̂2 tends in probability to σ2

0 , the
Wald statistic is seen to be asymptotically equivalent to

σ−20 u>X0(X0
>X0)−1R0

>(R0(X0
>X0)−1R0

>)−1R0(X0
>X0)−1X0

>u.

It is easy to see that this is just

σ−20 u>P2u, (5.72)

where P2 is the orthogonal projection onto the span of the r columns of the
matrix X0(X0

>X0)−1R0
>. This orthogonal projection has a very interesting

geometrical and statistical interpretation, which we now present. It will ac-
count for the seemingly odd choice of the index 2 in P2.

Consider first the linear subspace S(X0), which is the range of the pro-
jection P0. This subspace has dimension k, the dimensionality of the entire
unrestricted parameter space Θ, since it is the tangent space to the curved
k--dimensional manifold X generated by the variation of the k--dimensional
parameter vector β at the point X(β0). (See the discussion of Figure 2.2 for
a reminder of this notation.)

We may define a submanifold R of X, of dimension k − r, by restricting
the variation of β to values that satisfy the restrictions (5.65). In particular,
the point X(β0) belongs to R because we have supposed that β0 satisfies
the restrictions. This submanifold, like X itself, has a tangent space at X(β0),
which is a (linear) subspace of the full tangent space S(X0). We will let S(X1)
denote this restricted tangent space and P1 denote the orthogonal projection
onto it.6 The manifolds X and R, with the tangent spaces S(X0) and S(X1),
are depicted in Figure 5.1.

6 Our notation here differs from that which is often used in connection with tests
of hypotheses. It is not uncommon to let H0 denote the null hypothesis and
H1 denote the alternative hypothesis. If that convention were adopted, all of
the 0 and 1 subscripts would be interchanged.
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Algebraically, the tangent space S(X0) can be characterized as the set of
all linear combinations of the columns of the matrix X0. All vectors in the
subspace S(X1) are necessarily such linear combinations. Suppose then that
for some k × 1 vector b the vector X0b lies in S(X1). We now show this can
be so if and only if b satisfies the relation R0b = 0.

Suppose that β1 obeys the restrictions (5.65) and is close to β0. Then,
by a short Taylor expansion,

x(β1) = x(β0) +X∗(β1 − β0), (5.73)

where X∗ ≡X(β∗) and, as usual, β∗ is a convex combination of β0 and β1.
If we let β1 approach β0 through values that always satisfy (5.65), then the
tangent at X(β0) to the curve along which β1 moves toward β0 is the limit,
as ‖β1 − β0‖ → 0, of the n--vector

x(β1)− x(β0)

‖β1 − β0‖
.

By (5.73), this limit is just X0b, where we define b as the k--vector that is the
limit of (β1 − β0)/‖β1 − β0‖ as β1 tends to β0. Thus b is just the limit of a
unit vector in the direction of the line segment joining β0 and β1.

Since r(β1) = 0, another short Taylor expansion gives

0 = R(β∗)(β1 − β0).

If we again let β1 tend to β0 as above, a calculation exactly similar to the one
above shows that R0b = 0. Thus tangents to all curves that lie in R and that
pass through X(β0) can be expressed as X0b for a k--vector b that satisfies
R0b = 0. One can easily check that the argument just given runs equally
well in the opposite direction, and it follows that the condition R0b = 0 is
necessary and sufficient for X0b to lie in S(X1). Notice that S(X1) can also
be expressed in terms of the projection P1, as S(P1).

If R0b = 0, the vector X0b is orthogonal to all the columns of the matrix

X0

(
X0
>X0

)−1
R0
>

and thus to every vector in S(P2). This is straightforward to show, since

R0

(
X0
>X0

)−1
X0
>X0b = R0b = 0.

Thus the two subspaces S(P1) and S(P2) are orthogonal to each other. These
are both subspaces of S(X0), of dimensions k − r and r, respectively. Since
S(X0) itself is of dimension k, it follows that the orthogonal projection onto
it is the sum of the other two:

P0 = P1 + P2.



172 Asymptotic Methods and Nonlinear Least Squares

................
................
................
................
................
................
................
................
................
................
................
................
................
................
................
................
................
................
................
.........................
................

........................................................................
........................................................................

........................................................................
......................................................................... ................

.................
.................

.................
.................

........................................

............................
............................

............................
............................

............................
............................

............................
............................

......................... ................

.................
.................

.................
.................

........

............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
..

............

............

............

............

............

............

............

............

............

............

............

...

....................................................................
....................................................................

....................................................................
....................................................................

....................................................................
....................................................................

....................................................................
....................................................................

....................................................................
.................................................

................
................

................
................

................
................

................
................

................
................

................
................

................
................

................
................

................
................

................
................

................
................

...............

............................................

...................................

........................
...........

.................... .................... .................... .................... .................... .................... .................... .................... .................... .................... ....................

O

u

P1u

P2u
S(P1)

S(P2)

S(X0)

P0u

Figure 5.2 The projections leading to the Wald test

Using this result and (5.72), we can obtain another expression for the random
variable that the Wald test statistic tends to asymptotically:

σ−20 u>P2u = σ−20 u>(P0 − P1)u

= σ−20

∥∥(P0 − P1)u
∥∥2 = σ−20

∥∥P0u− P1u
∥∥2. (5.74)

This result, which is illustrated in Figure 5.2, is quite illuminating. The
vector P0u is the projection of the error vector u onto S(X0). It is P0u that
gives rise to the estimation error in the NLS estimates β̂: If P0u = 0, we
would have β̂ = β0 and consequently no estimation error. The vector P1u
is the projection of u, and also of P0u, onto S(P1), the (k − r)--dimensional
subspace of S(X0) that corresponds to the restrictions. This vector is respon-
sible for the part of the estimation error that does not violate the restrictions
(5.65). The other part of P0u is the difference (P0 − P1)u = P2u, which is
orthogonal to the subspace S(X0). This part of the estimation error leads to
an unrestricted estimate that in general fails to satisfy (5.65). The random
variable (5.74) is seen to be just the squared length of this component of the
estimation error, normalized by the variance of the ut’s. Provided the true
value β0 satisfies the restrictions (5.65), the variable (5.74) should therefore
be distributed as chi-squared with r degrees of freedom. However, if x(β0)
does not belong to the restricted manifold R, the variable will contain a non-
random term corresponding to the squared distance between x(β0) and R and
will consequently be larger.

The second test statistic is the Lagrange multiplier, or LM, statistic,
which is expression (3.47) in its LM form and (3.48) in its score form. Since
these two forms of the LM statistic are numerically identical, we will concern
ourselves only with the latter.

Note first that, by analogy with (5.62), the residuals ũ ≡ y − x(β̃) from
the restricted estimation satisfy

ũ
a
= M1u, (5.75)
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since P1 plays the same role for the manifold R as does P0 for X. The LM
statistic (3.48) is

1

σ̃2
(y − x̃)>P̃X(y − x̃). (5.76)

If we express the statistic in terms of quantities that are O(1), we obtain

1

σ̃2
n−1/2(y − x̃)>X̃

(
n−1X̃>X̃

)−1
n−1/2X̃>(y − x̃). (5.77)

Like X̂t, X̃t is asymptotically nonstochastic. Therefore, from (5.75),

n−1/2X̃>(y − x̃) = n−1/2
n∑
t=1

X̃t
>ũt

= n−1/2
n∑
t=1

X>0t(M1u)t + o(1)

= n−1/2
n∑
t=1

(M1X0)tut + o(1)

= n−1/2X0
>M1u+ o(1).

The matrix n−1X̃>X̃ is asymptotically nonstochastic, just as n−1X̂>X̂
is, and so the LM statistic (5.77) is asymptotically equivalent to

u>M1X0

(
σ2
0X0
>X0

)−1
X0
>M1u = σ−20 u>M1P0M1u. (5.78)

Since S(X1) is a subspace of S(X0), we have P1P0 = P0P1 = P1, from which
it follows that M1P0M1 = P0 − P1. Expression (5.78) thus becomes

σ−20 u>(P0 − P1)u = σ−20 u>P2u. (5.79)

Comparison of (5.79) with (5.72) shows that the LM statistic is asymptotically
equal to the Wald statistic. Thus it too is asymptotically χ2(r) under the null
hypothesis.

The third of the three test statistics discussed in Section 3.6 was the one
based on the likelihood ratio principle, the pseudo-F statistic (3.50). Since
we are interested in asymptotic results only, we rewrite it here in a form in
which it should be asymptotically distributed as χ2(r):

1

s2
(
SSR(β̃)− SSR(β̂)

)
(5.80)

and will (somewhat loosely) refer to it as the LR statistic. We have already
seen that s2 → σ2

0 as n→∞. It remains to show that SSR(β̃)−SSR(β̂), when
divided by σ2

0 , is asymptotically χ2(r). From (5.64), we have

σ̂2 = 1−
n
u>M0u+ o(n−1),
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from which we obtain, after multiplying by n,

SSR(β̂) = u>M0u+ o(1).

The analogous result for the restricted sum of squares is

SSR(β̃) = u>M1u+ o(1),

and so, to leading order asymptotically, expression (5.80) becomes

σ−20 u>(M1 −M0)u = σ−20 u>(P0 − P1)u = σ−20 u>P2u. (5.81)

The right-most expression in (5.81) is precisely the random variable on the
right-hand side of (5.79) and the first expression in (5.74), which we previ-
ously showed were asymptotically equivalent to the LM statistic and the Wald
statistic, respectively. Thus we conclude not only that the statistic (5.80) is
asymptotically distributed as χ2(r) but also that it is asymptotically the same
random variable as the other two test statistics.

We may now collect the results of this section into a theorem:

Theorem 5.4.

For a nonlinear regression model (5.08) subject to nonlinear restric-
tions (5.65), where both the restricted estimates β̃ and the unre-
stricted estimates β̂ are consistent and asymptotically normal, the
Wald test statistic (5.66), the LM test statistic (5.76), and the LR test
statistic (5.80) are under the null hypothesis asymptotically equal to
the random variable

σ−20 u>P2u,

which is asymptotically distributed as χ2(r). Here P2 ≡ P0 − P1,
where P0 denotes the projection onto the k--dimensional subspace
S(X0), and P1 denotes the projection onto the (k − r)--dimensional
subspace of S(X0) that corresponds to parameter variations which
satisfy the restrictions.

5.8 Further Reading and Conclusion

We have in this chapter provided a reasonably full asymptotic treatment of the
estimation of nonlinear regression models by nonlinear least squares. Read-
ers seeking a treatment that is fuller, more rigorous, or based on weaker
assumptions, should consult Jennrich (1969), which is a classic article on the
asymptotic properties of the NLS estimator, Malinvaud (1970b), Wu (1981),
or the books by White (1984), Gallant (1987), and Gallant and White (1988).
The latter provide the asymptotic theory for a wide range of models of inter-
est to econometricians. Somewhat less technical references include Amemiya
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(1983), Bates and Watts (1988), and Seber and Wild (1989, Chapter 12). The
analysis of this chapter depends in large measure on the fact that the NLS esti-
mator is defined by the minimization of the sum-of-squares function. It turns
out that the analysis carries over in many of its aspects to other estimators
defined by the minimization or maximization of other criterion functions; see
Chapter 17. Treatments that deal abstractly with estimators defined in this
way may be found in Amemiya (1985, Chapter 4) and Huber (1981). When
we deal with maximum likelihood estimation in Chapter 8, the results of this
chapter will provide models for the derivation of similar results in another
context.

Terms and Concepts

asymptotic covariance matrix
asymptotic distribution
asymptotic efficiency
asymptotic identifiability
asymptotic normality
asymptotically nonstochastic
best linear unbiased estimator

(BLUE)
characterization of DGPs, complete or

partial
consistency of estimators
consistent and asymptotically linear

estimator
dimension, or dimensionality
domain (of a mapping)
dynamic models
efficiency (of an estimator)
estimate (of model parameters)
estimator (of model parameters)
estimator vs. estimate
exogenous variables

explosive process
extension of a DGP to arbitrarily

large samples
Gauss-Markov Theorem
identification (of parametrized model)
innovations
lagged dependent variables
model parameters
NLS residuals
parameter space
parameter-defining mapping
parametrized model
precision of estimators
range (of a mapping)
root-n consistency
rules for generating infinite stochastic

processes
stochastic expansion
strictly exogenous variables
strong asymptotic identifiability



Chapter 6

The Gauss-Newton Regression

6.1 Introduction

Associated with the nonlinear regression model is an artificial regression called
the Gauss-Newton regression, or GNR. We have already encountered a ver-
sion of the Gauss-Newton regression; we used it in Section 3.6 to compute
Lagrange multiplier tests for nonlinear regression models. Artificial regres-
sions are simply linear regressions that are used as calculating devices. As
we will see, many types of nonlinear models in econometrics have artificial
regressions associated with them. The regressand and regressors are deliber-
ately constructed so that when the artificial regression is run, certain of the
numbers printed by the regression program are quantities which we want to
compute. Much of the output from artificial regressions may be of no interest
whatsoever. For example, we often run artificial regressions in which all the
coefficient estimates will be equal to zero!

Artificial regressions can be used for at least five different purposes:

(i) to verify that the first-order conditions for a minimum or maximum are
satisfied sufficiently accurately;

(ii) to calculate estimated covariance matrices;

(iii) to calculate test statistics after a model has been estimated subject to
restrictions, without ever estimating the unrestricted model;

(iv) to calculate one-step efficient estimates;

(v) as a key part of procedures for numerical optimization that are used to
find nonlinear least squares and other types of estimates.

In this chapter, we will discuss how the Gauss-Newton regression can
be used in all these different ways. Later, when we encounter other artificial
regressions, we will see that they may often be used in exactly the same ways as
the GNR. Indeed, many of the results we obtain in this chapter will reappear
several times in later chapters with different vectors and matrices substituting
for those that appear here. The algebra (and the geometrical interpretation
of it) will be identical in every case; only the underlying statistical model, and
thus the definitions of the regressand and regressors, will change.

176
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As in previous chapters, we will be dealing with the univariate nonlinear
regression model

y = x(β) + u, u ∼ IID(0, σ2I), (6.01)

where X(β) ≡ Dx(β) is an n × k matrix of which the tith element is the
derivative of xt(β) with respect to βi. The vector of functions x(β) and its
matrix of derivatives X(β) are assumed to satisfy the conditions for consis-
tency and asymptotic normality detailed in Theorems 5.1 and 5.2.

The easiest way to derive the Gauss-Newton regression is to take a first-
order Taylor-series approximation to (6.01) around some parameter vector β∗.
This yields

y = x(β∗) +X(β∗)(β − β∗) + higher-order terms + u.

Taking x(β∗) over to the left-hand side, combining the higher-order terms
and the error terms u into something we will simply call “residuals,” and
replacing β − β∗ by an unspecified k--vector b, we obtain

y − x(β∗) = X(β∗)b + residuals. (6.02)

This is the simplest version of the Gauss-Newton regression in its generic form.
The regressand looks like a vector of residuals, because it is the difference
between the vector of actual values of the dependent variable and the vector of
values “predicted” by the model x(β∗). There are k regressors, each of which
is a vector of derivatives of x(β) with respect to one of the elements of β. It
therefore makes sense to think of the ith regressor as being associated with βi.
As we have seen, when x(β) is a linear regression model with X being the
matrix of independent variables, X(β) is simply equal to X. Thus, for linear
models, the GNR will have exactly the same regressors as the original model.

The properties of regression (6.02) will depend on how the parameter vec-
tor β∗ is chosen. Let us first see what happens when β∗ = β̂, the unrestricted
NLS estimates of β. The Gauss-Newton regression becomes

y − x̂ = X̂b + residuals, (6.03)

where x̂ ≡ x(β̂) and X̂ ≡ X(β̂). Now recall that the first-order conditions
for a minimum of the sum of squares function are

(y − x̂)>X̂ = 0. (6.04)

The OLS estimate of b from (6.03) is

b̂ =
(
X̂>X̂

)−1
X̂>(y − x̂),

which, by (6.04), must equal zero. Thus, in this case, the GNR will have no
explanatory power whatsoever. This may seem an uninteresting result. After
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all, why would anyone want to run an artificial regression all the coefficients
of which are known in advance to be zero? There are in fact two very good
reasons for doing so.

First of all, the GNR (6.03) provides a very easy way to check that
the first-order conditions (6.04) are in fact satisfied sufficiently accurately.
Given the limitations of floating-point arithmetic on digital computers, the
approximation to β̂ that a nonlinear least squares program prints out will
never satisfy the first-order conditions exactly. If the program is a good one
and the data are sufficiently informative to allow β to be estimated with some
degree of precision, then the approximate β̂ will be very close to the true β̂ and
(6.04) will be almost true. As a consequence, the estimates b̂ from the GNR
should be very close to zero, and the explanatory power of the GNR should
be essentially zero. In these circumstances, one would expect the printed
t statistics on b̂ all to be less than roughly 10−3 or 10−4 in magnitude, and the
R2 to be zero to several decimal places. It is better to look at the t statistics
rather than at b̂ itself because the former are dimensionless quantities; some
elements of b̂ could be quite large if the corresponding columns of X̂ were
very small, even if the estimate of β̂ were very accurate.

If one were to run the GNR (6.03) and find that some of the t statistics
on b̂ were greater than, say, 10−2, one would have reason to doubt the validity
of the reported β̂. Possibly the estimation should be done again using a
tighter convergence criterion or a different algorithm (see Section 6.8 below).
Or perhaps the data and model are such that an accurate estimate of β̂ is
difficult or impossible to obtain, in which case one may want to estimate
another, simpler model or acquire more data.

The GNR (6.03) is especially useful when an estimate of β̂ has been
obtained using a nonlinear least squares program that cannot be trusted (such
programs are not unknown!) or using an ad hoc procedure. Ad hoc procedures
are often used when a model is only slightly nonlinear. In particular, there are
a great many nonlinear models that are linear conditional on one parameter.
An example is the model

yt = β1 + β2zt1 + β3z
β4

t2 + ut, (6.05)

in which zt1 and zt2 are exogenous regressors. This model is linear conditional
on β4. It is often convenient to estimate such models by searching over the
single parameter that causes the nonlinearity, in this case β4, and estimating
the other parameters using ordinary least squares conditional on each value
of β4. Whether the resulting approximation to β̂ is sufficiently accurate can
easily be answered by running the GNR, which in the case of (6.05) is

yt − β̂1 − β̂2zt1 − β̂3z
β̂4

t2

= b1 + b2zt1 + b3z
β̂4

t2 + b4β̂3(log zt2)zβ̂4

t2 + residual.
(6.06)
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If the t statistics on b̂1 through b̂4 are all sufficiently small, one can confidently
accept the calculated β̂ as being sufficiently close to the NLS estimates.

In Section 1.6, we discussed techniques for detecting leverage points and
influential observations in the context of OLS. In the case of a nonlinear
regression model, one can apply these techniques to the GNR (6.03). The tth

diagonal element of the hat matrix for the GNR is

ĥt ≡ X̂t

(
X̂>X̂

)−1
X̂t
>,

which many regression packages can compute very easily as a by-product of
computing OLS estimates. Using ĥt, one can easily calculate(

ĥt

1− ĥt

)
ût

for all t. This expression is the analog of expression (1.42), and plotting
it against t provides an effective way to detect influential observations. Of
course, in the nonlinear case it will not be exactly equal to the change in the
residual for observation t brought about by omitting that observation from the
regression, as it would be if x(β) were linear in β, but it will usually provide
a good approximation. Thus, by applying standard techniques for detecting
influential observations in linear regression models to the GNR (6.03), one
can detect data problems for nonlinear regression models just as easily as for
linear ones.

6.2 Computing Covariance Matrices

The second major reason to use the GNR (6.03) is to calculate the estimated
covariance matrix of β̂. Recall the asymptotic result, Theorem 5.2, that for a
correctly specified nonlinear regression model

n1/2(β̂ − β0)
a∼ N

(
0, σ2

0(n−1X0
>X0)−1

)
, (6.07)

whereX0 ≡X(β0). In practice, we are interested in the distribution of β̂−β0

rather than that of n1/2(β̂ − β0), and so to obtain an estimated covariance
matrix we first want to replace σ2

0 and (n−1X0
>X0)−1 in (6.07) by quantities

that estimate them consistently, and then divide by n.

Now consider the GNR (6.03) again. The covariance matrix estimate
that the regression program will print is

s2
(
X̂>X̂

)−1
, (6.08)

where

s2 ≡ (y − x̂)>(y − x̂)

n− k
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is the OLS estimate of the regression variance from both the artificial regres-
sion (6.03) and the original nonlinear regression (6.01). Because the GNR has
no explanatory power, both these regressions have exactly the same residuals.

It is obvious that s2 consistently estimates σ2
0 and, since β̂ consistently

estimates β0, n−1X̂>X̂ must consistently estimate n−1X0
>X0; see Section 5.7.

Thus it is clearly reasonable to use (6.08) to estimate the covariance matrix
of β̂ − β0. The ordinary covariance matrix for b̂ printed by the least squares
program will provide a perfectly valid, and very easily calculated, estimate
of the covariance matrix of the NLS estimates. Especially when β̂ has been
obtained by some method other than nonlinear least squares, the GNR (6.03)
provides an extremely easy way to calculate an estimate of the covariance
matrix of β̂; recall the model (6.05) and the associated GNR (6.06).

There is of course more than one way to estimate σ2 consistently. One
estimator that is frequently employed is

σ̂2 = 1−
n

(y − x̂)>(y − x̂).

As we will see in Chapter 8, this is the maximum likelihood estimator of σ2.
However, as was shown in Section 3.2, σ̂2 will tend to underestimate σ2 on
average. In fact, as was shown in Section 5.6, the bias of σ̂2 for nonlinear
regression models is, to order O(n−1), the same as its exact bias for linear
regression models. This result essentially followed from the asymptotic result
(5.57), which can be rewritten as

y − x̂ a
= M0u, (6.09)

where M0 ≡ I −X0(X0
>X0)−1X0

> is the matrix that projects orthogonally
onto S⊥(X0). The result (6.09) is analogous to the finite-sample result, for
linear regression models, that

y −Xβ̂ = MXu.

Thus the fact that s2 is an unbiased estimator of σ2 for linear regression
models suggests that, in large samples, s2 should be approximately unbiased
for nonlinear models as well and should certainly be preferable to σ̂2.

Unfortunately, not all nonlinear least squares programs use s2. One rea-
son for running the GNR (6.03) is to see whether the estimated covariance
matrix for β̂ produced by the program is actually the same as the one pro-
duced by the GNR. The two may simply differ by the factor of proportionality
(n − k)/n, in which case one should probably use the larger of the two esti-
mates (i.e., the one produced by the GNR). If they differ in any other way,
one should regard the nonlinear least squares program with great suspicion
and should certainly rely on the covariance matrix estimate from the GNR
rather than the one printed by the program. There is one possible exception to
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this advice. Some modern packages may print a heteroskedasticity-consistent
covariance matrix estimate, or HCCME, instead of the usual estimate (which
assumes homoskedasticity) that we have dealt with here; see Section 16.3. In
such cases, it may be quite illuminating to run the GNR and compare the two
covariance matrix estimates.

6.3 Collinearity in Nonlinear Regression Models

We remarked in Section 2.3 that linear regression models which are poorly
identified are often said to display collinearity or multicollinearity. The two
words mean the same thing, and we therefore prefer the shorter one, even
though “multicollinearity” is probably more widely used in the econometric
literature. The relationship between collinearity and identification is appar-
ent if one studies the Gauss-Newton regression. As we will now show, if a
nonlinear regression model is poorly identified in the neighborhood of some
parameter vector β∗ that is not too far from β0 (recall that for nonlinear
models, identification will generally depend on the values of the parameters),
then the GNR evaluated at β∗ will display collinearity. We will also provide
an intuitive explanation of what collinearity involves in linear and nonlinear
regression models.

In Section 2.3, we somewhat loosely defined a poorly identified model
as one for which the Hessian matrix H(β) of the sum-of-squares function is
close to being singular for interesting values of β. We deliberately avoided any
attempt to be more specific, because whether a model is poorly identified or
not inevitably depends on why we care about its identifiability. A model may,
for example, be badly enough identified that some nonlinear least squares
programs are unable to estimate it but not so badly identified that the best
such programs cannot handle it. Or a model may be well-enough identified
that there is no difficulty estimating it but not well-enough identified for us
to obtain parameter estimates as precise as we need.

Normally, how close a matrix is to being singular is determined by looking
at its condition number, which is the ratio of its largest to its smallest eigen-
value. However, the condition number of H(β) can be changed drastically by
reparametrizing the model, even when the reparametrization simply involves
rescaling some of the regressors. For example, in the linear regression case,
in which x(β) = Xβ, the Hessian H(β) is equal to 2X>X. If we multiply
one column of X by, say, 106, we will drastically change the condition number
of X>X, almost certainly making it much larger unless the elements of that
column of X were very small to begin with. Since this sort of simple rescaling
will certainly not let us learn anything more from the data (although it may
well affect the performance of nonlinear least squares algorithms), we cannot
sensibly classify models as well or poorly identified on the basis of something
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as simple as a condition number alone.1 In fact, there does not seem to be
any purely mechanical way to decide when a model is “poorly” identified.
However, as we will now see, the Gauss-Newton regression can be used to tell
us when identification is likely to be a problem.

In Section 5.4, we saw that

n−1H(β0)
a
= 2n−1X>(β0)X(β0). (6.10)

Thus, if the Hessian matrix is close to singular, we can expect the matrix
X>(β)X(β) to be close to singular as well, provided that both are evaluated
at a point reasonably close to β0. This requirement arises because (6.10) holds
only at β0, since that result depends on the fact that y − x(β0) = u0; see
the discussion leading to (5.38). The continuity of x(β) suggests that (6.10)
should be approximately true for β reasonably close to β0, however. Hence
it would be most surprising if the Gauss-Newton regression failed to display
collinearity when the Hessian was in fact close to singular.

As an example, consider the nonlinear regression model

yt = β1 + β2z
β3

t + ut, (6.11)

which we previously encountered in Section 2.3. For this model, the tth row
of X(β) is [

1 zβ3

t β2z
β3

t log(zt)
]
. (6.12)

From this we see immediately that the matrix X>(β)X(β) will be singular
whenever either β2 or β3 equals zero. In the former case the third column of
X(β) will be a column of zeros, while in the latter the second column will be
indistinguishable from the column corresponding to the constant term. Thus
this model is asymptotically unidentified at points where β2 = 0 or β3 = 0,
even though it will be identified by almost all data sets.

If a model is not identified asymptotically, it is likely to be of limited
interest, even if it is identified by a particular set of data, since without
asymptotic identification valid inference is impossible. Moreover, if a model
is not asymptotically identified at β0, nonlinear least squares will not yield
consistent estimates. On the other hand, a model that is asymptotically
identified may not be identified by a particular set of data. One would have
to obtain more data in order to estimate such a model.

Even at parameter values where it is identified, that is, values other than
β2 = 0 and β3 = 0, the model (6.11) is likely to be poorly identified. That this
will usually be the case, depending on the data and parameter values, should

1 If the matrix X were scaled in such a way that all columns had the same
length — for example, unit length — it would then make sense to use the
condition number of X>X as a measure of collinearity. See Belsley, Kuh,
and Welsch (1980, Chapter 3).
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be clear from (6.12). The second column of X(β) is very similar to the third
column, each element of the latter being equal to the corresponding element of
the former times a constant and log(zt). Unless the range of zt is very great, or
there are some values of zt very close to zero, zβ3

t and β2 log(zt)z
β3

t will tend to
be very highly correlated. For example, if z> consists of the five observations
[1 2 3 4 5], which are more spread out than most regressors would be in
econometric applications, and β3 is equal to 1, the correlation between the
two vectors is 0.9942; if z> consists of the five observations [5 6 7 8 9],
the correlation is a whopping 0.9996. Notice that how poorly the model is
identified depends on the data as well as on the values of the parameters and
the structure of the model.

We have already seen that the Gauss-Newton regression

y − x̂ = X̂b + residuals,

where x(β) and X(β) are evaluated at the NLS estimates β̂, yields a valid
estimate of the covariance matrix of β̂ when the DGP is a special case of the
model that was estimated. It is clear that the GNR

y − x0 = X0b + residuals, (6.13)

where x(β) and X(β) are evaluated at β0, would also yield a valid estimate of
V (β̂), although of course in practice this regression is not feasible because it
requires knowledge of the DGP. Nevertheless, it is useful to think of V (β̂) as
having been generated by this equation. If we ignore the asymptotic niceties,
so as to avoid carrying around various factors of n, we can easily use equation
(6.13) to shed light on the problem of collinearity in both linear and nonlinear
regression models.

Suppose we are interested in the variance of the NLS estimate of a single
element of β, which we may without loss of generality call β1. We can always
partition X(β) as [x1(β) X2(β)], where x1(β) denotes the single column of
X(β) that corresponds to β1, andX2(β) denotes the remaining k−1 columns.
If we drop the 0 subscripts for clarity, the GNR (6.13) thus becomes

u = x1b1 +X2b2 + residuals.

By the FWL Theorem, the estimate of b1 from this artificial regression will
be numerically identical to that from the regression

M2u = M2x1b1 + residuals, (6.14)

where M2 ≡ I−X2(X2
>X2)−1X2

> is the matrix that projects orthogonally off
S(X2), the span of X2.

Regression (6.14) has only one regressor, M2x1. It is easy to see that

V (b̂1) = σ2
0

(
x1
>M2x1

)−1
=

σ2
0

x1
>M2x1

.
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Figure 6.1 Collinearity and precision of estimation

This is asymptotically the same as the variance of β̂1. Notice that x1
>M2x1

is simply the sum of squared residuals from the regression

x1 = X2c2 + residuals. (6.15)

Thus we conclude that the variance of β̂1 is proportional to the inverse of the
sum of squared residuals from regression (6.15). When x1 is well explained
by the other columns of X, this SSR will be small, and the variance of β̂1 will
consequently be large. When x1 is not well explained by the other columns
of X, this SSR will be large, and the variance of β̂1 will be small. These two
cases are illustrated in Figure 6.1, for the case in which there are just two
regressors. This figure should be compared with Figure 3.3. Essentially the
same issues arise in both figures, since the length of a confidence interval for a
given parameter is proportional to the square root of the estimated variance
of that parameter.

The regressor x2, which represents in the figure all the regressors other
than x1, the regressor of interest, is the same on both sides of the figure. On
the other hand, the regressor x1 is oriented differently with respect to x2 on
the two sides. For simplicity, both regressors have the same length, and the
only variable is the angle, φ, between them. In the top left panel, panel (a),
x2 explains x1 very well; consequently, the angle φ and the sum of squared
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residuals from (6.15) are relatively small. The latter is the squared length of
the vector of residuals M2x1. In panel (b), x2 explains x1 much less well;
consequently, the angle φ and the SSR from (6.15) are relatively large. Clearly
the degree of collinearity between x1 and x2 is greater when φ is small or,
equivalently, when x2 explains x1 well.

In the bottom panels, (c) and (d), confidence ellipses and confidence
intervals for β̂1 are shown, corresponding to the regressors depicted in the
panels above them. For simplicity, these have been drawn for the case in
which β̂ = 0: In any real instance, the only aspect of the figures that would
be different is that the origin would move elsewhere, leaving sizes and relative
positions of things unchanged. Notice that the two bottom panels are drawn
to the same scale. The confidence intervals, which are the segments AB in
the figure, are therefore of very different lengths. As explained in Section 3.3,
a higher degree of collinearity gives rise to an elliptical confidence region of
greater eccentricity, and this can be seen clearly in the figure. For the situation
shown, in which only the angle φ varies, it can be shown that both the area
of the confidence ellipse and the length of the confidence interval for β̂1 are
inversely proportional to sinφ. Consequently, as φ tends to zero and the two
regressors become more nearly collinear, the length of the confidence interval
tends to infinity. This is of course a reflection of the fact that the variance
of β̂1 tends to infinity as φ tends to zero.

Collinearity arises when one or more of the columns of X are extremely
well explained by the remaining columns, and estimates of the parameters
associated with those columns are very imprecise. One simple way to charac-
terize the presence or absence of collinearity, as it affects the estimation of the
single parameter β1, is to consider the ratio of x1

>M2x1 to x1
>Mιx1, where

Mι ≡ I − ι(ι>ι)−1ι> is the matrix that takes deviations from the mean (as
usual, ι denotes a vector of n ones). The numerator of this ratio measures
variation in x1 that is not explained by variation in X2, while the denomi-
nator measures variation in x1 around its mean. If the ratio is very small,
collinearity may well be a problem.

When a model is poorly identified for some value of β, say β∗, the Gauss-
Newton regression will typically display a great deal of collinearity when it
is evaluated at β∗. If one is having difficulty obtaining NLS estimates, or if
one has not yet begun to estimate the model and suspects that there may be
difficulties doing so, it may be very useful to see whether the Gauss-Newton
regression does in fact suffer from substantial collinearity for plausible para-
meter values. If it does, then the model is probably poorly identified by the
data. It may well be impossible to obtain reasonably precise estimates of the
model with that data set, or perhaps even to locate the minimum of SSR(β)
at all (see Section 6.8).

What does one do when confronted with a nonlinear regression model
that is poorly identified? There are basically two options: Get more data,
or estimate a less demanding model, perhaps the original one after some
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restrictions have been imposed on it. If it is not feasible to obtain more data,
then one must accept the fact that the data one has contain a limited amount
of information and must simplify the model accordingly. Trying to estimate
models that are too complicated is one of the most common mistakes among
inexperienced applied econometricians. A model like (6.11), for example, is
asking a great deal of the data and will likely be very difficult to estimate with
many data sets. Only if the number of observations is very large, and/or the
range of zt is very great, will it be feasible to obtain precise estimates of β2

and β3 for this type of model.

6.4 Testing Restrictions

The best-known of the uses to which the Gauss-Newton regression can be put
is to provide a very simple way of computing test statistics. Once restricted
estimates have been obtained, a variant of the GNR can be used to test any
type of equality restriction on β without having to estimate the unrestricted
model. These tests are based on the Lagrange multiplier principle, which was
discussed in Sections 3.6 and 5.7. Several numerically different, but asymp-
totically equivalent, test statistics can be calculated based on the GNR. In
this section, we deal only with test statistics that are based on restricted NLS
estimates. As we will see in Section 6.7, the GNR can also be used to compute
tests based on any root-n consistent estimates.

We will write the null and alternative hypotheses as

H0 : y = x(β1,0) + u

H1 : y = x(β1,β2) + u

}
u ∼ IID(0, σ2I),

where β1 is (k − r)× 1 and β2 is r × 1. We consider zero restrictions for the
sake of clarity, but this in no way limits the generality of the results, because,
as we discuss below, any set of r equality restrictions can be converted to a set
of r zero restrictions by an appropriate reparametrization. We assume that
the unrestricted model is asymptotically identified in the neighborhood of the
DGP, which is assumed to belong to the family of DGPs

y = x(β01,0) + u, u ∼ IID(0, σ2
0I).

Thus we are assuming that H0 did in fact generate the data. The matrix
X(β) can be partitioned into two parts, X1(β) and X2(β), which correspond
to β1 and β2 and are n× (k − r) and n× r, respectively.

It is not obvious that all equality restrictions can be converted to zero
restrictions by means of appropriate reparametrizations. In Section 3.6, for
example, we considered linear restrictions of the form Rγ = r, where R is
an r × k matrix and r is an r × 1 vector. Here γ denotes the k--vector of
parameters on which restrictions are imposed. We will use β to denote an
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alternative parametrization in which all restrictions are zero restrictions. For
the latter, the matrix R has the form [0 Ir], and the vector r is a zero vector.
Thus we see that

Rγ − r = 0 = [0 Ir]β, (6.16)

where γ and β denote the parameter vectors in the two different parametriza-
tions. Evidently, we can identify βi with γi for i = 1, . . . , k − r, while from
equation (6.16) we see that

βi =
k∑
j=1

Rijγj − ri

for i = k − r + 1, . . . , k. Thus it is straightforward to convert the linear
restrictions Rγ = r in the γ parametrization into zero restrictions in the β
parametrization. It is also possible to convert nonlinear restrictions, such as
those discussed in Section 5.7, into zero restrictions. One simply has to define
the new parameters in terms of the restrictions on the old parameters. For
example, if one of the restrictions were γγ21 − 5 = 0, one might define a new
parameter β1 so that it equaled γγ21 − 5. Of course, this sort of nonlinear
reparametrization is not always easy to do in practice if there are several
complicated nonlinear restrictions. As we saw in Sections 3.6 and 5.7, however,
it is not actually necessary to perform a reparametrization in order to use a
GNR to test restrictions.

Asymptotic identification implies that the matrix n−1X0
>X0 must tend

to a matrix which is positive definite. This assumption rules out certain types
of models and restrictions. For example, we could not deal with a model like

yt = β1 + β2 exp(β3zt) + ut

subject to either the restriction that β2 = 0 or the restriction that β3 = 0,
since the model would then be asymptotically unidentified. We will denote
the estimates of β under H0 by β̃ to distinguish them from the unrestricted
estimates β̂; any quantities marked with a ∼ are evaluated at the restricted
estimates. In this case, β̃ ≡ [β̃1

.... 0].

We now discuss the distribution of several closely related test statistics,
all of which may be obtained by running the Gauss-Newton regression with β
evaluated at β̃. All of these test statistics are asymptotically equivalent to
the LM test statistic (3.47), or its score form variant (3.48), which was shown
in Section 5.7 to be asymptotically distributed as χ2(r) under the null hypo-
thesis. The Gauss-Newton regression evaluated at β = β̃ is

y − x̃ = X̃1b1 + X̃2b2 + residuals. (6.17)

This is extremely similar to regression (3.49), which we introduced in Section
3.6 as a way to calculate Lagrange multiplier statistics. In fact, the only
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difference is that the regressand has not been divided by an estimate of σ. As
we will see below, the test statistic is no more difficult to calculate by running
(6.17) than by running (3.49).

Limiting our attention to zero restrictions makes it possible for us to gain
a little more insight into the connection between the GNR and LM tests. Using
the FWL Theorem, we see that regression (6.17) will yield exactly the same
estimates of b2, namely b̃2, and exactly the same sum of squared residuals as
the regression

y − x̃ = M̃1X̃2b2 + residuals, (6.18)

where M̃1 is the matrix that projects onto S⊥(X̃1). The regressand here is
not multiplied by M̃1 because the first-order conditions imply that y − x̃
already lies in S⊥(X̃1), which in turn implies that M̃1(y − x̃) = y − x̃. The
sum of squared residuals from regression (6.18) is

(y − x̃)>(y − x̃)− (y − x̃)>X̃2

(
X̃2
>M̃1X̃2

)−1
X̃2
>(y − x̃).

Since y − x̃ lies in S⊥(X̃1), it is orthogonal to X̃1. Thus, if we had not
included X̃2 in the regression, the SSR would have been (y − x̃)>(y − x̃).
Hence the reduction in the SSR of regression (6.17) brought about by the
inclusion of X̃2 is

(y − x̃)>X̃2

(
X̃2
>M̃1X̃2

)−1
X̃2
>(y − x̃). (6.19)

This quantity is also the explained sum of squares (around zero) from regres-
sion (6.17), again because X̃1 has no explanatory power. We can now show
directly that this quantity, divided by any consistent estimate of σ2, is asymp-
totically distributed as χ2(r) under the null hypothesis. We already showed
this in Section 5.7, but the argument that the number of degrees of freedom
is r was an indirect one.

First, observe that

n−1/2(y − x̃)>X̃2
a
= n−1/2u>M1X2 ≡ ν>,

whereM1 ≡M1(β0) andX2 ≡X2(β0). The asymptotic equality here follows
from the fact that ũ

a
= M1u, which is the result (6.09) for the case in which

the model is estimated subject to the restrictions that β2 = 0. The covariance
matrix of the r × 1 random vector ν is

E(νν>) = E
(
n−1X2

>M1uu
>M1X2

)
= n−1X2

>M1(σ2
0 I)M1X2

= n−1σ2
0(X2

>M1X2) ≡ σ2
0V .

The consistency of β̃ and the regularity conditions for Theorem 5.1 imply that

n−1X̃2
>M̃1X̃2

a
= n−1X2

>M1X2 = V .
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Under the regularity conditions for Theorem 5.2, we can apply a central limit
theorem and conclude that ν is asymptotically normally distributed with
mean vector zero and covariance matrix σ2

0V . Thus any test statistic that is
constructed by dividing (6.19) by a consistent estimate of σ2 is asymptotically
equal to

1

σ2
0

ν>V −1ν.

We see immediately that this quantity is asymptotically distributed as χ2(r),
since it is a quadratic form in random r--vectors which asymptotically have
mean zero and covariance matrix σ2

0V ; see Appendix B.

Because we may use any consistent estimate of σ2, this result justifies
the use of a number of different test statistics. One possibility is to use the
explained sum of squares from regression (3.49), in which we have divided the
regressand of (6.17) by a consistent estimate of σ. However, the two most
common test statistics are n times the uncentered R2 from regression (6.17)
and the ordinary F statistic for b2 = 0 from that regression. To see that the
nR2 form of the test is valid, observe that since R2

u, the uncentered R2, is
equal to the explained sum of squares divided by the total sum of squares,

nR2
u =

n(y − x̃)>X̃2

(
X̃2
>M̃1X̃2

)−1
X̃2
>(y − x̃)

(y − x̃)>(y − x̃)

=
‖PM̃1X̃2

(y − x̃)‖2

‖y − x̃‖2/n
.

This variant of the test implicitly uses σ̃2, the restricted maximum likelihood
estimate, to estimate σ2. As we have seen, this estimate will tend to be too
small, at least when the null hypothesis is true. It would probably be safer
to use (n − k + r)R2

u as the test statistic, since this would implicitly use s̃2,
the OLS estimate of σ2 from the restricted model, instead of σ̃2; the resulting
test statistic would be equal to the ESS from (3.49).

One practical problem with tests based on R2
u from an artificial regression

is that many regression packages do not print the uncentered R2. In most
cases, this will create no difficulty, because R2

u will be identical to the ordinary
centered R2. This will be so whenever the restricted model x(β1,0) contains
the equivalent of a constant term and y − x̃ will therefore have mean zero.
In cases for which y − x̃ does not have mean zero, however, the centered and
uncentered R2’s will differ, and the former will not yield a valid test statistic.
It is important that users of the nR2 and (n − k + r)R2 test statistics be
aware of this possibility and check to make sure that the regressand for the
test regression (6.17) does in fact have mean zero. A simple way to avoid
having to compute R2

u is to run the GNR in the form (3.49), that is, with
the regressand divided by s̃. The explained sum of squares from (3.49) is just
(n−k+ r)R2

u. If the regression program does not print this quantity directly,
it may be computed as n− k + r minus the sum of squared residuals.
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It is also possible, and may well be preferable, to use the ordinary F
statistic for b2 = 0 from the Gauss-Newton regression. If RSSR and USSR
denote the restricted and unrestricted sums of squared residuals from regres-
sion (6.17), this F statistic is

(RSSR−USSR)/r

USSR/(n− k)
(6.20)

=
(y − x̃)>X̃2

(
X̃2
>M̃1X̃2

)−1
X̃2
>(y − x̃)/r(

(y − x̃)>(y − x̃)− (y − x̃)>X̃2

(
X̃2
>M̃1X̃2

)−1
X̃2
>(y − x̃)

)
/(n− k)

.

The denominator here is the OLS estimate of σ2 from (6.17), which under H0

tends to σ2
0 as n → ∞. The numerator is 1/r times expression (6.19). Thus

it is clear that r times (6.20) will be asymptotically distributed as χ2(r).

In finite samples, comparing (6.20) to the F (r, n− k) distribution is just
as valid as comparing r times it to the χ2(r) distribution. Indeed, there is
evidence that the F statistic (6.20) has better finite-sample properties than the
nR2 statistic based on the same Gauss-Newton regression; see Kiviet (1986).
This evidence is entirely in accord with theory, because, as we have seen,
û

a
= M0u. Thus using the F distribution, which treats the estimate s2 based

on NLS residuals as if it were based on OLS residuals, makes more sense than
using the χ2 distribution, which treats σ̂2 as if it were based not on residuals
but on error terms. Based partly on theory and evidence, then, and partly on
the convenience of using the same form of test for Gauss-Newton regressions
as would normally be used with genuine regressions, we therefore recommend
using the F test rather than the nR2 test or the numerically identical test
based on regression (3.49).

Expression (6.20) can be simplified somewhat by noting that it is simply
(n− k)/r times the ratio of the squared lengths of two vectors:

n− k
r
×
‖PM̃1X̃2

(y − x̃)‖2

‖MX̃(y − x̃)‖2
. (6.21)

The numerator is the squared length of the vector PM̃1X̃2
(y − x̃), which is

the residual vector y − x̃ projected onto S(M̃1X̃2). The denominator is the
squared length of the vectorMX̃(y − x̃) = MM̃1X̃2

(y − x̃), which is the resid-

ual vector projected off S(X̃) = S(X̃1, X̃2). The geometry of the F test in this
case is identical to the geometry of the F test in the linear regression case,
which was discussed in Section 3.5. The only difference is that X̃1 and X̃2

are functions of the restricted estimates β̃.

In Section 3.5, we proved that, for linear regression models, the t statistic
for the hypothesis that a single parameter value is zero is numerically equal
to the square root of an F statistic for the same null hypothesis. Since this
is a numerical result, it is as true for artificial regressions as for genuine ones.
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Thus, when b2 is a scalar, the t statistic on b̃2 from the GNR (6.17) is just as
valid as any of the test statistics we have been discussing.

Why does regressing residuals from the restricted model on the deriva-
tives of x(β) allow us to compute valid test statistics? Why do we need
to include all the derivatives and not merely those that correspond to the
parameters which were restricted? The above discussion has provided formal
answers to these questions, but perhaps not ones that are intuitively appeal-
ing. Let us therefore consider the matter from a slightly different point of
view. In Section 5.7, we showed that Wald, LR, and LM statistics for testing
the same set of restrictions are all asymptotically equal to the same random
variable under the null hypothesis and that this random variable is asymp-
totically distributed as χ2(r). For the nonlinear regression models we have
been discussing, the LR statistic is simply the difference between SSR(β̂) and
SSR(β̃), divided by any consistent estimate of σ2. To see why the LM statis-
tic is valid and why the GNR must include the derivatives with respect to all
parameters, we will view the LM statistic based on the GNR as a quadratic
approximation to this LR statistic. That this should be the case makes sense,
since the GNR itself is a linear approximation to the nonlinear regression
model.

One way to view the Gauss-Newton regression is to think of it as a way
of approximating the function SSR(β) by a quadratic function that has the
same first derivatives and, asymptotically, the same second derivatives at the
point β̃. This quadratic approximating function, which we will call SSR∗(β̃, b),
is simply the sum-of-squares function for the artificial regression. It is de-
fined as

SSR∗(β̃, b) = (y − x̃− X̃b)>(y − x̃− X̃b).

The explained sum of squares from the GNR is precisely the difference between
SSR(β̃) and SSR∗(β̃, b̃). If β̃ is reasonably close to β̂, SSR∗(·) should provide
a good approximation to SSR(·) in the neighborhood of β̂. Indeed, provided
that the restrictions are true and that the sample size is sufficiently large, β̃
and β̂ must be close to each other because they are both consistent for β0.
Therefore, SSR∗(·) must provide a good approximation to SSR(·). This implies
that SSR∗(β̃, b̃) will be close to SSR(β̂) and that the explained sum of squares
from the GNR will provide a good approximation to SSR(β̃)−SSR(β̂). When
we divide the explained sum of squares by a consistent estimate of σ2, the
resulting LM test statistic should therefore be similar to the LR test statistic.

It should now be clear why the GNR has to include X̃1 as well as X̃2. If
it did not, the GNR would not be minimizing SSR∗(β̃, b), but rather another
approximation to SSR(β),

SSR∗∗(β̃, b2) = (y − x̃− X̃2b2)>(y − x̃− X̃2b2).

Although SSR∗(·) should normally provide a reasonably good approximation
to SSR(·), SSR∗∗(·) normally will not, because it does not have enough free
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Figure 6.2 A case for which minimizing SSR∗∗ will work well

parameters. When we minimize SSR∗∗(·), we can do so only in the directions
that correspond to β2 but not in the directions that correspond to β1. Only
if the contours of SSR(·) form an approximate ellipse of which the axes are
approximately parallel to the axes of β1 and β2, so that β̂1 and β̃1 are very
similar, will SSR∗∗(·) work reasonably well. In other cases, the minimum of
SSR∗(·) can be very different from the minimum of SSR∗∗(·), and the mini-
mizing values can be correspondingly different.

This is illustrated in Figures 6.2 and 6.3 for the case in which k = 2
and r = 1. In the former figure, the vectors x̃1 and x̃2 are orthogonal,
which implies that the axes of the ellipse formed by the contours of SSR(·)
are exactly parallel to the axes. In this case, the minimum of SSR∗∗(β̃1, b2),
which must lie on the line AB, coincides with the minimum of SSR(β1, β2)
at the point (β̂1, β̂2). In the latter figure, on the other hand, x̃1 and x̃2 are
negatively correlated, which implies that the axes of the ellipse formed by the
contours of SSR(·) slope upward to the right. In this case, the minimum of
SSR∗∗(β̃1, b2), which again must lie on the line AB, is evidently very different
from the minimum of SSR(β1, β2).

Obviously, the minimum of SSR∗∗(·) will normally be larger, and cer-
tainly cannot be smaller, than the minimum of SSR∗(·). Thus, if we were
inadvertently to omit X̃1 from the GNR and calculate nR2

u or one of the
other equivalent test statistics, we would obtain a numerically smaller test
statistic than the correct one. This can be a useful fact to bear in mind. In
some cases, it may be easy to construct X̃2 but hard to construct X̃1. In
such a case it may be useful, in the first instance, to regress ũ on X̃2 alone.
If that artificial regression yields convincing evidence against the null hypo-
thesis, then we may safely decide to reject H0 without running the correct
GNR. However, if a regression of ũ on X̃2 alone fails to reject the null, we
cannot safely draw any conclusions from that fact and must run the correct
GNR before we can do so.
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Figure 6.3 A case for which minimizing SSR∗∗ will work badly

The GNR (6.17) would remain valid if we replaced X̃2 by any n × r
matrix, say Z(β), evaluated at β̃, which was asymptotically uncorrelated
with u under the null hypothesis, satisfied the same regularity conditions as
X(β), and might or might not actually depend on β. Thus, if the model to
be tested were

y = x(β) + u, u ∼ IID(0, σ2I), (6.22)

and Z(β) were a matrix constructed so that, if the model were correct,
n−1Z0

>u would tend to a zero vector, we could always run the GNR

ũ = X̃b+ Z̃c + residuals (6.23)

and calculate an F test for c = 0 or one of the equivalent test statistics. Im-
plicitly, of course, Z̃ must correspond to the matrix X̃2 for some unrestricted
model that includes (6.22) as a special case. But there are cases in which
it is natural to derive the GNR (6.23) without explicitly specifying such a
model, so as to calculate a diagnostic test. Such tests are widely used when
one has estimated a model and wishes to see if there is any evidence that it
is incorrectly specified. We will encounter such tests in the next section and
throughout the book.

6.5 Diagnostic Tests for Linear Regression Models

The above results on how the GNR may be used to test restrictions on the
parameters of nonlinear regression models are of course equally applicable to
linear regression models. It is worthwhile briefly to consider the special case
of the latter, partly because so much of the literature is concerned with it,
partly because it provides an opportunity to discuss diagnostic tests (which
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are often, incorrectly, thought of as being somehow different from other tests
of restrictions), and partly because there is always merit in considering the
simplest possible case.

Suppose that we have estimated a linear regression model

y = Xβ + u, u ∼ N(0, σ2I), (6.24)

where X is an n× k matrix and β is a k--vector, and that we wish to test it
for possible misspecification of the regression function. Normality is assumed
for the moment in order that we may discuss exact tests. Recall that the
regression function is supposed to specify E(y |Ω), the mean of y conditional
on some information set Ω. Let Z denote an n× l matrix of observations on
any set of regressors that belong to Ω but do not lie in S(X). Then, if the
null hypothesis that E(y |Ω) = Xβ is correct, the estimate of the vector γ in
the regression

y = Xβ +Zγ + u (6.25)

should be insignificantly different from zero. This hypothesis may of course
be tested by computing an ordinary F statistic for γ = 0 as

(RSSR−USSR)/l

USSR/(n− k − l)
, (6.26)

where RSSR and USSR are the sums of squared residuals from (6.24) and
(6.25), respectively. If the resulting test statistic is large (so that the asso-
ciated P value is small), we will want to reject the null hypothesis and thus
conclude that the model (6.24) is misspecified. This is an example of what
some authors, notably Pagan (1984a) and Pagan and Hall (1983), call variable
addition tests.

What would happen if we used a Gauss-Newton regression here in place
of the more obvious regression (6.25)? The GNR (6.17) becomes

MXy = Xb+Zc + residuals, (6.27)

which by the FWL Theorem yields the same SSR as the regression

MXy = MXZc + residuals. (6.28)

But if we apply the FWL Theorem to regression (6.25), we see that the SSR
from that regression is identical to the SSR from regression (6.28). Thus, in
this case, the F statistic based on the Gauss-Newton regression (6.27) will
be identical to (6.26), the F statistic based on the ordinary regression (6.25).
We see that tests based on the GNR are equivalent to variable addition tests
when the latter are applicable.

It often seems attractive to base tests for model misspecification on the
residuals û because they provide estimates of the error terms u. Pagan and
Hall (1983) show how to construct a large number of tests using this approach.
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Thus it might seem natural to test whether a model is misspecified by simply
regressing the residuals û = MXy on the test regressors Z. As we saw in
the preceding section, however, this procedure, which is equivalent to using
a GNR without the regressors corresponding to the model parameters, yields
test statistics that are too small. It is worthy of note that the well-known
Durbin-Watson statistic is asymptotically equivalent to a statistic computed
in this way, and that the DW statistic fails to reject the null hypothesis often
enough when there are lagged dependent variables for precisely the reason
just discussed. All of this is discussed further in Chapter 10.

The hypothesis that E(y |Ω) = Xβ can be tested against any alternative
specification of the conditional mean by testing the significance of some matrix
of test regressors Z in regressions (6.25) or (6.27). All that is required is that
the elements of Z be asymptotically uncorrelated with the elements of u and
not depend on anything which is not in the information set Ω. A great many
such specification tests have been proposed, and we will encounter many of
them in the course of this book. One well-known example is the Regression
Specification Error Test, or RESET for short, proposed by Ramsey (1969); a
precursor is Anscombe (1961). This test was recast in the form of an F test
for omitted variables by Ramsey and Schmidt (1976). Each column of Z then
consists of some power of the fitted values Xβ̂, such as squared fitted values,
cubed fitted values, and so on. In the simplest case, there is only one test
regressor, which is the vector of squared fitted values, and this simplest version
of the RESET test is often the most useful. It is interesting to observe that
it can be derived directly as an application of the Gauss-Newton regression.

Suppose that the model under test is once again (6.24) and that we wish
to test it against the explicit alternative

yt = Xtβ (1 + θXtβ) + ut, (6.29)

where θ is an unknown parameter to be estimated. When θ = 0, this model
reduces to (6.24) but, when θ is nonzero, it allows for a nonlinear relationship
between Xt and yt. Since many other nonlinear models would be well ap-
proximated by (6.29) in the neighborhood of θ = 0, this seems like a sensible
alternative. It is easy to see that the GNR corresponding to (6.29) is

yt −Xtβ (1 + θXtβ) =
(
2θ(Xtβ)Xt +Xt

)
b+ (Xtβ)2c + residual.

When this is evaluated at β̂, the OLS estimates under the null hypothesis
that θ = 0, it reduces to

yt −Xtβ̂ = Xtb+ (Xtβ̂)2c + residual, (6.30)

and, as we have seen, the t statistic on ĉ from this GNR will be identical to
the t statistic on the estimate of c from the regression

yt = Xtβ + (Xtβ̂)2c + residual,
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which is the regression for performing the simplest version of the RESET
test. Thus the RESET test provides a simple way of testing for nonlinearity
in the relationship between X and y; for more on this, see MacKinnon and
Magee (1990). This test is clearly applicable to nonlinear as well as to linear
regression models. If the model under test were yt = xt(β) + ut, we would
simply have to replace Xtβ̂ by x̂t twice, where it occurs in regression (6.30),
to obtain an appropriate GNR.

6.6 One-Step Efficient Estimation

It is sometimes easy to obtain consistent but inefficient estimates but rela-
tively difficult to obtain NLS estimates. This may, for example, be the case
when the nonlinear model to be estimated is really a linear model subject
to nonlinear restrictions, as many rational expectations models are. In these
circumstances, a useful result is that taking just one step from these initial
consistent estimates, using the Gauss-Newton regression, yields estimates that
are asymptotically equivalent to NLS estimates.

Let β́ denote the initial estimates, which are assumed to be root-n con-
sistent. The GNR is then

y − x́ = X́b + residuals,

and the estimate of b from this regression is

b́ =
(
X́>X́

)−1
X́>(y − x́). (6.31)

Thus the one-step efficient estimator is

β̀ = β́ + b́.

Taylor expanding x(β́) around β = β0 yields

x́ ∼= x0 +X0(β́ − β0),

where x0 ≡ x(β0) andX0 ≡X(β0). Substituting this into (6.31), replacing y
by its value under the DGP, x0 +u, and inserting appropriate powers of n so
that all quantities are O(1), leads to the result that

n1/2b́ ∼= n−1/2
(
n−1X́>X́

)−1
X́>
(
x0 + u− x0 −X0(β́ − β0)

)
=
(
n−1X́>X́

)−1(
n−1/2X́>u− (n−1X́>X0)n1/2(β́ − β0)

)
.

But notice that
n−1X́>X́

a
= n−1X0

>X0
a
= n−1X́>X0,
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which is a consequence of the consistency of β́. Thus

n1/2b́
a
=
(
n−1X0

>X0

)−1(
n−1/2X0

>u
)
− n1/2(β́ − β0).

Adding this expression to n1/2β́ to obtain n1/2 times the one-step efficient
estimator β̀, we see that

n1/2(β̀ − β0) ∼=
(
n−1X0

>X0

)−1(
n−1/2X0

>u
)
.

After we take the probability limit of n−1X0
>X0, this becomes

n1/2(β̀ − β0)
a
= plim
n→∞

(
n−1X0

>X0

)−1(
n−1/2X0

>u
)
. (6.32)

The right-hand side of this expression should look familiar. In fact, the result
(5.39) from Chapter 5 shows that n1/2(β̂−β0) is asymptotically equal to the
right-hand side of (6.32). Thus we have proved that the one-step estimator β̀
is asymptotically equivalent to the NLS estimator β̂. It must therefore have
the same asymptotic distribution, and so we conclude that

n1/2(β̀ − β0)
a∼ N

(
0, σ2(n−1X0

>X0)−1
)
.

One-step estimation can be particularly useful for imposing nonlinear re-
strictions on a model that is easy to estimate unrestrictedly but difficult to
estimate subject to the restrictions. In particular, suppose that the unre-
stricted regression function is Xβ and that the restricted regression function
can be written as Xβ(γ), where β(γ) is a k--vector of smooth functions of
the l--vector γ, l being smaller than k. Thus the restricted model is nonlinear
only in the parameters. Some elements of β(γ) may of course be zero. In this
case, the restricted model is

y = Xβ(γ) + u, (6.33)

and the unrestricted model is

y = Xβ + u. (6.34)

The OLS estimates of (6.34), β̂, provide initial consistent estimates γ̂. These
may or may not be easy to compute and will certainly not be unique, since
there are fewer elements of γ than of β. The regression for obtaining one-step
estimates is the GNR corresponding to (6.33), with the parameter vector γ
evaluated at γ̂:

y −Xβ(γ̂) = X̂∗c + residuals,

where the n× l matrix X̂∗ is defined by

X̂∗ ≡X ∂β(γ)

∂γ

∣∣∣∣
γ=γ̂

.
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Figure 6.4 One-step efficient estimation

As usual, the one-step estimates are γ̀ = γ̂+ ĉ, and these will be asymptotic-
ally equivalent to the restricted estimates γ̃, which may be a good deal more
expensive to obtain.

Intuitively, one-step efficient estimators based on the GNR are asymp-
totically equivalent to NLS estimators for a reason very similar to the one we
gave in the last section for the validity of tests based on the Gauss-Newton re-
gression. What the GNR does is to minimize SSR∗(β́+b), which is a quadratic
approximation to SSR(β) around β́. Asymptotically, the function SSR(β) is
quadratic in the neighborhood of β0. When the sample size is large enough,

the consistency of β́ implies that we will be taking the quadratic approxi-
mation at a point very near β0, and so the approximation will coincide with
SSR(β) itself asymptotically.

We can see what is happening by considering Figure 6.4. As in previous
figures of this type (e.g., Figure 2.2), k = 1 and we suppose that x(β) lies,
locally at least, in a two-dimensional subspace of Rn. Otherwise, we could not
draw it on the page. It is deliberately made highly nonlinear within that space
so as to make the issues easier to grasp. The manifold X thus forms a sharply
curved line in Rn. At the point x́ ≡ x(β́) we take a linear approximation,
x́+ X́b. The subspace spanned by the columns of X́, translated so that it is
tangent to the manifold X at x́, is denoted by S∗(X́). One-step estimation
involves projecting y orthogonally onto this subspace so as to yield a coeffi-
cient estimate b́. From this we then obtain the one-step estimate β̀ = β́ + b́.
Nonlinear least squares, in contrast, involves projecting y orthogonally onto X

itself, at the point x̂. Evidently, β̂ and β̀ will in general differ unless S∗(X́)
coincides with X in a neighborhood of β́. But the NLS and one-step estimates
are nevertheless asymptotically equivalent because the consistency of x́ im-
plies that, asymptotically, it is so close to x̂ that X can have no appreciable
curvature between those two points.
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Unfortunately, the fact that one-step estimators based on the GNR are
asymptotically equivalent to NLS estimators does not imply that the former
will have finite-sample properties similar to those of the latter. Remember
that the equivalence requires that the DGP be y = x(β0) + u. If the DGP
is not a special case of the model, the equivalence breaks down. Even if it
is, a great deal depends on the quality of the initial consistent estimator β́.
When β́ is close to β0 and the sample is large enough, SSR∗(β́+ b) should be
a very good approximation to SSR(β), and so β̀ should be close to the NLS
estimate β̂. On the other hand, when the initial consistent estimate is far
from β0 (and the fact that an estimator is consistent does not prevent it from
being extremely inefficient), the one-step estimates may differ greatly from
the NLS estimates. When the two differ significantly, we would recommend
using the NLS estimates, although without doing a detailed study of the
particular model involved, one cannot categorically recommend one estimator
over another when the two are asymptotically equivalent. One-step estimation
makes most sense when the sample size is large, which implies that the initial
consistent estimator is likely to be good and also that nonlinear least squares
may be expensive.

6.7 Hypothesis Tests Using Any Consistent Estimates

The procedures for testing that we discussed in Sections 6.4 and 6.5 all involve
evaluating the artificial regression at restricted NLS estimates and thus yield
test statistics based on the LM principle. But when the restricted regression
function is nonlinear, it is not always convenient to obtain NLS estimates.
Luckily, one can perform tests by means of a GNR whenever any root-n
consistent estimates that satisfy the null hypothesis are available. We briefly
discuss how to do so in this section.

Suppose we are dealing with the situation discussed in Section 6.4, in
which the parameter vector β is partitioned as [β1

.... β2], and the null hy-
pothesis is that β2 = 0. Assume that we have available a vector of root-n
consistent estimates β́ ≡ [β́1

.... 0]. Then the GNR, in obvious notation, is

y − x́ = X́1b1 + X́2b2 + residuals. (6.35)

The explained sum of squares from this regression is

(y − x́)>Ṕ1(y − x́) + (y − x́)>Ḿ1X́2

(
X́2
>Ḿ1X́2

)−1
X́2
>Ḿ1(y − x́). (6.36)

The first term here is the explained sum of squares from a regression of y − x́
on X́1 alone, and the second term is the increase in the explained sum of
squares brought about by the inclusion of X́2. Note that the first term is in
general not zero, because β́1 will not in general satisfy the first-order condi-
tions for NLS estimates of the restricted model.
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The difference between the explained sum of squares from (6.35) and the
explained sum of squares from a regression of y − x́ on X́1 alone is

(y − x́)>Ḿ1X́2

(
X́2
>Ḿ1X́2

)−1
X́2
>Ḿ1(y − x́) =

∥∥PḾ1X́2
(y − x́)

∥∥2
.

This looks just like the numerator of the F statistic (6.21). In fact, the sole
difference is that everything is evaluated at the root-n consistent estimates β́
rather than at the restricted NLS estimates β̃. It should therefore come as
no surprise to learn that the F statistic for b2 = 0 in (6.35) is asymptotically
the same (under the null hypothesis) as the F statistic for b2 = 0 in the more
familiar LM test GNR (6.17).

We will not bother to prove this result formally. The intuition is so simple
that a proof is hardly necessary. From the results of the preceding section,
we know that

n1/2(β́ + b́− β0)
a
= n1/2(β̂ − β0),

where b́ is the OLS estimate of b from (6.35) and β̂ is the unrestricted NLS
estimate. Evidently, β́ + b́ is a vector of one-step consistent estimates. Since
β́2 = 0, we have that

n1/2(b́2 − β0
2 )

a
= n1/2(β̂2 − β0

2 ),

where β0
2 is the value of β2 under the DGP. Thus the OLS estimate of b2

from (6.35) is asymptotically equivalent to the unrestricted NLS estimate β̂2.
This should make it intuitively obvious that an F test for b2 = 0 in (6.35) is
equivalent to a test for β2 = 0.

We can compute tests for β2 = 0 using regression (6.35) in the same way
that we can using (6.17), with one exception. The quantity nR2 from (6.17) is
a valid test statistic, but the same quantity from (6.35) is not. The reason is
that X́1 will generally have some ability to explain the variation in y−x́, which
implies that the first term in (6.36) will not be zero. We could construct a valid
test statistic as nR2 from (6.35) minus nR2 from a regression of y− x́ on X́1

alone. However, it is preferable simply to use F or t tests, which are computed
just as if (6.35) were a genuine regression rather than an artificial one.

In the literature on maximum likelihood estimation, tests based on ar-
bitrary root-n consistent estimators are called C(α) tests. Such tests were
originally proposed by Neyman (1959); for more references, and discussion,
see Section 13.7. As we will see there, it is possible to interpret the tests we
have discussed in this section as C(α) tests. But these tests could also be
interpreted as Wald tests in some cases. Suppose that β́ = [β̂1

.... 0], where β̂1

is the unrestricted NLS estimate of β1. This choice for β́ is certainly root-n
consistent and satisfies the null hypothesis; thus it will clearly yield valid test
statistics. Since the GNR depends only on the unrestricted estimates β̂, we
will refer to tests computed in this way as Wald-like, although they are not
strictly based on the Wald principle. Such Wald-like tests may well be easier
to compute than conventional Wald tests in some cases.
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6.8 Nonlinear Estimation Using the GNR

In this section, we discuss how the Gauss-Newton regression can be used as
part of an effective algorithm for minimizing sum-of-squares functions. This
was actually the original motivation for the GNR. The term “Gauss-Newton”
is in fact taken from the literature on numerical optimization as applied to
nonlinear least squares problems, and most of the other uses of this artificial
regression in econometrics are relatively recent, as we discuss in Section 6.9.

Most effective algorithms that attempt to maximize or minimize a smooth
function of two or more variables, say Q(θ), operate in basically the same way.
Such an algorithm goes through a series of major iterations, at each of which
it starts with a particular value of θ, say θ(j), and tries to find a better one.
The algorithm first chooses a direction in which to search for a better value
of θ and then decides how far to move in that direction. The main differences
among unconstrained optimization algorithms are in the way in which the
direction to search is chosen and in the way in which the size of the ultimate
step in that direction is determined. Numerous choices are available.

Note that any algorithm for minimization can just as easily be used for
maximization, since minimizing Q(θ) is equivalent to maximizing −Q(θ). Fol-
lowing the convention used in most of the literature, we will deal with the case
of minimization, which is what we wish to do with sum-of-squares functions
anyway.2 In this section, we will attempt to give an overview of how nu-
merical minimization algorithms work and how the Gauss-Newton regression
may be used as part of them, but we will not discuss many of the important
computer-related issues that substantially affect the performance of computer
algorithms. An excellent reference on the art and science of numerical opti-
mization is Gill, Murray, and Wright (1981); see also Bard (1974), Quandt
(1983), Press, Flannery, Teukolsky, and Vetterling (1986, Chapter 10), and
Seber and Wild (1989, Chapter 14).

One of the most fundamental techniques of numerical optimization is
Newton’s method. Suppose that we wish to minimize a nonlinear function
Q(θ), where θ is a k--vector. Given any initial value, say θ(1), we can obtain
a second-order Taylor-series approximation of Q(θ) around θ(1):

Q∗(θ) = Q
(
θ(1)

)
+
(
g(1)

)>(θ − θ(1)
)

+ 1−
2

(
θ − θ(1)

)>H(1)
(
θ − θ(1)

)
∼= Q(θ),

where g(θ), the gradient of Q(θ), is a column vector of length k with typical
element ∂Q(θ)/∂θi, and H(θ), the Hessian of Q(θ), is a k × k matrix with
typical element ∂2Q(θ)/∂θi∂θl; g

(1) and H(1) denote, respectively, g(θ(1))

2 When we deal with likelihood functions, however, we will wish to maximize
them (see Chapter 8). Most of the following discussion is applicable with
minor changes to that case.
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Figure 6.5 Cases for which Newton’s method will not work

and H(θ(1)). Solving the first-order conditions for a minimum of Q∗(θ) with
respect to θ yields a new value of θ, which we will call θ(2). It depends on θ(1),
and on the gradient and the Hessian evaluated at θ(1), in a very simple way:

θ(2) = θ(1) −
(
H(1)

)−1
g(1). (6.37)

Equation (6.37) is the heart of Newton’s method. If the quadratic approxi-
mation Q∗(θ) is a strictly convex function, which it will be if and only if the
Hessian H(θ(1)) is positive definite, θ(2) will be the global minimum of Q∗(θ).
If, in addition, Q∗(θ) is a good approximation to Q(θ), θ(2) should be close
to θ̂, the minimum of Q(θ). Newton’s method involves using equation (6.37)
repeatedly to find a succession of values θ(2), θ(3), . . . . When the original
function Q(θ) is quadratic and has a global minimum at θ̂, Newton’s method
obviously finds θ̂ in a single step, since the quadratic approximation is then
exact. When Q(θ) is approximately quadratic, as all sum-of-squares func-
tions are when sufficiently close to their minima, Newton’s method generally
converges very quickly.

In many other cases, however, Newton’s method fails to work at all,
especially if Q(θ) is not convex in the neighborhood of θ(j) for some j in
the sequence. To see why, consider Figure 6.5. The one-dimensional function

shown there has a global minimum at θ̂, but when Newton’s method is started
at points such as θ′ or θ′′, it may never find θ̂. In the former case, Q(θ) is con-
cave at θ′ instead of convex, and that causes Newton’s method to head off in
the wrong direction. In the latter case, the quadratic approximation at θ′′ is
extremely poor for values away from θ′′, because Q(θ) is very flat near θ′′. The
quadratic approximation Q∗(θ) to Q(θ) taken at θ′′ is shown by the dashed
curve. It will evidently have a minimum far to the left of θ̂. Nevertheless, most
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effective nonlinear optimization techniques for smooth problems are modified
versions of Newton’s method, which attempt to retain its good qualities while
enabling it to surmount problems like those illustrated in Figure 6.5.

Numerical minimization techniques that are based on Newton’s method
replace (6.37) with the slightly more complicated formula

θ(j+1) = θ(j) − α(j)
(
D(j)

)−1
g(j), (6.38)

which determines θ(j+1), the value of θ at step j + 1, as a function of θ(j).
Here α(j) is a scalar that is usually determined endogenously, as the algorithm
proceeds, and D(j) ≡D(θ(j)) is a matrix that approximates H(θ(j)) near the
minimum but is constructed so that it is always positive definite. Most of these
algorithms consist of a series of two alternating steps. Starting from θ(j) they
first compute g(j) and D(j) and thus determine in what direction to search.
They then solve a one-dimensional minimization problem to find α(j), which
determines how far to go in that direction. These two steps together yield
θ(j+1). The algorithms then return to the first step and continue alternating
between the two steps until they decide that they have found a sufficiently
accurate approximation to θ̂.

Because they construct D(θ) so that it is always positive definite, these
modified Newton algorithms can handle problems where the function to be
minimized is not globally convex. Different algorithms choose D(θ) in differ-
ent ways, some of which are quite ingenious and may be tricky to implement
on a digital computer. As we will see, however, for sum-of-squares functions
there is a very easy and natural way to choose D(θ), based on the Gauss-
Newton regression.

In many cases, α(j) is chosen to minimize Q
(
θ(j)−α(j)(D(j))−1g(j)

)
, re-

garded as a one-dimensional function of α(j). This means that points like θ′′

in Figure 6.5 do not cause difficulties. Some algorithms do not actually mini-
mize Q

(
θ(j) − α(j)(D(j))−1g(j)

)
with respect to α(j) but merely choose α(j)

so as to ensure that Q(θ(j+1)) is less than Q(θ(j)). It is essential that this be
the case if we are to be sure that the algorithm will always make progress at
each step. The best algorithms, which are designed to economize on comput-
ing time, may choose α quite crudely when they are far from θ̂ but usually
perform an accurate one-dimensional minimization when they are close to θ̂.

When one is trying to minimize a sum-of-squares function SSR(β), the
Gauss-Newton regression provides a very convenient way to approximate
H(β). Algorithms that do so are said to employ the Gauss-Newton method.
In Section 5.4, we saw that H(β) has typical element

Hil(β) = −2
n∑
t=1

((
yt − xt(β)

)∂Xti
∂βl

−Xti(β)Xtl(β)
)
. (6.39)

This is equation (5.24) rewritten in scalar notation. We also saw that when
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the model is correct and the Hessian is evaluated at the true value of β, this
is asymptotically equivalent to

2

n∑
t=1

Xti(β)Xtl(β);

the result is (5.38). Hence a natural choice for D(β) in a minimization algo-
rithm of the class described by (6.38) is

D(β) = 2X>(β)X(β). (6.40)

The gradient of SSR(β) is

g(β) = −2X>(β)
(
y − x(β)

)
. (6.41)

Substituting (6.40) and (6.41) into (6.38) yields

β(j+1) = β(j) + α(j)
(
2(X(j))>X(j)

)−1(
2(X(j))>(y − x(j))

)
= β(j) + α(j)

(
(X(j))>X(j)

)−1
(X(j))>(y − x(j))

= β(j) + α(j)b(j),

where b(j) is the estimate of b from the Gauss-Newton regression with x(β)
and X(β) both evaluated at β(j), and X(j) ≡X(β(j)).

The connection between minimization algorithms and the Gauss-Newton
regression is now clear. The GNR provides a cheap and convenient way to ob-
tain a matrix that approximates the Hessian of SSR(β) and is always positive
definite (provided, of course, that the model is identified at all points where
the GNR is run). It does even more than this, since the vector of coefficients
from the GNR is actually equal to −(D(j))−1g(j), which is the direction in
which the algorithm will look at each step. By combining the GNR with a
good one-dimensional search routine (to find α at each step), we obtain a
reasonably effective algorithm for finding nonlinear least squares estimates.
Such an algorithm is a major improvement over the original Gauss-Newton
method which, like Newton’s method in its original form, simply sets α to 1
at each step.

We say “reasonably effective” because further improvements are certainly
possible. A major difficulty with the Gauss-Newton method is that the matrix
X>(β)X(β) may sometimes be very close to singular, even though the model
is reasonably well identified by the data when evaluated near β0. When
X>(β)X(β) is nearly singular, the algorithm gets into trouble, because b no
longer lies in the same k--dimensional space as β, but rather in a subspace of
dimension equal to the effective rank of X>(β)X(β). Since one cannot expect
to find β̂ if one looks for it in a space of too low dimension, an unmodified
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Gauss-Newton algorithm can cycle indefinitely without making any progress
when this happens. The best algorithms for least squares problems check
whether this is happening and replace X>(β)X(β) with a better-behaved
choice for D whenever it does. See the references cited above.

The Gauss-Newton method may also work badly if 2X>(β)X(β) provides
a poor approximation to H(β), that is, if the first term inside the summation
in (6.39) is large. This may happen for a correctly specified model when the
sample size is small and for an incorrectly specified model no matter what the
sample size. Of course, inference based on asymptotic theory will be unreliable
in the first of these cases and hopeless in the second. Thus poor performance
of the Gauss-Newton method may provide a useful warning.

No numerical minimization procedure ever finds θ̂ exactly and, given
the limitations of floating-point arithmetic on digital computers, it is often
unrealistic to expect to obtain more than six or perhaps eight digits of ac-
curacy. Unless one explicitly tells them to stop, these iterative algorithms
will keep searching forever, even though changes in β and SSR(β) are due
only to round-off errors in the computer. The choice of stopping rules is thus
an important part of the art of nonlinear minimization. Several authors —
see Quandt (1983) — have suggested that the most natural rule for a Gauss-
Newton algorithm is to stop when(

y − x(β(j))
)>X(j)

(
X(j)>X(j)

)−1
X(j)>(y − x(β(j))

)(
y − x(β(j))

)>(y − x(β(j))
)
/n

< ε, (6.42)

where ε is a preset convergence criterion that can be adjusted by the user.
The left-hand side of (6.42) is just n times the uncentered R2 from the
Gauss-Newton regression of y − x(β(j)) on X(j), which has exactly the
same form as the test statistics we discussed in Section 6.4. Notice that,
provided β(j) is close to β0, expression (6.42) is approximately equal to(
SSR(β(j)) − SSR(β̂)

)
/σ2

0 . Hence this stopping rule tells the algorithm to
stop when an approximation to SSR(β) at β(j) indicates that the distance
between SSR(β(j)) and SSR(β̂) is sufficiently small relative to the variance of
the error terms.

A geometrical interpretation of this stopping rule is shown in Figure 6.6.
The denominator of the left-hand side of (6.42) is

1−
n

∥∥y − x(β(j))
∥∥2
, (6.43)

which is 1/n times the squared length of the distance between y and x(β(j)).
The numerator is ∥∥PX(j)

(
y − x(β(j))

)∥∥2
, (6.44)

which is the squared length of the projection of y−x(β(j)) onto S(X(j)). The
ratio of (6.44) to (6.43), like all quantities that can be interpreted as R2’s, is
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Figure 6.6 Stopping rule is not quite satisfied

the squared cosine of a certain angle. In this case, the angle in question is the
one between y − x(β(j)) and its projection onto S(X(j)), which is labeled φ
in the figure. When this ratio is small enough, y − x(β(j)) must be almost
orthogonal to X(j), and the first-order conditions must therefore be almost
satisfied. The stopping rule (6.42) is actually n times cos2φ. Although the
factor of n could be omitted, it gives the stopping rule some desirable prop-
erties. It makes the criterion that we compare with ε have the same form as
the nR2 test statistics of Section 6.4, and it ensures that the numerical accu-
racy of the estimates will be proportional to n−1/2, just like their statistical
accuracy. If the sample size were extremely large, however, one might have to
be careful not to use too small a value of ε, since otherwise the stopping rule
could conceivably call for a level of numerical accuracy not achievable by the
computer.

This discussion suggests that the stopping rule (6.42) has a great deal
of intuitive appeal. Gill, Murray, and Wright (1981) discusses a number of
other stopping rules, all of which suffer from various deficiencies (such as being
sensitive to how the parameters are scaled) that are not shared by (6.42).3

Because it does not suffer from these deficiencies, and because the left-hand
side is very easily calculated as a by-product of the Gauss-Newton regression
for each β(j), (6.42) appears to be a very attractive stopping rule.

Of course, any form of stopping rule may work badly if ε is chosen incor-
rectly. If ε is too large, the algorithm may stop too soon, when β is still far

3 Oddly enough, Gill, Murray, and Wright (1981) does not discuss this particular
rule or any generalizations of it. This may be because (6.42) is an obvious rule
to use with the Gauss-Newton regression, but not so obvious if one is dealing
with more general minimization problems.
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away from β̂. If it is too small, the algorithm may keep going long after β is
so close to β̂ that any differences are due solely to round-off error and may
in fact continue forever. It is therefore frequently a good idea to experiment
with the value of ε to see how sensitive to it the results are. If the reported β̂
changes noticeably when ε is reduced, then either the first value of ε was too
large, or the algorithm is having trouble finding an accurate minimum. Rea-
sonable values of ε, for this stopping rule, might be somewhere between 10−4

and 10−12.

6.9 Further Reading

As noted above, the Gauss-Newton regression has been used for many years
as the key part of the Gauss-Newton method, which is actually several related
algorithms for nonlinear least squares estimation. Bard (1974) discusses many
of these. Newton’s method, as its name implies, is very old, and the idea of
approximating the Hessian by a matrix that depends only on first derivatives
dates back to Gauss (1809). However, because nonlinear estimation was gener-
ally not practical until digital computers became widely available, most work
in this area has been relatively recent. Important papers in the post-computer
development of the Gauss-Newton method include Hartley (1961) and Mar-
quardt (1963). The survey article by Quandt (1983) provides numerous other
references, as does Seber and Wild (1989, Chapter 14).

In contrast to its long history in estimation, the use of the GNR for spec-
ification testing is quite recent. The first paper in the econometric literature
appears to be Durbin (1970), which proposed what amounts to a special case
of the GNR as a way of testing linear regression models for serial correlation
when there are lagged dependent variables. This procedure was treated in a
rather cursory fashion, however, since it was in the same paper that Durbin
proposed his well-known h test. What came to be known as Durbin’s “alter-
native procedure,” which is really a special case of the GNR, was for some
years largely ignored by theoretical econometricians and entirely ignored by
practitioners. All this will be discussed further in Chapter 10.

Interest in the Gauss-Newton regression as a way of generating test statis-
tics dates principally from the late 1970s. Godfrey (1978a, 1978b) and Breusch
(1978) greatly generalized Durbin’s alternative procedure and showed how to
calculate LM tests for serial correlation using the GNR. Numerous other au-
thors dealt with other special cases, contributed to the increased understand-
ing of the general case we have discussed in this chapter, and developed related
tests. Notable articles include Breusch and Pagan (1980) and Engle (1982a).
Much of this literature explicitly assumes normal errors and develops the tests
as LM tests within the framework of maximum likelihood estimation. This
may be slightly misleading because, as we have seen, no assumption of nor-
mality is in fact needed for either nonlinear least squares estimation or tests
based on the GNR to be asymptotically valid. More recent papers, such as
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Pagan (1984a), Davidson and MacKinnon (1985a), and MacKinnon (1992),
have focused on the case of regression models and have tried to unify and
clarify the previous literature. We will be seeing a great deal of the Gauss-
Newton regression, and also of related artificial regressions that have similar
properties, throughout the remainder of the book.

Terms and Concepts

algorithms for nonlinear least squares
artificial regression
C(α) tests
collinearity (for artificial regressions)

and identifiability
condition number (of a matrix)
diagnostic test
Gauss-Newton method
Gauss-Newton regression (GNR)
heteroskedasticity-consistent

covariance matrix estimate
(HCCME)

identification and collinearity
Newton’s method
nR2 tests and F tests based on the

GNR
numerical optimization algorithms
one-step efficient estimators
poorly identified model
Regression Specification Error Test

(RESET)
stopping rules
variable addition tests
Wald-like tests



Chapter 7

Instrumental Variables

7.1 Introduction

Up to this point, the only estimation technique we have considered is least
squares, both ordinary and nonlinear. While least squares has many merits,
it also has some drawbacks. One major drawback is that least squares yields
consistent estimates only if the error terms are asymptotically orthogonal to
the regressors or, in the nonlinear case, to the derivatives of the regression
function. Consider, for simplicity, the linear regression model

y = Xβ + u, u ∼ IID(0, σ2I), (7.01)

where X is an n×k matrix of explanatory variables. The issues are the same
whether the regression function is linear or nonlinear, and so we will deal with
the linear case for simplicity. When the data are generated by the DGP

y = Xβ0 + u, u ∼ IID(0, σ2
0I), (7.02)

we have seen that the OLS estimate is

β̂ ≡
(
X>X

)−1
X>y = β0 +

(
X>X

)−1
X>u. (7.03)

It is obvious that if β̂ is to be consistent for β0, the condition

plim
n→∞

(
n−1X>u

)
= 0

must hold. If β̂ is to be unbiased, the stronger condition that E(X>u) = 0
must hold. These necessary conditions are not directly verifiable, since the
orthogonality property of least squares ensures that regardless of whether u
is correlated with X or not, the residuals û are orthogonal to X. This means
that, no matter how biased and inconsistent least squares estimates may be,
the least squares residuals will provide no evidence that there is a problem.

Suppose that plim(n−1X>u) = w, a nonzero vector. Then from (7.03) it
is clear that plim(β̂) 6= β0. Moreover, the probability limit of n−1 times the
sum of squared residuals will be

plim
n→∞

(
n−1u>MXu

)
= σ2

0 −w>plim
n→∞

(
n−1X>X

)−1
w.

209
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If u were asymptotically uncorrelated with X, this quantity would just be σ2
0 .

Instead, it is smaller than σ2
0 . Thus using least squares makes the model fit

too well. Because least squares minimizes the distance between y and S(X),
part of the variation in y that is really due to variation in the error terms u
has incorrectly been attributed to variation in the regressors.

Unfortunately, there are many situations in econometrics in which the
error terms cannot be expected to be orthogonal to the X matrix. We will
discuss two of them, the cases of errors in variables and simultaneous equa-
tions bias, in Sections 7.2 and 7.3. The most general technique for handling
such situations is the method of instrumental variables, or IV for short. This
technique, proposed originally by Reiersøl (1941) and further developed by
Durbin (1954) and Sargan (1958), among many others, is very powerful and
very general. Numerous variants of it appear in many branches of economet-
rics. These include two-stage least squares (Section 7.5), three-stage least
squares (Chapter 18), and the generalized method of moments (Chapter 17).

The plan of the chapter is as follows. In the next section, we discuss the
very common problem of errors in variables, for which the method of instru-
mental variables was originally proposed as a solution. Then, in Section 7.3,
we provide an introduction to the linear simultaneous equations model and
show that OLS is biased when applied to one equation of such a model. In
Section 7.4, we introduce the method of instrumental variables in the context
of a linear regression equation and discuss many of its properties. In the fol-
lowing section, we discuss two-stage least squares, which is really just another
name for the IV estimator of the parameters of a linear regression model. In
Section 7.6, we show how the IV method may be used to estimate nonlinear
regression models. In Section 7.7, we generalize the Gauss-Newton regression
to the IV case and discuss how to test hypotheses about the coefficients of
regression models when they have been estimated by IV. In Section 7.8, we
discuss the issue of identification in regression models estimated by IV. Fi-
nally, in Section 7.9, we consider a class of tests called Durbin-Wu-Hausman
tests, which may be used to decide whether or not it is necessary to employ
instrumental variables.

7.2 Errors in Variables

Almost all economic variables are measured with error. This is true to a
greater or lesser extent of all macroeconomic time series and is especially true
of survey data and many other cross-section data sets. Unfortunately, the
statistical consequences of errors in explanatory variables are severe, since
explanatory variables that are measured with error are necessarily correlated
with the error terms. When this occurs, the problem is said to be one of
errors in variables. We will illustrate the problem of errors in variables with
a simple example.
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Suppose, for simplicity, that the DGP is

y = α0 + β0x+ u, u ∼ IID(0, σ2
0I), (7.04)

where x is a vector that is observed with error. We actually observe x∗, which
is related to x by

x∗ = x+ v, v ∼ IID(0, ω2I).

The vector v is a vector of measurement errors, which are assumed (possibly
unrealistically) to have the i.i.d. property and to be independent of x and u.
Substituting x∗ − v for x in (7.04), the DGP becomes

y = α0 + β0x
∗ − β0v + u.

Thus the equation we can actually estimate is

y = α+ βx∗ + u∗, (7.05)

where u∗ ≡ u− β0v. It is clear that u∗ is not independent of x∗. In fact

E
(
x∗>u∗

)
= E

(
(x+ v)>(u− β0v)

)
= −β0E

(
v>v

)
= −nβ0ω2,

where, as usual, n is the sample size. If we assume for concreteness that
β0 > 0, the error term u∗ is negatively correlated with the regressor x∗. This
negative correlation means that least squares estimates of β will be biased
and inconsistent, as will least squares estimates of α unless x∗ happens to
have mean zero. Note that the inconsistency of β̂ is a problem only if we
care about the parameter β. If, on the contrary, we were simply interested in
finding the mean of y conditional on x∗, estimating equation (7.05) by least
squares is precisely what we would want to do.

There are many ways to deal with the problem of errors in variables,
the method of instrumental variables being only one of them. In the above
example, it is clear that if we knew ω2, we could say something about the bias
of β̂ and hence derive a better estimate. This observation has led to various
alternative approaches to the errors in variables problem: See Frisch (1934),
Klepper and Leamer (1984), Hausman and Watson (1985), and Leamer (1987),
among others.

7.3 Simultaneous Equations

The reason most commonly cited in applied econometric work for explanatory
variables to be correlated with error terms is that the former are determined
endogenously, rather than being exogenous or predetermined. A variable that
is predetermined at time t is one that was determined, possibly endogenously,
at some earlier time period. The simplest example is a lagged dependent
variable. A detailed discussion of exogeneity and predeterminedness may be
found in Section 18.2. Models in which two or more endogenous variables are
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determined simultaneously are called simultaneous equations models. Indeed,
for many years, the linear simultaneous equations model was the centerpiece
of econometric theory, and the literature on how to estimate such models is
consequently vast. We will devote Chapter 18 to a discussion of this topic. In
this section, we will merely discuss a very simple example, a two-equation lin-
ear model of price and quantity determination in a competitive market. This
example illustrates many of the basic issues and concepts in the analysis of
simultaneous equations models. In particular, it makes it clear that there will
generally be correlation between error terms and endogenous right-hand side
variables. Moreover, the demand-supply model was responsible for much of
the early interest in methods for dealing with simultaneous equations models;
see Goldberger (1972).

The model we will discuss is

Qd
t = αPt +Zd

t β + udt (7.06)

Qs
t = γPt +Zs

t δ + ust , (7.07)

where Qd
t is the quantity demanded at observation t, Qs

t is the quantity sup-
plied, Pt is the price, Zd

t is a vector of exogenous and/or predetermined vari-
ables in the demand function, and Zs

t is a vector of exogenous and/or prede-
termined variables in the supply function. Price and quantity might well be
in logarithms rather than in levels, since a loglinear specification would often
be plausible for both demand and supply functions. If our data pertain to a
competitive market which is always in equilibrium (something that would not
be a plausible assumption in every case), we know that

Qd
t = Qs

t = Qt,

where Qt is the quantity actually sold. Thus the price Pt is assumed to be
determined endogenously by the equality of (7.06) and (7.07). It is evident
that price and quantity are determined simultaneously in this model.

We now want to write the structural form of this model. To do so we
must replace Qd

t and Qs
t by Qt and rewrite the demand and supply functions

(7.06) and (7.07) in terms of the observable variables Pt and Qt. There are
several different ways to do this, all equally valid. The demand function,
equation (7.06), can be rewritten in either of two forms:

Qt = αPt +Zd
t β + udt , or (7.08a)

Pt = α∗Qt +Zd
t β
∗ + ud∗t . (7.08b)

Similarly, the supply function, equation (7.07), can be rewritten in either of
two forms:

Qt = γPt +Zs
t δ + ust , or (7.09a)

Pt = γ∗Qt +Zs
t δ
∗ + us∗t . (7.09b)
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The starred quantities in the b equations are related to the unstarred ones in
the a equations in an obvious way. For example, the parameters and error
terms of (7.08b) are related to those of (7.08a) as follows:

α∗ = α−1; β∗ = −α−1β; ud∗t = −α−1udt .

We can combine either (7.08a) or (7.08b) with either (7.09a) or (7.09b) when
writing the entire model. There are thus four different ways that we could
write this system of equations, each of them just as valid as any of the others.
It is conventional to write simultaneous equations models so that each endo-
genous variable appears on the left-hand side of one and only one equation,
but there is nothing sacrosanct about this convention. Indeed, from the point
of view of economic theory, it is probably most natural to combine (7.08a)
with (7.09a), putting quantity on the left-hand side of both the demand and
supply equations.

We have just seen that normalization (i.e., determining which endogenous
variable should be given a coefficient of unity and put on the left-hand side of
each equation) is necessary whenever we deal with a system of simultaneous
equations. Because there are two or more endogenous variables, there is no
unique way to write the system. Thus, contrary to what some treatments of
the subject may seem to imply, there is no such thing as a single structural
form for a linear simultaneous equations model. There are as many structural
forms as there are ways in which the equation system can be normalized.

The structural form(s) of a simultaneous equations model are to be con-
trasted with the reduced forms, of which there are two varieties. The re-
stricted reduced form, or RRF, involves rewriting the model so that each
endogenous variable appears once and only once. To derive it in this case, we
begin by writing the structural form consisting of (7.08a) and (7.09a):

Qt − αPt = Zd
t β + udt

Qt − γPt = Zs
t δ + ust .

These two equations can be rewritten using matrix notation as[
1 −α
1 −γ

][
Qt

Pt

]
=

[
Zd

t β

Zs
t δ

]
+

[
udt
ust

]
.

Solving this system for Qt and Pt, we obtain the restricted reduced form:[
Qt

Pt

]
=

[
1 −α
1 −γ

]−1[
Zd

t β

Zs
t δ

]
+

[
1 −α
1 −γ

]−1[
udt
ust

]
,

which can be written more explicitly as

Qt =
1

α− γ
(
αZs

t δ − γZd
t β

)
+ v1t (7.10)

Pt =
1

α− γ
(
Zs

t δ −Zd
t β

)
+ v2t , (7.11)
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where the error terms v1t and v2t are linear combinations of the original error
terms udt and ust .

Observe that the equations of the RRF, (7.10) and (7.11), are nonlinear
in the parameters but linear in the variables Zd

t and Zs
t . In fact, they are

simply restricted versions of the unrestricted reduced form, or URF,

Qt = Ztπ1 + v1t (7.12)

Pt = Ztπ2 + v2t , (7.13)

where Zt is a vector consisting of all variables that appear in either Zd
t or Zs

t ,
and π1 and π2 are parameter vectors. The two equations of the URF can
evidently be estimated consistently by OLS, since only exogenous or prede-
termined variables appear on the right-hand side. The RRF would be harder
to estimate, however, since it involves nonlinear cross-equation restrictions.
In fact, estimating the RRF is equivalent to estimating the structural form
on which it is based, as we will see in Chapter 18.

If we were content simply to estimate the URF, we could stop at this
point, since OLS estimates of (7.12) and (7.13) will clearly be consistent.1

However, economists often want to estimate a structural form of a simultan-
eous equations model, either because the parameters of that structural form
are of interest or because imposing the cross-equation restrictions implicit in
the structural form may lead to substantially increased efficiency. Thus it is
of interest to ask what happens if we apply OLS to any one of the equations
of one of the structural forms. Consider equation (7.08a). The OLS estimates
of α and β are [

α̂

β̂

]
=

[
P>P P>Zd

Zd
>P Zd

>Zd

]−1 [
P>Q

Zd
>Q

]
,

where P and Q denote the vectors of observations on Pt and Qt, and Zd

denotes the matrix of observations on Zd
t . If we assume that the model is

correctly specified and replace Q by α0P +Zdβ0 + ud, we find that[
α̂

β̂

]
=

[
α0

β0

]
+

[
P>P P>Zd

Zd
>P Zd

>Zd

]−1 [
P>ud

Zd
>ud

]
. (7.14)

It is obvious that these estimates will be biased and inconsistent. They cannot
possibly be unbiased, since the endogenous variable Pt appears on the right-
hand side of the equation. They will be inconsistent because

plim
n→∞

(
n−1P>ud

)
6= 0,

1 It may seem that OLS estimation of the URF would be inefficient, because the
error terms of (7.12) and (7.13) will clearly be correlated. However, as we will
see in Chapter 9, this correlation cannot be exploited to yield more efficient
estimates, because the regressors in the two equations are the same.
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since the equilibrium price depends, in part, on the error term in the demand
equation. Hence the standard assumption that error terms and regressors are
independent is violated in this (and every) system of simultaneous equations.
Thus, if we attempt to take the plim of the right-hand side of (7.14), we
will find that the second term is not zero. It follows that α̂ and β̂ will be
inconsistent.

The results of this simple example are true in general. Since they are
determined simultaneously, all the endogenous variables in a simultaneous
equation system generally depend on the error terms in all the equations.
Thus, except perhaps in a few very special cases, the right-hand side endo-
genous variables in a structural equation from such a system will always be
correlated with the error terms. As a consequence, application of OLS to such
an equation will always yield biased and inconsistent estimates.

We have now seen two important situations in which explanatory vari-
ables will be correlated with the error terms of regression equations, and are
ready to take up the main topic of this chapter, namely, the method of in-
strumental variables. This method can be used whenever the error terms
are correlated with one or more explanatory variables, regardless of how that
correlation may have arisen. It is remarkably simple, general, and powerful.

7.4 Instrumental Variables: The Linear Case

The fundamental ingredient of any IV procedure is a matrix of instrumental
variables (or simply instruments, for short). We will call this matrix W and
specify that it is n× l. The columns of W are simply exogenous and/or pre-
determined variables that are known (or at least assumed) to be independent
of the error terms u. In the context of the simultaneous equations model, a
natural choice for W is the matrix of all the exogenous and predetermined
variables in the model. There must be at least as many instruments as there
are explanatory variables in the equation to be estimated. Thus, if the equa-
tion to be estimated is the linear regression model (7.01), with X having k
columns, we require that l ≥ k. This is an identification condition; see Section
7.8 for further discussion of conditions for identification in models estimated
by IV. Some of the explanatory variables may appear among the instruments.
Indeed, as we will see below, any column of X that is known to be exogenous
or predetermined should be included inW if we want to obtain asymptotically
efficient estimates.

The intuition behind IV procedures is the following. Least squares mini-
mizes the distance between y and S(X), which leads to inconsistent estimates
because u is correlated withX. The n--dimensional space in which y is a point
can be divided into two orthogonal subspaces, S(W ) and S⊥(W ). Instrumen-
tal variables minimizes only the portion of the distance between y and S(X)
that lies in S(W ). Provided that u is independent of W, as assumed, any
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correlation between u and X must lie in S⊥(W ), asymptotically. In large
samples, restricting the minimization to S(W ) therefore avoids the effects of
correlation between u and X.

More formally, when we apply OLS to the model (7.01), we minimize the
sum of squared residuals∥∥y −Xβ∥∥2 ≡ (y −Xβ)>(y −Xβ)

with respect to β. In contrast, when we apply IV to the same model, we
minimize the criterion function∥∥PW (y −Xβ)

∥∥2 ≡ (y −Xβ)>PW (y −Xβ), (7.15)

where PW is the matrix that projects orthogonally onto S(W ). The first-order
conditions that characterize a solution to this minimization problem are

X>PW (y −Xβ̃) = 0, (7.16)

where β̃ denotes the vector of IV estimates. Thus we see that the IV residuals
ũ must be orthogonal to the projection of the columns of X onto S(W ). This
contrasts with the situation for OLS, where the residuals are simply orthogonal
to S(X). Solving (7.16) for β̃, we find that

β̃ =
(
X>PWX

)−1
X>PWy. (7.17)

Here we have assumed that the matrix X>PWX has full rank, which is a
necessary condition for β̃ to be identified.

It is easy to show that the IV estimator β̃ is consistent if the data are
actually generated by the DGP (7.02) and certain assumptions are satisfied.
These assumptions are

plim
n→∞

(
n−1W>u

)
= lim

n→∞

(
n−1E(W>u)

)
= 0, (7.18a)

plim
n→∞

(
n−1W>W

)
= lim

n→∞

(
n−1E(W>W )

)
exists, is finite, (7.18b)

and is positive definite, and

plim
n→∞

(
n−1X>W

)
exists, is finite, and has full rank k. (7.18c)

The most critical assumption is (7.18a), which is unfortunately not fully ver-
ifiable, although it can be tested to some extent; see Section 7.9.

Substituting (7.02) into (7.17), we see that

β̃ =
(
X>PWX

)−1
X>PW (Xβ0 + u)

= β0 +
(
X>PWX

)−1
X>PWu.

(7.19)
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First, we observe that plim(n−1X>PWX) is equal to

plim
n→∞

(
n−1X>W

)
plim
n→∞

(
n−1W>W

)−1
plim
n→∞

(
n−1W>X

)
.

Thus it follows immediately from (7.18) that plim(n−1X>PWX) exists, is
finite, and is positive definite. Hence

plim
n→∞

(β̃) = β0 + plim
n→∞

(
n−1X>PWX

)−1
× plim

n→∞

(
n−1X>W

)
plim
n→∞

(
n−1W>W

)−1
plim
n→∞

(
n−1W>u

)
.

Assumptions (7.18) now imply that the second term here is zero, the critical
assumption being (7.18a). Thus we conclude that β̃ is consistent for β0.

Note that although the IV estimator is consistent, it is not unbiased. Be-
cause some columns ofX, and possibly also some columns ofW, are stochastic,
it is clear that

E
((
X>PWX

)−1
X>PWu

)
6= 0 (7.20)

even if we assume that E(W>u) = 0. We will see later that the expectation
in (7.20) may not even exist in some cases. When the expectations of IV
estimators do exist, they will generally be biased. We will have more to say
about this in the next section.

The IV estimator will be asymptotically normally distributed with a cer-
tain covariance matrix if we make the additional assumption that n−1/2W>u
obeys a central limit theorem. In the case of nonstochastic instruments W,
this assumption follows immediately from the assumption in (7.02) about the
distribution of u. From the right-hand expression in (7.19) we can derive that

n1/2(β̃ − β0) =
(
n−1X>PWX

)−1
n−1/2X>PWu. (7.21)

The factor n−1/2X>PWu can be broken up as

n−1/2X>PWu =
(
n−1X>W

)(
n−1W>W

)−1
n−1/2W>u, (7.22)

and, since the factors on the right-hand side of this equation other than
n−1/2W>u have by assumptions (7.18) well-defined probability limits, it fol-
lows that (7.22) is asymptotically normal with limiting covariance matrix

σ2
0 plim

n→∞

(
n−1X>PWX

)
.

Thus we conclude from (7.21) that

n1/2(β̃ − β0)
a∼ N

(
0, σ2

0 plim
n→∞

(
n−1X>PWX

)−1)
, (7.23)

where, as usual,
a∼ means “is asymptotically distributed as.”
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In practice, we are interested in the covariance matrix of β̃ − β0 rather
than that of n1/2(β̃ − β0), and we will not know σ0. We may estimate σ2 by

σ̃2 = 1−
n

(y −Xβ̃)>(y −Xβ̃).

It would of course be possible to divide by n− k rather than n here, but that
is not necessarily a good idea. Since the SSR is not the value of the objective
function for IV estimation (in contrast to the situation for least squares), its
expectation is not necessarily smaller than nσ2

0 and certainly is not equal to
(n−k)σ2

0 . Asymptotically, of course, it makes no difference whether we divide
by n or n − k. However we define σ̃, we will estimate the covariance matrix
of β̃ − β0 by

Ṽ (β̃) = σ̃2
(
X>PWX

)−1
. (7.24)

The IV estimator β̃ that we have been discussing is actually a generalized
IV estimator. It may be contrasted with the simple IV estimator that is
discussed in many elementary statistics and econometrics texts and that was
developed first. For the simple IV estimator, each explanatory variable has
associated with it a single instrument, which may be the variable itself if it is
assumed uncorrelated with u. Thus the matrix W has the same dimensions,
n × k, as the matrix X. In this special case, the generalized IV estimator
(7.17) simplifies substantially:

β̃ =
(
X>PWX

)−1
X>PWy

=
(
X>W (W>W )−1W>X

)−1
X>W (W>W )−1W>y

=
(
W>X

)−1
W>W

(
X>W

)−1
X>W

(
W>W

)−1
W>y

=
(
W>X

)−1
W>W

(
W>W

)−1
W>y

=
(
W>X

)−1
W>y.

(7.25)

The key result here is that(
X>W (W>W )−1W>X

)−1
=

(
W>X

)−1
W>W

(
X>W

)−1
,

which depends on the facts that the matrix W>X is square and has full
rank. The last line of (7.25) is the formula for the simple IV estimator that
appears in many textbooks. We will not discuss this estimator further in this
chapter but will encounter it again when we discuss the generalized method
of moments in Chapter 17.

The biggest problem with using IV procedures in practice is choosing the
matrix of instruments W. Even though every valid set of instruments will
yield consistent estimates, different choices will yield different estimates in
any finite sample. When using time-series data, it is natural to use lagged
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variables, including lagged values of the dependent variable, as instruments.
But it is not at all clear how many lags to use. When estimating an equation
from a simultaneous equations model, one natural set of instruments is the
set of all the exogenous and predetermined variables in the model. However,
this can be a very large number if the model has many equations and, for
reasons explained in the next section, one may not want to use such a large
number of instruments. Thus, in practice, there are usually many reasonable
ways to choose W.

There are two conflicting objectives in the choice of W. On the one hand,
we would like to obtain estimates that are as efficient as possible asymptot-
ically. On the other, we would like to obtain estimates that have as small
a finite-sample bias as possible. Unfortunately, these objectives turn out to
conflict with each other. We will discuss the issue of asymptotic efficiency
here and the issue of finite-sample properties in the next section.

Suppose that there are two possible choices of instrument matrix, W1

and W2, where W2 consists of W1 plus at least one more column, which
implies that S(W1) is a subspace of S(W2). The resulting IV estimators are

β̃1 =
(
X>P1X

)−1
X>P1y and

β̃2 =
(
X>P2X

)−1
X>P2y,

where P1 and P2 denote the matrices that project orthogonally onto the spans
of W1 and W2, respectively. The asymptotic covariance matrices of these two
estimators are as follows:

V ∞
(
n1/2(β̃i − β0)

)
= σ2

0 plim
n→∞

(
n−1X>PiX

)−1
(7.26)

for i = 1, 2. We will be able to conclude that β̃2 is at least as efficient as
β̃1 if the difference between their asymptotic covariance matrices is positive
semidefinite. That is indeed the case, as we now demonstrate.

Consider the difference

X>P2X −X>P1X = X>(P2 − P1)X. (7.27)

Since S(W1) is a subspace of S(W2), P1P2 = P2P1 = P1, and consequently
P2−P1 is an orthogonal projection. It follows that (7.27) is positive semidef-
inite. In Appendix A, we show that the difference between two symmetric,
positive definite matrices is positive semidefinite if and only if the difference
of their inverses reversed is positive semidefinite. Consequently,(

X>P1X
)−1 − (

X>P2X
)−1

is also positive semidefinite. Hence, from (7.26), the difference between the
asymptotic covariance matrices of β̃1 and β̃2 is positive semidefinite. Thus
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we conclude that β̃2 is asymptotically at least as efficient as β̃1. This makes
sense, since W2 explains X at least as well as W1 does.

There is a special case in which β̃2 and β̃1 are equally efficient asymptot-
ically and indeed tend to the same random vector as n→∞. This special case
arises whenW2 has exactly the same explanatory power forX, asymptotically,
as W1. This will happen if, for example, W1 consists of all the exogenous and
predetermined variables in a linear simultaneous equations model, because
the extra variables in W2 should have no additional explanatory power for X.
But this is a very special case. In every other case, β̃2 is asymptotically more
efficient than β̃1.

This result seems to suggest that we should always use as many instru-
ments as possible. That is true if n is very large, when asymptotic properties
are the only thing we care about. But it is often a bad thing to do with samples
of moderate size. The problem is that increasing the number of instruments
tends to make the finite-sample bias of IV estimators worse, a subject which
we will discuss in the next section.

7.5 Two-Stage Least Squares

What we have referred to as the IV estimator of β in the linear regression
model (7.01), β̃, is also widely known as the two-stage least squares, or 2SLS,
estimator. It was originally proposed by Theil (1953) and, independently,
Basmann (1957), in the context of the simultaneous equations model. The
name “two-stage least squares” emphasizes a particular method by which this
particular IV estimator may be computed, and this terminology is so widely
used in econometrics that some discussion is in order. However, the basic idea
behind IV estimation is much more general than the idea of 2SLS estimation.
As we will show in the next section, for example, IV generalizes naturally to
the case of nonlinear regression models, while 2SLS does not. Thus we prefer
to emphasize the IV rather than the 2SLS interpretation of the estimator β̃.

Two-stage least squares works as follows. In the first stage, all of the
current endogenous explanatory variables of a system of simultaneous equa-
tions are regressed on the matrix of instruments W. In the second stage, each
equation is estimated by OLS after all of the endogenous variables that appear
on the right-hand side have been replaced by the fitted values from the cor-
responding first-stage regressions. Thus, for each structural equation of the
system, the left-hand side endogenous variable is regressed on a set of regres-
sors that consists of the exogenous and predetermined variables that appear on
the right-hand side of the equation, plus the fitted values from the first-stage
regressions for the endogenous explanatory variables in that equation.

Let y denote one of the endogenous variables of the system, X the set of
explanatory variables, endogenous or exogenous, that appear in the equation
associated with y, and W the set of all the exogenous and predetermined
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variables in the entire system. Then the second-stage regression for y can
simply be written as

y = PWXβ + residuals. (7.28)

The OLS estimator of β from this regression is just the IV estimator (7.17):

β̃ =
(
X>PWX

)−1
X>PWy.

Notice, however, that the OLS covariance matrix estimate from (7.28) is not
the estimate we want. This estimate will be

‖y − PWXβ̃‖
n− k

2(
X>PWX

)−1
, (7.29)

while the estimate (7.24) that was derived earlier can be written as

‖y −Xβ̃‖
n

2(
X>PWX

)−1
. (7.30)

These two estimates are not the same. They would be the same only if
IV and OLS were identical, that is, if X = PWX. In addition, n would
have to be replaced by n − k in (7.30). The problem is that the second-
stage OLS regression provides an incorrect estimate of σ2; it uses y−PWXβ̃
rather than y − Xβ̃ as the vector of residuals. The second-stage residuals
y − PWXβ̃ may be either too large or too small, asymptotically. Whether
they are too large or too small will depend on σ2, on the variance of the
elements of MWXβ = Xβ−PWXβ, and on the correlation between MWXβ
and u. If one actually performs 2SLS in two stages, rather than relying on
a preprogrammed 2SLS or IV procedure, one must be careful to use (7.30)
rather than (7.29) for the estimated covariance matrix.2 Programs for 2SLS
estimation normally replace PWXβ̃ by Xβ̃ before calculating the explained
sum of squares, the sum of squared residuals, the R2, and other statistics that
depend on these quantities.

There has been an enormous amount of work on the finite-sample prop-
erties of 2SLS, that is, the IV estimator β̃. A few of the many papers in
this area are Anderson (1982), Anderson and Sawa (1979), Mariano (1982),
Phillips (1983), and Taylor (1983). Unfortunately, many of the results of this
literature are very model-specific. One important result (Kinal, 1980) is that
the mth moment of the 2SLS estimator exists if and only if

m < l − k + 1.

2 2SLS is a special case of a regression with what Pagan (1984b, 1986) calls “gen-
erated regressors.” Even when such regressions provide consistent parameter
estimates, they usually provide inconsistent estimates of the covariance ma-
trix of the parameter estimates. The inconsistency of (7.29) provides a simple
example of this phenomenon.
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← IV0

← IV3

OLS→

IV6−→

←True value

Figure 7.1 Distributions of OLS and IV estimates, n = 25

The right-hand side here is the difference between the number of instruments
and the number of regressors, plus 1. It is also the degree of overidentification
of the equation plus 1; see Section 7.8. According to this result, the 2SLS
estimator will not even have a mean if l = k (in which case 2SLS reduces to
the simple IV estimator discussed in the previous section). This suggests that
its finite-sample properties will be rather poor in this case, and indeed they
often are; see Nelson and Startz (1990a, 1990b). Since we would generally
like estimators to have at least a mean and a variance, the moral seems to be
that, if possible, l should always exceed k by at least 2.

In fact, the asymptotic efficiency result of the previous section suggests
that l should be as large as possible. However, finite-sample theory and Monte
Carlo results suggest that this is not always a good idea. The fundamental
problem is that as more and more columns are added to W, the latter does a
better and better job of explaining those columns of X that do not actually
lie in S(W ), and the more PWX comes to resemble X. This is an inevitable
consequence of the tendency of OLS to fit too well. As a result, the IV
estimator tends to become more and more biased as l increases, eventually
approaching the OLS estimator as l approaches n.

Figure 7.1 provides an illustration of this. It shows the distribution func-
tions of the OLS estimator and three different IV estimators in a simple case.
The three IV estimators, which we will refer to as IV0, IV3, and IV6, have l−k
equal to 0, 3, and 6, respectively. The quantity being estimated is the slope
parameter from an equation with one endogenous regressor and a constant
term; its true value is unity. The sample size is only 25 so as to make finite-
sample biases very apparent. These distribution functions were estimated by
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Figure 7.2 Distributions of IV6 estimates for several sample sizes

means of a Monte Carlo experiment (see Chapter 21), the details of which are
unimportant since the figure is purely illustrative.

The left-most curve in Figure 7.1 is the distribution function for OLS,
which is severely biased downward in this case. The right-most curve is the
one for IV0, which has approximately the right median but also has much more
dispersion (we cannot say variance since it does not have a second moment)
and much thicker tails than the OLS estimator. Indeed, among the 50,000
replications we performed, we obtained several IV0 estimates larger than 1000
in absolute value! The distribution functions for IV3 and IV6 mostly lie be-
tween those for OLS and IV0 and have much thinner tails than the latter, with
IV6 being closer to OLS than IV3, as the above argument predicts. Both these
estimators are quite severely biased (remember that n = 25 here), although
not nearly as much so as OLS, and both evidently have more variance than
OLS, as evidenced by the less steep slopes of their distribution functions.

Which estimator is best depends on what criterion is used to choose
among them. If one looks only at the median, IV0 is clearly the best. On
the other hand, if one uses mean squared error as a criterion, IV0 is clearly
the worst, since because it has no first or higher moments, its mean squared
error is infinite. Based on most criteria, the choice would be between IV3 and
IV6. For a large enough n, the latter would of course be preferable, since its
greater bias will vanish as n increases, while its smaller variance will persist.
The effect of increasing sample size is shown in Figure 7.2, which shows the
distribution of IV6 for n = 25, n = 100, and n = 500. As n increases, both the
variance and the bias of the estimator decrease, as expected, although even
for n = 500 the bias is noticeable.
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It should be stressed that Figures 7.1 and 7.2 apply only to a particular
example, in which the instruments happen to be quite good ones. In other
cases, and especially when the instruments have little ability to explain the
endogenous regressors, IV estimators may be extremely inefficient, and their
finite-sample distributions may be very different from their asymptotic ones.

7.6 Instrumental Variables: The Nonlinear Case

It is easy to generalize the linear IV procedure discussed above to the case of
nonlinear regression models. Suppose the model is

yt = xt(β) + ut, ut ∼ IID(0, σ2), (7.31)

where the regression function xt(β) implicitly depends on current endogenous
as well as exogenous and predetermined variables, and β is a k--vector as
usual. Assuming that one has a matrix of valid instruments W, with l ≥ k as
before, the objective is to minimize only the portion of the distance between y
and x(β) that lies in S(W ). This can be done by minimizing the criterion
function ∥∥PW

(
y − x(β)

)∥∥2 =
(
y − x(β)

)>PW

(
y − x(β)

)
. (7.32)

This criterion function is the nonlinear equivalent of (7.15). The first-order
conditions that characterize the IV estimates β̃ are

X>(β̃)PW

(
y − x(β̃)

)
= 0, (7.33)

where, as usual, the n× k matrix X(β) has typical element

Xti(β) =
∂xt(β)

∂βi
.

Conditions (7.33) are evidently the nonlinear analogs of the first-order con-
ditions (7.16) for the linear case. They say that the residuals y − x(β̃) must
be orthogonal to the matrix of derivatives X(β̃), after the latter have been
projected onto S(W ). As in the case of NLS, we cannot hope to solve for β̃
analytically, although this may be possible in some special cases.

It is reasonably straightforward to prove, under suitable regularity con-
ditions, that the nonlinear IV estimates β̃ are consistent and asymptotically
normal. The principal regularity conditions that are needed are those required
for NLS to be consistent and asymptotically normal (see Sections 5.3 and 5.4),
with the assumption that the error terms are independent of the regression
function and its derivatives being dropped and replaced by modified versions
of assumptions (7.18a), (7.18b), and (7.18c). In the last of these, the matrix
X0 ≡X(β0) replaces the matrix X, where β0 as usual is the value of β under
the DGP, which is assumed to be a special case of the model being estimated.
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The ultimate result is

n1/2(β̃ − β0)
a∼ N

(
0, σ2

0 plim
n→∞

(
n−1X0

>PWX0

)−1)
, (7.34)

which closely resembles (7.23) for the linear case.

The nonlinear IV estimator based on minimizing the criterion function
(7.32) was proposed by Amemiya (1974), who very misleadingly called it the
nonlinear two-stage least squares estimator, or NL2SLS. In fact, it is not com-
puted in two stages at all. Attempting to compute an estimator analogous to
linear 2SLS would in general result in an inconsistent estimator very different
from nonlinear IV.

It is illuminating to see why this is so. We must make explicit the de-
pendence of x(β) on explanatory variables. Thus the model (7.31) may be
rewritten as

y = x(Z,β) + u, u ∼ IID(0, σ2In),

where x(Z,β) is a vector with typical element xt(Zt,β), Z being a matrix of
observations on explanatory variables, with tth row Zt, some columns of which
may be correlated with u. The Z matrix is not necessarily n × k, because
there may be more or fewer parameters than explanatory variables. A 2SLS
procedure would regress those columns of Z that are potentially correlated
with u on the matrix of instruments W so as to obtain PWZ. It would then
minimize the objective function(

y − x(PWZ,β)
)>(y − x(PWZ,β)

)
. (7.35)

This procedure would yield consistent estimates if the regression functions
xt(Zt,β) were linear in all the endogenous elements of Zt. But if the re-
gression functions were nonlinear in any of the endogenous elements of Zt,
minimizing (7.35) would not yield consistent estimates, because even though
PWZ would be asymptotically orthogonal to u, X(Z,β)PW would not be.

As a very simple example, suppose that the regression function xt(Zt,β)
were βz2t . Thus there would be just one independent variable, which is cor-
related with ut, and one parameter. The theory for linear regressions is ap-
plicable to this example, since the regression function is linear with respect
to the parameter β. What is needed to obtain a consistent estimate of β is
to minimize ‖PW (y − βz2)‖2 with respect to β, where z2 means the vector
with typical element z2t . In contrast, if one first projected z onto W in a
2SLS procedure, one would be minimizing ‖y − β(PWz)2‖2, where (PWz)2

means the vector with typical element (PWz)2t . The latter minimization is
evidently not restricted to the subspace S(W ), and so it will not in general
yield consistent estimates of β.

In many cases, the biggest problem with nonlinear IV procedures is how
to choose W. With a linear model, it is relatively easy to do so. If the equa-
tion to be estimated comes from a system of linear simultaneous equations,
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we know from the reduced form that all the endogenous variables depend lin-
early on the exogenous and predetermined ones. Thus one natural thing to
do is to make W consist of all the exogenous and predetermined variables
in the model, unless there are too many of them. When a model is nonlin-
ear in the endogenous variables, this approach no longer works. There is no
unrestricted reduced form comparable to the one for linear models. The en-
dogenous variables may depend on the exogenous and predetermined ones in
very nonlinear ways. This suggests using powers and even cross-products of
the latter as instruments. But it is not obvious how many powers or cross-
products to use, and the problem of having too many instruments is likely to
be severe, even when the number of exogenous and predetermined variables is
small. For more on this, see Amemiya (1974), Kelejian (1971), and Bowden
and Turkington (1984, Chapter 5).

7.7 Hypothesis Tests Based on the GNR

As we saw in Chapter 6, every nonlinear regression model estimated by least
squares has associated with it a version of the Gauss-Newton regression. So
does every nonlinear regression model estimated by instrumental variables.
For the latter, the general form of the GNR is

y − x(β∗) = PWX(β∗)b + residuals, (7.36)

where β∗ may be any specified value of β. Thus the only difference between
this GNR and the original one is that the regressors are multiplied by PW .
This variant of the GNR has almost all the same properties as the original
GNR studied in Chapter 6. Like the latter, it may be used for a variety of
purposes depending upon where it is evaluated.

If the GNR (7.36) is evaluated at the IV estimates β̃, the OLS estimate b̃
will be identically zero. As usual, this can provide a convenient way to check
the accuracy of the nonlinear optimization routine employed. Moreover, the
OLS covariance matrix estimate from the artificial regression will provide a
valid estimate of the covariance matrix of β̃. Because PWX(β̃) can have no
explanatory power for y−x(β̃), the sum of squared residuals must simply be
‖y − x(β̃)‖2, and the OLS covariance matrix estimate will thus be

‖y − x(β̃)‖
n− k

2(
X>(β̃)PWX(β̃)

)−1
. (7.37)

This expression is the nonlinear analog of expression (7.30), except that n−k
rather than n appears in the denominator of the estimate of σ2. It clearly
provides a valid way to estimate the finite-sample analog of the asymptotic
covariance matrix which appears in (7.34). There is some doubt about the
appropriateness of the degrees-of-freedom adjustment, as we remarked prior
to (7.24) above, but expression (7.37) is otherwise just what we want to use
to estimate the covariance matrix of β̃.
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The GNR (7.36) may be used for other purposes, of course. If it is
evaluated at consistent but inefficient estimates, it may be used to calculate
one-step efficient estimates that are asymptotically equivalent to β̃; see Sec-
tion 6.6. It may also be used as part of a numerical optimization procedure
to minimize the criterion function (7.32); see Section 6.8. In both cases, there
is essentially no difference between results for the NLS and IV versions of the
GNR. The most important application of Gauss-Newton regressions, however,
is probably for calculating test statistics based on the Lagrange multiplier and
C(α) principles, that is, for testing restrictions on β without requiring esti-
mation of the unrestricted model. Since the IV case is slightly different from
the NLS case, this topic merits some discussion.

Suppose that β̌ denotes a vector of IV estimates subject to a set of r
possibly nonlinear restrictions. To simplify some of the exposition, we assume
that the model is parametrized so that x(β) ≡ x(β1,β2), where β1 is (k−r)×1
and β2 is r× 1, and that the restrictions are β2 = 0. However, since the way
we write the restrictions is purely a matter of parametrization, the results
would be the same if we allowed for general nonlinear restrictions of the form
r(β) = 0.

When we evaluate the GNR (7.36) at the restricted estimates β̌, it be-
comes

y − x̌ = PWX̌b + residuals, (7.38)

where x̌ ≡ x(β̌) and X̌ ≡ X(β̌). This artificial regression generates test
statistics in exactly the same way as the ordinary GNR did for the case of
nonlinear least squares. The explained sum of squares from (7.38) is

(y − x̌)>PWX̌
(
X̌>PWX̌

)−1
X̌>PW (y − x̌). (7.39)

When this explained sum of squares is divided by any consistent estimate of
σ2, the result is asymptotically distributed under the null hypothesis as χ2(r).
One valid test statistic can be obtained by calculating n times the uncentered
R2 from the GNR (7.38), and others will be discussed below. Note that this
is the OLS R2, not the R2 that an IV procedure would print if one regressed
y − x̌ on X̌ using W as a matrix of instruments.

To see why test statistics based on the GNR are valid, it is convenient to
rewrite (7.38) making use of the distinction between β1 and β2:

y − x̌ = PWX̌1b1 + PWX̌2b2 + residuals, (7.40)

where X̌i consists of those columns of X̌ that correspond to βi for i = 1, 2.
Since X̌1 can have no explanatory power for y−x̌ by the first-order conditions
for the restricted estimates, the FWL Theorem implies that equation (7.40)
must have the same explained sum of squares as

M̌1(y − x̌) = M̌1PWX̌2b2 + residuals,
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where
M̌1 ≡ I− PWX̌1

(
X̌1
>PWX̌1

)−1
X̌1
>PW

is the matrix that projects orthogonally onto S⊥(PWX̌1). Thus we see that
the explained sum of squares (7.39) can be rewritten as

(y − x̌)>M̌1PWX̌2

(
X̌2
>PWM̌1PWX̌2

)−1
X̌2
>PWM̌1(y − x̌). (7.41)

We will not prove that expression (7.41), when divided by anything that
estimates σ2 consistently, is asymptotically distributed as χ2(r). The proof
closely follows the proof for the nonlinear least squares case that was sketched
in Section 6.4. The result evidently follows immediately if we can show that
the r--vector

n−1/2X̌2
>PWM̌1(y − x̌)

is asymptotically normally distributed with covariance matrix

σ2
0 plim

n→∞

(
n−1X̌2

>PWM̌1PWX̌2

)
.

Readers may find it a good exercise to prove this result. For a more detailed
discussion, see Engle (1982a).

The tests just described are based on the LM principle. It is of course
also valid to use tests based on the C(α) principle discussed in Section 6.7.
The test regressions would look like (7.40), except that the regressand and
regressors would be evaluated at estimates β́ that are consistent under the
null hypothesis but for which the first-order conditions are not satisfied:

(y − x́)>PWX́1 6= 0.

As a result, the regressand of the GNR would no longer be orthogonal to
the regressors that correspond to β1, and tests based on the explained sum
of squares would not be valid. But any test based on the reduction in the
SSR brought about by adding the regressors that correspond to β2, such as
a pseudo-F test, would still be valid. The easiest approach is simply to run
the GNR twice, once with and once without the regressors that correspond
to β2, and then to compute an F test in the usual way.

This type of test may be particularly useful when the matrix of instru-
ments that would have to be used to estimate the alternative hypothesis has
more columns than the one actually used to estimate the null. This can eas-
ily happen if the regression function for the alternative model depends on
one or more exogenous or predetermined variables that do not appear in the
instrument matrix for the null model. To compute a test based on the LM
principle, one would have to go back and estimate the null model again, using
the same matrix of instruments used to estimate the alternative. This step is
unnecessary if one uses a test based on the C(α) principle. One still uses the
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larger instrument matrix to construct the regressors of the GNR, of course,
and as a result the regressand will not be orthogonal to the regressors which
correspond to β1, but that does not affect the validity of the test statistic.

All of the above discussion assumes that the GNR (7.38) is run by OLS.
In practice, however, it might seem easier to regress y − x̌ on X̌ by an IV
procedure, using W as a matrix of instruments. Although this would avoid
the initial step of regressing the columns of X̌ on W, it is not a very good
idea; one could not use the explained sum of squares reported by the package
to calculate test statistics with more than just one degree of freedom, since it
would not actually be the explained sum of squares from regression (7.38) (see
Section 7.5). For the same reason, one cannot construct pseudo-F tests using
the sums of squared residuals obtained from IV estimation of a restricted and
an unrestricted model.

We have seen that if the Gauss-Newton regression is run using an OLS
package, it can be used to test restrictions on β in precisely the same way
as in the context of nonlinear least squares. However, using other methods
to do so can be somewhat different. The reason for this is that σ2 has to be
estimated and, as we saw in Section 7.5, it can be tricky to estimate σ2 when
using IV. In the case of the GNR it is clearly valid to estimate σ2 by

1−
n

(y − x̌)>(y − x̌),

where n might be replaced by (n − k + r). This estimate of σ2 is based on
the restricted estimates. It is also valid to use n−1 or (n − k)−1 times the
sum of squared residuals from the GNR (7.40) itself, despite the fact that the
regressors have been multiplied by PW , because under the null hypothesis the
GNR should have no explanatory power asymptotically. Hence whether we
use the total or residual sum of squares makes no difference asymptotically
if we simply wish to test the null hypothesis that β2 = 0. This implies that
an ordinary F test for b2 = 0 based on OLS estimation of (7.40) would be
asymptotically valid.

In the case of linear and nonlinear regression models estimated by least
squares, it is possible to test hypotheses about β by using exact or asymptotic
F tests of the form

(RSSR−USSR)/r

USSR/(n− k)

a∼ F (r, n− k), (7.42)

where RSSR and USSR denote the restricted and unrestricted sums of squared
residuals. Tests of this type are also available for models estimated by IV,
but they are not quite the same as (7.42) unless, as above, RSSR and USSR
are obtained from a GNR. We now discuss these tests in some detail.

For simplicity, we begin by considering the linear case. Suppose the
restricted and unrestricted models are

y = X1β1 + u, u ∼ IID(0, σ2I), and (7.43)

y = X1β1 +X2β2 + u, u ∼ IID(0, σ2I), (7.44)
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and that these are estimated by IV using the instrument matrix W. Now
suppose that the estimates are actually obtained by two-stage least squares.
It is easy to see that the sum of squared residuals from the second-stage
regression for (7.43), in which X1 is replaced by PWX1, will be

RSSR∗ ≡ y>M1y, (7.45)

where M1 denotes the matrix that projects orthogonally onto S⊥(PWX1).
Similarly, it can be shown (doing so is a good exercise) that the sum of squared
residuals from the second-stage regression for (7.44) will be

USSR∗ ≡ y>M1y − y>M1PWX2

(
X2
>PWM1PWX2

)−1
X2
>PWM1y. (7.46)

The difference between (7.45) and (7.46) is

y>M1PWX2

(
X2
>PWM1PWX2

)−1
X2
>PWM1y, (7.47)

which bears a striking and by no means coincidental resemblance to expression
(7.41). Under the null hypothesis (7.43), y is equal toX1β1+u. Since PWM1

annihilates X1, (7.47) reduces to

u>M1PWX2

(
X2
>PWM1PWX2

)−1
X2
>PWM1u

under the null. It should be easy to see that, under reasonable assumptions,
this quantity, divided by anything which estimates σ2 consistently, will be
asymptotically distributed as χ2(r). The needed assumptions are essentially
(7.18a)–(7.18c), plus assumptions sufficient for a central limit theorem to ap-
ply to n−1/2W>u.

The problem, then, is to estimate σ2. Notice that USSR∗/(n − k) does
not estimate σ2 consistently, for the reasons discussed in Section 7.5. As we
saw there, the residuals from the second-stage regression may be either too
large or too small. Thus estimates of σ2 must be based on the set of residuals
y−Xβ̃ rather than the set y−PWXβ̃. One valid estimate is USSR/(n− k),
where

USSR ≡
∥∥y −X1β̃1 −X2β̃2

∥∥2.
The analog of (7.42) would then be

(RSSR∗ −USSR∗)/r

USSR/(n− k)

a∼ F (r, n− k). (7.48)

Notice that the numerator and denominator of this test statistic are based on
different sets of residuals. The numerator is 1/r times the difference between
the sums of squared residuals from the second-stage regressions, while the
denominator is 1/(n − k) times the sum of squared residuals that would be
printed by a program for IV estimation.
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Unfortunately, very few regression packages make it easy to obtain both
the starred and unstarred variants of the sum of squared residuals. This means
that calculating a test statistic like (7.48) is frequently harder than it should
be. If one uses a procedure for IV (or 2SLS) estimation, the package will
normally print only the unstarred variant of the sum of squared residuals. To
obtain the starred variant one then has to go back and perform the second-
stage regression by OLS. Recall that one must use RSSR∗ − USSR∗ in the
numerator of the test statistic rather than RSSR − USSR, since only the
former is equal to (7.41). For more detailed discussions, see Startz (1983) and
Wooldridge (1990c).

We now turn to the nonlinear case. Whether or not the model is linear,
one can always use tests based on the value of the criterion function (7.15).
For nonlinear models, it is natural to base a test on the difference∥∥PW

(
y − x(β̌)

)∥∥2 − ∥∥PW

(
y − x(β̃)

)∥∥2. (7.49)

This difference turns out to be asymptotically the same as the explained sum
of squares from the GNR (7.38), expression (7.39). Thus (7.49) divided by
anything that estimates σ2 consistently will be asymptotically distributed as
χ2(r) under the null hypothesis that β2 = 0. This important result will be
proved in a moment. Notice that the difference between any two values of the
criterion function (7.15) is not asymptotically the same as the explained sum
of squares from a Gauss-Newton regression. The result is true in this special
case because the two values of the criterion function correspond to restricted
and unrestricted values of β, and the GNR corresponding to the unrestricted
regression is evaluated at the restricted values.

We will now prove this result. From (7.40) and the fact that PW is a
projection matrix, we see that the explained sum of squares and the parameter
estimates b̌ from the GNR (7.38) are identical to those from the regression

PW (y − x̌) = PWX̌1b1 + PWX̌2b2 + residuals. (7.50)

Suppose now that in the above regression the restriction b2 = 0 is imposed.
The result is

PW (y − x̌) = PWX̌1b1 + residuals. (7.51)

The difference between the explained sums of squares from regressions (7.50)
and (7.51) is the numerator of all the test statistics for β2 = 0 that are
based on the GNR (7.38). This difference is equal to the absolute value of
the difference between the two sums of squared residuals. The ESS from
regression (7.51) is zero, by the first-order conditions for the minimization of
the restricted sum-of-squares function. Thus the SSR is just the total sum of
squares, namely, ∥∥PW

(
y − x(β̌)

)∥∥2,
which is the first term of expression (7.49).
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We must now show that the SSR from regression (7.50) is asymptotically
equal to minus the second term in expression (7.49). This SSR is∥∥PW

(
y − x(β̌)− X̌b̌

)∥∥2,
where b̌ is the vector of parameter estimates from OLS estimation of (7.50).
Recall from the results of Section 6.6 on one-step estimation that (β̃ − β̌) is
asymptotically equal to the estimate b̌ from the GNR (7.38). Thus

PW

(
y − x(β̌)− X̌b̌

) a
= PWy − PWx(β̌)− PWX̌(β̃ − β̌). (7.52)

But a first-order Taylor expansion of x(β̃) about β = β̌ gives

x(β̃) ∼= x(β̌) +X(β̌)(β̃ − β̌).

Subtracting the right-hand side of this expression from y and multiplying
by PW yields the right-hand side of (7.52). Thus we see that the SSR from
regression (7.50) is asymptotically equal to∥∥PW

(
y − x(β̃)

)∥∥2,
which is the second term of (7.49). We have therefore proved that the differ-
ence between the restricted and unrestricted values of the criterion function,
expression (7.49), is asymptotically equivalent to the explained sum of squares
from the GNR (7.38). Since the latter can be used to construct a valid test
statistic, so can the former.

This result is important. It tells us that we can always construct a test
of a hypothesis about β by taking the difference between the restricted and
unrestricted values of the criterion function for IV estimation and dividing
it by anything that estimates σ2 consistently. Moreover, such a test will be
asymptotically equivalent to taking the explained sum of squares from the
GNR evaluated at β̌ and treating it in the same way. Either of these tests can
be turned into an asymptotic F test by dividing numerator and denominator
by their respective degrees of freedom, r and n− k. Whether this is actually
a good thing to do in finite samples is unclear, however.

7.8 Identification and Overidentifying Restrictions

Identification is a somewhat more complicated matter in models estimated by
IV than in models estimated by least squares, because the choice of instru-
ments affects whether the model is identified or not. A model that would not
be identified if it were estimated by least squares will also not be identified if
it is estimated by IV. However, a model that would be identified if it were es-
timated by least squares may not be identified if it is estimated by IV using a
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particular matrix of instruments. This will inevitably happen if there are fewer
instruments than parameters. It may happen in other circumstances as well.

The conditions for a model estimated by IV to be identified by a certain
data set are very similar to the ones previously discussed for NLS estimation.
For the sake of generality, suppose that we are dealing with the nonlinear
model (7.31). The criterion function to be minimized is then expression (7.32).
As we saw in Chapters 2 and 5, there are at least three concepts of identifi-
cation that may be of interest. For a model to be locally identified at a local
minimum β̃ of the criterion function, the matrix of second derivatives of the
latter must be positive definite in the neighborhood of β̃. For a model to be
globally identified, the local minimum β̃ must be the unique global minimum
of the criterion function. For a linear model, local identification implies global
identification, but for nonlinear models this is not the case. The third concept
of identification is asymptotic identification. For a model to be asymptotically
identified in the neighborhood of β0,

plim
n→∞

(
n−1X>(β0)PWX(β0)

)
must exist and be a positive definite matrix when the probability limit is cal-
culated under any DGP characterized by the parameter vector β0. None of
these conditions differs in any substantial way from the corresponding condi-
tions for regression models estimated by NLS. The only differences follow in
an obvious way from the presence of PW in the criterion function.

The issues raised for identification by the use of instruments are the
same whether the model is linear or nonlinear. Since linear models are easier
to deal with, we will assume for the remainder of this section that the model
is linear. Thus we will take the model to be (7.01). It may be estimated
consistently either by minimizing the criterion function (7.15) or by a two-
stage least squares procedure, provided that the matrix of instruments W is
chosen appropriately. These two procedures will yield identical estimates β̃.

It should be obvious that the model (7.01) will be neither locally nor
globally identified if the matrix X>PWX is not positive definite. A necessary
condition for this is that ρ(W ) ≥ k. Normally ρ(W ) will equal l, the number
of instruments, and we will assume that this is the case. Thus the necessary
condition becomes that there be at least as many instruments as there are
regressors. This is still not a sufficient condition, however. If any linear
combination of the columns of X happened to lie in S⊥(W ), PWX would
have rank less than k and X>PWX would then be singular, and so this case
must be ruled out. When X>PWX is nonsingular, the model (7.01) will be
locally identified and, because it is linear, globally identified as well. It is
often useful to distinguish between two types of local identification. If there
are just as many instruments as regressors, and the model is identified, it is
said to be just identified or exactly identified, because dropping any column
of W would cause it to be unidentified. If on the contrary there are more



234 Instrumental Variables

instruments than regressors, so that the model would still be identified if one
(or perhaps more than one) column of W were dropped, the model is said to
be overidentified.

Linear models that are exactly identified have several interesting proper-
ties. We have already seen that, for an exactly identified model, the general-
ized IV estimator (7.17) is equal to the simple IV estimator (7.25). We have
also seen that for such models the IV estimator will have no moments of order
greater than or equal to 1. A third interesting property is that the minimized
value of the criterion function (7.15) is exactly zero. As we will see shortly,
this property is a convenient one for certain purposes.

The result that the minimized value of the criterion function (7.15) is
zero when l = k is important and illuminating. This value is

(y −Xβ̃)>PW (y −Xβ̃) = (y −Xβ̃)>PWy.

The equality here follows from the first-order conditions for β̃, which require
that (y −Xβ̃)>PWX = 0. Using expression (7.17), the minimized value of
the criterion function can then be rewritten as

y>PWy − y>PWX
(
X>PWX

)−1
X>PWy = y>

(
PW − PPWX

)
y. (7.53)

The matrix in the middle of the right-hand expression is in fact an orthogonal
projection, since S(PWX) ⊆ S(W ). Further, it is easy to see that ifW>X is a
square nonsingular matrix, S(PWX) = S(W ), and so the minimized criterion
function is zero. The intuition behind this result is very simple. We have seen
that IV estimation minimizes only the portion of the distance between y and
S(X) that lies in S(W ). Since S(W ) is a k--dimensional space in this case and
we are minimizing with respect to k parameters, the minimization procedure
is able to set this distance to zero, thus entirely eliminating any discrepancy
between PWy and S(PWX).

When there are more instruments than regressors (again we assume that
ρ(W ) is equal to l), the model is said to be overidentified, because there are
more instruments than are absolutely needed to ensure identification. The
terminology comes from the literature on simultaneous equations models, in
which identification has been studied in great detail; see Chapter 18. We
saw in Section 7.5 that it is generally desirable for a model to be somewhat
overidentified in order to ensure good finite-sample properties for the IV esti-
mator. A second desirable feature of overidentified models is that the validity
of the choice of instruments may be tested, at least to a limited extent. This
is remarkably easy to do and can be very informative in some cases.

When we specify a model like (7.01), we are assuming that y depends
linearly on X and does not depend on any other observable variables. In
particular, we are assuming that it does not depend on any columns ofW that
do not lie in S(X). Otherwise, the assumption that the error terms u in (7.01)
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are independent of the instruments would be false. In some cases, perhaps in
many cases, we may not be entirely sure which columns of W can legitimately
be excluded from X. Nevertheless, to identify the model at all we have to
exclude as many columns of W as there are endogenous variables in X. If the
model is overidentified, we have excluded more columns of W than we needed
to. These extra restrictions, which are called overidentifying restrictions, may
be tested. This can be done in several different ways. Basmann (1960) is
a classic paper, and other references include Byron (1974), Wegge (1978),
Hwang (1980), and Fisher (1981). Our approach is simpler than the ones
taken in these papers, however.

The easiest way to think about tests of overidentifying restrictions is as
special cases of the hypothesis tests discussed in the preceding section. The
null hypothesis is the model (7.01). The alternative is the model

y = Xβ +W ∗γ + u, u ∼ IID(0, σ2I), (7.54)

where W ∗ is a matrix consisting of l − k columns of W that do not lie in
S(PWX). Thus the n× l matrix [PWX W ∗] will have full rank l. Further,
S(PWX,W

∗) = S(W ). As we will see in a moment, it is not actually necessary
to construct W ∗ in order to compute the test statistic.

The model (7.54) is constructed so that it is just identified. There are
precisely as many regressors as there are instruments. If (7.01) is specified cor-
rectly, W ∗ should have no ability to explain any variation in y not explained
by X in an IV regression using W as the matrix of instruments; γ should
therefore be equal to zero. If this is not the case, that is, if any of the columns
of W ∗ are correlated with u, γ will be nonzero. This could happen either if
some columns of W ∗ should have been included in X and were not or if some
columns of W ∗ were correlated with u and hence were not valid to use as
instruments. Thus by testing the hypothesis that γ = 0 we can test the joint
null hypothesis that (7.01) is correctly specified and that W is a valid matrix
of instruments. Unfortunately, it is not possible to test the latter hypothesis
by itself.

Once the problem has been formulated in this way, it should be clear
that we could test the hypothesis that γ = 0 simply by using any of the tests
discussed in Section 7.7. One would begin by obtaining IV estimates of the
null hypothesis (7.01) and the alternative (7.54). An asymptotic F test could
then be computed as

(RSSR∗ −USSR∗)/(l − k)

USSR/(n− l)
a∼ F (l − k, n− l), (7.55)

where RSSR∗ and USSR∗ are the sums of squares of the second-stage OLS
residuals from 2SLS estimation of (7.01) and (7.54), respectively, and USSR
is the sum of squares of the IV residuals from estimation of the latter.
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An even simpler procedure is available, however. We have seen that the
value of the criterion function (7.15) for the unrestricted model (7.54) must
be equal to zero at the optimum. Hence the difference between the restricted
and unrestricted values of the criterion function must be equal to the value
for the restricted model. From (7.53), the value of the criterion function for
the restricted model is∥∥PW (y −Xβ̃)

∥∥2 = y>PWy − y>PWX
(
X>PWX

)−1
X>PWy, (7.56)

and it is easy to see that (7.56) is equal to the difference RSSR∗ − USSR∗

which appears in (7.55). This may be divided by anything that estimates σ2

consistently. Thus one alternative test statistic is∥∥PW (y −Xβ̃)
∥∥2∥∥(y −Xβ̃)

∥∥2/n a∼ χ2(l − k). (7.57)

This is just n times the uncentered R2 from a regression of the IV residuals
y−Xβ̃ on the instrumentsW. It is easy to see that this regression is equivalent
to the GNR associated with the unrestricted model (7.54). Thus we see that
it is not necessary to specify W ∗ or estimate (7.54) at all.

From (7.57), we see that if the value of the criterion function is small,
relative to our estimate of σ2, we cannot reject the joint hypothesis that (7.01)
is correctly specified and that the instruments which appear in W are valid.
If, on the other hand, it is large, we will want to reject that hypothesis. This
makes sense, since the criterion function (7.15) is the squared length of the
vector PW (y −Xβ̃), which is the observable counterpart of ‖PWu‖2. If W
is a valid matrix of instruments, the error terms u should be uncorrelated
with W, and ‖PWu‖2 should therefore be small. Thus it makes sense that a
test should be based on ‖PW (y −Xβ̃)‖2. It also makes sense that the test
should have l − k degrees of freedom, since it is only when l > k that the
numerator of (7.57) is nonzero.

The test statistic (7.57) has an obvious analog for nonlinear models like
(7.31). It is ∥∥PW

(
y − x(β̃)

)∥∥2∥∥(y − x(β̃)
)∥∥2/n a∼ χ2(l − k), (7.58)

and it may be computed as n times the uncentered R2 from a regression of
the IV residuals y−x(β̃) on the matrix of instruments W. Readers may wish
to verify, based on the arguments immediately above and those in Section 7.7,
that this test statistic is indeed asymptotically distributed as χ2(l− k) under
standard regularity conditions.

Tests of overidentifying restrictions should be calculated routinely when-
ever one computes IV estimates. If the test statistic is significantly larger than
it should be by chance under the null, one should be extremely cautious in
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interpreting the estimates, since it is likely either that the model is specified
incorrectly or that some of the instruments are invalid. It would be easy for
every program for IV estimation of linear and nonlinear regression models to
calculate the test statistics (7.57) or (7.58) automatically along with every set
of parameter estimates for overidentified models. Unfortunately, at the time
of writing, most programs do not do so.

7.9 Durbin-Wu-Hausman Tests

So far, we have assumed that the investigator always knows when it is neces-
sary to use IV rather than least squares. That may not always be the case.
Sometimes economic theory suggests that certain explanatory variables could
be endogenous, but does not unambiguously indicate that they are, and does
not say whether their correlation with the error terms is likely to be great
enough that using least squares will result in serious bias. Since least squares
is somewhat easier to use than IV and yields more efficient estimates, one
would prefer to use it if possible. To decide whether it is necessary to use
IV, one has to ask whether a set of estimates obtained by least squares is
consistent or not. In this section, we discuss tests that may be used to answer
this question.

The question of whether a set of estimates is consistent is rather different
from the question that the hypothesis tests we have looked at so far try to
answer. These tests simply ask whether certain restrictions on the parameters
of a model do in fact hold. In contrast, we now want to ask whether the
parameters of interest in a model have been estimated consistently. In a
very influential paper, Hausman (1978) proposed a family of tests designed
to answer this second question. His basic idea is that one may base a test on
a vector of contrasts, that is, the vector of differences between two vectors
of estimates, one of which will be consistent under weaker conditions than
the other. This idea dates back to a famous paper by Durbin (1954). One
of the tests proposed by Hausman for testing the consistency of least squares
estimates was also proposed by Wu (1973). We will therefore refer to all tests
of this general type as Durbin-Wu-Hausman tests, or DWH tests. There has
been a good deal of work on DWH tests in recent years; see in particular
Holly (1982), Ruud (1984), and Davidson and MacKinnon (1989). In this
section, we merely introduce the basic ideas and show how procedures of this
type may be used to test the consistency of least squares estimates when some
explanatory variables may be endogenous. Further applications of DWH tests
will be discussed in Chapter 11.

Suppose initially that the model of interest is (7.01). The DWH testing
principle suggests that we should compare the OLS estimator

β̂ =
(
X>X

)−1
X>y
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with the IV estimator

β̃ =
(
X>PWX

)−1
X>PWy.

If the data were actually generated by a special case of the model (7.01), with
β = β0, and u were asymptotically independent of X, the OLS estimator β̂
would be consistent for β0. So would be the IV estimator β̃, provided the ma-
trix of instrumentsW satisfied conditions (7.18). Thus both estimators would
have the same probability limit, β0. On the other hand, if u were not asymp-
totically independent of X, β̃ would still be consistent but β̂ would not be.

The DWH test is based on the vector of contrasts

β̃ − β̂ =
(
X>PWX

)−1
X>PWy −

(
X>X

)−1
X>y

=
(
X>PWX

)−1(
X>PWy −

(
X>PWX

)(
X>X

)−1
X>y

)
=

(
X>PWX

)−1(
X>PW

(
I−X(X>X)−1X>

)
y
)

=
(
X>PWX

)−1
X>PWMXy.

(7.59)

We could construct a χ2 test statistic based directly on this vector in a fairly
obvious way. The test statistic would be a quadratic form in the vector (7.59),
with the (generalized) inverse3 of an estimate of its covariance matrix in the
middle. But as we will now see, we do not actually have to construct a vector
of contrasts to compute this DWH test statistic. In fact, as Davidson and
MacKinnon (1989) discuss, one never needs to construct a vector of contrasts
to compute a DWH statistic. These statistics can always be computed by
means of artificial regressions.

The first factor in (7.59), (X>PWX)−1, is simply a k×k matrix with full
rank. Its presence will obviously have no effect on any test statistic that we
might compute. Hence what we really want to do is test whether the vector

X>PWMXy (7.60)

has mean zero asymptotically. It should, because under any DGP belonging
to (7.01) it is equal to

X>PWMXu.

This vector has k elements, but even if PWX has full rank, not all of those ele-
ments may be random variables, becauseMX may annihilate some columns of
PWX. It will in fact annihilate all those columns that correspond to explana-
tory variables which are also instruments. Suppose that k∗ is the number of
linearly independent columns of PWX that are not annihilated by MX . Then
if we let the corresponding k∗ columns of X be denoted by X∗, we are really

3 One has to use a generalized inverse in the many cases in which the covariance
matrix of the vector of contrasts does not have full rank. See Hausman and
Taylor (1982).
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interested in testing whether the vector

X∗>PWMXy (7.61)

has mean zero asymptotically.

Now consider the artificial regression

y = Xβ′ + PWX
∗δ + residuals. (7.62)

The regressors PWX
∗ are the fitted values from regressing X∗, the columns

of X that do not lie in S(W ), on the instrument matrix W. Since

S(X,PWX
∗) = S(X,PWX) = S(X,MWX) = S(X,MWX

∗),

regression (7.62) must have exactly the same SSR as the regression

y = Xβ +MWX
∗η + residuals, (7.63)

in which the regressors MWX
∗ are the residuals from regressing X∗ on W.

The DWH test may be based on either of these regressions. It is simply the
F test for δ = 0 in (7.62) or the F test for η = 0 in (7.63). Because (7.62)
and (7.63) have the same sums of squared residuals, it is clear that these two
tests will be numerically identical.

By the FWL Theorem, the OLS estimate of δ in (7.62) is

δ̃ =
(
X∗>PWMXPWX

∗)−1X∗>PWMXy.

It is evident that, in general, plim(δ̃) = 0 if and only if (7.61) has mean zero
asymptotically. The ordinary F statistic for δ = 0 in (7.62) is

y>PMXPWX∗y/k∗

y>MX,MXPWX∗y/(n− k − k∗)
a∼ F (k∗, n− k − k∗), (7.64)

where PMXPWX∗ is the matrix that projects orthogonally onto S(MXPWX
∗),

and MX,MXPWX∗ is the matrix that projects onto S⊥(X,MXPWX
∗). If

(7.01) actually generated the data and X is independent of u, the statistic
(7.64) will clearly be valid asymptotically, since the denominator will then
consistently estimate σ2. It will be exactly distributed as F (k∗, n − k − k∗)
in finite samples if the ut’s in (7.01) are normally distributed and X and PW

can be treated as fixed.

This version of the DWH test is often interpreted as a test for the exogene-
ity of those components of X not in the space spanned by W ; see Wu (1973),
Hausman (1978), and Nakamura and Nakamura (1981). This interpretation
is somewhat misleading, since what is being tested is not the exogeneity or
endogeneity of some components of X, but rather the effect on the estimates
of β of any endogeneity that may be present. The null hypothesis is that the
OLS estimates β̂ are consistent, not that every column of X is asymptotically
independent of u. Nevertheless, this version of the DWH test can be quite
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useful when it is not clear whether it is safe to use least squares rather than
instrumental variables.

Regression (7.63) deserves further comment. It has the remarkable fea-
ture that the OLS estimates of β are numerically identical to the IV estimates
of β in the original model (7.01). Moreover, the estimated covariance matrices
are also the same, except that the OLS estimate from (7.63) uses an incon-
sistent estimator for σ2. These results are easy to obtain. Denote by M∗

the orthogonal projection onto the space S⊥(MWX
∗). Then, by the FWL

Theorem, the OLS estimates from (7.63) must be identical to those from the
regression

M∗y = M∗Xβ + residuals. (7.65)

Now
M∗X = X −MWX

∗(X∗>MWX
∗)−1X∗>MWX.

From the fact that MWX = [MWX
∗ 0], it follows that

X∗>MWX = X∗>MW

[
X∗ 0

]
.

Consequently, we obtain

M∗X = X −
[
MWX

∗ 0
]

= X −MWX = PWX.

Then the OLS estimate of β from (7.65) is seen to be(
X>M∗X

)−1
X>M∗y =

(
X>PWX

)−1
X>PWy. (7.66)

The right-hand side of (7.66) is of course the expression for the IV or 2SLS
estimate of β, expression (7.17).

By an extension of this argument, it is easy to see that the estimated
OLS covariance matrix of β̂ from (7.63) will be

s̃2
(
X>PWX

)−1
, (7.67)

where s̃2 denotes the OLS estimate of the error variance in (7.63). Expression
(7.67) looks just like the IV covariance matrix (7.24), except that s̃2 appears
instead of σ̃2. When η is nonzero (so that IV estimation is necessary), the
variance of the errors in (7.63) will be less than σ2. As a consequence, s̃2 will
be biased downward as an estimator of σ2. Of course, it would be easy to
obtain a valid estimated covariance matrix by multiplying (7.67) by σ̃2/s̃2.

We now return to the DWH test. A variant of this test is applicable to
nonlinear models like (7.31) as well as to linear ones. The test would then be
based on a variant of the Gauss-Newton regression. If the null were that the
NLS estimates β̂ were consistent, an appropriate test statistic would be an
asymptotic F test for c = 0 in the GNR

y − x̂ = X̂b+MWX̂
∗c + residuals, (7.68)
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where, as usual, x̂ ≡ x(β̂) and X̂ ≡ X(β̂). It is a good exercise to verify
that this procedure does indeed yield a test statistic which is asymptotically
equivalent to the test statistic one would obtain if one started with the vector
of contrasts β̂ − β̃.

There is one problem with DWH tests for nonlinear models. In the case
of such a model, it may be unclear which columns of X̂ ≡ X(β̂) should be
included in X̂∗ and thus how many degrees of freedom the test should have.
Asymptotically, we want X∗ to include all the columns of X that do not lie
in S(W ). The number of degrees of freedom for the test will therefore be

ρ
(
[X(β0) MWX(β0)]

)
− k.

The problem is that X(β0) depends on β0, which of course the investigator
does not know. In practice, it is necessary to use X̂ instead of X(β0). Un-
fortunately, it is possible that the rank of [X̂ MWX̂] will not be the same
as the rank of [X(β0) MWX(β0)]. When that happens, the test statistic
calculated from (7.68) will have the wrong number of degrees of freedom.

It can sometimes be difficult to decide which explanatory variables may
validly be used as instruments and which must be treated as endogenous. In
such cases, it may be useful to test whether an IV estimator is consistent by
using a DWH test. This is easily done: Suppose it is known that some of
the explanatory variables should be treated as endogenous, but it is not clear
whether q others should be. When the smaller number is to be treated as
endogenous, the matrix of instrumental variables should be W1, and when
the larger number is to be treated as endogenous, it should be W2, where W1

includes everything that is in W2 plus q additional columns of X. Consider
the linear case. The two estimators are

β̃1 =
(
X>P1X

)−1
X>P1y and

β̃2 =
(
X>P2X

)−1
X>P2y,

where P1 and P2 are the matrices that project orthogonally onto S(W1) and
S(W2), respectively. The vector of contrasts is

β̃2 − β̃1 =
(
X>P2X

)−1
X>P2y −

(
X>P1X

)−1
X>P1y

=
(
X>P2X

)−1(
X>P2y −

(
X>P2X

)(
X>P1X

)−1
X>P1y

)
=

(
X>P2X

)−1(
X>P2

(
I− P1X(X>P1X)−1X>P1

)
y
)

=
(
X>P2X

)−1
X>P2MP1Xy,

(7.69)

where MP1X is the matrix that projects onto S⊥(P1X). The third line here
makes use of the equality P2P1 = P2, which is a consequence of the fact that
S(W2) is a subspace of S(W1).
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We leave it as an exercise to prove that a test of whether the vector (7.69)
has mean zero asymptotically may be accomplished by testing whether the
q--vector δ is equal to zero in the regression

y = Xβ + P2X
∗δ + residuals. (7.70)

Here P2X
∗ consists of the q columns of P2X that are not annihilated by

MP1X . Regression (7.70) must be estimated by IV using W1 as the matrix of
instruments, and any of the tests discussed in Section 7.7 may then be used
to test whether δ = 0.

7.10 Conclusion

This chapter has introduced all of the important concepts associated with the
technique of instrumental variables estimation. For a more detailed treatment,
see Bowden and Turkington (1984). Another useful reference is Godfrey (1988,
Chapter 5), which discusses a large number of specification tests for both linear
and nonlinear models that have been estimated by IV.

In this chapter, we applied the method of instrumental variables only to
univariate linear and nonlinear regression models with i.i.d. errors. We will
encounter numerous other applications later in the book, notably in Chapters
17 and 18, in which we discuss GMM estimation and simultaneous equations
models, respectively. In many other cases, we will state a result in the context
of OLS or NLS estimation and point out that it goes through with minor
modification in the context of IV estimation as well.

Terms and Concepts

criterion function
Durbin-Wu-Hausman (DWH) tests
errors in variables
exactly identified (just identified)

model
Gauss-Newton regression (GNR)
generalized IV estimator
identification: local, global, and

asymptotic
instrumental variables (IV) estimator
instruments (instrumental variables)
nonlinear IV estimator
nonlinear two-stage least squares

(NL2SLS) estimator
normalization (of a simultaneous

equations model)

overidentified model
overidentifying restrictions
predetermined variable
reduced form (of a simultaneous

equations model)
restricted reduced form (RRF)
simple IV estimator
simultaneous equations bias
simultaneous equations model
structural form (of a simultaneous

equations model)
two-stage least squares (2SLS)

estimator
unrestricted reduced form (URF)
vector of contrasts



Chapter 8

The Method of Maximum Likelihood

8.1 Introduction

The estimation techniques we have discussed so far — least squares and instru-
mental variables — are applicable only to regression models. But not every
model can be written so that the dependent variable is equal to a regression
function plus an additive error term or so that a set of dependent variables,
arranged as a vector, is equal to a vector of regression functions plus a vector
of errors (see Chapter 9). If not, then least squares and instrumental variables
are simply not appropriate. In this chapter, we therefore introduce a third
estimation method, which is much more widely applicable than the techniques
we have discussed so far, but also requires fairly strong assumptions. This is
the method of maximum likelihood, or ML, estimation.

As an extreme example of how inappropriate least squares can be, con-
sider the model

yγt = β0 + β1xt + ut, ut ∼ IID(0, σ2), (8.01)

which looks almost like a regression model. This model makes sense so long
as the right-hand side of (8.01) is always positive, and it may even be an
attractive model in certain cases.1 For example, suppose that the observations
on yt are skewed to the right but those on xt are not. Then a conventional
regression model could reconcile these two facts only if the error terms ut were
right-skewed, which one would probably not want to assume and which would
make the use of least squares dubious. On the other hand, the model (8.01)
with γ < 1 might well be able to reconcile these facts while allowing the error
terms to be symmetrically distributed.

If γ were known, (8.01) would be a regression model. But if γ is to be
estimated, (8.01) is not a regression model. As a result, it cannot sensibly be
estimated by least squares. The sum-of-squares function is

SSR(β, γ) =
n∑
t=1

(
yγt − β0 − β1xt

)2
,

1 Strictly speaking, of course, it is impossible to guarantee that the right-hand
side of (8.01) will always be positive, but this model may be regarded as a very
good approximation if β0 + β1xt is always much larger than σ.
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and if, for example, all the yt’s were greater than unity, it is clear that this
function could be made arbitrarily close to zero simply by letting γ tend to
minus infinity and setting β0 and β1 to zero. Hence one could never obtain
sensible estimates of (8.01) by using least squares. This model can, however,
be estimated quite easily using the method of maximum likelihood; just how
will be explained in Section 8.10.

The basic idea of maximum likelihood estimation is, as the name implies,
to find a set of parameter estimates, say θ̂, such that the likelihood of having
obtained the actual sample that we are using is maximized. By this we mean
that the joint probability density for the model being estimated is evaluated
at the observed values of the dependent variable(s) and treated as a function
of the model parameters. The vector of ML estimates θ̂ then yields the max-
imum of this function. This principle of estimation is very widely applicable:
If we can write down the joint density of the sample, we can in principle
use maximum likelihood, subject of course to certain regularity conditions.
Moreover, it has a number of extremely convenient properties, which we will
discuss briefly below and in much more detail in the remainder of this chapter.
It also has a few properties that are not so convenient and that the applied
econometrician must sometimes be wary of.

The easiest way to grasp the fundamental idea of ML estimation is to
consider a simple example. Suppose that each observation yt is generated by
the density

f(yt, θ) = θe−θyt, yt > 0, θ > 0, (8.02)

and is independent of all the other yt’s. This is the density of what is called
the exponential distribution.2 There is a single unknown parameter θ that
we wish to estimate, and we have available n observations with which to do
so. The joint density of the yt’s will be referred to as the likelihood function
and denoted L(y, θ); for any given θ this function tells us how likely in some
sense we were to have observed the sample y ≡ [y1

.... · · · .... yn].

Because the yt’s are independent, their joint density is simply the product
of their individual densities. Thus the likelihood function is

L(y, θ) =
n∏
t=1

θe−θyt. (8.03)

Especially when the sample size is large, (8.03) can easily be an extremely large
or extremely small number, well beyond the range of floating-point numbers

2 The exponential distribution is useful for analyzing events such as waiting
times or the duration of unemployment. See any advanced undergraduate-
or graduate-level statistics text, such as Cox and Hinkley (1974) or Hogg and
Craig (1978). More detailed treatments may be found in, among others, Cox
and Oakes (1984), Lawless (1982), and Miller (1981). For applications in econ-
omics, see Kiefer (1988) and Lancaster (1990).
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that digital computers can handle. For that reason, among others, it is cus-
tomary to maximize the logarithm of the likelihood function rather than the
likelihood function itself. We will obviously obtain the same answer by doing
so, since the loglikelihood function `(y, θ) ≡ log

(
L(y, θ)

)
is a monotonically

increasing function of L(y, θ); if θ̂ maximizes `(y, θ), it must also maximize
L(y, θ). In the case of (8.03), the loglikelihood function is

`(y, θ) =
n∑
t=1

(
log(θ)− θyt

)
= n log(θ)− θ

n∑
t=1

yt. (8.04)

Maximizing this loglikelihood function with respect to the single unknown
parameter θ is straightforward. Differentiating the right-most expression of
(8.04) with respect to θ and setting the derivative to zero yields the first-order
condition

n

θ
−

n∑
t=1

yt = 0, (8.05)

and solving this for the ML estimator θ̂ we find that

θ̂ =
n∑n
t=1 yt

. (8.06)

In this case, we do not need to worry about multiple solutions to (8.05). The
second derivative of (8.04) is always negative, which allows us to conclude
that θ̂ defined by (8.06) is the unique ML estimator. Note that this will not
always be the case; for many problems the first-order conditions may have
multiple solutions.

At this point, we might reasonably ask a number of questions about the
properties of θ̂. Is it in any sense a good estimator to use? Is it unbiased?
Is it consistent? How is it distributed? And so on. We could certainly study
these questions for this particular case. But much of this investigation would
be unnecessary, because the fact that θ̂ is an ML estimator immediately tells
us a great deal about its properties. That is indeed one of the most attractive
features of ML estimation: Because much is known about the properties of
ML estimators in general, we often do not need to study particular cases in
much detail.

Two major desirable properties of ML estimators are consistency and
asymptotic normality. These are properties that we have already studied ex-
tensively in the context of least squares, and no further introduction to them
is required at this point. A third desirable property is asymptotic efficiency.
This turns out to be true in a much stronger sense for ML estimators than
it is for least squares ones; since we did not make strong distributional as-
sumptions when discussing least squares, we could assert only that nonlinear
least squares estimates were asymptotically efficient within a fairly restricted
class of estimators. Partly because the method of maximum likelihood forces
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us to make explicit distributional assumptions, we will be able to prove much
stronger results.

Closely related to these properties is the fact that the covariance matrix
of the parameter estimates resulting from ML estimation can be estimated
quite easily in several different ways. Further, as we will see in Section 8.9,
the ML procedure leads naturally to several asymptotically equivalent test
statistics, at least one of which can usually be computed without difficulty. ML
estimates themselves are straightforward to compute, because maximization,
even nonlinear maximization, is a procedure that is well understood and, at
least conceptually, easy to do. Thus one of the most desirable features of ML is
computability: The ML estimates themselves, as well as estimated standard
errors and test statistics, can generally be computed in a straightforward,
although not always inexpensive, fashion.

A fifth desirable property of ML estimators is invariance, by which we
mean invariance to reparametrization of the model. This is easy to illustrate
in terms of the example we have been considering. Suppose that we had
parametrized the density of yt not as (8.02) but as

f ′(yt, φ) = (1/φ)e−yt/φ, (8.07)

where φ ≡ 1/θ. We can easily find out how the ML estimate φ̂ is related to θ̂.
The loglikelihood in the φ parametrization is

` ′(y, φ) =
n∑
t=1

(
− log(φ)− yt

φ

)
= −n log(φ)− 1

φ

n∑
t=1

yt.

The first-order condition for a maximum of ` ′ is thus

− n
φ

+
1

φ2

n∑
t=1

yt = 0,

and the ML estimate φ̂ is therefore seen to be

φ̂ = 1−
n

n∑
t=1

yt =
1

θ̂
.

We find that φ̂ bears exactly the same relationship to θ̂ as φ bears to θ. Thus,
in this case, the ML estimate is invariant to reparametrization. This is in
fact a general property of maximum likelihood. Especially in cases for which
parametrization is more or less arbitrary, it can be one of its most attractive
features.

Not all of the properties of ML are desirable ones. One major undesirable
feature is dependence on explicit distributional assumptions, which the inves-
tigator may often feel are too strong. This is not always as serious a problem
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as it might appear. Although in general the asymptotic properties of ML es-
timators hold only when the model is correctly specified in all respects, there
are many special cases in which some or all of these properties hold despite
certain misspecifications. For example, nonlinear least squares turns out to
be the ML estimator for a nonlinear regression model with independent and
identically distributed normal errors (see Section 8.10) and, as we have seen,
the consistency and asymptotic normality of NLS do not require the assump-
tion of normality. Nonlinear least squares when the errors are nonnormal is
thus an example of a quasi-ML estimator, or QML estimator, that is, an ML
estimator applied to a situation in which it is not strictly valid; see White
(1982) and Gouriéroux, Monfort, and Trognon (1984). QML estimators are
also sometimes called pseudo-ML estimators.

The other major undesirable feature of ML is that its finite-sample prop-
erties can be quite different from its asymptotic ones. Even though they are
consistent, ML parameter estimates are typically biased, and ML covariance
matrix estimates can be seriously misleading. Because finite-sample proper-
ties are often unknowable in practice, the investigator has to decide (often
without much information) how much reliance to place on known asymptotic
properties. This introduces an element of imprecision into many efforts to
draw inferences by ML when the sample size is not extremely large.

In the remainder of this chapter, we will discuss most of the important
properties of maximum likelihood. The relationship between least squares
and maximum likelihood will be introduced in Section 8.10 and will then
form part of the subject matter of Chapter 9, which is primarily concerned
with generalized least squares and its relationship to ML. Examples of max-
imum likelihood estimation in econometrics will be provided throughout the
remainder of the book. Further examples may be found in Cramer (1986).

8.2 Fundamental Concepts and Notation

Maximum likelihood estimation depends on the notion of the likelihood of a
given set of observations relative to a model, or set of DGPs. A DGP, being a
stochastic process, can be characterized in a number of ways. We now develop
notation in which we can readily express one such characterization that is
particularly useful for present purposes. We assume that each observation in
any sample of size n is a realization of a random variable yt, t = 1, . . . , n,
taking values in Rm. Although the notation yt ignores the possibility that
the observation is in general a vector, it is more convenient to let the vector
notation y (or yn if we wish to make the sample size explicit) denote the
entire sample. Thus

yn = [y1
.... y2

.... · · · .... yn].

If each observation is a scalar, y is an n--vector, while if each observation is
an m--vector, y is an n ×m matrix. The vector or matrix y may possess a



248 The Method of Maximum Likelihood

probability density, namely, the joint density of its elements under the DGP.
This density, if it exists, is a map to the real line from the set of possible
realizations of y, a set that we will denote by Yn and that is in general an
arbitrary subset of Rnm. It will be necessary to exercise some care over the
definition of the density in certain cases, but for the present it is enough to
suppose that it is the ordinary density with respect to Lebesgue measure on
Rnm.3 When other possibilities exist, it will turn out that the choice among
them is irrelevant for our purposes.

We may now define formally the likelihood function associated with a
given model for a given sample y. This function is a function of both the
parameters of the model and the given data set y; its value is just the density
associated with the DGP characterized by the parameter vector θ ∈ Θ, eval-
uated at the sample point y. Here Θ denotes the parameter space in which
the parameter vector θ lies; we will assume that it is a subset of Rk. We will
denote the likelihood function by L : Yn×Θ→ R and its value for θ and y by
L(y,θ). In many practical cases, such as the one examined in the preceding
section, the yt’s are independent and each yt has probability density Lt(yt,θ).
The likelihood function for this special case is then

L(y,θ) =
n∏
t=1

Lt(yt,θ). (8.08)

The likelihood function (8.03) of the preceding section is evidently a special
case of this special case. When each of the yt’s is identically distributed with
density f(yt,θ), as in that example, Lt(yt,θ) is equal to f(yt,θ) for all t.

Even when the likelihood function cannot be written in the form of (8.08),
it is always possible (at least in theory) to factor L(y,θ) into a set of contri-
butions, each coming from a single observation. Suppose that the individual
observations yt, t = 1, . . . , n, are ordered in some way, as for example by
date in a time series. Then this factorization may be accomplished as follows.
One starts from the marginal or unconditional4 density of the first observa-
tion y1, which we may call L1(y1), the dependence on θ being suppressed for
the moment for clarity. Then the marginal density of the first two observa-
tions jointly can be written as the product of L1(y1) and the density of y2

3 Thus we have excluded models with qualitative dependent variables and models
in which the distribution of the dependent variable has atoms, for in these cases
a density with respect to Lebesgue measure does not exist. See Chapter 15.

4 We use the term “unconditional” for convenience. Some statisticians regard
all distributions or densities as conditional on something or other, and we
do not mean to exclude this view. Distributions, densities, or expectations
which we refer to as unconditional should be understood as being conditioned
only on genuinely exogenous variables, that is, variables of which the DGP is
quite independent of the DGP of y. Bayesians may also wish to regard the
parameters of the DGP as conditioning variables, and this view is not excluded
by our treatment either.
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conditional on y1, say L2(y2 | y1). If we now take the first three observations
together, their joint density is the product of the unconditional density of the
first two together and the density of the third conditional on the first two,
and so on. The result for the entire sample of observations is

L(y) = L1(y1)L2(y2 | y1)L3(y3 | y2, y1) · · ·Ln(yn | yn−1, . . . , y1)

=
n∏
t=1

Lt(yt | yt−1, . . . , y1).
(8.09)

Note that this result is perfectly general and can be applied to any density
or likelihood function. The ordering of the observations is usually a natural
one, as with time series, but even if no natural ordering exists, (8.09) is true
for an arbitrary ordering.

As we indicated in the last section, in practice one normally works with
the loglikelihood function `(y,θ) rather than with the likelihood function
L(y,θ). The decomposition of `(y,θ) into contributions from individual ob-
servations follows from (8.09). It may be written as follows, with the depen-
dence on θ suppressed for clarity:

`(y) =

n∑
t=1

`t(yt | yt−1, . . . , y1), (8.10)

where `t(yt | yt−1, . . . , y1) ≡ logLt(yt | yt−1, . . . , y1).

We are now in a position to give the definition of the maximum likelihood
estimate. We say that θ̂ ∈ Θ is a maximum likelihood estimate, ML estimate,
or MLE, for the data y if

`(y, θ̂) ≥ `(y,θ) for all θ ∈ Θ. (8.11)

If the inequality is strict, then θ̂ is the unique MLE. An MLE need not exist
in general, unless the loglikelihood function ` is continuous with respect to the
parameters θ, and the set Θ is compact (i.e., closed and bounded). For this
reason, it is usual in formal treatments of maximum likelihood estimation to
assume that Θ is indeed compact. We do not wish to make this assumption,
because it accords very ill indeed with standard practice, in which an estimate
is accepted from anywhere in Rk. But this means that we must live with the
possible nonexistence of the MLE.

It is often convenient to use another, not in general equivalent, definition
of the MLE. If the likelihood function does attain an interior maximum in
the parameter space, then it or, equivalently, the loglikelihood function, must
satisfy the first-order conditions for a maximum at the MLE. Thus an MLE
can be defined as a solution to the likelihood equations, which are just the
following first-order conditions:

g(y, θ̂) ≡ 0, (8.12)
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where the gradient vector, or score vector, g ∈ Rk is defined by

g>(y,θ) ≡ Dθ `(y,θ) =

n∑
t=1

Dθ `t(y,θ). (8.13)

Since Dθ ` is a row vector, g is the column vector of partial derivatives of the
loglikelihood function ` with respect to the parameters θ. We have written
`t(y,θ), and not `t(yt,θ), because in general `t can depend on “past” values of
the dependent variable, yt−1, yt−2, . . . . It does not depend on “future” values
of course, but the use of the vector notation is still the easiest way to remind
ourselves of dependence on more than just yt.

Because there may be more than one value of θ that satisfies the likelihood
equations (8.12), the definition further requires that θ̂ be associated with a
local maximum of ` and that

plim
n→∞

(
n−1`(y, θ̂)

)
≥ plim
n→∞

(
n−1`(y,θ∗)

)
,

where θ∗ is any other root of the likelihood equations. This second definition
of the MLE is often associated with Cramér, since it is used in his famous proof
of consistency (Cramér, 1946). The requirement that plim

(
n−1`(y, θ̂)

)
≥

plim
(
n−1`(y,θ∗)

)
is of course in general impossible to verify in practice. The

problem is that one does not know the DGP and so cannot calculate the plims
analytically. If for a given sample there are two or more roots of the likelihood
equations, the one that is associated with the highest value of `(y,θ) for that
sample may not converge to the one that is associated with the highest value
asymptotically. In practice what one does if there is more than one solution to
the likelihood equations is to select the one that is associated with the highest
value of the loglikelihood function. However, if there are two or more roots
for which `(y,θ) is quite close, one may very well pick the wrong one.

We repeat that these two definitions of the MLE are not equivalent.
Consequently, it is sometimes necessary to speak of MLEs of Type 1 when
we mean those obtained by the maximization over Θ of `(y,θ) and MLEs of
Type 2 when we mean those obtained as solutions to the likelihood equations.
Although in most practical cases either could be used and in many cases
the two will coincide, there are situations in which one does not exist while
the other does. In particular, there are models where `(θ) is unbounded
in some directions, and the Type 1 definition therefore cannot be used, but
nevertheless there does exist a θ̂ that is a consistent root of the likelihood
equations; see Kiefer (1978) for a model of this kind. On the other hand, the
Type 2 definition does not apply to the standard problem of estimating one
or both end-points of a uniform distribution, because the likelihood equations
are never satisfied.

The problem of estimating the end-point of a uniform distribution is
worth looking at. Suppose that for all t the density of yt is

f(yt) =

{
1/α if 0 ≤ yt ≤ α
0 otherwise.
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Here one end-point of the uniform distribution is known to be zero, and the
other end-point, α, is to be estimated. The likelihood and loglikelihood func-
tions are, respectively,

L(y, α) =

{
α−n if 0 ≤ yt ≤ α for all yt
0 otherwise

and

`(y, α) =

{
−n log(α) if 0 ≤ yt ≤ α for all yt
−∞ otherwise.

(8.14)

The likelihood equation obtained by differentiating `(y, α) with respect to α
and equating the derivative to zero is

− n
α

= 0.

Since this equation has no finite solution, no Type 2 ML estimate exists. It
is clear that we can find a Type 1 ML estimate, however. It is evident from
(8.14) that to maximize `(y, α) we must make α̂ as small as possible. Since α̂
cannot be smaller than the largest observed yt, the Type 1 ML estimate must
simply be

α̂ = max
t

(yt).

By the term maximum likelihood estimator we will mean the random
variable that associates with each possible random outcome y the correspond-
ing MLE.5 The distinction between an estimate and an estimator was made
in Section 5.2: We may recall that an estimator, a random variable, is rep-
resented as a function (implicit or explicit) of possible sets of observations,
while an estimate is the value taken by that function for a specific data set.

Just as there are two possible definitions of ML estimates, so are there
two possible definitions of the ML estimator. The following definitions make
it clear that the estimator is a random variable, dependent on the realized
sample y. The Type 1 estimator, corresponding to the standard definition
(8.11) of the MLE, is θ̂(y) defined by:

L
(
y, θ̂(y)

)
> L(y,θ) for all θ ∈ Θ such that θ 6= θ̂(y). (8.15)

The Type 2 estimator, corresponding to the Cramér definition (8.12), is θ̂(y)
defined by:

g
(
y, θ̂(y)

)
= 0, (8.16)

5 In cases of nonexistence of the MLE for some samples, the estimator can be
defined as a proper random variable by assigning to it an arbitrary value, such
as −∞, for those samples for which the MLE does not exist.
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where θ̂(y) yields a local maximum of `, and

plim
n→∞

(
n−1`

(
y, θ̂(y)

))
≥ plim
n→∞

(
n−1`(y,θ∗(y)

))
(8.17)

for any other solution θ∗(y) of the likelihood equations.

We conclude this section with a variety of definitions to be used in the
rest of the chapter and more generally for the rest of the book. By use of the
decomposition (8.10) of the loglikelihood function `(y,θ), we may define an
n× k matrix G(y,θ) with typical element

Gti(y,θ) ≡ ∂`t(y,θ)

∂θi
. (8.18)

We will call G(y,θ) the matrix of contributions to the gradient, or the CG
matrix for short. This matrix is intimately related to the gradient vector g,
which is just G>ι, where as usual ι denotes an n--vector, each element of which
is 1. The tth row of G, which measures the contribution to the gradient from
the tth observation, will be denoted Gt.

The Hessian matrix associated with the loglikelihood function `(y,θ) is
the k × k matrix H(y,θ) with typical element

Hij(y,θ) ≡ ∂2`(y,θ)

∂θi∂θj
. (8.19)

We define the expected average Hessian for a sample of size n as

Hn(θ) ≡ Eθ
(
n−1H(y,θ)

)
.

The notation Eθ means that the expectation is calculated using the DGP
characterized by the parameter vector θ rather than the DGP that might
actually have generated any particular given sample. Thus a different DGP is
implicitly used to calculate the expectation for each different θ. The limiting
Hessian or asymptotic Hessian, if it exists, is defined as

H(θ) ≡ lim
n→∞

Hn(θ).

This quantity, which is a symmetric, negative semidefinite matrix in general,
will appear many times in the asymptotic theory of ML estimation.

We define the information in observation t as It(θ), the k × k matrix
with typical element (

It(θ)
)
ij
≡ Eθ

(
Gti(θ)Gtj(θ)

)
. (8.20)

It is an immediate consequence of this definition that It(θ) is a symmetric,
positive semidefinite matrix in general and that it is positive definite unless
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a linear relation exists among the components of the random vector Gt. The
average information matrix for a sample of size n is defined as

In(θ) ≡ 1−
n

n∑
t=1

It(θ) = n−1I n, (8.21)

and the limiting information matrix or asymptotic information matrix, if it
exists, is defined as

I(θ) ≡ lim
n→∞

In(θ). (8.22)

The matrix It(θ) measures the expected amount of information contained in
the tth observation and I n ≡ nIn measures the expected amount of informa-
tion contained in the complete sample. The information matrices In and I

are, like It, symmetric, positive semidefinite matrices in general. The aver-
age information matrix In and the expected average Hessian Hn have been
defined so that they are O(1) as n→∞. This makes them convenient to use
in asymptotic analysis. The terminology in this area is not entirely standard.
Some authors simply use the term “information matrix” to refer to In, while
others use it to refer to n times In, which we have called I n.

8.3 Transformations and Reparametrizations

In this and the subsequent sections of this chapter, we develop the classical
theory of maximum likelihood estimation and, in particular, demonstrate the
properties that make it a desirable estimation method. We will also point out
that in some circumstances these properties fail. As we discussed in Section
8.1, the major desirable features of ML estimators are invariance, consistency,
asymptotic normality, asymptotic efficiency, and computability. In this sec-
tion, we will discuss the first of these, the invariance of ML estimators to
reparametrization of the model.

The idea of invariance is an important one in econometric analysis. Let us
denote by M the model in which we are interested. A parametrization of the
model M is a mapping, say λ, from a parameter space Θ to M. For any given
model M there may in general exist an infinite number of parametrizations.
There are, after all, few constraints on the parameter space Θ, other than
its dimensionality. A subset of Rk of full dimension can be mapped in a
one-to-one and differentiable manner onto virtually any other subset of Rk of
full dimension by such devices as translation, rotation, dilation, and so on,
and subsequently any of these other subsets can perfectly well serve as the
parameter space for the model M. It is because of this fact that one appeals to
invariance as a desirable property of estimators. “Invariance” is understood
in this context as invariance under the sort of transformation we have been
discussing, which we call formally reparametrization.
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As an illustration of the fact that any model may be parametrized in
an infinite number of ways, consider the case of the exponential distribution,
which was discussed in Section 8.1. The likelihood function for a sample of
independent drawings from this distribution was seen to be (8.03). If we
make the definition θ ≡ δα, we can define a whole family of parametrizations
indexed by α. We may choose α to be any finite, nonzero number. The
likelihood function corresponding to this family of parametrizations is

L(y, δ) =
n∏
t=1

δαe−δ
αyt .

Evidently, α = 1 corresponds to the θ parametrization of (8.02) and α = −1
corresponds to the φ parametrization of (8.07).

It is easy to see that ML estimators are invariant to reparametrizations
of the model. Let η : Θ→ Φ ⊆ Rk denote a smooth mapping that transforms
the vector θ uniquely into another vector φ ≡ η(θ). The likelihood function
for the model M in terms of the new parameters φ, say L′, is defined by the
relation

L′(y,φ) = L(y,θ) for φ = η(θ). (8.23)

Equation (8.23) follows at once from the facts that a likelihood function is the
density of a stochastic process and that θ and φ = η(θ) describe the same
stochastic process. Let us define φ̂ as η(θ̂) and φ∗ as η(θ∗). Then if

L(y, θ̂) > L(y,θ∗) for all θ∗ 6= θ̂,

it follows that

L′(y, φ̂) = L′
(
y,η(θ̂)

)
= L(y, θ̂) > L(y,θ∗) = L′(y,φ∗) for all φ∗ 6= φ̂.

Thus we will obtain ML estimates θ̂ if we maximize L(θ) and ML estimates φ̂
if we maximize L′(φ). But these two sets of estimates are equivalent, in the
sense that they characterize the same DGP, since L(θ̂) = L′(φ̂).

Once we have chosen one parametrization of a model, say λ : Θ→M, and
have a smooth one-to-one mapping η : Θ→ Φ that takes the first parameter
vector θ into a second one φ, we may reparametrize the model by mapping
from the second parameter space Φ to the first one Θ by η−1 (which must
exist because η is one-to-one) and then back to M by λ. Thus, formally,
the new parametrization is the mapping µ ≡ λ ◦ η−1, which maps Φ onto M
in a smooth one-to-one manner. It may be useful for intuition to keep the
following commutative diagram in mind:

..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
...................
................

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
...................................

.................................................................................................................................................................................................................................................................................................................................... ................
.................................................................................................................................................................................................................................................................................................................................................... ΦΘ

M

η

η−1

λ µ
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Invariance is in general a desirable property, since it ensures that (possibly
arbitrary) changes in the way we write down the model will have no effect
on the estimates we obtain. But this property nevertheless implies that ML
parameter estimators cannot, in general, be unbiased. Suppose that there
does exist a parametrization in which the ML estimator of θ is unbiased. We
can write this as

E0(θ̂) = θ0,

where E0 indicates that we are taking expectations with respect to the DGP
characterized by the parameter vector θ0. Then if the function η(θ) which
yields a new parametrization is nonlinear, as it will be in general, it must be
the case that

E0(φ̂) = E0

(
η(θ̂)

)
6= φ0

because, for a nonlinear function η(θ),

E0

(
η(θ̂)

)
6= η

(
E0(θ̂)

)
= η(θ0) = φ0.

This suggests that, although the parametrization we choose does not matter
for estimation of the DGP, it may have a substantial effect on the finite-
sample properties of our parameter estimates. By choosing the appropriate
parametrization, we can in some cases ensure that our estimates are unbiased
or close to unbiased and have distributions close to their asymptotic ones. In
contrast, if we choose an inappropriate parametrization, we may inadvertently
ensure that our estimates are severely biased and have distributions far from
their asymptotic ones.

8.4 Consistency

One of the reasons that maximum likelihood estimation is widely used is that
ML estimators are, under quite general conditions, consistent. In this section,
we explain why this is the case. We concern ourselves primarily with the
Type 1 ML estimator, although we provide some discussion of the Type 2
estimator as well. We begin by making the definition:

¯̀(θ;θ0) ≡ plim
n→∞

0

(
n−1`n(yn,θ)

)
, (8.24)

where the notation “plim0” means as usual that the plim is calculated under
the DGP characterized by θ0. The function ¯̀(θ;θ0) is the limiting value of
n−1 times the loglikelihood function, when the data are generated by a special
case of the model with θ = θ0. An important regularity condition that must
be satisfied in order for an ML estimator to be consistent is that the model
must be asymptotically identified. By definition, this will be the case if the
problem

max
θ∈Θ

¯̀(θ;θ0) (8.25)



256 The Method of Maximum Likelihood

has a unique solution. This definition implies that any DGP in the model will
generate samples which, if they are large enough, identify the model. The
interpretation is the same as in the regression model context.

We now wish to demonstrate that ¯̀(θ;θ0) is maximized at θ0, the value
of θ that characterizes the DGP. Let θ̂ ≡ θ̂(y) denote the global maximum
of the likelihood function L(y,θ), which we will require to be a continuous
function of θ, and let θ∗ denote any other (nonstochastic) parameter vector
in Θ, which is required to be compact. These two requirements mean that
there is no problem of possible nonexistence of the MLE. We will denote
expectations taken with respect to the DGP by E0(·). Then

E0

(
log

(
L(θ∗)

L(θ0)

))
≤ log

(
E0

(
L(θ∗)

L(θ0)

))
, (8.26)

by Jensen’s Inequality (see Appendix B), since the logarithm is a concave func-
tion. Further, (8.26) will hold with strict inequality whenever L(θ∗)/L(θ0) is
a nondegenerate random variable. Degeneracy will occur only if there exists
θ′ 6= θ0 such that L(θ′)/L(θ0) is identically unity; `(θ′) − `(θ0) would then
be identically zero. But the asymptotic identification condition (8.25) rules
out this possibility for large enough sample sizes, since, if it holds, θ′ 6= θ0

implies that L(θ′) 6= L(θ0).

Using the fact that L(θ0) is the joint density of y, we see that the expec-
tation inside the logarithm on the right-hand side of (8.26) is

E0

(
L(θ∗)

L(θ0)

)
=

∫
Yn

L(θ∗)

L(θ0)
L(θ0)dy =

∫
Yn
L(θ∗)dy = 1.

If it is possible for L(θ0) to be zero, we may define the integrand in the second
expression here to be zero when that occurs. Since the logarithm of 1 is 0, it
follows from (8.26) that

E0

(
log

(
L(θ∗)

L(θ0)

))
< 0,

which can be rewritten as

E0

(
`(θ∗)

)
− E0

(
`(θ0)

)
< 0. (8.27)

Thus the expectation of the loglikelihood function when evaluated at the true
parameter vector, θ0, is strictly greater than its expectation when evaluated
at any other parameter vector, θ∗.

The next step is to show that what is true of the mathematical expecta-
tions in (8.27) is also true, in the limit as n→∞, of the sample analog. This
sample analog is

1−
n

(
`(θ∗)− `(θ0)

)
= 1−
n

n∑
t=1

`t(y,θ
∗)− 1−

n

n∑
t=1

`t(y,θ0). (8.28)
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It is now necessary to assume that the sums in (8.28) satisfy some regularity
conditions sufficient for a law of large numbers to be applied to them. As
we have seen in Chapter 4, these will require that the `t’s be independent
or, at least, not exhibit too much dependence; have some sort of mean (al-
though they do not have to have a common mean); and have variances that
are bounded from above; for details, see Section 4.7. Thus we may conven-
iently require that, for all θ ∈ Θ, {`t(θ)}∞t=1 satisfies condition WULLN of
Section 4.7 for the DGP characterized by θ0. We can then use (8.27) to assert
that

plim
n→∞

0

(
n−1`(θ∗)

)
− plim
n→∞

0

(
n−1`(θ0)

)
< 0, (8.29)

where both plims exist. In fact, by definition (8.24),

plim
n→∞

0

(
n−1`(θ∗)

)
= ¯̀(θ∗;θ0),

which latter function is thereby shown to exist. The inequality in (8.29) has
not yet been shown to be strict, since the limit of the strict inequalities (8.27)
is not necessarily a strict inequality. However, the asymptotic identification
condition (8.25) can again be invoked to reinstate strictness.

Given the assumption of asymptotic identification and the result (8.29),
it is now easy to see why θ̂ must be consistent. We know that

n−1`(θ̂) ≥ n−1`(θ0), (8.30)

for all n, because θ̂ maximizes the loglikelihood function. Clearly (8.29) and
(8.30) cannot both be true unless

plim
n→∞

0

(
n−1`(θ̂)

)
= plim
n→∞

0

(
n−1`(θ0)

)
. (8.31)

But if the model is asymptotically identified, the value θ̂ which maximizes
(8.24) must be unique. Therefore, (8.31) cannot hold unless plim0(θ̂) = θ0.6

We may now state the following theorem, which is due to Wald (1949):

Theorem 8.1. Wald’s Consistency Theorem.

The ML estimator (8.15) for a model represented by the parametric
family of loglikelihood functions `(θ) in which θ is restricted to lie in a
compact parameter space is consistent if the contributions {`t(θ)}∞t=1

satisfy the regularity conditions WULLN and if, in addition, the model
is asymptotically identified.

Note that the result has been proved only for compact parameter spaces, since
otherwise we could not be sure that θ̂ exists for all n. There are models, for
example certain so-called endogenous-regime models, in which the fact that a

6 Because θ̂ is stochastic, this argument is not rigorous.
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variance cannot tend to zero for a well-behaved probability density leads to a
failure of compactness of the parameter space (since excluding zero variance
leaves a partially open boundary to this space). As a consequence, there may
exist no Type 1 MLE with a finite plim; see Kiefer (1978).

There are two main sets of circumstances in which ML estimates may fail
to be consistent. The first arises when the number of parameters is not fixed
but instead increases with n. This possibility is not even considered in the
above theorem, where θ is independent of n. But it is not surprising that it
causes problems, since if the number of parameters is not fixed, it is far from
clear that the amount of information the sample gives us about each one will
increase sufficiently fast as n → ∞. It is in fact possible to let the number
of parameters increase, but the rate of increase must be slow (for example,
like n1/4). Such cases are beyond the scope of this book; see, among others,
Neyman and Scott (1948), Kiefer and Wolfowitz (1956), and Kalbfleisch and
Sprott (1970).

The most frequently encountered cases of failure of consistency are those
in which the model is not identified asymptotically. This may happen even
when it is identified in any finite sample. For example, consider the regression
model

yt = α 1−
t

+ ut, ut ∼ NID(0, 1),

originally considered in Section 5.2. We have already seen that models of
this type cannot be estimated consistently by least squares, and it is a simple
exercise to show that such models cannot be estimated consistently by max-
imum likelihood either. One way to think about this type of problem is to
observe that, as n increases, each new observation adds less and less informa-
tion about α. Therefore, even though the finite-sample information matrix
I n always has full rank (of one, in this case), the asymptotic information ma-
trix I does not (it converges to zero in this case). In the usual case in which
the ML estimator is consistent, each new observation adds roughly the same
amount of information and I, being the limit of the average of the It’s, will
therefore have full rank.

For most purposes, the consistency of the Type 1 ML estimator is all
that we need to be concerned with. However, there are cases in which the
Type 2 estimator exists and the Type 1 estimator does not. In the remainder
of this section, we therefore outline a proof of consistency for the Type 2
ML estimator, as given by (8.16) and (8.17). For this estimator to exist, it
is of course necessary that the contributions `t to the loglikelihood function
`(y,θ) be differentiable with respect to the parameters θ, and so we will
assume that they are at least once continuously differentiable. With this
assumption further argument is in many sets of circumstances unnecessary:
If the parameter space Θ is compact and the parameter vector θ0 associated
with the DGP is in the interior of Θ, then for large enough samples the
probability becomes arbitrarily close to unity that the maximum of ` will be
achieved at an interior point of Θ. When that happens, the Type 1 and Type 2
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estimators will coincide asymptotically. On the other hand, if θ0 is on the
boundary of Θ, there will be a positive probability for arbitrarily large samples
that the estimator of Type 2 will not exist. In such a case, the question of its
consistency or otherwise does not arise.

The situation is more delicate in the case of a noncompact parameter
space. We first remark that if θ0 lies on the boundary of Θ, then noncom-
pactness is not the issue, and again the Type 2 estimator will have a positive
probability of nonexistence. Thus we suppose that θ0 is in the interior of Θ.
We further assume that the condition of the following definition is satisfied:

Definition 8.1.

The model characterized by the loglikelihood function ` is asymptot-
ically identified on a noncompact parameter space Θ if the model is
asymptotically identified and if, in addition, there are no sequences
{θn} with no limit point that satisfy

¯̀(θn;θ0) −→ ¯̀(θ0;θ0); ¯̀(θn;θ0) < ¯̀(θ0;θ0). (8.32)

The existence of such sequences may appear to be ruled out by asymptotic
identifiability, but this is not so. For the sequence to have no limit point, it
must diverge to infinity in some direction or else converge to a point which
is not a member of the noncompact parameter space, such as a point of zero
variance. Thus the fact that ¯̀(θn;θ0) tends to the limit ¯̀(θ0;θ0) does not
imply the existence of a point in Θ, say θ∞, at which ¯̀(θ∞;θ0) = ¯̀(θ0;θ0).
The existence of θ∞ would indeed contradict asymptotic identifiability in the
usual sense. But for asymptotic identifiability to have its usual interpretation
in a noncompact parameter space, the existence of sequences satisfying (8.32)
must be ruled out, even if they have no limit point.

We now return to the consideration of Type 2 estimators. Consider a
compact neighborhood Θ0 of θ0. We could define another ML estimator as
the point yielding the maximum of ` in Θ0. By Wald’s consistency theorem
(Theorem 8.1) this new estimator would be consistent. Two possible cases
then seem to exist. The first is that in which there is a positive asymptotic
probability that this estimator is on the boundary of the neighborhood Θ0

and the second is that in which this probability is zero. In the second case the
new estimator and the Type 2 estimator coincide asymptotically, given the
condition of asymptotic identifiability for a noncompact Θ, and so the latter
is consistent. But the first case cannot in fact arise. For a fixed Θ0, θ0 is
at a positive distance from the boundary of Θ0, and the consistency of the
new estimator excludes any positive asymptotic probability concentrated on
a region bounded away from θ0. Thus we conclude that when the parameter
space is noncompact, provided the DGP lies in the interior of this space and
the model is asymptotically identified on its noncompact parameter space, the
Type 2 estimator is consistent. These results are summarized in the following
theorem:
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Theorem 8.2. Second Consistency Theorem.

Let a model be represented by a parametric family of at least once
continuously differentiable loglikelihood functions `(θ) in which θ is
restricted to lie in a not necessarily compact parameter space. Then,
for DGPs that lie in the interior of that parameter space, the ML
estimator defined by (8.16) and (8.17) is consistent if the contribu-
tions {`t(θ)}∞t=1 satisfy the regularity conditions WULLN and in ad-
dition the parameter space is compact and the model is asymptotically
identified, or if the parameter space is noncompact and the model is
asymptotically identified in the sense of Definition 8.1.

8.5 The Asymptotic Distribution of the ML Estimator

We begin our analysis by proving a simple but fundamental result about the
gradient g and the CG matrix G:

Eθ
(
Gti(θ)

)
≡ Eθ

(
∂`t(θ)

∂θi

)
= 0. (8.33)

This result says that, under the DGP characterized by θ, the expectation of
every element of the CG matrix, when evaluated at θ, is zero. It implies that

Eθ
(
g(θ)

)
= 0 and Eθ

(
G(θ)

)
= 0.

This is a very important result for several reasons. In particular, it will
allow us to apply a central limit theorem to the quantity n−1/2g(θ0). The
proof is as follows:

Eθ
(
Gti(yt,θ)

)
=

∫
∂ logLt(yt,θ)

∂θi
Lt(yt,θ)dyt

=

∫
1

Lt(yt,θ)

∂Lt(yt,θ)

∂θi
Lt(yt,θ)dyt

=

∫
∂Lt(yt,θ)

∂θi
dyt

=
∂

∂θi

∫
Lt(yt,θ)dyt

=
∂

∂θi
(1) = 0.

(8.34)

The second last step is just a consequence of the normalization of the density
Lt(yt,θ). The previous step, in which the orders of differentiation and inte-
gration are interchanged, is valid under a variety of regularity conditions, of
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which the simplest is that the domain of integration, say Yt, is independent
of θ. Alternatively, if that assumption is not true, then it is sufficient that
Lt(yt,θ) vanishes on the boundary of the domain Yt and that ∂`t(yt,θ)/∂θ
be uniformly bounded; see Appendix B.

Simple results about the asymptotic distribution of ML estimates are
most readily found in the context of the Type 2 estimator, as defined by
(8.16) and (8.17). Consequently, we will restrict our attention to that case and
assume that θ̂ is a root of the likelihood equations (8.12). It is then relatively
straightforward to show that θ̂ has the property of asymptotic normality,
which was discussed in Chapter 5. For a DGP characterized by θ0, the vector
of parameter estimates θ̂ tends to the nonstochastic limit θ0. However, if we
multiply the difference θ̂ − θ0 by n1/2, the resulting quantity n1/2(θ̂ − θ0)
will have a limit in probability that is a random variable with a multivariate
normal distribution. As in the NLS case, we will refer to this distribution as
the asymptotic distribution of n1/2(θ̂−θ0); we may on occasion also refer to it
informally as the asymptotic distribution of θ̂, although this is not technically
correct.

We now sketch a proof of the asymptotic normality of the Type 2 MLE.
We begin by Taylor expanding the likelihood equations (8.12) around θ0,
obtaining

0 = g(θ̂) = g(θ0) +H(θ̄)(θ̂ − θ0), (8.35)

where θ̄ is a convex combination of θ0 and θ̂, which may be different for each
row of the equation. Solving (8.35) for θ̂ − θ0 and rewriting so that every
factor is O(1) yields

n1/2(θ̂ − θ0) = −
(
n−1H(θ̄)

)−1(
n−1/2g(θ0)

)
, (8.36)

in which we see that n1/2(θ̂− θ0) is equal to a k× k matrix times a k--vector.
The former will turn out to be asymptotically nonstochastic, and the lat-
ter will turn out to be asymptotically normal, from which it follows that
n1/2(θ̂ − θ0) must be asymptotically normal.

We first wish to show that n−1H(θ̄) tends to a certain nonstochastic
limiting matrix as n→∞. Recall that the ijth element of n−1H(θ̄) is

1−
n

n∑
t=1

∂2`t(θ)

∂θi∂θj
, (8.37)

evaluated at θ = θ̄. We will require that condition WULLN apply to the
sequence with typical element (8.37). That being so, n−1H(θ̄) must tend to
H(θ̄) as n→∞. But since θ̂ is consistent for θ0 and θ̄ lies between θ̂ and θ0,
it is clear that n−1H(θ̄) must also tend to H(θ0). Moreover, if the model is
strongly asymptotically identified, the matrix H(θ0) must be negative definite,
and we will assume that this is the case.
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Using this argument and (8.36), we see that

n1/2(θ̂ − θ0)
a
= −H−1(θ0)

(
n−1/2g(θ0)

)
. (8.38)

The only stochastic thing on the right-hand side of (8.38) is

n−1/2g(θ0), (8.39)

of which a typical element is

n−1/2
n∑
t=1

∂ logLt(yt,θ)

∂θi

∣∣∣∣
θ=θ0

= n−1/2
n∑
t=1

Gti(θ0).

Thus (8.39) is n−1/2 times a sum of n quantities. From the result (8.33), we
know that each of these quantities has expectation zero. It therefore seems
plausible that a central limit theorem applies to it. In a formal proof, one
would have to start with appropriate regularity conditions and use them to
prove that a particular CLT does indeed apply to (8.39), but we will omit
this step. Once we assume that (8.39) is asymptotically normal, it follows
immediately from (8.38) that n1/2(θ̂ − θ0) must be as well.

The asymptotic covariance matrix of n1/2(θ̂−θ0) is simply the asymptotic
expectation of n(θ̂ − θ0)(θ̂ − θ0)>. Using (8.38), this is equal to

(
−H−1(θ0)

)( 1−
n
E0

(
g(θ0)g>(θ0)

))(
−H−1(θ0)

)
.

A typical element of the expectation in the middle here is

1−
n
E0

(( n∑
t=1

Gti(θ0)

)( n∑
s=1

Gsj(θ0)

))
. (8.40)

This is n−1 times the expectation of the product of two summations. If we
were to write the product out explicitly, we would see that each of the terms
in the n2--fold summation in (8.40) was of the form

Gti(θ0)Gsj(θ0) =
∂ log(Lt)

∂θi

∂ log(Ls)

∂θj
.

Except when t = s, all these terms must have expectation zero. Assume
without loss of generality that t > s. Then

E0

(
Gti(θ0)Gsj(θ0)

)
= E0

(
E
(
Gti(θ0)Gsj(θ0) |ys

))
= E0

(
Gsj(θ0)E

(
Gti(θ0) |ys

))
= 0.
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The last equality here follows from the fact that E0

(
Gti(θ0) |ys

)
= 0, which

is itself true because the proof of the general result (8.33) applies equally well
to the conditional as to the unconditional expectation.

Because E0

(
Gti(θ0)Gsj(θ0)

)
= 0 for all t 6= s,

1−
n
E0

(( n∑
t=1

Gti(θ0)

)( n∑
s=1

Gsj(θ0)

))
= 1−
n
E0

( n∑
t=1

Gti(θ0)Gtj(θ0)

)
. (8.41)

From (8.20) and (8.21) we see that the right-hand side of (8.41) is simply
In(θ0), the average information matrix for a sample of size n. Using the fact
that I(θ0) is the limit of In(θ0) as n → ∞, we conclude that the asymptotic

covariance matrix of n1/2(θ̂ − θ0) is

V ∞
(
n1/2(θ̂ − θ0)

)
= H−1(θ0)I(θ0)H−1(θ0). (8.42)

In the next section, we will see that this expression can be simplified further.

We may now state the above results formally as follows:

Theorem 8.3. Asymptotic Normality Theorem.

The Type 2 ML estimator, θ̂, for a strongly asymptotically identified
model represented by the parametric family of loglikelihood functions
`(θ), θ ∈ Θ, when it exists and is consistent for the parameter vector
θ0 that characterizes the DGP, is asymptotically normal if

(i) the contributions `t(y,θ) to ` are at least twice continuously dif-
ferentiable in θ for almost all y and all θ ∈ Θ,

(ii) the component sequences of {D2
θθ `t(y,θ)}∞t=1 satisfy condition

WULLN on Θ, and

(iii) the component sequences of {Dθ `t(y,θ)}∞t=1 satisfy condition
CLT.

By asymptotic normality, it is meant that the sequence of random
variables n1/2(θ̂ − θ0) has a limit in probability which is a random
variable of order unity, normally distributed with mean zero and co-
variance matrix (8.42).

8.6 The Information Matrix Equality

In this section, we will establish an important result that allows a substantial
simplification of expression (8.42) for the asymptotic covariance matrix of the
ML estimator. This result, which, as the title of the section announces, is
called the information matrix equality, is

H(θ0) = −I(θ0). (8.43)
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In words, the limiting Hessian matrix is the negative of the limiting informa-
tion matrix. An analogous result is true for individual observations:

E0

(
D2
θθ `t(y,θ0)

)
= −E0

(
Dθ
>̀
t(y,θ0)Dθ `t(y,θ0)

)
. (8.44)

The latter result clearly implies the former, given the assumptions that permit
the application of a law of large numbers to the sequences {D2

θθ `t(y,θ0)}∞t=1

and {Dθ>̀ t(y,θ0)Dθ `t(y,θ0)}∞t=1.

The result (8.44) is proved by an argument very similar to that used at
the beginning of the last section in order to show that the expectation of the
CG matrix is zero. From the fact that

∂`t
∂θi

=
1

Lt

∂Lt
∂θi

,

we obtain after a further differentiation that

∂2`t
∂θi∂θj

=
1

Lt

∂2Lt
∂θi∂θj

− 1

L2
t

∂Lt
∂θi

∂Lt
∂θj

.

Consequently,
∂2`t
∂θi∂θj

+
∂`t
∂θi

∂`t
∂θj

=
1

Lt

∂2Lt
∂θi∂θj

. (8.45)

If now we take the expectation of (8.45) for the DGP characterized by the
same value of the parameter vector θ as that at which the functions `t and
Lt are evaluated (which as usual we denote by Eθ), we find that

Eθ

(
∂2`t
∂θi∂θj

+
∂`t
∂θi

∂`t
∂θj

)
=

∫
Lt

1

Lt

∂2Lt
∂θi∂θj

dyt

=
∂2

∂θi∂θj

∫
Lt dyt = 0,

(8.46)

provided that, as for (8.34), the interchange of the order of differentiation and
integration can be justified. The result (8.46) now establishes (8.44), since it
implies that

Eθ

(
∂2`t
∂θi∂θj

)
= 0− Eθ

(
∂`t
∂θi

∂`t
∂θj

)
= −Eθ

(
∂`t
∂θi

∂`t
∂θj

)
.

In order to establish (8.43), recall that, from (8.19) and the law of large
numbers,

Hij(θ) = lim
n→∞

(
1−
n

n∑
t=1

Eθ

(
∂2`t(θ)

∂θi∂θj

))

= − lim
n→∞

(
1−
n

n∑
t=1

Eθ

(
∂`t(θ)

∂θi

∂`t(θ)

∂θj

))
= −Iij(θ),
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where the last line follows immediately from the definition of the limiting
information matrix, (8.22). This then establishes (8.43).

By substituting either −H(θ0) for I(θ0) or I(θ0) for −H(θ0) in (8.42),
it is now easy to conclude that the asymptotic covariance matrix of the ML
estimator is given by either of the two equivalent expressions −H(θ0)−1 and
I(θ0)−1. Formally, we may write

V ∞
(
n1/2(θ̂ − θ0)

)
= I−1(θ0) = −H−1(θ0).

In order to perform any statistical inference, it is necessary to be able to
estimate I−1(θ0) or −H−1(θ0). One estimator which suggests itself at once
is I−1(θ̂), that is, the inverse of the limiting information matrix evaluated at
the MLE, θ̂. Notice that the matrix function I(θ) is not a sample-dependent
object. It can, in principle, be computed theoretically as a matrix function
of the model parameters from the (sequence of) loglikelihood functions `n.
For some models, this is an entirely feasible computation, and then it yields
what is often the preferred estimator of the asymptotic covariance matrix.
But for many models the computation, even if feasible, would be excessively
laborious, and in these cases it is convenient to have available other consistent
estimators of I(θ0) and consequently of the asymptotic covariance matrix.

One common estimator is the negative of the so-called empirical Hessian.
This matrix is defined as

Ĥ ≡ 1−
n

n∑
t=1

D2
θθ `t(y, θ̂). (8.47)

The consistency of θ̂ and the application of a law of large numbers to the
right-hand side guarantees the consistency of (8.47) for H(θ0). When the
empirical Hessian is readily available, as it will be if maximization routines
that use second derivatives are employed, minus its inverse can provide a very
convenient way to estimate the covariance matrix of θ̂. However, the Hessian
is often difficult to compute, and if it is not already being calculated for other
purposes, it probably does not make sense to compute it just to estimate a
covariance matrix.

Another commonly used estimator of the information matrix is known as
the outer-product-of-the-gradient estimator, or OPG estimator. It is based
on the definition

I(θ) ≡ lim
n→∞

(
1−
n

n∑
t=1

Eθ
(
Dθ
>̀
t(θ)Dθ`t(θ)

))
.

The OPG estimator is

ÎOPG ≡ 1−
n

n∑
t=1

Dθ
>̀
t(y, θ̂)Dθ`t(y, θ̂) = 1−

n
G>(θ̂)G(θ̂), (8.48)
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and its consistency is again guaranteed by condition CLT, which includes a
law of large numbers for the sum in (8.48).

The OPG estimator of the information matrix was advocated by Berndt,
Hall, Hall, and Hausman (1974) in a very well-known paper and is therefore
sometimes referred to as the BHHH estimator. They also suggested its use as
part of a general scheme for maximizing loglikelihood functions, analogous to
the schemes based on the Gauss-Newton regression that we discussed in Sec-
tion 6.8. Unfortunately, the estimator (8.48) turns out in practice to be rather
noisy, which limits its usefulness for both estimating covariance matrices and
numerical maximization.7 Whereas in I(θ̂) the only stochastic element is the
MLE θ̂ itself, both the empirical Hessian and the OPG estimator depend ex-
plicitly on the realized sample y, and this imparts to them additional noise
that makes inferences based on them less reliable than one would often like.
The OPG estimator often seems to be particularly poor, as we discuss in
Chapter 13.

In certain cases, it is possible to find estimators somewhere between the
(usually) preferred estimator I(θ̂) and the OPG estimator, in which one can
take the expectations of some of the terms appearing in (8.48) but not of all.
This generally appears to be a good thing to do, in terms of the quality of
statistical inference that one can draw based on the asymptotic distributions of
estimators or test statistics. The Gauss-Newton covariance matrix estimator
is of this type whenever the model contains lagged dependent variables, since
the matrix n−1X>(β̂)X(β̂) will then depend on lagged values of y as well as
on β̂. Several more examples of this type of estimator will appear later in the
book, most notably in Chapters 14 and 15.

The above discussion has perhaps not made clear a point that is of the
highest practical importance when one is trying to make inferences about a
set of ML estimates θ̂. All of the asymptotic distribution theory is in terms
of n1/2(θ̂ − θ0), but in practice we actually want to use θ̂ to make inferences
about θ. This means that we must base our inferences not on quantities which
estimate I(θ0) but rather on quantities which estimate nI(θ0). Thus three
estimators that may be used in practice to estimate V (θ̂) are the inverse of
the negative of the numerical Hessian,(

−H(θ̂)
)−1

, (8.49)

the inverse of the OPG estimator of the O(n) information matrix,(
G>(θ̂)G(θ̂)

)−1
, (8.50)

and the inverse of the O(n) information matrix itself,(
nI(θ̂)

)−1 ≡
(
I n(θ̂)

)−1
. (8.51)

7 There will be some further discussion of alternative ways to estimate the covar-
iance matrix of ML estimates in Chapter 13. For evidence on the performance
of the OPG estimator in the BHHH estimation scheme, see Belsley (1980).
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In addition to (8.49), (8.50), and (8.51), which are very widely applicable,
there are various hybrid estimators for certain classes of models, such as es-
timators based on the Gauss-Newton and other artificial regressions. Note
that all these covariance matrix estimators will be n times smaller than the
estimators of the covariance matrix of n1/2(θ̂−θ0), such as (8.47) and (8.48),
which we have been discussing up to this point.

Although it is common to take as many expectations as possible when
estimating the covariance matrix of θ̂, it is not obvious that doing so is always
a good thing. Consider the following example. Suppose that yt = βxt + ut,
where xt is a binary variable that is known to take the value 1 with probabil-
ity p and the value 0 with probability 1− p. Suppose further (for simplicity)
that the variance of ut is known and equal to unity. Then the information ma-
trix, which is just a scalar in this case, is E

(
n−1

∑n
t=1 x

2
t

)
= p. Thus the usual

estimate of the variance of β̂ based on the information matrix is simply (np)−1.

It should be obvious that, when np is small, (np)−1 could be a very
misleading estimate of the actual variance of β̂ conditional on the particular
sample that was observed. Suppose, for example, that n were 100 and p were
.02. The usual variance estimate would be 1

2 . But it could well be the case that
none of the xt’s in the sample happened to be equal to 1; this would happen
with probability .133. Then that particular sample would not identify β at
all, and the variance of β̂ would be infinite. Alternatively, it might be that
just one of the xt’s in the sample was equal to 1. Then β would be identified,
but 1

2 would clearly be an underestimate of the actual variance of β̂. On
the other hand, if more than two of the xt’s were equal to 1, β̂ would have
variance smaller than (np)−1. Only if np happened to equal its expected value
of 2 would the asymptotic variance estimate correspond to the actual variance
of β̂ conditional on the observed sample.

This example is very special, but the phenomenon it deals with is quite
general. Whenever we calculate the covariance matrix of some vector of para-
meter estimates, we presumably care about the accuracy of that particular
set of estimates. That depends on the amount of information that has been
provided by the sample at hand rather than the amount of information that
would be provided by a typical sample of the same size. Hence, in a very real
sense, it is the observed information matrix rather than the expected infor-
mation matrix that we should be interested in. For a much more extensive
discussion of this point, see Efron and Hinkley (1978).

8.7 Concentrating the Loglikelihood Function

It often happens that the parameters on which a loglikelihood function de-
pends can be partitioned into two sets in a way which makes it easy to write
down the ML estimator of one set of parameters as a function of the values
of the other set. We will encounter an example of this, in connection with
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ML estimation of regression models, in Section 8.10, and further examples
in Chapter 9. In this situation, it can be very convenient to concentrate the
loglikelihood function by writing it as a function of only one of the two sets
of parameters. Suppose that we can write the loglikelihood function `(y,θ)
as `(y,θ1,θ2). The first-order conditions which define the (Type 2) ML esti-
mators θ̂1 and θ̂2 are

D1`(y,θ1,θ2) = 0 and D2`(y,θ1,θ2) = 0,

where, as usual, Di` denotes the row vector of partial derivatives ∂`/∂θi for
i = 1, 2. Assume that it is possible to solve the second of these first-order
conditions, so as to be able to write

θ2 = τ (y,θ1).

Then this implies that, identically in θ1,

D2`
(
y,θ1, τ (y,θ1)

)
= 0. (8.52)

Substituting τ (y,θ1) for θ2 in `(y,θ1,θ2), we obtain the concentrated log-
likelihood function

`c(y,θ1) ≡ `
(
y,θ1, τ (y,θ1)

)
.

If θ̂1 maximizes this, we can then obtain θ̂2 as τ (y, θ̂1), and it is evident that
[θ̂1

.... θ̂2] will maximize `(y,θ). In some cases, this strategy can substantially
reduce the amount of effort required to obtain ML estimates.

It is obvious that `c(y, θ̂1) will be identical to `(y, θ̂). However, it is not
obvious that we can calculate an estimated covariance matrix for θ̂1 based on
`c(y,θ1) in the same way that we can based on `(y,θ). In fact, provided we
use as the estimator the inverse of the negative of the empirical Hessian, it
is possible to do just that. The reason is that, by virtue of the way in which
`c is constructed, the inverse of its Hessian with respect to θ1 is equal to the
(θ1,θ1) block of the inverse of the Hessian of `(y,θ) with respect to the full
parameter vector θ. This follows from the envelope theorem and standard
results on partitioned matrices, as we now demonstrate.

By the first-order condition (8.52), the gradient of `c with respect to θ1 is

D1`
c(θ1) = D1`

(
θ1, τ (θ1)

)
+D2`

(
θ1, τ (θ1)

)
Dτ (θ1)

= D1`
(
θ1, τ (θ1)

)
,

where the explicit dependence on y has been suppressed. This result is just
the envelope theorem applied to `c. Thus the Hessian of `c(θ1) is

D11`
c(θ1) = D11`

(
θ1, τ (θ1)

)
+D12`

(
θ1, τ (θ1)

)
Dτ (θ1). (8.53)
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In order to express the right-hand side of (8.53) in terms of blocks of the
Hessian of ` only, we differentiate (8.52) with respect to θ1, obtaining

D21`
(
θ1, τ (θ1)

)
+D22`

(
θ1, τ (θ1)

)
Dτ (θ1) = 0.

Solving this equation for Dτ (θ1) and substituting the result into (8.53), the
expression for the Hessian of `c, gives

D11`
c = D11`−D12`(D22`)

−1D21`, (8.54)

in which the arguments of ` and `c have been dropped for simplicity. The
Hessian of ` can be written in partitioned form as

Dθθ ` =

[
D11` D12`

D21` D22`

]
.

Standard results on partitioned matrices (see Appendix A) tell us that the
(θ1,θ1) block of the inverse of this Hessian is

(
D11`−D12`(D22`)

−1D21`
)−1

,

the inverse of which is just the expression for D11`
c in (8.54).

Using concentrated loglikelihood functions has some disadvantages. The
original loglikelihood function can in most cases be conveniently written as

`(y,θ) =

n∑
t=1

`t(yt,θ). (8.55)

This is generally not true for the concentrated loglikelihood function, however.
The equivalent of (8.55) is

`c(y,θ1) =
n∑
t=1

`t
(
yt,θ1, τ (y,θ1)

)
,

and it is evident that, because of the dependence of τ (·) on the entire vector y,
there is in general no simple way to write `c(y,θ1) as a sum of contributions
from each of the observations. This means that the OPG estimator of the
information matrix is generally not available for concentrated loglikelihood
functions. One can of course use `c(y,θ1) for estimation and then turn to
`(y,θ) when it comes time to estimate the covariance matrix of the estimates.
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8.8 Asymptotic Efficiency of the ML Estimator

In this section, we will demonstrate the asymptotic efficiency of the ML esti-
mator or, strictly speaking, of the Type 2 ML estimator. Asymptotic efficiency
means that the variance of the asymptotic distribution of any consistent esti-
mator of the model parameters differs from that of an asymptotically efficient
estimator by a positive semidefinite matrix; see Definition 5.6. One says an
asymptotically efficient estimator rather than the asymptotically efficient es-
timator because, since the property of asymptotic efficiency is a property only
of the asymptotic distribution, there can (and do) exist many estimators that
differ in finite samples but have the same, efficient, asymptotic distribution.
An example can be taken from the nonlinear regression model, in which, as
we will see in Section 8.10, NLS is equivalent to ML estimation if we assume
normality of the error terms. As we saw in Section 6.6, there are nonlinear
models that are just linear models with some nonlinear restrictions imposed
on them. In such cases, one-step estimation starting from the estimates of
the linear model was seen to be asymptotically equivalent to NLS, and hence
asymptotically efficient. One-step estimation is possible in the general max-
imum likelihood context as well and can often provide an efficient estimator
that is easier to compute than the ML estimator itself.

We will begin our proof of the asymptotic efficiency of the ML estimator
by a discussion applicable to any root-n consistent and asymptotically unbi-
ased estimator of the parameters of the model represented by the loglikelihood
function `(y,θ). Note that consistency by itself does not imply asymptotic
unbiasedness without the imposition of various regularity conditions. Since
every econometrically interesting consistent estimator that we are aware of is
in fact asymptotically unbiased, we will deal only with such estimators here.
Let such an estimator be denoted by θ̂(y), where the notation emphasizes
the fact that the estimator is a random variable, dependent on the realized
sample y. Note that we have changed notation here, since θ̂(y) is in general
not the ML estimator. Instead, the latter will be denoted θ̃(y); the new no-
tation is designed to be consistent with our treatment throughout the book
of restricted and unrestricted estimators, since in an important sense the ML
estimator corresponds to the former and the arbitrary consistent estimator
θ̂(y) corresponds to the latter.

Because θ̂(y) is assumed to be asymptotically unbiased, we have that

lim
n→∞

Eθ
(
θ̂(y)− θ

)
= 0.

In more explicit notation, this becomes:

lim
n→∞

(∫
Yn
Ln(yn,θ)θ̂n(yn)dyn − θ

)
= 0, (8.56)

where, as before, Yn denotes the subspace of Rnm over which the sample vector
yn may vary in a sample of size n. The next steps involve differentiating the
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relation (8.56) with respect to the elements of θ, interchanging the order
of the operations of differentiation and integration, and taking the limit as
n→∞. We omit discussion of the regularity conditions necessary for this to
be admissible and proceed directly to write down the result of differentiating
the jth component of (8.56) with respect to the ith component of θ:

lim
n→∞

∫
Yn
Ln(yn,θ)

∂`n(yn,θ)

∂θi
θ̂j(y

n)dyn = δij . (8.57)

The right-hand side of this equation is the Kronecker delta, equal to 1 when
i = j and equal to 0 otherwise. Equation (8.57) can be rewritten as

lim
n→∞

Eθ

(
n−1/2 ∂`

n(yn,θ)

∂θi
n1/2

(
θ̂j − θj

))
= δij , (8.58)

where we have put in some powers of n to ensure that the quantities which
appear in the expression have probability limits of order unity. We have also
subtracted θj from θ̂j ; this was possible because Eθ

(
Dθ `(θ)

)
= 0, and hence θj

times Eθ
(
Dθ `(θ)

)
is also equal to zero.

Expression (8.58) can be written without any limiting operation if we
use the limiting distributions of the gradient Dθ ` and the vector n1/2(θ̂− θ).
Let us introduce a little more notation for the purposes of discussing limiting
random variables. We make the definitions

sn(θ) ≡ n−1/2g(yn,θ), s(θ) ≡ plim
n→∞

θ s
n(θ), (8.59)

t̂n(θ) ≡ n1/2
(
θ̂ − θ

)
, and t̂(θ) ≡ plim

n→∞
θ t̂
n(θ). (8.60)

Thus s(θ) and t̂(θ) are k--vectors with typical elements si(θ) and t̂j(θ), re-
spectively. The former is the limiting value of n−1/2 times a typical element
of the gradient of `(y,θ), while the latter is the limiting value of n1/2 times a
typical element of the difference between θ̂ and θ. The notation is intended to
be mnemonic, s(θ) corresponding to the score vector and t̂(θ) corresponding
to theta hat. In this convenient new notation, expression (8.58) becomes

Eθ
(
t̂(θ)s>(θ)

)
= Ik, (8.61)

where Ik is simply the k × k identity matrix.

It is not generally true for any consistent estimator that the plim in
(8.60) exists or, if it does, is not zero. The class of estimators for which it
exists and is nonzero is called the class of root-n consistent estimators. As we
discussed in Chapter 5, this means that the rate of convergence, as n→∞, of
the estimator θ̂ to the true value θ is the same as the rate of convergence of
n−1/2 to zero. The existence of a nonzero plim in (8.60) clearly implies just
that, and we have already shown that the ML estimator is root-n consistent.
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The consistency of θ̂ also implies that the expectation of the limiting random
variable t̂(θ) is zero.

For the next part of the argument, we first consider the simple case in
which k = 1. Then instead of (8.61) we have the scalar relation

Eθ
(
t̂(θ)s(θ)

)
= Covθ

(
t̂(θ), s(θ)

)
= 1. (8.62)

We have here used the fact that the expectations of both t̂(θ) and s(θ) are
zero. The result (8.62) implies the well-known Cauchy-Schwartz inequality:

1 =
(
Covθ

(
t̂(θ), s(θ)

))2
≤ Varθ

(
t̂(θ)

)
Varθ

(
s(θ)

)
= Varθ

(
t̂(θ)

)
I(θ), (8.63)

where the last equality follows from the definition (8.59) of s(θ) and the def-
inition of the limiting information matrix I(θ), which is in this case a scalar.
The inequality (8.63) implies that

Varθ
(
t̂(θ)

)
≥ 1

I(θ)
. (8.64)

This result establishes, in this one-dimensional case, that the asymptotic var-
iance of any root-n consistent estimator cannot be less than the reciprocal
of what it seems logical to call the information scalar. Since the right-hand
side of (8.64) is precisely the asymptotic variance of the ML estimator, the
asymptotic efficiency of the latter is also established by this result. Note that
(8.64) rules out any estimator for which the plim of n1/2(θ̂ − θ0) is zero. Such
an estimator would of course be more efficient asymptotically than the ML
estimator, since it would converge more rapidly to the true value of θ.

The general result analogous to (8.64) for the case k ≥ 1 can now be
established by just a little more work. Consider the full covariance matrix of
all of the components of t̂ and s, that is, the covariance matrix of [t̂(θ)

.... s(θ)].
Let the covariance matrix of t̂ be denoted by V . Then (8.61) and the fact
that Varθ

(
s>(θ)

)
= I(θ) mean that the covariance matrix of [t̂(θ)

.... s(θ)] can
be written as

Var(t̂, s) =

[
V Ik

Ik I

]
.

Since it is a covariance matrix, this must be positive semidefinite. Thus, for
any k--vector a, the following expression is nonnegative:

[
a>− a>I−1

] [V Ik

Ik I

] [
a

−I−1a

]
= a>

(
V − I−1

)
a.

But this implies, since a is arbitrary, that the matrix
(
V − I−1

)
is positive

semidefinite, which is what we wanted to prove.
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This result is a special case of the Cramér-Rao lower bound, originally
suggested by Fisher (1925) in one of the classic early papers on ML estimation
and enunciated in its modern form by Cramér (1946) and Rao (1945). It is
special because it is an asymptotic version of the original result. The Cramér-
Rao lower bound actually applies to any unbiased estimator regardless of
sample size. However, since ML estimators are not in general unbiased, it
is only the asymptotic version of the result that is of interest in the context
of ML estimation, and so we have restricted our attention to the asymptotic
case.

The fact that the ML estimator asymptotically achieves the Cramér-Rao
lower bound implies that any root-n consistent estimator can be written as the
sum of the ML estimator and another random vector which is asymptotically
independent of it. This result provides an illuminating way to think about
the relationship between efficient and inefficient estimators. To derive it, we
begin by making the definitions

t̃n(θ) ≡ n1/2
(
θ̃ − θ

)
, t̃(θ) ≡ plim

n→∞
θ

(
t̃n(θ)

)
,

vn ≡ t̂n(θ)− t̃n(θ), and v ≡ t̂(θ)− t̃(θ).
(8.65)

As may be seen from the definitions (8.60) and (8.65), vn and v do not depend
directly on θ.

We wish to show that the covariance matrix of v and t̃ is a zero matrix.
This covariance matrix is

Covθ
(
v, t̃(θ)

)
= Eθ

(
vt̃>(θ)

)
= Eθ

((
t̂(θ)− t̃(θ)

)
t̃>(θ)

)
= Eθ

(
t̂(θ)t̃>(θ)

)
− I−1(θ).

(8.66)

Using the information matrix equality, the result (8.38) can be written as

n1/2(θ̃ − θ0)
a
=
(
I(θ)

)−1(
n−1/2g(θ)

)
.

In the notation of (8.59) and (8.60), this becomes

t̃(θ) = I−1(θ)s(θ).

Thus, continuing from the last line of (8.66), we have

Covθ
(
v, t̃(θ)

)
= Eθ

(
t̂(θ)s>(θ)I−1(θ)

)
− I−1(θ)

= Eθ
(
t̂(θ)s>(θ)

)
I−1(θ)− I−1(θ)

= I−1(θ)− I−1(θ) = 0.

The fundamental result (8.61) has been used to obtain the last line here.
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Thus we conclude that

t̂(θ) = t̃(θ) + v, (8.67)

with v being asymptotically uncorrelated with t̃. If t̂ is asymptotically nor-
mal along with t̃, this asymptotic zero correlation further implies asymptotic
independence. Another way to write the result (8.67) is

θ̂
a
= θ̃ + n−1/2vn.

This makes it clear that an inefficient but consistent estimator θ̂ can always be
decomposed, asymptotically, into the sum of the asymptotically efficient ML
estimator θ̃ and another random variable, which tends to zero as n→∞ and
is asymptotically uncorrelated with the efficient estimator. Evidently, the full
range of asymptotically normal consistent estimators can be generated from
the ML estimator θ̃ by adding to it multivariate normal zero-mean random
variables independent of θ̃. These can be thought of as noise contaminating
the efficient signal given by θ̃. The interpretation of the Cramér-Rao result is
quite obvious now: Since the variance of the sum of two independent random
variables is the sum of their respective variances, the positive semidefinite
matrix which is the difference between the covariance matrices of θ̂ and θ̃ is
just the (possibly degenerate) covariance matrix of the vector of noise variables
n−1/2v.

These results for ML estimators are similar to, but much stronger than,
the results we obtained for nonlinear least squares in Section 5.5. There we
saw that any consistent but inefficient estimator which is asymptotically linear
in the error terms can be written as the sum of the efficient estimator plus
a random variable (or vector) which is asymptotically uncorrelated with the
efficient estimator. The proof of the Gauss-Markov Theorem also involved a
similar result.

8.9 The Three Classical Test Statistics

One of the attractive features of ML estimation is that test statistics based
on the three principles we first discussed in Chapter 3 — the likelihood ratio,
Lagrange multiplier, and Wald principles — are always available and are often
easy to compute. These three principles of hypothesis testing were first enun-
ciated in the context of ML estimation, and many authors still use the terms
“likelihood ratio,” “Lagrange multiplier,” and “Wald” only in the context of
tests based on ML estimates. In this section, we provide an introduction to
what are often referred to as the three classical tests. All three of these test
statistics have the same distribution asymptotically under the null hypothesis;
if there are r equality restrictions, they are distributed as χ2(r). In fact, they
actually tend to the same random variable asymptotically, both under the
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null and under all sequences of DGPs that are close to the null in a certain
sense. An adequate treatment of these important results requires more space
than we have available in this section. We will therefore defer it until Chapter
13, which provides a much more detailed discussion of the three classical test
statistics.

Conceptually the simplest of the three classical tests is the likelihood
ratio, or LR, test. The test statistic is simply twice the difference between
the restricted and unrestricted values of the loglikelihood function,

2
(
`(θ̂)− `(θ̃)

)
, (8.68)

where θ̂ denotes the unrestricted ML estimate of θ, θ̃ denotes the ML estimate
subject to r distinct restrictions, and the dependence of ` on y has been
suppressed for notational simplicity. The LR statistic gets its name from the
fact that (8.68) is equal to

2 log

(
L(θ̂)

L(θ̃)

)
,

or twice the logarithm of the ratio of the likelihood functions. It is trivially
easy to compute when both restricted and unrestricted estimates are available,
and that is one of its attractive features.

To derive the asymptotic distribution of the LR statistic one begins by
taking a second-order Taylor-series approximation to `(θ̃) around θ̂. Although
we will not complete the derivation in this section, it is illuminating to go
through the first few steps. The result of the Taylor-series approximation is

`(θ̃) ∼= `(θ̂) + 1−
2

(θ̃ − θ̂)>H(θ̂)(θ̃ − θ̂). (8.69)

There is no first-order term here because g(θ̂) = 0 by the first-order conditions
(8.12). Rearranging (8.69) yields

2
(
`(θ̂)− `(θ̃)

) ∼= −(θ̃ − θ̂)>H(θ̂)(θ̃ − θ̂)

a
=
(
n1/2(θ̃ − θ̂)

)>I(θ̂)
(
n1/2(θ̃ − θ̂)

)
.

(8.70)

This exercise makes it clear where the factor of 2 in the definition of the LR
statistic comes from. The next step would be to replace n1/2(θ̃− θ̂) in (8.70)
by

n1/2(θ̃ − θ0)− n1/2(θ̂ − θ0)

and then to use the result (8.38), together with an analogous result for re-
stricted estimates that we will obtain shortly, to obtain the asymptotic dis-
tribution of the LR statistic. We will do this in Chapter 13.

We now turn our attention to the Lagrange multiplier, or LM, test. This
test statistic actually has two names and two different forms, which turn out
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to be numerically identical if the same estimate of the information matrix
is used to calculate them. One form, originally proposed by Rao (1948), is
called the score form of the LM test, or simply the score test, and is calcu-
lated using the gradient or score vector of the unrestricted model evaluated at
the restricted estimates. The other form, which gives the test its name, was
proposed by Aitchison and Silvey (1958, 1960) and Silvey (1959). This lat-
ter form is calculated using the vector of Lagrange multipliers which emerge
if one maximizes the likelihood function subject to constraints by means of
a Lagrangian. Econometricians generally use the LM test in its score form
but nevertheless insist on calling it an LM test, perhaps because Lagrange
multipliers are so widely used in economics. References on LM tests in econo-
metrics include Breusch and Pagan (1980) and Engle (1982a, 1984). Buse
(1982) provides an intuitive discussion of the relationships among the LR,
LM, and Wald tests.

One way to maximize `(θ) subject to the exact restrictions

r(θ) = 0, (8.71)

where r(θ) is an r--vector with r ≤ k, is simultaneously to maximize the
Lagrangian

`(θ)− r>(θ)λ

with respect to θ and minimize it with respect to the r--vector of Lagrange
multipliers λ. The first-order conditions that characterize the solution to this
problem are

g(θ̃)−R>(θ̃)λ̃ = 0

r(θ̃) = 0,
(8.72)

where R(θ) is a r × k matrix with typical element ∂ri(θ)/∂θj .

We are interested in the distribution of λ̃ under the null hypothesis, so
we will suppose that the DGP satisfies (8.71) with parameter vector θ0. The
value of the vector of Lagrange multipliers λ if θ̃ were equal to θ0 would
be zero. Thus it seems natural to take a first-order Taylor expansion of the
first-order conditions (8.72) around the point (θ0,0). This yields

g(θ0) +H(θ̄)(θ̃ − θ0)−R>(θ̄)λ̃ = 0

R(θ̈)(θ̃ − θ0) = 0,

where θ̄ and θ̈ denote values of θ that lie between θ̃ and θ0. These equations
may be rewritten as[−H(θ̄) R>(θ̄)

R(θ̈) 0

][
θ̃ − θ0

λ̃

]
=

[
g(θ0)

0

]
. (8.73)

If we multiply H(θ̄) by n−1, θ̃− θ0 by n1/2, g(θ0) by n−1/2, and λ̃ by n−1/2,
we do not change the equality in (8.73), and we render all quantities that
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appear in it O(1). Readers may wish to verify that these factors of n are
indeed the appropriate ones and, in particular, that λ̃ must be multiplied by
n−1/2. Using the fact that θ̃ and hence θ̄ and θ̈ are consistent, applying a
suitable law of large numbers to n−1H(θ̄), and solving the resulting system
of equations, yields[

n1/2(θ̃ − θ0)

n−1/2λ̃

]
a
=

[
−H0 R0

>

R0 0

]−1 [n−1/2g(θ0)

0

]
, (8.74)

where H0 denotes H(θ0) and R0 denotes R(θ0).

The system of equations (8.74) is, for the restricted case, the equivalent of
equation (8.38) for the unrestricted case. The first thing to notice about it is
that the k elements of n1/2(θ̃−θ0) and the r elements of n−1/2λ̃ all depend on
the random k--vector n−1/2g(θ0). We have already seen that, under standard
regularity conditions, the latter is asymptotically normally distributed with
mean vector zero and covariance matrix I(θ0). Thus from (8.74) we see that
both n1/2(θ̃ − θ0) and n−1/2λ̃ must be asymptotically normally distributed.
Observe that the (k + r)--vector on the left-hand side of (8.74) must have a
singular covariance matrix, since its rank cannot exceed k, which is the rank
of I(θ0).

By analytically inverting the partitioned matrix and then multiplying the
two factors on the right-hand side of (8.74), one readily if somewhat tediously
obtains expressions for n1/2(θ̃ − θ0) and n−1/2λ̃. These are

n1/2(θ̃ − θ0)
a
= −H−1

0

(
I−R0

>(R0H
−1
0 R0

>)−1R0H
−1
0

)(
n−1/2g(θ0)

)
and

n−1/2λ̃
a
=
(
R0H

−1
0 R0

>)−1
R0H

−1
0

(
n−1/2g(θ0)

)
.

From the second of these, the asymptotic normality of n−1/2g(θ0), and the
information equality, it is easy to see that

n−1/2λ̃
a∼ N

(
0, (R0 I

−1
0 R0

>)−1
)
. (8.75)

It is now straightforward to derive the Lagrange multiplier test in its LM
form. The test statistic is simply a quadratic form in the r--vector n−1/2λ̃:(

n−1/2λ̃
)>(R̃ Ĩ−1R̃>

)(
n−1/2λ̃

)
= 1−
n
λ̃>R̃ Ĩ−1R̃>λ̃. (8.76)

Here Ĩ may be any matrix that uses the restricted estimates θ̃ to estimate
I(θ0) consistently. Different variants of the LM statistic will use different
estimates of I(θ0). It is obvious from (8.75) that under standard regularity
conditions this test statistic will be asymptotically distributed as χ2(r) under
the null hypothesis.
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The LM statistic (8.76) is numerically equal to a test based on the score
vector g(θ̃). By the first set of first-order conditions (8.72), g(θ̃) = R̃>λ̃.
Substituting g(θ̃) for R̃>λ̃ in (8.76) yields the score form of the LM test,

1−
n
g̃>Ĩ−1g̃. (8.77)

In practice, this score form is often more useful than the LM form because,
since restricted estimates are rarely obtained via a Lagrangian, g̃ is generally
readily available while λ̃ typically is not. However, deriving the test via the
Lagrange multipliers is illuminating, because this derivation makes it quite
clear why the test has r degrees of freedom.

The third of the three classical tests is the Wald test. This test is very
easy to derive. It asks whether the vector of restrictions, evaluated at the
unrestricted estimates, is close enough to a zero vector for the restrictions to
be plausible. In the case of the restrictions (8.71), the Wald test is based
on the vector r(θ̂), which should tend to a zero vector asymptotically if the
restrictions hold. As we have seen in Sections 8.5 and 8.6,

n1/2(θ̂ − θ0)
a∼ N

(
0, I−1(θ0)

)
.

A Taylor-series approximation of r(θ̂) around θ0 yields r(θ̂) ∼= R0(θ̂ − θ0).
Therefore,

V
(
n1/2r(θ̂)

) a
= R0 I

−1
0 R0

>.

It follows that an appropriate test statistic is

nr>(θ̂)
(
R̂ Î−1R̂>

)−1
r(θ̂), (8.78)

where Î denotes any consistent estimate of I(θ0) based on the unrestricted
estimates θ̂. Different variants of the Wald test will use different estimates of
I(θ0). It is easy to see that given suitable regularity the test statistic (8.78)
will be asymptotically distributed as χ2(r) under the null.

The fundamental property of the three classical test statistics is that
under the null hypothesis, as n → ∞, they all tend to the same random
variable, which is distributed as χ2(r). We will prove this result in Chapter 13.
The implication is that, in large samples, it does not really matter which of
the three tests we use. If both θ̂ and θ̃ are easy to compute, it is attractive
to use the LR test. If θ̃ is easy to compute but θ̂ is not, as is often the case
for tests of model specification, then the LM test becomes attractive. If on
the other hand θ̂ is easy to compute but θ̃ is not, as may be the case when
we are interested in nonlinear restrictions on a linear model, then the Wald
test becomes attractive. When the sample size is not large, choice among the
three tests is complicated by the fact that they may have very different finite-
sample properties, which may further differ greatly among the alternative
variants of the LM and Wald tests. This makes the choice of tests rather
more complicated in practice than asymptotic theory would suggest.
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8.10 Nonlinear Regression Models

In this section, we discuss how the method of maximum likelihood may be
used to estimate univariate nonlinear regression models. When the error terms
are assumed to be normally and independently distributed with constant var-
iance, ML estimation of these models is, at least as regards the estimation of
the parameters of the regression function, numerically identical to NLS esti-
mation. The exercise is nevertheless a useful one. First of all, it provides a
concrete illustration of how to use the method of maximum likelihood. Sec-
ondly, it provides an asymptotic covariance matrix for the estimates of β and
σ jointly, whereas NLS provides one for the estimates of β alone. Finally, by
considering some extensions of the normal regression model, we are able to
demonstrate the power of ML estimation.

The class of models that we will consider is

y = x(β) + u, u ∼ N(0, σ2 I), (8.79)

where the regression function x(β) satisfies the conditions for Theorems 5.1
and 5.2, and the data are assumed to have been generated by a special case
of (8.79). The parameter vector β is assumed to be of length k, which implies
that there are k+1 parameters to be estimated. The notation “u ∼ N(0, σ2I)”
means that the vector of error terms u is assumed to be distributed as mul-
tivariate normal with mean vector zero and covariance matrix σ2 I. Thus the
individual error terms ut are independent, each distributed as N(0, σ2). The
density of ut is

f(ut) =
1√
2π

1
σ

exp

(
− u2

t

2σ2

)
.

In order to construct the likelihood function, we need the density of yt rather
than the density of ut. This requires us to use a standard result in statistics
which is discussed in Appendix B.

The result in question says that if a random variable x1 has density f1(x1)
and another random variable x2 is related to it by

x1 = h(x2),

where the function h(·) is continuously differentiable and monotonic, then the
density of x2 is given by

f2(x2) = f1

(
h(x2)

) ∣∣∣∣∂h(x2)

∂x2

∣∣∣∣ .
The second factor here is the absolute value of the Jacobian of the trans-
formation. In many cases, as we discuss below, its presence gives rise to
Jacobian terms in loglikelihood functions. In this case, however, the function
that relates ut to yt is

ut = yt − xt(β).
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The Jacobian factor |∂ut/∂yt| is therefore equal to unity. Thus we conclude
that the density of yt is

1√
2π

1
σ

exp

(
−
(
yt − xt(β)

)2
2σ2

)
. (8.80)

The contribution to the loglikelihood function made by the tth observation is
the logarithm of (8.80),

`t(yt,β, σ) = − 1−
2

log(2π)− log(σ)− 1

2σ2

(
yt − xt(β)

)2
.

Since all the observations are independent, the loglikelihood function itself is
just the sum of the contributions `t(yt,β, σ) over all t, or

`(y,β, σ) = − n−
2

log(2π)− n log(σ)− 1

2σ2

n∑
t=1

(
yt − xt(β)

)2
= − n−

2
log(2π)− n log(σ)− 1

2σ2

(
y − x(β)

)>(y − x(β)
)
.

(8.81)

The first step in maximizing `(y,β, σ) is to concentrate it with respect
to σ, as discussed in Section 8.7. Differentiating the second line of (8.81) with
respect to σ and equating the derivative to zero yields

∂`(y,β, σ)

∂σ
= − n

σ
+

1

σ3

(
y − x(β)

)>(y − x(β)
)

= 0,

and solving this yields the result that

σ̂(β) =
(
1−
n

(
y − x(β)

)>(y − x(β)
))1/2

.

Here the notation σ̂(β) signifies that the ML estimate of σ is now a function
of β. Notice that we have divided by n rather than by n − k. If we could
evaluate σ̂2(β) at the true value β0, we would obtain an unbiased estimate
of σ2. However, we will actually evaluate it at the ML estimate β̂, which,
as we are about to see, is equal to the NLS estimate. Thus, as we saw in
Section 3.2, σ̂2 must be biased downward as an estimator of σ2.

Substituting σ̂(β) into the second line of (8.81) yields the concentrated
loglikelihood function

`c(y,β) = − n−
2

log(2π)− n−
2

log
(
1−
n

(
y − x(β)

)>(y − x(β)
))
− n−

2

= C − n−
2

log
((
y − x(β)

)>(y − x(β)
))
,

(8.82)
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where C is a constant term. The second term in (8.82) is minus n/2 times the
logarithm of the sum of squared residuals. Thus we see that maximizing the
concentrated loglikelihood function is equivalent to minimizing SSR(β). The
ML estimates β̂ will simply be the NLS estimates with which we are already
familiar.

The constant term in (8.82) is actually

n−
2

(
log(n)− 1− log(2π)

)
.

Since this expression does not depend on β, it can be ignored for every purpose
except actually computing the value of `(y,β, σ). Such constants are often
ignored completely in theoretical work and are sometimes ignored even by
computer programs, as a result of which the values of loglikelihood functions
for the same model and data set reported by different computer programs
may sometimes differ.

The fact that the ML estimator β̂ for the class of models (8.79) is simply
the NLS estimator has an important implication. As we saw in Section 8.8,
ML estimators are asymptotically efficient. NLS will therefore be asymp-
totically efficient whenever the error terms are normally and independently
distributed with constant variance. If the error terms have some other known
distribution, however, the ML estimator will in general differ from the NLS
one and will be more efficient than it (see below for an extreme example).
Thus, although NLS is consistent under quite weak conditions on the distri-
bution of the error terms, as we saw in Section 5.3, and is efficient within the
class of asymptotically linear estimators that are applicable under these weak
conditions, it coincides with the efficient ML estimator only if the error terms
are assumed to be normally distributed. What this means is the following.
If the only assumption about the error terms that one is willing to make is
that they satisfy the regularity conditions for NLS, then the NLS estimator
is asymptotically efficient within the class of consistent and asymptotically
linear estimators of the parameters of the regression function. However, if
one is prepared to specify the actual distribution of the error terms, then in
general the ML estimator will be more efficient, provided the presumed error
specification is correct. The ML estimator will fail to be more efficient only
if the errors are presumed to be normal, since in that case ML and NLS are
equivalent.

In Section 8.6, we saw that if θ̂ is a vector of ML estimates, then the
vector n1/2(θ̂ − θ0) is asymptotically normally distributed with mean vector
zero and covariance matrix equal to the inverse of the limiting information
matrix I(θ0). This result means that it is almost always of interest to calculate
I(θ) for any model which is estimated by maximum likelihood. We have seen
that there are in general two ways to do this. One is to find minus the plim of
n−1 times the Hessian matrix, and the other is to find the plim of n−1 times
G>(θ)G(θ), where G(θ) is the CG matrix. Both these methods will yield the
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same answer, if it is feasible to calculate I(θ) at all, although one approach
may be easier than the other in any given situation.

For the nonlinear regression model (8.79), the parameter vector θ is the
vector [β

.... σ]. We now calculate the limiting information matrix I(β, σ) for
this model using the second method, based on the CG matrix, which requires
only first derivatives. It is a good exercise to repeat the derivation using the
Hessian, which requires second derivatives, and verify that it yields the same
results. The first derivative of `t(yt,β, σ) with respect to βi is

∂`t
∂βi

=
1

σ2

(
yt − xt(β)

)
Xti(β) =

1

σ2
et(β)Xti(β), (8.83)

where et(β) ≡ yt − xt(β) and, as usual, Xti(β) ≡ ∂xt(β)/∂βi. The first
derivative of `t(yt,β, σ) with respect to σ is

∂`t
∂σ

= − 1
σ

+

(
yt − xt(β)

)2
σ3

= − 1
σ

+
e2
t (β)

σ3
. (8.84)

Expressions (8.83) and (8.84) are all that we need to calculate the information
matrix using the CG matrix. The column of that matrix which corresponds
to σ will have typical element (8.84), while the remaining k columns, which
correspond to the βi’s, will have typical element (8.83).

The element of I(β, σ) corresponding to βi and βj is

I(βi, βj) = plim
n→∞

(
1−
n

n∑
t=1

e2
t (β)

σ4
Xti(β)Xtj(β)

)
.

Since e2
t (β) has expectation σ2 under the DGP characterized by (β, σ) and is

independent of X(β), we can replace it by σ2 here to yield

I(βi, βj) = plim
n→∞

(
1−
n

n∑
t=1

1

σ2
Xti(β)Xtj(β)

)
.

Thus we see that the whole (β,β) block of the limiting information matrix is

1

σ2
plim
n→∞

(
1−
n
X>(β)X(β)

)
. (8.85)

The element of I(β, σ) corresponding to σ is

I(σ, σ) = plim
n→∞

(
1−
n

n∑
t=1

(
1

σ2
+
e4
t (β)

σ6
− 2e2

t (β)

σ4

))

= 1−
n

(
n

σ2
+

3nσ4

σ6
− 2nσ2

σ4

)
=

2

σ2
.

(8.86)
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Here we have used the facts that, under the DGP characterized by (β, σ),
E
(
e2
t (β)

)
= σ2 and E

(
e4
t (β)

)
= 3σ4, the latter being a well-known property

of the normal distribution (see Section 2.6 and Appendix B).

Finally, the element of I(β, σ) corresponding to βi and σ is

I(βi, σ) = plim
n→∞

(
1−
n

n∑
t=1

(
− et(β)Xti(β)

σ3
+
e3
t (β)Xti(β)

σ5

))
= 0.

(8.87)

This equals zero because, under the DGP characterized by (β, σ), et(β) is in-
dependent of X(β), and the fact that the error terms are normally distributed
implies that E

(
et(β)

)
= E

(
e3
t (β)

)
= 0.

Collecting the results (8.85), (8.86), and (8.87), we conclude that

I(β, σ) =
1

σ2

[
plim

(
n−1X>(β)X(β)

)
0

0> 2

]
. (8.88)

Our results on the asymptotic distribution of ML estimators (Sections 8.5
and 8.6) then allow us to conclude that[

n1/2(β̂ − β0)

n1/2(σ̂ − σ0)

]
a∼ N

(
0,

[
σ2

0 plim
(
n−1X0

>X0

)−1
0

0> σ2
0/2

])
, (8.89)

where β0 and σ0 denote the values of β and σ under the DGP, andX0 denotes
X(β0). Because the information matrix (8.88) is block-diagonal between the
(β,β) block and the (σ, σ) block (which is a scalar), its inverse is simply
the matrix that consists of each block inverted separately. As we will see
in Chapter 9, this type of block-diagonality is a very important property of
regression models with normal errors.

From (8.89), we see that the asymptotic covariance matrix of n1/2(β̂−β0)
is the same asymptotic covariance matrix previously derived for the NLS es-
timates of the parameters of a regression function, which is not surprising
since β̂ is simply a vector of NLS estimates. But here we have derived it as a
special case of the general results of Section 8.6 on the asymptotic distribution
of ML estimators. The result that the asymptotic variance of n1/2(σ̂ − σ0)
is σ2

0/2 is new. As we saw in Chapter 5, the method of nonlinear least squares
does not directly yield an estimate of σ, although it is easy to construct sev-
eral estimates once β̂ has been obtained. The method of maximum likelihood,
when coupled with the assumption of normality, does directly yield an esti-
mate of σ and also a measure of the variability of that estimate. However, the
latter is in general valid only under the assumption of normality. Moreover,
as we discussed above, the ML estimate σ̂2 = n−1SSR(β̂) is biased downward,
and in practice it may therefore be preferable to use s2 = (n− k)−1SSR(β̂).
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In the derivation of (8.88) and (8.89), we chose to write the information
matrix in terms of β and σ. Many authors choose to write it in terms of β
and σ2. The result equivalent to (8.89) in this alternative parametrization is[

n1/2(β̂ − β0)

n1/2(σ̂2 − σ2
0)

]
a∼ N

(
0,

[
σ2

0 plim
(
n−1X0

>X0

)−1
0

0> 2σ4
0

])
. (8.90)

This result and (8.89) are both correct. However, in any finite sample, the
confidence interval for σ based on (8.89) will be different from the confidence
interval based on (8.90). As we will discuss in Chapter 13, the former con-
fidence interval will generally be more accurate, because the distribution of
n1/2(σ̂ − σ0) will be closer to the normal distribution in finite samples than
that of n1/2(σ̂2 − σ2

0). It is therefore preferable to parametrize the model in
terms of σ rather than σ2.

In practice, of course, we are interested in β̂ and σ̂ rather than in
n1/2(β̂ − β0) and n1/2(σ̂−σ0). Thus, instead of using (8.88), we would actu-
ally make inferences based on the estimated covariance matrix

V̂ (β̂, σ̂) =

[
σ̂2(X̂>X̂)−1 0

0> σ̂2/2n

]
,

the upper left k×k block of which is the usual NLS covariance matrix estimator
for β̂.

In Section 8.1, we considered a simple model, (8.01), that could not be
estimated by least squares. If we make the additional assumption that the
error terms are normally distributed, this model becomes

yγt = β0 + β1xt + ut, ut ∼ NID(0, σ2), (8.91)

which looks almost like a regression model, except that the dependent variable
is subject to a nonlinear transformation.

The loglikelihood function corresponding to (8.91) is

`(β, γ, σ) = − n−
2

log(2π)− n log(σ)− 1

2σ2

n∑
t=1

(
yγt − β0 − β1xt

)2
+ n log |γ|+ (γ − 1)

n∑
t=1

log(yt).

(8.92)

The first three terms are just the loglikelihood function we would get if we
treated yγt as the dependent variable. The fourth and fifth terms are actually
one term, a Jacobian term. This term arises because ∂ut/∂yt = γyγ−1

t . Hence
the contribution to the likelihood function made by observation t must include
the Jacobian factor |γyγ−1

t |, which is the absolute value of ∂ut/∂yt. Summing



8.10 Nonlinear Regression Models 285

over all t and then taking the logarithm yields the Jacobian term that appears
in (8.92).

Concentrating the loglikelihood function with respect to σ yields

`c(β, γ) = C − n−
2

log

( n∑
t=1

(
yγt − β0 − β1xt

)2)

+ n log |γ|+ (γ − 1)

n∑
t=1

log(yt).

(8.93)

Maximizing this with respect to γ and β is straightforward. If a suitable
nonlinear optimization program is not available, one can simply do a one-
dimensional search over γ, calculating β0 and β1 conditional on γ by means of
least squares, so as to find the value γ̂ that maximizes (8.93). Of course, one
cannot use the OLS covariance matrix obtained in this way, since it treats γ̂ as
fixed. The information matrix is not block-diagonal between β and the other
parameters of (8.91), so one must calculate and invert the full information
matrix to obtain an estimated covariance matrix.

ML estimation works in this case because of the Jacobian term that
appears in (8.92) and (8.93). It vanishes when γ = 1 but plays an extremely
important role for all other values of γ. We saw in Section 8.1 that if one
applied NLS to (8.01) and all the yt’s were greater than unity, one would end
up with an infinitely large and negative estimate of γ. That will not happen if
one uses maximum likelihood, because the term (γ−1)

∑n
t=1 log(yt) will tend

to minus infinity as γ → −∞much faster than−n/2 times the logarithm of the
sum-of-squares term tends to plus infinity. This example illustrates how useful
ML estimation can be for dealing with modified regression models in which
the dependent variable is subject to a transformation. We will encounter other
problems of this type in Chapter 14.

ML estimation can also be very useful when it is believed that the error
terms are nonnormal. As an extreme example, consider the following model:

yt = Xtβ + αεt, f(εt) =
1

π(1 + ε2
t )
, (8.94)

where β is a k--vector and Xt is the tth row of an n×k matrix. The density of
εt here is the Cauchy density (see Section 4.6) and εt therefore has no finite
moments. The parameter α is simply a scale parameter, not the standard
error of the error terms; since the Cauchy distribution has no moments, the
error terms do not have a standard error.

If we write εt as a function of yt, we find that

εt =
yt −Xtβ

α
.
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Thus the density of yt is

f(yt) =
1
πα

(
1 +

(yt −Xtβ)2

α2

)−1

,

the factor 1/α being a Jacobian factor. The contribution to the loglikelihood
function from the tth observation is thus

− log(π)− log(α)− log

(
1 +

(yt −Xtβ)2

α2

)
,

and the loglikelihood function itself is

`(β, α) = −n log(π)− n log(α)−
n∑
t=1

log

(
1 +

(yt −Xtβ)2

α2

)
. (8.95)

The first-order conditions for β̂i can be written as

−2α̂−2
n∑
t=1

(
1 +

(yt −Xtβ̂)2

α̂2

)−1

(yt −Xtβ̂)Xti = 0. (8.96)

The equivalent expression for ML estimation with normal errors (i.e., OLS) is

−σ̂−2
n∑
t=1

(yt −Xtβ̂)Xti = 0. (8.97)

The difference between the likelihood equations (8.96) and (8.97) is striking.
The latter says that an unweighted sum of the residuals times each of the
regressors must equal zero. The former says that a weighted sum of the same
quantities must equal zero, with the weights being inversely related to the
size of the residuals. The reason for this is that the Cauchy distribution
generates many extreme values. There will thus generally be quite a few very
large error terms, and to avoid having them influence the estimates too much,
the ML procedure for estimating β̂ puts much less weight on outliers than
OLS does. These ML estimates have all the usual properties of consistency,
asymptotic normality, and so on. In contrast, if one simply applied OLS to
the model (8.94), the extremely large error terms frequently generated by the
Cauchy distribution would ensure that the estimates were not even consistent.
The usual consistency theorem for least squares does not apply here because
the εt’s have no finite moments.

Because the likelihood equations (8.96) depend on the residuals, the value
of α̂ affects the value of β̂ that solves them. It is thus necessary to solve for β̂
and α̂ jointly. Unfortunately, there are in general multiple solutions to these
equations; see Reeds (1985). Thus it may take a great deal of effort to locate
the global maximum of the loglikelihood function (8.95).
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8.11 Conclusion

This chapter has provided an introduction to all the major features of maxi-
mum likelihood estimation and specification testing, which we will make use of
throughout the remainder of the book. Chapter 9 of Cox and Hinkley (1974)
provides a more detailed treatment of many of the topics we have covered.
Another useful reference is Rothenberg (1973). In the next two chapters, we
will use some of the results of this chapter, along with previous results for NLS
and IV estimators, to deal with various topics of interest to econometricians.
Chapter 9 deals with the method of generalized nonlinear least squares, which
is treated both as an example of ML estimation and as an extension of least
squares. Chapter 10 then deals with the very important topic of serial correl-
ation. Chapter 13 will provide a much more detailed treatment of the three
classical test statistics than did Section 8.9 and will introduce an artificial
regression, comparable to the Gauss-Newton regression, for use with models
estimated by ML.

Terms and Concepts

asymptotic covariance matrix
asymptotic distribution (of an

estimator)
asymptotic efficiency
asymptotic normality
CG matrix
classical test statistics
computability (of an estimator)
concentrated loglikelihood function
consistency of Type 1 and Type 2

estimators
contributions to likelihood function

and loglikelihood function
Cramér-Rao bound
estimate vs. estimator
exponential distribution
gradient vector of loglikelihood

function (score vector)
Hessian matrix (of loglikelihood

function): asymptotic, empirical,
and expected average

identification: asymptotic and
strongly asymptotic, asymptotic
on a noncompact parameter space,
global, local

information in observation t
information matrix: asymptotic,

empirical and expected average

information matrix equality
invariance (to reparametrization)
Jacobian term
Lagrange multiplier (LM) test
likelihood equations
likelihood function
likelihood ratio test
loglikelihood function
maximum likelihood (ML)
maximum likelihood estimate (MLE):

Type 1 and Type 2
maximum likelihood estimator:

Type 1 and Type 2
maximum likelihood estimator,

properties of: asymptotic
efficiency, asymptotic normality,
computability, consistency,
invariance

outer-product-of-the-gradient (OPG)
information matrix estimator

parameter space
parametrization (of a model)
reparametrization
quasi-ML (QML) or pseudo-ML

estimator
root-n consistent estimator
score test (score form of LM test)
Wald test



Chapter 9

Maximum Likelihood and

Generalized Least Squares

9.1 Introduction

Up to this point, we have assumed that the errors adhering to regression
models are independently distributed with constant variance. This is a strong
assumption, which is often untenable in practice. In this chapter, we consider
estimation techniques that allow it to be relaxed. These are generalized least
squares, or GLS, and generalized nonlinear least squares, or GNLS, on the
one hand, and various applications of the method of maximum likelihood on
the other. We treat GLS and ML together because, when ML is applied
to regression models with normal errors, the estimators that result are very
closely related to GLS estimators.

The plan of the chapter is as follows. First of all, in Section 9.2, we relax
the assumption that the error terms are independently distributed with con-
stant variance. ML estimation of regression models without those assumptions
turns out to be conceptually straightforward and to be closely related to the
method of GNLS. In Section 9.3, we discuss the geometry of GLS and consider
an important special case in which OLS and GLS estimates are identical. In
Section 9.4, we show how a version of the Gauss-Newton regression may be
used with models estimated by GNLS. In Section 9.5, we show how GNLS is
related to feasible GNLS and discuss a number of fundamental results about
both GNLS and feasible GNLS. The relationship between GNLS and ML is
then treated in Section 9.6. In Sections 9.7 through 9.9, we consider multi-
variate nonlinear regression models. Although such models may often seem
very complicated, primarily because of the notational complexities of allowing
for several jointly dependent variables, we show that they are actually quite
straightforward to estimate by means of GNLS or ML. Finally, in Section
9.10, we discuss models for dealing with panel data and other data sets that
combine time series and cross sections. In this chapter, we do not discuss
what is probably the most commonly encountered application of GLS in ap-
plied work, namely, the estimation of regression models with serial correlation.
The enormous literature on this subject will be the topic of Chapter 10.

288
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9.2 Generalized Least Squares

In this section, we will consider the class of models

y = x(β) + u, u ∼ N(0,Ω), (9.01)

where Ω, an n × n positive definite matrix, is the covariance matrix of the
vector of error terms u. The normality assumption can of course be relaxed,
but we retain it for now since we want to use the method of maximum likeli-
hood. In some applications the matrix Ω may be known. In others it may be
known only up to a multiplicative constant, which implies that we can write
Ω = σ2∆, with ∆ a known n× n matrix and σ2 an unknown positive scalar.
In most applications, only the structure of Ω will be known; one might know
for example that it arises from a particular pattern of heteroskedasticity or
serial correlation and hence depends on a certain number of parameters in a
certain way. We will consider all three cases.

The density of the vector u is the multivariate normal density

f(u) = (2π)−n/2|Ω|−1/2 exp
(
− 1−

2
u>Ω−1u

)
. (9.02)

In order to pass from the density of the vector of error terms u to that of the
vector of dependent variables y, we must first replace u by y−x(β) in (9.02)
and then multiply by the absolute value of the determinant of the Jacobian
matrix associated with the transformation that expresses u in terms of y.
This use of a Jacobian factor is analogous to what we did in Section 8.10
with scalar random variables: For details, see Appendix B. In this case, the
Jacobian matrix is the identity matrix, and so the determinant is unity. Hence
the likelihood function is

Ln(y,β,Ω) = (2π)−n/2|Ω|−1/2 exp
(
− 1−

2

(
y − x(β)

)>Ω−1(y − x(β)
))
,

and the loglikelihood function is

`n(y,β,Ω) = − n−
2

log(2π)− 1−
2

log |Ω|− 1−
2

(
y−x(β)

)>Ω−1(y−x(β)
)
. (9.03)

If the matrix Ω is known, it is clear that this function can be maximized by
minimizing the generalized sum of squared residuals

SSR(β |Ω) =
(
y − x(β)

)>Ω−1(y − x(β)
)
. (9.04)

This minimization problem is the one solved by generalized nonlinear least
squares, or GNLS. Differentiating (9.04) with respect to β and setting the
result to zero yields k first-order conditions comparable to conditions (2.04):

−2X>(β̃)Ω−1
(
y − x(β̃)

)
= 0. (9.05)
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Solving these equations yields β̃, which is the vector of both ML and GNLS
estimates for this problem. It is straightforward to extend the asymptotic
theory of Chapter 5 to show that

n1/2(β̃ − β0)
a∼ N

(
0, plim
n→∞

(
n−1X>(β0)Ω−1X(β0)

)−1)
, (9.06)

where β0 is the value of β under the DGP. This result implies that we can
make inferences about GNLS estimates in essentially the same way that we
make inferences about NLS ones.

In the linear case, in which x(β) = Xβ, the first-order conditions (9.05)
become

−2X>Ω−1y + 2X>Ω−1Xβ̃ = 0.

These can be solved analytically to yield the standard formula for the gener-
alized least squares, or GLS, estimator1

β̃ =
(
X>Ω−1X

)−1
X>Ω−1y. (9.07)

In practice, one rarely computes GLS estimates using this formula, however.
Suppose that η is an n× n matrix which has the property that

η>η = Ω−1. (9.08)

There are many different ways to obtain a matrix η that satisfies (9.08)
(see Appendix A); it is usually but not necessarily chosen to be triangu-
lar. Given η, it is possible to compute GLS estimates by means of the OLS
regression

ηy = ηXβ + ηu. (9.09)

This regression has errors that are independent and have constant variance of
unity, since

E
(
ηuu>η>

)
= ηΩη>= η

(
η>η

)−1
η>= ηη−1

(
η>
)−1
η>= In,

where In is the identity matrix of order n. The OLS estimate of β from
regression (9.09) is

β̃ =
(
X>η>ηX

)−1
X>η>ηy =

(
X>Ω−1X

)−1
X>Ω−1y,

which is the GLS estimate (9.07).

1 The GLS estimator is occasionally referred to as the Aitken estimator, because
it was proposed by Aitken (1935).
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The case in which Ω = σ2∆, with σ2 unknown but ∆ known, is almost
the same as that in which Ω is known. The loglikelihood function (9.03)
becomes

`n(y,β,∆, σ) =− n−
2

log(2π)− n log(σ)− 1−
2

log |∆|

− 1

2σ2

(
y − x(β)

)>∆−1(y − x(β)
)
.

Concentrating this with respect to σ2 yields the concentrated loglikelihood
function

`c(y,β,∆) = C − 1−
2

log |∆| − n−
2

log
((
y − x(β)

)>∆−1(y − x(β)
))
.

Evidently, this can be maximized by minimizing the generalized sum of
squared residuals

SSR(β |∆) =
(
y − x(β)

)>∆−1(y − x(β)
)
,

which looks exactly like (9.04) except that ∆ now plays the role of Ω. Thus,
for purposes of estimation, it makes no difference whether we know Ω com-
pletely or merely know it up to a multiplicative constant.

We have seen that if the covariance matrix Ω is known, at least up to
a multiplicative constant, it is conceptually straightforward to find GLS or
GNLS estimates. However, doing so may not be easy in practice if n is large
and Ω−1 or η have to be computed numerically. Luckily, when Ω is known,
or the form of Ω is known, it usually depends on a relatively small number
of parameters, and once these have been specified it is often possible to find
Ω−1 and η analytically. In many such cases, the form of η is such that it is
very easy to premultiply y and X by it. We will encounter several examples
of this when we discuss serial correlation in Chapter 10.

Consider the following simple example, in which the error terms are het-
eroskedastic but not correlated with one another:

E(u2t ) = σ2wαt , E(utus) = 0 for t 6= s, (9.10)

where wt is an observation on an exogenous variable and α is a parameter.
This type of specification might well make sense if wt were a variable related
to the scale of the dependent variable, such as firm size if the dependent
variable were profits. In this case the matrix Ω is diagonal, with σ2wαt as its
tth diagonal element. Thus the matrix Ω−1 is also a diagonal matrix with
σ−2w−αt as its tth diagonal element, and η is a diagonal matrix with σ−1w

−α/2
t

as its tth diagonal element. The function σ2wαt is what is sometimes called
a skedastic function. In the same way that a regression function determines
the conditional mean of a random variable, a skedastic function determines
its conditional variance.
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In this case, it is particularly easy to see that we do not have to know σ
in order to obtain GLS estimates, since the subspace spanned by the columns
of ηX does not change if we multiply η by any constant. As long as α is
known, we can run the regression

yt

w
α/2
t

=

k∑
i=1

βi
Xti

w
α/2
t

+ residual. (9.11)

It will yield exactly the same GLS estimates β̃ as regression (9.09), which in
this case is

yt

σw
α/2
t

=
k∑
i=1

βi
Xti

σw
α/2
t

+ residual.

We can easily estimate σ from (9.11); the estimate is simply the OLS estimate
of the standard error of the regression. This type of GLS procedure, in which
the regressand and regressors are simply multiplied by weights that vary across
observations, is often called weighted least squares. It is appropriate whenever
the error terms are heteroskedastic with variances known up to a multiplicative
constant and not correlated with one another.

Evidently, there is no conceptual difficulty in estimating models like (9.01)
when the covariance matrix Ω is known and likewise no difficulty proving that
those estimates have the same properties as NLS estimates on a correctly
specified model. However, estimating β becomes a good deal more difficult
when Ω is not known. There are two ways to proceed in this case: feasible
GNLS, in which the unknown Ω is replaced by something that estimates
it consistently, and maximum likelihood. We consider these techniques in
Sections 9.5 and 9.6, respectively.

9.3 The Geometry of GLS

In this section, we briefly discuss the geometry of generalized least squares.
The fitted values from the GLS regression of y on X are

X
(
X>Ω−1X

)−1
X>Ω−1y.

Hence the matrix that projects y onto S(X) is in this case

PΩ
X ≡X

(
X>Ω−1X

)−1
X>Ω−1. (9.12)

The complementary projection matrix is

MΩ
X ≡ I−X

(
X>Ω−1X

)−1
X>Ω−1. (9.13)

As can easily be verified, these projection matrices are idempotent, just like
the more familiar projection matrices PX and MX associated with ordinary
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Figure 9.1 Relation between OLS and GLS estimates

least squares. However, as they are not symmetric, PΩ
X does not project or-

thogonally onto S(X), and MΩ
X projects onto S⊥(Ω−1X) rather than S⊥(X).

They are examples of what are called oblique projection matrices, because
the angle between the residuals MΩ

Xy and the fitted values PΩ
X y is in general

not 90◦. To see this, observe that

y>PΩ>
X MΩ

Xy = y>Ω−1X
(
X>Ω−1X

)−1
X>
(
I−X

(
X>Ω−1X

)−1
X>Ω−1

)
y

= y>Ω−1X
(
X>Ω−1X

)−1
X>y

− y>Ω−1X
(
X>Ω−1X

)−1
X>X

(
X>Ω−1X

)−1
X>Ω−1y,

which is equal to zero only in certain very special circumstances, such as when
Ω is proportional to In. Thus GLS residuals are in general not orthogonal to
GLS fitted values.

Figure 9.1 illustrates the distinction between OLS and GLS estimates.
For the purposes of having at most a three-dimensional representation, some
simplifying assumptions have been made. First, X and Ω−1X each have only
two columns, in order that S(X) and S(Ω−1X) may be two-dimensional.
They are shown in the figure as two intersecting planes, but in general they
will intersect only at the origin. Next, y is (of necessity) shown as belonging
to the same three-dimensional space as the two planes. In general, this will
not be so: Normally, five dimensions would be needed for Figure 9.1 to be a
proper representation. Nevertheless, the figure suffices for present purposes.

The OLS fitted values correspond to the vector PXy, the orthogonal
projection of y onto the plane S(X). In order to see how the GLS residuals
and fitted values can be constructed geometrically, recall from (9.13) that the
range of MΩ

X is the orthogonal complement of S(Ω−1X). The GLS residuals
must therefore lie in S⊥(Ω−1X). On the other hand, the GLS fitted values
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must lie in S(X), and so y must be expressed as the sum of two vectors, not
mutually orthogonal, one in S(X) and one in S⊥(Ω−1X). This decomposition
of y is shown in the figure, in which we can see directly that the GLS residuals
are indeed perpendicular to S(Ω−1X).

Another point that should be clear from the figure is that the GLS resid-
ual vector, being the result of an oblique projection, must necessarily be longer
than the OLS residual vector, which is constructed to be as short as possible.
On the other hand, the vector PΩ

X y of GLS fitted values can be either longer
or shorter than the vector PXy of OLS fitted values. In fact, unlike PXy,
which is always shorter than y, PΩ

X y may in some circumstances be longer
than y itself. Which of these possibilities is realized depends on the covar-
iance matrix Ω. For any given data set there are many different sets of GLS
estimates, one for each possible choice of Ω.

We could say a good deal more about the geometry of GLS and the
properties of oblique projection matrices; a classic reference is Seber (1980).
However, as we saw above, GLS is always equivalent to OLS on a regression
in which the regressand and regressors have been suitably transformed. Thus
everything that we have already learned about OLS is directly applicable to
GLS, once the original model has been transformed as in (9.09). In particular,
the Gauss-Markov Theorem applies to models estimated by GLS. If the data
are generated by a special case of

y = Xβ + u, E(uu>) = Ω,

(note that the normality assumption is not needed here), then the GLS esti-
mator (9.07) is the best linear unbiased estimator. This result follows from
the application of the ordinary Gauss-Markov Theorem proved in Section 5.5
to regression (9.09). Similarly, if the DGP is a special case of (9.01) (possibly
with Ω = σ2∆ where only ∆ is known), then the GNLS estimator will be the
best consistent and asymptotically linear estimator.

Before leaving this section, we must discuss the important possibility that
GLS and OLS may in certain cases yield identical estimates. Our discussion
follows Kruskal (1968), and we will therefore refer to the result as Kruskal’s
Theorem. The result is simple to state: OLS and GLS estimates are the same
if and only if the two subspaces S(X) and S(Ω−1X) are the same. The result
is evident from Figure 9.1; just imagine S(Ω−1X) swiveling into coincidence
with S(X). Formally, in order to see that the OLS and GLS estimates must
coincide if S(Ω−1X) and S(X) are the same, it is enough to observe that the
OLS decomposition of y into a vector of fitted values and a vector of residuals
satisfies the requirements for the (unique) GLS decomposition: PXy lies in
S(X), and MXy is orthogonal to S(X) and hence also to S(Ω−1X). If the
OLS fitted values Xβ̂ and the GLS fitted values Xβ̃ are identical, then if the
parameter estimates β̂ and β̃ are unique, they too must be identical.

The converse result, namely, that if OLS and GLS yield the same esti-
mates for any realization of the vector y, then S(X) and S(Ω−1X) must be
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the same, is also easily seen. Note that one and the same vector of residuals
must be orthogonal to both S(X) and S(Ω−1X) and hence to S(X,Ω−1X).
Since only the k elements of β are estimated, the residuals can be orthog-
onal to a space of at most k dimensions, and so S(X,Ω−1X) can be at
most k--dimensional. But since S(X) and S(Ω−1X) are both themselves
k--dimensional, they must coincide.

Since in some applications it is Ω and in others Ω−1 that has the simpler
form to work with, it can be useful to note that S(X) = S(Ω−1X) if and only
if S(X) = S(ΩX). The reasoning is as follows: S(X) ⊆ S(Ω−1X) if and only
if for all β ∈ Rk there exists λ ∈ Rk such that Xβ = Ω−1Xλ. But this is
equivalent to saying that ΩXβ = Xλ, which implies that S(ΩX) ⊆ S(X).
Running the argument again with X and Ω−1X interchanged gives the result
in full. The situation in which OLS and GLS estimates are identical does not
come up very frequently, but we will encounter one important application of
Kruskal’s Theorem in Section 9.8.

Another way to see why Kruskal’s Theorem holds is to notice that the
GLS estimator (9.07) can be interpreted as a simple IV estimator with instru-
ment matrix Ω−1X. We know from Section 7.4 that the simple IV estimator
is identical to the generalized IV estimator. This implies that

β̃ =
(
X>Ω−1X

)−1
X>Ω−1y =

(
X>PΩ−1XX

)−1
X>PΩ−1Xy,

where, as usual, PΩ−1X denotes the projection onto S(Ω−1X). When
S(Ω−1X) = S(X), PΩ−1X = PX. Thus the second expression for β̃ here

simplifies to the OLS estimator β̂.

The fact that the GLS estimator looks like an IV estimator is of more
theoretical than practical interest, because one would not want to obtain GLS
estimates by using an IV package. The parameter estimates would be correct,
but the covariance matrix estimate would not be. The correct GLS covariance
matrix is proportional to (X>Ω−1X)−1, but the IV estimate is proportional
to (X>PΩ−1XX)−1.

9.4 The Gauss-Newton Regression

Associated with the method of GNLS is a version of the Gauss-Newton re-
gression which may be used in all the ways that the original Gauss-Newton
regression can be used (see Chapter 6). This GNR is

η
(
y − x(β)

)
= ηX(β)b + residuals, (9.14)

where b is a k--vector of coefficients to be estimated and η is any n×n matrix
that satisfies equation (9.08). It is not coincidental that regression (9.14)
resembles regression (9.09), which was used to compute GLS estimates in the
linear case. The GNR is in fact a linearization of the original nonlinear model,
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with both regressand and regressors transformed so as to make the covariance
matrix of the error terms proportional to an identity matrix.

If we evaluate both x(β) and X(β) at β̃, running regression (9.14) yields
b̃ = 0 and the estimated covariance matrix

(y − x̃)>η>η(y − x̃)

n− k
(
X̃>η>ηX̃

)−1
=

SSR(β̃ |Ω)

n− k
(
X̃>Ω−1X̃

)−1
. (9.15)

The first factor on the right-hand side of (9.15) is just the OLS estimate of the
variance of the GNR; as we explain in a moment, it should tend to 1 as n→∞
if the covariance matrix of u is actually Ω. This first factor would normally
be omitted in practice.2 Comparing the second factor on the right-hand side
of (9.15) with the covariance matrix that appears in (9.06), it is evident that
the former provides a sensible estimate of the covariance matrix of β̃.

In the preceding discussion, we asserted that (n−k)−1SSR(β̃ |Ω) should
tend to 1 as n→∞. In doing so we implicitly made use of the result that

plim
n→∞

(
1−
n
ũ>Ω−1ũ

)
= 1. (9.16)

This result requires justification. First of all, we must assume that the eigen-
values of Ω, which are all strictly positive since Ω is assumed to be positive
definite, are bounded from above and below as n → ∞. These assumptions
imply that the eigenvalues of η have the same properties. Next, we use the
result that

ũ = MΩ
0 u+ o(n−1/2). (9.17)

Here MΩ
0 is an oblique projection matrix essentially the same as (9.13) but

depending on the matrix of derivativesX0 ≡X(β0) rather than on a regressor
matrix X. The result (9.17) is clearly the GNLS analog of the result (5.57)
for ordinary NLS, and we will therefore not bother to derive it.

Since the bounded eigenvalue assumption allows us to conclude that

ηũ = ηMΩ
0 u+ o(n−1/2),

the quantity of which we wish to take the probability limit in (9.16) is

1−
n
ũ>Ω−1ũ = 1−

n

(
u>(MΩ

0 )>Ω−1MΩ
0 u+ o(n1/2)

)
= 1−

n
u>(MΩ

0 )>Ω−1MΩ
0 u+ o(n−1/2).

(9.18)

2 This statement is true only if Ω is completely known. As we will see below,
the GNLS estimator is unchanged if Ω is known only up to a multiplicative
constant, and this is a situation that is commonly encountered in practice. In
this case, the first factor in (9.15) would be used to estimate that constant.
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The first term in the second line is

1−
n
u>(MΩ

0 )>Ω−1MΩ
0 u

= 1−
n
u>Ω−1u− 2−

n
u>(PΩ

0 )>Ω−1u+ 1−
n
u>(PΩ

0 )>Ω−1PΩ
0 u

= 1−
n
u>Ω−1u− 1−

n
u>Ω−1PΩ

0 u, (9.19)

where

PΩ
0 ≡ I−MΩ

0 ≡X0

(
X0
>Ω−1X0

)−1
X0
>Ω−1

is essentially the same as PΩ
X defined in (9.12). Only the first term of (9.19) is

O(1). Intuitively, the reason for this is that when u is projected onto S(X0),
the result lies in a k--dimensional space. Thus an expression like the second
term of (9.19), which can be written as

n−1
(
n−1/2u>Ω−1X0

)(
n−1X0

>Ω−1X0

)−1(
n−1/2X0

>Ω−1u
)
,

is O(n−1), since every factor except the first is O(1).

From (9.18) and (9.19) we conclude that

1−
n
ũ>Ω−1ũ

a
= 1−

n
u>Ω−1u. (9.20)

The quadratic form on the right-hand side of (9.20) can be expressed very
simply by using a matrix η that satisfies (9.08). We obtain

1−
n
u>Ω−1u = 1−

n

n∑
t=1

(ηu)2t .

The vector ηu has mean zero and variance matrix equal to In. The terms of
the sum of the right-hand side of this expression are therefore uncorrelated
and asymptotically independent. Thus we may apply a law of large numbers
and assert that the probability limit of the sum is unity. It follows that

plim
n→∞

(
1−
n
u>Ω−1u

)
= 1.

From (9.20), we then conclude that this is still true if u is replaced by ũ,
which was what we originally set out to show.

This result can be used to test whether Ω really is the covariance matrix
of the error terms. An appropriate test statistic is ũ>Ω−1ũ, which is simply
the SSR from the original GNLS regression after transformation. It should
be asymptotically distributed as χ2(n− k) under the null hypothesis.
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9.5 Feasible Generalized Least Squares

In practice, the covariance matrix Ω is rarely known, but it is often assumed
to depend in a particular way on a vector of unknown parameters α. In such
a case, there are two ways to proceed. One is to obtain a consistent estimate
of α, say α̌, by some auxiliary procedure. This then yields an estimate of Ω,
Ω(α̌), that is used in place of the true covariance matrix Ω0 ≡ Ω(α0) in
what is otherwise a standard GLS procedure. This approach, which will be
the topic of this section, is called feasible GLS because it is feasible in many
cases when ordinary GLS is not. The other approach is to use maximum
likelihood to estimate α and β jointly, generally under the assumption of
normality; it will be discussed in Section 9.6.3

Under reasonable conditions, feasible GLS yields estimates that are not
only consistent but also asymptotically equivalent to genuine GLS estimates,
and therefore share their efficiency properties. However, even when this is the
case, the performance in finite samples of feasible GLS may be much inferior
to that of genuine GLS if α̌ is a poor estimator of α.

In most cases, the estimates of α that are used by feasible GLS are based
on OLS or NLS residuals, of which a typical one is ût ≡ yt − xt(β̂). It is pos-
sible to use these residuals for the purposes of estimating α because, in many
circumstances, they consistently estimate the error terms ut, despite being
based on an estimation procedure that uses the wrong covariance matrix. It
is obvious that if the OLS or NLS estimates β̂ consistently estimate β, the
residuals will consistently estimate the error terms. What is not so obvious
(and is not always true) is that β̂ will consistently estimate β.

A rigorous treatment of the conditions under which NLS estimates are
consistent when the error terms ut do not satisfy the i.i.d. assumption is
beyond the scope of this book. See Gallant (1987) for such a treatment.
However, it is worth seeing how the consistency proof of Section 5.3 would
be affected if we relaxed that assumption. Recall that the consistency of β̂
depends entirely on the properties of n−1 times the sum-of-squares function:

ssr(y,β) ≡ 1−
n

n∑
t=1

(
yt − xt(β)

)2
= 1−

n

n∑
t=1

(
xt(β0)− xt(β) + ut

)2
. (9.21)

The right-most expression here can be rewritten as

1−
n

n∑
t=1

(
xt(β0)− xt(β)

)2
+ 2−

n

n∑
t=1

(
xt(β0)− xt(β)

)
ut + 1−

n

n∑
t=1

u2t . (9.22)

3 All of this assumes that the structure ofΩ is known. When that is not the case,
one generally cannot use GNLS or ML. However, as we will see in Chapter 17,
it may still be possible to obtain estimates that are more efficient than NLS
estimates by using the generalized method of moments.
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As we saw in Section 5.3, the three terms in (9.22) must each satisfy a crucial
property. The first term must satisfy

plim
n→∞

(
1−
n

n∑
t=1

(
xt(β0)− xt(β)

)2)
> 0 (9.23)

for all β 6= β0. This property must hold if the model is to be asymptotically
identified, and we will assume that it is. Condition (9.23) evidently depends
only on the specification of the regression function and not on whether or not
the ut’s are i.i.d., and so it need not concern us further.

The second crucial property is that the second term in (9.22) must tend
asymptotically to zero. This property clearly does depend on the properties of
the error terms ut. If they are independent, even if not identically distributed,
then the argument of Section 5.3 applies unchanged and shows that this second
term has expectation zero. Provided the variances of the ut’s and of the
regression functions xt(β) are suitably bounded, the martingale law of large
numbers, Theorem 4.6, can be applied, and we obtain the desired result. If the
ut’s are not independent, however, and if xt(β) depends on lagged dependent
variables, it is quite likely that the second term in (9.22) will not have mean
zero. We evidently have to rule out the dangerous combination of a regression
function that depends on lagged dependent variables and error terms that are
serially dependent. As a general rule, we also have to rule out ut’s with
potentially unbounded variances if we wish to use laws of large numbers.

The third crucial property is that the final term in (9.22) should have a
deterministic probability limit. In the i.i.d. case, it simply tends to σ2

0 . If the
ut’s are independent but not necessarily identically distributed, this property
will hold if the limit of the average of the error variances exists. Again, we
must in general rule out potentially unbounded variances. But the property
may also fail to hold if the ut’s have too much correlation with each other. As
an example of this possibility, suppose that the ut’s are identically distributed
but equicorrelated, which means that the correlation between ut and us is the
same for all t 6= s. This implies that we can write

ut = δv + et, (9.24)

for some δ, where v and et are independent random variables each with var-
iance ω2. Hence

E(u2t ) = (δ2 + 1)ω2 ≡ σ2

and, for t 6= s,
E(utus) = δ2ω2.

It follows that the correlation between ut and us is δ2/(δ2 + 1). By varying δ,
we can evidently make this correlation any number between 0 and 1 that we
choose.
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The key feature of this example is property (9.24). Substituting this into
the third term of (9.22), we obtain

1−
n

n∑
t=1

u2t = 1−
n

n∑
t=1

(
δv + et

)2
= 1−

n

n∑
t=1

(
δ2v2 + 2δetv + e2t

)
= δ2v2 + 1−

n

n∑
t=1

(
2δetv + e2t

)
.

If we work conditionally on v, the second term of the last expression above
satisfies the simplest law of large numbers and tends to the deterministic
probability limit of ω2. But the first term, which is independent of the sample
size, is a nondegenerate random variable. As a result, n−1 times the sum-of-
squares function, expression (9.21), will not be asymptotically nonstochastic,
and the NLS estimates β̂ will not be consistent.

We now return to the topic of feasible GLS. If we can rule out the possibil-
ity of unbounded variances, too much serial dependence (as in the pathological
case just discussed), and the combination of serial correlation and lagged de-
pendent variables, the NLS estimates β̂ will be consistent and so will be the
residuals ût. We can then use those residuals to obtain root-n consistent
estimates of the parameters α. Feasible GLS works whenever we can do so.

As an example, consider (9.10). According to this model, the variance
of ut is σ2wαt , which depends on the unknown parameters α and σ2. One way
to estimate α is to run the nonlinear regression

û2t = σ2wαt + residual. (9.25)

Provided that û2t does indeed estimate u2t consistently, it seems highly plau-
sible that the NLS estimate α̌ from (9.25) will provide a root-n consistent
estimate of α. This case is actually an unusually difficult one, since the aux-
iliary regression to estimate the parameter of the covariance matrix, α, is
nonlinear. Another way of estimating α will be discussed in the next sec-
tion. We will encounter some simpler cases, in which the parameters of the
covariance matrix may be estimated by ordinary least squares, in Chapter 10.

We now provide a nonrigorous explanation of why feasible GNLS is
asymptotically equivalent to GNLS itself. The first-order conditions for GNLS
are

−2X>(β̃)Ω−10

(
y − x(β̃)

)
= 0. (9.26)

The first-order conditions for feasible GNLS are

−2X>(β̌)Ω̌−1
(
y − x(β̌)

)
= 0, (9.27)
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where β̌ denotes the feasible GNLS estimator and Ω̌ ≡ Ω(α̌). Evidently,
these two sets of first-order conditions look very similar indeed, the only dif-
ference being that Ω−1 appears in (9.26) and Ω̌−1 appears in (9.27). But
since α̌ is assumed to be root-n consistent, and Ω is assumed to depend
differentiably on α, we can write

Ω̌−1 = Ω−10 +A, A = O(n−1/2). (9.28)

By this notation, we mean that every element of the matrix A is O(n−1/2),
which implies that every element of Ω̌−1 differs from the corresponding ele-
ment of Ω−10 by an amount that is asymptotically negligible. Hence (9.27)
becomes

−2X>(β̌)Ω−10

(
y − x(β̌)

)
− 2X>(β̌)A

(
y − x(β̌)

)
= 0. (9.29)

SinceΩ0 is O(1) whileA is O(n−1/2), the second term here becomes negligible
relative to the first term as n→∞. But the first term is simply the left-hand
side of (9.26). Thus, asymptotically, the equations that define the feasible
GNLS estimator β̌ are the same as those that define the GNLS estimator β̃.
Hence the two estimators are asymptotically equivalent.

We stress that the above discussion is not rigorous. We have not shown
formally that it is valid to write (9.28) or that the second term on the left-hand
side of (9.29) is asymptotically negligible relative to the first. A fully rigorous
proof of the asymptotic equivalence of GLS and feasible GLS estimates is quite
technical, however, and not very intuitive. See Amemiya (1973a, 1973b) and
Carroll and Ruppert (1982), among others.

In practice, the desirability of using feasible GLS as an estimation method
depends on how good an estimate of Ω one can obtain. If Ω(α̌) is a very
good estimate of Ω0, then feasible GLS will indeed have essentially the same
properties as GLS, and inferences based on the usual GLS covariance matrix(

X̌>Ω̌−1X̌
)−1

(9.30)

will be reasonably reliable. However, ifΩ(α̌) is a poor estimate ofΩ0, feasible
GLS estimates may have quite different properties from real GLS estimates
and (9.30) may yield very misleading inferences.

9.6 Maximum Likelihood and GNLS

A second approach that is widely used in place of feasible GLS when Ω is as-
sumed to equal Ω(α) with α unknown is the method of maximum likelihood.
To use it we must make some assumption about the distribution of the error
terms (in practice, almost always an assumption of normality). This allows
us to write down the appropriate loglikelihood function as a function of the
q--vector α and the k--vector β.
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Consider the class of models

y = x(β) + u, u ∼ N
(
0,Ω(α)

)
. (9.31)

By modifying the loglikelihood function (9.03) slightly, we find that the log-
likelihood function corresponding to (9.31) is

`n(y,β,α) = − n−
2

log(2π)− 1−
2

log |Ω(α)|

− 1−
2

(
y − x(β)

)>Ω−1(α)
(
y − x(β)

)
.

(9.32)

There will be two sets of first-order conditions, one for α and one for β. The
latter will be similar to the first-order conditions (9.05) for GNLS:

X>(β̂)Ω−1(α̂)
(
y − x(β̂)

)
= 0.

The former will be rather complicated and will depend on precisely how Ω is
related to α. For a more detailed treatment, see Magnus (1978).

In Section 8.10, we saw that the information matrix for β and σ in a
nonlinear regression model with covariance matrix σ2 I is block-diagonal be-
tween β and σ. An analogous result turns out to be true for the model (9.31)
as well: The information matrix is block-diagonal between β and α. This
means that, asymptotically, the vectors n1/2(β̂ − β0) and n1/2(α̂ − α0) are
independent. Thus the fact that α̂ is estimated jointly with β̂ can be ignored,
and β̂ will have the same properties asymptotically as the GNLS estimator β̃
and the feasible GNLS estimator β̌.

The above argument does not require that the error terms ut actually be
normally distributed. All that we require is that the vectors n1/2(β̂−β0) and
n1/2(α̂−α0) be asymptotically independent and O(1) under whatever DGP
actually generated the data. It can be shown that this is in fact the case under
fairly general conditions, similar to the conditions detailed in Chapter 5 for
least squares to be consistent and asymptotically normal; see White (1982)
and Gouriéroux, Monfort, and Trognon (1984) for fundamental results in this
area. As we saw in Section 8.1, when the method of maximum likelihood
is applied to a data set for which the DGP was not in fact a special case
of the model being estimated, the resulting estimator is called a quasi-ML,
or QML, estimator. In practice, of course, almost all the ML estimators
we use are actually QML estimators, since some of the assumptions of our
models are almost always wrong. It is therefore comforting that in certain
common situations, including this one, the properties of QML estimators are
very similar to those of genuine ML estimators, although asymptotic efficiency
is of course lost.

As a concrete example of GLS, feasible GLS, and ML estimation, consider
the model

y = x(β) + u, u ∼ N(0,Ω), Ωtt = σ2wαt , Ωts = 0 for all t 6= s. (9.33)
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This model has heteroskedasticity of the form (9.10). Since the determinant
of Ω is

σ2n
n∏
t=1

wαt ,

we see from (9.32) that the loglikelihood function is

`n(y,β, α, σ) =− n−
2

log(2π)− n log σ − α−
2

n∑
t=1

log(wt)

−
n∑
t=1

(
yt − xt(β)

)2
2σ2wαt

.

(9.34)

If α were known, we could obtain GNLS estimates by estimating the weighted
nonlinear regression

yt

w
α/2
t

=
xt(β)

w
α/2
t

+
ut

w
α/2
t

, (9.35)

whether or not we knew σ. The weighted NLS estimates from (9.35) would
be the GNLS estimates β̃. The Gauss-Newton regression corresponding to
(9.35) would be

1

w
α/2
t

(
yt − xt(β)

)
=

1

w
α/2
t

Xt(β)b + residual,

which is a special case of (9.14).

If α were not known, we would have to use either feasible GNLS or ML.
The difficulty with the former is obtaining a consistent estimate of α without
too much effort. The first step is to perform a nonlinear regression of y on
x(β), ignoring the heteroskedasticity of the error terms, so as to obtain a set
of least squares residuals ǔ (we use ǔ rather than the more natural û because,
in this section, the latter would denote an ML estimate). We can then use
those residuals to estimate α. In the previous section we suggested using
nonlinear least squares on equation (9.25) to do this. That is one approach,
but not necessarily the best one. The model (9.33) implies that

u2t = σ2wαt ε
2
t , (9.36)

where εt is N(0, 1). This specification of the skedastic function does not lend
itself naturally to the use of least squares. In fact, the most attractive way to
estimate α is to pretend that ǔt is actually ut and to estimate α from (9.36)
by maximum likelihood. If we replace yt − xt(β) in (9.34) by ǔt, we obtain

`n(y, α, σ) = − n−
2

log(2π)− n log(σ)− α−
2

n∑
t=1

log(wt)−
n∑
t=1

ǔ2t
2σ2wαt

. (9.37)
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This is the loglikelihood function for α and σ conditional on β being equal to
the vector of NLS estimates β̌. The first-order condition for σ2 is

− n

2σ2
+

n∑
t=1

2wαt ǔ
2
t

4σ4w2α
t

= 0,

and solving it yields

σ̌2 = 1−
n

n∑
t=1

ǔ2t
wαt

.

Substituting σ̌2 into (9.37) then yields the concentrated loglikelihood function

`c(y, α) = C − n−
2

log

(
1−
n

n∑
t=1

ǔ2t
wαt

)
− α−

2

n∑
t=1

log(wt). (9.38)

This can be maximized by a one-dimensional search over α.

Notice that as α becomes larger, the second and third terms in `c(y, α)
will change in opposite directions. The second term is a sum-of-squares term,
while the third term is a Jacobian term. For concreteness, suppose that wt > 1
for all t. Then as α becomes larger, the second term will become larger (since
each ǔ2t will be divided by a larger number, and the sum of squared weighted
residuals will consequently decline), but the third term will become smaller
(since

∑
log(wt), which will be positive, will be multiplied by a larger negative

number). Moreover, one can show that when α is sufficiently close to zero, the
rise in the second term must be greater than the decline in the third term and
that when α is sufficiently large, the opposite must be true. Thus there must
be a finite, positive value α̌ that maximizes (9.38). This value would then be
used in the nonlinear regression (9.35) to obtain feasible GNLS estimates β̌.

To obtain ML estimates (α̂, β̂) we must maximize (9.34). Concentrating
it with respect to σ2 yields the concentrated loglikelihood function

`c(y,β, α) = C − n−
2

log

(
1−
n

n∑
t=1

(
yt − xt(β)

)2
wαt

)
− α−

2

n∑
t=1

log(wt). (9.39)

This can be maximized with respect to α and β jointly, using a general algo-
rithm for numerical optimization.4 It can also be maximized by using a com-
bination of one-dimensional search over α and k--dimensional search over β

4 Most general numerical optimization algorithms work in essentially the same
way as the algorithms for nonlinear least squares discussed in Section 6.8. The
major difference is that the Gauss-Newton regression cannot be used to deter-
mine the direction in which to search at each major iteration. For maximizing
loglikelihood functions, other artificial regressions, to be discussed in Chap-
ters 13, 14, and 15, may be used instead, although by no means all effective
algorithms use artificial regressions for this purpose. See Cramer (1986).
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conditional on α. The former approach is probably the most attractive one
if x(β) is nonlinear, but the latter may be attractive if x(β) = Xβ, since
estimating β conditional on α will then require only a single OLS regression.
In the latter case, we can effectively concentrate out β and reduce (9.39) to a
function of α alone.

All of the above discussion has assumed that there is no functional rela-
tionship between the parameters β of the regression function and the para-
meters α which determine Ω(α), and this is usually a reasonable assumption.
One can certainly write down models in which there is such a relationship,
however. One example is the model

yt = β0 + β1
(
xβ2

t z
β3

t

)
+ ut, ut ∼ N

(
0, σ2xβ2

t z
β3

t

)
.

Here the parameters β2 and β3 appear both in the regression function and
in the skedastic function. Thus it is impossible for the information matrix
to be block-diagonal between the parameters of the former and those of the
latter. In a case like this, maximum likelihood can easily be used to estimate
all parameters efficiently, while techniques like feasible GNLS that attempt to
estimate the parameters of the regression function conditional on those of the
skedastic function cannot do so.

9.7 Introduction to Multivariate Regression Models

Up to this point in the book, although we have sometimes formally allowed
for the possibility that the dependent variable in the models we have dealt
with may be a vector rather than a scalar, we have not actually discussed any
models in which this is the case. Now that we are familiar with generalized
least squares and with the use of maximum likelihood to estimate regression
models, we are ready to discuss the multivariate nonlinear regression model

yti = ξti(β) + uti, t = 1, . . . , n; i = 1, . . . ,m. (9.40)

Here yti is the tth observation on the ith dependent variable, ξti(β) is the tth

observation on the regression function which determines the conditional mean
of that dependent variable, β is a k--vector of parameters to be estimated, and
uti is an error term with mean zero and other properties that we will discuss
shortly.

Multivariate regression models arise in many circumstances. As a simple
example, suppose that there are observations on a dependent variable for, say,
five countries over 120 quarters (which implies that m = 5 and n = 120). Each
country might have a different regression function determining the conditional
mean of the dependent variable. If the same parameters appeared in more
than one of the regression functions, the system would be said to be subject to
cross-equation restrictions. In the presence of such restrictions, it is obvious
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that one would want to estimate all five equations as a system rather than
individually, in order to obtain efficient estimates. Even in the absence of
cross-equation restrictions, it seems very likely that the unobserved features
of the economic environments of the different countries would be related at
each point in time. Therefore, in all likelihood, uti would be correlated with
utj for i 6= j. In this situation, the system of equations forms what Zellner
(1962) dubbed a set of seemingly unrelated regressions, or an SUR system
for short. Actually, it might seem more logical to refer to them as “seemingly
related regressions,” but it is too late to change the terminology at this point.
As Zellner showed, estimating a set of seemingly unrelated regressions jointly
as a system will, except in certain special cases to be discussed below, yield
more efficient estimates than estimating each of them separately, even when
there are no cross-equation restrictions. Thus we would normally want to
treat an SUR system as a multivariate model.

There are many situations in which economic theory suggests the use
of a multivariate regression model. One very widely used class of models is
the class of demand systems, in which the shares of consumer expenditure on
various classes of goods and services are related to total expenditure and to
relative prices. The literature on demand systems is vast; see, among many
others, Barten (1964, 1969, 1977), Brown and Heien (1972), Christensen,
Jorgenson, and Lau (1975), Deaton (1974, 1978), Deaton and Muellbauer
(1980), Parks (1969), Pollak and Wales (1969, 1978, 1981, 1987), Prais and
Houthakker (1955), and Stone (1954). Demand systems may be estimated
using either aggregate time-series data (generally annual but sometimes quar-
terly) or, less frequently, cross-section data or mixed time-series/cross-section
data on households.

In many cases (although this is less true of the more recent literature),
the functional forms for demand systems are obtained simply by maximizing
a utility function of some known form subject to a budget constraint. As an
example, suppose that the utility function is

m+1∑
i=1

αi log(qi − γi), (9.41)

where there are m + 1 commodities, qi is the quantity of commodity i con-
sumed, and αi and γi are parameters. Why we have assumed that there are
m + 1 commodities will be apparent shortly. The αi’s are subject to the
normalization restriction that

∑m+1
i=1 αi = 1.

The utility function (9.41) is known as the Stone-Geary utility function.
Maximizing it subject to the budget constraint

m+1∑
i=1

qipi = E,



9.7 Introduction to Multivariate Regression Models 307

where pi is the price of commodity i and E is total expenditure on all the
commodities, yields the demand system:

si(E,p,α,γ) =
γipi
E

+ αi

(
E −

∑m+1
j=1 pjγj

E

)
,

where si(E,p,α,γ) denotes the share of expenditure that is predicted to be
spent on commodity i, conditional on total expenditure E, the price vector p
and the parameter vectors α and γ. This particular demand system is known
as the linear expenditure system; it has a long history dating back to Stone
(1954). Notice that although αi appears only in the ith share equation, γi
appears in all m+1 share equations, and there are consequently a great many
cross-equation restrictions.

By definition, the shares spent on all the commodities must add to one.
This has an important implication for the error terms, which we have not yet
specified. Suppose we make the assumption that

sti = si(Et,pt,α,γ) + uti,

where sti is the observed share of expenditure on commodity i for observation
t, and uti is an error term. Then

m+1∑
i=1

sti =

m+1∑
i=1

si(Et,pt,α,γ) +

m+1∑
i=1

uti.

Summing both sides of this equation over i, we find that 1 = 1 +
∑m+1
i=1 uti,

which implies that
m+1∑
i=1

uti = 0. (9.42)

Thus the error terms for every observation must sum to zero over all the
expenditure shares. As Barten (1968) showed, this does not create a problem
for estimation; we simply have to drop any one share equation and estimate the
system for the remaining m shares. Moreover, if we use maximum likelihood,
it does not matter which equation we drop; the estimates of α and γ that we
obtain will be identical (recall that the αi’s are normalized to sum to unity;
that is why we can get away with not estimating one of them).

Although (9.42) does not raise serious problems for estimation, it does
make it absolutely clear that the error terms uti and utj must in general be
correlated with each other. Strictly speaking, we should not assume that the
uti’s are normally distributed, because 0 ≤ sti ≤ 1, which implies that the
uti’s must be bounded from above and below; see Wales and Woodland (1983).
However, provided that the sample does not contain observations which are,
relative to the standard errors of the uti’s, near 0 or 1, it is probably not
unreasonable, as an approximation, to assume normality, and that is what
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almost all authors have done. Thus, if Ut denotes a row vector with typical
element uti, we might specify the distribution of the Ut’s to be N(0,Σ), where
Σ is an (m+ 1)× (m+ 1) singular covariance matrix. Then

U∗t ∼ N(0,Σ∗),

where U∗t is Ut minus one element, say the last, and Σ∗ is then an m×m
submatrix of Σ. Because Σ is a singular matrix, equation systems for which
the error terms sum to zero over all equations are frequently referred to as
singular equation systems; see Berndt and Savin (1975). There are many
examples of singular equation systems in addition to demand systems. These
include systems of factor shares, as in Berndt and Christensen (1974) and
Fuss (1977), and systems of asset-allocation equations, as in Aigner (1973).

We now return to multivariate models in general. The biggest difficulty
with such models is notation. Since ξti(β) already has two indices, its first and
second derivatives with respect to the elements of β must have three and four
indices, respectively. This makes it difficult to deal with multivariate models
using conventional matrix notation, which is not really designed to handle
quantities with more than two indices. Different authors handle this problem
in different ways. At one extreme, following the practice in modern physics,
Davidson and MacKinnon (1983b) advocate using the “Einstein summation
convention,” a notation that largely avoids the use of matrices by treating
everything as scalar expressions involving (typically) several summations over
indices. This approach has many advantages. Unfortunately, although it has
been used by some influential econometricians, for example Sargan (1980b)
and Phillips (1982), its use is not widespread in econometrics, and it would
probably look strange to most readers of this book. At the other extreme,
some authors make extensive use of Kronecker products (⊗), vec operators,
vech operators, and so on, so as to use matrix notation exclusively; see Magnus
and Neudecker (1988). Like Malinvaud (1970a), we will attempt to steer a
middle course, using primarily a mixture of scalar and matrix notation which,
we hope, will be both easy to understand and reasonably easy to manipulate.

While we are on the subject of notation, note that the model (9.40) could
be rewritten in either of the following ways:

Yt = ξt(β) +Ut, (9.43)

where Yt, ξt(β), and Ut are 1 ×m vectors with typical elements yti, ξti(β),
and uti, respectively, or

Y = ξ(β) +U, (9.44)

where Y , ξ(β), and U are n ×m matrices with Yt, ξt(β), and Ut as typical
rows. The approach based on summation conventions would start from (9.40),
while the approach based on Kronecker products would start from (9.44),
using the vec operator to stack the columns of Y , ξ(β), and U. Our approach
will start from (9.43).
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9.8 GLS Estimation ofMultivariate RegressionModels

In practice, multivariate regression models are usually estimated either by
feasible GLS or by maximum likelihood, assuming normality. Except in very
rare circumstances, it makes no sense to assume that uti is independent of
utj for i 6= j, as we have already seen in the case of both seemingly unrelated
regressions and demand systems. Depending on whether we intend to use ML
or feasible GNLS, we may or may not want to assume that the vector of error
terms Ut is normally distributed. We will in either case make the assumption
that

Ut ∼ IID(0,Σ),

where Σ is a (usually unknown) m×m covariance matrix, sometimes referred
to as the contemporaneous covariance matrix. Thus we are assuming that
uti is correlated with utj but not with usj for s 6= t. This is of course a
strong assumption, which should be tested; we will discuss one test that may
sometimes be appropriate below. Under these assumptions, the generalized
sum of squared residuals for the model (9.43) is

n∑
t=1

(
Yt − ξt(β)

)
Σ−1

(
Yt − ξt(β)

)>. (9.45)

Let us suppose initially that Σ is known. Then Σ may be used to
transform the multivariate model (9.40) into a univariate one. Suppose that
ψ is an m×m matrix (usually triangular) such that

ψψ>= Σ−1. (9.46)

If we postmultiply each term in (9.43) by ψ, we obtain the regression

Ytψ = ξt(β)ψ +Utψ. (9.47)

The 1×m error vector Utψ has covariance matrix

E
(
ψ>Ut

>Utψ
)

= ψ>Σψ = Im. (9.48)

As written, (9.47) has only one observation, and all terms are 1×m vectors.
In order to run this regression, we must somehow convert these 1×m vectors
into nm×1 vectors for all observations together. There is more than one way
to do this.

One approach is simply to transpose each 1×m vector of (9.47) and then
stack the m--vectors so created. However, that is not the easiest way to pro-
ceed. An easier approach is first to form m sets of n--vectors, as follows. For
the dependent variable, the tth component of the ith vector would be Ytψi,
where ψi is the ith column of ψ, and for the regression functions the corre-
sponding component would be ξt(β)ψi. Then nm--vectors would be obtained
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by stacking these n--vectors. The univariate nonlinear regression so defined
can be expressed in terms of partitioned matrices as Yψ1

...
Yψm

 =

 ξ(β)ψ1
...

ξ(β)ψm

+

 Uψ1
...

Uψm

. (9.49)

Recall from (9.44) that Y , ξ(β), and U are all n×m matrices. This stacked
univariate regression will have covariance matrix Imn, from (9.48) and because
we have assumed that there is no noncontemporaneous correlation of the
error terms. Even if ψ were known only up to a multiplicative constant, this
univariate regression could be estimated by nonlinear least squares, just like
any univariate nonlinear regression. Using the notation of (9.47), its sum of
squared residuals would be

n∑
t=1

(
Ytψ − ξt(β)ψ

)(
Ytψ − ξt(β)ψ

)>
=

n∑
t=1

(
Yt − ξt(β)

)
ψψ>

(
Yt − ξt(β)

)>
=

n∑
t=1

(
Yt − ξt(β)

)
Σ−1

(
Yt − ξt(β)

)>.
Thus we see that running the univariate nonlinear regression (9.47) or (9.49)
will yield exactly the same GNLS estimates as minimizing the generalized sum
of squared residuals (9.45).

Normally, the contemporaneous covariance matrix Σ will not be known
and hence neither will be ψ. However, it is often not hard to obtain a con-
sistent estimate of Σ, say Σ̌. Provided that each individual equation, for
i = 1, . . . ,m, is identified (possibly an unrealistic assumption in the case of
some nonlinear multivariate models such as demand systems), one can es-
timate each equation by OLS or NLS so as to obtain the n × m matrix of
residuals Ǔ. Then it is easy to see that, under reasonably weak conditions,

Σ̌ ≡ n−1Ǔ>Ǔ (9.50)

will provide a consistent estimate of Σ. Given Σ̌, one can easily compute ψ̌
using (9.46). Then NLS estimation of (9.47), with ψ̌ replacing ψ, will yield
feasible GNLS estimates which, as usual, are asymptotically equivalent to
ordinary GNLS estimates. This is the procedure advocated by Zellner (1962)
in the SUR case.

The first-order conditions for the minimization of the generalized sum of
squared residuals (9.45) can be written in several different ways. The basic
reason for this is that the derivative of ξti(β) with respect to βj , the j th
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element of β, necessarily involves three subscripts. One approach is to define
Ξt(β) as a k ×m matrix with typical element

Ξt,ji(β) ≡ ∂ξti(β)

∂βj
.

The first-order conditions can then be written as

n∑
t=1

Ξt(β̃)Σ−1
(
Yt − ξt(β̃)

)>= 0. (9.51)

A second approach is to define yi as the ith column of Y and xi(β) as the
vector of regression functions for the ith equation of the system, that is, an
n--vector with typical component ξti(β). Then if one arranges the derivatives
of xi(β) with respect to β into an n× k matrix Zi(β) with typical element

(Zi)tj(β) ≡ ∂ξti(β)

∂βj
(9.52)

and lets the ij th element of Σ−1 be denoted by σij, a little algebra shows
that (9.51) becomes

m∑
i=1

m∑
j=1

σijZi
>(β)

(
yj − xj(β)

)
= 0. (9.53)

A case of special interest arises when there are no cross-equation restric-
tions in the system. The full parameter vector can then be partitioned as
β = [β1

.... . . .
.... βm], where the components of the ki--vector βi are the para-

meters that appear only in the ith equation. We require, of course, that∑m
i=1 ki = k. The matrices Zi can be seen to contain many zero elements in

this case, because ξti depends only on the components of βi. It is convenient
to define n × ki matrices Z̄i without the zero elements; the typical element
will be (Z̄i)tj ≡ ∂ξti/∂(βi)j for j = 1, . . . , ki. This makes it possible to break
up the first-order conditions (9.53) equation by equation, so as to obtain

m∑
j=1

σijZ̄i
>(βi)

(
yj − xj(βj)

)
= 0, i = 1, . . . ,m. (9.54)

It is clear from (9.54) that if Σ is proportional to an identity matrix,
the first-order conditions collapse to those of equation-by-equation NLS when
there are no cross-equation restrictions. This implies that there can be no gain
from performing a system estimation unless the contemporaneous correlations
of the error terms are different from zero. In the context of feasible GNLS,
it is extremely improbable that the estimated error covariance matrix Σ̌ of
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(9.50) will be proportional to an identity matrix even if the true Σ is. In
that case, the system estimates and the equation-by-equation estimates will
be numerically, but not asymptotically, different. If Σ is proportional to an
identity matrix, so also will be ψ. Then the stacked system (9.49) becomes y1...

ym

 =

 x1(β1)
...

xm(βm)

+

 u1
...
um

, (9.55)

where the n--vector ui is the vector of error terms associated with the ith

equation. If the stacked system (9.55) were estimated by NLS, the sum of
squared residuals would be just

m∑
i=1

(
yi − xi(βi)

)>(yi − xi(βi)).
Since the components of each βi appear in only one term of the sum over i,
this sum is minimized by minimizing each term separately with respect to
the parameters on which it depends. Thus NLS estimation of (9.55) is just
equation-by-equation NLS.

In the special case of a linear system with no cross-equation restrictions,
the first-order conditions (9.53) can be used directly in order to obtain GLS
or feasible GLS estimates of the parameter vector β. This uses the fact that,
as we saw in Section 9.3, any GLS estimator can be interpreted as a simple
IV estimator for a suitable choice of instruments. In this case, the stacked
regression functions for the system can be written as

Xβ ≡

X1 · · · 0
...

. . .
...

0 · · · Xm

 β1
...
βm

.
Here Xi denotes the n× ki matrix of regressors appearing in the ith equation
of the system. In terms of the notation of (9.54), we have Xi = Z̄i(βi),
where Xi does not depend on βi because the system is linear. If we suppose
that the contemporaneous covariance matrix Σ is known, we can form the
nm× k matrix W as

W =

 σ11X1 · · · σ1mXm
...

. . .
...

σm1X1 · · · σmmXm

. (9.56)

Thus W is a partitioned matrix with typical block the n× kj matrix σijXj .
If Σ is not known, but can be estimated, then Σ should be replaced in (9.56)
by Σ̌.
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It is easy to see that the GLS estimator is the same as the simple IV
estimator

β̃ ≡

 β̃1
...

β̃m

 =
(
W>X

)−1
W>y,

where y ≡ [y1
.... . . .

.... ym]. This estimator, although given explicitly by the
above formula, can be defined by means of the first-order conditions

W>Xβ̃ = W>y.

If one writes these conditions out in detail, using the definitions of X and W,
it can be seen that they are identical to (9.54). Thus, for linear SURs with
no cross-equation restrictions, the GLS parameter estimates can be obtained
by employing an IV procedure to estimate the stacked univariate regression
y = Xβ+u, in which the matrixW defined in (9.56) is used as the instrument
matrix. Of course, as we remarked earlier, the estimated covariance matrix
will be incorrect.

We saw above that there is no asymptotic gain in efficiency obtainable
from the estimation of a set of SURs as a system over equation-by-equation
estimation if there is no contemporaneous correlation of the error terms as-
sociated with the different equations of the system. There is another case in
which system estimation also produces no efficiency gain, this time because
the two estimation methods lead to numerically identical parameter estimates.
It arises in the context of a linear SUR when all the regressor matrices Xi in
(9.56) are the same. The parameter estimates are identical because Kruskal’s
Theorem (see section 9.3) applies.

We show this by demonstrating that the span of the instrumentsW is the
same as that of the regressors X whenever Xi = X∗, say, for all i = 1, . . . ,m.
Thus, as is made clear by the interpretation of a GLS estimator as an IV
estimator, W plays the role of Ω−1X in the general statement of Kruskal’s
Theorem. The span of the columns of W is the set of all nm--vectors of the
form [X∗γ1

.... . . .
.... X∗γm], for arbitrary vectors γi with as many components

as X∗ has columns. All such nm--vectors can also be generated as linear
combinations of the columns of X, which is just a block-diagonal matrix with
identical blocks X∗ along the main diagonal. It follows that S(W ) = S(X),
and the result is proved.

Associated with every multivariate nonlinear regression model is a par-
ticular version of the Gauss-Newton regression. For the tth observation, this
regression may be written as(

Yt − ξt(β)
)
ψ = b>Ξt(β)ψ + residuals. (9.57)

In practice, this regression will be run in stacked form. Define a set of m
matrices Xi(β), all with dimensions n × k, in terms of the matrices Zi(β)
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introduced in (9.52), as follows:

Xi(β) =

m∑
j=1

Zj(β)ψji.

Then the stacked GNR is
(
Y − ξ(β)

)
ψ1

...(
Y − ξ(β)

)
ψm

 =

 X1(β)
...

Xm(β)

b + residuals. (9.58)

The OLS estimates from the GNR (9.58) will be defined by the first-order
conditions ( m∑

i=1

Xi
>(β)Xi(β)

)
b̈ =

m∑
i=1

Xi
>(β)

(
Y − ξ(β)

)
ψi. (9.59)

Some manipulation of (9.59) based on the definition of the Xi’s and of ψ
shows that this is equivalent to

m∑
i=1

m∑
j=1

σijZi
>(β)

(
yj − xj(β)−Zj(β)b

)
= 0. (9.60)

Thus we see that regression (9.58) has all the properties we have come to
expect from the Gauss-Newton regression. If we evaluate it at β = β̃, the
regression will have no explanatory power at all, because (9.60) is satisfied
with b = 0 by the first-order conditions (9.53). The estimated covariance
matrix from regression (9.58) with β = β̃ will be

s̃2
( m∑
i=1

m∑
j=1

σijZ̃i
>Z̃j

)−1
, (9.61)

where s̃2 is the estimate of the variance that the regression package will gen-
erate, which will evidently tend to 1 asymptotically if Σ is in fact the con-
temporaneous covariance matrix of Ut. If (9.61) is rewritten as a sum of
contributions from the successive observations, the result is

s̃2
( n∑
t=1

Ξ̃tΣ
−1Ξ̃t

>
)−1

,

from which it is clear that (9.61) is indeed the proper GNLS covariance matrix
estimator.
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We could also run the GNR (9.58) with all quantities evaluated at a set of
restricted ML estimates β́, where the restrictions are on β only and not on the
elements of Σ. The explained sum of squares from this regression would be( n∑

t=1

(Yt − ξ́t)Σ−1Ξ́t>
)( n∑

t=1

Ξ́tΣ
−1Ξ́t

>
)−1( n∑

t=1

(Yt − ξ́t)Σ−1Ξ́t>
)>
.

This is clearly an LM statistic. It can be used to test any sort of restriction
on β, including the hypothesis that the error terms are serially uncorrelated.
For more on LM statistics in multivariate regression models, see Engle (1982a)
and Godfrey (1988).

The foregoing results could all have been expected in view of the fact
that a multivariate regression model can always be rewritten as a univari-
ate regression model. Nevertheless, it is useful to have specific results for
multivariate models. In particular, the ability to compute Gauss-Newton re-
gressions provides a convenient way to obtain GNLS estimates, to verify that
those estimates are accurate, to compute covariance matrix estimates, and
to calculate LM test statistics for restrictions on β. Evidently, all these re-
sults also hold for feasible GNLS, where Σ is not available but the consistent
estimate Σ̌ is.

9.9 ML Estimation of Multivariate Regression Models

The principal competitor to feasible GLS is maximum likelihood estimation
based on the assumption of normally distributed error terms. As we saw in
Section 9.6, ML estimates will be consistent even if that assumption is false,
and so it seems a safe assumption to make. Thus the model is now

Yt = ξt(β) +Ut, Ut ∼ NID(0,Σ).

The density of Ut is

(2π)−m/2|Σ|−1/2 exp
(
− 1−

2
UtΣ

−1Ut
>
)
.

Therefore, the density of Yt is

(2π)−m/2|Σ|−1/2 exp
(
− 1−

2

(
Yt − ξt(β)

)
Σ−1

(
Yt − ξt(β)

)>).
Hence the loglikelihood function `(Y ,β,Σ) is

−mn
2

log(2π)− n−
2

log |Σ| − 1−
2

n∑
t=1

(
Yt − ξt(β)

)
Σ−1

(
Yt − ξt(β)

)>. (9.62)

Notice that the last term here is just minus one-half the generalized sum of
squared residuals (9.45). Thus, ifΣ were known, the ML estimates of β would
be identical to the GLS estimates.
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The first step in maximizing `(Y ,β,Σ) is to concentrate it with respect
to Σ. Since |Σ| = |Σ−1|−1, (9.62) can be expressed purely in terms of the
inverse matrix Σ−1. It turns out to be easier to concentrate the loglikelihood
by using the first-order conditions given by differentiating it with respect to
the elements of Σ−1. The matrix of partial derivatives thus obtained is (see
Appendix A for details of the differentiation)

∂`

∂Σ−1
= n−

2
Σ − 1−

2

n∑
t=1

(
Yt − ξt(β)

)>(Yt − ξt(β)
)
. (9.63)

Setting the right-hand side of (9.63) equal to zero yields

− n−
2
Σ = − 1−

2

n∑
t=1

(
Yt − ξt(β)

)>(Yt − ξt(β)
)
,

from which we see that

Σ(β) = 1−
n

n∑
t=1

(
Yt − ξt(β)

)>(Yt − ξt(β)
)
. (9.64)

Thus the ML estimator ofΣ is exactly what one might expect it to be, namely,
the matrix of sums of squares and cross-products of the residuals, divided by
the sample size.

We can easily substitute (9.64) into the last term of (9.62) if we observe
that the trace of a scalar is just the scalar itself and that the trace of a matrix
product is invariant under a cyclic permutation of the factors of the product.
We obtain(

Yt − ξt(β)
)
Σ−1

(
Yt − ξt(β)

)>= Tr
((
Yt − ξt(β)

)
Σ−1

(
Yt − ξt(β)

)>)
= Tr

(
Σ−1

(
Yt − ξt(β)

)>(Yt − ξt(β)
))
.

Summing over t yields

n∑
t=1

(
Yt − ξt(β)

)
Σ−1

(
Yt − ξt(β)

)>=
n∑
t=1

Tr
(
Σ−1

(
Yt − ξt(β)

)>(Yt − ξt(β)
))

= Tr
(
Σ−1

n∑
t=1

(
Yt − ξt(β)

)>(Yt − ξt(β)
))

= Tr
(
Σ−1nΣ

)
= mn.

Thus the concentrated loglikelihood function that corresponds to (9.62) is

`c(Y ,β) = C − n−
2

log
∣∣∣ 1−n n∑

t=1

(
Yt − ξt(β)

)>(Yt − ξt(β)
)∣∣∣

= C − n−
2

log |Σ(β)|,
(9.65)
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where Σ(β) has been defined implicitly, and C, a constant that does not
depend on β, is equal to

−mn
2

(
log(2π) + 1

)
.

Expression (9.65) is the multivariate analog of the concentrated loglikelihood
function (8.82) for univariate nonlinear regression models.

From (9.65), we see that to obtain ML estimates β̂ we will have to min-
imize the logarithm of the determinant of the contemporaneous covariance
matrix, |Σ(β)|. This can be done quite easily by using the rule for comput-
ing derivatives of logarithms of determinants given in Appendix A. This rule
states that if A is a nonsingular m×m matrix, then the derivative of log |A|
with respect to the ij th element of A is the jith element of A−1. By the chain
rule, the derivative of log |Σ(β)| with respect to βi is

∂ log |Σ(β)|
∂βi

=
m∑
j=1

m∑
l=1

∂ log |Σ(β)|
∂σjl

∂σjl(β)

∂βi

=
m∑
j=1

m∑
l=1

(
Σ−1(β)

)
lj

∂σjl(β)

∂βi

= Tr

(
Σ−1(β)

∂Σ(β)

∂βi

)
.

It is easy to see that

∂Σ(β)

∂βi
= − 2−

n

n∑
t=1

Ut
>(β)

∂ξt(β)

∂βi
,

from which the gradient of (9.65) can be seen to be

n∑
t=1

Ξt(β)Σ(β)−1
(
Yt − ξt(β)

)>. (9.66)

By setting this gradient to zero, we recover the first-order conditions (9.51)
obtained from the GNLS method, but with Σ(β) for covariance matrix.

In the case of univariate regression models, the fact that least squares
estimates are chosen so as to minimize the sum of squared residuals ensures
that, on average, the residuals will be smaller than the true error terms. For
the same reason, the fact that ML estimates minimize the determinant of the
contemporaneous covariance matrix of the model ensures that, on average, the
residuals associated with these estimates will be both too small and too highly
correlated with each other. We observe both effects, because the determinant
of the covariance matrix can be made smaller either by reducing the sums
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of squared residuals associated with the individual equations or by increasing
the correlation among different equations. This is likely to be most noticeable
when m and/or k are large relative to n.

It is of interest to consider the information matrix for the model (9.43).
As with all regression models, this information matrix will turn out to be
block-diagonal between the part that corresponds to β and the part that
corresponds to Σ or, equivalently, to Σ−1. To see this, observe from (9.63)
that

∂`t
∂Σ−1

= 1−
2
Σ − 1−

2

(
Yt − ξt(β)

)>(Yt − ξt(β)
)
.

This is an m×m symmetric matrix with m(m+ 1)/2 independent elements.
A typical element of it is

∂`t
∂σij

= 1−
2
σij − 1−

2

(
yti − ξti(β)

)>(ytj − ξtj(β)
)
. (9.67)

From (9.66), we also find that the gradient of `t with respect to β is

Ξt(β)Σ−1
(
Yt − ξt(β)

)>. (9.68)

If we multiply (9.67) by (9.68), the product will involve either one or three
occurrences of a component of Yt − ξt(β) = Ut. Because the first and third
moments of the error terms are zero (a consequence of normality), such a
product must have expectation zero. Thus the information matrix must be
block-diagonal between β and Σ.

Now consider the (β,β) block of the information matrix. By definition, it
is the limit of the expectation of 1/n times the outer product of the gradient,
namely,

Iββ = lim
n→∞

E

(
1−
n

n∑
t=1

Ξt(β)Σ−1
(
Yt − ξt(β)

)>(Yt − ξt(β)
)
Σ−1Ξt

>(β)

)

= lim
n→∞

(
1−
n

n∑
t=1

Ξt(β)Σ−1ΣΣ−1Ξt
>(β)

)

= lim
n→∞

(
1−
n

n∑
t=1

Ξt(β)Σ−1Ξt
>(β)

)
.

Thus we conclude that

n1/2(β̂ − β0)
a∼ N

(
0, plim

n→∞

(
1−
n

n∑
t=1

Ξt(β)Σ−1Ξt
>(β)

)−1)
. (9.69)

Notice that, except for the factor of s̃2, the covariance matrix estimate
(9.61) obtained by running the Gauss-Newton regression is precisely the esti-
mate that the result (9.69) would suggest using. If the GNR is computed at
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the ML estimates β̂, the estimated error variance for it, ŝ2, will be equal to

1

mn− k

n∑
t=1

(
Yt − ξ̂t

)
ψ̂ψ̂>

(
Yt − ξ̂t

)>
=

1

mn− k

n∑
t=1

(
Yt − ξ̂t

)
Σ̂−1

(
Yt − ξ̂t

)>=
mn

mn− k
.

(9.70)

The last equality here follows from an argument almost identical to the one
used to establish (9.65). Since it is evident that (9.70) tends asymptotically
to 1, expression (9.61), which is in this case

mn

mn− k

( n∑
t=1

Ξ̂tΣ̂
−1Ξ̂t

>
)−1

,

provides a natural and very convenient way to estimate the covariance matrix
of β̂.

We have now established all the principal results of interest concerning
the estimation of multivariate nonlinear regression models. Since those results
have been in terms of a rather general and abstract model, it may help to make
them more concrete if we indicate precisely how our general notation relates
to the case of the linear expenditure system that we discussed earlier. For
concreteness, we will assume that m = 2, which means that there is a total of
three commodities. Then we see that

Yt = [st1 st2];

β = [α1
.... α2

.... γ1
.... γ2

.... γ3];

ξt(β) =

γ1p1t
Et

+
α1

Et

(
Et −

3∑
j=1

pjtγj

)
γ2p2t
Et

+
α2

Et

(
Et −

3∑
j=1

pjtγj

);

Ξt(β) =



(
Et −

∑3
j=1 pjtγj

)
/Et 0

0
(
Et −

∑3
j=1 pjtγj

)
/Et

(1− α1)p1t/Et −α2p1t/Et

−α1p2t/Et (1− α2)p2t/Et

−α1p3t/Et −α2p3t/Et


.

It may be a useful exercise to set up the GNR for testing the hypothesis that
γ1 = γ2 = γ3 = 0, where estimates subject to that restriction have been
obtained.

Our treatment of multivariate models has been relatively brief. A much
fuller treatment, but only for linear SUR models, may be found in Srivas-
tava and Giles (1987), which is also an excellent source for references to the
econometric and statistical literature on the subject.
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9.10 Modeling Time-Series/Cross-Section Data

Many data sets have both a time-series and a cross-section dimension. For
example, they might contain 40 years of data on 20 countries, or 132 quarters
of data on 50 states. The advantage of such data sets is that the sample size
is usually quite large (for the above examples, 40× 20 = 800 and 132× 50 =
6600), which means that they should potentially be very informative about
the parameters to be estimated. The disadvantage is that it is necessary to
take the two-dimensional nature of the data into account. A particular type
of time-series/cross-section data arises when the same sample of individuals,
households, or firms is observed at two or more points in time. Data of this
type are often referred to as panel data. A panel data set generally consists
of a fairly small number of temporal observations on a large number of cross-
section units. The imbalance between the two dimensions of the sample may
make it necessary to use special techniques and can make reliance on standard
asymptotic theory inappropriate.

If we let t index the time dimension of the data and i index the cross-
section dimension, we can write a univariate nonlinear regression model for
time-series/cross-section data as

yti = xti(β) + uti, t = 1, . . . , T, i = 1, . . . , n. (9.71)

There are T time periods and n cross-sectional units, for a total of nT ob-
servations. If we were willing to assume that the uti’s are homoskedastic and
independent, we could simply estimate (9.71) by NLS. But often this will not
be a realistic assumption. The variance of uti might well vary systematically
with t or i or both of them. Moreover, it seems plausible that the error terms
uti and utj will be correlated for some i 6= j if certain shocks affect several
cross-sectional units at the same point in time. Similarly, it seems plausible
that the error terms uti and usi will be correlated for some t 6= s if certain
shocks affect the same cross-section unit at more than one point in time.
Whether any of these failures of the i.i.d. assumption will occur for any given
data set is difficult to say a priori. But if they do occur, and we simply use
NLS, we will obtain an estimated covariance matrix that is inconsistent and
may lead to serious errors of inference. In some circumstances, we may even
obtain inconsistent parameter estimates.

In principle, it is straightforward to deal with failures of the i.i.d. as-
sumption of the types just discussed. One simply writes down the assumed
covariance matrix of the uti’s as a function of one or more unknown para-
meters, uses least squares to obtain residuals from which to estimate those
parameters consistently, and then applies feasible GLS. Alternatively, one can
use maximum likelihood to estimate the parameters of the regression function
and the parameters of the covariance matrix simultaneously. In practice, of
course, it is not always easy to apply this prescription, and there is an enor-
mous literature on particular techniques for doing so. Chamberlain (1984),
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Hsiao (1986), Judge, Hill, Griffiths, Lütkepohl, and Lee (1985, Chapter 13),
and Greene (1990a, Chapter 16) are useful references. In this section, we will
discuss only a few of the simplest and most widely applicable techniques for
dealing with time-series/cross-section data.

When one of T and n is quite small and the other is reasonably large, it is
natural to recast the univariate model (9.71) as a multivariate one. Suppose,
for concreteness, that there are only a few cross-sectional units and numerous
time periods. Then it seems natural to group observations t1 through tn into
a vector ut and assume that

ut ∼ IID(0,Σ).

Thus we are assuming that uti is in general correlated with utj for i 6= j and
that ut is not correlated with us for t 6= s. With this error specification,
the univariate model (9.71) becomes a special case of the multivariate non-
linear regression model (9.40) and can be estimated by either feasible GLS
(Section 9.8) or maximum likelihood (Section 9.9). Of course, there will be a
great many cross-equation restrictions, since the parameters in all equations
are assumed to be the same, but either of these techniques should be able to
handle them with no difficulty.

Treating a model like (9.71) as a multivariate model is attractive because
one can employ standard software for the estimation of such models. More-
over, it becomes natural to test the (not always plausible) assumption that
the same regression function xti(β) applies to all cross-sectional units. At the
very least, one would always want to check the possibility that each cross-
sectional unit might have a different intercept. This can be done in several
ways. Two possibilities are to estimate the unrestricted model as well and
then compute an LR or equivalent test and to calculate an LM test based on
a GNR like (9.58). In addition, one would surely want to test for correlation
of the error terms across time periods. This can be done by using standard
tests for serial correlation in multivariate models, which can also be based on
the GNR (9.58). This topic will be discussed very briefly in Section 10.11;
see also Engle (1984) and Godfrey (1988). One might also wish to test for
heteroskedasticity across time periods, which can be done by straightforward
extensions of the techniques to be discussed in Chapters 11 and 16.

Although there is much to recommend the approach of treating a uni-
variate model estimated using time-series/cross-section data as a multivariate
model, it is not attractive when neither n nor T is particularly small. For
example, suppose that n = 30 and T = 40. Then a multivariate model that
treats each cross-sectional unit separately will have 30 equations, and the
matrix Σ will have 1

2 (30 × 31) = 465 distinct elements, which must each be
estimated using only 40 observations. Estimating a 30-equation model is by
no means infeasible. However, with only 40 observations, it will be difficult
to obtain good estimates of Σ, and thus one might expect the finite-sample
properties of feasible GLS and ML estimates to be poor.
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A second approach, which is very popular, is to use what is called an
error-components model. The idea is to model uti as consisting of three
individual shocks, each assumed to be independent of the others:

uti = et + vi + εti. (9.72)

Here et affects all observations for time period t, vi affects all observations for
cross-section unit i, and εti affects only observation ti. In the most common
versions of error-components models, the et’s are assumed to be independent
across t, the vi’s are assumed to be independent across i, and the εti’s are
assumed to be independent across all i and t. These assumptions can of course
be relaxed, as in Revankar (1979) and Baltagi and Li (1991), but we will not
discuss how to do so here.

There are two ways to estimate a regression model with error terms that
are assumed to consist of several error components, as in (9.72). The first is
to estimate what is called a fixed-effects model, and the second is to estimate
what is called a random-effects model. These two approaches are conceptually
quite different. In the first of them we estimate the model conditionally on the
errors et and vi, and in the second we estimate the model unconditionally. A
fixed-effects model can be estimated by ordinary (or nonlinear) least squares,
while a random-effects model requires GLS or ML. One advantage of the
fixed-effects model is that, since we are conditioning on et and vi, we do not
need to assume that they are independent of the regressors. However, as we
will see, the random-effects model will yield more efficient estimates when it is
appropriate. Mundlak (1978) is a classic reference on the relationship between
the fixed-effects and random-effects models.

For simplicity and concreteness, we will in the remainder of this section
assume that there are no time-specific shocks, which implies that et = 0 for
all t. This simplifies the algebra without changing the nature of the results.
We will also assume that the regression function for observation ti is Xtiβ.
Under these assumptions, the error-components model can be written as

yti = Xtiβ + vi + εti. (9.73)

The idea of the fixed-effects model is simply to treat the vi’s as unknown
parameters and estimate them jointly with β. This may be done by adding
n dummy variables Dj

ti to regression (9.73), each equal to unity when i = j
and equal to zero otherwise. Of course, if Xti includes a constant term or the
equivalent, one of the dummy variables will have to be omitted.

In matrix notation, the fixed-effects version of (9.73) can be written as

y = Xβ +Dv + ε, (9.74)

where v is an n--vector with typical element vi. Provided the εti’s are i.i.d.,
the model (9.74) may be estimated by OLS. Using the FWL Theorem, we see
that the fixed-effects estimator of β is

β́ =
(
X>MDX

)−1
X>MDy, (9.75)
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where the matrix MD is simply the matrix that takes deviations from the
group means X̄.i for i = 1, . . . , n. Thus a typical element of MDX is

(MDX)ti = Xti − X̄.i.

This makes it easy to compute β́ even when n is so large that it would be
infeasible to run regression (9.74). One simply has to compute the group
means y.i and X.i for all i and then regress yti − ȳ.i on Xti − X̄.i for all t
and i. The estimated covariance matrix should then be adjusted to reflect
the fact that the number of degrees of freedom used in estimation is actually
n+ k rather than k.

Because the fixed-effects estimator (9.75) depends only on the deviations
of the regressand and regressors from their respective group means, it is some-
times called the within-groups estimator. As this name implies, it makes no
use of the fact that the group means are in general different for different
groups. This property of the estimator can be an advantage or a disadvan-
tage, depending on circumstances. As we mentioned above, it may well be the
case that the cross-sectional effects vi are correlated with the regressors Xti

and consequently also with the respective group means of the regressors. In
that event the OLS estimator (without fixed effects) based on the full sample
would be inconsistent, but the within-groups estimator would remain consis-
tent. However, if on the contrary the fixed effects are independent of the
regressors, the within-groups estimator is not fully efficient. In the extreme
case in which any one of the independent variables does not vary at all within
groups, but only between groups, then the coefficient corresponding to that
variable will not even be identifiable by the within-groups estimator.

An alternative inefficient estimator that uses only the variation among
the group means is called the between-groups estimator. It may be written as

β̀ =
(
X>PDX

)−1
X>PDy. (9.76)

Since PDXti = X̄.i, this estimator really involves only n distinct observations
rather than nT . It will clearly be inconsistent if the cross-sectional effects, the
vi’s, are correlated with the group means of the regressors, the X̄.i’s. The OLS
estimator can be written as a matrix-weighted average of the within-groups
and between-groups estimators:

β̂ =
(
X>X

)−1
X>y

=
(
X>X

)−1(
X>MDy +X>PDy

)
=
(
X>X

)−1
X>MDXβ́ +

(
X>X

)−1
X>PDXβ̀.

Thus we see immediately that OLS will be inconsistent whenever the between-
groups estimator (9.76) is inconsistent.
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Even when it is consistent, OLS will usually be inefficient. If the cross-
sectional effects are uncorrelated with the group means of the regressors, then
we want to use a random-effects model, in which the vi’s are not treated as
fixed but as components of the error terms. OLS weights all observations
equally, but that is not the optimal thing to do for the error-components
model (9.73). The variance of uti is, using an obvious notation, σ2

v + σ2
ε . The

covariance of uti with utj is, by assumption, zero for i 6= j. But the covariance
of uti with usi for s 6= t is σ2

v . Thus, if the data are ordered first by i and
then by t, the covariance matrix of the uti’s can be written as

Σ 0 · · · 0
0 Σ · · · 0
...

...
...

0 0 · · · Σ

,
where Σ is the T × T matrix

σ2
v + σ2

ε σ2
v · · · σ2

v

σ2
v σ2

v + σ2
ε · · · σ2

v

...
...

...

σ2
v σ2

v · · · σ2
v + σ2

ε

= σ2
εI + σ2

v ιι
>.

This covariance matrix reflects the fact that for fixed i the errors are equicor-
related; compare (9.24).

In order to compute GLS estimates, we need to find Σ−1/2. It can easily
be verified that

Σ−1/2 =
1

σε
(I− αPι),

where Pι = T−1ιι> and α, which must be between 0 and 1, is defined by

α = 1− σε
(Tσ2

v + σ2
ε)1/2

. (9.77)

This implies that a typical element ofΣ−1/2y.i is σ−1ε (yti−αȳ.i), and a typical
element of Σ−1/2X.i is σ−1ε (Xti − αX̄.i). GLS estimates may then be found
by running the OLS regression

yti − αȳ.i = (Xti − αX̄.i)β + residual,

which may be written in matrix terms as

(I− αPD)y = (I− αPD)Xβ + (I− αPD)u. (9.78)

In practice, of course, α will be unknown, and we will have to use feasible
GLS or maximum likelihood. The former is very easy to implement, since we
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can obtain estimates of the quantities we need by estimating the fixed-effects
model. The error terms for that model are simply the εti’s, and so by estimat-
ing it we immediately obtain a consistent estimate of σ2

ε . We can then estimate
σ2
v in various ways, the simplest estimator being the average of the squared

estimates of the vi’s. This estimator will also be consistent, provided that T
(and not merely nT ) is allowed to tend to infinity. Using these estimates of σ2

ε

and σ2
v , we can easily obtain a consistent estimate of α from (9.77). We will

not discuss ML estimation, which is conceptually straightforward but com-
putationally more difficult than feasible GLS; the classic reference is Balestra
and Nerlove (1966).

It is interesting to see how the GLS estimator defined by regression (9.78)
is related to the OLS estimator and the within-groups estimator (9.75). When
α = 0, the GLS estimator evidently reduces to the OLS estimator. This makes
sense because, from (9.77), we see that α will be 0 only when σv = 0, in which
case the error term has only one component. When α = 1, the GLS estimator
reduces to the within-groups estimator. This also makes sense, because α will
be 1 only when σε = 0, in which case the error terms associated with within-
group variation will all be zero. This implies that we can obtain perfectly
accurate estimates of β by using the within-groups estimator. In every other
case, α will be between 0 and 1, and the GLS estimator will make use of both
within-groups and between-groups variation.

The problem with panel data is that n is usually very large and T is
frequently very small. Thus parameters that are identified by variation across
the cross-sectional units will tend to be estimated very well, while parameters
that are identified only by variation across time may be estimated quite poorly.
One could not expect to estimate σv at all precisely in a random-effects
model, for example. If one were not concerned with variation across time,
one would simply use a fixed-effects model. Instead of explicitly removing
the group means, one could take first differences of all the data with respect
to the time dimension, causing the individual effects to vanish. In practice,
however, we are often interested in parameters that are not identified solely
by within-groups variation. Econometricians have therefore proposed a wide
range of procedures for dealing with panel data. See, among many others,
Hausman and Taylor (1981), Chamberlain (1984), Hsiao (1986), and Holtz-
Eakin, Newey, and Rosen (1988).

9.11 Conclusion

GLS and GNLS are very important estimation techniques that are widely
used in applied econometrics. We will encounter variants of them through-
out the remainder of this book, most notably in Chapter 10, where we deal
with serial correlation, and in Chapter 18, where we deal with full-system
techniques for estimating simultaneous equations models. Nevertheless, it is
important to remember that GLS and GNLS are really just fancy variants of
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least squares. Any mistake that one can make in specifying a model estimated
by OLS (such as incorrectly specifying the regression function or failing to ac-
count for serial correlation or heteroskedasticity) can equally well be made
in specifying models estimated by GLS, GNLS, and the various maximum
likelihood methods related to them. It is therefore just as important to test
such models for misspecification as it is to test the simplest linear regression
model. The Gauss-Newton regressions (9.14) and (9.58) often provide con-
venient ways to do this. However, it is our experience that the amount of
misspecification testing to which a model is subjected is inversely related to
the difficulty of estimating the model in the first place. Since it generally
requires a good deal more effort to estimate models, especially multivariate
models, by GLS or GNLS than univariate regression models by OLS, the for-
mer are often subjected to much less misspecification testing than we would
consider appropriate.

Terms and Concepts

asymptotic equivalence of GNLS,
feasible GNLS, and ML

between-groups estimator
contemporaneous covariance matrix
cross-equation restrictions
demand systems
equicorrelated errors
error-components models
feasible GLS and GNLS
fixed-effects models
generalized least squares (GLS)
generalized nonlinear least squares

(GNLS)
generalized sum of squared residuals
GLS (Aitken) estimator

Kruskal’s Theorem
linear expenditure system
multivariate nonlinear regression

model
oblique projection matrix
panel data
random-effects models
seemingly unrelated regressions (SUR

system)
singular equation system
skedastic function
Stone-Geary utility function
time-series/cross-section data
weighted least squares
within-groups estimator



Chapter 10

Serial Correlation

10.1 Introduction

The phenomenon of serial correlation, in which successive residuals appear to
be correlated with each other, is very often encountered in models estimated
with time-series data. As a result, testing for serial correlation and estimating
models that take account of it are both topics which have been studied for
a very long time by econometricians, and the literature is consequently vast.
Happily, the results we have already obtained about NLS, GNLS, and ML
allow us to handle most of the problems associated with serial correlation in
a straightforward way.

Although error terms may fail to be independent in any sort of model,
lack of independence is most often observed in models estimated with time-
series data. In particular, observations that are close in time often have error
terms which appear to be correlated, while observations that are far apart in
time rarely do. We say appear to be correlated because misspecification of
the regression function may lead residuals to be correlated across observations,
even when the actual error terms are not. In any case, whether the appearance
of serial correlation in time-series models is genuine or not, one particularly
simple model of serial correlation has become very popular. In this model, the
error terms ut are assumed to follow the first-order autoregressive, or AR(1),
process

ut = ρut−1 + εt, εt ∼ IID(0, ω2), |ρ| < 1. (10.01)

This stochastic process says that the error at time t, ut, is equal to some
fraction ρ of the error at time t − 1 (with the sign changed if ρ < 0), plus a
new error term or innovation εt that is homoskedastic and independent of all
past and future innovations. Thus in each period part of the error term is the
last period’s error term, shrunk somewhat toward zero and possibly changed
in sign, and part is the innovation εt.

The condition that |ρ| < 1 is called a stationarity condition. It ensures
that the variance of ut tends to a limiting value, σ2, rather than increasing
without limit as t gets large. By substituting successively for ut−1, ut−2, ut−3,
and so on in (10.01), we see that

ut = εt + ρεt−1 + ρ2εt−2 + ρ3εt−3 + · · · .

327
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Thus, using the fact that the innovations εt, εt−1 · · · are independent, the
variance of ut is seen to be

σ2 ≡ V (ut) = ω2 + ρ2ω2 + ρ4ω2 + ρ6ω2 + · · · = ω2

1− ρ2
. (10.02)

The right-most expression in (10.02) is true only if the stationarity condition
|ρ| < 1 holds, since that condition is necessary for the infinite series 1 + ρ2 +
ρ4 + ρ6 + · · · to converge. In conventional econometric applications, where ut
is the error term appended to a regression model, this is a very reasonable
condition to impose, since we certainly would not want the variance of the
error terms to blow up as the sample size was increased.

We have seen that, for a stationary AR(1) process which has been going
on for a reasonable length of time, the error terms ut will each have variance
σ2 = ω2/(1− ρ2). We can write

ut = εt + ρεt−1 + · · ·+ ρ j−1εt−j+1 + ρ jut−j , (10.03)

expressing ut as a function of ut−j and of all the innovations between periods
t− j + 1 and t. Hence the covariance of ut and ut−j may be calculated as

E
(
(εt + ρεt−1 · · · ρ j−1εt−j+1 + ρ jut−j)ut−j

)
. (10.04)

Since the innovations between periods t− j+1 and t are independent of ut−j ,
the covariance (10.04) is simply

E
(
ρ ju2t−j

)
= ρ jE(u2t ) =

ρ jω2

1− ρ2
= ρ jσ2.

Thus we conclude that the covariance matrix of u is

Ω =
ω2

1− ρ2


1 ρ ρ2 · · · ρn−1

ρ 1 ρ · · · ρn−2

...
...

...
...

ρn−1 ρn−2 ρn−3 · · · 1

, (10.05)

the matrix in brackets being the correlation matrix of u. It is evident from
(10.05) that every element of u is correlated with every other element of u,
but except when |ρ| is very close to 1, this correlation will tend to die out
quite quickly as the time periods become further apart. This accords well
both with intuition and with the actual behavior of the residuals from many
regression models estimated with time-series data. Thus it is not surprising
that the AR(1) process is very frequently used in applied econometric work.

The AR(1) process is of course a very special case. There are numerous
other stochastic processes that error terms could reasonably follow. We will
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discuss some of these in Sections 10.5 and 10.7, below. However, because
most of the issues involved in estimating models with, and testing for, serial
correlation arise in the AR(1) case, and because it is by far the most commonly
encountered error process in applied work, we will restrict our attention to
the AR(1) case for the moment.

The chapter proceeds as follows. In the next section, we discuss the
effects on least squares estimates of serial correlation that is not accounted
for. In the following two sections, we discuss methods for estimating regression
models that allow for AR(1) errors but ignore the first observation. Then,
in Section 10.5, we discuss higher-order AR processes. Section 10.6 deals
with methods for taking account of the initial observations, and Section 10.7
deals with moving average errors. In Section 10.8, we discuss tests for serial
correlation and, in the following section, tests of common factor restrictions.
Section 10.10 deals with serial correlation in models estimated by instrumental
variables. Finally, in Section 10.11, we briefly discuss serial correlation in
multivariate models.

10.2 Serial Correlation and Least Squares Estimation

What are the consequences if we use least squares to estimate a model in
which the error terms are in fact serially correlated? For simplicity, we will
consider the linear case, because all the results carry over to the nonlinear
case in an obvious fashion. Thus suppose that we estimate the model

y = Xβ + u, E(uu>) = σ2 I,

when the data-generating process is actually

yt = Xtβ0 + ut, ut = ρ0ut−1 + εt, εt ∼ IID(0, ω2
0). (10.06)

The OLS estimator is
β̂ =

(
X>X

)−1
X>y,

which under the DGP (10.06) is equal to(
X>X

)−1
X>(Xβ0 + u) = β0 +

(
X>X

)−1
X>u.

Provided that X is exogenous, β̂ will still be unbiased, because the fact that
the ut’s are serially correlated does not prevent E(X>u) from being zero.
If X is not exogenous, β̂ will be consistent as long as plim(n−1X>u) is equal
to zero.

Inferences about β will not be correct, however. Assuming that X is
exogenous, we see that

E(β̂ − β0)(β̂ − β0)>= E
(
(X>X)−1X>uu>X(X>X)−1

)
=
(
X>X

)−1
X>Ω0X

(
X>X

)−1
,

(10.07)
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where Ω0 is the matrix Ω(ρ) defined in (10.05), evaluated at ρ0 and ω0.
Evidently, (10.07) will in general not be consistently estimated by the OLS
covariance matrix estimator s2(X>X)−1. Except in special cases, it is not
possible to say whether the incorrect standard error estimates obtained using
OLS will be larger or smaller than the correct ones obtained by taking the
square roots of the diagonal elements of (10.07). However, analysis of spe-
cial cases suggests that for values of ρ greater than 0 (the most commonly
encountered case) the incorrect OLS standard errors are usually too small;
see, among others, Nicholls and Pagan (1977), Sathe and Vinod (1974), and
Vinod (1976).

Expression (10.07) applies to any situation in which OLS is incorrectly
used in place of GLS and not merely to situations in which the errors follow
an AR(1) process. So does the previous result that β̂ is unbiased if X is
fixed and E(X>u) = 0. But recall from Section 9.5 that, even when these
conditions are satisfied, β̂ may fail to be consistent if the errors are correlated
enough among themselves. We may conclude that, when the regressors are
fixed and the covariance matrix of the error terms is such that there is not
too much correlation of the error terms, the OLS estimates will be consistent,
but the OLS covariance matrix estimate will not be. A consistent estimate of
the covariance matrix of the OLS estimator can usually be found. However,
since the proof of the Gauss-Markov Theorem depended on the assumption
that E(uu>) = σ2 I, OLS is not the best linear unbiased estimator when this
assumption does not hold.

The preceding discussion assumed that there were no lagged dependent
variables among the columns of X. When this assumption is dropped, the
results change drastically, and OLS is seen to be both biased and inconsis-
tent. The simplest way to see this is to think about an element of X>u
corresponding to the lagged dependent variable (or to one of the lagged de-
pendent variables if there is more than one). If the dependent variable is
lagged j periods, this element is

n∑
t=1

yt−jut. (10.08)

Now recall expression (10.03), in which we expressed ut as a function of ut−j
and of all the innovations between periods t− j + 1 and t. Since yt−j is equal
to Xt−jβ + ut−j , it is clear from (10.03) that (10.08) cannot possibly have
expectation zero. Thus we conclude that when X includes lagged dependent
variables and ut is serially correlated,

plim
n→∞

(
1−
n
X>u

)
6= 0, (10.09)

which implies that

plim
n→∞

(
β̂ − β0

)
= plim
n→∞

(
1−
n
X>X

)−1
plim
n→∞

(
1−
n
X>u

)
6= 0. (10.10)
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Because X>y is premultiplied by (X>X)−1, every element of X>u generally
affects β̂, unless the matrix X>X has very special features. Thus it is evident
from (10.10) that every element of β will generally be estimated inconsistently,
even if there is only one lagged dependent variable and, in consequence, only
one element of (10.09) is nonzero.

The foregoing discussion makes it clear why econometricians have worried
so much about serial correlation. Even when there are no lagged dependent
variables, it causes least squares estimates to be inefficient and makes inference
based on them invalid. When there are lagged dependent variables, serial
correlation causes least squares to be biased and inconsistent. Nevertheless,
it is important to remember that many types of misspecification can bring
about the appearance of serial correlation. Thus the situation we have just
analyzed, in which the model was correctly specified except for the failure to
take serial correlation into account, probably does not account for a very high
proportion of the cases in which the residuals from a regression model appear
to be serially correlated.

10.3 Estimating Regression Models with AR(1) Errors

Suppose that we want to estimate a nonlinear regression model with error
terms that follow an AR(1) process:

yt = xt(β) + ut, ut = ρut−1 + εt, εt ∼ IID(0, ω2). (10.11)

Because ut−1 = yt−1 − xt−1(β), this model can be rewritten as

yt = xt(β) + ρ
(
yt−1 − xt−1(β)

)
+ εt, εt ∼ IID(0, ω2), (10.12)

which is also a nonlinear regression model, but one with error terms that are
(by assumption) serially uncorrelated. Since (10.12) is a nonlinear regression
model with well-behaved error terms, it seems natural to estimate it by nonlin-
ear least squares and to make inferences about it by using the Gauss-Newton
regression. The regression function is simply

x′t(β, ρ) = xt(β) + ρ
(
yt−1 − xt−1(β)

)
, (10.13)

which depends on ρ as well as on β.

There are two potential problems with (10.12). First of all, the regression
function x′t(β, ρ) necessarily depends on yt−1, whether or not xt(β) depends
on any lagged values of the dependent variable. As we saw in Chapter 5, this
dependence does not prevent nonlinear least squares from having desirable
asymptotic properties provided that certain regularity conditions are satisfied.
It can be shown that, as long as xt(β) satisfies the regularity conditions of
Theorems 5.1 and 5.2 and the stationarity condition that |ρ| < 1 holds, this



332 Serial Correlation

will indeed be the case for (10.12). However, if the stationarity condition
did not hold, standard results about nonlinear least squares, in particular
Theorem 5.2, the asymptotic normality theorem, would no longer apply to
(10.12).

The second problem with (10.12) is what to do about the first observa-
tion. Presumably we do not have data for y0 and for all the exogenous and
predetermined variables needed to evaluate x0(β), since if we did the sample
would not have started with the observation corresponding to t = 1. Thus
we cannot evaluate x′1(β, ρ), which depends on y0 and x0(β). The easiest
solution to this problem is simply to drop the first observation, requiring that
(10.12) hold only for observations 2 through n. Dropping one observation
makes no difference asymptotically, and so we can safely do so whenever the
sample size is reasonably large.

Another solution to the problem of what to do about the first observation
would be to treat it differently from all the subsequent observations, by defin-
ing x′1(β, ρ) as x1(β) instead of as x1(β) + ρ

(
y0 − x0(β)

)
. In that case, the

error term for observation 1 would be u1 rather than ε1. We have already seen
that, provided the AR(1) process is stationary, ut has unconditional variance
ω2/(1 − ρ2) for all t, including t = 1. By including the first observation in
this way, we would be creating heteroskedasticity: Observation 1 would have
variance ω2/(1 − ρ2), while the remaining observations all have variance ω2.
Moreover, the parameter ρ would now affect not only the regression function
x′(β, ρ) but also the variance of the first observation. This suggests that if we
want to include the first observation, it will no longer be appropriate simply
to use nonlinear least squares. In fact, taking account of the first observation
will complicate matters substantially, and we will therefore discuss this issue
at some length in Section 10.6.

When xt(β) is nonlinear, NLS estimation of (10.12) evidently requires
a nonlinear maximization algorithm, such as the ones based on the Gauss-
Newton regression that were discussed in Section 6.8. In most cases, this
estimation should not be too much harder than estimation of the correspond-
ing model with errors assumed to be independent. This approach is also
a very reasonable one to use when the original model is linear, i.e., when
xt(β) = Xtβ. In practice, however, most regression packages provide special
procedures for estimating linear regression models with AR(1) errors. These
procedures may or may not work better than nonlinear least squares applied
to (10.12) and, as implemented by some packages, may yield incorrect covar-
iance matrix estimates in some cases (see Section 10.4).

All of the specialized estimation procedures for linear regression models
with AR(1) errors make use of the fact that, conditional on the value of ρ,
estimates of β can easily be obtained by ordinary least squares. For the linear
regression case, (10.12) can be rewritten as

yt − ρyt−1 = (Xt − ρXt−1)β + εt, εt ∼ IID(0, ω2). (10.14)



10.3 Estimating Regression Models with AR(1) Errors 333

Thus, if we make the definitions

y∗t (ρ) ≡ yt − ρyt−1 and X∗t (ρ) ≡Xt − ρXt−1,

we simply have to regress y∗(ρ) on X∗(ρ) in order to estimate β conditional
on ρ.

It is evident that any consistent estimate of ρ, say ρ́, will yield a consistent
estimate of β when y∗(ρ́) is regressed on X∗(ρ́). There are numerous tech-
niques in the literature for obtaining such estimates. However, it is probably
desirable on grounds of efficiency actually to find the NLS estimate ρ̂, and
with present-day computing facilities it is hard to justify not doing so. The
two widely used techniques for finding ρ̂ are grid search and back-and-forth
search. The former can be used in many other situations in which a nonlinear
model is easily estimated conditional on a single parameter, and the latter can
be used in a wide variety of situations in which a nonlinear model is easily
estimated conditional on each of two nonintersecting subsets of parameters.
These two techniques are thus of some general interest.

The use of grid search to find estimates (β̂, ρ̂) that minimize the sum of
squared residuals from (10.14), and hence from (10.12) as well, was advocated
by Hildreth and Lu (1960), and the procedure is therefore often referred to
in the literature as the Hildreth-Lu procedure. The basic idea is simplicity
itself. For any value of ρ, say ρ(j), we can run a linear regression of y∗(ρ(j))
on X∗(ρ(j)) to find OLS estimates

β(j) =
(
X∗>

(
ρ(j)
)
X∗
(
ρ(j)
))−1

X∗>
(
ρ(j)
)
y∗
(
ρ(j)
)

(10.15)

and an associated sum of squared residuals, SSR(β(j), ρ(j)). We do this for
values of ρ that fall on some predetermined grid, say all values between −0.999
and 0.999 at intervals of 0.1 (i.e., −0.999, −0.9, −0.8, . . . , 0.8, 0.9, 0.999).
The end points here are ±0.999 rather than ±1 so as to avoid violating the
stationarity condition.

One of the values ρ(j) on the grid, say ρ(J), must yield the lowest value of
SSR(β(j), ρ(j)).1 Then provided that the grid is sufficiently fine, and assuming
that ρ(J) is not one of the end points, it is reasonable to expect that ρ̂ will lie
somewhere between ρ(J−1) and ρ(J+1). If ρ(J) is one of the end points, then
ρ̂ presumably lies between ρ(J) and the nearest point on the grid. In either
case, one can next either establish a new grid over that shorter interval and
repeat the grid search or else use ρ(J) as a starting value for some other search
procedure, such as the back-and-forth search to be described below.

1 In rare cases, there might be two or conceivably more ρ(j)’s that yielded iden-
tical minimal values of SSR(β(j), ρ(j)). If these ρ(j)’s are adjacent, there is no
real problem. If not, the possibility of multiple minima should be investigated

by doing a finer grid search in the neighborhood of both minimizing ρ(j)’s.
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Figure 10.1 A case for which SSR(β(ρ), ρ) has two minima

The advantage of grid search is that it can handle problems where there
is more than one local minimum. Consider Figure 10.1. Here SSR

(
β(ρ), ρ

)
has two local minima, one at ρ′ and another, which is the global minimum,
at ρ′′. Provided the grid is fine enough, the first-stage grid search will correctly
conclude that ρ̂ is near 0.9. Many estimation techniques, in contrast, would
incorrectly conclude that it lies near the local minimum at ρ′, especially if they
were initially started at ρ = 0. This is not merely a theoretical advantage for
grid search. As several authors have shown — see Dufour, Gaudry, and Liem
(1980) and Betancourt and Kelejian (1981) —SSR

(
β(ρ), ρ

)
will often have

multiple minima. This is especially likely if X includes a lagged dependent
variable. In that case, there are often two minima: one with a small value
of ρ and a large value of the coefficient on the lagged dependent variable, and
one with a large value of ρ and a small value of that coefficient. Either may
be the global minimum.

The second specialized procedure for linear regression models with AR(1)
errors that we will discuss is back-and-forth search. This procedure, which
was originally proposed for this problem by Cochrane and Orcutt (1949) and
is generally referred to as the (iterated) Cochrane-Orcutt procedure, is much
more widely used than grid search. It is based on the facts that β is very
easy to calculate conditional on ρ and that ρ is equally easy to calculate
conditional on β. The Cochrane-Orcutt algorithm starts with an initial value
of ρ, ρ(1), which may be equal to zero or may be set to some other value if
prior information is available. It then uses that value of ρ to find a new value
of β, β(1) ≡ β(ρ(1)), which is in turn used to find a new value of ρ, ρ(2), and
so on until convergence is achieved. At each step, the new value of ρ or β is
the one that minimizes the sum of squared residuals conditional on the given
value of β or ρ.
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For any value of ρ, say ρ(j), an OLS regression of y∗(ρ(j)) on X∗(ρ(j))
yields β(j) ≡ β(ρ(j)), which minimizes SSR(β | ρ(j)), that is, the SSR condi-
tional on ρ(j); the formula for β(j) is given in (10.15). Given β(j), one can
then compute residuals

u
(j)
t ≡ yt −Xtβ

(j).

The sum of squared residuals as a function of ρ, conditional on β(j), is

SSR
(
ρ |β(j)

)
=

n∑
t=2

(
u
(j)
t − ρu

(j)
t−1

)2
. (10.16)

This is simply the sum of squared residuals for a linear regression of u
(j)
t on

u
(j)
t−1 for observations 2 to n, and so the value of ρ that minimizes (10.16) is

just the OLS estimate of ρ from that linear regression, which is

ρ(j+1) =

∑n
t=2 u

(j)
t u

(j)
t−1∑n

t=2

(
u
(j)
t−1
)2 . (10.17)

The Cochrane-Orcutt procedure thus consists of a sequence of least
squares regressions. The first one involves regressing y∗(ρ(1)) on X∗(ρ(1)),
the second, u

(1)
t on u

(1)
t−1, the third, y∗(ρ(2)) on X∗(ρ(2)), and so on. At each

step, SSR(β, ρ) is minimized with respect to either ρ or β, and the algorithm
is allowed to proceed until some convergence criterion is satisfied (usually
that ρ(j) and ρ(j+1) are sufficiently close). Such a procedure must eventu-
ally converge to a local minimum of the sum-of-squares function; see Sargan
(1964, Appendix A) and Oberhofer and Kmenta (1974). Unfortunately, there
is no guarantee that this local minimum will also be a global minimum. It
is therefore advisable to employ the Cochrane-Orcutt procedure only after
a preliminary grid search has either established that there is only one local
minimum or determined approximately where the global minimum is located.
Note that although iterated Cochrane-Orcutt works well in many cases, it can
sometimes be much slower than using a general NLS algorithm based on the
Gauss-Newton regression.

We have seen that the stationarity condition |ρ| < 1 is essential if the
AR(1) process is to make sense and conventional estimation techniques are to
be valid. In practice, however, the NLS estimate ρ̂ may be greater than 1 in
absolute value. If this happens, or even if |ρ̂| is very close to 1, the investigator
should probably treat this as evidence of model inadequacy. Perhaps the
model should be respecified in first differences rather than levels (Harvey,
1980), or perhaps the specification of the regression function, the specification
of the AR(1) error process, or both, is inconsistent with the data. We will
discuss one method of detecting misspecification in models that appear to
have AR(1) errors in Section 10.9, below.

Most of the foregoing discussion has been concerned with methods for
obtaining NLS estimates of linear regression models with AR(1) errors. When
the sample size is very large, it may not be worth the time to obtain NLS
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estimates, because one-step estimates that are asymptotically equivalent to
NLS may be quite adequate. Recall from Section 6.6 that, if β́ denotes any
vector of consistent estimates for the model y = x(β) + u, the estimator

β̀ ≡ β́ +
(
X́>X́

)−1
X́>(y − x́),

where X́ ≡ X(β́) and x́ ≡ x(β́), is asymptotically equivalent to the NLS
estimator β̂. The term that is added to β́ here is simply the OLS estimate
of b from the Gauss-Newton regression

y − x́ = X́b + residuals,

and the OLS covariance matrix from this regression provides a valid estimate
of the covariance matrix of β̀.

With the first observation dropped, as usual, a linear regression model
with AR(1) errors can be written as

y = Xβ + ρy−1 − ρX−1β + ε, (10.18)

where y−1 has typical element yt−1 and X−1 has typical row Xt−1. The GNR
for calculating the one-step estimates will be

y − ρ́y−1 −
(
Xβ́ − ρ́X−1β́

)
=
(
X − ρ́X−1

)
b+ rú−1 + residuals, (10.19)

where ú−1 ≡ y−1 −X−1β́. This GNR is straightforward to calculate once ρ́
and β́, the initial consistent estimates of ρ and β, are known. The problem
is to obtain these estimates. If X does not contain any lagged dependent
variables, this is very easy. The OLS estimates β̃ obtained by regressing y
on X will be consistent for β, and a consistent estimate of ρ may then be
obtained by regressing ũt on ũt−1 for t = 2 to n. If X does include one or
more lagged values of y, however, this simple approach will not work, because
the OLS estimates β̃ will not be consistent. We now discuss how to deal with
this problem.

The nonlinear regression model (10.18) is a special case of the linear
regression model

y = Xβ + ρy−1 +X−1γ + ε, (10.20)

where the former imposes the restriction that γ = −ρβ. Later, in Section 10.9,
we will make use of this fact to test the adequacy of the AR(1) specification.
For the moment, following Durbin (1960), we will merely use it to obtain
a consistent estimate of ρ. It might seem that we could obtain consistent
estimates of both β and ρ by using OLS to estimate (10.20). That will rarely
be the case, however, because many of the coefficients in (10.20) will not be
identifiable. For example, if X includes a constant term, one of the elements
of β will be the coefficient on the constant and one of the elements of γ will be
the coefficient on the constant lagged; obviously, these two parameters cannot
be separately identified.
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It is easy to obtain a consistent estimate of ρ from (10.20) if all the lags
of the dependent variable included in X are greater than 1; the estimated
coefficient on y−1 provides it. Unfortunately, the case in which y−1 is included
in X is likely to be the most common one. To explain the difficulties that
arise in this case, we will for simplicity suppose that the original model is

yt = β0 + β1yt−1 + β2zt + ut, ut = ρut−1 + εt. (10.21)

Then the model that we really want to estimate, (10.18), is

yt = β0(1− ρ) + (ρ+ β1)yt−1 − ρβ1yt−2 + β2zt − ρβ2zt−1 + εt, (10.22)

and the unrestricted model (10.20) can be written as

yt = δ0 + δ1yt−1 + δ2yt−2 + δ3zt + δ4zt−1 + εt. (10.23)

Note that this unrestricted model has five regression coefficients, compared
with four for the restricted model (10.22). Estimating (10.23) by OLS yields
δ́0 through δ́4, which are consistent estimates of the parameters δ0 through δ4.
The latter are related to ρ and the βi’s by the equations

δ0 = β0(1− ρ); δ1 = ρ+ β1; δ2 = −ρβ1; δ3 = β2; δ4 = −ρβ2. (10.24)

There are several ways to obtain a consistent estimate of ρ using these equa-
tions. The easiest is to substitute the second-last equation of (10.24) into the
last, yielding the result that

ρ́ = −δ́4/δ́3. (10.25)

Provided that |ρ́| < 1, this consistent estimate of ρ can be used to obtain a
consistent estimate of β by calculating y∗(ρ́) and X∗(ρ́) and regressing the
former on the latter to obtain β́. One can then calculate the one-step estimates
using the Gauss-Newton regression (10.19). Of course, since in many cases
the original model will have more than one regressor like zt, there will often be
several ways to obtain consistent estimates of ρ. This introduces an element
of arbitrariness into any one-step estimation procedure, which may explain
why such procedures are not widely used.

A different approach is to estimate the original model by instrumental
variables to obtain consistent estimates of β, using instruments for the lagged
dependent variables. One can then use those estimates to obtain a consistent
estimate of ρ by regressing residuals on lagged residuals in the usual way and,
subsequently, estimate (10.19) to obtain one-step estimates asymptotically
equivalent to NLS estimates. This is the approach taken by Hatanaka (1974),
who also simplifies (10.19) slightly by not subtracting Xβ́ − ρ́X−1β́ from the
regressand. As a result of this simplification, the one-step estimates of β are
now just b̀ rather than b̀ + β́. Like the other procedures we have discussed,
Hatanaka’s procedure involves an element of arbitrariness, because the initial
consistent estimates will depend on the instruments used.
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10.4 Standard Errors and Covariance Matrices

It can require a certain amount of care to obtain valid estimates of the covar-
iance matrix of the parameter estimates for a model with serial correlation.
If one uses nonlinear least squares to estimate the nonlinear regression model
(10.12) that results when the original model y = x(β) + u is transformed to
allow for AR(1) errors, the obvious way to estimate the covariance matrix of ρ̂
and β̂ is to use the Gauss-Newton regression. In this case, the GNR will be

y− x̂− ρ̂
(
y−1− x̂−1

)
=
(
X̂ − ρ̂X̂−1

)
b+ r

(
y−1− x̂−1

)
+ residuals (10.26)

for observations 2 through n. The regressand is the vector of residuals from
nonlinear least squares estimation of (10.12). There are k + 1 regressors, one
corresponding to each of the k elements of β and one corresponding to ρ. In
the linear case, the regressor corresponding to βi is simply the ith column of
X∗(ρ̂), and the regressor corresponding to ρ is the vector y−Xβ̂ lagged once.
Note that this last regressor is not just the lagged vector of residuals from
OLS estimation of the original model without serial correlation, because β̂ is
the vector of estimates from the model (10.12) which has been corrected for
AR(1) errors.

The results of Chapters 5 and 6 make it clear that the GNR (10.26) will
yield an asymptotically valid covariance matrix estimate, and this is what
most nonlinear least squares packages would produce. Thus, if the original
model (10.11) is nonlinear, or if one uses NLS when the original model is
linear, there is no problem generating a valid covariance matrix estimate.
However, the estimate generated by (10.26) is not the estimate that many
implementations of the Cochrane-Orcutt and Hildreth-Lu procedures would
produce. As they are often implemented, those procedures typically report
an estimated covariance matrix for β̂ from the final regression of y∗(ρ̂) on
X∗(ρ̂), that is, the regression

y − ρ̂y−1 =
(
X − ρ̂X−1

)
β + residuals, (10.27)

which yields the NLS coefficient vector β̂. The resulting estimated covariance
matrix, computed from just n− 1 observations, will be

SSR(β̂, ρ̂)

n− k − 1

(
X∗>(ρ̂)X∗(ρ̂)

)−1
, (10.28)

which is, in general, valid only conditional on ρ̂. Since ρ has in fact been esti-
mated, we want an estimated covariance matrix that is valid unconditionally.
As we now demonstrate, (10.28) may or may not provide such an estimated
covariance matrix.

For the case of a linear model, the GNR (10.26) will be

y − ρ̂y−1 −
(
X − ρ̂X−1

)
β̂ =

(
X − ρ̂X−1

)
b+ rû−1 + residuals, (10.29)
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where û−1 ≡ y−1 −X−1β̂. Notice that (10.27) and (10.29) have exactly the
same residuals. In (10.29), the regressand is orthogonal to all the regressors,
and so the vector of residuals is just the regressand. The residuals from (10.27)
have the same algebraic form as the regressand of (10.29) and coincide with
it because the value of β that is used in (10.27) is precisely β̂.

The estimated covariance matrix for β̂ from the GNR (10.29) will be the
upper left-hand k × k block of the matrix

SSR(β̂, ρ̂)

n− k − 2

[
X∗>(ρ̂)X∗(ρ̂) X∗>(ρ̂)û−1

û>−1X
∗(ρ̂) û>−1û−1

]−1
. (10.30)

The first factors in (10.28) and (10.30) differ only in the number of degrees of
freedom in the denominator of the estimate of ω2; the numerators are the same
because both (10.27) and (10.29) have the same sum of squared residuals.2

The difference between the second factors is what matters. The second factor
in (10.28) is the inverse of the matrix X∗>(ρ̂)X∗(ρ̂), while the second factor
in the covariance matrix estimate from the GNR is the upper left-hand k× k
block of the inverse of a (k + 1) × (k + 1) matrix. Provided that X does
not contain lagged dependent variables, u−1 will be independent of X, which
implies that

plim
n→∞

(
X∗>(ρ̂)û−1

n− 1

)
= 0.

Thus (n − 1)−1 times the matrix in (10.30) will be asymptotically block-
diagonal, and its inverse will therefore be asymptotically equal to[

(n− 1)−1X∗>(ρ̂)X∗(ρ̂) 0

0> (n− 1)−1û>−1û−1

]−1

= (n− 1)

[ (
X∗>(ρ̂)X∗(ρ̂)

)−1
0

0>
(
û>−1û−1

)−1
]
.

(10.31)

This makes it clear that (10.28) will provide a valid estimate of the upper
left-hand k × k block of the inverse in (10.30).

Provided that X does not include any lagged dependent variables (or any
other variables that may be correlated with u−1), regression (10.27) will yield
an asymptotically valid estimate of the covariance matrix of β̂. On the other
hand, if X does include lagged dependent variables, or if it is not independent
of the lagged error terms u−1 for any other reason, the conditional covariance
matrix estimate (10.28) will not be valid. With many regression packages,

2 Recall that ω2 is the variance of the error terms εt which appear in the nonlinear
regression (10.12).
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the reported covariance matrix from the Cochrane-Orcutt and Hildreth-Lu
procedures will thus be invalid in many cases. One either has to calculate the
GNR (10.29) oneself or use nonlinear least squares from the beginning so that
the regression package will do so.

When the conditional covariance matrix estimate is invalid, reported
standard errors are always too small (asymptotically). In fact, the covar-
iance matrix estimate produced by the GNR (10.29) for the estimates of β
differs from that produced by (10.27) by a positive definite matrix, if we ignore
the fact that the degrees of freedom are different. To see this, notice that the
Gauss-Newton regression (10.29) has the same regressors as (10.27), plus one
additional regressor, û−1. If we apply the FWL Theorem to (10.29), we see
that the covariance matrix estimate from it is the same as that from a regres-
sion in which all the variables are projected onto the orthogonal complement
of û−1. The residuals are unchanged by the projection and so are identical
to those of (10.27), as we saw above. The difference between the covariance
matrix estimates for β̂ from (10.29) and (10.27) is therefore proportional to(

X∗>(ρ̂)Mû−1
X∗(ρ̂)

)−1 − (X∗>(ρ̂)X∗(ρ̂)
)−1

, (10.32)

except for an asymptotically negligible effect due to the different degrees-of-
freedom factors. If we subtract the inverses of the two matrices in (10.32) in
the opposite order, we obtain

X∗>(ρ̂)Pû−1
X∗(ρ̂),

which is evidently positive semidefinite. It then follows from a result proved in
Appendix A that (10.32) is itself positive semidefinite. If û−1 is substantially
correlated with the columns of X∗(ρ̂), the incorrect variance estimate from
regression (10.27) may be much smaller than the correct variance estimate
from the GNR (10.29).

The Gauss-Newton regressions (10.26) and (10.29) yield estimated stan-
dard errors for ρ̂ as well as for β̂. If the covariance matrix is asymptotically
block-diagonal between ρ and β, we see from (10.31) that the asymptotic
variance of n1/2(ρ̂− ρ0) will be equal to

ω2 plim
n→∞

(
û>−1û−1

n− 1

)−1
= ω2

(
1− ρ20
ω2

)
= 1− ρ20. (10.33)

Thus, in this special case, the variance of ρ̂ can be estimated by

1− ρ̂2

n− 1
. (10.34)

It may seem puzzling that neither the asymptotic variance 1−ρ20 nor the
estimate (10.34) depends on ω2. After all, we normally expect the variance
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of an estimator of a coefficient in a regression function to be proportional
to the variance of the error terms. The reason that the variance of ρ̂ does
not depend on ω2 is that ω2 actually affects it in two different ways, which
exactly cancel out. This can be seen from the middle expression in (10.33).
The variance of ut−1 is directly proportional to ω2. Thus, as ω2 increases, the
ratio of the variability of εt to the variability of the regressor ût−1 in the GNR
(10.29) stays constant. Since it is this ratio that matters for the variance of
the coefficient estimate, the latter does not depend on ω2 at all.

The use of the GNR to calculate the covariance matrix of (β̂, ρ̂) from
a linear regression with AR(1) errors was advocated by Davidson and Mac-
Kinnon (1980). A very different approach, which is both more difficult and
less general, was earlier suggested by Cooper (1972a). The advantages of an
analysis based on the Gauss-Newton regression are evident if one contrasts
the approach of the latter paper with the above treatment.

10.5 Higher-Order AR Processes

Although the AR(1) process (10.01) is by far the most popular one in applied
econometric work, there are many other stochastic processes that could rea-
sonably be used to describe the evolution of error terms over time. Anything
resembling a complete treatment of this topic would lead us far afield, into the
vast literature on time-series methods. This literature, which evolved quite
independently of econometrics and has influenced it substantially in recent
years, deals with many aspects of the modeling of time series but especially
with models in which variables depend only (or at least primarily) on their
own past values. Such models are obviously appropriate for describing the
evolution of many physical systems and may be appropriate for some econ-
omic systems as well. However, much of the use of time-series methods in
econometrics has been to model the evolution of the error terms that adhere
to more conventional regression models, and we will treat only that aspect of
time-series methods here. A classic reference on times-series techniques is Box
and Jenkins (1976), some books that may be more accessible to economists
are Harvey (1981, 1989) and Granger and Newbold (1986), and a review of
time-series methods for econometricians is Granger and Watson (1984).

The AR(1) process (10.01) is actually a special case of the pth-order
autoregressive, or AR(p), process

ut = ρ1ut−1 + ρ2ut−2 + · · ·+ ρput−p + εt, εt ∼ IID(0, ω2), (10.35)

in which ut depends on up to p lagged values of itself, as well as on εt. The
AR(p) process (10.35) can be expressed more compactly as(

1− ρ1L− ρ2L2 − · · · − ρpLp
)
ut = εt, εt ∼ IID(0, ω2), (10.36)
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where L denotes the lag operator. The lag operator L has the property that
when L multiplies anything with a time subscript, this subscript is lagged one
period. Thus

Lut = ut−1, L2ut = ut−2, Lput = ut−p,

and so on. The expression in parentheses in (10.36) is a polynomial in the
lag operator L, with coefficients 1 and −ρ1, . . . ,−ρp. If we define A(L,ρ) as
being equal to this polynomial, ρ representing the vector [ρ1

.... ρ2
.... · · · .... ρp],

we can write (10.36) even more compactly as

A(L,ρ)ut = εt, εt ∼ IID(0, ω2). (10.37)

For the same reasons that we wish to impose the condition |ρ1| < 1 on
AR(1) processes so as to ensure that they are stationary, we would like to
impose stationarity conditions on general AR(p) processes. The stationarity
condition for such processes may be expressed in several ways; one of them is
that all the roots of the polynomial equation in z,

A(z,ρ) ≡ 1− ρ1z − ρ2z2 − · · · − ρpzp = 0 (10.38)

must lie outside the unit circle, which simply means that all of the roots of
(10.38) must be greater than 1 in absolute value. This condition can lead to
quite complicated restrictions on ρ for general AR(p) processes.

It rarely makes sense to specify a high-order AR(p) process (i.e., one
with p a large number) when trying to model the error terms associated with
a regression model. The AR(2) process is much more flexible, but also much
more complicated, than the AR(1) process; it is often all that is needed when
the latter is too restrictive. The additional complexity of the AR(2) process
is easily seen. For example, the variance of ut, assuming stationarity, is

σ2 =
1− ρ2
1 + ρ2

× ω2

(1− ρ2)2 − ρ21
,

which is substantially more complicated than the corresponding expression
(10.02) for the AR(1) case, and stationarity now requires that three conditions
hold:

ρ1 + ρ2 < 1; ρ2 − ρ1 < 1; ρ2 > −1. (10.39)

Conditions (10.39) define a stationarity triangle. This triangle has vertices at
(−2,−1), (2,−1), and (0, 1). Provided that the point (ρ1, ρ2) lies within the
triangle, the AR(2) process will be stationary.

Autoregressive processes of order higher than 2 arise quite frequently
with time-series data that exhibit seasonal variation. It is not uncommon, for
example, for error terms in models estimated using quarterly data apparently
to follow the simple AR(4) process

ut = ρ4ut−4 + εt, εt ∼ IID(0, ω2), (10.40)
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in which the error term in period t depends on the error in the same quarter of
the previous year, but not on any intervening error terms. Another possibility
is that the error terms may appear to follow a combined first- and fourth-order
AR process

(1− ρ1L)(1− ρ4L4)ut = εt, εt ∼ IID(0, ω2) (10.41)

or, multiplying out the polynomial on the left-hand side,

(1− ρ1L− ρ4L4 + ρ1ρ4L
5)ut = εt, εt ∼ IID(0, ω2).

This is a restricted special case of an AR(5) process, but with only two para-
meters instead of five to estimate. Various ways of modeling seasonality, in-
cluding seasonal AR processes such as (10.40) and (10.41), will be discussed
in Chapter 19.

It is clear that estimating a regression model with errors that follow an
AR(p) process is not fundamentally different from estimating the same model
with errors that follow an AR(1) process. Thus if, for example, we wish to
estimate the model

yt = xt(β) + ut, (1− ρ1L)(1− ρ4L4)ut = εt, εt ∼ IID(0, ω2),

we simply have to transform it into the model

yt = xt(β) + ρ1
(
yt−1 − xt−1(β)

)
+ ρ4

(
yt−4 − xt−4(β)

)
− ρ1ρ4

(
yt−5 − xt−5(β)

)
+ εt, εt ∼ IID(0, ω2),

drop the first five observations, and use nonlinear least squares. As in the
AR(1) case, the covariance matrix of (ρ̂, β̂) may then be estimated using the
Gauss-Newton regression. Having to drop five observations may make us un-
comfortable, especially if the sample size is modest, but it is certainly valid
asymptotically, and since all our results on nonlinear least squares are asymp-
totic, there is no compelling reason not to do so. We will discuss alternative
approaches in the next section.

10.6 Initial Observations in Models with AR Errors

So far, when we have transformed regression models with autoregressive er-
rors so as to make their error terms white noise, we have simply dropped
as many observations at the beginning of the sample as necessary to make
the transformed model a nonlinear regression model. Although this is clearly
valid asymptotically and is certainly the simplest way to proceed, investiga-
tors may well be reluctant to throw away the information contained in the
initial observation(s). There is good reason for this reluctance. As we will
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see, these initial observations can sometimes contain much more information
about parameter values than their number in relation to the sample size would
suggest. Therefore, dropping them may result in a serious loss of efficiency.

We begin by discussing the nonlinear regression model with AR(1) errors.
As we have seen, the AR(1) process is the simplest AR process to analyze and
the one most commonly encountered in empirical work. Moreover, it allows us
to introduce all the important conceptual issues associated with the treatment
of initial observations. The model is

yt = xt(β) + ut, ut = ρut−1 + εt, εt ∼ IID(0, ω2), |ρ| < 1. (10.42)

The covariance matrix of the ut’s is given by expression (10.05). It can be
verified by multiplication that the inverse of this matrix is

Ω−1 =
1

ω2



1 −ρ 0 · · · 0 0

−ρ 1 + ρ2 −ρ · · · 0 0

0 −ρ 1 + ρ2 · · · 0 0
...

...
...

...
...

0 0 0 · · · 1 + ρ2 −ρ
0 0 0 · · · −ρ 1


≡ ∆

−1(ρ)

ω2
. (10.43)

It can similarly be verified that for the matrix η(ρ), which must satisfy

η>(ρ)η(ρ) ≡∆−1(ρ),

one can use

η(ρ) =


(1− ρ2)1/2 0 0 · · · 0 0

−ρ 1 0 · · · 0 0

0 −ρ 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · −ρ 1

. (10.44)

This transformation matrix was derived by Prais and Winsten (1954), and is
sometimes referred to as the Prais-Winsten transformation. Thus, if ρ were
known, we could obtain GNLS estimates by running the nonlinear regression

η(ρ)y = η(ρ)x(β) + η(ρ)u

or, changing notation in an obvious way,

y∗(ρ) = x∗(β, ρ) + u∗. (10.45)
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Postmultiplying η(ρ) by y and x(β), we see that the regressand y∗(ρ) and
the vector of regression functions x∗(ρ) are, respectively,

y∗1(ρ) = (1− ρ2)1/2y1;

y∗t (ρ) = yt − ρyt−1 for all t ≥ 2;

x∗1(β, ρ) = (1− ρ2)1/2x1(β);

x∗t (β, ρ) = xt(β)− ρxt−1(β) for all t ≥ 2.

(10.46)

Thus, for observations 2 through n, the transformed model (10.45) is identical
to the nonlinear regression model (10.12) in which we dropped the first obser-
vation. What is new is that (10.45) has n observations instead of only n− 1.

Regression (10.45) makes it possible to compute estimates of β by GNLS
and, by extension, by feasible GNLS, taking account of all n observations.
Feasible GNLS will be available whenever it is possible to obtain an initial
consistent estimate of ρ. As we saw in Section 10.3, that will be easy if xt(β)
does not depend on lagged values of yt, since we just need to estimate the
model by NLS and regress the residuals from that estimation on themselves
lagged once. But if xt(β) does depend on lagged values of yt, regression (10.45)
does not provide an appropriate way to deal with the first observation. The
first observation of (10.45) can be written as

(1− ρ2)1/2y1 = (1− ρ2)1/2x1(β) + (1− ρ2)1/2u1, (10.47)

which shows that the only effect of the transformation (10.44) is to multiply
everything by (1 − ρ2)1/2. We saw in Section 10.2 that a regression func-
tion which depends on lags of the dependent variable is correlated with its
corresponding error term if the error terms are serially correlated. If this
is the case for x1(β) and u1, we see from (10.47) that it must also be the
case for x∗1(β, ρ) and u∗1(ρ). Of course, since the correlation between x∗1(β, ρ)
and u∗1(ρ) affects one observation only, it is perfectly valid asymptotically to
treat the first observation in this way, just as it is perfectly valid to drop it
entirely. It is possible, but by no means easy, to take proper account of the
first observation in a linear regression model with a single lagged dependent
variable and AR(1) errors; see Pesaran (1981). However, it is very much more
common simply to drop the first observation in this case. For the remainder
of this section, we will therefore assume that xt(β) does not depend on lagged
values of yt.

We have now seen how to obtain GNLS and feasible GNLS estimates of
the model (10.42) which use all n observations. If we further assume that
the εt’s are normally distributed, we can obtain ML estimates. Because these
are asymptotically equivalent to GNLS, they will be consistent even if the
normality assumption is false. Techniques that estimate this model by max-
imum likelihood and take all observations into account are often called full
ML estimation or exact ML estimation.



346 Serial Correlation

There are several ways to derive the loglikelihood function. The easiest
approach is probably the following. For observations 2 through n, we have
seen that

yt = ρyt−1 + xt(β)− ρxt−1(β) + εt.

This can be turned around so that εt is written as a function of yt. The
density of εt is

1√
2π

1

ω
exp

(
− ε2t

2ω2

)
.

Since ∂εt/∂yt = 1, the Jacobian factor is unity, and so the partial loglikelihood
function for observations 2 through n only is

`2,n(y,β, ρ, ω) =− n− 1

2
log(2π)− (n− 1) log(ω)

− 1

2ω2

n∑
t=2

(
yt − ρyt−1 − xt(β) + ρxt−1(β)

)2
.

(10.48)

The density of u1 = y1 − x1(β) is

1√
2π

1
σ

exp

(
− u21

2σ2

)
=

1√
2π

1
ω

(1− ρ2)1/2 exp

(
− 1− ρ2

2ω2
u21

)
, (10.49)

where the first expression writes this density in terms of σ, and the second
expression writes it in terms of ω = σ(1 − ρ2)1/2. Thus the contribution to
the loglikelihood function made by observation 1 is

`1(y,β, ρ, ω) =− 1−
2

log(2π)− log(ω) + 1−
2

log(1− ρ2)

− 1− ρ2

2ω2

(
y1 − x1(β)

)2
.

(10.50)

Combining (10.48) and (10.50) yields the full loglikelihood function

`n(y,β, ρ, ω) = − n−
2

log(2π)− n log(ω) + 1−
2

log(1− ρ2) (10.51)

− 1

2ω2

( n∑
t=2

(
yt − ρyt−1 − xt(β) + ρxt−1(β)

)2
+ (1− ρ2)

(
y1 − x1(β)

)2)
.

Concentrating `n(y,β, ρ, ω) with respect to ω yields the full concentrated
loglikelihood function `c(y,β, ρ):

C + 1−
2

log(1− ρ2)− n−
2

log
((
y − x(β)

)>∆−1(ρ)
(
y − x(β)

))
, (10.52)

where the n× n matrix ∆−1(ρ) was implicitly defined by (10.43).
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The function (10.52) can be maximized in various ways. In particular,
for the case in which x(β) = Xβ, Beach and MacKinnon (1978a) proposed
an algorithm similar to the iterated Cochrane-Orcutt procedure discussed in
Section 10.3. They showed that to maximize `c(y,β, ρ) conditional on β one
simply has to find the middle root of a certain cubic equation in ρ. The
formula for doing so, together with the linear version of regression (10.45),
allow one to compute a succession of values β(0), ρ(1), β(1), ρ(2), and so on,
which by the same arguments used in the case of iterated Cochrane-Orcutt
must eventually converge to a local maximum of (10.52).

The term 1
2 log(1 − ρ2) that appears in both (10.51) and (10.52) is a

Jacobian term. This may not be obvious from the way we have derived the
loglikelihood function. One can think of the first observation as being

(1− ρ2)1/2y1 = (1− ρ2)1/2x1(β) + ε1, (10.53)

where ε1 is N(0, ω2).3 Thus the density (10.49) is derived by transforming
from ε1 to y1, and the Jacobian factor (1−ρ2)1/2 arises from this transforma-
tion. The resulting Jacobian term 1

2 log(1−ρ2) plays a very important role in
estimation. Since it tends to minus infinity as ρ tends to ±1, its presence in
the loglikelihood function ensures that there must be a maximum within the
stationarity region −1 < ρ < 1. Thus full maximum likelihood estimation is
guaranteed to yield an estimate of ρ for which the AR(1) process for the error
terms is stationary. This is not the case for other estimation techniques. Tech-
niques that drop the first observation can and sometimes do yield estimates of
ρ greater than 1 in absolute value. Iterated Cochrane-Orcutt (if it converges
to the global maximum) is equivalent to maximizing the loglikelihood function
(10.48) for the last n−1 observations only, and there is nothing to prevent the
maximum occurring at a value of ρ outside the stationarity region. Even iter-
ated Prais-Winsten, a procedure similar to iterated Cochrane-Orcutt but that
uses the transformation (10.44) to find β conditional on ρ, so as to minimize(
y − x(β)

)>∆−1(ρ)
(
y − x(β)

)
, can run into this problem. Of course, since

the transformation (10.44) makes no sense if |ρ| > 1, such estimates should
be discarded.

The covariance matrix of the vector of ML estimates [β̂
.... ρ̂

.... ω̂] can be
estimated by finding the inverse of the information matrix and evaluating it
at [β̂

.... ρ̂
.... ω̂]. The result is

V̂ (β̂, ρ̂, ω̂) =

[
ω̂2
(
X̂∗>X̂∗

)−1
0

0 V̂ (ρ̂, ω̂)

]
, (10.54)

3 Notice, however, that ε1 in (10.53) is not simply the innovation in the first
period but rather another random variable, with the same distribution, which
actually depends on all the innovations up to and including that of period 1.
In fact, as can be seen from (10.47), ε1 = (1− ρ2)1/2u1.
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where X̂∗ denotes the n× k matrix of the derivatives of the vector of nonlin-
ear functions x∗(β, ρ), defined in (10.46), with respect to the elements of β,

evaluated at (β̂, ρ̂), and

V̂ (ρ̂, ω̂) =


n

1− ρ̂2
+

3ρ̂2 − 1

(1− ρ̂2)2
2ρ̂

ω̂(1− ρ̂2)

2ρ̂

ω̂(1− ρ̂2)

2n

ω̂2


−1

.

The estimated covariance matrix (10.54) is block-diagonal between β and ρ
and between β and ω (recall that we have ruled out lagged dependent vari-
ables). However, unlike the situation with regression models, it is not block-
diagonal between ρ and ω. The off-diagonal terms in the (ρ, ω) block of
the information matrix are O(1), while the diagonal terms are O(n). Thus
V (β̂, ρ̂, ω̂) will be asymptotically block-diagonal between β, ρ, and ω. This is
what we would expect, since it is only the first observation, which is asymptot-
ically negligible, that prevents (10.54) from being block-diagonal in the first
place.

It is an excellent exercise to derive the estimated covariance matrix
(10.54). One starts by taking the second derivatives of (10.51) with respect to
all of the parameters of the model to find the Hessian, then takes expectations
of minus it to obtain the information matrix. One then replaces parameters
by their ML estimates and inverts the information matrix to obtain (10.54).
Although this exercise is straightforward, there are plenty of opportunities to
make mistakes. For example, Beach and MacKinnon (1978a) fail to take all
possible expectations and, as a result, end up with an excessively complicated
estimated covariance matrix.

The preceding discussion makes it clear that taking the first observation
into account is significantly harder than ignoring it. Even if an appropriate
computer program is available, so that estimation is straightforward, one runs
into trouble when one wants to test the model. Since the transformed model is
no longer a regression model, the Gauss-Newton regression no longer applies
and cannot be used to do model specification tests; see Sections 10.8 and 10.9.
One could of course estimate the model twice, once taking account of the first
observation, in order to obtain the most efficient possible estimates, and once
dropping it, in order to be able to test the specification, but this clearly
involves some extra work. The obvious question that arises, then, is whether
the additional trouble of taking the first observation into account is worth it.

There is a large literature on this subject, including Kadiyala (1968), Rao
and Griliches (1969), Maeshiro (1976, 1979), Beach and MacKinnon (1978a),
Chipman (1979), Spitzer (1979), Park and Mitchell (1980), Ansley and New-
bold (1980), Poirier (1978a), Magee (1987), and Thornton (1987). In many
cases, retaining the first observation yields more efficient estimates but not
by very much. However, when the sample size is modest and there is one or
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Table 10.1 Original and Transformed Data

Ct Tt C∗t (.5) T ∗t (.5) C∗t (.9) T ∗t (.9)

1.0 1.0 0.866 0.866 0.436 0.436
1.0 2.0 0.5 1.5 0.1 1.1
1.0 3.0 0.5 2.0 0.1 1.2
1.0 4.0 0.5 2.5 0.1 1.3
1.0 5.0 0.5 3.0 0.1 1.4
1.0 6.0 0.5 3.5 0.1 1.5
1.0 7.0 0.5 4.0 0.1 1.6
1.0 8.0 0.5 4.5 0.1 1.7
1.0 9.0 0.5 5.0 0.1 1.8
1.0 10.0 0.5 5.5 0.1 1.9

more trending regressors, it can be very important to retain the first observa-
tion. In such cases, ML or GLS using the transformation that drops the first
observation may be substantially less efficient than ML or GLS using the full
sample and may even be less efficient than OLS.

To see why the first observation can be very important in some cases,
consider the following simple example. The model is

yt = β0Ct + β1Tt + ut,

where Ct is a constant and Tt is a linear time trend. In Table 10.1, 10
observations on Ct and Tt are shown before and after the transformation
(10.46) for ρ = 0.5 and ρ = 0.9.

We see from Table 10.1 that the transformed data for the first observation
look very different from those for all subsequent observations. As a result, that
observation contributes a great deal of information about the parameters.
That this is so can be seen by examining the diagonal elements of the “hat
matrix” PC,T which projects onto S(C∗,T ∗), for various values of ρ. These
are shown in Table 10.2.

As we saw in Section 1.6, the diagonal elements of the hat matrix measure
the leverage of the various observations, that is, their potential effect on the
parameter estimates. Thus from Table 10.2 we see that, as ρ increases, the
first observation becomes more and more influential relative to the rest of the
sample. For ρ = 0.9, it is a point of very high leverage indeed (remember that
the diagonal elements of an orthogonal projection matrix can never exceed 1).
On the other hand, when we drop the first observation, as in the final column
of the table, no observation has nearly as much leverage as the first observation
previously did. Thus it is not surprising to find that the standard errors of the
parameter estimates rise sharply when the first observation is omitted. For
example, when ρ = 0.5, the standard errors of β̂0 and β̂1 increase by factors
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Table 10.2 Diagonals of PC,T

ρ = 0 ρ = 0.5 ρ = 0.9 ρ = 0.5 and ρ = 0.9, t = 2, 10

0.3455 0.6808 0.9847
0.2485 0.1277 0.0598 0.3778
0.1758 0.0993 0.0693 0.2611
0.1273 0.0851 0.0805 0.1778
0.1030 0.0851 0.0932 0.1278
0.1030 0.0993 0.1075 0.1111
0.1273 0.1277 0.1234 0.1278
0.1758 0.1702 0.1409 0.1778
0.2485 0.2270 0.1600 0.2611
0.3455 0.2979 0.1807 0.3778

of 1.765 and 1.533, respectively, when the first observation is dropped. When
ρ = 0.9, they increase by factors of 8.039 and 4.578.

This example is of course an extreme case. We rarely use samples as
small as 10 observations, and we would rarely want to regress anything on
a constant and a time trend (or on a regressor that looks like a time trend;
when data are strongly trending, we would often want to transform them to
remove the trend before estimating a model). Nevertheless, it makes it clear
that how the first observation is treated can be important.

The issue of how to treat the initial observations arises in regression
models with higher-order AR errors just as in models with AR(1) errors. For
the general AR(p) case, the model (assuming normality) is

yt = xt(β) + ut, ut =

p∑
j=1

ρjut−j + εt, εt ∼ NID(0, ω2),

where the ρj ’s are assumed to satisfy the stationarity condition that the roots
of the polynomial equation (10.38) must lie outside the unit circle. As in
the AR(1) case, the easiest way to derive the loglikelihood function for this
model is to treat it as the sum of two loglikelihood functions, one for the first
p observations and the other for observations p+ 1 through n conditional on
the first p observations. The second of these is

`p+1,n(y,β,ρ, ω) = − n− p
2

log(2π)− (n− p) log(ω)

− 1

2ω2

n∑
t=p+1

(
yt − xt(β)−

p∑
j=1

ρj
(
yt−j − xt−j(β)

))2
.

(10.55)

This is evidently very similar to (10.48) for the AR(1) case.



10.7 Moving Average and ARMA Processes 351

The loglikelihood function for the first p observations is the logarithm of
the joint density of the vector yp, which consists of the first p observations
on yt. If we let ω2∆p denote the p × p covariance matrix of the first p ut’s
and let xp(β) denote the first p observations on xt(β), it will be

`p(y,β,ρ, ω) =− p−
2

log(2π)− p log(ω) + 1−
2

log |∆−1p |

− 1

2ω2

(
yp − xp(β)

)>∆−1p (yp − xp(β)
)
.

(10.56)

If p = 1, |∆−1p | = ∆−1p = 1− ρ2. Thus (10.50) is seen to be a special case of
(10.56).

The full loglikelihood function is the sum of (10.55) and (10.56). As in
the AR(1) case, the presence of the Jacobian term 1

2 log |∆−1p | ensures that
this function will have at least one maximum within the stationarity region.
However, it also makes evaluating and maximizing the function a good deal
more difficult. Some authors (e.g., Box and Jenkins (1976)) have therefore
suggested ignoring it and maximizing the rest of the loglikelihood function.
Other references on the estimation of models with AR(p) errors include Ansley
(1979), Kendall, Stuart, and Ord (1983), and Granger and Newbold (1986).
Beach and MacKinnon (1978b) discuss the AR(2) case in some detail.

10.7 Moving Average and ARMA Processes

Autoregressive processes are not the only way to model stationary time series.
The other basic type of stochastic process is the moving average, or MA, pro-
cess. The simplest moving average process is the first-order moving average,
or MA(1), process

ut = εt + α1εt−1, εt ∼ IID(0, ω2), (10.57)

in which the error ut is literally a moving average of two successive innovations,
εt and εt−1. Thus εt affects both ut and ut+1 but does not affect ut+j for
j > 1. The more general MA(q) process may be written either as

ut = εt + α1εt−1 + α2εt−2 + · · ·+ αqεt−q, εt ∼ IID(0, ω2)

or, using lag-operator notation, as

ut =
(
1 + α1L+ · · ·+ αqL

q
)
εt ≡ B(L,α)εt, εt ∼ IID(0, ω2), (10.58)

where α ≡ [α1
.... α2

.... · · · .... αq].
Finite-order MA processes are necessarily stationary, since each ut is a

weighted sum of a finite number of innovations εt, εt−1 · · ·. Thus we do not
have to impose stationarity conditions. We do, however, have to impose an
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invertibility condition if we want α to be identifiable from data. In the MA(1)
case, this condition is that |α1| ≤ 1. The reason we need an invertibility
condition is that otherwise there will, in general, be more than one value
of α that will yield any observed behavior pattern of the ut’s. For example,
the MA(1) process (10.57) with α1 = γ, −1 < γ < 1, can be shown to
be indistinguishable from an MA(1) process with α1 = 1/γ. This will be
discussed further below, when we discuss ML estimation of models with MA(1)
errors. The invertibility condition for an MA(q) process is that the roots of
the polynomial

B(z,α) ≡ 1 + α1z + α2z
2 + · · ·+ αqz

q = 0 (10.59)

must lie outside the unit circle. This condition on (10.59) is formally identical
to the condition on (10.38) which ensures that an AR(p) process is stationary.

It is straightforward to calculate the covariance matrix for a moving av-
erage process. For example, in the MA(1) case the variance of ut is evidently

σ2 ≡ E
(
εt + α1εt−1

)2
= ω2 + α2

1ω
2 =

(
1 + α2

1

)
ω2,

the covariance of ut and ut−1 is

E
(
εt + α1εt−1

)(
εt−1 + α1εt−2

)
= α1ω

2,

and the covariance of ut and ut−j for j > 1 is zero. Thus the covariance
matrix of u is

ω2



1 + α2
1 α1 0 · · · 0 0 0

α1 1 + α2
1 α1 · · · 0 0 0

...
...

...
...

...
...

0 0 0 · · · α1 1 + α2
1 α1

0 0 0 · · · 0 α1 1 + α2
1

. (10.60)

The structure of this covariance matrix is very simple. Notice that the correl-
ation between successive error terms varies only between −0.5 and 0.5, since
those are the smallest and largest possible values of α1/(1 + α2

1), achieved
when α1 = −1 and α1 = 1, respectively. It is thus evident from inspection
of (10.60) that an MA(1) process cannot be appropriate when the observed
correlation between successive residuals is large in absolute value.

Although moving average processes are not as widely employed in econo-
metrics as autoregressive ones, probably because the former are harder to
estimate, there are circumstances in which MA processes can arise naturally.
Consider the problem of estimating an equation to explain the value of some fi-
nancial instrument such as 90-day treasury bills or 3-month forward contracts
on foreign exchange. If one used monthly data, then any innovation occurring
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in month t would affect the value of instruments maturing in months t, t+ 1,
and t + 2 but would not directly affect the value of instruments maturing
later, because the latter would not yet have been issued. This suggests that
the error term should be modeled by an MA(2) process; see Frankel (1980)
and Hansen and Hodrick (1980). Moving average errors also arise when data
are gathered using a survey that includes some of the same respondents in
consecutive periods, such as the labor force surveys in both the United States
and Canada, which are used to estimate unemployment rates; see Hausman
and Watson (1985).

It is generally somewhat harder to estimate regression models with mov-
ing average errors than to estimate models with autoregressive errors. To see
why, suppose that we want to estimate the model

yt = xt(β) + ut, ut = εt − αεt−1, εt ∼ IID(0, ω2). (10.61)

Compared with (10.57), we have dropped the subscript from α and changed
its sign for convenience; the sign change is of course purely a normalization.
Let us make the asymptotically innocuous assumption that the unobserved
innovation ε0 is equal to zero (techniques that do not make this assumption
will be discussed below). Then we see that

y1 = x1(β) + ε1

y2 = x2(β)− α
(
y1 − x1(β)

)
+ ε2

y3 = x3(β)− α
(
y2 − x2(β)

)
− α2

(
y1 − x1(β)

)
+ ε3,

(10.62)

and so on. By making the definitions

y∗0 = 0; y∗t = yt + αy∗t−1, t = 1, . . . , n;

x∗0 = 0; x∗t (β, α) = xt(β) + αx∗t−1(β, α), t = 1, . . . , n,
(10.63)

we can write equations (10.62) in the form

yt = −αy∗t−1 + x∗t (β, α) + εt, (10.64)

which makes it clear that we have a nonlinear regression model. But the
regression function depends on the entire sample up to period t, since y∗t−1
depends on all previous values of yt and x∗t depends on xt−i(β) for all i ≥ 0.
In the by no means unlikely case in which |α| = 1, the dependence of yt on
past values does not even tend to diminish as those values recede into the
distant past. If we have a specialized program for estimation with MA(1)
errors, or a smart nonlinear least squares program that allows us to define the
regression function recursively, as in (10.63), estimating (10.64) need not be
any more difficult than estimating other nonlinear regression models. But if
appropriate software is lacking, this estimation can be quite difficult.
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If we assume that the error terms are normally distributed, the model
(10.61) becomes

yt = xt(β) + ut, ut = εt − αεt−1, εt ∼ NID(0, ω2). (10.65)

We previously made the asymptotically innocuous assumption that the un-
observed innovation ε0 is equal to zero. Although asymptotically innocuous,
that assumption is clearly false, since according to (10.65) ε0 must be dis-
tributed as N(0, ω2). The simplest way to take proper account of this fact
was suggested by MacDonald and MacKinnon (1985); our treatment follows
theirs.

The concentrated loglikelihood function for the model (10.65) is

C − n−
2

log
((
y − x(β)

)>∆−1(α)
(
y − x(β)

))
− 1−

2
log |∆(α)|, (10.66)

where ω2∆(α) is the covariance matrix of the vector of error terms u, ex-
pression (10.60).4 As discussed by Box and Jenkins (1976) and others, the
Jacobian term − 1

2 log |∆(α)| is

1−
2

log
(
1− α2

)
− 1−

2
log
(
1− α2n+2

)
. (10.67)

When |α| = 1, both terms in (10.67) are undefined. In that case, by using
l’Hôpital’s Rule, one can show that

lim
|α|→1

(
1−
2

log
(
1− α2

)
− 1−

2
log
(
1− α2n+2

))
= − 1−

2
log(n+ 1).

This result allows the loglikelihood function (10.66) to be evaluated for any
value of α in the invertibility region −1 ≤ α ≤ 1.

It is important to be able to deal with the case in which |α| = 1, since in
practice one not infrequently obtains ML estimates with |α̂| = 1, especially
when the sample size is small; see, for example, Osborn (1976) and Davidson
(1981). The reason for this is that if we concentrate the loglikelihood function
with respect to β and ω to obtain `c(α), we will find that `c(α) has the
same value for α and 1/α. That, of course, is the reason for imposing the
invertibility condition that |α| ≤ 1. Thus, if `c(α) is rising as α → 1 or as
α → −1, it must have a maximum precisely at α = 1 or α = −1. This
is a distinctly undesirable feature of the model (10.65). When |α̂| = 1, one
cannot make inferences about α in the usual way, since α̂ is then on the
boundary of the parameter space. Since α̂ can equal ±1 with finite probability,

4 In fact, expression (10.66) could be the concentrated loglikelihood function for a
nonlinear regression model with error terms that follow any sort of autoregres-
sive moving average, or ARMA, process, provided that ∆(α) were replaced
by the covariance matrix for u implied by that ARMA process.
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using the normal distribution to approximate its finite-sample distribution is
a somewhat dubious procedure. Thus, if α̂ is equal to or even close to 1
in absolute value, the investigator should exercise care in making inferences
about α. Of course, as n → ∞ the fact that α̂ is consistent means that the
number of times that |α̂| = 1 tends to zero, unless |α0| = 1.

It is not easy to evaluate (10.66) directly; see Pesaran (1973), Osborn
(1976), and Balestra (1980), among others.5 We therefore use a trick that
provides an alternative way to do so. Recall equations (10.62), in which we
explicitly wrote y1, . . . , yn as functions of current and lagged values of xt(β)
and lagged values of yt. We may rewrite these equations, taking account of
observation zero, as

0 = −υ + ε0

y1 = x1(β)− αυ + ε1

y2 = x2(β)− α
(
y1 − x1(β)

)
− α2υ + ε2

y3 = x3(β)− α
(
y2 − x2(β)

)
− α2

(
y1 − x1(β)

)
− α3υ + ε3,

(10.68)

and so on. Here we have added both one observation and one parameter to
equations (10.62). The extra observation is observation zero, which as written
here simply says that the unknown parameter υ is defined to equal the error
term ε0. This unknown parameter also appears in all subsequent observations,
multiplied by larger and larger powers of α, to reflect the dependence of yt
for all observations on ε0. Notice that because we have added both an extra
parameter and an extra observation, we have not changed the number of
degrees of freedom (i.e., the number of observations minus the number of
parameters estimated) at all.

If we make the definitions

y∗0 = 0; y∗t = yt + αy∗t−1, t = 1, . . . , n;

x∗0 = 0; x∗t (β, α) = xt(β) + αx∗t−1(β, α), t = 1, . . . , n;

z∗0 = −1; z∗t = αz∗t−1,

we can write equations (10.68) in the form

y∗t (α) = x∗t (β, α) + υz∗t + εt, (10.69)

making them look like very much like a nonlinear regression model. The sum
of squared residuals would then be

n∑
t=0

(
y∗t (α)− x∗t (β, α)− υz∗t

)2
. (10.70)

5 Another approach to the estimation of models with moving average errors has
been proposed by Harvey and Phillips (1979) and by Gardner, Harvey, and
Phillips (1980). It requires specialized software.
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When evaluated at the value of υ that minimizes it, the sum of squared
residuals (10.70) is equal to the generalized sum of squares(

y − x(β)
)>∆−1(α)

(
y − x(β)

)
, (10.71)

which appears in the loglikelihood function (10.66); this result was proved by
Pagan and Nicholls (1976). Thus we can replace (10.71) by (10.70) in (10.66),
which makes it very much simpler to evaluate the latter. When xt(β) is linear,
the simplest approach is probably to search over α in the interval from −1 to
+1, since we can then minimize the SSR (10.70) by OLS and plug the result
into (10.66) to evaluate the loglikelihood function. When xt(β) is nonlinear,
we can directly maximize (10.66) with respect to α and β jointly. If xt(β)
is linear and there are no lagged dependent variables among the regressors,
inferences about β can be made by using the ordinary OLS covariance matrix
for β̂ conditional on α̂ from regression (10.69). Otherwise, we can use the
Gauss-Newton regression corresponding to (10.69).

We may specify a model that combines both autoregressive and moving
average components. The result is the so-called ARMA(p, q) model,

A(L,ρ)ut = B(L,α)εt, εt ∼ IID(0, ω2). (10.72)

The left-hand side of (10.72) looks like the AR(p) model (10.37), and the
right-hand side looks like the MA(q) model (10.58). The advantage of ARMA
models is that a relatively parsimonious model, such as ARMA(1, 1) or
ARMA(2, 1), can often provide a representation of a time series which is as
good as that obtained from a much less parsimonious AR or MA model.

Finally, we must mention the class of ARIMA models. These are sim-
ply ARMA models applied to data that have been differenced some integer
number of times, say d. Thus the ARIMA(p,d, q) model is

A(L,ρ)(1− L)dut = B(L,α)εt, εt ∼ IID(0, ω2). (10.73)

When d = 0, this collapses to a standard ARMA(p, q) model. The I in ARIMA
means integrated, since an integrated series has to be differenced to achieve
stationarity. Differencing is often used to induce stationarity in time series
that would otherwise be nonstationary. Although we obviously do not expect
the error terms that adhere to a regression model to be nonstationary, many
economic time series are themselves (apparently) nonstationary and should
normally be differenced before they can be used in an econometric model.
Nonstationary time series will be discussed in Chapters 19 and 20.

Our treatment of regression models with MA errors has been brief and
confined to the MA(1) case. Those who need to estimate such models, or
models with ARMA errors, are normally advised to use specialized software,
which will typically employ estimation techniques such as those discussed in
Newbold (1974), Box and Jenkins (1976), Dent (1977), Ansley (1979), Zinde-
Walsh and Galbraith (1991), and Galbraith and Zinde-Walsh (1992).
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10.8 Testing for Serial Correlation

A very substantial fraction of all the literature in econometrics has been de-
voted to the problem of testing for serial correlation in the error terms of
regression models. The largest part of that fraction has dealt with testing the
null hypothesis that the errors for a linear regression model are serially inde-
pendent against the alternative that they follow an AR(1) process. Although
serial correlation is certainly a widespread phenomenon with time-series data,
so that testing for it is clearly important, the amount of effort devoted to
this problem seems somewhat disproportionate. As we will see, asymptotic
tests for serial correlation can readily be derived as applications of the Gauss-
Newton regression. Only when it is possible to make inferences that are exact
in finite samples is there any reason to make use of more specialized and
difficult procedures.

Suppose we wish to test the null hypothesis that the errors ut in the
model

yt = xt(β) + ut (10.74)

are serially independent against the alternative that they follow an AR(1) pro-
cess. As we have already seen, for observations t = 2, . . . , n, this alternative
model can be written as

yt = x′t(β, ρ) + εt ≡ xt(β) + ρ
(
yt−1 − xt−1(β)

)
+ εt, (10.75)

where εt is assumed to be IID(0, ω2). As we saw in Chapter 6, any restrictions
on the parameters of a nonlinear regression function can be tested by running
a Gauss-Newton regression evaluated at estimates that are root-n consistent
under the null hypothesis. These would typically, but not necessarily, be
restricted NLS estimates. Thus, in this case, the restriction that ρ = 0 can
be tested by regressing yt − x′t on the derivatives of the regression function
x′t(β, ρ) with respect to all of the parameters, where both x′t and its derivatives
are evaluated at the estimates of the parameter vector [β

.... ρ] under the null.
Assuming that (10.74) has been estimated by least squares, these estimates
are simply [β̃

.... 0], where β̃ denotes the least squares estimates of β conditional
on ρ = 0.6 Since the derivatives are

∂x′t
∂βi

= Xt(β)− ρXt−1(β);
∂x′t
∂ρ

= yt−1 − xt−1(β),

the required GNR is

yt − xt(β̃) = Xt(β̃)b+ r
(
yt−1 − xt−1(β̃)

)
+ residual.

6 There is an issue as to which sample, t = 1 to n or t = 2 to n, to use to estimate
β̃; we will discuss this below.
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This can be rewritten more compactly as

ũ = X̃b+ rũ−1 + residuals, (10.76)

where ũ denotes the vector of least squares residuals with typical element
yt − xt(β̃), X̃ denotes the matrix of derivatives of the regression function
xt(β) with typical element Xti(β̃), and ũ−1 denotes the vector with typical
element ũt−1. This is an extremely simple regression to set up, especially when
the original model (10.74) is linear. In that case, since X̃ is simply the matrix
of regressors, we just have to regress the residuals on the original regressors
and on the lagged residuals. The test statistic may be either n times the un-
centered R2 or the ordinary t statistic for r = 0. The former will be asymptot-
ically distributed as χ2(1) under the null, the latter as N(0, 1). In practice, it
is generally preferable to use the t statistic and to compare it to the Student’s
t distribution with appropriate degrees of freedom; see Kiviet (1986).

The preceding discussion has ignored the practical problem of how to
treat the initial observation. The alternative model (10.75) is defined only
for observations 2 through n, which suggests that β̃ should also be obtained
by estimation using that shorter sample period. Happily, this is quite unnec-
essary. One approach is simply to estimate β̃ using the full sample and run
the GNR using observations 2 through n only. The only problem with this
approach is that ũ will no longer be orthogonal to X̃. As a result, the R2 for
the GNR will not be zero even if ũ−1 is left out, as a consequence of which
the nR2 version of tests based on this regression may tend to reject somewhat
too often in finite samples. This will not be a problem if the test statistic is
the t statistic for r = 0. Another approach is to obtain β̃ from full-sample
estimation and run the GNR over the whole sample period as well, setting
the unobserved ũ0 equal to zero.

When the original model is linear, a slight variation on this procedure is
possible. Because Xβ̃ lies in S(X), the regression

y = Xc+ rũ−1 + residuals (10.77)

will in this case have exactly the same sum of squared residuals, and exactly
the same t statistic for r = 0, as the original test regression (10.76). Thus, for
linear models, the easiest way to test for AR(1) errors is simply to rerun the
original regression with one additional regressor, equal to 0 for observation 1
and equal to ũt−1 for all subsequent observations. One must then use the
ordinary t statistic on that additional regressor as the test statistic, since it
is obviously not valid to use nR2 from (10.77).

Extending these procedures to test for higher-order AR errors is straight-
forward. Suppose the alternative is that the ut’s in (10.74) follow a general
AR(p) error process. The alternative model can be written as

yt = xt(β) +

p∑
j=1

ρj
(
yt−j − xt−j(β)

)
+ εt, εt ∼ IID(0, ω2),
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which implies that the test regression analogous to (10.76) is

ũ = X̃b+

p∑
j=1

rjũ−j + residuals. (10.78)

One possible test statistic is n times the uncentered R2 from this regression,
which will be asymptotically distributed as χ2(p) under the null. Another,
which probably has better finite-sample properties, is an asymptotic F test
for r1 = r2 = · · · = rp = 0. This will have p and n− k− p degrees of freedom,
assuming that (10.78) is run over the entire sample period, with zeros used to
pad out the initial elements of ũ−j as necessary. When the original model is
linear, it is always valid to replace the regressand ũ by the original dependent
variable y, as in (10.77). When that is done, of course, the nR2 variant of the
test cannot be used.

Suppose that we wished to test against MA(1) rather than AR(1) errors.
The alternative model would then be the rather complicated one given by
equations (10.62) or (10.64). The derivatives of this model with respect to β
and α are also rather complicated, but they simplify enormously when evalu-
ated under the null hypothesis that α = 0. In fact, when we evaluate them at
[β̃

.... 0], we find that, for all observations, the derivative with respect to βi is
Xti(β̃) and, for observations 2 through n, the derivative with respect to α is
yt−1 − xt−1(β̃).7 Thus the GNR for testing against the alternative of MA(1)
errors is identical to the GNR for testing against AR(1) errors. This is a con-
sequence of the fact that, under the null hypothesis of no serial correlation, re-
gression models with AR(1) and MA(1) errors are what Godfrey and Wickens
(1982) call locally equivalent alternatives, that is, models which have identical
derivatives when evaluated under the null hypothesis. Since tests based on the
GNR use only information about the first derivatives of the alternative model,
it is not surprising that if two models are locally equivalent in this sense under
a certain null, the resulting GNRs are identical; see Godfrey (1981).

To see that an AR(1) process is locally equivalent to an MA(1) process,
recall that the former can be rewritten as

ut = εt + ρεt−1 + ρ2εt−2 + ρ3εt−3 + · · · .

If we differentiate the right-hand side with respect to ρ and evaluate the deriva-
tives at ρ = 0, the result will simply be εt−1. But that is also the derivative
of the MA(1) process (10.57) with respect to its single parameter. So we see
that AR(1) and MA(1) processes are indeed locally equivalent alternatives.

In view of the result that exactly the same Gauss-Newton regression may
be used to test against MA(1) as against AR(1) errors, it should come as no
surprise to find that the GNR for testing against MA(q) errors is identical

7 Since for observation 1 this derivative is zero, our earlier suggestion to use zero
in place of the unknown ũ0 is precisely appropriate here.
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to the one for testing against AR(q) errors. Perhaps more surprisingly, the
same artificial regression also turns out to be appropriate for testing against
ARMA(p, q) errors, with max(p, q) lags of ũ now being included in the regres-
sion. For more details, see Godfrey (1978b, 1988).

Using something very like the Gauss-Newton regression to test for serial
correlation was first suggested by Durbin (1970) in a paper that also intro-
duced what has become known as Durbin’s h test. The latter procedure,
which we will not discuss in detail, is an asymptotic test for AR(1) errors
that can be used when the null hypothesis is a linear regression model which
includes the dependent variable lagged once, and possibly more than once as
well, among the regressors. The h test can be calculated with a hand calcu-
lator from the output for the original regression printed by most regression
packages, although in some cases it cannot be calculated at all because it
would be necessary to compute the square root of a negative number. For
reasons that today seem hard to understand (but are presumably related to
the primitive state of computer hardware and econometric software in the
early 1970s), Durbin’s h test became widely used, while his so-called alter-
native procedure, a t test based on the modified GNR (10.77), was all but
ignored for quite some time.8 It was finally rediscovered and extended by
Breusch (1978) and Godfrey (1978a, 1978b). All of these papers assumed
that the error terms εt were normally distributed, and they developed tests
based on the GNR as Lagrange multiplier tests based on maximum likelihood
estimation. The normality assumption is of course completely unnecessary.

Equally unnecessary is any assumption about the presence or absence of
lagged dependent variables in the regression function xt(β). All we require
is that this function satisfy the regularity conditions of Chapter 5, in order
that nonlinear least squares estimates will be consistent and asymptotically
normal under both the null and alternative hypotheses. As the above history
implies, and as we will discuss below, many tests for serial correlation require
that xt(β) not depend on lagged dependent variables, and all of the literature
cited in the previous paragraph was written with the specific aim of handling
the case in which xt(β) is linear and depends on one or more lagged values of
the dependent variable.

The problem with tests based on the GNR is that they are valid only
asymptotically. This is true whether or not xt(β) is linear, because ũ−1 is only
an estimate of u−1. Indeed, as we saw in Section 5.6, ũ

a
= M0u, where M0 ≡

I−X0(X0
>X0)−1X0

> and X0 ≡ X(β0). This is just the asymptotic equality
(5.57). The asymptotic equality is replaced by an exact equality if x(β) = Xβ.

8 Maddala and Rao (1973), Spencer (1975), and Inder (1984), among others,
have provided Monte Carlo evidence on Durbin’s h test as compared with the
test based on the GNR. This evidence does not suggest any strong reason to
prefer one test over the other. Thus the greater convenience and more general
applicability of the test based on the GNR are probably the main factors in its
favor.
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This relationship makes it clear that even if the ut’s are serially independent,
the ũt’s typically will not be, and the test may therefore incorrectly reject
the null hypothesis. The problem disappears when the sample size is large
enough, since ũ tends to u as the sample size tends to infinity, provided of
course that the model being estimated includes the DGP as a special case.
In practice, it does not seem to be a serious problem even when the sample
size is moderate (say, 50 or more), provided the right form of the test is used.
The results of Kiviet (1986) suggest that F tests based on the GNR generally
perform quite well even with samples as small as 20 (provided that the number
of regressors is also small), but that tests computed as nR2 are less reliable
and may tend to reject the null hypothesis substantially too often when there
is actually no serial correlation.

The most popular test for serial correlation in econometrics is designed
to handle the problems which result from the fact that ũ does not have quite
the same properties as u, but only for linear models without lagged dependent
variables and with error terms that are assumed to be normally distributed.
This is the d statistic proposed by Durbin and Watson (1950, 1951) and
commonly referred to as the DW statistic. It is defined as

d =

∑n
t=2(ũt − ũt−1)2∑n

t=1 ũ
2
t

, (10.79)

where, as usual, ũt is the tth residual from OLS estimation of the regression
that is being tested for possible first-order serial correlation. This regression
may be linear or nonlinear, although finite-sample results depend on linearity.

It is easy to see that the numerator of the d statistic is approximately
equal to

2

( n∑
t=2

ũ2t −
n∑
t=2

ũtũt−1

)
. (10.80)

Thus the d statistic itself is approximately equal to 2 − 2ρ̃, where ρ̃ is the
estimate of ρ obtained by regressing ũt on ũt−1:

ρ̃ =

∑n
t=2 ũtũt−1∑n
t=2 ũ

2
t−1

. (10.81)

These results are true only as approximations because (10.79), (10.80), and
(10.81) treat the first and last observations differently. Any effects of those
observations must, however, vanish asymptotically. Thus it is clear that in
samples of reasonable size the d statistic must vary between 0 and 4, and that
a value of 2 corresponds to the complete absence of serial correlation. Values
of the d statistic less than 2 correspond to ρ̃ > 0, while values greater than 2
correspond to ρ̃ < 0.

It is possible, but computationally demanding, to calculate the exact
distribution of the d statistic when the ut’s are normally distributed, the
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underlying regression model is linear, and X contains only fixed regressors.
This distribution necessarily depends on X. The calculation uses the fact that
the d statistic can be written as

u>MXAMXu

u>MXu
, (10.82)

where A is the n× n matrix

1 −1 0 0 · · · 0 0 0

−1 2 −1 0 · · · 0 0 0

0 −1 2 −1 · · · 0 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · −1 2 −1

0 0 0 0 · · · 0 −1 1


.

From (10.82), the d statistic is seen to be a ratio of quadratic forms in nor-
mally distributed random variables, and the distributions of such ratios can be
evaluated using several numerical techniques; see Durbin and Watson (1971)
and Savin and White (1977) for references.

Most applied workers never attempt to calculate the exact distribution of
the d statistic corresponding to their particular X matrix. Instead, they use
the fact that the critical values for its distribution are known to fall between
two bounding values, dL and dU , which depend on the sample size, n, the
number of regressors, k, and whether or not there is a constant term. Tables
of dL and dU may be found in some econometrics textbooks and in papers such
as Durbin and Watson (1951) and Savin and White (1977). As an example,
when n = 50 and k = 6 (counting the constant term as one of the regressors),
for a test against ρ > 0 at the .05 level, dL = 1.335 and dU = 1.771. Thus, if
one calculated a d statistic for this sample size and number of regressors and it
was less than 1.335, one could confidently decide to reject the null hypothesis
of no serial correlation at the .05 level. If the statistic was greater than 1.771,
one could confidently decide not to reject. However, if the statistic was in
the “inconclusive region” between 1.335 and 1.771, one would be unsure of
whether to reject or not. When the sample size is small, and especially when
it is small relative to the number of regressors, the inconclusive region can
be very large. This means that the d statistic may not be very informative
when used in conjunction with the tables of dL and dU .9 In such cases, one
may have no choice but to calculate the exact distribution of the statistic,
if one wants to make inferences from the d statistic in a small sample. A
few software packages, such as SHAZAM, allow one to do this. Of course,

9 There is reason to believe that when the regressors are slowly changing, a
situation which may often be the case with time-series data, dU provides a
better approximation than dL. See Hannan and Terrell (1966).
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because the assumptions of normally distributed errors and fixed regressors
are uncomfortably strong, even “exact” finite-sample inferences are really only
approximate.

As we have already mentioned, the d statistic is not valid, even asymptot-
ically, when X includes lagged values of the dependent variable. The easiest
way to see why this is so is to use the fact that the d statistic is asymptotically
equivalent to the t statistic on the estimate of ρ in the regression

ũ = ρũ−1 + residuals; (10.83)

see the discussion leading up to (10.81). The only difference between regres-
sion (10.83) and the Gauss-Newton regression (10.76), which generates an
asymptotically valid t statistic on the coefficient of ũ−1, is that (10.83) does
not include the matrix X̃ among the regressors. We discussed this point in
Section 6.4, where we saw that the correct t statistic, from (10.76), must be
larger (or at least no smaller) asymptotically than the generally incorrect one
from (10.83).

If x(β) does not depend on lagged dependent variables, xt(β) and hence
Xt(β) must be uncorrelated with all lagged values of ut. Consequently, X̃
will have no explanatory power for ũ−1, asymptotically, and the t statistics
from (10.76) and (10.83) will be asymptotically the same. But if x(β) does
depend on lagged dependent variables, Xt(β) will be correlated with some
lagged values of ut, since lagged values of the dependent variable are certainly
correlated with lagged values of the error term. Thus the t statistic from
(10.83) will be smaller, asymptotically, than the one from (10.76), and the
d statistic will consequently be biased toward 2. The d statistic may still
be informative, however. If its value is such that we could reject the null
hypothesis of no serial correlation if x(β) did not depend on lagged dependent
variables, then a correct statistic based on the GNR would certainly allow us
to do so.

We conclude this section with a very brief discussion of some other tests
for serial correlation. Kobayashi (1991) proposed a test that is exact to order
n−1/2 for nonlinear regression models without lagged dependent variables. It
is based on the estimate of ρ under the alternative hypothesis, which is then
corrected to reduce bias. Wallis (1972) proposed an analog of the d statistic
to test against a simple AR(4) process. His d4 statistic is

d4 =

∑n
t=5(ũt − ũt−4)2∑n

t=1 ũ
2
t

, (10.84)

and its properties are very similar to those of the original d statistic. When
the model is linear, there are no lagged dependent variables, and the sample
size is small, d4 can be used instead of the standard GNR-based test that
involves regressing ũ on X̃ and ũ−4.
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A very different type of test, which he calls “point-optimal” because it is
designed to test against a simple alternative, was proposed by King (1985a).
It is based on the ratio of the sum of squared residuals for a regression with
a fixed value of ρ, say ρ = 0.5 or ρ = 0.75, to the SSR for a regression with
no serial correlation. Critical values can be calculated by methods similar
to those used to calculate the exact distribution of the d statistic. There
is evidence that this test may, as its name implies, have more power than
conventional tests when the actual value of ρ is both some distance from
zero and not too far from the hypothesized value used in computing the test
statistic. Other references on point-optimal tests include King (1985b), King
and McAleer (1987), Dastoor and Fisher (1988), and Dufour and King (1991).

In the time-series literature, numerous tests for residual autocorrelation
have been proposed. Two that are widely used are the tests proposed by Box
and Pierce (1970) and Ljung and Box (1978), which are both based on the
residual autocorrelations, i.e., the correlations between ũt and ũt−1, ũt and
ũt−2, and so on, often up to quite long lags. These tests are valid when used
for their original purpose, namely, testing ARIMA models for residual auto-
correlation, but they are not generally valid when used with the residuals from
linear or nonlinear regression models that include both exogenous variables
and lagged dependent variables in the regression functions. The reason they
are invalid in such cases is essentially the same reason that the d statistic is
invalid when there are lagged dependent variables among the regressors; see
Poskitt and Tremayne (1981).

10.9 Common Factor Restrictions

If the regression function is misspecified, the residuals may display serial cor-
relation even when the error terms are in fact serially independent. This
might happen if a variable that was itself serially correlated, or a lagged de-
pendent variable, were incorrectly omitted from the regression function. In
such a case, we can in general make valid inferences only by eliminating the
misspecification rather than by “correcting” the model for AR(1) errors or
some other simple error process. If we simply do the latter, as used to be
done all too frequently in applied work, we may well end up with a seriously
misspecified model.

There is no universally effective way to avoid misinterpreting misspecifi-
cation of the regression function as the presence of serially correlated errors.
Model specification is an art as much as a science, and with the short samples
typical of time-series data we can never expect to detect all forms of misspec-
ification. Nevertheless, there is one family of tests that has been shown to
be very effective in detecting misspecification in models which appear to have
errors that follow a low-order AR process. These are tests of what are, for
reasons that will be apparent shortly, generally called common factor restric-
tions. The basic idea of testing common factor restrictions, although not the
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terminology, may be found in Sargan (1964). More recent references include
Hendry and Mizon (1978), Mizon and Hendry (1980), and Sargan (1980a). An
illuminating example is provided by Hendry (1980), who presents a grossly
misspecified model that yields apparently sensible results after “correction”
for AR(1) errors and then shows that a test for common factor restrictions
would detect the misspecification.

In order to fix ideas, we will assume for the moment that the model to
be tested is a linear regression model that apparently has AR(1) errors. It is
natural to think of there being three nested models in this case. The first of
these is the original linear regression model with error terms assumed to be
serially independent,

H0 : yt = Xtβ + ut, ut ∼ IID(0, σ2). (10.85)

The second is the nonlinear model that results when the errors ut of (10.85)
are assumed to follow the AR(1) process ut = ρut−1 + εt,

H1 : yt = Xtβ + ρ(yt−1 −Xt−1β) + εt, εt ∼ IID(0, ω2). (10.86)

The third is the linear model that results when the nonlinear restrictions on
(10.86) are relaxed:

H2 : yt = Xtβ + ρyt−1 +Xt−1γ + εt, εt ∼ IID(0, ω2), (10.87)

where β and γ are both k--vectors. We encountered H2 previously, in Section
10.3, where it was used to obtain an initial consistent estimate of ρ.

Provided that all of these models are estimated over the same sample
period (probably observations 2 through n, since H1 and H2 cannot be esti-
mated for observation 1), the original model, H0, is a special case of the model
incorporating a correction for AR(1) errors, H1, which in turn is a special case
of the unrestricted linear model, H2. Tests for serial correlation, such as those
we discussed in Section 10.8, are designed to test H0 against H1. If such a
test rejects the null hypothesis, it may be because H1 in fact generated the
data, but it may also be because the model is misspecified in some other way.
Testing H1 against H2 is one way to see if the former is a reasonable model.
This is an example of testing common factor restrictions.

It is natural to ask why the restrictions that (10.86) imposes on (10.87)
are called common factor restrictions. Using lag operator notation, we can
rewrite the former as

(1− ρL)yt = (1− ρL)Xtβ + εt (10.88)

and the latter as
(1− ρL)yt = Xtβ + LXtγ + εt. (10.89)
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It is evident that in (10.88), but not in (10.89), the common factor 1 − ρL
appears on both sides of the equation. This explains the name given to the
restrictions.

Although our discussion will focus on the AR(1) case, common factor
restrictions are implicit in linear regression models with autoregressive errors
of any order. For example, a linear regression model with AR(2) errors can
be written as(

1− ρ1L− ρ2L2
)
yt = (1− ρ1L− ρ2L2)Xtβ + εt, (10.90)

while the unrestricted version corresponding to (10.89) can be written as(
1− ρ1L− ρ2L2

)
yt = Xtβ + LXtγ1 + L2Xtγ2 + εt, (10.91)

where γ1 and γ2 are two k--vectors of coefficients. Again, we see that the
factor 1− ρ1L− ρ2L2 appears on both sides of equation (10.90) but only on
the left-hand side of equation (10.91). Tests of common factor restrictions in
models with higher-order AR errors are essentially the same as tests in models
with AR(1) errors; for simplicity, our discussion of these tests will deal only
with the AR(1) case.

In most cases, the easiest, and probably also the most reliable, way to test
common factor restrictions is to use an asymptotic F test. Thus the statistic
for testing H1 above against H2, that is (10.86) against (10.87), would be

(SSR1 − SSR2)/l

SSR2/(n− k − l − 2)
, (10.92)

where SSR1 is the sum of squared residuals from least squares estimation
of H1, SSR2 is the sum of squared residuals from least squares estimation
of H2, and l ≤ k is the number of degrees of freedom for the test, about
which more below. The denominator degrees of freedom is n − k − l − 2
because H2 is estimated over n− 1 observations and has k+ 1 + l parameters,
corresponding to k βi’s, ρ, and l additional parameters. Note that although
this test is perfectly valid asymptotically, it will not be exact in finite samples,
regardless of how the εt’s are distributed, because both H1 and H2 include
lagged dependent variables on the right-hand side and also because H1 is
nonlinear in the parameters.

We now come to the one aspect of common factor testing that is slightly
tricky: determining the number of restrictions, l. In the case of testing H1

against H2 above, it might seem that there are k restrictions. After all, H1

has k + 1 parameters (k βi’s and ρ) and H2 seems to have 2k + 1 parameters
(k βi’s, k γi’s, and ρ). The difference is (2k + 1) − (k + 1), which equals k.
In fact, however, the number of restrictions will almost always be less than k,
because, except in rare cases, the number of identifiable parameters in H2 will
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be less than 2k+ 1. The easiest way to see why this will almost always be the
case is to consider an example.

Suppose that the regression function xt(β) for the original H0 model is

β0 + β1zt + β2t+ β3zt−1 + β4yt−1, (10.93)

where zt is the tth observation on an economic time series, and t is the tth

observation on a linear time trend. The regression function for the unrestricted
H2 model which corresponds to (10.93) is

β0 + β1zt + β2t+ β3zt−1 + β4yt−1 + ρyt−1

+ γ0 + γ1zt−1 + γ2(t− 1) + γ3zt−2 + γ4yt−2.
(10.94)

This regression function appears to have 11 parameters, but 4 of them are in
fact unidentifiable. It is obvious that we cannot estimate both β0 and γ0, since
there cannot be two constant terms. Similarly, we cannot estimate both β3
and γ1, since there cannot be two coefficients on zt−1, and we cannot estimate
both β4 and ρ, since there cannot be two coefficients on yt−1. We also cannot
estimate γ2 along with β2 and the constant, because t, t− 1 and the constant
term are perfectly collinear, since t− (t− 1) = 1. Thus the version of H2 that
can actually be estimated has the regression function

δ0 + β1zt + δ1t+ δ2zt−1 + δ3yt−1 + γ3zt−2 + γ4yt−2, (10.95)

where

δ0 = β0 + γ0 − γ2; δ1 = β2 + γ2; δ2 = β3 + γ1; and δ3 = ρ+ β4.

We see that (10.95) has 7 identifiable parameters: β1, γ3, γ4, and δ0 through
δ3, instead of the 11 parameters, many of them not identifiable, of (10.94).
The regression function for the restricted model, H1, is

β0 + β1zt + β2t+ β3zt−1 + β4yt−1 + ρyt−1

− ρβ0 − ρβ1zt−1 − ρβ2(t− 1)− ρβ3zt−2 − ρβ4yt−2,

and it has 6 parameters, ρ and β0 through β4. Thus, in this case, l, the
number of restrictions that H1 imposes on H2, is just 1.

While this is a slightly extreme example, similar problems arise in almost
every attempt to test common factor restrictions. Constant terms, many
types of dummy variables (notably seasonal dummies and time trends), lagged
dependent variables, and independent variables that appear with more than
one time subscript almost always result in an unrestricted model H2 of which
not all parameters will be identifiable. Luckily, it is very easy to deal with
these problems when one does an F test; one simply has to omit the redundant
regressors when estimating H2. One can then calculate l as the number of
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parameters in H2 minus the number in H1, which is k + 1. Since many
regression packages automatically drop redundant regressors, one naive but
often effective approach is simply to attempt to estimate H2 in something
close to its original form and then to count the number of parameters that
the regression package is actually able to estimate.

The F test (10.92) is not the only way to test common factor restrictions.
Since the regression function for H2 is linear in all parameters, while the one
for H1 is nonlinear, it is natural to try to base tests on the OLS estimates of
H2 alone. One approach to this problem is discussed by Sargan (1980a), but
it is quite complicated and requires specialized computer software. A simpler
approach is to use a one-step estimator of H1. Consistent estimates of the
parameters of H1 may be obtained from the estimates of H2, as discussed in
Section 10.3, and the GNR (10.19) is then used to obtain one-step estimates.
These estimates themselves are not necessarily of interest. All that is needed
is the sum of squared residuals from the GNR, which may be used in place
of SSR1 in the formula (10.92) for the F test. However, since it is generally
neither difficult nor expensive to estimate H1 with modern computers and
software packages, situations in which there is a significant advantage from
the use of this one-step procedure are likely to be rare.

Something very like a test of common factor restrictions can be employed
even when the original (H0) model is nonlinear. In this case, the H1 model
can be written as

(1− ρL)yt = (1− ρL)xt(β) + εt. (10.96)

A version of (10.96) in which the common factor restriction does not hold is

(1− ρL)yt = (1− δL)xt(β) + εt. (10.97)

Evidently, (10.96) is just (10.97) subject to the restriction that δ = ρ. This
restriction can be tested by a Gauss-Newton regression in the usual way. This
GNR is

y − x̂− ρ̂(y−1 − x̂−1) = (X̂ − ρ̂X̂−1)b

+ r(y−1 − x̂−1) + dx̂−1 + residuals,
(10.98)

where ρ̂ and β̂ are the NLS estimates of H1, and x̂ ≡ x(β̂). Regression (10.98)
looks exactly like the GNR (10.26), which we used to calculate the covariance
matrix of β̂ and ρ̂, with the addition of the extra regressor x̂−1, the coefficient
of which is d. The t statistic for d = 0 will be an asymptotically valid test
statistic.

Notice that this GNR could be used even if xt(β) were a linear function.
Since this variant of the common factor restrictions test necessarily has only
one degree of freedom, it would not be the same as the usual form of the
test, discussed above, for any model with l > 1. The difference arises because
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the test based on (10.98) is testing against a less general alternative than the
usual form of the test. When xt(β) is linear, (10.97) can be written as

(1− ρL)yt = Xtβ − δXt−1β + εt, (10.99)

which is in general (but not when l = 1) more restrictive than equation (10.89).
Thus consideration of the nonlinear regression case reveals that there are really
two different tests of common factor restrictions when the original model is
linear. The first, which tests (10.88) against (10.89), is the F test (10.92).
It will have l degrees of freedom, where 1 ≤ l ≤ k. The second, which tests
(10.88) against (10.99), is the t test of d = 0 in the Gauss-Newton regression
(10.98). It will always have one degree of freedom. Either test might perform
better than the other, depending on how the data were actually generated;
see Chapter 12. When l = 1, the two tests will coincide, a fact that it may be
a good exercise to demonstrate.

10.10 Instrumental Variables and Serial Correlation

So far in this chapter, we have assumed that the regression function x(β) de-
pends only on exogenous and predetermined variables. However, there is no
reason for serially correlated errors not to occur in models for which current
endogenous variables appear in the regression function. As we discussed in
Chapter 7, the technique of instrumental variables (IV) estimation is com-
monly used to obtain consistent estimates for such models. In this section, we
briefly discuss how IV methods can be used to estimate univariate regression
models with errors that are serially correlated and to test for serial correlation
in such models.

Suppose that we wish to estimate the model (10.12) by instrumental
variables. Then, as we saw in Section 7.6, the IV estimates may be obtained
by minimizing, with respect to β and ρ, the criterion function(

y − x′(β, ρ)
)>PW (y − x′(β, ρ)

)
, (10.100)

where the regression function x′(β, ρ) is defined by (10.13), and PW is the
matrix that projects orthogonally onto the space spanned by W, a suitable
matrix of instruments. The IV form of the Gauss-Newton regression can
be used as the basis for an algorithm to minimize (10.100). Given suitable
regularity conditions on xt(β), and assuming that |ρ| < 1, these estimates
will be consistent and asymptotically normal. See Sargan (1959) for a full
treatment of the case in which x(β) is linear.

The only potential difficulty with this IV procedure is that one has to find
a “suitable” matrix of instruments W. For asymptotic efficiency, one always
wants the instruments to include all the exogenous and predetermined vari-
ables that appear in the regression function. From (10.13), we see that more
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such variables appear in the regression function x′t(β, ρ) for the transformed
model than in the original regression function xt(β). Thus the optimal choice
of instruments may differ according to whether one takes account of serial
correlation or assumes that it is absent.

To make this point more clearly, let us assume that the original model is
linear, with regression function

xt(β) = Ztβ1 + Ytβ2, (10.101)

where Zt is a row vector of explanatory variables that are exogenous or pre-
determined, and Yt is a row vector of current endogenous variables; the di-
mension of β ≡ [β1

.... β2] is k. The regression function for the transformed
model is then

x′t(β, ρ) = ρyt−1 +Ztβ1 + Ytβ2 − ρZt−1β1 − ρYt−1β2. (10.102)

In (10.101), the only exogenous or predetermined variables were the variables
in Zt. In (10.102), however, they are yt−1 and the variables in Zt, Zt−1,
and Yt−1 (the same variables may occur in more than one of these, of course;
see the discussion of common factor restrictions in the previous section). All
these variables would normally be included in the matrix of instruments W.
Since the number of these variables is almost certain to be greater than k+ 1,
it would not normally be necessary to include any additional instruments to
ensure that all parameters are identified.

For more discussion of the estimation of single linear equations with se-
rially correlated errors and current endogenous regressors, see Sargan (1959,
1961), Amemiya (1966), Fair (1970), Dhrymes, Berner, and Cummins (1974),
Hatanaka (1976), and Bowden and Turkington (1984).

Testing for serial correlation in models estimated by IV is straightforward
if one uses a variant of the Gauss-Newton regression. In Section 7.7, we dis-
cussed the GNR (7.38), in which the regressand and regressors are evaluated
at the restricted estimates, and showed how it can be used to calculate test
statistics. Testing for serial correlation is simply an application of this proce-
dure. Suppose we want to test a nonlinear regression model for AR(1) errors.
The alternative model is given by (10.12), for observations 2 through n, with
the null hypothesis being that ρ = 0. In this case, the GNR (7.38) is

ũ = PWX̃b+ rPW ũ−1 + residuals, (10.103)

where β̃ denotes the IV estimates under the null hypothesis of no serial correl-
ation, ũ denotes y−x(β̃), and X̃ denotes X(β̃). This is clearly the IV analog
of regression (10.76); if the two occurrences of PW were removed, (10.76) and
(10.103) would be identical. The t statistic on the estimate of r from this
regression will be a valid test statistic. This will be true both when (10.103)
is estimated explicitly by OLS and when ũ is regressed on X̃ and ũ−1 using
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an IV procedure with W as the matrix of instruments. However, when an
artificial regression like (10.103) is used to test for higher-order serial correla-
tion, the regression must be estimated explicitly by OLS if an ordinary F test
is to be valid. All of this was discussed in Section 7.7.

As usual, there are two minor issues that must be settled before this
procedure can be implemented. First of all, there is the question of what to
do about the first observation. The simplest approach is probably to retain
it and to set the unobserved residual ũ0 to zero for the purposes of the GNR
(10.103), but there are other possibilities that will yield different results in
finite samples; see Section 10.8.

Secondly, there is the question of what instruments to use when running
the GNR (10.103). If we were minimizing the criterion function (10.100) to
obtain estimates of both β and ρ, then, as we discussed above, it would usually
be desirable to use more instruments than were used to obtain β̃. Similarly,
it will usually be desirable when testing the hypothesis that ρ = 0 for W to
include both y−1 and the regressors that appear in x−1(β̃). In that case, as
we saw in Section 7.7, the test statistic must be computed as a pseudo-t or
pseudo-F test based on the C(α) principle.

For more on testing for serial correlation in models estimated by IV,
see Godfrey (1976, 1988), Harvey and Phillips (1980, 1981), and Sargan and
Mehta (1983).

10.11 Serial Correlation and Multivariate Models

We discussed multivariate regression models in Section 9.7. When such mod-
els are estimated using time-series data, one might well expect them to display
serial correlation. Methods for estimation and testing of multivariate models
with serial correlation are for the most part obvious combinations of the tech-
niques previously discussed in this chapter and those discussed in Section 9.7.
There are a few new aspects to the problem, however, and those are what we
will concentrate on in this short section.

Consider the class of models

yt = ξt(β) + ut, ut = ut−1R+ εt, εt ∼ IID(0,Ω), (10.104)

where yt, ξt(β), ut, and εt are 1×m vectors, and R and Ω are m×m ma-
trices. This defines the general class of multivariate regression models with
AR(1) errors. It is conceptually straightforward to transform (10.104) into

yt = ξt(β) + yt−1R− ξt−1(β)R+ εt, εt ∼ IID(0,Ω), (10.105)

and then treat (10.105) like any other multivariate regression model. But
note that instead of a scalar parameter ρ we now have an m ×m matrix R,
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which allows each element of ut to depend on each element of ut−1. Thus,
if m is large, allowing for even first-order serial correlation evidently intro-
duces a large number of additional parameters, which may make it difficult
to obtain reliable estimates of the parameters β and R. In order to reduce
the number of parameters to be estimated, investigators may wish to impose
some restrictions on R. A natural restriction is that it be a diagonal matrix,
which implies that uti depends only on ut−1,i and not on ut−1,j for j 6= i.

In Section 9.7, we discussed and gave examples of singular equation sys-
tems, in which the error terms are constrained to sum to zero across the equa-
tions. We saw that such systems arise very frequently in practice. Berndt and
Savin (1975) demonstrated that if an equation system is singular, this places
severe restrictions on the form that the matrix R can take. In particular, if
R is assumed to be diagonal, all the diagonal elements must be the same. To
see why this is so, let us assume for simplicity that m = 2 and write the AR
process ut = ut−1R+ εt as

ut1 = r11ut−1,1 + εt1

ut2 = r22ut−1,2 + εt2.

Summing over all equations, we see that

ut1 + ut2 = r11ut−1,1 + r22ut−1,2 + εt1 + εt2. (10.106)

By assumption, ut−1,1+ut−1,2 = 0 and εt1+εt2 = 0. But these two conditions
will imply that ut1 + ut2 = 0 only if r11 = r22 = ρ. If so, (10.106) can be
rewritten as

ut1 + ut2 = ρ(ut−1,1 + ut−1,2) + εt1 + εt2 = ρ · 0 + 0 = 0.

Thus, when r11 = r22 = ρ, it is easy to see that if the εti’s sum to zero, so
will the uti’s; just imagine starting with u0i = 0 and then solving recursively.

The Berndt-Savin result, which of course generalizes to nondiagonal R
matrices and higher-order AR processes, means that one must be careful when
specifying time-series processes for the error terms of singular equation sys-
tems. If one accidentally specifies an R matrix that does not satisfy the
Berndt-Savin restrictions, the transformed system (10.105) will no longer be
singular, and as a result one will obtain different parameter estimates by drop-
ping different equations. On the other hand, the fact that if R is diagonal all
the diagonal elements must be the same allows for considerable simplification
in some cases. Beach and MacKinnon (1979) use this result to develop an ML
estimator that retains the first observation for singular equation systems with
AR(1) errors and a diagonal R matrix.

This section has been rather short. A much more detailed discussion of
serial correlation in multivariate models, and various references, may be found
in Srivastava and Giles (1987, Chapter 7).
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10.12 Conclusion

Despite the length of this chapter, we have by no means covered all the impor-
tant aspects of serial correlation. Our discussion of time-series issues has been
deliberately brief; readers who are not familiar with this literature will likely
want to consult Harvey (1981, 1989), Granger and Newbold (1986), or one of
the more advanced books cited by Granger and Watson (1984). A number of
topics closely related to those dealt with in this chapter will be discussed in
Chapters 19 and 20.

In this chapter, we have tried to emphasize specification tests, principally
tests based on the Gauss-Newton regression. A number of other specification
tests based on the GNR, some of which may be viewed as alternatives to
testing for serial correlation, and most of which are applicable to models
that incorporate a transformation for serial correlation, will be discussed in
Chapter 11. How the results of specification tests such as these should be
interpreted will be the topic of Chapter 12. All of the tests for serial correlation
and common factor restrictions that have been presented in this chapter can
best be understood in the context of the results to be presented there.

Terms and Concepts

AR(1), AR(2), AR(4), and AR(p)
processes

ARIMA(p, d, q) process
ARMA(p, q) process
autoregressive error process
autoregressive moving average process
back-and-forth search
Cochrane-Orcutt procedure
common factor restrictions
d statistic (DW statistic)
d4 statistic
Durbin’s alternative procedure
Durbin’s h test
full ML estimation
grid search
Hildreth-Lu procedure
independence (of error terms)
innovation

integrated time series
invertibility condition
lag operator
locally equivalent alternative
MA(1) and MA(q) processes
moving average error process
one-step estimates
Prais-Winsten transformation
residual autocorrelations
roots outside the unit circle
seasonal AR process
serial correlation
simple AR(4) process
stationarity condition
stationarity region
stationarity triangle for AR(2) process
time-series methods



Chapter 11

Tests Based on the

Gauss-Newton Regression

11.1 Introduction

In Section 6.4, we showed that the Gauss-Newton regression provides a simple
way to test restrictions on the parameters of a regression function whenever
root-n consistent parameter estimates that satisfy the restrictions are avail-
able. In most cases, these will be least squares estimates of the restricted
model. In Section 10.8, we showed that tests for virtually any type of serial
correlation may be performed by using appropriate variants of the GNR. In
this chapter, we discuss several additional tests based on the GNR that can
be highly useful in applied econometric work. These are:

(i) tests for the equality of two (or more) sets of regression parameters;

(ii) nonnested hypothesis tests, in which a regression model is tested against
the evidence provided by one or more nonnested alternative models;

(iii) tests based on comparing two sets of estimates, where generally one set
is consistent under weaker conditions than the other; and

(iv) tests for heteroskedasticity of known form.

In the final section of the chapter, we preview some very important mat-
erial that will be covered in more depth in Chapter 16. The Gauss-Newton
regression is valid only under the assumption that the error terms are homo-
skedastic, an assumption that is sometimes uncomfortably strong. In this
final section, we discuss an artificial regression which may be used for com-
puting test statistics in any circumstances in which the GNR may be so used,
and which has the remarkable property that the resulting test statistics are
asymptotically valid even when the error terms display heteroskedasticity of
unknown form. We introduce this artificial regression here because it is a logi-
cal extension of the Gauss-Newton regression and because it can be extremely
useful in practice.
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11.2 Tests for Equality of Two Parameter Vectors

A classic problem in econometrics is determining whether the coefficients of
a regression model (usually a linear one) are the same in two (or sometimes
more than two) separate subsamples. In the case of time-series data, the
subsamples would normally correspond to different time periods, and these
tests are then often referred to as tests for structural change. Sometimes we
may be interested in testing whether the coefficients are the same in two or
more different time periods simply as a way of testing whether the model is
specified correctly. In such cases, time-series data sets may be divided into
earlier and later periods in a fairly arbitrary way for purposes of testing.
This is legitimate, but such tests are more interesting when there is reason to
believe that the subsamples correspond to different economic environments,
such as different exchange-rate or policy regimes.1 In the case of cross-section
data, arbitrary division almost never makes sense; instead, the subsamples
might correspond to such potentially different groups of observations as large
firms and small firms, rich countries and poor countries, or men and women.
In these cases, the results of the test are often of interest for their own sake.
For example, a labor economist might be interested in testing whether the
earnings functions of men and women or of two different ethnic groups are
the same.2

The classic treatment of this problem has deep roots in the statistical
literature on the analysis of variance (Scheffé, 1959). An early and very influ-
ential paper in econometrics is G. C. Chow (1960), and as a result the standard
F test for the equality of two sets of coefficients in linear regression models
is commonly referred to by economists as the Chow test. Fisher (1970) pro-
vides a neater exposition of the classic Chow test procedure. Dufour (1982)
provides a more geometrical exposition and generalizes the test to handle any
number of subsamples, some of which may have fewer observations than there
are regressors.

The standard way of posing the problem is to partition the data into two
parts, the n--vector y of observations on the dependent variable being divided
into two vectors y1 and y2, of lengths n1 and n2, respectively, and the n× k
matrixX of observations on the regressors being divided into two matricesX1

and X2, of dimensions n1× k and n2× k, respectively. This partitioning may
of course require that the data be reordered. Thus the maintained hypothesis

1 When there is no reason to expect parameters to have changed at any particular
point in time, it may make sense to use a procedure that does not specify such
a point. Examples include the CUSUM and CUSUM of squares procedures of
Brown, Durbin, and Evans (1975).

2 An earnings function relates earnings to a number of right-hand side variables,
such as age, education, and experience. As examples of the use of F tests for
the equality of two sets of coefficients in this context, see Oaxaca (1973, 1974).



376 Tests Based on the Gauss-Newton Regression

may be written as[
y1
y2

]
=

[
X1 0

0 X2

][
β1

β2

]
+

[
u1

u2

]
, E(uu>) = σ2 I, (11.01)

where β1 and β2 are each k--vectors of parameters to be estimated. The null
hypothesis to be tested is that β1 = β2 = β. Under that null hypothesis,
equation (11.01) reduces to

y ≡
[
y1
y2

]
=

[
X1

X2

]
β +

[
u1

u2

]
≡Xβ + u, E(uu>) = σ2 I. (11.02)

When both n1 and n2 are greater than k, which is the usual case, it is
easy to construct a test of (11.01) against (11.02) by using the ordinary F
test that we first discussed in Section 3.5. The unrestricted sum of squared
residuals from estimation of (11.01) is

USSR = y1
>M1y1 + y2

>M2y2 = SSR1 + SSR2,

where Mi ≡ I −Xi

(
Xi
>Xi

)−1
Xi
> for i = 1, 2. Thus USSR is simply the sum

of the two sums of squared residuals from the regressions of y1 on X1 and y2
on X2, respectively. The restricted sum of squared residuals, from estimation
of (11.02), is

RSSR = y>MXy,

where MX ≡ I−X(X>X)−1X>. Thus the ordinary F statistic is(
y>MXy − y1>M1y1 − y2>M2y2

)
/k(

y1>M1y1 + y2>M2y2
)
/(n− 2k)

=
(RSSR− SSR1 − SSR2)/k

(SSR1 + SSR2)/(n− 2k)
. (11.03)

This test has k and n−2k degrees of freedom. There are k restrictions because
the restricted model has k parameters while the unrestricted model has 2k.

The test statistic (11.03) is what many applied econometricians think of
as the Chow test. There are three obvious limitations of this test. The first
limitation is that it is not applicable if min(n1, n2) < k, since then at least
one of the two subsample regressions cannot be computed. The original Chow
(1960) paper recognized this problem and derived an alternative test for this
case. Our treatment based on the GNR will make clear the relationship be-
tween the ordinary test (11.03) and the alternative test. The second limitation
is that (11.03) applies only to linear regression models. An obvious nonlinear
analog, which requires two additional nonlinear estimations (one for each of
the two subsamples), can of course be constructed. But our treatment based
on the GNR will provide a simpler way to handle the nonlinear case.
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The third limitation of (11.03) is that, like all conventional F tests, it is
generally valid only under the rather strong assumption that E(uu>) = σ2 I.
This assumption may be particularly implausible when one is testing the
equality of two sets of regression parameters, since if the parameter vector β
differs between two regimes, the variance σ2 may well be different as well.
A number of papers have addressed this issue, including Toyoda (1974), Jay-
atissa (1977), Schmidt and Sickles (1977), Watt (1979), Honda (1982), Phillips
and McCabe (1983), Ali and Silver (1985), Ohtani and Toyoda (1985), Toy-
oda and Ohtani (1986), Weerahandi (1987), Buse and Dastoor (1989), and
Thursby (1992). All of these papers are concerned with the case in which
the variance of the error terms is σ2

1 for the first regime and σ2
2 for the sec-

ond regime. An approach which is often simpler and is valid much more
generally is to use a test statistic that is robust to heteroskedasticity of un-
known form (MacKinnon, 1989). We will discuss an artificial regression that
yields such heteroskedasticity-robust test statistics for any case to which the
GNR is applicable in Section 11.6, below. It may often be wise to calcu-
late these heteroskedasticity-robust tests in addition to ordinary Chow tests
or tests based on the GNR, unless there is evidence that the assumption of
homoskedasticity is a reasonable one.

Let us now consider testing for structural change in a nonlinear regression
model. For simplicity, we will assume that the sample is to be divided into only
two groups of observations; extensions to the many-group case are obvious.
We first define a vector δ ≡ [δ1 · · · δn]>, letting δt = 0 if observation t belongs
to group 1 and δt = 1 if observation t belongs to group 2. Suppose that the
null hypothesis is

H0 : yt = xt(β) + ut, E(uu>) = σ2 I,

where, as usual, the functions xt(β) are assumed to satisfy the regularity
conditions given in Chapter 5. The alternative hypothesis may be written as

H1 : yt = xt
(
β1(1− δt) + β2δt

)
+ ut, E(uu>) = σ2 I.

Thus, when observation t belongs to group 1, so that δt = 0, the regression
function is xt(β1), while when observation t belongs to group 2, so that δt = 1,
the regression function is xt(β2).

The alternative hypothesis H1 can be rewritten as

yt = xt
(
β1 + (β2 − β1)δt

)
+ ut = xt(β1 + γδt) + ut,

where γ ≡ β2 − β1. This makes it clear that H0 is equivalent to the null
hypothesis that γ = 0. Since the latter null hypothesis is simply a set of
zero restrictions on the parameters of a nonlinear regression function, we can
clearly use a Gauss-Newton regression to test it. This GNR is

yt − xt(β̂) = Xt(β̂)b+ δtXt(β̂)c + residual, (11.04)
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where β̂ denotes the NLS estimates of β for the whole sample. The GNR
(11.04) may be written more compactly as

û = X̂b+ δ∗X̂c + residuals, (11.05)

where û has typical element yt − xt(β̂), and X̂ has typical element Xt(β̂).
Here ∗ denotes the direct product of two matrices. Since δtXti(β̂) is a typical
element of δ∗X̂, δt∗X̂t = X̂t when δt = 1 and δt∗X̂t = 0 when δt = 0. To
perform the test, we simply have to estimate the model using the entire sample
and regress the residuals from that estimation on the matrix of derivatives X̂
and on that matrix with the rows which correspond to group 1 observations
set to zero. We do not have to reorder the data. As usual, there are several
asymptotically valid test statistics, the best probably being the ordinary F
statistic for the null hypothesis that c = 0. In the usual case with k less than
min(n1, n2), that test statistic will have k degrees of freedom in the numerator
and n− 2k degrees of freedom in the denominator.

Notice that the sum of squared residuals from regression (11.05) is equal
to the SSR from the GNR

û = X̂b + residuals (11.06)

run over observations 1 to n1 plus the SSR from the same GNR run over
observations n1 + 1 to n. This is the unrestricted sum of squared residuals for
the F test of c = 0 in (11.05). The restricted sum of squared residuals for that
test is simply the SSR from (11.06) run over all n observations, which is the
same as the SSR from nonlinear estimation of the null hypothesis H0. Thus
the ordinary Chow test for the GNR (11.06) will be numerically identical to
the F test of c = 0 in (11.05). This provides the easiest way to calculate the
test statistic.

As we mentioned above, the ordinary Chow test (11.03) is not applicable
if min(n1, n2) < k. Using the GNR framework, it is easy to see why this is
so. Suppose that n2 < k and n1 > k, without loss of generality, since the
numbering of the two groups of observations is arbitrary. Then the matrix
δ∗X̂, which has k columns, will have n2 < k rows that are not just rows of
zeros and hence will have rank at most n2. Thus, when equation (11.05) is
estimated, at most n2 elements of c will be identifiable, and the residuals
corresponding to all observations that belong to group 2 will be zero. The
number of degrees of freedom for the numerator of the F statistic must there-
fore be at most n2. In fact, it will be equal to the rank of [X̂ δ∗X̂] minus the

rank of X̂, which might be less than n2 in some cases. The number of degrees
of freedom for the denominator will be the number of observations for which
(11.05) has nonzero residuals, which will normally be n1, minus the number of
regressors that affect those observations, which will be k, for a total of n1−k.
Thus we can use the GNR whether or not min(n1, n2) < k, provided that
we use the appropriate numbers of degrees of freedom for the numerator and
denominator of the F test.
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It should be clear that when xt(β) = Xtβ and min(n1, n2) > k, the F test
based on the GNR (11.05) is numerically identical to the Chow test (11.03).
This follows from the fact that the sum of squared residuals from (11.05) will
then be equal to SSR1 + SSR2, the sum of the SSRs from estimating the
regression separately over the two groups of observations. It may be a good
exercise to demonstrate that when xt(β) = Xtβ and min(n1, n2) < k, Chow’s
(1960) “alternative” test is also numerically identical to the corresponding test
based on the GNR (which will in regular cases have n2 and n1 − k degrees of
freedom).

In some cases, it may be of interest to test whether a subset of the
parameters of a model, rather than all of the parameters, are the same over
two subsamples. It is very easy to modify the tests already discussed to deal
with this case. The null and alternative hypotheses can now be written as

H0 : yt = xt(α,β) + ut, E(uu>) = σ2 I, and (11.07)

H1 : yt = xt
(
α, β1(1− δt) + β2δt

)
+ ut, E(uu>) = σ2 I,

where α is an l--vector of parameters that are assumed to be the same over the
two subsamples, and β is an m--vector of parameters the constancy of which
is to be tested. The GNR is easily seen to be

û = X̂αa+ X̂βb+ δ∗X̂βc + residuals,

where X̂α is an n × l matrix with typical element ∂xt(α,β)/∂αi, evaluated
at the estimates from (11.07), (α̂, β̂), and X̂β is an n×m matrix with typical
element ∂xt(α,β)/∂βj , also evaluated at (α̂, β̂). Provided that m is less than
min(n1, n2), the test statistic will have m and n− l− 2m degrees of freedom.
Even when xt(α,β) is linear, it is not now possible to compute a test in quite
the same way as the classic Chow test (11.03). Because the parameter vector
α is assumed to be the same for both subsamples, one cannot obtain the
unrestricted SSR by estimation over the two subsamples separately.

The preceding discussion has been entirely in the context of least squares
estimation. When instrumental variables estimation is used, there is a slight
complication concerning the choice of instruments to be used in estimating the
null and alternative models. From the results of Section 7.7, the IV equivalent
of (11.05) is seen to be

ũ = PWX̃b+ PW δ∗X̃c + residuals, (11.08)

where ũ and X̃ are evaluated at (generalized) IV estimates β̃ under the null
hypothesis. As usual, there are several available test statistics.

Regression (11.08) seems straightforward enough, but there is a problem.
If we simply use the same matrix of instruments W that was used to estimate
the model originally, it is quite possible that the matrix [PWX̃ PW δ ∗X̃]
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will fail to have full rank. For estimation of the restricted model, W must
have at least k columns, while for running regression (11.08) it must have at
least 2k. If W has fewer than 2k columns, the test statistic will have fewer
than k degrees of freedom and will actually be testing against a less general
alternative than H1. The obvious solution is effectively to double the number
of instruments by using the matrix

W ∗ ≡
[
W1 0

0 W2

]
(11.09)

in place of W in the GNR (11.08). This allows the relationships between the
endogenous regressors and the instruments to differ in the two parts of the
sample, which seems quite reasonable. If one wants to use an LM test, that
is, a test based on the explained sum of squares from regression (11.08), one
must be careful to use W ∗ when one estimates the restricted model as well.
However, as we discussed in Section 7.7, that is not necessary if one uses a
C(α) test, that is, a pseudo-F test for c = 0 in regression (11.08).

It is perhaps worth spelling out just how one should proceed if one wishes
to test H0 against H1 when using IV estimation:

(i) Estimate the model H0 using a suitable matrixW consisting of at least k,
and preferably more than k, instruments, including all exogenous and
predetermined variables in the regression function.

(ii) Create a new instrument matrix W ∗ as in (11.09). Then, to obtain the
restricted SSR, run the GNR

ũ = PW∗X̃b + residuals

over the entire sample, where ũ and X̃ are evaluated at the IV estimates
found in stage (i).

(iii) To obtain the unrestricted SSR, run the GNR

ũj = PWj
X̃jb + residuals

over each of the two subsamples separately and sum the two sums of
squared residuals. Here ũj , Wj , and X̃j denote the subvectors or sub-
matrices of ũ, W, and X̃ corresponding to the two subsamples.

(iv) Compute a C(α), or pseudo-F, test statistic based on the regression re-
sults obtained in (ii) and (iii), as described in Section 7.7.

An alternative procedure, which would be considerably more difficult in
the nonlinear case, would be to estimate both the restricted and unrestricted
models, using W ∗ for the instruments in both cases. For the unrestricted
model, this would mean doing IV estimation for each part of the sample
separately, usingWj as instruments for subsample j. Then one could calculate
any of the test statistics based on restricted and unrestricted estimates that
were discussed in Section 7.7.
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The literature on tests for structural change is very large, much larger
than we can possibly deal with in this section. A number of recent contribu-
tions to the area, along with a useful bibliography, may be found in Krämer
(1989).

11.3 Testing Nonnested Regression Models

All the tests that we have considered so far involve nested models. This simply
means that the model being tested, the null hypothesis, is a special case of the
alternative model against which it is being tested. For example, a regression
model with serially independent errors is a special case of an alternative model
with AR(1) errors, and a model with coefficients that are constant over the
entire sample is a special case of an alternative model with coefficients that
differ in two subsamples. Although nested alternatives like these occur very
frequently, there are also many situations in which two or more competing
models are not nested. The literature on nonnested hypothesis testing has
made it possible to handle such cases within the framework of the Gauss-
Newton regression.

Although our treatment is in terms of artificial regressions, much of the
earlier literature on nonnested hypothesis testing is not. The classic refer-
ences are two papers by Cox (1961, 1962) and two papers by Atkinson (1969,
1970). Cox’s basic ideas were adapted to linear regression models by Pesaran
(1974) and to nonlinear regression models by Pesaran and Deaton (1978). The
artificial regression approach is due to Davidson and MacKinnon (1981a).

Suppose that two different economic theories (or two different implemen-
tations of what is basically the same theoretical model), both of which purport
to explain the same dependent variable, yield the two nonlinear regression
models:

H1 : y = x(β) + u1, E(u1u1
>) = σ2

1 I, and

H2 : y = z(γ) + u2, E(u2u2
>) = σ2

2 I,

where β and γ are vectors of lengths k1 and k2, respectively. These models
are said to be nonnested if it is in general impossible to find restrictions
on β such that, for arbitrary γ, x(β) equals z(γ), and impossible to find
restrictions on γ such that, for arbitrary β, z(γ) equals x(β). Thus there
must not exist a mapping, say g, defined on the whole parameter space on
which γ is defined, such that z(γ) = x

(
g(γ)

)
identically in γ. Similarly, there

must be no mapping h such that x(β) = z
(
h(β)

)
identically in β.

In the case of linear regression models, what is required is that each of
the two regression functions contain at least one regressor that is not in the
other. For example, the following two regression functions are nonnested:

xt(β) = β0 + β1Xt1 + β2Xt2 and (11.10)

zt(γ) = γ0 + γ1Xt1 + γ3Xt3. (11.11)
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However, if Xt2 were added to (11.11) to yield the new regression function

z∗t (γ) = γ0 + γ1Xt1 + γ2Xt2 + γ3Xt3, (11.12)

(11.10) would then be nested within (11.12), since by setting γ3 to zero we
could make (11.12) equivalent to (11.10).

The easiest nonnested tests to perform are those based on artificial nest-
ing. The basic idea is to embed both of the two competing regression func-
tions in a more general one and then to test one or both of the original models
against it. Consider the artificial compound model

HC : y = (1− α)x(β) + αz(γ) + u, (11.13)

where α is a parameter that has been introduced so as to nest H1 and H2

within HC ; when α = 0, HC collapses to H1, and when α = 1, HC collapses
to H2. The problem is that, in most cases, the artificial model (11.13) will not
be estimable, because the parameters α, β, and γ will not all be separately
identifiable. For example, in the case of (11.10) and (11.11), HC will have
seven parameters in total (3 βi’s, 3 γi’s, and α) but only four parameters
that can actually be identified and estimated (a constant term and the three
coefficients on X1, X2, and X3).

One solution to this problem, originally suggested in Davidson and Mac-
Kinnon (1981a), is to replaceHC by a model in which the unknown parameters
of the model that is not being tested are replaced by estimates of those para-
meters that would be consistent if the DGP actually belonged to the model for
which they are defined. Suppose it is H1 that we wish to test. Then the idea
is to replace γ in (11.13) by something that estimates it consistently under
H2. There are many ways to do so, since there are many ways to estimate γ
consistently, but the simplest and asymptotically most attractive solution is
to replace γ by γ̂, the NLS estimate of γ. Thus HC becomes

H ′C : y = (1− α)x(β) + αẑ + u, (11.14)

where ẑ ≡ z(γ̂). The new compound model H ′C has only k1 +1 parameters to
estimate, one more than H1. Provided that H1 and H2 really are nonnested
and H1 is asymptotically identified, both α and β must be asymptotically
identifiable. One can then test H1 by testing the null hypothesis that α = 0,
using any standard test. Two possibilities for such a test were suggested in
Davidson and MacKinnon (1981a). The J test uses the t statistic for α = 0
from nonlinear estimation of (11.14). It was called the J test because α and β
are estimated jointly. Since that may be hard to do when x(β) is nonlinear, an
alternative procedure was suggested, called the P test. It uses the t statistic
for a = 0 from the Gauss-Newton regression

y − x̂ = X̂b+ a(ẑ − x̂) + residuals, (11.15)
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where x̂ ≡ x(β̂) and X̂ ≡X(β̂), X(β) denoting the n× k1 matrix of deriva-
tives of x(β) with respect to β and β̂ denoting the NLS estimate of β under
H1. The test regressor ẑ− x̂ is obtained, as usual, by partially differentiating
the regression function for model H ′C with respect to α and evaluating it at
α = 0, β = β̂.3

In view of the general results on Gauss-Newton regressions of Chapter 6,
it is obvious that the J and P tests are asymptotically equivalent under H1.
Thus, if one of these tests is asymptotically valid, both of them must be.
However, it is not immediately obvious that either test is in fact valid, since ẑ,
which depends on y, appears on the right-hand side of (11.14). The intuition
behind this result is nevertheless very simple. Provided that, under H1, the
vector γ̂ converges asymptotically to some constant vector, say γ1, then the
vector ẑ ≡ z(γ̂) must likewise converge to a vector z(γ1). It is therefore
asymptotically valid to treat the vector ẑ as if it were a vector of observations
on a predetermined variable.

When x(β) = Xβ, the model under test is linear. In this case, the J-test
regression (11.14) must yield exactly the same result as the P -test regression
(11.15). Because x̂ = Xβ̂, it is clear that S(X, ẑ) is exactly the same as
S(X, ẑ − x̂). Thus both regressions must have the same explanatory power
and hence must yield identical test statistics.

It is just as valid to test H2 against HC as to test H1 against HC , and
the artificial regression for doing so is essentially the same as before, but with
the roles of H1 and H2 reversed. Thus the J-test regression equivalent to
(11.14) is

y = (1− φ)z(γ) + φx̂+ u,

and the P -test regression equivalent to (11.15) is

y − ẑ = Ẑc+ p(x̂− ẑ) + residuals.

Note that it would not be valid to use either (11.14) or (11.15) to test H2.

When one does a pair of nonnested tests, there are four possible outcomes,
since each of H1 and H2 may or may not be rejected. If, say, H1 is rejected
and H2 is not, then it seems reasonable to pick H2 as the preferred model.
But it is quite possible that both models, or neither model, may be rejected.
When both are rejected, we must conclude that neither model is satisfactory,
a result that may not be welcome but that will perhaps spur us to develop
better models. When neither is rejected, we must conclude that both models
apparently fit the data about equally well and that neither provides evidence
that the other is misspecified. Presumably, either the two models are very
similar, or the data set is not very informative. The fact that a pair of
nonnested tests often does not in general allow us to choose one model rather

3 Note that the P test could also be used in cases in which root-n consistent
estimates of β and γ were available but least squares estimates were not. This
is a simple application of the results in Section 6.7.
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than the other may be seen as a deficiency of these tests. That is so only if
one misinterprets their nature. Nonnested hypothesis tests are specification
tests, and since there is almost never any reason a priori to believe that either
of the models actually generated the data, it is appropriate that nonnested
tests, like other model specification tests, may well tell us that neither model
seems to be compatible with the data.

It is important to stress that the purpose of nonnested tests is not to
choose one out of a fixed set of models as the “best” one. That is the subject
of an entirely different strand of the econometric literature, which deals with
criteria for model selection. We will not discuss the rather large literature on
model selection in this book. Two useful surveys are Amemiya (1980) and
Leamer (1983), and an interesting recent paper is Pollak and Wales (1991).

It is of interest to examine more closely the case in which both models
are linear, that is, x(β) = Xβ and z(γ) = Zγ. This will allow us to see why
the J and P tests (which in this case are identical) are asymptotically valid
and also to see why these tests may not always perform well in finite samples.
The J-test regression for testing H1 against H2 is

y = Xb+ αPZy + residuals, (11.16)

where PZ = Z(Z>Z)−1Z> and b = (1 − α)β. Using the FWL Theorem, we
see that the estimate of α from (11.16) will be the same as the estimate from
the regression

MXy = αMXPZy + residuals. (11.17)

Thus, if ś denotes the OLS estimate of σ from (11.16), the t statistic for α = 0
will be

y>PZMXy

ś(y>PZMXPZy)1/2
. (11.18)

First of all, notice that when only one column of Z, say Z1, does not
belong to S(X), it must be the case that

S(X,PZy) = S(X,Z) = S(X,Z1).

Therefore, the J-test regression (11.16) must yield exactly the same SSR as
the regression

y = Xb+ δZ1 + residuals. (11.19)

Thus, in this special case, the J test is equal in absolute value to the t statistic
on the estimate of δ from (11.19).

When two or more columns of Z do not belong to S(X), this special
result is no longer available. If the data were actually generated by H1, we
can replace y in the numerator of (11.18) by Xβ+u. Since MXXβ = 0, that
numerator becomes

β>X>PZMXu+ u>PZMXu. (11.20)
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The two terms of (11.20) are of different orders. The first term is a weighted
sum of the elements of the vector u, each of which has mean zero. Thus,
under suitable regularity conditions, it is easy to see that

n−1/2β>X>PZMXu
a∼ N

(
0, plim

n→∞

(
n−1σ2

1β
>X>PZMXPZXβ

))
.

This first term is thus O(n1/2). The second term, in contrast, is O(1), since

plim
n→∞

(
u>PZMXu

)
= plim

n→∞

(
u>PZu− u>PZPXu

)
= σ2

1k2 − σ2
1 lim
n→∞

(
Tr(PZPX)

)
,

and the trace of PZPX is O(1). Thus, asymptotically, it is only the first term
in (11.20) that matters.

Similarly, under H1 the factor in parentheses in the denominator of
(11.18) is equal to

β>X>PZMXPZXβ + 2β>X>PZMXPZu+ u>PZMXPZu. (11.21)

By arguments similar to those used in connection with the numerator, the
first of the three terms in (11.21) may be shown to be O(n), the second
O(n1/2), and the third O(1). Moreover, it is clear that ś → σ1 under H1.
Thus, asymptotically under H1, the test statistic (11.18) tends to the random
variable

β>X>PZMXu

σ1
(
β>X>PZMXPZXβ

)1/2 ,
which can be shown to be distributed asymptotically as N(0, 1).

This analysis not only makes it clear why the J and P tests are valid
asymptotically but also indicates why they may not be well behaved in finite
samples. When the sample size is small or Z contains many regressors that
are not in S(X), the quantity u>PZMXu, which is asymptotically negligible,
may actually be large and positive. Hence, in such circumstances, the J-test
statistic (11.18) may have a mean that is substantially greater than zero.

Several ways of reducing or eliminating this bias have been suggested.
The simplest, which was first proposed by Fisher and McAleer (1981) and
further studied by Godfrey (1983), is to replace γ̂ in the J-test and P -test
regressions by γ̃, which is the estimate of γ obtained by minimizing(

x̂− z(γ)
)>(x̂− z(γ)

)
.

Thus γ̃ is the NLS estimate of γ obtained when one uses the fitted values x̂
instead of the dependent variable y. In the linear case, this means that the
J-test regression (11.16) is replaced by the regression

y = Xb+ αPZPXy + residuals. (11.22)



386 Tests Based on the Gauss-Newton Regression

This regression yields what is called the JA test because Fisher and McAleer
attributed the basic idea to Atkinson (1970). Godfrey (1983) showed, using
a result of Milliken and Graybill (1970), that the t statistic on the estimate
of α from regression (11.22) actually has the t distribution in finite samples
under the usual conditions for t statistics to have this distribution (u normally
distributed, X and Z independent of u). The intuition for this result is quite
simple. The vector of fitted values PXy contains only the part of y that
lies in S(X). It must therefore be independent of MXy, which is what the
residuals from (11.22) would be if α = 0. Therefore, we can treat PZPXy (or
any other regressor that depends on y only through PXy) as if it were a fixed
regressor.4 The PA test is to the P test as the JA test is to the J test.

Unfortunately, the JA and PA tests are in many circumstances much less
powerful than the ordinary J and P tests; see Davidson and MacKinnon
(1982) and Godfrey and Pesaran (1983). Thus if, for example, the J test
rejects the null hypothesis and the JA test does not, it is hard to know whether
this is because the former is excessively prone to commit a Type I error or
because the latter is excessively prone to commit a Type II error.

A second approach is to estimate the expectation of u>MXPZu, subtract
it from y>MXPZy, and then divide it by an estimate of the square root of the
variance of the resulting quantity so as to obtain a test statistic that would be
asymptotically N(0, 1). This approach was originally proposed in a somewhat
more complicated form by Godfrey and Pesaran (1983); a simpler version may
be found in the “Reply” of MacKinnon (1983). This second approach is a good
deal harder to use than the JA test, since it involves matrix calculations that
cannot be performed by a sequence of regressions, and it does not yield an
exact test. It also requires the assumption of normality. However, it does
seem to yield a test with much better finite-sample properties under the null
than the J test and, at least in some circumstances, much better power than
the JA test.

The vector γ̃ is of interest in its own right. The original Cox test used
the fact that, under H1,

plim
n→∞

(
γ̃
)

= plim
n→∞

(
γ̂
)
.

It is possible to construct a test based directly on the difference between
γ̂ and γ̃. Such a test, originally proposed by Dastoor (1983) and developed
further by Mizon and Richard (1986), looks at whether the value of γ predicted
by the H1 model (i.e., γ̃) is the same as the value obtained by direct estimation
of H2 (i.e., γ̂). These tests are called encompassing tests, because if H1

does explain the performance of H2, it may be said to “encompass” it; see
Mizon (1984). The principle on which they are based is sometimes called the
encompassing principle.

4 By the same argument, the RESET test discussed in Section 6.5 is exact in
finite samples whenever an ordinary t test would be exact.
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There are some practical difficulties with encompassing tests for nonlinear
regression models, and we will therefore not discuss such tests in this book. In
the linear case, however, the encompassing test is both simple and attractive.
When both models are linear, the two estimates of γ are

γ̂ =
(
Z>Z

)−1
Z>y and

γ̃ =
(
Z>Z

)−1
Z>PXy.

The difference between them is therefore(
Z>Z

)−1
Z>y −

(
Z>Z

)−1
Z>PXy =

(
Z>Z

)−1
Z>MXy. (11.23)

The factor (Z>Z)−1 is clearly irrelevant to any test statistic we may construct.
The vector Z>MXy will in general contain some elements that are identically
zero, one for every column of Z that lies in S(X). Let Z∗ denote the matrix
made up of the remaining columns of Z. Then it should be clear from (11.23)
that what we really want to test is whether the vector Z∗>MXy, which under
H1 must equal Z∗>MXu and should therefore have mean zero, does in fact
do so.5 Constructing a χ2 test statistic as a quadratic form in this vector, we
find that any statistic asymptotically equivalent to

1

σ2
1

u>MXZ
∗(Z∗>MXZ

∗)−1Z∗>MXu

will do the job. But this test statistic is evidently equivalent to an ordinary
F test for γ∗ = 0 in the linear regression

y = Xβ +Z∗γ∗ + u. (11.24)

Thus it turns out that, in this case, the encompassing test is no more than an
ordinary F test of H1 against the alternative hypothesis (11.24). Such a test
is easy to perform and will be exact under the usual conditions.

The relative merits of one-degree-of-freedom tests like the J test and
many-degree-of-freedom tests like the encompassing test have been much dis-
cussed in the literature; see Pesaran (1982) and the survey paper by MacKin-
non (1983), especially the comments of several discussants. The J test and
tests equivalent to it will be more powerful than many-degree-of-freedom tests
when the data were actually generated by H2 but may be less powerful when
the data were generated in some other way. Why this is so should become
clear when, in Chapter 12, we discuss what determines the power of a test.

In the remainder of this section, we briefly discuss two special cases. The
first is regression models with serially correlated errors. Even if a regression
model is initially linear, transforming it to take into account an AR(1) or some
other error process turns it into a nonlinear model, as we saw in Chapter 10.

5 If X or Z includes lagged dependent variables, then we are interested in the

asymptotic mean of n−1/2Z∗>MXy rather than the actual mean of Z∗>MXy.
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Suppose then that the two competing models are

H1 : yt = Xtβ + u1t, u1t = ρ1u1,t−1 + ε1t, and

H2 : yt = Ztγ + u2t, u2t = ρ2u2,t−1 + ε2t.

The simplest approach is to transform these into the two nonlinear regression
models

H1 : yt = ρ1yt−1 +
(
Xt − ρ1Xt−1

)
β + ε1t and

H2 : yt = ρ2yt−1 +
(
Zt − ρ2Zt−1

)
γ + ε2t,

for observations 2 through n. One can then use the P or PA tests to test H1

against H2, or vice versa, in the usual way.

Note that to obtain the estimates (γ̃, ρ̃2) needed to test H1 against H2

using the PA test, one must run the nonlinear regression

ρ̂1yt−1 +
(
Xt − ρ̂1Xt−1

)
β̂ = ρ2yt−1 +

(
Zt − ρ2Zt−1

)
γ + ε2t. (11.25)

This would have to be done using a general routine for NLS estimation,
since routines that implement the Cochrane-Orcutt or Hildreth-Lu procedures
would use ρ̂1yt−1+

(
Xt− ρ̂1Xt−1

)
β̂ lagged once rather than yt−1 on the right-

hand side of (11.25). Several procedures for nonnested testing of models with
serial correlation are discussed and compared using Monte Carlo experiments
in Bernanke, Bohn, and Reiss (1988) and McAleer, Pesaran, and Bera (1990).

A second special case of interest is regression models estimated by instru-
mental variables. Ericsson (1983) and Godfrey (1983) discuss various ways to
handle this case. The easiest approach, suggested by MacKinnon, White, and
Davidson (1983), is simply to modify the J and P tests so that they are valid
in this case. The P -test regression (11.15) becomes

y − x̂ = PWX̂b+ aPW (ẑ − x̂) + residuals, (11.26)

where now x̂, X̂, and ẑ are evaluated at IV estimates β̂ and γ̂. The easiest way
to obtain a test statistic is simply to regress y−x̂ on X̂ and ẑ−x̂ using an IV
procedure with W as the matrix of instruments. The pseudo-t statistic on
the estimate of a will then be an asymptotically valid test statistic, provided
that W is the set of instruments used to obtain IV estimates of H1 and that
the usual regularity conditions for nonlinear IV estimation are satisfied (see
Section 7.6).

This completes our discussion of nonnested hypothesis tests for regres-
sion models. Obviously, we have not discussed by any means every aspect
of this problem. Two papers that deal with aspects we have not discussed
are MacKinnon, White, and Davidson (1983), who adapt the J and P tests
to models involving different transformations of the dependent variable, and
Davidson and MacKinnon (1983b), who adapt them to multivariate nonlinear
regression models (see Chapter 9). The surveys by MacKinnon (1983) and
McAleer (1987) provide many additional references.
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11.4 Tests Based on Comparing Two Sets of Estimates

In Section 7.9, we introduced a class of tests, which we called Durbin-Wu-
Hausman, or DWH, tests, that can be used to see whether least squares
estimates are consistent when some of the regressors may be correlated with
the error terms. These tests were developed by Durbin (1954), Wu (1973),
and Hausman (1978). There has been a good deal of work on DWH tests in
recent years; see the survey paper by Ruud (1984). In this section, we show
that DWH tests can be useful in a variety of circumstances unrelated to IV
estimation, although still in the context of regression models.

The basic idea of DWH tests is to base a test on a vector of contrasts,
that is, the difference between two sets of estimates, one of which will be
consistent under weaker conditions than the other. Suppose, for simplicity,
that the model to be tested is

y = Xβ + u, u ∼ IID(0, σ2I), (11.27)

where there are n observations and k regressors. In this context, the DWH
principle of testing suggests that we should compare the OLS estimator

β̂ =
(
X>X

)−1
X>y (11.28)

with some other linear estimator

β̌ =
(
X>AX

)−1
X>Ay, (11.29)

where A is a symmetric n × n matrix assumed for simplicity to have rank
no less than k (otherwise, not all elements of β̌ could be estimated, and we
would be able to compare only the estimable part of β̌ with the corresponding
subvector of β̂; see the discussion of differencing specification tests below). In
the case we studied in Section 7.9, β̌ is the IV estimator

β̃ ≡
(
X>PWX

)−1
X>PWy.

Thus, in this case, the matrix A is PW, the matrix that projects orthogonally
onto S(W ), where W is a matrix of instruments.

If the data were actually generated by the model (11.27), with β = β0,
the two estimates (11.28) and (11.29) would have the same probability limit.
To see this, observe that

plim
n→∞

β̌ = plim
n→∞

(
1−
n
X>AX

)−1(
plim
n→∞

(
1−
n
X>AX

)
β0 + plim

n→∞

(
1−
n
X>Au

))
,

which equals β0 provided that plim
(
n−1X>Au

)
= 0. Thus, if β̌ and β̂ differ

by more than can reasonably be attributed to random variation, we may
conclude that the data were not generated by the model (11.27).
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For a regression model like (11.27), it is easy to compute a DWH test by
means of an artificial regression. We saw some examples of this in Section 7.9
and will discuss further examples below. However, there is another way to
compute DWH tests, and it can be more convenient in some cases. For some
model that need not necessarily be a regression model, let θ̂ denote an efficient
estimator of the model parameters and θ̌ an estimator that is less efficient but
consistent under weaker conditions than those of the model. Let us denote
the vector of contrasts between θ̌ and θ̂ by e. Then we have seen that

n1/2(θ̌ − θ0)
a
= n1/2(θ̂ − θ0) + n1/2e, (11.30)

where n1/2e is asymptotically uncorrelated with n1/2(θ̂−θ0). This result was
proved for models estimated by maximum likelihood in Section 8.8; its finite-
sample equivalent for linear regression models was proved as part of the proof
of the Gauss-Markov Theorem in Section 5.5. Because the two terms on the
right-hand side of (11.30) are asymptotically uncorrelated, the asymptotic
covariance matrix of the left-hand side is just the sum of the asymptotic
covariance matrices of those two terms. Therefore, we obtain

lim
n→∞

V
(
n1/2(θ̌ − θ0)

)
= lim

n→∞
V
(
n1/2(θ̂ − θ0)

)
+ lim

n→∞
V (n1/2e),

from which, in simplified notation, we may deduce the asymptotic covariance
matrix of the vector of contrasts:

V ∞(θ̌ − θ̂) = V ∞(θ̌)− V ∞(θ̂). (11.31)

In words, the asymptotic covariance matrix of the difference between θ̌ and θ̂
is equal to the difference of their respective asymptotic covariance matrices.
This important result is due to Hausman (1978).

The result (11.31) can be used to construct DWH tests of the form

(θ̌ − θ̂)>
(
V̌ (θ̌)− V̂ (θ̂)

)−1
(θ̌ − θ̂), (11.32)

where V̌ (θ̌) and V̂ (θ̂) denote estimates of the covariance matrices of θ̌ and θ̂,
respectively. The test statistic (11.32) will be asymptotically distributed as
chi-squared with as many degrees of freedom as the rank of V ∞(θ̌)− V ∞(θ̂).
Note that the inverse in (11.32) will have to be replaced by a generalized
inverse if, as is often the case, the rank of V ∞(θ̌)− V ∞(θ̂) is less than the
number of parameters in θ; see Hausman and Taylor (1982). There can be
practical difficulties with (11.32) if V̌ (θ̌)− V̂ (θ̂) is not positive semidefinite
or if the rank of V̌ (θ̌)− V̂ (θ̂) differs from the rank of V ∞(θ̌)− V ∞(θ̂). That
is why we emphasize the approach based on artificial regressions.

In the case of the linear regression (11.27), where the two estimators are
(11.28) and (11.29), the DWH test is based on the vector of contrasts

β̌ − β̂ =
(
X>AX

)−1
X>AMXy. (11.33)
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This looks just like expression (7.59), with A replacing PW , and may be
derived in exactly the same way. The first factor in (11.33), (X>AX)−1, is
simply a k × k matrix with full rank, which will have no effect on any test
statistic that we might compute. Therefore, what we really want to do is test
whether the vector

n−1/2X>AMXy (11.34)

has mean zero asymptotically. This vector has k elements, but even ifAX has
full rank, not all those elements may be random variables, because MX may
annihilate some columns of AX. Suppose that k∗ is the number of linearly
independent columns of AX that are not annihilated by MX. Then testing
(11.34) is equivalent to testing whether the vector

n−1/2X∗>AMXy (11.35)

has mean zero asymptotically, where X∗ denotes k∗ columns of X with the
property that none of the columns of AX∗ is annihilated by MX.

Now consider the artificial regression

y = Xβ +AX∗δ + residuals. (11.36)

It is easily shown by using the FWL Theorem that the OLS estimate of δ is

δ́ =
(
X∗>AMXAX

∗)−1X∗>AMXy,

and it is evident that, in general, plim(δ́) = 0 if and only if (11.35) has mean
zero asymptotically. The ordinary F statistic for δ = 0 in (11.36) is

y>PMXAX∗y/k∗

y>MX,MXAX∗y/(n− k − k∗)
, (11.37)

where PMXAX∗ is the matrix that projects onto S(MXAX
∗), and MX,MXAX∗

is the matrix that projects onto S⊥(X,MXAX
∗). If (11.27) actually gen-

erated the data, the statistic (11.37) will certainly be valid asymptotically,
since the denominator will then consistently estimate σ2. It will be exactly
distributed as F (k∗, n− k− k∗) in finite samples if the ut’s in (11.27) are nor-
mally distributed and X and A can be treated as fixed. Regression (11.36)
and expression (11.37) are essentially the same as regression (7.62) and ex-
pression (7.64), respectively; the latter are special cases of the former.

The most common type of DWH test is the one we dealt with in Sec-
tion 7.9, which asks whether least squares estimates are consistent when some
of the regressors may be correlated with the error terms. However, there are
numerous other possibilities. For example, β̌ might be the OLS estimator for
β in the model

y = Xβ +Zγ + u, (11.38)
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where Z is an n× l matrix of regressors not in the span of the columns of X.
Using the FWL Theorem, we see that

β̌ =
(
X>MZX

)−1
X>MZy,

from which it is clear that MZ is playing the role of A. This form of the DWH
test is thus asking whether the estimates β̌ when Z is included in the model
are significantly different from the estimates β̂ when Z is excluded from the
model. This is a simple example of the case examined, in a much more general
context, by Holly (1982). It turns out that this version of the DWH test is
equivalent to an ordinary F test for γ = 0, provided that k ≥ l and a certain
matrix has full rank, and not equivalent otherwise. This may be seen from
regression (11.36), which in this case is

y = Xβ +MZXδ + residuals (11.39)

= X(β + δ)− PZXδ + residuals. (11.40)

It is evident from (11.40) that whenever the matrix Z>X has rank l, regression
(11.39) will have exactly the same explanatory power as regression (11.38),
since X and PZX = Z(Z>Z)−1Z>X will jointly span the same subspace
as X and Z. The F test for δ = 0 in (11.39) will thus be identical to the
F test for γ = 0 in (11.38), which is Holly’s result specialized to the linear
regression case. A necessary but not sufficient condition for Z>X to have
rank l is that k ≥ l. For more on the relationship between DWH tests and
classical hypothesis tests, see Holly and Monfort (1986) and Davidson and
MacKinnon (1989).

There is an interesting relationship between the “exogeneity” variant of
the DWH test and the “omitted-variables” variant. In the former, A = PW

and PWX
∗ consists of all the columns of PWX that do not lie in the span of

X. Thus the test regression is

y = Xβ + PWX
∗δ + residuals. (11.41)

In the latter, MZX
∗ = MZX, provided the matrix [X Z] has full rank.

Now suppose that we expand Z so that it equals W, which means that it
includes at least as many variables as X, including some variables that are in
the span of X. Evidently, X∗ will then consist of those columns of X that
are not in the span of W, and the test regression will be

y = Xβ +MWX
∗δ + residuals. (11.42)

Because the matrices [X PWX] and [X MWX] span the same subspace,
regressions (11.41) and (11.42) will have exactly the same explanatory power.
This means that the test which is interpreted as a test for consistency despite
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possible endogeneity and the test which is interpreted as a test for the consis-
tency of parameter estimates when certain variables have been omitted are in
fact exactly the same test. Ruud (1984) provides a fuller discussion.

The final example of DWH tests that we will discuss is the differencing
specification test, which was proposed in Plosser, Schwert, and White (1982).
The basic idea of this test is to compare estimates in levels and estimates
in first differences as a test of specification. Our treatment follows that of
Davidson, Godfrey, and MacKinnon (1985), which shows how to calculate
the test by means of an artificial regression.

As usual, the OLS levels estimate is β̂ = (X>X)−1X>y. The OLS esti-
mate using first-differenced data is

β̌ =
(
Ẋ>Ẋ

)−1
Ẋ>ẏ,

where ẏ and Ẋ denote the vector and matrix with typical rows ẏt = yt−yt−1
and Ẋt = Xt −Xt−1, respectively. For the moment, we will ignore the fact
that if X includes a constant term, Ẋ will include a column of zeros. We will
also ignore the fact that Ẋ1 and ẏ1 may not be computable without making
arbitrary assumptions if X0 and y0 are not available.

The crucial result that makes it possible to calculate the differencing test
by means of an artificial regression is that, if Ẍ denotes the matrix with
typical row Xt+1 − 2Xt +Xt−1 (i.e., the matrix of second differences of X,
led one period), then

β̌
a
=
(
−Ẍ>X

)−1(−Ẍ>y) =
(
Ẍ>X

)−1
Ẍ>y. (11.43)

To prove this, consider typical elements of the matrices that appear in (11.43).
Let r denote any column of X and s denote the same or another column of X,
or possibly y. Hence any element of Ẋ>Ẋ, or any element of Ẋ>ẏ, can be
written as ṙ>ṡ, while any element of Ẍ>X, or any element of Ẍ>y, can be
written as r̈>s. We wish to show that ṙ>ṡ

a
= −r̈>s. By definition,

ṙ>ṡ =
n∑

t=1

(
rt − rt−1

)(
st − st−1

)
=

n∑
t=1

(
rtst + rt−1st−1 − rtst−1 − rt−1st

)
.

(11.44)

Similarly,

− r̈>s = −
n∑

t=1

(
rt+1 − 2rt + rt−1

)
st

=
n∑

t=1

(
2rtst − rt+1st − rt−1st

)
.

(11.45)
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Subtracting (11.45) from (11.44), we obtain

r0s0 − rnsn − r1s0 + rn+1sn.

This expression is evidently O(1), while quantities like Ẋ>Ẋ and Ẍ>X are
O(n). Any difference between ṙ>ṡ and −r̈>s must therefore be asymptotically
negligible, which proves the result (11.43).6

Using this result and the fact that y = PXy +MXy = Xβ̂ +MXy, we
see that

β̌ − β̂ a
=
(
Ẍ>X

)−1
Ẍ>y −

(
X>X

)−1
X>y

=
(
Ẍ>X

)−1
Ẍ>(Xβ̂ +MXy)− β̂

=
(
Ẍ>X

)−1
Ẍ>MXy.

Thus the differencing specification test is really a test of the hypothesis that
the vector n−1/2Ẍ>MXy has mean zero asymptotically. By an argument
similar to the one that led to the artificial regression (11.36), it is easy to
show that this hypothesis can be tested using an asymptotic F test for δ = 0
in the artificial regression

y = Xβ + Ẍδ + residuals. (11.46)

Moreover, from the definition of Ẍ we see that S(X, Ẍ) = S(X,C), where C
is a matrix with typical row Xt−1 +Xt+1. Thus the test for δ = 0 in (11.46)
will be numerically identical to the test for η = 0 in

y = Xβ +Cη + residuals. (11.47)

Regression (11.47) makes it clear what to do about the constant term
and any other regressor(s) belonging to X that, after first-differencing, cause
the matrix Ẋ not to have full rank. If any such regressors are included, the
matrix [X C ] will not have full rank. One must therefore drop from C any
columns that prevent [X C ] from having full rank. The number of degrees
of freedom for the test statistic will then be the number of columns left in C.

Regression (11.47) also makes it clear that the differencing specification
test is a curious test indeed. The additional regressors C are the sums of the
leading and lagging values of the original regressors. While it is easy to justify
testing whether lagged values of X should have been included in a regression
model, it is harder to justify testing whether leading values of X should have
been included. In many cases, one would not expect the information set on
which y is conditioned to include leading values of X. Certainly the test will

6 This result can also be proved by using a differencing matrix, say D, with
the properties that Ẋ = DX and Ẍ−1 = D2X. Such a proof would be more
compact but perhaps less readily grasped.
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not make sense if X may depend on lagged values of u, since in that case ut
might well be correlated with Xt+1.

There are numerous other applications of the DWH test to linear and
nonlinear regression models. See Boothe and MacKinnon (1986), Breusch
and Godfrey (1986), Godfrey (1988), and Ruud (1984). We discussed tests of
the difference between IV and least squares estimates of nonlinear regression
models in Section 7.9, and most of that discussion applies equally well to other
applications of the DWH test to nonlinear regression models.

It is often argued that DWH tests may fruitfully be used when the null
hypothesis is not that the data were generated by (11.27) but simply that the
OLS estimates β̂ from (11.27) are consistent. While this is true up to a point,
there is a serious difficulty with trying to use these tests in this way. As we
have seen, DWH tests do not directly test the hypothesis that parameters are
estimated consistently. Instead, they test whether certain linear combinations
of the parameters on omitted variables are zero, because if this were so, it
would imply that the parameters of the null are consistently estimated. As
a consequence, there are situations in which all parameters will be estimated
consistently and yet DWH tests will almost invariably reject the null.

To see how this can happen, consider the following very simple case.
Suppose that the restricted model is

y = Xβ + u (11.48)

and the unrestricted one is

y = Xβ + γz + u, (11.49)

with the n×k random matrix X and the n×1 random vectors z and u being
distributed in such a way that plim

(
n−1X>z

)
= 0 and plim

(
n−1X>u

)
= 0.

It is clear that OLS estimation of (11.48) will yield consistent estimates of β
even if the DGP is (11.49) with γ 6= 0. Now consider the DWH test, which
may be based on the regression

y = Xβ + z
(
z>z

)−1
z>x∗δ + residuals, (11.50)

where x∗ is one of the columns of X. Unless z>x∗ happens to be numerically
equal to zero, in which case the test cannot be computed, a t test for δ = 0 in
(11.50) will be numerically identical to a t test for γ = 0 in (11.49). Thus, if
γ 6= 0 and the sample is large enough, the DWH test will reject the null hy-
pothesis with probability one, even though β̂ is in fact consistent. The reason
for this apparently puzzling result is that in a finite sample we have computed
a DWH test which it would have been impossible to compute asymptotically,
because the regressor z(z>z)−1z>x∗ would then be a column of zeros. Unfor-
tunately, it is often possible to do this. In such circumstances, it is clear that
finite-sample results from DWH tests may easily be misinterpreted.
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11.5 Testing for Heteroskedasticity

The tests based on the Gauss-Newton regression that we have discussed so far
are all designed to test various aspects of the specification of the regression
function. However, variants of the GNR can also be used to test some aspects
of the specification of the error terms, in particular the assumption that they
have constant variance. In this section, we show how some popular tests for
heteroskedasticity can be derived as applications of the GNR. Additional tests
for heteroskedasticity will be discussed in Chapter 16.

A plausible model of heteroskedasticity is

E(u2t ) = h(α+Ztγ), (11.51)

where h(·) is a possibly nonlinear function that may only take on positive
values, Zt is a 1 × q vector of observations on exogenous or predetermined
variables, α is a scalar parameter, and γ is a q--vector of parameters. Equation
(11.51) says that the expectation of the squared error term ut is h(α+Ztγ).
As we saw in Section 9.2, the function h(·) is called a skedastic function. If
all elements of the vector γ are equal to zero, h(α + Ztγ) collapses to h(α),
which is simply a constant. We can think of this constant as being σ2. Thus we
may test the null hypothesis of homoskedasticity against the heteroskedastic
alternative (11.51) by testing the restriction that γ = 0.

Now let us define et as the difference between u2t and its expectation.
This allows us to write an equation for u2t :

u2t = h(α+Ztγ) + et. (11.52)

Equation (11.52) is a regression model. While we would not expect the error
term et to be as well behaved as the error terms in most regression models,
since the distribution of u2t will generally be skewed to the right, it does have
mean zero by definition, and we will assume that it has a finite, and constant,
variance. This assumption would probably be an excessively strong one if γ
were nonzero (it can be relaxed by use of the techniques discussed in the next
section). Under the null hypothesis that γ = 0, however, it does not seem
unreasonable to assume that the variance of et is constant.

Let us suppose to begin with that we actually observe ut. Then we can
certainly estimate (11.52) in the usual way by NLS. Under the null hypothesis
that γ = 0, the NLS estimate of α is whatever value α̃ solves the equation

h(α̃) = 1−
n

n∑
t=1

u2t ≡ σ̃2.

Thus we simply have to estimate the sample mean of the u2t ’s, σ̃2. We could
then test the hypothesis that γ = 0 by means of the Gauss-Newton regression.
This GNR would be

u2t − σ̃2 = h′(α̃)a+ h′(α̃)Ztc + residual, (11.53)
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where h′(α̃) is the derivative of h(·) with respect to its one argument, evaluated
at α = α̃ and γ = 0. Since h′(α̃) is a constant, (11.53) simplifies to

v − ισ̃2 = ιa+Zc + residuals, (11.54)

where v is an n--vector of which the tth element is u2t , ι is an n--vector of ones,
and Z is an n×q matrix of which the tth row is Zt. Since neither the function
h(·) nor its derivatives appear in (11.54) at all, a test based on this artificial
regression will not depend on the functional form of h(·). This is because
all models of the form (11.52) are locally equivalent alternatives. We saw an
earlier example of this in Section 10.8; see Godfrey (1981) and Godfrey and
Wickens (1982).

As usual, the GNR test statistic for γ = 0 is either an F test for c = 0 in
(11.54) or nR2 from that regression. Since ι appears on both sides of (11.54),
the regression can be further simplified to

v = ιa∗ +Zc + residuals. (11.55)

The centered R2 from (11.55) will be identical to both the centered and un-
centered R2’s from (11.54), which are the same because the regressand of the
latter has mean zero by construction. The F statistic for c = 0, which is
printed by almost all regression packages, will evidently be identical for the
two regressions.

In practice, of course, the error terms ut appear in a regression model like
y = x(β) + u, and we do not actually observe them. However, since we do
observe y and whatever regressors it is supposed to depend on, we can easily
obtain least squares residuals û. The model that is estimated may be linear or
nonlinear; its exact form is irrelevant. As we saw in Section 5.6, consistency of
the parameter estimates from NLS estimation implies that û

a
= u. Therefore,

the regression

v̂ = ιa∗ +Zc + residuals, (11.56)

where v̂ has typical element û2t , will generate test statistics that have the
same asymptotic properties as test statistics generated by (11.55). As before,
an ordinary F test for c = 0 will be asymptotically valid, as will n times the
centered R2.

It may seem remarkable that we can replace v by v̂ without doing any-
thing to allow for the fact that β had to be estimated to obtain û, since when
we use a GNR to test the specification of a regression function, we do have to
allow for it. The reason for the difference should be clear from the following
two examples. First of all, consider the regression models

y = Xβ + u and (11.57)

y = Xβ + γz + u. (11.58)
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To test (11.57) against (11.58), we would normally use a t statistic, the num-
erator of which would be

z>û = z>MXu = z>u− z>PXu.

Since both z>u and z>PXu are O(n1/2), it would clearly be wrong to treat z>û
as if it were asymptotically equivalent to z>u. That is why we can calculate
an asymptotically valid test statistic by regressing û on X and z but not by
regressing û on z alone.

Now suppose that we wish to see whether the squared error terms from
(11.57) are correlated with z. Recall that v is the vector of squared error
terms and v̂ is the vector of squared residuals. If we use v̂ as a proxy for v
and regress it on a constant term and z, as in (11.56), the numerator of the
t statistic is

z>Mιv̂ = z>Mιv − 2z>Mι

(
(PXu)∗u

)
+ z>Mι

(
(PXu)∗(PXu)

)
= z>Mιv + z>Mι

(
(PXu)∗(PXu− 2u)

)
,

(11.59)

where Mι is the matrix that takes deviations from the mean, and ∗ denotes
the direct product of two vectors. It is easy to see that the first term in the
second line of (11.59) is O(n1/2); it is simply the sum of n terms, each of which
has mean zero because of the presence of Mι. The second term, however, can
be shown to be O(1), which means that it is asymptotically negligible relative
to the first term. Thus z>Mιv̂ is asymptotically equivalent to z>Mιv, and
we can ignore the distinction between v and v̂ when calculating test statistics
for heteroskedasticity.

Another way of looking at the problem is to recall that, as we saw in Sec-
tion 8.10 when we discussed the nonlinear regression model in the framework
of maximum likelihood estimation, the covariance matrix of the parameter
estimates from such a model is block-diagonal between the parameters of the
regression function (in this case β) and the parameters of the skedastic func-
tion (in this case α and γ). This block-diagonality property implies that we
can treat the former parameters as known for the purpose of tests on the
latter parameters, and vice versa, even though they are actually estimated.

Although the family of tests just outlined seems to be a very natural
application of the Gauss-Newton regression, that is not how it was developed
in the econometric literature. Godfrey (1978c) and Breusch and Pagan (1979)
proposed test statistics that, although based on a slight modification of the
artificial regression (11.56), were not the same as those suggested here. These
authors explicitly assumed that the error terms ut were normally distributed.
This allowed them to derive their tests as Lagrange multiplier tests using max-
imum likelihood theory, and they therefore obtained somewhat different test
statistics which are valid, even asymptotically, only under the assumption of
normality. Koenker (1981) pointed out this weakness of the Godfrey/Breusch-
Pagan tests and suggested as an alternative the nR2 test based on regression
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(11.56). The F test for c = 0 based on the same regression is just as valid
asymptotically and may well be more attractive in finite samples. Unfor-
tunately, nR2 and F tests may often have less power than LM tests based
on the normality assumption. Honda (1988) has recently shown how to ob-
tain modified versions of the latter that have better finite-sample properties.
See Section 16.5 and Godfrey (1988, Section 4.5) for a fuller discussion of all
these tests.

In place of (11.51), one could start with the more general model

E|ut|p = h(α+Ztγ).

Glejser (1969) considered the case p = 1 and proposed a test based on an
artificial regression similar to (11.56) but with the regressand equal to the
absolute values of the residuals. In Newey and Powell (1987), it is shown that
Glejser’s test can be considerably more powerful than the usual test, based
on squared residuals, in cases in which the error terms have thicker tails than
the normal distribution. This suggests that it may often be wise to employ
both types of test.

11.6 A Heteroskedasticity-Robust Version of the GNR

In many cases we know, or at least suspect, that the error terms which adhere
to a regression model display heteroskedasticity, but are not at all sure what
form it takes. Especially when using cross-section data, the presumption
should probably be that the errors are heteroskedastic. This should make us
uneasy about using tests based on the Gauss-Newton regression, or indeed
any of the tests we have discussed so far, since they are valid only under the
assumption of homoskedasticity. In fact, it turns out to be quite simple to
derive an artificial regression that can be used whenever the GNR can be
used and that yields asymptotically valid inferences even in the presence of
heteroskedasticity of unknown form. In this section, we discuss this procedure
briefly. A much fuller treatment of this and related topics will be provided in
Chapter 16.

As we have seen, a typical Gauss-Newton regression for testing restric-
tions can be written as

ú = X́b+ Źc + residuals, (11.60)

where X́ is an n× k matrix made up of derivatives of the regression function
x(β) evaluated at estimates β́ that satisfy the restrictions and are root-n
consistent, and Ź is an n × r matrix of test regressors. In most of the cases
we have dealt with, β́ is equal to β̃, the vector of restricted NLS estimates,
in which case ú>X́ = ũ>X̃ = 0. However, since there is no advantage for the
purposes of this section in making the stronger assumption, we will not do so.
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The numerator of the F statistic for c = 0 is equal to the explained sum
of squares from the regression

ḾX ú = ḾXŹc + residuals. (11.61)

If ś2 is the OLS estimate of the variance from (11.60), the test statistic is 1/r
times

1

ś2
ú>ḾXŹ

(
Ź>ḾXŹ

)−1
Ź>ḾX ú. (11.62)

The second factor here is the explained sum of squares from (11.61). Ex-
pression (11.62) makes it clear that what we are really testing is whether the
r--vector

n−1/2Ź>ḾX ú (11.63)

has mean zero asymptotically. If E(uu>) = σ2 I, the asymptotic covariance
matrix of this vector is

σ2 plim
n→∞

(
1−
n
Ź>ḾXŹ

)
. (11.64)

Since (11.62) is a quadratic form in the vector (11.63) and something that
estimates its covariance matrix consistently, it is easy to see that it will be
asymptotically distributed as χ2(r) under the null.

We now consider what happens when there is heteroskedasticity. In par-
ticular, suppose that

E(uu>) = Ω, (11.65)

where Ω is a diagonal matrix with diagonal elements ω2
t which satisfy the

condition
ω2
min < ω2

t < ω2
max for all t,

ω2
min and ω2

max being finite positive lower and upper bounds. This condition
rules out the possibility that ω2

t may grow or shrink without limit as t→∞.
It is obvious that if we do not know anything about the ω2

t ’s, we will not be
able to estimate them consistently, since there will be one ω2

t to estimate for
every observation. Nevertheless, it is possible to obtain consistent estimates
of quantities like

plim
n→∞

(
1−
n
W>ΩW

)
, (11.66)

where W is a matrix with n rows that satisfies the conditions necessary for
(11.66) to exist. The simplest way to do this is to use the estimator

1−
n
W>ΏW,

where Ώ is a diagonal matrix with ú2t as its tth diagonal element. This
extremely important result is due to Eicker (1963, 1967) and White (1980).
It makes it possible to obtain estimated covariance matrices and test statistics
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that are valid despite heteroskedasticity of unknown form. We will prove this
result and discuss heteroskedasticity-consistent covariance matrix estimators,
or HCCMEs, in Chapter 16. For now, we will use it only to construct test
statistics based on an artificial regression.

If the covariance matrix of u is given by (11.65), the asymptotic covar-
iance matrix of the vector (11.63) will be

plim
n→∞

(
1−
n
Ź>ḾXΩḾXŹ

)
. (11.67)

Using the Eicker-White result, this can be estimated consistently by

1−
n
Ź>ḾXΏḾXŹ = 1−

n
Ź>ḾXÚÚḾXŹ,

where Ú is an n × n diagonal matrix with út as its tth diagonal element.
Hence the test statistic

ú>ḾXŹ
(
Ź>ḾXÚÚḾXŹ

)−1
Ź>ḾX ú

= ι>ÚḾXŹ
(
Ź>ḾXÚÚḾXŹ

)−1
Ź>ḾXÚ

>ι,
(11.68)

where, as usual, ι is an n--vector each element of which is 1, must be asymp-
totically distributed as χ2(r) under the null hypothesis. This test statistic
may be calculated as the explained sum of squares, which is equal to n minus
the sum of squared residuals, from the artificial regression

ι = ÚḾXŹc + residuals. (11.69)

We will refer to this as the heteroskedasticity-robust Gauss-Newton regres-
sion, or HRGNR, since the test statistic (11.68) is a heteroskedasticity-robust
test statistic.

Of course, in practice one would never actually construct the n×n matrix
Ú in order to run the HRGNR. Instead, one simply has to do the following:

(i) Regress each column of Ź on X́ and store the residuals ḾXŹ.

(ii) Multiply the tth element of each vector of residuals by út.

(iii) Regress a vector of 1s on the r regressors created in step (ii). This is
regression (11.69).

(iv) Calculate the test statistic, n−SSR. It will be asymptotically distributed
as χ2(r) under H0.

It thus turns out to be remarkably simple to calculate a heteroskedasticity-
robust test that can be used in any situation in which test statistics based
on the GNR can be used. For more details, see Davidson and MacKinnon
(1985b), Wooldridge (1990a, 1990b, 1991a), and MacKinnon (1992). We will
discuss the HRGNR further in Chapter 16.
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It should, of course, be stressed that the theoretical results on which the
heteroskedasticity-robust test statistic (11.68) are based are purely asymptotic
ones. While this is also true for test statistics based on the GNR, it is almost
certainly more difficult to estimate the covariance matrix (11.67) than the
covariance matrix (11.64). Thus one may expect heteroskedasticity-robust
tests to be less well behaved in finite samples than ordinary tests. However,
there is some evidence that, if anything, tests based on the HRGNR tend
to reject the null hypothesis too infrequently, especially at the .01 level; see
Davidson and MacKinnon (1985b).

In practice, it is usually wise to use tests based on both the GNR and
the HRGNR. If tests against the same alternative based on both artificial
regressions yield similar results, those results should probably be believed. If
not, one may well want to test for, and perhaps transform the model to take
account of, plausible patterns of heteroskedasticity. One would never want to
rely on tests based on the GNR if the HRGNR yields very different results.

11.7 Conclusion

In this chapter and in Chapters 6 and 10, we have seen that the Gauss-Newton
regression and its heteroskedasticity-robust variant provide very simple ways
to test a great many aspects of model specification for regression models.
However, we have not said anything about how the results of these and other
specification tests should be interpreted. That is the subject of the next
chapter.

Terms and Concepts

artificial nesting
Chow test
DWH tests
differencing matrix
differencing specification test
direct product
encompassing principle
encompassing tests
heteroskedasticity-consistent

covariance matrix estimator
(HCCME)

heteroskedasticity-robust Gauss-
Newton regression (HRGNR)

heteroskedasticity-robust test

instrumental variables (IV) (tests of
models estimated by)

J test
JA test
model selection
nested models
nonnested hypothesis tests
nonnested models
P test
PA test
skedastic function
structural change
tests for heteroskedasticity
vector of contrasts



Chapter 12

Interpreting Tests

in Regression Directions

12.1 Introduction

In previous chapters, we have discussed a large number of different test sta-
tistics for linear and nonlinear regression models. Most of these were tests in
regression directions, that is, tests of the specification of the regression func-
tion. The use of the word “directions” in this context may at first seem a little
odd, but it should become much less so as the chapter proceeds. Essentially,
tests in regression directions are tests of the specification of the regression
function, while tests in nonregression directions are tests of other aspects of
the model, such as tests for heteroskedasticity.

It is now time to discuss what the results of hypothesis tests mean and
how they should be interpreted. This discussion requires a certain amount of
technical apparatus, in particular the concept of a drifting DGP, which will
be introduced in Section 12.3. What comes out of this apparatus, however, is
an extremely simple and intuitive set of results, which can be of great utility
in interpreting the test statistics that one actually obtains when doing ap-
plied work. In this chapter, we discuss only tests in regression directions of
regression models estimated by NLS. Although this is quite restrictive, it sim-
plifies the exposition considerably. In the next chapter, we will discuss both
tests of nonregression models and tests of regression models in nonregression
directions, in the context of the three classical tests based on ML estimation,
namely, the Wald, LR, and LM tests. As we will see there, the principal
results of this chapter carry over almost unchanged to the more general case.
They also carry over, with obvious modifications, to models estimated by IV
and GLS.

In Section 3.4, we introduced the ideas of the size and power of a test.
The size of a test, it will be recalled, is the probability of its rejecting the null
hypothesis when the null is true, while the power of a test is the probability
that it will reject the null hypothesis when the null is false. Obviously, power
will depend on how the data were in fact generated. Thus we cannot speak
of power without specifying a data-generating process (or possibly a family
of DGPs). In general, the power of a test will depend on the null hypothesis,
H0, the alternative against which it is being tested, H1, and the DGP that is
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assumed to have generated the data. We will discuss some concepts related
to the size and power of tests more fully in Section 12.2.

The power of a test may depend on the details of how the test is con-
structed, but generally this will not matter if we are concerned only with
asymptotic analysis. Many tests are asymptotically equivalent under the null
and under all drifting DGPs, even though they may differ substantially in
finite samples. Two tests are said to be asymptotically equivalent if they tend
to the same random variable. For example, F tests and χ2 tests based on
the same Gauss-Newton regression will be asymptotically equivalent to each
other, provided of course that the F test is multiplied by its numerator de-
grees of freedom. These tests will also be equivalent to asymptotic F or χ2

tests against the same alternative hypothesis based on comparing the sums
of squared residuals from restricted and unrestricted models.1 We will not
attempt to prove this result here; it is a consequence of more general results
that are proved in Davidson and MacKinnon (1987). However, it is an impor-
tant result, because it allows us to study only tests based on the GNR and
to assert that our results are much more generally applicable. In this chap-
ter, then, we will explicitly discuss what determines the asymptotic power of
tests in regression directions based on the GNR and implicitly discuss what
determines the asymptotic power of all tests in regression directions.

The null hypothesis can be written as

H0 : y = x(β) + u, E(uu>) = σ2 I. (12.01)

Let the k--vector β̃ denote the NLS estimates of β. Then several equivalent
test statistics may be calculated using the GNR

y − x̃ = X̃b+ Z̃c + residuals, (12.02)

where, as usual, x̃ denotes x(β̃), and the n × k matrix X̃ ≡ X(β̃) has typ-
ical element ∂xt(β)/∂βi, evaluated at β̃. As we have seen, the n × r matrix
Z̃ ≡ Z(β̃) can be specified in many different ways, depending on what al-
ternative we wish to test against. The simplest possibility is that x(β) is a
special case of x(β,γ) with γ = 0, which allows us to write

H1 : y = x(β,γ) + u, E(uu>) = σ2 I. (12.03)

In this case, Z̃ = X̃γ , where X̃γ has typical element ∂xt(β,γ)/∂γj , evaluated
at (β̃,0). As we saw in Chapter 11, however, constructing a test against an
explicit alternative such as (12.03) is only one of several ways of generating a
test based on the GNR (12.02).

1 All these tests are also asymptotically equivalent to tests based on the het-
eroskedasticity-robust Gauss-Newton regression discussed in Section 11.6, but
only if there is in fact no heteroskedasticity. See Davidson and MacKinnon
(1985b).
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The simplest test statistic based on (12.02) is

1

s̃2
(y − x̃)>Z̃

(
Z̃>M̃XZ̃

)−1
Z̃>(y − x̃), (12.04)

where M̃X ≡ I− X̃(X̃>X̃)−1X̃> and s̃2 ≡ (y− x̃)>(y− x̃)/(n− k). The test
statistic (12.04) is 1/s̃2 times the explained sum of squares from (12.02). For
simplicity, we will consider only this test statistic in this chapter. Because
(12.04) is asymptotically equivalent to other tests based on (12.02) and also
to tests against the same alternative based on the LR and Wald principles,
our results are nevertheless quite general.

In addition to specifying the null hypothesis (12.01) and the test statistic
(12.04), we must specify how the data are assumed to have been generated
if we are to discuss test power. This turns out to involve the important new
concept of a drifting DGP, which we have already mentioned. Without this
concept, it would be very difficult to analyze the asymptotic properties of test
statistics when the null hypothesis did not generate the data, and we therefore
discuss drifting DGPs at length in Section 12.3. In the two sections following
that, we analyze the asymptotic properties of the test statistic (12.04) under
certain drifting DGPs and provide a geometrical interpretation of the results.
In Section 12.6, we explain how one may compare the power of tests of which
the distributions are known only asymptotically. In Section 12.7, we use the
results obtained previously to discuss how one should interpret the results
of tests in regression directions that reject the null hypothesis. Finally, in
Section 12.8, we discuss how one should interpret the results of tests that do
not reject the null hypothesis.

12.2 Size and Power

We introduced the concepts of the size and the power of hypothesis tests in
Section 3.4. One way to see how these concepts are related is to study the
size-power tradeoff curve for any given test. For simplicity, let us consider
a test statistic that is always a positive number (test statistics which are
asymptotically distributed as F or χ2 under the null hypothesis should have
this property). If we choose a critical value of zero, the test will always reject
the null, whether or not the DGP is actually a special case of the null. As
we choose larger and larger critical values, the probability that the test will
reject the null will decrease. If the test is a useful one, this probability will
initially decrease much less rapidly when the null is false than when it is true.
The size-power tradeoff curve shows, for some given sample size, these two
probabilities graphed against each other. The horizontal axis shows the size,
computed for a DGP that satisfies the null hypothesis, and the vertical axis
shows the power, for some other given DGP that will not in general satisfy it.
Thus the tradeoff curve shows what the power of the test against the given
DGP is for every size of test that we may choose.
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Test 1 →

← Test 2

← Biased test

45◦ line →

Size

Power

Figure 12.1 Size-power tradeoff curves

Now consider Figure 12.1, which shows several size-power tradeoff curves
for different hypothetical test statistics. The horizontal axis measures size.
The vertical axis measures power, when the data are generated by a given
DGP. The size-power tradeoff curve is generated by varying the critical value
for the test. The upper right-hand corner of the graph corresponds to a critical
value of zero. Both size and power are 1 at this point. The lower left-hand
corner corresponds to a very large critical value, so large that the test statistic
will never exceed it. Both size and power are 0 at this point. For many test
statistics, such as those that have χ2 distributions under the null, this latter
critical value is in principle plus infinity. However, we could easily pick a finite
critical value such that the test statistic would exceed it with probability as
close to zero as we chose.

A test for which size always equals power has a size-power tradeoff curve
given by the 45◦ line. This will be so by definition if the DGP for which the
tradeoff is constructed actually satisfies the null hypothesis. Except in that
circumstance, a test which gave this result would evidently not be very useful.
Normally, we would expect the power of a test to exceed its size for any given
critical value, except when size and power are both equal to 0 or 1. The
curves labelled “Test 1” and “Test 2” in the figure are examples of tests for
which this is the case. However, there are some tests for which size exceeds
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power for certain DGPs. They are called biased tests, and the curve labelled
“Biased Test” in the figure illustrates this. For further discussion of biased
tests, which are evidently not of very much use, see Kendall and Stuart (1979,
Chapter 23).

It is clear from Figure 12.1 that Test 1 is more useful than Test 2. Except
at the two ends, the size-power tradeoff curve for the former is everywhere
outside the size-power tradeoff curve for the latter. Thus, for any given size,
the power of Test 1 exceeds that of Test 2. As the sample size increases,
we would expect the size-power tradeoff curve for any well-behaved test to
improve (that is, to become further from the 45◦ line). In the limit, as n→∞,
the size-power tradeoff curve would look like a Γ, joining the points (0, 0),
(0, 1), and (1, 1).

Size-power tradeoff curves can be generated by what is called the power
function of a test. This function gives the power of a test as a function of
its size (or, equivalently, the critical value used), the sample size, and the
DGP. Usually, the DGP is restricted so as to belong to some particular alter-
native hypothesis characterized by a finite set of parameters. Spanos (1986,
Chapter 14) provides a formal definition of power functions in this context.
Suppose, for concreteness, that we are concerned with a single parameter θ
and that the null hypothesis is θ = 0. When θ = 0, the power of the test will
evidently be equal to its size. For any other value of θ, power will be greater
than size if the test is unbiased. For a well-behaved test, we expect that, for
any reasonable fixed sample size, power will increase monotonically with |θ|
and approach unity as |θ| → ∞. Similarly, for any fixed θ 6= 0, we expect that
power will tend to unity as the sample size tends to infinity. Figure 12.2 shows
two illustrative power functions, for the same test but different sample sizes.
The data are generated from the N(θ, 1) distribution, and the null hypothesis
is that θ = 0. Power functions are shown for tests at the 5% level with sample
sizes of 25 and 100. These power functions are symmetric around zero. As we
would expect, the power function for n = 100 is everywhere above the power
function for n = 25, except at θ = 0.

If a test rejects a false null hypothesis with probability one asymptotically,
it is said to be consistent. The concept of test consistency was introduced
by Wald and Wolfowitz (1940). It is a simple and intuitive concept and is
evidently a most desirable property for a test to have. The test in the example
of Figure 12.2 is consistent. Therefore, as n → ∞, the power function tends
to the shape of a >, with power equal to 1 for every value of θ except θ = 0.
We may define consistency of a hypothesis test formally as follows.

Definition 12.1.

A test is consistent against a certain class of DGPs none of which
satisfies the null hypothesis if, whenever the data were generated by
a fixed member of that class, the probability of rejecting the null
hypothesis tends to unity as the sample size n tends to infinity, for
any critical value associated with nonzero size.
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Figure 12.2 Power functions for tests of θ = 0 at .05 level

Notice that whether or not a test is consistent will depend on how the data
were actually generated. A test that is consistent against certain DGPs may
not be consistent against others. Intuitively, the reason tests are often con-
sistent is that as n→∞ the amount of information that the sample conveys
about the validity of the null hypothesis increases without limit. As this hap-
pens, this information overwhelms the noise in the data and eventually allows
us to conclude with probability one that the test statistic is not a drawing
from whatever its distribution under the null is supposed to be.

With these preliminaries out of the way, we are ready to consider what
determines the power of tests in regression directions. Since we are dealing
with nonlinear regression models, we must resort to asymptotic analysis. This
raises a serious technical problem, however. All of the tests we have considered
so far are consistent when the data are generated by a fixed DGP within the
set of the alternatives for which they were designed, and indeed they are
consistent much more widely than that. If a test is consistent, the value of
the test statistic will tend to plus or minus infinity as n → ∞. This makes
it impossible to speak of the asymptotic distribution of such a test statistic
and hence impossible to compare the asymptotic distributions of competing
test statistics when both are consistent, if the DGP is fixed. The solution is
to allow the DGP to drift toward the null at a certain rate. We discuss the
concept of drifting DGPs in the next section.
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12.3 Drifting DGPs

In order to determine any of the statistical properties of a test, one must
specify how the data are actually generated. Since, in this chapter, we are
concerned solely with tests in regression directions, we will restrict our atten-
tion to DGPs that differ from the null hypothesis only in such directions. This
restriction is by no means innocuous. It means that we cannot say anything
about the power of tests in regression directions when the model is false in
a nonregression direction (e.g., when the error terms suffer from unmodeled
heteroskedasticity). Some aspects of this topic will be discussed in Chapter 16.

The natural way to specify a DGP for the purpose of analyzing the power
of a test is to assume that it is a particular member of the set of DGPs which
together form the alternative hypothesis. There are two problems with this
simple approach, however. The first problem is that one may well be interested
in the power of certain tests when the data are generated by a DGP which
is not a special case of the alternative hypothesis. It does not make sense to
rule out this interesting case.

The second problem, which we alluded to in the previous section, is that
most test statistics that are of interest to us will have no nondegenerate asymp-
totic distribution under a fixed DGP that is not a special case of the null hy-
pothesis. If they did, then they would not be consistent. One long-standing
solution to this problem is to consider the distribution of the test statistic of
interest under what is called a sequence of local alternatives. When θ is the
parameter vector of interest, such a sequence may be written as

θn = θ0 + n−1/2δ. (12.05)

Here θn is the parameter vector for a sample of size n, θ0 is a parameter vector
that satisfies the null hypothesis, and δ is some nonzero vector. Evidently, θn

approaches θ0 at a rate proportional to n−1/2. The originator of this device
was Neyman (1937). However, it is often attributed to Pitman (1949) and
is therefore sometimes referred to as a “Pitman sequence” or “Pitman drift”;
see McManus (1991). This technique has been widely used in econometric
theory; see, for example, Gallant and Holly (1980) and Engle (1984).

In order to avoid ruling out the interesting case in which the data are
generated by a DGP that is not a special case of the alternative hypothesis,
Davidson and MacKinnon (1985a, 1987) generalized the idea of sequences of
local alternatives to the idea of drifting DGPs. This chapter is largely based
on the approach of those two papers.2

A class of drifting DGPs that is suitable for studying the power of the
test statistic (12.04) is

y = x(β0) + αn−1/2a+ u, E(u) = 0, E(uu>) = σ2
0 I. (12.06)

2 Actually, the term we used in Davidson and MacKinnon (1985a, 1987) was
“sequence of local DGPs.” We now prefer the term “drifting DGP,” however.
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Here β0 and σ2
0 denote particular values of β and σ2, a is an n--vector that

may depend on exogenous variables, on the parameter vector β0, and possibly
on past values of yt, and α is a parameter which determines how far the DGP
is from the simple null hypothesis

y = x(β0) + u, E(u) = 0, E(uu>) = σ2
0 I. (12.07)

The drifting DGP (12.06) tends to this simple null hypothesis as n → ∞.
Exactly what the vector a corresponds to will be discussed shortly. Notice
that, as n becomes larger, the entire vector y approaches what it would be
under the simple null (12.07) at a rate proportional to n−1/2.

It is no accident that the drifting DGP (12.06) approaches the simple null
(12.07) at a rate of n−1/2. This rate is carefully chosen so that the test statistic
(12.04), and all asymptotically equivalent test statistics, will have an asymp-
totic distribution in the limit as n→∞. Similarly, for a fixed size of test, as
n → ∞ with a DGP drifting toward the null at rate n−1/2, the value of the
power function tends to a limit that in general is neither zero nor unity. This
limiting function is called the asymptotic power function of the test statistic.

The drifting DGP (12.06) provides a perfectly general local representation
of any regression model that is sufficiently close to the simple null (12.07). For
example, suppose that we wanted to see how a certain test performed when
the data were generated by an alternative like (12.03), with γ 6= 0. We could
simply specify a sequence of local alternatives as

y = x(β0, αn
−1/2γ0) + u, (12.08)

where γ0 is fixed and may be normalized to have any arbitrary length, and α
determines how far (12.08) is from the simple null (12.07). Because (12.08)
approaches (12.07) as n−1/2 → 0, a first-order Taylor approximation to (12.08)
around α = 0 must yield exactly the same results, in an asymptotic analysis,
as (12.08) itself. This approximation is

y = x(β0,0) + αn−1/2Xγ(β0,0)γ0 + u, (12.09)

where Xγ(β0,0) has typical element ∂xt(β,γ)/∂γj evaluated at [β0
.... 0]. If

we define x(β0) as x(β0,0) and a as Xγ(β0,0)γ0, we see immediately that
(12.09) is simply a particular case of the drifting DGP (12.06).

The above argument should make it clear that (12.06) is a perfectly gen-
eral way to specify a drifting DGP corresponding to any alternative regression
model that includes the null hypothesis (12.01). Every specific alternative
simply yields a different vector a. If a is a zero vector, then the DGP is a
special case of the null, and the test will have power equal to its size and
hence will have size-power tradeoff curve the 45◦ line (see Figure 12.1). If a
is derived from the alternative against which the test is constructed, then the
drifting DGP (12.06) is actually a sequence of local alternatives like (12.05).
In general, however, neither of these special cases will hold.
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12.4 The Asymptotic Distribution of Test Statistics

We are now ready to find the asymptotic distribution of the test statistic
(12.04) under the family of drifting DGPs (12.06). In order for our asymp-
totic analysis to be valid, we must assume that various regularity conditions
hold. Thus we will assume that n−1X0

>X0, n−1Z0
>Z0, and n−1Z0

>X0 all
tend to finite limiting matrices with ranks k, r, and min(k, r), respectively,
as n → ∞. We will further assume that there exists an N such that, for
all n > N, the rank of the matrix [X0 Z0] is k + r, that n−1a>a tends to
a finite limiting scalar, and that n−1a>X0 and n−1a>Z0 both tend to finite
limiting vectors of dimensions 1× k and 1× r, respectively. Here X0 denotes
X(β0) and Z0 denotes Z(β0). Whether these regularity conditions will in
fact hold depends on the vector a, the null hypothesis (12.01), the alternative
hypothesis (whether or not it is explicit), and the simple null (12.07).

We begin by rewriting the test statistic (12.04) so that it is a product of
four factors, each of which is O(1):

1

s̃2

(
n−1/2(y − x̃)>Z̃

)(
n−1Z̃>M̃XZ̃

)−1(
n−1/2Z̃>(y − x̃)

)
. (12.10)

What we must do now is to replace the quantities s̃, n−1/2(y − x̃)>Z̃, and
n−1Z̃>M̃XZ̃ by what they tend to asymptotically under (12.06). We state
the following results without proof. They can all be derived by suitable mod-
ification of arguments used in Chapter 5:

s̃2
p−→ σ2

0 , (12.11)

n−1Z̃>M̃XZ̃
p−→ plim

n→∞

(
n−1Z0

>MXZ0

)
, (12.12)

and
n−1/2(y − x̃)>Z̃

a
= n−1/2

(
u+ αn−1/2a

)>MXZ0, (12.13)

where MX ≡ I−X0(X0
>X0)−1X0

>.

The intuition behind the results (12.11) and (12.12) is straightforward.
The drifting DGP (12.06) approaches the simple null (12.07) fast enough that

the limits of s̃2 and n−1Z̃>M̃XZ̃ are exactly the same as they would be under
(12.07). These limits, σ2

0 and plim
(
n−1Z0

>MXZ0

)
, are nonstochastic because

the difference between β̃ and β0, which is O(n−1/2), has no effect on either s̃2

or n−1Z̃>M̃XZ̃ asymptotically. It is thus not surprising that the difference
between the drifting DGP (12.06) and the simple null (12.07), which is likewise
O(n−1/2), also has no effect on s̃2 and n−1Z̃>M̃XZ̃ asymptotically.

In contrast, n−1/2(y − x̃)>Z̃ tends to a stochastic probability limit. The
result (12.13) follows from the fact that

y − x̃ = MX

(
u+ αn−1/2a

)
+ o(n−1/2),
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which is analogous to the familiar result (5.57) for the case in which α = 0.
The reason αn−1/2a plays a role here is that Z̃>M̃Xu and αn−1/2Z̃>M̃Xa
are of the same order, O(n1/2). Thus, by specifying the drifting DGP (12.06)
as we did, we ensure that quantities which are asymptotically nonstochastic
under the simple null (12.07) are unchanged under (12.06), while quantities
which are asymptotically stochastic do change.

Substituting (12.11), (12.12), and (12.13) into (12.10), we find that the
test statistic (12.04) is asymptotically equal to

1

nσ2
0

(
αn−1/2a+u

)>MXZ plim
n→∞

(
1−
n
Z>MXZ

)−1
Z>MX

(
αn−1/2a+u

)
, (12.14)

where, for ease of notation, we let Z denote Z0. It remains to determine the
asymptotic distribution of this quantity. First, define ψ as an r× r triangular
matrix such that

ψψ>≡ plim
n→∞

(
1−
n
Z>MXZ

)−1
. (12.15)

Then define the r--vector η as

η ≡ 1
σ0
ψ>Z>MX

(
αn−1a+ n−1/2u

)
.

The quantity (12.14) now takes the very simple form η>η; it is simply the
sum of r squared random variables, the elements of the vector η.

It is easy to see that, asymptotically, the mean of η is the vector

plim
n→∞

(
1−
n
ασ−10 ψ>Z>MXa

)
(12.16)

and that its covariance matrix is

plim
n→∞

(
1−
n
σ−20 ψ>Z>MXE(uu>)MXZψ

)
= ψ>plim

n→∞

(
1−
n
Z>MXZ

)
ψ = Ir.

The last equality here follows from the definition of ψ in (12.15). Since η
is equal to the sum of a term that tends to the nonstochastic limit (12.16)
and n−1/2 times a weighted sum of random variables with finite variance, and
since our assumptions keep those weights bounded from above and below,
a central limit theorem can be applied to it. The test statistic (12.04) is
thus asymptotically equal to a sum of r independent squared normal random
variates, each with variance unity and mean given by an element of the vector
(12.16). Such a sum has the noncentral chi-squared distribution with r degrees
of freedom and noncentrality parameter, or NCP, given by the squared norm
of the mean vector (12.16).

The noncentral χ2 distribution plays a central role in the analysis of the
asymptotic power of most econometric tests. This distribution is discussed
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briefly in Appendix B; for a more detailed discussion, readers should consult
Johnson and Kotz (1970b, Chapter 28). The shape of this distribution de-
pends on two things: the number of degrees of freedom and the noncentrality
parameter or NCP. The NCP is always a positive number; if it were zero, we
would have the ordinary central χ2 distribution.

To develop intuition, it is illuminating to consider the two-degree-of-
freedom case. Suppose that ε1 and ε2 are independent random variables,
each distributed as N(0, 1), and that ξ1 = µ1 + ε1 and ξ2 = µ2 + ε2, where µ1

and µ2 are fixed numbers. Then the statistic

ζC ≡ ε21 + ε22

will be distributed as χ2(2), while the statistic

ζN ≡ ξ21 + ξ22 =
(
ε21 + ε22

)
+

(
µ2
1 + µ2

2

)
+

(
2µ1ε1 + 2µ2ε2

)
(12.17)

will be distributed as noncentral chi-squared with two degrees of freedom and
NCP µ2

1+µ2
2. A standard notation for the noncentral chi-squared distribution

is χ2(r, Λ), where r is the degrees of freedom and Λ is the NCP. Thus, in this
case, we may say that ζN is distributed as χ2(2, µ2

1 + µ2
2).3

The mean of ζN is larger than that of ζC. The latter mean is 2, while
the former is 2 +µ2

1 +µ2
2. Thus, on average, ζN will be larger than ζC. Hence

if we were to test the (false) hypothesis that ζN came from the central χ2(2)
distribution using a test of size δ, we would reject that hypothesis more than
100δ% of the time. The power of this test, since we are holding degrees of
freedom constant, will depend solely on the NCP, µ2

1 +µ2
2. In view of (12.17),

this may seem surprising. It may seem that the distribution of ζN should
depend on µ1 and µ2 individually rather than on the sum of their squares. In
fact, changes in µ1 and µ2 that do not change µ2

1 + µ2
2 have no effect on the

distribution of ζN. It may be a good exercise to prove this.

Associated with the noncentral χ2 are two more distributions, called the
noncentral F and the doubly noncentral F . They are defined analogously to
the ordinary (central) F distribution, as a ratio of independent χ2 random
variables, each divided by its degrees of freedom. For the noncentral F, the
random variable in the numerator has a noncentral χ2 distribution, while the
one in the denominator has a central χ2. For the doubly noncentral F, both

3 Note that some authors, and some computer software, use the square root
of Λ, rather than Λ itself, as the noncentrality parameter and then refer to
this square root as the NCP. It makes no difference which way the noncentral
χ2 distribution is parametrized. However, the parametrization we use is more
natural as well as more standard: If x1 ∼ χ2(r1, Λ1) and x2 ∼ χ2(r2, Λ2) are
independent, then z = x1 + x2 is distributed as χ2(r1 + r2, Λ1 + Λ2). This
should make it clear that Λ, rather than its square root, is the natural choice
for the NCP.
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Figure 12.3 Size-power tradeoff curves depend on r and Λ

numerator and denominator random variables have noncentral χ2 distribu-
tions. If one studies the power of the ordinary F test in the linear regression
model with normal errors, using a fixed rather than a drifting DGP, one finds
that the test statistic is distributed as either noncentral F (if the DGP is a
special case of the alternative) or doubly noncentral F (if the DGP is not a
special case of the alternative). The additional complexity of the doubly non-
central F arises in the latter case because there is no drifting DGP involved.
The estimate of σ2 under the alternative thus does not have expectation σ2

0 ,
and we cannot take a limit as n → ∞. In many ways, then, the asymptotic
analysis of nonlinear models is simpler than the finite-sample analysis of linear
models. For a discussion of the linear case, see Thursby and Schmidt (1977).

If a test statistic has the χ2(r) distribution under the null and the χ2(r, Λ)
distribution under some drifting DGP, the power of the test will depend solely
on r and Λ. In fact, it will be strictly increasing in Λ and strictly decreasing
in r; see Das Gupta and Perlman (1974). The mean of the test statistic will
be r + Λ. Thus, as Λ increases, the chance of obtaining a test statistic that
exceeds whatever critical value is being used must increase. In the limit, as
Λ→∞, the power of the test tends to unity for any fixed critical value. The
dependence of power on r and Λ is illustrated in Figure 12.3, which shows
size-power tradeoff curves for four specific cases. These four cases, listed in
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order of decreasing power for a given size of test, are (1, 8), (3, 8), (1, 4), and
(3, 4), where the first element in each pair is r and the second is Λ.

Let us now return to the test statistic (12.04). We have seen that it is
asymptotically distributed as χ2(r, Λ) with noncentrality parameter Λ equal
to the squared norm of (12.16). Specifically,

Λ =
α2

σ2
0

plim
n→∞

(
1−
n
a>MXZ

)
plim
n→∞

(
1−
n
Z>MXZ

)−1
plim
n→∞

(
1−
n
Z>MXa

)
. (12.18)

For a given test of a given model, MX, Z, and r are fixed. The only thing that
can change is the drifting DGP which is assumed to have generated the data.
By studying (12.18), we can see how the scalar α and the vector a affect Λ
and hence how they affect the power of the test. We see immediately that Λ is
proportional to α2. Thus α is simply a parameter that measures how far the
drifting DGP (12.06) is from the simple null (12.07). In contrast, a measures
the direction in which the DGP differs from the simple null (12.07).

In order to understand expression (12.18) and its implications for test
power properly, it is extremely illuminating to consider the geometry of the
situation. This is done in the next section.

12.5 The Geometry of Test Power

The NCP (12.18) is not very illuminating as it stands. It can, however, be
rewritten in a much more illuminating way. Consider, first of all, the vector
αn−1/2MXa, the squared length of which, asymptotically, is

α2 plim
n→∞

(
1−
n
a>MXa

)
. (12.19)

This quantity is α2 times the plim of the sum of squared residuals from a
regression of n−1/2a on X0. Suppose that for fixed n the DGP corresponding
to that sample size is represented by the vector x(β0)+αn−1/2a in En. If the
null hypothesis is represented as in Section 2.2 by the manifold X generated
by the vectors x(β) as β varies, then the above sum of squared residuals is
the square of the Euclidean distance from the point representing the DGP to
the linear approximation S(X0) to the manifold X at the point β0. It thus
provides a measure of the discrepancy, for given n, between the model being
tested and the data-generating process.

Now consider the artificial regression

(α/σ0)n−1/2MXa = MXZd + residuals, (12.20)

where d is simply an r--vector of coefficients that will be chosen by least
squares to make this regression fit as well as possible. The plim of the total
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Figure 12.4 The null and alternative hypotheses, the DGP, and the angle φ

sum of squares for this regression is expression (12.19) divided by σ2
0 . The

plim of the explained sum of squares is the NCP (12.18). Thus the asymptotic
uncentered R2 from regression (12.20) is

plim
(
n−1a>MXZ

)
plim

(
n−1Z>MXZ

)−1
plim

(
n−1Z>MXa

)
plim

(
n−1a>MXa

) . (12.21)

Like all R2’s, this one can be interpreted as the squared cosine of a certain
angle. In this case, it is the squared cosine of the plim of the angle between
the vector αn−1/2MXa and the projection of that vector onto the subspace
S(X0,Z0). The plim of that projection is

plim
n→∞

(
αn−1/2MXZ

(
n−1Z>MXZ

)−1(
n−1Z>MXa

))
. (12.22)

If we let φ denote the plim of the angle between αn−1/2MXa and the projec-
tion (12.22), then it is easily seen by the definition of a cosine that cos2φ is
equal to the R2 (12.21).4

All of this is shown in Figure 12.4, for the case in which the null hypo-
thesis has one parameter and a single restriction is being tested. The one-
dimensional linear subspace S(X0) corresponds to the null hypothesis, and
the two-dimensional linear subspace S(X0,Z0) corresponds to the alternative
hypothesis. If the null hypothesis were nonlinear, it could be shown on the
figure as a curved one-dimensional manifold tangent to S(X0) at the point
(β0,0). If the alternative hypothesis were nonlinear, it could be shown on
the figure as a two-dimensional curved manifold tangent to S(X0,Z0) at the
point (β0,0), with the one-dimensional manifold corresponding to the null

4 Recall that if a and b are arbitrary vectors, the cosine of the angle between
them is (a>b)/(‖a‖‖b‖). In the special case for which a = Pb, P being a
projection matrix, this simplifies to ‖Pb‖/‖b‖.
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hypothesis embedded in it. To avoid complicating the figure, we have not
shown either of these manifolds. Thus the figure as drawn implicitly assumes
that both the null and alternative hypotheses are linear regression models.
This assumption, however, has no effect at all on the geometry of the situation,
because everything depends on linear approximations anyway.

The DGP is simply denoted a in the figure. Of course, the DGP is really
x(β0) + αn−1/2a, but we can treat x(β0) as the origin, and since the factor
of αn−1/2 is irrelevant to the geometry, it is arbitrarily set to 1 for the time
being. The important point about the DGP in the figure is that it does not
belong to the alternative S(X0,Z0). It could belong to it, of course, but as
the figure makes clear, that would be a very special case. In the figure, we
first project a onto S⊥(X0), yielding the point MXa. Although a is the
discrepancy between the simple null x(β0) and the DGP, what matters for
testing is MXa, because it is the discrepancy between a and the closest point
in S(X0) (which is of course PXa). In the figure, we next project MXa onto
S(X0,Z0). This is equivalent to running regression (12.20). The squared
cosine of the angle φ between MXa and its projection onto S(X0,Z0) is then
the finite-sample equivalent of expression (12.21).

The reason we talk about tests in regression directions should now be
clear. Taking x(β0) as the origin, any model at all corresponds to some direc-
tion or set of directions. The null hypothesis corresponds to all the directions
in which one can move away from x(β0) while still staying in S(X0). In Figure
12.4 there are only two such directions, because S(X0) is one-dimensional, but
this is a very special case. Similarly, the alternative hypothesis corresponds to
all the directions in which one can move away from x(β0) while still staying in
the subspace S(X0,Z0). Finally, the DGP corresponds to the single direction
given by the vector a. The set of all possible regression directions consists of
all directions in En. This is, locally, the set of all possible DGPs that retain
the regression structure of the model.

Let us now return to the algebra of the situation. The above results allow
us to rewrite the NCP (12.18) as

σ−20 α2 plim
n→∞

(
n−1a>MXa

)
cos2φ. (12.23)

We have already seen that, for a given number of degrees of freedom r, the
asymptotic power of the test statistic (12.04) will depend solely on this NCP.
Thus expression (12.23) tells us everything we need to know about what de-
termines the asymptotic power of tests in regression directions.

The NCP (12.23) is the product of two factors. The first factor may be
written as

α2 plim
(
n−1a>MXa

)
σ2
0

. (12.24)

The numerator of (12.24) is expression (12.19). It is the square of the plim
of the distance between the DGP (12.06) and the closest point on a linear
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approximation to the null hypothesis around the simple null hypothesis
(12.07). The denominator is the variance of the innovations u in the DGP
(12.06), indicating that as the DGP becomes noisier it will become harder
to reject any null hypothesis. If we double the squared distance between the
DGP and the null, and also double σ2

0 , the ratio (12.24) remains constant,
indicating that our ability to detect the fact that the null is false will remain
unchanged. The important point about this ratio is that it does not depend
in any way on Z. It will be the same for all tests in regression directions of
any given null hypothesis with any given data set.

The most interesting factor in expression (12.23) is the second one, cos2φ.
It is solely through this factor that the choice of Z affects the NCP. A test will
have maximal power, for a given number of degrees of freedom, when cos2φ
is 1, that is, when the artificial regression (12.20) has an asymptotic R2 of 1.
This will be the case whenever the vector a lies in the subspace S(X0,Z0)
but not in the space S(X0). In other words, it will be the case whenever the
DGP is a special case of the alternative hypothesis against which the test is
constructed, but does not satisfy the null hypothesis.

On the other hand, a test will have power equal to its size (and hence
no useful power at all) when cos2φ is zero. This will evidently occur when
a lies in S(X0), which means that the null hypothesis (or at least a linear
approximation to it) is true. It will also occur when MXa is asymptotically
orthogonal to MXZ, something which in general might seem to be highly
unlikely. However, special features of a model, or of the sample design, may
make such a situation less uncommon than one might think. Nevertheless, it
is probably not very misleading to assert that, when a null hypothesis is false
in a regression direction, most tests in regression directions can be expected
to have some power, although perhaps not very much.

When cos2φ is 1, the NCP (12.23) is just

α2

σ2
0

plim
n→∞

(
1−
n
a>MXa

)
. (12.25)

Since cos2φ = 1 implies that MXa belongs to S(MXZ), this expression can
also be written as

α2

σ2
0

plim
n→∞

(
1−
n
d>Z>MXZd

)
(12.26)

for some vector d. In a conventional analysis of power based on sequences
of local alternatives — for example Engle (1984) — the null hypothesis would
be y = x(β,0) + u, the alternative would be y = x(β,γ) + u, and the
DGP would be y = x(β0, αn

−1/2γ0) + u. Then Z would be the matrix Xγ

with typical element ∂xt(β,γ)/∂γj , evaluated at (β0,0), and d would be the
vector γ0. The NCP (12.26) would then be

α2

σ2
0

plim
n→∞

(
1−
n
γ0
>Xγ

>MXXγγ0

)
.
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The conventional analysis is thus a special case of the analysis based on drift-
ing DGPs.

The foregoing results allow us to define two new concepts, which are
sometimes very useful in thinking about tests. The implicit alternative hy-
pothesis of a test is the set of DGPs (that is, the model or set of models) for
which the test will have cos2φ of unity. Locally, this set must have dimension
k+ r, that is, the dimension of the null hypothesis plus the number of degrees
of freedom of the test statistic. Note that this may include more than just
the explicit alternative against which the test was constructed, because there
may be many models that are locally equivalent in the neighborhood of the
null hypothesis; see Godfrey (1981) and Godfrey and Wickens (1982). As an
example of this, we saw in Section 10.8 that a GNR for which the test column
is a vector of residuals lagged once may be used to test against the hypothe-
ses that a regression model has either AR(1) or MA(1) errors. Since treating
either of these hypotheses as the explicit alternative yields exactly the same
test, they must both belong to the implicit alternative of this test.

In contrast, the implicit null hypothesis of a test is the set of DGPs
against which that test will have cos2φ of zero and will thus asymptotically
have no useful power at all. The implicit null hypothesis must include the
actual null hypothesis but may well include other DGPs as well, since cos2φ
will be zero whenever a>MXZ = 0. In some cases, it is a desirable feature of
a test if its implicit null is large, because then the test will have power only
in certain directions. In other cases, however, we want tests to have power in
many directions and would like the implicit null to be as small as possible.

These results make it clear that there is always a tradeoff when we choose
what regression directions to test against. At one extreme, we may choose
to test against a very restricted alternative, using a test that has only one
degree of freedom. At the other extreme, we may choose to test against a
very general alternative, using a test with a great many degrees of freedom.
By increasing the number of columns in Z, we can always increase cos2φ, or
at worst leave it unchanged, which by itself will increase the power of the
test. But doing so also increases r, the number of degrees of freedom, which
by itself reduces the power of the test. Thus power may either rise or fall as
we increase the number of directions in which we test. This tradeoff is at the
heart of a number of controversies in the literature on hypothesis testing.

Consider the relative power of a test for AR(1) errors and a test for
AR(p) errors. The former has one degree of freedom, while the latter has p
degrees of freedom. The test against AR(1) errors thus has a smaller (i.e.,
lower-dimensional) implicit alternative and a larger implicit null than the test
against AR(p) errors. If the error terms actually followed an AR(1) process,
it would clearly be optimal to test against AR(1) errors, because such a test
would have r = 1 and cos2φ = 1. The test against AR(p) errors would also
have cos2φ = 1 in this case, but it would be less powerful than the test against
AR(1) errors because p > 1. If the errors were generated by an AR process
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of order greater than 1 but no greater than p, the situation would be quite
different. Now cos2φ would be less than 1 for the test against AR(1) errors,
and equal to 1 for the test against AR(p) errors. The difference in degrees
of freedom could still make the former test more powerful than the latter
in certain cases. In certain other cases, however, the DGP would actually
belong to the implicit null of the test against AR(1) errors, and the latter
would therefore have power equal to its size, asymptotically.

The discussion of the previous paragraph applies almost without change
to many different situations. For example, there has been some controversy
in the literature on the relative merits of one-degree-of-freedom nonnested hy-
pothesis tests and many-degree-of-freedom encompassing tests, both of which
were discussed in Section 11.3; see Dastoor (1983) and Mizon and Richard
(1986). The nonnested tests are analogous to testing against AR(1) errors,
the encompassing tests to testing against AR(p) errors. We see immediately
that nonnested tests must have a smaller implicit alternative and a larger
implicit null than encompassing tests. The former will be more powerful than
the latter if the data were actually generated by the nonnested alternative
against which the test was constructed but may be more or less powerful
otherwise.

If we temporarily drop our assumption of drifting DGPs and assume
that the above results still hold, we see that the tradeoff between cos2φ and
degrees of freedom is affected by the sample size. If n increases because more
information becomes available to an investigator, the NCP can be expected
to increase, since in those circumstances the DGP is not drifting toward the
null as the sample size grows. Thus a given change in cos2φ may be expected
to have a larger effect on power the larger is n. On the other hand, the effect
of r on the critical value for the test is independent of sample size. Thus,
when n is small, it is particularly important to use tests with few degrees of
freedom, while when n is large, it becomes feasible to look in many directions
at once so as to maximize cos2φ.

Strictly speaking, the preceding analysis is invalid, since by abandoning
the device of drifting DGPs we have invalidated the results on which it is
based. However, Monte Carlo work generally suggests that those results work
well as approximations for a fixed DGP and a fixed sample size, provided
that the DGP is sufficiently close to the null hypothesis and n is sufficiently
large.5 If we treat them as approximations, then it does make sense to ask
what happens as we change n while keeping the DGP fixed.

If we were confident that the null could be false in a single direction only
(that is, if we knew exactly what the vector amight be), the optimal procedure

5 See, for example, Davidson and MacKinnon (1985c). The case examined there
was not actually a test in regression directions, but as we will see in Chapter 13,
the theory for the power of tests in general is very similar to the theory for the
power of tests in regression directions.
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would be to have only one column in Z, that column being proportional to a.
In practice, we are rarely in that happy position. There are normally a number
of things that we suspect might be wrong with our model and hence a large
number of regression directions in which to test. Faced with this situation,
there are at least two ways to proceed.

One approach is to test against each type of potential misspecification
separately, with each test having only one or a few degrees of freedom. If the
model is in fact wrong in one or a few of the regression directions in which
these tests are carried out, such a procedure is as likely as any to inform us of
that fact. However, the investigator must be careful to control the overall size
of the test, since when one does, say, 10 different tests each at the .05 level,
the overall size could be as high as .40; see Savin (1980). Moreover, one should
avoid jumping to the conclusion that the model is wrong in a particular way
just because a certain test statistic is significant. One must remember that
cos2φ will often be well above zero for many tests, even if only one thing is
wrong with the model.

Alternatively, it is possible to test for a great many types of misspecifi-
cation at once by putting all the regression directions we want to test against
into one big Z matrix. This maximizes cos2φ and hence maximizes the chance
that the test is consistent, and it also makes it easy to control the size of the
test. But because such a test will have many degrees of freedom, power may
be poor except when the sample size is large. Moreover, if such a test rejects
the null, that rejection gives us very little information as to what may be
wrong with the model. Of course, the coefficients on the individual columns
of Z in the test regression may well be informative.

This raises the question of what to do when one or more tests reject the
null hypothesis. That is a very difficult question, and we will discuss it in
Section 12.7.

12.6 Asymptotic Relative Efficiency

Since all consistent tests reject with probability one as the sample size tends
to infinity, it is not obvious how to compare the power of tests of which the
distributions are known only asymptotically. Various approaches have been
proposed in the statistical literature, of which the best known is probably
the concept of asymptotic relative efficiency, or ARE. This concept, which
is closely related to the idea of local alternatives, is due to Pitman (1949),
and has since been developed by many other authors; see Kendall and Stuart
(1979, Chapter 25). Suppose that we have two test statistics, say τ1 and τ2,
both of which have the same asymptotic distribution under the null and both
of which, like all the test statistics we have discussed in this chapter, are root-n
consistent. This means that, for the test to have a nondegenerate asymptotic
distribution, the drifting DGP must approach the simple null hypothesis at a
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rate proportional to n−1/2. In this case, the asymptotic efficiency of τ2 relative
to τ1 is defined as

ARE21 = lim
n→∞

(
n1
n2

)
,

where n1 and n2 are sample sizes such that τ1 and τ2 have the same power,
and the limit is taken as both n1 and n2 tend to infinity. If, for example,
ARE21 were 0.25, τ2 would asymptotically require 4 times as large a sample
as τ1 to achieve the same power.

For tests with the same number of degrees of freedom, it is easy to see
that

ARE21 =
cos2φ2
cos2φ1

.

Recall from expression (12.23) that the NCP is proportional to cos2 φ. If the
DGP did not drift, it would also be proportional to the sample size. If τ1
and τ2 are to be equally powerful in this case, they must have the same
NCP. This means that n1/n2 must be equal to cos2φ2/cos2φ1. Suppose, for
example, that cos2φ1 = 1 and cos2φ2 = 0.5. Then the implicit alternative
hypothesis for τ1 must include the DGP, while the implicit alternative for
τ2 does not. Thus the directions in which τ1 is testing explain all of the
divergence between the null hypothesis and the DGP, while the directions in
which τ2 is testing explain only half of it. But we can compensate for this
reduced explanatory power by making n2 twice as large as n1, so as to make
both tests equally powerful asymptotically. Hence ARE21 must be 0.5. See
Davidson and MacKinnon (1987) for more on this special case.

In the more general case in which τ1 and τ2 have different numbers of
degrees of freedom, calculating the ARE becomes more complicated. The
optimal test will be one for which the implicit alternative hypothesis includes
the drifting DGP (so that cos2φ = 1) and that involves only one degree of
freedom. There may of course be many asymptotically equivalent tests that
satisfy these criteria, or there may in practice be none at all. Tests that involve
more than one degree of freedom, or have cos2φ < 1, will be asymptotically
less efficient than the optimal test and hence will have AREs less than 1.

The consequences of using tests with r > 1 and/or cos2φ < 1 are illus-
trated in Table 12.1. The effect of changing cos2φ does not depend on either
the size or power of the test, but the effect of changing r depends on both of
these; see Rothe (1981) and Saikkonen (1989). The table was calculated for a
size of .05 and powers of .90 (the first entry in each cell) and .50 (the second
entry). Each entry in the table is the ARE for the specified test relative to
that for the optimal one. Thus each entry may be interpreted as the factor
by which the sample size for the optimal test may be smaller than the sample
size for the nonoptimal test if both are to have equal asymptotic power.

From Table 12.1, we see that the cost of using a test with a needlessly
large number of degrees of freedom, or with a value of cos2φ less than 1,
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Table 12.1 ARE of Other Tests Versus Optimal Test

r cos2φ: 1.0 0.8 0.5 0.2

1 1.000 0.800 0.500 0.200
1.000 0.800 0.500 0.200

2 0.830 0.664 0.415 0.166
0.775 0.620 0.388 0.155

5 0.638 0.510 0.319 0.128
0.549 0.440 0.275 0.110

10 0.512 0.409 0.256 0.102
0.418 0.334 0.209 0.084

20 0.402 0.322 0.201 0.080
0.313 0.251 0.157 0.063

50 0.283 0.227 0.142 0.057
0.210 0.168 0.105 0.042

can be modest in some cases but very substantial in others. In the worst case
tabulated, where the nonoptimal test has r = 50 and cos2φ = 0.2, the optimal
test is so much more powerful than the nonoptimal one that it is like having
a sample size more than 20 times larger.

12.7 Interpreting Test Statistics that Reject the Null

Suppose that we test a regression model in one or more regression directions
and obtain a test statistic that is inconsistent with the null hypothesis at
whatever significance level we have chosen. How are we to interpret it? We
have decided that the DGP does not belong to the implicit null hypothesis of
the test, since we have rejected the null and hence rejected the proposition that
cos2φ is zero. Does the DGP belong to the implicit alternative, then? Possibly
it does, but by no means necessarily. The NCP is the product of expression
(12.24), which does not depend in any way on the alternative we are testing
against, and cos2φ, which does. For a given value of (12.24), the NCP will be
maximized when cos2φ = 1. But the fact that the NCP is nonzero (which is
all that a single significant test statistic tells us) merely implies that neither
cos2φ nor expression (12.24) is zero. Thus all we can conclude from a single
significant test statistic is that the DGP is not a special case of the model
under test and that the directions represented by Z have some explanatory
power for the direction a in which the model is actually false.

If we are going to make any inferences at all about the directions in which
a model under test is wrong, we will evidently have to calculate more than one
test statistic. Since expression (12.24) is the same for all tests in regression
directions, any differences between the values of the various test statistics
must be due to differences in numbers of degrees of freedom, differences in
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cos2φ, or simple randomness (including of course differences between finite-
sample and asymptotic behavior of the tests). Suppose that we test a model
against several sets of regression directions, represented by regressor matrices
Z1, Z2, and so on. Suppose further that the jth regressor matrix, Zj , has
rj columns and generates a test statistic Tj , which is distributed as χ2(rj)
asymptotically under the null. Each of the test statistics Tj can be used to
estimate the corresponding NCP, say Λj . Since the mean of a noncentral
chi-squared random variable with r degrees of freedom is r plus the NCP,
the obvious estimate of Λj is Tj − rj . Of course, this estimator is necessarily
inconsistent, since under a drifting DGP the test statistic is a random variable
no matter how large the sample size. Nevertheless, it seems reasonable that
if Tl − rl is substantially larger than Tj − rj for all j 6= l, the logical place to
look for a better model is in the directions tested by Zl.

It is far from certain that Zl, the regressor matrix with the highest esti-
mated NCP, actually represents truly omitted directions. After all, it is quite
possible that we have not tested in the right direction at all, in which case
MXa may not lie in the subspace S(X0,Zj) for any j. Nevertheless, modify-
ing the model in the directions represented by Zl will surely be a reasonable
thing to do in many cases, especially when the number of columns in Zl is
small and Tl−rl is substantially larger than any of the other estimated NCPs.
One possible strategy is to construct a matrix of test regressors ZJ so that it
spans the subspace spanned by all of the Zj ’s jointly. That is, pick ZJ so that
its columns are all of the columns which appear in any of the other Zj ’s, less
any columns which are redundant. Thus the test statistic TJ corresponding to
ZJ must be larger than any of the other test statistics. In this case, if TJ were
not much larger than Tl, and in particular did not exceed it by much more
than the difference in degrees of freedom, one might feel reasonably confident
that the directions represented by Zl adequately captured the discrepancy
between the null and the DGP.

It may help to fix the ideas of this chapter if we consider a simple and
commonly encountered example. Suppose that the null hypothesis is

H0 : yt = Xtβ + ut, ut ∼ IID(0, σ2),

where Xt is a row vector, and that we are interested in testing it against two
different alternative hypotheses,

H1 : yt = Xtβ + ρ(yt−1 −Xt−1β) + ut, ut ∼ IID(0, σ2), and (12.27)

H2 : yt = Xtβ + δyt−1 + ut, ut ∼ IID(0, σ2). (12.28)

Thus the null hypothesis H0 is nested within both H1 and H2. The former
alternative modifies it by having error terms that follow an AR(1) process,
while the latter modifies it by adding a lagged dependent variable.
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Our objective is to calculate the NCPs and corresponding values of cos2φ
for tests of H0 against both H1 and H2 when the data are generated by
(12.28). Thus we will suppose that the data are generated by a drifting DGP
that is a special case of H2. This drifting DGP can be written as

yt = Xtβ0 + α0n
−1/2(Xt−1β0 + ut−1) + ut, ut ∼ IID(0, σ2

0). (12.29)

Note that this DGP does not involve the recursive calculation of yt, as (12.28)
seems to require, because (12.29) is locally equivalent to (12.28) in the neigh-
borhood of δ = 0 and α0 = 0.

When we test H0 against H2, we will be testing in the direction of the
DGP and cos2φ will evidently be unity. Using expression (12.25), we see that
the NCP for this test is

Λ22 ≡
α2
0

σ2
0

plim
n→∞

(
1−
n

(
X−1β0 + u−1

)>MX

(
X−1β0 + u−1

))
, (12.30)

where u−1 and X−1 denote, respectively, the vector with typical element ut−1
and the matrix with typical row Xt−1. Here X−1β0 +u−1 is playing the role
of the vector a in expression (12.25). The notation Λ22 means that H2 is the
alternative against which we are testing and that the DGP belongs to H2.
Taking the probability limit, (12.30) becomes

Λ22 =
α2
0

σ2
0

(
σ2
0 + plim

n→∞

1−
n

∥∥MXX−1β0

∥∥2)
= α2

0

(
1 + σ−20 plim

n→∞

1−
n

∥∥MXX−1β0

∥∥2).
Now let us see what happens when we test H0 against H1. In the neigh-

borhood of H0, the latter is locally equivalent to

y = Xβ + ρu−1 + u, u ∼ IID(0, σ2I), (12.31)

which avoids the recursive calculation that (12.27) seems to require. Because
AR(1) and MA(1) processes are locally equivalent near the point where their
respective parameters are zero, this looks like a model with an MA(1) error
process. We see from (12.31) that u−1 plays the role of Z. Once again,
X−1β0 + u−1 plays the role of a. Thus, from (12.18), the NCP is given by

Λ12 =
α2
0

σ2
0

plim
n→∞

(
1−
n

(X−1β0 + u−1)>MXu−1

)
plim
n→∞

(
1−
n
u−1
>MXu−1

)−1
× plim
n→∞

(
1−
n
u−1
>MX(X−1β0 + u−1)

)
. (12.32)
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Because

plim
n→∞

(
1−
n

(X−1β0 + u−1)>MXu−1

)
= plim
n→∞

(
1−
n

(
β0
>X−1

>MXu−1 + u−1
>MXu−1

))
= σ2

0 ,

expression (12.32) simplifies to

α2
0

σ2
0

σ2
0(σ−20 )σ2

0 = α2
0.

Since the data were generated by a special case of H2, cos2φ for the test
against H1 is simply the ratio of the NCP Λ12 to the NCP Λ22. Thus

cos2φ = α2
0

(
α2
0

(
1 + σ−20 plim 1−

n

∥∥MXX−1β0

∥∥2))−1
=

(
1 +

plimn−1‖MXX−1β0‖2

σ2
0

)−1
.

(12.33)

The second line of (12.33) provides a remarkably simple expression for
cos2φ for this special case. It depends only on the ratio of the probability
limit of n−1 times the squared length of the vector MXX−1β0 to the variance
of the error terms in the DGP (12.29). As this ratio tends to zero, cos2φ
tends to unity. Conversely, as this ratio tends to infinity, cos2φ tends to zero.
The intuition is very simple. As the ratio of plimn−1‖MXX−1β0‖2 to σ2

0

tends to zero, because for instance β0 tends to zero, MXy−1 (where y−1 has
typical element yt−1) becomes indistinguishable from MXu−1. When that
happens, a test against H1 becomes indistinguishable from a test against H2.
On the other hand, as the ratio tends in the other direction toward infinity,
the correlation between yt−1 and ut−1 tends to zero, and the directions in
which H1 and H2 differ from H0 tend to become mutually orthogonal.

The foregoing analysis could just as easily have been performed under
the assumption that the data were generated by a special case of H1. The
drifting DGP would then be

yt = Xtβ0 + ρ0n
−1/2ut−1 + ut, ut ∼ IID(0, σ2

0).

When we test H0 against H1, cos2φ is now unity, and by an even simpler
argument than the one that led to (12.32) we see that the NCP is

Λ11 =
ρ20
σ2
0

plim
n→∞

(
1−
n
u−1
>MXu−1

)
= ρ20.
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Similarly, when we test H0 against H2, the NCP is

Λ21 =
ρ20
σ2
0

plim
n→∞

(
1−
n
u−1
>MX(X−1β0 + u−1)

)
× plim
n→∞

(
1−
n

(X−1β0 + u−1)>MX(X−1β0 + u−1)
)−1

× plim
n→∞

(
1−
n

(X−1β0 + u−1)>MXu−1

)
.

This simplifies to

ρ20
σ2
0

σ2
0

(
σ2
0 + plim 1−

n

∥∥MXX−1β0

∥∥2)−1σ2
0

= ρ20

(
1 + σ−20 plim 1−

n

∥∥MXX−1β0

∥∥2)−1.
Evidently, cos2φ for the test of H0 against H2 is the right-hand expression
here divided by ρ20, which is(

1 +
plimn−1‖MXX−1β0‖2

σ2
0

)−1
. (12.34)

This last result is worth comment. We have found that cos2φ for the
test against H2 when the data were generated by H1, expression (12.34), is
identical to cos2φ for the test against H1 when the data were generated by H2,
expression (12.33). This result is true not just for this example, but for every
case in which both alternatives involve one-degree-of-freedom tests. Geomet-
rically, this equivalence simply reflects the fact that when z is a vector, the
angle between αn−1/2MXa and the projection of αn−1/2MXa onto S(X, z),
which is

αn−1/2MXz
(
z>MXz

)−1
z>MXa,

is the same as the angle between αn−1/2MXa and αn−1/2MXz. The reason
for this is that (z>MXz)−1z>MXa is a scalar when z is a vector. Hence, if
we reverse the roles of a and z, the angle is unchanged. This geometrical fact
also results in two numerical facts. First, in the regressions

y = Xα+ γz + residuals and

z = Xβ + δy + residuals,

the t statistic on z in the first is equal to that on y in the second. Second, in
the regressions

MXy = γMXz + residuals and

MXz = δMXy + residuals,

the t statistics on γ and δ are numerically identical and so are the uncen-
tered R2’s.
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The analysis of power for this example illustrates the simplicity and gen-
erality of the idea of drifting DGPs. Although the case considered is rather
simple, it is very commonly encountered in applied work. Regression mod-
els with time-series data frequently display evidence of serial correlation in
the form of low Durbin-Watson statistics or other significant test statistics
for AR(1) errors. We have seen that (except when plimn−1‖MXX−1β0‖2 is
large relative to σ2

0) this evidence is almost as consistent with the hypothe-
sis that the model should have included a lagged dependent variable as with
the hypothesis that the error terms actually follow an AR(1) process. Thus
one should be very cautious indeed when one has to interpret the results of
a test against AR(1) errors that rejects the null. One would certainly want
to consider several possible alternative models in addition to the alternative
that the errors actually follow an AR(1) process. At the very least, before
even tentatively accepting that alternative, one would want to subject it to
the tests for common factor restrictions that we discussed in Section 10.9.

In the foregoing example, it was easy to evaluate analytically the values
of Λ and cos2φ in which we were interested. This will of course not always be
the case. However, it is always possible to calculate approximations to these
quantities numerically. To do this one simply has to run regression (12.20),
evaluating X(β), a, and Z at assumed (or estimated) parameter values. If a
and/or Z were stochastic, one would have to generate them randomly and
use a very large number of generated observations (which can be obtained by
repeating the actual observations as many times as necessary) so as to approx-
imate the desired probability limits. The uncentered R2 from the regression
approximates cos2φ and the explained sum of squares approximates Λ.

12.8 Test Statistics that Do Not Reject the Null

For most of this chapter, we have been concerned with how to interpret test
statistics that reject the null hypothesis. In many instances, of course, test
statistics fail to reject. Thus it is just as important to know how to interpret a
failure to reject as it is to know how to interpret a rejection. Even though we
may sometimes speak about “accepting” a null hypothesis when one or more
tests fail to reject it, any such acceptance should obviously be provisional and
tempered with caution. Just how cautious we should be depends on the power
of the test or tests that did not reject the null. We can be most confident
about the validity of the null hypothesis if tests that are known to have high
power against the alternatives of interest fail to reject it.

As we have seen, the power of a test depends on the way the data are
actually generated. In a recent paper, Andrews (1989) has suggested that, as
an aid to interpreting nonrejection of a null hypothesis by a particular test, one
might consider the power the test would have under the DGPs associated with
alternative hypotheses of interest. It seems reasonable that such alternatives
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should not be ruled out in favor of the null on the basis of tests that would,
under those alternatives, have had low probability of rejecting the null. In
other words, a test cannot be held to have discriminated against an alternative
in favor of the null if it would have little chance of rejecting the null even if
the alternative were true.

The analytical tool used by Andrews is the inverse power function, which,
as its name implies, is related to the power function we discussed in Sec-
tion 12.3. For present purposes, we assume that the alternative hypotheses
of interest can be expressed in terms of a set of parameters and that the
null corresponds to a set of restrictions on these parameters. Then, for given
test size α and for given desired power π, the inverse power function for a
given test statistic specifies parameter values characterizing DGPs that have
power π to reject the null hypothesis on a test of size α. If the parameter
values given by the inverse power function are close to parameter values that
obey the restrictions of the null hypothesis, a failure to reject the null can
be interpreted to mean that the null is not seriously false in any direction
corresponding to the specified alternatives. If, on the other hand, the inverse
power function yields parameter values far from the null, a failure to reject
tells us little about whether the null is true, since this failure is compatible
with many possible alternatives.

Andrews shows how to calculate inverse power functions for a wide class
of asymptotic tests for both single and multiple restrictions. We will discuss
only the single-restriction case, because it is a good deal easier to deal with
than the multiple-restriction one. Suppose the hypothesis of interest is that a
certain parameter, say θ, has a given value, say θ0. For concreteness, we may
suppose that θ is one of the parameters of a nonlinear regression function.
There are numerous asymptotically equivalent test statistics, of which the
simplest is just

θ̂ − θ0
σ̂θ

. (12.35)

Since the denominator here is an estimate of the standard error of θ̂, (12.35) is
just an asymptotic t statistic. This test statistic is asymptotically equivalent
to the signed square root of (12.04).

By considering (12.35), we are breaking our rule of considering only
asymptotically χ2 statistics. We do so in the interests of simplicity. Con-
sider the drifting DGP for which θ = θ0 + n−1/2δ, and suppose that under
this DGP σ̂θ

a
= n−1/2τ , for some τ = O(1) as n → ∞, since θ̂ is root-n con-

sistent. Then the asymptotic distribution of (12.35) is N(λ, 1), with λ = δ/τ .
This simple fact enables us to compute the asymptotic power function of the
statistic (12.35). If the critical value for a two-tailed test of size α based
on the N(0, 1) distribution is denoted by cα, the probability of rejecting the
null under our drifting DGP is the probability that a variable distributed as
N(λ, 1) has absolute value greater than cα. Letting Φ(·) denote the c.d.f. of
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the standard normal distribution, this probability is

P (α, λ) ≡ 1− Φ(cα − λ) + Φ(−cα − λ). (12.36)

In order to find the inverse power function corresponding to (12.36), we let
P (α, λ) = π for some desired level of power π. This equation implicitly
defines the inverse power function. It is easy to check from (12.36) that
P (α,−λ) = P (α, λ). Thus, if P (α, λ) = π, then P (α,−λ) = π also. However,
the nonuniqueness of λ would not arise if we were to square the test statistic
to obtain a χ2 form. No closed-form expression exists giving the (absolute)
value of λ as a function of α and π in the present example, but for any given
arguments λ is not hard to calculate numerically.

What interpretation should we give to the resulting function λ(α, π)? If
we square the asymptotically normal statistic (12.35) in order to obtain a
χ2 form, the result will have a limiting distribution of χ2(1, Λ) with Λ = λ2.
Then it appears that Λ = (λ(α, π))2 is asymptotically the smallest NCP
needed in order that a test of size α based on the square of (12.35) should
have probability at least π of rejecting the null.

Let the nonlinear regression model be written, as usual, as

y = x(β) + u, (12.37)

where the parameter of interest θ is a component of the parameter vector β. If
we denote by Xθ the derivative of the vector x(β) with respect to θ, evaluated
at the parameters β0, and by MX the projection off all the columns of X(β)

other than Xθ, then the asymptotic variance of the least squares estimator θ̂
is σ2

0(Xθ
>MXXθ)

−1, where σ2
0 is the variance of the components of u. If we

consider a DGP with a parameter θ 6= θ0, then for a given sample size n, the
parameter δ of the drifting DGP becomes n1/2(θ − θ0), and Λ = λ2 becomes

Λ =
1

σ2
0

(θ − θ0)2Xθ
>MXXθ. (12.38)

This may be compared with the general expression (12.26). Now let θ(α, π)
be the value of θ that makes Λ in (12.38) equal to (λ(α, π))2 as given above by
the inverse power function. We see that, within an asymptotic approximation,
DGPs with values of θ closer to the θ0 of the null hypothesis than θ(α, π) will
have probability less than π of rejecting the null on a test of size α.

We should be unwilling to regard a failure to reject the null as evidence
against some other DGP or set of DGPs if, under the latter, there is not a fair
probability of rejecting the null. What do we mean by a “fair probability”
here? Some intuition on this matter can be obtained by considering what we
would learn in the present context by using a standard tool of conventional
statistical inference, namely, a confidence interval. Armed with the estimate θ̂
and an estimate of its standard error, σ̂θ, we can form a confidence interval
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θ̂ − cασ̂θ, θ̂ + cασ̂θ

]
. Under the conventional assumption that the DGP is

obtained by giving specific values to the parameters of the nonlinear regression
(12.37), this confidence interval has probability close to 1−α, in large samples,
of bracketing the true parameter. Any null hypothesis characterized by a θ0
inside the confidence interval will not be rejected on a test of size α. A
confidence interval is random: It depends on the actual estimate θ̂. The
inverse power function, on the other hand, is nonrandom, and so we must be
careful not to draw false analogies. Nevertheless, it seems reasonable that,
when we wish to abstract away from actual data sets, we should refuse to
regard the event of nonrejection of a given null hypothesis as evidence against
any DGPs the parameters of which are contained in a region similar in size
to a confidence interval.

What does this mean for our choice of desired power, π? An approximate
answer to that question is very simple to find. Suppose that in (12.38) we
require that θ − θ0 divided by the standard error of θ̂ be equal to cα. This
means precisely that the difference between θ and θ0 is half the length of a
confidence interval associated with size α for the given value of the standard
error. For given α and π, the value of the inverse power function λ(α, π)
implies a value of θ, by (12.38). We may therefore ask what value of π will
yield our desired condition on the difference θ−θ0. This value of π is evidently
given as the solution of the equation λ(α, π) = cα, or, in terms of the power
function P itself, P (α, cα) = π. If we now replace P above by its explicit
expression from (12.36), we require that

π = 1− Φ(0) + Φ(−2cα) = 1−
2

+ Φ(−2cα).

For reasonable choices of α, the last term here will be very small. For instance,
if α = .05, so that cα ∼= 1.96, we find that Φ(−3.92) = .0000443. Therefore,
to a very good order of approximation, we find that π = 1

2 , independent of α.

This result is satisfying to the intuition. Moving away from the parameter
value θ0 associated with some null hypothesis by an amount that corresponds
to half the length of a confidence interval for any reasonable test size brings us
to parameter values associated with DGPs that have probability .5 of rejecting
the null on a test of the same size.

Other choices of π are of course possible. One choice that seems very
natural in some contexts is π = 1−α, for this makes the probability of Type I
error equal to the probability of Type II error in a certain sense. When we
choose a size α, we accept the fact that, with probability α, we will reject a
true null hypothesis. When we refuse to treat a failure to reject a null by a
test of size α as evidence against parameter values that generate NCPs smaller
than the inverse power function evaluated at α and 1− α, we accept the fact
that those parameter values that we do reject, based on a failure to reject the
null, would have failed to do so with probability α.

A word of caution must be uttered at this point. All of the above analysis
is based on the supposition that the true DGP belongs to the class of DGPs



432 Interpreting Tests in Regression Directions

Table 12.2 Some Values of Λ(1, α, π)

α π : .50 .90 .95 .99

0.10 2.701 8.564 10.822 15.770
0.05 3.841 10.507 12.995 18.372
0.01 6.635 14.879 17.814 24.031

that can be described by the nonlinear regression model (12.37). There ex-
ist in general many DGPs not satisfying (12.37) for which the probability of
rejecting a given null hypothesis satisfying (12.37) is small. Typically, such
DGPs would involve more or better explanatory variables than (12.37). Un-
fortunately, a rejection of or a failure to reject a hypothesis based on the
formulation (12.37) can tell us nothing about the possibility that better mod-
els exist. It is the task of the human econometrician, rather than of statistical
test procedures, to construct potentially better models that can subsequently
be subjected to formal testing procedures.

Although our theoretical exposition was facilitated by the use of the
power function (12.36) based on the normal distribution, in practice, when
one wishes to compute inverse power functions, it is easier to use the proper-
ties of the noncentral χ2 distribution. Let cα(r) denote the critical value for a
test of size α based on the central χ2 distribution with r degrees of freedom.
Then the probability that a random variable distributed as χ2(r, Λ) exceeds
cα(r) can be expressed in terms of the c.d.f. F(r,Λ)(·) of that distribution. The
required probability is just 1 − F(r,Λ)(cα(r)). Therefore, the inverse power
function is obtained by solving the following equation for Λ in terms of r, α,
and π:

π = 1− F(r,Λ)

(
cα(r)

)
.

The value of Λ so obtained may be used in a formula like (12.38) in order to
determine the actual parameter values that generate NCPs equal to Λ.

Andrews (1989) provides tables of the values of the inverse power func-
tion, which we may denote as Λ(r, α, π), for a variety of values of the argu-
ments r, α, and π, but in fact modern computer software obviates the need to
use such tables. Any program that can compute the c.d.f. of the noncentral
χ2 distribution can be used to compute the inverse power function as well.
For the benefit of readers whose computers are not at hand as they read this,
we display some typical values in Table 12.2.

Now let us consider a simple example of how the inverse power function
may be used in practice. Suppose that θ0 is unity and the standard error of
θ̂ is 0.60. Then for a test at the .05 level, the values of θ given by the inverse
power function for π = .5 are −0.176 and 2.176. Thus, for any θ between
these two values, the probability that the test will reject the null hypothesis
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is less than .5. If instead we chose π = 1 − α = .95, the values of θ given
by the inverse power function would be −0.974 and 2.974, a wider interval in
which the probability that the test will reject is less than .95.

This example illustrates the way the inverse power function is intended
to be used. It provides a simple way to see for which values of θ the test is
likely to have low or high power. The inverse power function is extremely
easy to calculate, at least for tests of single restrictions. Thus it would seem
to be worth calculating whenever a test of a single restriction fails to reject
the null hypothesis. Inverse power functions can also be computed for tests
of multiple restrictions, but the calculations are harder and interpretation is
more difficult. Readers should consult the original Andrews paper for details.

12.9 Conclusion

Asymptotic analysis is inevitably an approximation, since it ignores every-
thing that is not of the highest order in the sample size. The analysis of
power based on drifting DGPs involves an additional approximation, since it
assumes that the DGP is “close” to the null hypothesis. Thus, although the
results of this chapter have the merits of simplicity and very wide applicability,
we cannot expect them to provide good approximations in all circumstances.
In particular, if the DGP were a long way from the null hypothesis, one would
not expect the theory to perform very well.6 In that case, of course, one would
expect many tests to reject the null emphatically. Most investigators would
then start again with a less restrictive model corresponding to one of the alter-
natives against which the original null hypothesis was rejected, which would
presumably be closer to the DGP.

The objective of this chapter is not to provide a foolproof technique
for choosing a correctly specified model. Such a technique does not exist.
Rather, it is to provide a framework within which to interpret the results
of hypothesis tests. The temptation to interpret a significant test statistic
as lending support to the alternative hypothesis is often very strong. Think
of how often one observes a t statistic of, say, 10 and concludes that the
parameter to which it corresponds is definitely nonzero. As we have seen, such
a conclusion is quite unjustified. We may certainly conclude that the model
with that parameter set to zero is seriously misspecified, and, in the linear
case, we may reasonably suspect that the variable to which the parameter
corresponds is highly correlated with whatever is really missing from the rest
of the model. But a single significant t statistic, by itself, can never tell us
why the model with that parameter set to zero is misspecified. On the other
hand, as we saw in Section 12.8, an insignificant test statistic is of interest

6 Nelson and Savin (1990) analyze a simple example in which the asymptotic
local power of a test statistic provides a very poor guide to its actual power
when the DGP is some distance from the null hypothesis.
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only if the test would have had good power against economically interesting
alternatives.

In the next chapter, we will take up the topic of hypothesis testing again,
this time in the context of maximum likelihood estimation. Maximum likeli-
hood theory provides a convenient framework for developing many procedures
which test in nonregression directions, that is, in directions which do not sim-
ply correspond to different specifications of the regression function. The tests
for heteroskedasticity that we discussed in Section 11.5 are examples of such
tests; they test in skedastic directions instead of regression directions (see
Section 16.5). Most of the results of this chapter are true, in slightly modi-
fied form, for tests in nonregression as well as regression directions; we will
discuss this to some extent in the next chapter. They are also true for models
estimated by GLS and/or IV procedures.

Terms and Concepts

asymptotic distribution (of a test
statistic)

asymptotic power function
asymptotic relative efficiency (ARE)
asymptotically equivalent tests
biased test
consistency (of a test)
drifting DGP
explicit alternative hypothesis
implicit alternative hypothesis
implicit null hypothesis

inverse power function
noncentral χ2 distribution
noncentrality parameter (NCP)
nonregression directions
power function
regression directions
sequence of local alternatives
simple null hypothesis
size-power tradeoff curve
skedastic directions
useful power



Chapter 13

The Classical Hypothesis Tests

13.1 Introduction

We first encountered hypothesis tests based on the LM, Wald, and LR prin-
ciples in Chapter 3. However, the three classical test statistics themselves,
often irreverently referred to as the “Holy Trinity,” were not introduced until
Section 8.9 because, if the tests are to be called classical, they must be carried
out in the context of maximum likelihood (ML) estimation. As we empha-
sized in Chapter 8, ML estimation imposes a more restrictive setting on us
than NLS or IV estimation does, because the DGPs of an estimated model
must be completely characterized by the model parameters. This implies that
we must make strong distributional assumptions if we wish to use ML esti-
mation. In return for this, ML allows us to estimate a much wider variety of
models than does NLS. Moreover, as we will see in this chapter, tests based
on ML estimates are much more widely applicable than those used in an NLS
context. This means that we will be able to construct tests in directions other
than the regression directions studied in detail in the last chapter.

Fortunately, using ML does not oblige us to abandon the use of artificial
regressions. Although the Gauss-Newton regression, which we have used so
much in the context of least squares and IV estimation, is not in general
applicable to models estimated by ML, we introduce in Section 13.7 another
artificial regression that is. It is the outer-product-of-the-gradient regression,
or OPG regression. The OPG regression can be used for covariance matrix
estimation, hypothesis testing, one-step efficient estimation, and so on, in
the ML context, in exactly the same way that the GNR can be used in the
NLS and IV context. Later in the book, we will encounter other artificial
regressions, which are usually better behaved but less widely applicable than
the OPG regression.

This chapter is organized as follows. The next section provides a geo-
metrical discussion of the three classical test statistics. Section 13.3 then
demonstrates that they are asymptotically equivalent under certain condi-
tions. Section 13.4 deals with the special case of linear regression models and
shows how the classical test statistics are related to the familiar t and F statis-
tics. Section 13.5 discusses the various ways in which the information matrix
may be estimated, and how this affects LM and Wald statistics that use these

435
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estimates. Section 13.6 deals with the important issue of reparametrization
and how it affects the classical test statistics. It also introduces the concept
of locally equivalent alternative hypotheses. Section 13.7 then introduces the
OPG regression and briefly discusses C(α) tests. Finally, some suggestions
for further reading are provided in Section 13.8.

13.2 The Geometry of the Classical Test Statistics

We start, as in Section 8.9, with a parametrized model that we call the unre-
stricted model and then consider restrictions on its parameters, which implic-
itly define the restricted model. The null hypothesis is that the restrictions
are true; the alternative or maintained hypothesis is that the unrestricted
model is true. Both models are characterized by a loglikelihood function of
the form (8.10), that is, a sum of contributions from the observations in the
sample. Thus, for the unrestricted model, we have the loglikelihood function
for a sample of size n:

`(yn,θ) =
n∑
t=1

`t(y
t,θ). (13.01)

Recall that yt denotes a sample of size t, that is, a vector with components
ys, s = 1, . . . , t ; these components may be vectors rather than scalars, but
we treat them as scalars for purposes of notation. Notice that `t depends
on yt rather than simply on yt, because there may be lagged dependent vari-
ables or other forms of dependence among the yt’s. We will without further
comment assume that any model of the form (13.01) satisfies the regularity
conditions provided in Chapter 8 to ensure the existence, consistency, asymp-
totic normality, and asymptotic efficiency of the ML estimator for the model.
The invariance of this estimator under reparametrizations of the model im-
plies that we may, when convenient, use smooth reparametrizations for the
purposes of obtaining certain results.

The set of DGPs generated as the parameter vector θ varies over a para-
meter space Θ1 ⊆ Rk constitutes the unrestricted model, which we will denote
by M1. The alternative hypothesis is satisfied by some data set if the data
were actually generated by a DGP belonging to M1. The restricted, or null,
model, M0, is a subset of the unrestricted model M1. It is generated from the
model (13.01) by the imposition of restrictions of the form

r(θ) = 0, where r : Θ1 → Rr, r < k. (13.02)

We assume that the functions r(θ) which express the restrictions are smooth
in θ and also that the parameter space Θ0 associated with M0 is a smooth
(k − r)--dimensional subspace of Θ1. The null hypothesis is satisfied by a
particular set of data if the data were generated by a DGP characterized by
a parameter vector in the subspace Θ0. As in Chapter 8, we will denote the
restricted estimates by θ̃ and the unrestricted estimates by θ̂.
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The first classical test is the LM test, which is based exclusively on the
restricted estimates θ̃. As we saw in Section 8.9, it can be based either on the
Lagrange multipliers of a restricted maximization problem or on the gradient
vector (or score vector) of the loglikelihood function. In its score form, it was
given in equation (8.77):

LM ≡ n−1g̃>Ĩ−1g̃. (13.03)

Recall from (8.13) that the gradient vector g(θ) is defined as the column vector
of partial derivatives of the loglikelihood function at θ, that the information
matrix I(θ) is defined in (8.20), (8.21), and (8.22), and that g̃ and Ĩ denote
these quantities evaluated at θ̃. For ease of notation in what follows, we
will write I instead of nI, since that will save us from writing a great many
explicit powers of n. In the next section, however, many of the powers of n
will need to be restored when we embark on some asymptotic theory. Using
the I notation, (13.03) can be rewritten as

LM ≡ g̃>Ĩ−1g̃. (13.04)

The second classical test, the Wald test, is based exclusively on the unre-
stricted estimates θ̂. Since the null hypothesis requires that r(θ) = 0, it can
be tested by seeing if r(θ̂) is or is not significantly different from zero. We
saw in equation (8.78) that a suitable test statistic is

W = n r̂>
(
R̂ Î−1R̂>

)−1
r̂ = r̂>

(
R̂Î−1R̂>

)−1
r̂, (13.05)

where R(θ) ≡ Dθr(θ), and the hats on r and R mean, as usual, that these
quantities are to be evaluated at θ̂.

The third and final classical test statistic is the likelihood ratio statistic.
It was defined in (8.68):

LR = 2(ˆ̀− ˜̀), (13.06)

where again ˆ̀≡ `(θ̂) and ˜̀≡ `(θ̃).

In order to investigate the relationships among the classical test statistics,
we initially make a simplifying approximation. It is that the Hessian of the
loglikelihood function is constant in the entire neighborhood of its maximum.
This approximation is equivalent to assuming that the loglikelihood function
is a quadratic function. If the approximation were exactly true, then the
loglikelihood function could be written as

`(θ) = ˆ̀+ 1−
2

(θ − θ̂)>nH(θ − θ̂),

where the matrix H, which denotes the Hessian divided by n, is constant,
positive definite, independent of θ, and O(1). Since the Hessian is constant,



438 The Classical Hypothesis Tests

it must be equal to minus the information matrix for all sample sizes and not
just asymptotically. Thus we may replace nH by −I:

`(θ) = ˆ̀− 1−
2

(θ − θ̂)>I(θ − θ̂). (13.07)

Evaluating this expression at θ̃ and substituting into the definition of the LR
statistic, (13.06), we see that, when the loglikelihood function is quadratic,
the LR statistic can be rewritten as

LR = (θ̃ − θ̂)>I(θ̃ − θ̂). (13.08)

Now consider the LM statistic. From (13.07), it is easy to see that the
gradient g̃ is just −I(θ̃− θ̂). Then, from (13.04), it follows that LM is equal
to (θ̃ − θ̂)>I(θ̃ − θ̂), which is simply expression (13.08). Thus we see that the
LM and LR statistics are numerically equal when the loglikelihood function
is quadratic.

Proving that these two statistics are equal to the Wald statistic in this
special case is a little bit harder. We begin by making another assumption,
one which, as we will see later, does not in fact entail any loss of generality.
It is that the restrictions associated with the null hypothesis take the form

θ2 = 0. (13.09)

Here we have partitioned the parameter vector as θ = [θ1
.... θ2], with θ2

an r--vector and θ1 therefore a (k − r)--vector. We can also partition the
information matrix so as to conform to this partition of θ:

I =

[
I11 I12

I21 I22

]
.

With θ and I partitioned in this way, expression (13.07) for the loglikelihood
function becomes

`(θ1,θ2) = ˆ̀− 1−
2

[
θ1 − θ̂1
θ2 − θ̂2

]>[
I11 I12

I21 I22

] [
θ1 − θ̂1
θ2 − θ̂2

]
. (13.10)

At the restricted MLE, (θ̃1,0), the first-order condition for a restricted
maximum must be satisfied. By differentiating (13.10) with respect to θ1 and
evaluating the result at θ2 = 0, we find that this first-order condition is

0 = D1`(θ̃1,0) = −
(
I11(θ̃1 − θ̂1)− I12θ̂2

)
.

From this it follows that

I11(θ̃1 − θ̂1) = I12θ̂2. (13.11)
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If we write the LR statistic (13.08) in partitioned form, we obtain

LR = (θ̃ − θ̂)>I(θ̃ − θ̂)

=

[
θ̃1 − θ̂1
θ̃2 − θ̂2

]>[
I11 I12

I21 I22

] [
θ̃1 − θ̂1
θ̃2 − θ̂2

]

= (θ̃1 − θ̂1)>I11(θ̃1 − θ̂1)− 2(θ̃1 − θ̂1)>I12θ̂2 + θ̂2
>I22θ̂2.

where the last line uses the fact that θ̃2 = 0. Making use of the result (13.11),
the LR statistic can then be rewritten as

LR = (θ̃1 − θ̂1)>I11(θ̃1 − θ̂1)− 2(θ̃1 − θ̂1)>I11(θ̃1 − θ̂1) + θ̂2
>I22θ̂2

= θ̂2
>I22θ̂2 − (θ̃1 − θ̂1)>I11(θ̃1 − θ̂1).

(13.12)

We now show that the Wald statistic is equal to (13.12). Since the re-
strictions take the form (13.09), we see that r(θ) = θ2 and r̂ = θ̂2. This
implies that the matrix R can be written as

R(θ) = [0 I],

where the 0 matrix is r× (k− r), and the identity matrix I is r× r. Then the
expression R̂I−1R̂> that appears in the Wald statistic (13.05) is just the (2, 2)
block of the inverse matrix I−1. By the results in Appendix A on partitioned
matrices, we obtain(

R̂I−1R̂>
)−1

=
(
(I−1)22

)−1
= I22 − I21I−111 I12. (13.13)

This result allows us to put (13.05) in the form

W = θ̂2
>(I22 − I21I−111 I12

)
θ̂2.

By (13.11), this last expression is equal to

θ̂2
>I22θ̂2 −

(
θ̃1 − θ̂1

)>I11(θ̃1 − θ̂1),
which is the same as (13.12). The proof of the equality of the three classical
statistics for the quadratic loglikelihood function (13.07) is therefore complete.

It is of interest to see how the three classical test statistics are re-
lated geometrically. Figure 13.1 depicts the graph of a loglikelihood function
`(y, θ1, θ2). It is drawn for a given sample vector y and consequently a given
sample size n. For simplicity, the parameter space has been supposed to be
two-dimensional. There is only one restriction, which is that the second com-
ponent of the parameter vector, θ2, is equal to zero. Therefore, the function
` can be treated as a function of the two variables θ1 and θ2 only, and its
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Figure 13.1 Maximizing the loglikelihood function

graph represented in 3-space. As usual, Figure 13.1 is only a two-dimensional
projection of this representation. The (θ1, θ2) plane should be visualized as
horizontal, and the vertical axis, OZ, thus measures values of the function `.

The loglikelihood function ` achieves its maximum ˆ̀at the point A of the
figure. We may say that A has coordinates (θ̂1, θ̂2, ˆ̀) in the coordinate system
defined by the three axes OX, OY, and OZ. In general, θ̂2 will not be zero.
If the restriction that θ2 is zero is imposed, then instead of maximizing ` over
the whole (θ1, θ2) plane, we are restricted to the θ1 axis and consequently
to the curve marked CBD. The restricted maximum, ˜̀, is achieved at the
point B, at which θ1 = θ̃1 and, of course, θ2 = 0. The coordinates of B are
then (θ̃1, 0, ˜̀).

Let us now try to find geometrical equivalents in Figure 13.1 for the
quantities that appear in the three classical test statistics. First, for LM,
note that g̃ is the gradient vector of ` at B, represented geometrically by the
slope of the tangent at B to the curve EBF, that is, the curve in the graph
of ` that rises most steeply away from B. For W, since the restriction can be
written simply as θ2 = 0, we may put r = θ2, and so r̂ = θ̂2. Geometrically, θ̂2
is just one of the coordinates of the global maximum of ` at A, and one
way of defining it (among many other possibilities) is as the length of the
horizontal line segment GH. G is the point (θ̂1, θ̂2, 0), directly underneath the
point A, and H is the projection of G onto the θ1 axis, namely, the point
(θ̂1, 0, 0). Lastly, for LR, since ˆ̀ and ˜̀ are coordinates of the points A and B,
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respectively, the difference ˆ̀− ˜̀ is represented simply by the length of the
vertical segment KL on the axis OZ.

The equivalence of the three classical test statistics can now be under-
stood in terms of the geometry of the tops of hills. Let us for the moment
retain the assumption that the loglikelihood function is exactly quadratic in
the neighborhood of its maximum. In order to simplify the algebra that we
need to express the geometry, we make the following change of variables in
the parameter space:1

ψ1 = I
1/2
11

(
θ1 − θ̂1

)
+ I
−1/2
11 I12

(
θ2 − θ̂2

)
;

ψ2 =
(
I22 − I21I−111 I12

)1/2(
θ2 − θ̂2

)
.

(13.14)

The particular form of this change of variables is motivated by the fact that
the loglikelihood function, when expressed in terms of the ψ’s, takes on a very
simple form. First, note that

ψ2
1 + ψ2

2 =

[
θ1 − θ̂1
θ2 − θ̂2

]>[
I11 I12

I21 I22

][
θ1 − θ̂1
θ2 − θ̂2

]
,

as can readily be checked. Then it follows from (13.10) that the loglikelihood
function in terms of the ψ’s is

`(ψ1, ψ2) = ˆ̀− 1−
2

(
ψ2
1 + ψ2

2

)
. (13.15)

By a slight abuse of notation, we continue to write ` for the loglikelihood
function in terms of the new variables.

Evidently, the effect of the change of variables has been to locate the
unrestricted maximum of the loglikelihood function at the origin of the ψ
coordinates and to make the hilltop perfectly symmetrical about this origin.
To find the ψ coordinates of the restricted maximum, we may substitute θ̃1
and 0 for θ1 and θ2 in (13.14). We find for ψ1 that

I
1/2
11 ψ1 = I11

(
θ̃1 − θ̂1

)
− I12θ̂2 = 0, (13.16)

by (13.11), which implies that the ψ1 coordinate of the restricted maximum
is zero. This fact can be expressed in a more geometrical fashion by saying
that the restricted maximum is attained at a point on the ψ2 axis. For the
ψ2 coordinate, the result is

ψ2 = −
(
I22 − I21I−111 I12

)1/2
θ̂2. (13.17)

1 We cannot speak here of a reparametrization, since the change of variables is
random because of its dependence on the unrestricted parameter estimates.
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Figure 13.2 The θ and ψ coordinate systems

The restriction θ2 = 0 is satisfied at a point in the parameter space if and
only if (13.17) is satisfied by the ψ2 coordinate of the point. This means that,
in terms of the ψ’s, not only the restricted maximum but also the entire set
of parameter vectors corresponding to DGPs that satisfy the null hypothesis
lies on the straight line, parallel to the ψ1 axis, with equation (13.17).

As we remarked earlier, (13.15) shows that the top of the hill made by
the loglikelihood function is perfectly symmetrical about the origin in the ψ
coordinates. Let us then redraw Figure 13.1 using the ψ’s instead of the θ’s.
In Figure 13.2, only the parameter space has been drawn. Two sets of axes
are superimposed. The ψ axes are drawn orthogonal to each other in the
usual way, but this fact implies that the θ axes cannot in general be mutu-
ally orthogonal. (The ψ axes receive this privileged treatment because only
they make the loglikelihood function symmetrical about the origin.) Next,
Figure 13.3 shows the full three-dimensional picture. The new origin, O′, is
located at the old (θ̂1, θ̂2), underneath the maximum of `. The ψ1 axis, drawn
as the line O′U, is parallel to the old θ1 axis, OX. This follows from the fact
that the θ1 axis is the set of parameter vectors satisfying the null hypothesis
and from our previous observation that this set coincides with the line (13.17)
parallel to the ψ1 axis. The ψ2 axis, O′V, is perpendicular to O′U but not in
general parallel to the θ2 axis OY.

One consequence of the symmetrical form of (13.15) is that the level
curves of the function ` have become circles centered on the ψ origin in the
new figures. We saw from (13.16) that the restricted maximum of ` is realized
on the θ1 axis OX at the point at which ψ1 = 0, that is, at the point M
where it crosses the ψ2 axis. By standard reasoning, we can see that the level
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Figure 13.3 The loglikelihood as a function of ψ1 and ψ2

curve of ` on which the restricted maximum lies, that for which ` = ˜̀, must
be tangent to the θ1 axis and so also to the ψ1 axis at the maximum; see
Figure 13.2. The radius O′M of the circular level curve ` = ˜̀ that joins the ψ
origin to the point of tangency is perpendicular to the tangent, which explains
geometrically why the restricted maximum lies on the ψ2 axis. The length of
the radius O′M is, of course, just the value of ψ2 given by (13.17), which we
will denote by ρ.

Recall now that the LR statistic was represented geometrically by the
vertical line segment KL in Figures 13.1 and 13.3. We may use (13.06) and
(13.15) directly to obtain the length of this segment:

LR = 2
(
ˆ̀− `(0, ρ)

)
= ρ2.

For the LM statistic, it is clear that the gradient of `, with respect to the ψ
coordinates, at any point (ψ1, ψ2) is the vector −(ψ1, ψ2). At M it is therefore
just −(0, ρ). Further, the Hessian of ` with respect to the ψ coordinates at
any point (ψ1, ψ2) is simply minus the 2× 2 identity matrix. Thus, if we use
the gradient with respect to the ψ’s in (13.04), along with the negative of the
Hessian with respect to the ψ’s in place of the information matrix, we obtain
an LM statistic equal to2

[ 0 ρ ]

[
1 0

0 1

] [
0
ρ

]
= ρ2.

2 This argument is heuristic, since, strictly speaking, we should not be treating
the ψ’s as if they were ordinary parameters. However, we will proceed as if it
were possible to do so.
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Now recall that the Wald test corresponds geometrically to the line segment
GH in Figure 13.1, which became the radius O′M in Figure 13.3, of length ρ.
Before the change of variables from the θ’s to the ψ’s, the Wald statistic
would have been calculated as the square of the length of GH divided by an
appropriate estimate of the variance of θ̂2. Because in Figure 13.3 the ψ axes
are mutually orthogonal rather than the θ axes, the length of O′M in that
figure is different from the length of GH in Figure 13.1. Thus we should use
a different variance measure when we work in terms of the ψ’s. Just as we
did for the LM statistic, we can use the 2× 2 identity matrix in the place of
the information matrix. This means that the appropriate variance measure is
just unity, and since the length of O′M is ρ, the Wald statistic is just ρ2.

Our previous proof of the equality of the three classical test statistics
provides a justification of the above heuristic arguments. However, we may
verify directly that the quantity ρ2 is what we would have obtained by working
throughout with the θ’s. It follows directly from (13.17) that

ρ2 =
(
I22 − I21I−111 I12

)
θ̂22.

By (13.11) applied to the present two-parameter case, this becomes

ρ2 = I22θ̂
2
2 − I11

(
θ̃1 − θ̂1

)2
.

This is what expression (13.12) for the three classical test statistics reduces
to when θ1 and θ2 are scalars.

What the use of the ψ’s allows us to see clearly, in terms of the symmet-
rical hilltop generated by (13.15), is just why the three tests are equivalent in
the present simple case. All three measure, in some sense, how far away the
unrestricted MLE is from the restricted MLE. The Wald test is based directly
on the distance between these points in the parameter space. Geometrically,
this is the length ρ of the radius O′M of the circular level curve of the loglike-
lihood function for the value ˜̀. The distance between the two estimates, for
the purposes of the Wald test, is therefore measured by the squared Euclidean
distance in terms of the ψ’s between the parameter vectors at which the re-
stricted and unrestricted maxima are realized. This would not be true with
the θ’s, of course, since it requires that the hilltop be symmetrical. For the
likelihood ratio test, the distance measure is in terms of the actual difference
between the two maxima. Thus, geometrically, the LR statistic is related to
the length of a vertical line segment, KL in the figures, while the Wald statistic
is related to the length of a horizontal line segment. Lastly, the LM statistic is
based on the slope of the steepest path up the hill at the restricted estimate.

For a perfectly symmetrical hill, what we have shown in this section is
that all three distance measures are functions of the length ρ of the radius
of the level curve passing through the restricted maximum alone and so are
exactly equivalent. What we will see later in this chapter is that this agreeable
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result is exactly true only when the loglikelihood hill is exactly quadratic, that
is, when the Hessian of the loglikelihood function is indeed exactly constant in
the entire neighborhood of its maximum. But all hills are roughly quadratic
at their summits, and in the next section we will be able to exploit this fact to
demonstrate that all three classical test statistics are asymptotically equivalent
under weak regularity conditions.

13.3 Asymptotic Equivalence of the Classical Tests

In this section, we establish two sets of results concerning the asymptotic
equivalence of the three classical tests. The first, and weaker, set is derived
under the assumption that the restrictions under test are in fact true. More
formally, we assume that the data were generated by a DGP characterized by
a parameter vector θ0 that satisfies r(θ0) = 0, in the notation of (13.02). Note
that we no longer assume that the restrictions take the special form (13.09).
The equivalence of the three classical tests in this case is by now fairly simple
to demonstrate, since the main ingredients have been established already in
Chapter 8. Our work here is mostly putting the pieces together and checking
that the intuition of the exactly quadratic case treated in the last section does
indeed extend to an asymptotically valid result in general.

The second, and stronger, set of results will not be established in full
detail in this book. These results extend those of the first set to the case
in which the data are generated by a drifting DGP that does not satisfy the
null hypothesis but tends to a limit contained in it. Thus this second set of
results is analogous for the case of ML estimation to the results obtained in
Chapter 12 for estimation by NLS. Although we will not provide full proofs,
we will take a little time to state the results and to explain what we mean by
drifting DGPs in this new context.

For the first set of results, then, we suppose that the true parameter
vector θ0 obeys (13.02). In this case, both the unrestricted MLE θ̂ and the
restricted one θ̃ differ from θ0 by a random quantity of order n−1/2. For the
unrestricted MLE,

n1/2(θ̂ − θ0)
a
= I−10 n−1/2g0, (13.18)

a result that follows immediately from (8.38) and the information matrix
equality that I0 = −H0. Since we are again in the context of asymptotic
theory, we are now using notation with explicit powers of the sample size n.
Otherwise, the notation is as usual: I0 and g0 denote I(θ0) and g(θ0), re-
spectively. For the restricted MLE, we make use of the information matrix
equality and a result immediately following (8.74) to obtain

n1/2(θ̃ − θ0)
a
= I−10

(
I−R0

>(R0 I
−1
0 R0

>)−1R0 I
−1
0

)
n−1/2g0. (13.19)

The information matrix I(θ) is of order unity and smooth in θ, according to
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our standard assumptions for models to be estimated by maximum likelihood
laid out in the statements of Theorems 8.1, 8.2, and 8.3. It follows that

Ï = I0 +O(n−1/2), (13.20)

where Ï ≡ I(θ̈). This is true for any root-n consistent estimator θ̈, but we
will adopt the convention that θ̈ denotes either θ̂ or θ̃. Similarly, because the
functions r(θ) defining the restrictions are assumed to be smooth, we have

R̈ = R0 +O(n−1/2), (13.21)

where the order relation is to be understood element by element in both of
the above equations.

Let us first consider the LM test statistic (13.03). It may be written as

LM =
(
n−1/2g̃

)> Ĩ−1(n−1/2g̃), (13.22)

where the parentheses emphasize that it is a quadratic form in the O(1) vector
n−1/2g̃. We may expand this vector by Taylor’s Theorem to obtain

n−1/2g̃ = n−1/2g0 +
(
n−1H(θ̄)

)
n1/2(θ̃ − θ0);

see (8.35). The law of large numbers applied to the Hessian matrix H and
the information matrix equality allow us to rewrite this as

n−1/2g̃
a
= n−1/2g0 − I0n

1/2(θ̃ − θ0).

Now we may use the result (13.19) to find that

n−1/2g̃
a
= R0

>(R0 I
−1
0 R0

>)−1R0 I
−1
0 n−1/2g0.

Substitution of this into (13.22) then yields

LM
a
= (n−1/2g0)>I−10 R0

>(R0 I
−1
0 R0

>)−1R0 I
−1
0 (n−1/2g0). (13.23)

Notice that this expression is in terms solely of quantities evaluated at the
true parameter vector θ0 and that, of these, only g0 is stochastic.

For the likelihood ratio statistic (13.06), another Taylor expansion is
needed. This time, expanding around θ = θ̂ and using the likelihood equa-
tions ĝ = 0, we obtain

LR = 2(ˆ̀− ˜̀)
a
= n(θ̃ − θ̂)>Î(θ̃ − θ̂); (13.24)

see also (8.70). Combining (13.18) and (13.19), we obtain

n1/2(θ̂ − θ̃)
a
= I−10 R0

>(R0 I
−1
0 R0

>)−1R0 I
−1
0 (n−1/2g0).
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On substituting this last relation into (13.24) and replacing Î by I0, as (13.20)
allows us to do, we find that

LR
a
= (n−1/2g0)>I−10 R0

>(R0 I
−1
0 R0

>)−1R0 I
−1
0 (n−1/2g0). (13.25)

Since this is identical to expression (13.23), we have established the asymptotic
equivalence of LM and LR.

Finally, we consider the Wald statistic (13.05). Taylor expanding the
restrictions r(θ̂) = 0, using the assumption that r(θ0) = 0, and multiplying
by n1/2, we obtain

n1/2r̂
a
= R0n

1/2(θ̂ − θ0)
a
= R0 I

−1
0 n−1/2g0,

where the final equality follows from (13.18). This last result, along with
(13.20) and (13.21), allows us to rewrite (13.05) asymptotically as

W
a
= (n−1/2g0)>I−10 R0

>(R0 I
−1
0 R0

>)−1R0 I
−1
0 (n−1/2g0). (13.26)

The asymptotic equivalence of the three classical tests under the null hypo-
thesis of the tests is now established through the equality of (13.23), (13.25),
and (13.26).

At this point, it is easy to derive the common asymptotic distribution of
the three classical test statistics. Recall from (8.41) that the asymptotic dis-
tribution of n−1/2g0 is N(0, I0). From this, we calculate that the asymptotic
distribution of the r--vector R0 I

−1
0 (n−1/2g0) is N(0,R0 I

−1
0 R0

>). The three
statistics are, as we have just seen, asymptotically equal to the quadratic form
(13.26) in the vector R0 I

−1
0 (n−1/2g0) and matrix (R0 I

−1
0 R0

>)−1. It follows
at once that the asymptotic distribution of the classical test statistics is a
central chi-squared with r degrees of freedom.

Our discussion of the first case, in which the restrictions under test are
in fact true, is now complete. We therefore turn our attention to the second
case, in which the data are generated by a drifting DGP that tends in the
limit to a DGP which satisfies the null hypothesis. We begin by discussing
the concept of drifting DGPs in the context of models to be estimated by the
method of maximum likelihood.

In the context of models estimated by NLS, we obtained a drifting DGP
by adding a quantity proportional to n−1/2 to the regression function x(β0);
recall (12.06). Thus, as n → ∞, the DGP drifted at a suitable rate toward
one specified by the parameter vector β0, assumed to satisfy the restrictions
of the null hypothesis. Just as NLS models are defined by means of their
regression functions, models to be estimated by maximum likelihood are de-
fined by means of their loglikelihood functions, as in (13.01). In the context of
ML models, it therefore seems appropriate to add a quantity proportional to
n−1/2 to the contribution to the loglikelihood function from each observation.



448 The Classical Hypothesis Tests

Thus we write for observation t

`t = `t(y
t,θ0) + n−1/2at(y

t). (13.27)

We can see from this that the log of the density of the tth observation is taken
to be as given by a parametrized model for a parameter vector θ0 satisfying
the restrictions of the null hypothesis, plus a term that vanishes with n−1/2

as n→∞. The fact that any density function is normalized so as to integrate
to unity means that the functions at in (13.27) must be chosen so as to obey
the normalization condition∫

exp
(
`t + n−1/2at

)
dyt = 1.

It can readily be shown that this implies that

E0

(
at(y

t)
)

= O(n−1/2), (13.28)

where E0 denotes an expectation calculated using `t(y
t,θ0) as log density. To

leading order asymptotically, then, the random variables at have mean zero.

The fact that `t is written in (13.27) as the sum of two terms does not
restrict the applicability of the analysis at all, because one can think of (13.27)
as arising from a first-order Taylor-series approximation to any drifting DGP.
An example would be the sequence of local alternatives

`t
(
yt, θ0 + n−1/2δ

)
.

By arguments similar to those of Section 12.3, one can show that a Taylor-
series approximation to this can be written in the form of (13.27).

We will now state without proof the results that correspond to equations
(12.11), (12.12), and (12.13) in the NLS context. They are discussed and
proved in Davidson and MacKinnon (1987), a paper that many readers may,
however, find somewhat difficult because of the nature of the mathematics
employed. These results provide asymptotically valid expressions for the vari-
ous ingredients of the classical test statistics under the drifting DGP specified
by (13.27). The first result is that the estimators θ̂ and θ̃ are still root-n
consistent for θ0:

θ̈ = θ0 +O(n−1/2),

from which we may conclude that Ï and R̈ are consistent for I0 and R0, just
as they are under the null hypothesis:

Ï = I0 +O(n−1/2); and R̈ = R0 +O(n−1/2).

We may also conclude from the consistency of θ̈ that all the Taylor expansions
used in developing equations (13.23), (13.25), and (13.26) are still valid, as
are these equations themselves.
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As can be seen from equations (13.23), (13.25), and (13.26), the only
stochastic part of all of the classical test statistics, asymptotically, is the
quantity n−1/2g0. Its behavior is not the same under the drifting DGP as it
is under the null; recall (12.13) for the NLS case. We find that the asymptotic
distribution of n−1/2g0 is still normal but no longer has mean zero. If we
define the O(1) k--vector c by

c ≡ lim
n→∞

cov0

(
n−1/2

n∑
t=1

at(y
t), n−1/2g0

)
, (13.29)

where cov0 means a covariance calculated under the limit DGP characterized
by θ0, then it can be proved that, asymptotically,

n−1/2g0 ∼ N(c, I0).

Consequently, the asymptotic distribution of the r--vector R0 I
−1
0 (n−1/2g0) is

now N(R0 I
−1
0 c, R0 I

−1
0 R0

>), and the asymptotic distribution of the classi-
cal test statistics is a noncentral chi-squared with r degrees of freedom and
noncentrality parameter

Λ = c>I−10 R0
>(R0 I

−1
0 R0

>)−1R0 I
−1
0 c. (13.30)

So far, our results are very similar to those of the last chapter for drifting
DGPs in the regression model context. In fact, the similarities are even deeper
than has been seen up to this point. Almost all of the discussion of the
geometry of test power given in Section 12.5 can be taken over, with only slight
modifications, to the present case. One difference, which might appear at first
glance to present an insurmountable obstacle but is in fact quite innocuous,
is that drifting DGPs like (13.27) must be set in an infinite-dimensional space
rather than the n--dimensional space used earlier. This is because each at is
a function of the observation yt, and sets of functions are typically infinite
dimensional. But for our purposes this simply means that the possibilities for
constructing DGPs that drift to a DGP that satisfies the null hypothesis are
infinite. In particular, just as in the present context we are not restricted to
tests in regression directions, neither are we restricted to considering drifting
DGPs in regression directions.

The geometry of what we have been doing can be illustrated in three
dimensions, just as in Figure 12.3. Suppose for simplicity that we are working
in a parametrization in which the information matrix I0 is an identity matrix.3

3 For example, we could use for a reparametrization (13.14) with the random
quantities θ̂1 and θ̂2 replaced by the true values that correspond to the limit
DGP, and I replaced by I evaluated at these values.
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Further, suppose that there are only two parameters, θ1 and θ2, and that the
restriction corresponding to the null hypothesis is that θ2 = 0. Thus

I0 =

[
1 0

0 1

]
and R0 = [0 1].

In this simple case, the covariance matrix R0 I
−1
0 R0

> reduces to the scalar 1,
the vector R0 I

−1
0 c becomes simply c2, the second component of the 2--vector

c, and from (13.30) the noncentrality parameter Λ becomes c22.

The three-dimensional space we will construct is spanned by three ran-
dom variables, interpreted as vectors in this space. These random variables
are precisely those that appear in the definition (13.29) of c. They are

s1 ≡ n−1/2
n∑
t=1

∂`t
∂θ1

(yt,θ0),

s2 ≡ n−1/2
n∑
t=1

∂`t
∂θ2

(yt,θ0), and

a ≡ n−1/2
n∑
t=1

at(y
t).

In order to treat these random variables as vectors in a three-dimensional
Euclidean space which they span, it is enough to ensure that the algebraic
operations defined on Euclidean spaces can be properly defined for these ran-
dom variables. The operations of addition and multiplication by a scalar
are defined in the obvious way. The Euclidean-space sum, or more concisely
vector sum, of two random variables is simply their ordinary sum:

s1 + s2 = n−1/2
n∑
t=1

(
∂`t
∂θ1

(
yt,θ0

)
+
∂`t
∂θ2

(
yt,θ0

))
. (13.31)

Similarly, multiplication by a scalar α ∈ R is in the Euclidean-space context
no different from ordinary multiplication by a scalar:

αs1 = αn−1/2
n∑
t=1

∂`t
∂θ1

(
yt,θ0

)
. (13.32)

These two definitions (13.31) and (13.32) suffice to put the structure of the
linear space R3 on the set of all linear combinations of s1, s2, and a.

For a Euclidean space, another operation must be defined, namely, the
inner product of two vectors. Thus we wish to be able to say what we mean
by the inner product of any linear combination of s1, s2, and a with any
other such linear combination. This is done very simply: The inner product
of two random variables will be their covariance under the limit DGP. We will
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Figure 13.4 The noncentrality parameter of the classical tests

denote inner products by an angle bracket notation in which, for instance,
〈s1, s2〉 denotes the inner product of s1 with s2. Since the covariance matrix
of s1 and s2, I0, is the identity matrix, we have

〈s1, s2〉 = 0 and 〈si, si〉 ≡ ‖si‖2 = 1, i = 1, 2.

It follows that s1 and s2 form a pair of mutually orthogonal unit vectors.
Note that the squared norm of an element of our Euclidean space of random
variables, defined, as usual, as the inner product of the element with itself,
is just the second moment of the element considered as a random variable.
Since the variables s1 and s2 have zero expectation under the limit DGP, the
squared norm of either of them is just the variance. Asymptotically, the same
is true for a, since by (13.28) the expectation of a vanishes as n→∞.

In general, the vector represented by the random variable a will not lie
in the plane spanned by s1 and s2; that is why a third dimension is needed in
order to accommodate it. Consider now Figure 13.4, in which the vectors s1
and s2 span the horizontal plane. Following the intuition of the last chapter,
we letM1a be the projection of a onto the orthogonal complement of the one-
dimensional space spanned by s1. It follows that M1a lies vertically above
or below the direction of s2 (we have drawn it as above). The angle denoted
φ in the figure is the angle between the vector M1a and the horizontal plane,
that is, the angle between M1a and s2. The usual definition of the cosine of
an angle then tells us that 〈s2,M1a〉, the inner product of s2 and M1a, is

〈s2,M1a〉 = ‖s2‖ ‖M1a‖ cosφ. (13.33)

If we write a = M1a + P1a, we see that 〈s2,M1a〉 = 〈s2,a〉, because s1 is
orthogonal to s2. By (13.29), 〈s2,a〉 = c2. If we recall further that s2 is a
unit vector, so that ‖s2‖ = 1, (13.33) becomes

c2 = ‖M1a‖ cosφ.
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It follows that the noncentrality parameter Λ, which we saw was equal to c22 in
the present simple case, is given by a formula highly reminiscent of expression
(12.23) for the case of tests in regression directions:

Λ = ‖M1a‖2 cos2φ. (13.34)

The arguments presented above make no claim to rigor. In particular, we
have ignored distinctions between quantities calculated for samples of some
finite size and the limits to which they tend as the sample size tends to infinity.
Despite these shortcomings, our discussion contains the heart of the matter.
Formula (13.34), although derived only for one special case, is in fact valid
generally, by which we mean that not only is the algebraic form of the formula
correct in general, but also that it is proper to replace the random variables
used in constructing the geometrical representation in Euclidean space by
their probability limits. Thus the power of the classical tests is governed by
the same considerations as the tests in regression directions treated in the last
chapter. It depends on two things: the distance between the DGP and the null
hypothesis, as measured by ‖M1a‖, and the “angle” between the vectorM1a,
measuring the degree of falsehood of the null hypothesis, and the subspace s2
spanned by the directions corresponding to variations of the parameters of the
(alternative) hypothesis. The intuition is identical to that presented in the
last chapter. A full mathematical treatment is, however, beyond the scope of
this book. Interested readers are referred to Davidson and MacKinnon (1987)
and to some of the related references cited in Section 13.8.

13.4 Classical Tests and Linear Regression Models

We saw in Section 8.10 that ML estimates of the parameters of the regression
function in a nonlinear regression model are identical to NLS estimates if
one makes the assumption that the error terms are normally distributed. A
fortiori, this result is also true for linear regression models. It is therefore of
interest to compare t and F statistics for testing linear restrictions on linear
regression models, for which under classical conditions the exact finite-sample
distributions are known, with the three classical test statistics, for which in
general only the asymptotic distribution is known. It turns out that we can
say a good deal more about the relationships among the three classical tests
when we restrict attention to linear restrictions on linear models.

The restricted and unrestricted models, first encountered as (3.18) and
(3.19), are

y = X1β1 + u and (13.35)

y = X1β1 +X2β2 + u, (13.36)

where X1 is n × (k − r) and X2 is n× r. Since we are concerned with ML
estimation, we now assume that u ∼ N(0, σ2 I). The maintained hypothesis
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is that (13.36) is true, and the null hypothesis is that β2 = 0. The standard
F test, or the t test in the event that r = 1, was discussed in Section 3.5 and
will be used as a basis of comparison with the three classical test statistics.
In the notation of Chapter 3, the F statistic can be written as

F =
n− k
r
× y

>PM1X2y

y>MXy
, (13.37)

where we have used (3.21), (3.30), and (3.32) to obtain this expression. We
now compare the LM, LR, and Wald statistics with this F statistic.

Asymptotically, r times the F statistic (13.37) is distributed as χ2(r)
under the null hypothesis. In fact, as we will shortly show, it tends to the
same random variable as the three classical test statistics. It is entirely due
to the presence of the parameter σ in the linear regression model that there
is not perfect equality of rF and the three classical tests. Suppose that σ,
instead of being an unknown parameter to be estimated, were in fact known.
Then, for the case in which σ = 1 (an inconsequential restriction, since if we
knew σ we could always renormalize the data), the loglikelihood function for
the model (13.36) would be

`(y,β) = − n−
2

log 2π − 1−
2

(y −Xβ)>(y −Xβ).

For given sample data y and X, this is an exactly quadratic function of the
vector β. The results of Section 13.2 are therefore directly applicable, and it
is easy to calculate the three statistics and show that they are all equal to rF .

We now return to the more interesting case in which σ is to be estimated.
Let us begin with the LR statistic. It is convenient to express this statistic in
terms of the concentrated loglikelihood function (8.82). For the unrestricted
model (13.36), this concentrated loglikelihood function is

ˆ̀≡ − n−
2

log
(
(y −Xβ̂)>(y −Xβ̂)

)
= − n−

2
log(y>MXy),

apart from a constant term which is the same for the estimation of both
(13.35) and (13.36) and which therefore disappears from the difference of
loglikelihood functions used in the LR test. Here X ≡ [X1 X2] and MX

denotes the matrix that projects orthogonally onto S⊥(X). For the restricted
model (13.35), the concentrated loglikelihood function is

˜̀≡ − n−
2

log
(
(y −X1β̃1)>(y −X1β̃1)

)
= − n−

2
log(y>M1y),

where M1 denotes the matrix that projects orthogonally onto S⊥(X1). Thus
the LR statistic is

LR = 2(ˆ̀− ˜̀) = n log

(
y>M1y

y>MXy

)
. (13.38)
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It is easy to show that

y>M1y = y>MXy + y>PM1X2
y.

This decomposition, which was illustrated in Figure 1.7, says that the SSR
from a regression of y on X1 is equal to the SSR from a regression of y on
X1 and X2, plus the explained sum of squares from a regression of y (or,
equivalently, M1y) on M1X2. Hence we obtain from (13.38) that

LR = n log

(
1 +

y>PM1X2
y

y>MXy

)
. (13.39)

The relation between the F statistic (13.37) and the LR statistic (13.39) is
therefore

LR = n log

(
1 +

rF

n− k

)
. (13.40)

For large n, provided that F = O(1), we may Taylor expand the loga-
rithm. This is clearly the case under the null hypothesis (13.35) and is in
fact also the case under DGPs that drift to the null at a rate proportional
to n−1/2. The latter assertion is readily demonstrated in the case of a DGP
that drifts in a regression direction, like (12.06), and can with some effort be
shown to be true for more general types of drifting DGPs, such as (13.27).
The result of the Taylor expansion is

LR =

(
n

n− k

)
rF +O(n−1) = rF +O(n−1),

which demonstrates that LR and rF are the same random variable asymp-
totically.

We next consider the Wald statistic, W. For the models (13.35) and
(13.36) it is, by (13.05) and (13.13),

W = β̂2
>(Î−1)−1

22
β̂2. (13.41)

For the linear regression model (13.36), we have from (8.85) that the (β,β)
block of I, which is all we need given the block-diagonality property of (8.87),
is given by

(Iββ)−1 = σ2
(
X>X

)−1
.

Of course, σ2 must be estimated; since we are in a maximum likelihood con-
text, it makes sense to use the ML estimator

σ̂2 = 1−
n
y>MXy.
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By the FWL Theorem,

β̂2 =
(
X2
>M1X2

)−1
X2
>M1y and(

(X>X)−1
)
22

=
(
X2
>M1X2

)−1
.

Thus (13.41) becomes

W = n

(
y>M1X2(X2

>M1X2)−1X2
>M1y

y>MXy

)
= n

(
y>PM1X2y

y>MXy

)
.

From (13.37) and (13.39), we obtain

W =

(
rn

n− k

)
F ; LR = n log

(
1 +

W

n

)
. (13.42)

Since W is equal to n/(n− k) times rF , it is evident that

W = rF +O(n−1).

Finally, we turn to the LM statistic. We first observe from (8.83) that
the gradient with respect to the regression parameters β of the loglikelihood
function for a linear regression model with normal errors is

g(y,β, σ) =
1

σ2

n∑
t=1

Xt
>(yt −Xtβ) = σ−2X>(y −Xβ).

Thus, from (13.03), the LM statistic is

LM = g̃2
>(Ĩ−1)

22
g̃2

= σ̃−4(y −Xβ̃)>X2

(
σ̃2(X2

>M1X2)−1
)
X2
>(y −Xβ̃).

(13.43)

Since the LM test is based on the restricted model (13.35), we use the ML
estimate of σ from that model:

σ̃2 = 1−
n
y>M1y.

Substituting this into (13.43), we see that

LM = n

(
y>M1X2(X2

>M1X2)−1X2
>M1y

y>M1y

)

= n

(
y>PM1X2

y/y>MXy

1 + y>PM1X2y/y
>MXy

)
= n

(
rF

n− k + rF

)
.

(13.44)
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For large n, a Taylor expansion yields

LM = rF +O(n−1).

The most important conclusion of this analysis is that all the classical
test statistics are functions only of the standard F statistic and the integers
n, k, and r. Thus, if one computes F, the statistics LM, W, and LR can be
obtained directly from (13.44), (13.42), and (13.40). If the classical regularity
conditions hold, so that under the null hypothesis F has exactly its namesake
distribution, the exact finite-sample distributions of LM, W, and LR can be
calculated by use of these formulas. However, these exact distributions are
not the same as the asymptotic distribution, which is (central) chi-squared
with r degrees of freedom.

For linear regression models, with or without normal errors, there is of
course no need to look at LM, W, and LR at all, since no information is gained
from doing so over and above what is already contained in F. Nevertheless,
since applied workers often find it convenient to use one of these classical test
statistics, it is worth discussing one problem that can arise when they are
used. Each of the classical test statistics will typically be compared, for the
purposes of inference, with the asymptotic chi-squared distribution. Since the
three of them are numerically different, different inferences may well be drawn
when different classical tests are employed. This difficulty, often referred to as
a conflict among different testing criteria, is frequently compounded by the
diversity of ways of calculating even just one of the classical statistics, as we
will discuss in the next section. The issue of conflicts among different testing
criteria is one that has been well discussed in the econometrics literature.
The matter seems to have been raised by Savin (1976) and Berndt and Savin
(1977); it was exposited and extended by Breusch (1979). See also Evans and
Savin (1982) and Vandaele (1981).

For the case of linear regression models (including the GNR and the arti-
ficial regressions for ML that we will shortly introduce), and in fact somewhat
more generally, there are inequality relations that hold among LM, W, and
LR. These inequalities are as follows:

W > LR > LM.

This result follows directly from (13.40), (13.42), and (13.44), along with the
following standard inequalities for x > 0:

x > log(1 + x) >
x

1 + x
. (13.45)

These standard inequalities are easy to demonstrate. The first follows from
the result that

ex = 1 + x+
δx2

2!
> 1 + x, (13.46)
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Figure 13.5 Differences between actual and nominal test size

for some δ between 0 and 1. The equality here is a consequence of Taylor’s
Theorem. Taking the logarithm of both sides of (13.46) then yields the first
inequality of (13.45). For the second inequality, one can replace x by −y in
(13.46) to obtain the result that e−y > 1− y. Taking logarithms yields

− log(1− y) > y. (13.47)

Setting y = x/(1 + x) in (13.47) then yields the desired inequality.

One inevitably commits an error if one compares one of the classical test
statistics with its nominal asymptotic distribution in a finite sample. As an
example, we show in Figure 13.5 a plot of the actual size, computed from the
critical points of the F (1, 25) distribution, of tests that use LM, LR, and W
as a function of the nominal size given by the asymptotic χ2(1) distribution.
The inequality W > LR > LM is very evident in the figure, and both LR
and W are seen to overreject quite severely.

All of the results presented in this section so far seem to lead to a rea-
sonably clear conclusion. Whenever a hypothesis test is carried out by use of
a linear regression, the easiest and often most satisfactory form of test sta-
tistic to use is the F test or, in one-dimensional cases, the t test. All the
other test statistics that we have so far considered are functions of the F or t
statistic, are asymptotically equivalent under the null and under DGPs that
drift to the null at a rate proportional to n−1/2, but can in finite samples have
distributions disturbingly far from the nominal asymptotic one.
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13.5 Alternative Covariance Matrix Estimators

To calculate both LM and Wald tests, one has to employ some estimator of
the information matrix, I0. So far we have supposed, at least implicitly, that
the information matrix I(θ) is known as a function of the parameter vector
and is then simply evaluated at θ̂ in the case of the Wald test or θ̃ in the case
of the LM test. This is certainly true for linear regression models, where the
information matrix does not even depend on the parameters of the regression
function. In that case, as we saw in the last section, only the choice of σ̂2 or
σ̃2 distinguishes the Wald test from the LM test.

In general, however, as we saw in Section 8.6, it is unrealistic to suppose
that the information matrix is known in an explicit analytic form. When it
is not, it becomes necessary to use one of what may be a wide variety of
estimators of I0. Provided that the chosen estimator is consistent, none of the
asymptotic results so far established is affected by this choice. However, the
finite-sample behavior of the tests may well depend on what estimator is used.
When different variants of the LM or Wald test, based on different estimators
of the information matrix, are used in finite samples, there is the possibility
that test results may conflict. Of course, this problem does not occur with
the LR test, since it does not employ an estimator of the information matrix.

Another possible source of conflict among different tests appears when we
consider how the classical tests behave under reparametrizations of the null or
alternative hypothesis. We will look at reparametrizations in more detail in
the next section. In this section, however, we will see that, even if we decide
on an information matrix estimator, the LM and Wald tests are not invariant
under model reparametrization for all such estimators.

We will now illustrate these problems in the context of an example, which,
although very simple, exhibits most of the points at issue. The example is a
model in which one wishes to estimate the variance σ2 of a set of n.i.d. random
variables with known mean which can, without loss of generality, be taken as
zero. The contribution to the loglikelihood function from one observation is

`t(yt, σ
2) = − 1−

2
log(2πσ2)− y2t

2σ2
,

and the loglikelihood function for a sample of size n is

`(y, σ2) = − n−
2

log(2πσ2)− 1

2σ2

n∑
t=1

y2t . (13.48)

This model has just one parameter, which would normally be taken as either σ
or σ2. However, it is of interest to consider a third parametrization. Suppose
that τ ≡ log σ is the parameter of this model. Then the loglikelihood function
becomes

`(y, τ) = − n−
2

log(2π)− nτ − 1−
2
e−2τ

n∑
t=1

y2t , (13.49)
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from which we may derive that

e2τ̂ = σ̂2 = 1−
n

n∑
t=1

y2t . (13.50)

For this parametrization, the information matrix, which has only one element,
is constant and equal to 2:

I = − 1−
n
E(D2

τ `) = 2−
n

n∑
t=1

e−2τE(y2t ) = 2.

Notice that, although I is constant, the loglikelihood function is not a
quadratic function of τ . We now consider various classical tests for the null
hypothesis that τ = 0, or, equivalently, that σ2 = 1. Despite the simplicity of
this example, we will uncover a bewildering variety of test statistics.

Initially, we will work with the τ parametrization. It is not necessary to
do any estimation at all in order to find restricted estimates, since τ̃ = 0. For
the Wald and LR tests we need to find τ̂ . From (13.50), it is

τ̂ = 1−
2

log

(
1−
n

n∑
t=1

y2t

)
.

The restricted “maximum” of the loglikelihood function is just the value of
the function at τ = 0:

˜̀= − n−
2

log 2π − 1−
2

n∑
t=1

y2t = − n−
2

log 2π − n−
2
e2τ̂ . (13.51)

Although this is the restricted maximum, it is convenient to express it, as we
have done here, in terms of the unrestricted estimate, τ̂ . The unrestricted
maximum, ˆ̀, is given by

− n−
2

log 2π − nτ̂ − 1−
2
e−2τ̂

n∑
t=1

y2t = − n−
2

log 2π − nτ̂ − n−
2
, (13.52)

where the equality uses (13.50).

We may proceed at once to obtain the LR statistic, which is twice the
difference between (13.52) and (13.51):

LR = 2(ˆ̀− ˜̀) = n
(
e2τ̂ − 1− 2τ̂

)
= 2nτ̂2 + o(1).

(13.53)

The second line of (13.53) is a Taylor expansion of the statistic in powers of τ̂ .
This is of interest because, under the null hypothesis, we expect τ̂ , which is
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both the estimate itself and the difference between the estimate and the true
value of the parameter, to be of order n−1/2. It follows that 2nτ̂2 will be of
order unity and that higher terms in the expansion of the exponential function
in (13.53) will be of lower order. Thus, if the various forms of the classical
test do indeed yield asymptotically equal expressions, we may expect that the
leading term of all of them will be 2nτ̂2.

Let us next consider the LM statistic. The essential piece of it is the
derivative of the loglikelihood function (13.49) with respect to τ , evaluated at
τ = 0. We find that

∂`

∂τ
= −n+ e−2τ

n∑
t=1

y2t and
∂`

∂τ

∣∣∣∣
τ=0

= n
(
e2τ̂ − 1

)
. (13.54)

If for the variance of ∂`/∂τ we use n times the true, constant, value of the
single element of the information matrix, 2, the LM statistic is the square of
(∂`/∂τ)|τ=0, given by (13.54), divided by 2n:

LM1 = n−
2

(
e2τ̂ − 1

)2
= 2nτ̂2 + o(1).

This variant of the LM statistic has the same leading term as the LR statistic
(13.53) but will of course differ from it in finite samples.

Instead of the true information matrix, an investigator might prefer to
use the negative of the empirical Hessian to estimate the information matrix;
see equations (8.47) and (8.49). Because the loglikelihood function is not
exactly quadratic, this estimator does not coincide numerically with the true
value. Since

∂2`

∂τ2
= −2e−2τ

n∑
t=1

y2t , (13.55)

which at τ = 0 is −2ne2τ̂, the LM test calculated in this fashion is

LM2 = n−
2
e−2τ̂

(
e2τ̂ − 1

)2
= 2nτ̂2 + o(1). (13.56)

The leading term is as in LR and LM1, but LM2 will differ from both those
statistics in finite samples.

Another possibility is to use the OPG estimator of the information ma-
trix; see equations (8.48) and (8.50). This estimator is

1−
n

n∑
t=1

(
∂`t
∂τ

)2
= 1−
n

n∑
t=1

(
y2t e
−2τ − 1

)2
,

which, when evaluated at τ = 0, is equal to

1−
n

n∑
t=1

(
y2t − 1

)2
.
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This expression cannot even be expressed as a function of τ̂ alone. To obtain
an expansion of the test statistic that makes use of it, we must make use of
the property of the normal distribution which tells us that E(y4t ) = 3σ4, or, in
terms of τ , 3e4τ .4 Using this property, we can invoke a law of large numbers
and conclude that the OPG information matrix estimator is indeed equal to
2 + o(1) at τ = 0. Thus the third variant of the LM test statistic is

LM3 =
n2
(
e2τ̂ − 1

)2∑n
t=1

(
y2t − 1

)2 = 2nτ̂2 + o(1).

Once again, the leading term is 2nτ̂2, but the form of LM3 is otherwise quite
different from that of LM1 or LM2.

Just as there are various forms of the LM test, so are there various forms of
the Wald test. Any one of these may be formed by combining the unrestricted
estimate τ̂ with some estimate of the information matrix, which in this case
is actually a scalar. The simplest choice is just the true information matrix,
that is, 2. With this we obtain

W1 = 2nτ̂2. (13.57)

It is easy to see that W2, which uses the empirical Hessian, is identical to W1,
because (13.55) evaluated at τ = τ̂ is just −2n. On the other hand, use of
the OPG estimator yields

W3 = τ̂2
n∑
t=1

(
y2t e
−2τ̂ − 1

)2
,

which is quite different from W1 and W2.

All of the above test statistics were based on τ as the single parameter
of the model, but we could just as well use σ or σ2 as the model parameter.
Ideally, we would like test statistics to be invariant to such reparametrizations.
The LR statistic is always invariant, since ˆ̀ and ˜̀ do not change when the
model is reparametrized. But all forms of the Wald statistic, and some forms
of the LM statistic, are in general not invariant, as we now illustrate.

Suppose we take σ2 to be the parameter of the model. The information
matrix is not constant in this new parametrization, and so we must evaluate
it at the estimate σ̂2. It is easy to see that the information matrix, as a

4 Note that it was not necessary to use special properties of the normal distribu-
tion in order to expand the previous statistics, which were in fact all functions
of one and only one random variable, namely τ̂ . In general, in less simple
situations, this agreeable feature of the present example is absent and special
properties must be invoked in order to discover the behavior of all the various
test statistics.
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function of σ2, is 1/(2σ4). If we use this expression for the information matrix,
evaluated at σ̂2, the Wald test becomes

W1 = n−
2
σ̂−4

(
σ̂2 − 1

)2
= n−

2
e−4τ̂

(
e2τ̂ − 1

)2
= 2nτ̂2 + o(1).

Since this differs from (13.57), we have shown that different parametrizations
lead to numerically different Wald statistics even if the true information ma-
trix, evaluated at the MLE of the model parameter, is used in both cases.

As we will see in the next section, the LM test is invariant if it is based
on the true information matrix evaluated at the MLE. But if some other
information matrix estimator is used, the LM test can also be parametrization
dependent. Suppose that we use the empirical Hessian. From (13.48), the first
two derivatives of ` with respect to σ2, evaluated at σ2 = 1, are

∂`

∂σ2

∣∣∣∣
σ2=1

= − 1−
2

(
n−

n∑
t=1

y2t

)
= n−

2

(
e2τ̂ − 1

)
and

∂2`

(∂σ2)2

∣∣∣∣
σ2=1

= n−
2

(
1− 2e2τ̂

)
.

From this, we find that the statistic LM2 calculated as was (13.56) but for
the σ2 parametrization, is

LM2 =
n
(
e2τ̂ − 1

)2
2
(
2e2τ̂ − 1

) = 2nτ̂2 + o(1). (13.58)

The leading term is correct, as it must be, but (13.58) is numerically different
from (13.56).

Plainly, there are still more forms of both the LM and Wald tests, some
but not all of which will coincide with one of the versions we have already
computed. The interested reader is invited to try out, for example, the effects
of using σ itself, rather than σ2, as the model parameter.

This example illustrates the fact that there may be many different classi-
cal tests, which are numerically different but asymptotically equivalent. The
fact that there are so many different tests creates the problem of how to choose
among them. One would prefer to use tests that are easy to compute and for
which the finite-sample distribution is well approximated by the asymptotic
distribution. Unfortunately, it frequently requires considerable effort to deter-
mine the finite-sample properties of asymptotic tests. Any method of analysis
tends to be restricted to very special cases, such as the case of linear regression
models with normal errors discussed in Section 13.4. One generally applica-
ble approach is to use computer simulation (Monte Carlo experiments); see
Chapter 21.
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13.6 Classical Test Statistics and Reparametrization

The idea of a reparametrization of a parametrized model was discussed at
length in Section 8.3. We saw there that one of the properties of maximum
likelihood estimation is its invariance under reparametrizations. Since the
classical tests are undertaken in the context of maximum likelihood estima-
tion, it might be expected, or at least hoped, that the classical test statistics
would likewise be parametrization invariant. That is true for the LR statis-
tic, since, as was shown in Chapter 8, the value of a maximized loglikelihood
function is invariant to reparametrization. But the results of the last section
have shown that it cannot be true in general for the other two classical tests.
In this section, we discuss the effects of reparametrization on the classical
test statistics in more detail. In particular, we endeavor to determine what
ingredients of the LM and Wald tests, and what ingredients of various infor-
mation matrix estimators, are or are not responsible for the parametrization
dependence of so many of the possible forms of the classical tests. We believe
that these are important topics. However, the discussion is necessarily quite
detailed, and some readers may wish to skip this section on a first reading.

First of all, we must make it clear that when we speak of invariance
we mean different things when we are discussing different quantities. For
example, if a model is reparametrized by a mapping η : Θ → Φ, where θ
and φ denote the parameter vectors under the two parametrizations, then by
the invariance of the MLE under reparametrization it is certainly not meant
that θ̂ = φ̂, but rather that

φ̂ = η(θ̂). (13.59)

The notation here was used previously in Chapter 8, around equation (8.23),
and will be used again below. We must distinguish between quantities ex-
pressed in terms of the k--vector of parameters θ and quantities expressed in
terms of the k--vector of parameters φ. As in Chapter 8, we will use primes
to denote quantities expressed in terms of φ.

For the maximized loglikelihood function, invariance means simply that

`(θ̂) = ` ′(φ̂).

Thus, when we speak of parameter estimates being invariant under repara-
metrization, we mean that (13.59) holds, whereas when we speak of maximized
loglikelihood functions, or test statistics, we mean that the actual numerical
value is unchanged when calculated using different parametrizations.

The Wald and LM tests are made up of ingredients that are vectors and
matrices, unlike the LR test which just depends on two scalars. In order to
determine whether or not scalar quantities that are defined in terms of vec-
tors and matrices, such as the Wald and LM test statistics, are invariant, we
must first determine how the vectors and matrices themselves are altered by
a reparametrization. It can subsequently be worked out whether these alter-
ations cancel out in the definition of the scalar. From the definitions (13.03)
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and (13.05) of the LM and Wald tests, it can be seen that the vectors and
matrices that we need to examine are g(θ), the gradient of the loglikelihood
function, I(θ), the information matrix, r(θ), the vector of restrictions, and
R(θ), the matrix of derivatives of the components of r(θ).

We will consider a reparametrization in which the “new” parameter
k--vector, φ, is related to the “old” parameter k--vector θ by the mapping η:

φ = η(θ).

Therefore, as follows immediately from (8.23), the loglikelihood functions in
the two parametrizations are related by

` ′
(
y,η(θ)

)
= `(y,θ). (13.60)

The gradient vector in the original θ parametrization is

g(θ) ≡ Dθ
>̀ (y,θ), (13.61)

and in the φ parametrization it is

g′
(
η(θ)

)
≡ Dφ

>̀ ′(y,η(θ)
)
. (13.62)

The relation between g and g′ is obtained by differentiating the defining
identity (13.60) with respect to the components of θ and using the chain
rule:

Dφ`
′(η(θ)

)
Dθη(θ) = Dθ`(θ), (13.63)

where we have suppressed the dependence on y for notational simplicity. Note
that Dθη(θ) is a k × k matrix with typical element

∂ηi(θ)

∂θj
. (13.64)

Let us denote this matrix, the Jacobian matrix associated with the repara-
metrization η, as J(θ). Then, from (13.63) and the definitions (13.61) and
(13.62), we obtain

J>(θ)g′
(
η(θ)

)
= g(θ). (13.65)

This is the desired link between the gradients in the two parametrizations.
Since η is an invertible mapping, it will almost always be true that its Jacobian
J(θ) is an invertible (that is, nonsingular) matrix for all θ ∈ Θ. If so, then
we can invert (13.65) so as to be able to express g′ in terms of g:

g′
(
η(θ)

)
=
(
J>(θ)

)−1
g(θ). (13.66)

But in general we are obliged to assume the nonsingularity of J(θ) explicitly,
because it is possible to find reparametrizations η the Jacobians of which are
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singular for some values of θ.5 In such cases, either the reparametrization
or its inverse is not smooth, in the sense of being continuously differentiable.
Thus the results we are engaged in establishing at the moment will be true
only for smooth reparametrizations that have smooth inverses.

For the information matrix I(θ), it is convenient to start from its defini-
tion, as expressed in equations (8.20), (8.21), and (8.22). From these equa-
tions, we may conclude that the information matrix for a sample of size n is

I n(θ) = Eθ
(
g(θ)g>(θ)

)
. (13.67)

Then, from (13.65), we find that

Eθ
(
gg>

)
= J>Eθ

(
g′
(
g′
)>)J ,

where the unprimed quantities g and J are evaluated at θ, and primed quan-
tities are evaluated at φ. It follows that

I n = J>(I n)′J .

Dividing by n and taking the limit as n → ∞ gives the transformation rule
for the information matrix:

I = J>I′ J . (13.68)

Under our assumption of the nonsingularity of J, the inverse of this transfor-
mation rule is

I′ = (J>)−1 IJ−1. (13.69)

We are now ready to consider the LM statistic in the form (13.03), that is,
the form in which the correct information matrix is used, evaluated at θ̃. This
form of the test statistic is sometimes called the efficient score test statistic,
by extension of the terminology in which the LM test is called the score test
(see Section 8.9). In the φ parametrization, the efficient score form of the LM
test becomes

1−
n

(
g′(φ̃)

)>(I′(φ̃)
)−1
g′(φ̃), (13.70)

where φ̃ ≡ η(θ̃) is, by the “invariance” of the MLE, the restricted MLE in
the φ parametrization. Then if, as usual, g̃ denotes g(θ̃) and so forth, (13.70)
becomes, by (13.66) and (13.69),

1−
n
g̃>J̃−1J̃ Ĩ−1J̃>(J̃>)−1g̃ = 1−

n
g̃> Ĩ−1g̃,

which is just the LM statistic (13.03) in the original θ parametrization. Thus
we can conclude that the efficient score form of the LM test is indeed invariant

5 For example, in the case of a scalar parameter θ, the invertible mapping that
takes θ into θ3 has a Jacobian of zero at θ = 0.
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under reparametrizations, since all the Jacobian factors have washed out of
the final expression.

We next consider the LM statistic in the form in which the information
matrix is estimated by means of the empirical Hessian, as in (13.56). The
empirical Hessian can be written as

H(θ) ≡ D2`(θ) (13.71)

in the θ parametrization and as

H ′(φ) ≡ D2` ′(φ) (13.72)

in the φ parametrization. If we differentiate (13.63) once more with respect
to θ, we obtain

Dθ
>η(θ)D2

φφ`
′(φ)Dθη(θ) +

k∑
i=1

∂` ′(φ)

∂φi
D2
θθηi(θ) = D2

θθ`(θ).

Rearranging and using the definitions (13.71) and (13.72), this becomes

H(θ) = J>(θ)H ′(φ)J(θ) +
k∑
i=1

g′i(φ)DθJi.(θ). (13.73)

The notation used for the second term on the right-hand side above needs
a little explanation. First, the whole term must be a k × k matrix in order
to accord with the other terms in the equation; the individual summands in
the term must therefore be k × k matrices also. Next, g′i(φ) is just the ith

component of the gradient g′, evaluated at φ, and so it is simply a scalar. It
follows that DθJi.(θ) must be a k × k matrix. If we recall that J(θ) itself is
a k× k matrix with typical element (13.64), we see that Ji.(θ), the ith row of
that matrix, is 1×k. When each of the k elements of the row is differentiated
with respect to the k components of θ, we finally obtain the k × k matrix
DθJi.(θ) with jl th element given by

∂Jij(θ)

∂θl
. (13.74)

It can now be seen that the reason for the notational complexity is that there
are three independently varying indices in the partial derivative (13.74).

The relation (13.73) for the Hessian would be perfectly analogous to the
relation (13.68) for the information matrix if the awkward second term on the
right-hand side of (13.73) were absent. Consequently, for reparametrizations
which are such that this term vanishes, the LM statistic calculated with the
empirical Hessian will be invariant. In general, however, this term will not
vanish, and the LM statistic calculated with the empirical Hessian will not
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be invariant. There do exist reparametrizations for which the awkward term
in (13.73) always vanishes, namely, linear reparametrizations. Indeed, if η is
a linear mapping, all the second-order partial derivatives of the form (13.74)
are zero. Notice that the parameters τ and σ2 studied in the example of the
preceding section are not linked by a linear relation.

The leading-order term in the asymptotic expansion of the LM statistic
must of course be invariant to reparametrization by the result on asymptotic
equivalence. That this is so can be seen by considering the orders of magnitude
of the three terms in (13.73). Because the mapping η is independent of n,
the matrix J and the derivatives of its elements are O(1). The Hessians H
and H ′ are O(n), and the gradients g and g′ are O(n1/2). We see that the
term responsible for the parametrization dependence of this form of the LM
statistic is not of leading order asymptotically, being O(n1/2), while the other
term on the right-hand side of (13.73) is O(n).

It is clear that the possible parametrization dependence of the LM test
statistic is due solely to the choice of estimator for the information matrix.
Thus the choice of a noninvariant information matrix estimator such as the
empirical Hessian will induce parametrization dependence in a Wald statistic
just as much as in an LM statistic. However, in the example of the preceding
section, we saw that the Wald statistic could be parametrization dependent
even if the actual information matrix, evaluated at the unrestricted MLE, was
used. This turns out to be a general property of the Wald test: Any nonlinear
reparametrization will lead to a different value for the test statistic, regardless
of the information matrix estimator used.

The noninvariance of the Wald test has been the subject of a good deal
of research. Articles by Gregory and Veall (1985, 1987) and Lafontaine and
White (1986) led to a more detailed study by Phillips and Park (1988). It
appears that, for a given data set and a given set of restrictions on a given
unrestricted hypothesis, it is possible by suitable choice of parametrization to
obtain any (nonnegative) numerical value for the Wald test of the restrictions.
Although in most econometric contexts there are parametrizations that appear
to be more natural than others, and although one might hope that use of these
natural parametrizations would lead to more reliable inference than the use
of less natural ones, there is little evidence that this hope is much more than
wishful thinking once one leaves the context of linear regression models.

Let us now investigate the lack of invariance of Wald statistics a little
more closely. It can be seen from the expressions (13.03), (13.05), and (13.06)
for the three classical statistics that it is only in the Wald statistic W that the
explicit form of the restrictions appears, through r̂ and R̂. If we suppose, as
usual, that the two parameter vectors θ and φ correspond to the same DGP,
so that φ = η(θ), then the restrictions r(θ) = 0 can be expressed in terms
of φ by the formula r′(φ) = 0, where

r′(φ) = r(θ) = r
(
η−1(φ)

)
. (13.75)
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Thus r′ can be represented as the composition of the two mappings r and η−1:

r′ = r ◦ η−1,

and (13.75) can be written equivalently as

r(θ) = r′
(
η(θ)

)
. (13.76)

The matrix R′(φ) is the Jacobian matrix associated with the mapping r′, and
so by differentiating (13.76) with respect to θ we obtain

R(θ) ≡ Dθr(θ) = Dθr
′(η(θ)

)
= Dφr

′(φ)Dθη(θ) = R′(φ)J(θ), (13.77)

by the chain rule and (13.64). Use of (13.76), (13.77), and (13.69) in expression
(13.05) for W then gives the statistic for the φ parametrization:

W ′ ≡ n(r̂′)>
(
R̂′ (Î′)−1(R̂′)>

)−1
r̂′ (13.78)

= n r̂>
(
R̂ Ĵ−1Ĵ Î−1Ĵ>(Ĵ>)−1R̂>

)−1
r̂

= n r̂>
(
R̂ Î−1R̂>

)−1
r̂ = W,

where primed quantities are evaluated at φ̂ and unprimed ones at θ̂.

So where is the problem? The statistic W looks invariant according to
this calculation! The difficulty is that, precisely on account of the explicit
appearance of r and R in W, it is possible to reparametrize, not only the
model parameters θ but also the actual restrictions. Suppose that we imagine
changing the parameter of the example of the last section from σ2 to σ.
If the restriction σ2 = 1 is reformulated according to (13.76), it becomes
σ2 =

(√
σ2
)2

= 1. Similarly, if we write τ = log σ, the restriction is e2τ = 1.
If we used the restriction in either of these forms, then W would indeed be
invariant under the reparametrizations, by (13.78). But that is not what one
would be likely to do. Usually the restriction would be written either as σ = 1
or as τ = 0. Then, as we will now show, the statistic is no longer invariant.

The r restrictions r(θ) = 0 can be expressed in a great many different
ways. If p is any mapping from Rr to Rr that maps the origin and only the
origin into the origin, then, for any x ∈ Rr, p(x) = 0 if and only if x = 0.
Thus the restrictions r(θ) = 0 are completely equivalent to the restrictions
p
(
r(θ)

)
= 0. If we write q for the composition p◦r, then q maps Rk into Rr,

and exactly the same subset of the parameter space Θ is defined by imposing
q(θ) = 0 as by imposing r(θ) = 0. In this sense, we may call the restrictions
q(θ) = 0 a reparametrization of r(θ) = 0.

In order to formulate a Wald statistic for these reparametrized restric-
tions, we need the Jacobian matrix of q, which we will call Q. It is

Q(θ) ≡ Dθq(θ) = Dθ

(
p(r(θ))

)
= Drp

(
r(θ)

)
Dθr(θ) = Drp

(
r(θ)

)
R(θ).
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Therefore, the Wald statistic, in obvious notation, is

W ′′ ≡ n q̂>
(
Q̂ Î−1Q̂>)

)−1
q̂

= np>(r̂)
(
Drp(r̂)R̂ Î−1R̂>Dr

>p(r̂)
)−1
p(r̂),

(13.79)

which is not in general equal to the original statistic W or to the statistic
W ′ = W that we obtained in (13.78) when we reparametrized the model but
not the restrictions.

There is again one important case for which W ′′ in (13.79) is equal to W,
namely, the case of a nonsingular linear mapping p. (Such a mapping auto-
matically maps the origin and only the origin to the origin, of course.) If p
is linear, then there is no actual difference between p itself and its Jacobian
Drp. We may therefore write for any θ ∈ Θ that

p
(
r(θ)

)
= Drp

(
r(θ)

)
r(θ). (13.80)

This is to be interpreted as saying that the r--vector p
(
r(θ)

)
is equal to the

product of the r× r matrix Drp
(
r(θ)

)
and the r--vector r(θ). Use of (13.80)

in (13.79) makes W ′′ coincide with W and W ′.

Before concluding this section, we should note a further invariance prop-
erty of the LM test, but of a rather different kind from those we have studied
so far. This property, which was pointed out by Godfrey (1981), is quite par-
ticular to the LM test; there is nothing analogous for the LR and Wald tests.
It turns out that, when a given null hypothesis is under test, exactly the same
LM statistic may be obtained for two or more different alternative hypotheses
if the latter are locally equivalent. We have already encountered an example
of this phenomenon in Chapter 10, in which we saw that one and the same test
statistic is generated when a regression model is tested, by means of a GNR,
for the presence of either AR(p) or MA(p) errors. One important implication
of local equivalence is the following. If two alternative hypotheses are locally
equivalent, then for any drifting DGP that belongs to either alternative, any
asymptotic test for which the explicit alternative is one of them will have an
ARE of unity relative to any asymptotic test for which the explicit alternative
is the other.

We now examine just what aspect of the different alternative hypotheses
is responsible for this invariance of the LM statistic. Recall from (13.03)
that an LM statistic is made up of two ingredients, namely, the gradient of
the loglikelihood function and the information matrix, both evaluated at the
restricted ML estimates. These estimates depend only on the null hypothesis
under test and are therefore invariant to changes in the alternative hypothesis.
Further, the information matrix is defined as the expectation of the outer
product of the gradient with itself; see (13.67). Thus if, for a given sample,
we test the same null hypothesis against two different alternatives, and the
gradient turns out to be the same for both alternatives, then the whole LM
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statistic will be the same. This result assumes that we are using the efficient
score form of the LM test. If we based the test on estimates of the information
matrix, the two LM statistics might not be numerically the same, although
they would still be the same asymptotically.

Geometrically, two different alternative hypotheses are locally equivalent
if they touch at the null hypothesis. By this we mean not merely that the two
alternative hypotheses yield the same values of their respective loglikelihood
functions when restricted by the null hypothesis, as will always be the case, but
also that the gradients of the two loglikelihood functions are the same, since
the gradients are tangents to the two models that touch at the null model. In
these circumstances, the two LM tests must be numerically identical.

What does it mean for two models to touch, or, to use the nongeometrical
term for the property, to be locally equivalent? A circular definition would
simply be that their gradients are the same at all DGPs at which the two
models intersect. Statistically, it means that if one departs only slightly from
the null hypothesis while respecting one of the two alternative hypotheses,
then one departs from the other alternative hypothesis by an amount that
is of the second order of small quantities. For instance, an AR(1) process
characterized by a small autoregressive parameter ρ differs from some MA(1)
process to an extent proportional only to ρ2. To prove this formally would
entail a formal definition of the distance between two DGPs, but our earlier
circular definition is an operational one: If the gradient g̃1 calculated for the
first alternative is the same as the gradient g̃2 for the second, then the two
alternatives touch at the null. It should now be clear that this requirement is
too strong: It is enough if the components of g̃2 are all linear combinations
of those of g̃1 and vice versa. An example of this last possibility is provided
by the local equivalence, around the null of white noise errors, of regression
models with ARMA(p, q) errors on the one hand and with AR(max(p, q))
errors on the other; see Section 10.8. For more examples, see Godfrey (1981)
and Godfrey and Wickens (1982).

Both the geometrical and algebraic aspects of the invariance of LM tests
under local equivalence are expressed by means of one simple remark: The
LM test can be constructed solely on the basis of the restricted ML estimates
and the first derivatives of the loglikelihood function evaluated at those esti-
mates. This implies that the LM test takes no account of the curvature of the
alternative hypothesis near the null.

We may summarize the results of this section as follows:

1. The LR test depends only on two maximized loglikelihood functions. It
therefore cannot depend either on the parametrization of the model or
on the way in which the restrictions are formulated in terms of those
parameters.

2. The efficient score form of the LM test is constructed out of two ingre-
dients, the gradient and the information matrix, which do alter under
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reparametrization, but in such a way that the test statistic itself is in-
variant, not only under reparametrizations but also under different, lo-
cally equivalent, choices of the alternative hypothesis. If the information
matrix itself has to be estimated, then parametrization dependence may
appear, as we saw when the information matrix was estimated using the
empirical Hessian and a nonlinear reparametrization considered. How-
ever, the OPG information matrix estimator of (8.48) also transforms
under reparametrizations in such a way as to leave the LM statistic in-
variant; it is a good exercise to show this.

3. The Wald test can be parametrization dependent for the same reason as
the LM test but may in addition be so for a different reason, not directly
through the model parameters but through the way in which they are
used to formulate the restrictions.

4. If a reparametrization or reformulation of the restrictions is linear, it does
not affect the value of any of the classical test statistics.

13.7 The Outer-Product-of-the-Gradient Regression

We remarked in the introduction to this chapter that the Gauss-Newton re-
gression is not generally applicable to models estimated by maximum like-
lihood. In view of the extreme usefulness of the GNR for computing test
statistics in the context of nonlinear regression models, it is of much interest
to see if other artificial regressions with similar properties are available in the
context of models estimated by maximum likelihood.

One preliminary and obvious remark: No regression, artificial or oth-
erwise, is needed to implement the LR test. Since any package capable of
producing ML estimates will certainly also produce the maximized loglikeli-
hood function, there can be no obstacle to performing an LR test unless there
is some difficulty in estimating either the restricted or the unrestricted model.
In many cases, there is no such difficulty, and then the LR test is almost
always the procedure of choice. However, there are occasions when one of the
two models is much easier to estimate than the other, and then one would wish
to use either the LM or the Wald test to avoid the more difficult estimation.
Another possibility is that the alternative hypothesis may be implicit rather
than being associated with a well-defined parametrized model that includes
the null hypothesis as a special case. We have seen in the context of the
GNR that many diagnostic tests fall into this category. When the alternative
hypothesis is implicit, one would almost always wish to use an LM test.

In the regression context, the GNR provides a means of computing test
statistics based on the LM principle. In point of fact, as we saw in Section 6.7,
it can be used to compute test statistics based on any root-n consistent es-
timates. We will now introduce a new artificial regression, called the outer-
product-of-the-gradient regression, or the OPG regression for short, which
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can be used with any model estimated by maximum likelihood. The OPG
regression was first used as a means of computing test statistics by Godfrey
and Wickens (1981). This artificial regression, which is very easy indeed to
set up for most models estimated by maximum likelihood, can be used for the
same purposes as the GNR: verification of first-order conditions for the maxi-
mization of the loglikelihood function, covariance matrix estimation, one-step
efficient estimation, and, of greatest immediate interest, the computation of
test statistics.

Suppose that we are interested in the parametrized model (13.01). Let
G(θ) be the CG matrix associated with the loglikelihood function `n(θ), with
typical element

Gti(θ) ≡ ∂`t(θ)

∂θi
; t = 1, . . . , n, i = 1, . . . , k,

where k is the number of elements in the parameter vector θ. Then the OPG
regression associated with the model (13.01) can be written as

ι = G(θ)c + residuals. (13.81)

Here ι is an n--vector of which each element is unity and c is a k--vector
of artificial parameters. The product of the matrix of regressors with the
regressand is the gradient g(θ) ≡ G>(θ)ι. The matrix of sums of squares and
cross-products of the regressors, G>(θ)G(θ), when divided by n, consistently
estimates the information matrix I(θ). These two features are essentially all
that is required for (13.81) to be a valid artificial regression.6 As with the
GNR, the regressors of the OPG regression depend on the vector θ. Therefore,
before the artificial regression is run, these regressors must be evaluated at
some chosen parameter vector.

One possible choice for this parameter vector is θ̂, the ML estimator for
the model (13.01). In this case, the regressor matrix is Ĝ ≡ G(θ̂) and the
artificial parameter estimates, which we will denote by ĉ, are identically zero:

ĉ =
(
Ĝ>Ĝ

)−1
Ĝ>ι =

(
Ĝ>Ĝ

)−1
ĝ = 0.

Since ĝ here is the gradient of the loglikelihood function evaluated at θ̂, the
last equality above is a consequence of the first-order conditions for the max-
imum of the likelihood. As with the GNR, then, running the OPG regression
with θ = θ̂ provides a simple way to test how well the first-order conditions
are in fact satisfied by a set of estimates calculated by means of some com-
puter program. The t statistics again provide the most suitable check. They
should not exceed a number around 10−2 or 10−3 in absolute value if a good
approximation to the maximum has been found.

6 Precise conditions for a regression to be called “artificial” are provided by
Davidson and MacKinnon (1990); see Section 14.4.
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Since the estimates ĉ for regression (13.81) are zero when the regressors
are Ĝ, those regressors have no explanatory power for ι, and the sum of
squared residuals is therefore equal to the total sum of squares. Because the
latter is

ι>ι =
n∑
t=1

1 = n,

the ML estimate of the residual variance in (13.81) is just unity:

1−
n

SSR = 1−
n
ι>ι = 1−

n
n = 1.

The OLS variance estimate, which is SSR/(n− k) = n/(n− k), is asymptot-
ically equivalent to this, but it will simplify the exposition if we suppose that
the ML estimate is used. The covariance matrix estimate for the vector ĉ
from (13.81) is then (

Ĝ>Ĝ
)−1

.

It is this expression that gives the OPG regression its name, for its inverse is
precisely the OPG estimator of the information matrix; see (8.48) and (8.50).7

It follows that, as with the GNR, n−1 times the covariance matrix estimator
from the OPG regression is asymptotically equal to the covariance matrix of
n1/2(θ̂ − θ0).

The property just established is not the only one shared by the Gauss-
Newton and OPG regressions. We will now establish two further properties
of the OPG regression that are in fact shared by all regressions to which we
give the name “artificial.” The first of these properties is what allows one to
use artificial regressions to perform one-step efficient estimation. According
to this property, if the OPG regression (13.81) is evaluated at some parameter
vector θ́ that is root-n consistent for θ0, so that θ́ − θ0 = O(n−1/2), then the
artificial parameter estimates ć are such that

n1/2ć
a
= n1/2(θ̂ − θ́), (13.82)

where θ̂ is the ML estimator of θ. This result is essentially the same as the
one proved for the Gauss-Newton regression in Section 6.6.

The result (13.82) is important. Because of it, we can proceed in one
step from any root-n consistent estimator θ́ to an estimator asymptotically
equivalent to the asymptotically efficient estimator θ̂. The one-step estimator
θ̀ defined by θ̀ ≡ θ́ + ć has the property that

n1/2(θ̀ − θ0) = n1/2(θ̂ − θ0) + o(1), (13.83)

7 As we noted in Section 8.6, some authors refer to the OPG estimator of the
information matrix as the BHHH estimator, after Berndt, Hall, Hall, and Haus-
man (1974), who advocated its use, although they did not explicitly make use
of the OPG regression itself.
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as can be seen directly from (13.82). Since the asymptotic equivalence of θ̀
and θ̂ requires the factors of n1/2 that appear in (13.83), it can be seen why
we wish to prove (13.82), with a factor of n1/2 on each side of the equation,
rather than the seemingly equivalent result that ć

a
= θ̂ − θ́. Although this

result is certainly true, it is weaker than (13.82), because it merely implies
that θ̂ − θ́ = o(1), while (13.82) implies that θ̂ − θ́ = o(n−1/2).

The proof of (13.82) is both simple and illuminating. A Taylor expansion
of the gradient ǵ ≡ g(θ́) around θ0 yields

n−1/2ǵ = n−1/2g0 + n−1H(θ0)n1/2(θ́ − θ0) +O(n−1/2),

where, as usual, H(θ) denotes the Hessian of the loglikelihood function `(θ).
If now we expand ĝ, which is zero by the first-order conditions for a maximum
of the likelihood at θ̂, we obtain

0 = n−1/2g0 + n−1H(θ0)n1/2(θ̂ − θ0) +O(n−1/2).

On subtracting the last two equations and noting that ǵ = Ǵ>ι, we find that

n−1/2Ǵ>ι = n−1H(θ0)n1/2(θ́ − θ̂) +O(n−1/2). (13.84)

By the information matrix equality, n−1H(θ0) = − I0 + o(1). Since, by the
consistency of θ́, we have n−1Ǵ>Ǵ = I0 + o(1), we may replace n−1H(θ0) in

(13.84) by −n−1Ǵ>Ǵ to obtain

n−1/2Ǵ>ι =
(
n−1Ǵ>Ǵ

)
n1/2(θ̂ − θ́) + o(1).

The result (13.82) now follows directly on premultiplication by (n−1Ǵ>Ǵ)−1.

A second property of artificial regressions is the one that permits their use
in the calculation of LM statistics. When an artificial regression that satisfies
this property is evaluated at a root-n consistent θ́, n times the uncentered R2

calculated from it is asymptotically equal to

1−
n
ǵ>I−10 ǵ.

This result is very easy to prove for the OPG regression. The R2 is the ratio
of the explained sum of squares (ESS) to the total sum of squares (TSS), and
so nR2 is the ratio ESS/(TSS/n). We saw that TSS/n was equal to 1. This
means that nR2 is just the explained sum of squares:

nR2 = ι>Ǵ
(
Ǵ>Ǵ

)−1
Ǵ>ι = 1−

n
ǵ>
(
n−1Ǵ>Ǵ

)−1
ǵ. (13.85)

This completes the proof, since n−1Ǵ>Ǵ→ I0.
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Using this result, we see that the LM statistic (13.03) can be calculated
very easily. Many regression packages do not print the uncentered R2, and
some do not even print the explained sum of squares. Therefore, the two most
natural ways to compute the LM test statistic may not be available. Since
all packages print the sum of squared residuals, a third way is to use the fact
that, for the OPG regression,

nR2 = ESS = n− SSR.

To compute the LM statistic, then, one can simply calculate n minus the
sum of squared residuals for the OPG regression evaluated at θ̃. Although
this is the simplest way in which a statistic based on the LM principle can be
computed by means of an OPG regression, it is not the only one. For example,
if there is only one restriction and G̃ can be partitioned so that k−1 columns
are orthogonal to ι and one column is not orthogonal to it, one can use an
ordinary t test on the coefficient of the latter. The details, which follow those
for the GNR very closely, are left as an exercise for the reader.

It is also possible to use an OPG regression, or indeed any artificial
regression that satisfies the above properties, to compute C(α) test statistics,
based on any root-n consistent estimates that satisfy the null hypothesis. The
C(α) test, which we mentioned in Chapters 6, 7, and 11, was first proposed
by Neyman (1959); see Neyman and Scott (1966), Moran (1970), Breusch
and Pagan (1980), Smith (1987), and Dagenais and Dufour (1991) for more
detailed discussions and applications. The C(α) test can be regarded as a
classical test. Although it is much less well known than the LM, LR, and Wald
tests, it is, as we will now demonstrate, asymptotically equivalent to them.

Suppose that θ is partitioned as [θ1
.... θ2], that the gradient vector g(θ)

and information matrix I(θ) are partitioned in the same way, and that the
restrictions on θ can be written as θ2 = θ0

2. Then the C(α) test statistic can
be written in several ways, of which the simplest is

C(α) ≡ 1−
n
ǵ>Í−1ǵ − 1−

n
ǵ1
>( Í11)−1ǵ1, (13.86)

where all quantities are evaluated at root-n consistent estimates θ́ = [θ́1
.... θ0

2 ]
that satisfy the null hypothesis.

That the C(α) test is asymptotically equivalent to the other classical
tests is easily seen. First-order Taylor-series approximations of n−1/2g(θ́)
and n−1/2g1(θ́) around θ̃, combined with the information matrix equality,
yield the results

n−1/2g(θ́)
a
= n−1/2g(θ̃)− I(θ0)n1/2(θ́ − θ̃) and (13.87)

n−1/2g1(θ́)
a
= − I11(θ0)n1/2(θ́1 − θ̃1). (13.88)

In deriving (13.88), we have used the first-order conditions for θ̃1 and the fact
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that θ́2 = θ̃2. Using (13.87), the first term in (13.86) is

1−
n
ǵ>Í−1ǵ

a
=
(
n−1/2g̃ − In1/2(θ́ − θ̃)

)>I−1(n−1/2g̃ − In1/2(θ́ − θ̃)
)

= 1−
n
g̃>I−1g̃ + n(θ́1 − θ̃1)>I11(θ́1 − θ̃1). (13.89)

There are only two terms in the second line of (13.89), because the other
two terms involve inner products of g̃ with θ́ − θ̃. Since g̃1 = 0, those inner
products are zero. Using (13.88) and the second line of (13.89), we have

1−
n
ǵ>Í−1ǵ

a
= 1−
n
g̃>I−1g̃ + 1−

n
ǵ1
>(I11)−1ǵ1. (13.90)

Since the second term in (13.86) is minus a consistent estimate of the second
term in (13.90), it follows that

C(α) ≡ 1−
n
ǵ>Í−1ǵ − 1−

n
ǵ1
>( Í11)−1ǵ1

a
= 1−
n
g̃>I−1g̃.

Thus we conclude that the C(α) statistic is asymptotically equivalent to the
LM statistic and hence to all of the classical test statistics.

The test statistic (13.86) is the difference between two quadratic forms.
In fact, it looks like the difference between two LM statistics. The first of
these is asymptotically equal to nR2 from the artificial regression

ι = Ǵ1c1 + Ǵ2c2 + residuals, (13.91)

and the second is asymptotically equal to nR2 from the artificial regression

ι = Ǵ1c1 + residuals. (13.92)

The R2 from this regression would be zero if θ́ = θ̃, by the first-order condi-
tions for θ̃, but will generally not be zero for any other choice of θ́.

The test statistic (13.86) is asymptotically equal to n times the difference
between the R2’s from (13.91) and (13.92). Thus we see that LM tests based
on the OPG regression are just special cases of C(α) tests based on that
regression. The difference is that, because nR2 from (13.92) is generally not
zero, one cannot simply use nR2 from (13.91) as the test statistic in the more
general case. The intuition that underlies this result is very simple. From
(13.82), we see that the OLS estimates of c2 in (13.91) are asymptotically
equivalent to the unrestricted ML estimates θ̂2 minus θ0

2. Thus it is hardly
surprising that a test for c2 = 0 in (13.91) should be equivalent to a classical
test for θ2 = θ0

2.

As we noted in Section 6.7, it is possible to compute statistics based on the
Wald principle using artificial regressions. We will refer to these as Wald-like
statistics, because they are not in general numerically equal to Wald statis-
tics calculated conventionally as in (13.05). They are of course asymptotically
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equal to the classical Wald test statistic and share with it the property of
being based exclusively on the ML estimates of the unrestricted model. Un-
fortunately, they also share the property of being parametrization dependent.
Consider the OPG regression corresponding to the unrestricted model evalu-
ated at [θ̂1

.... θ0
2 ], a parameter vector which, by construction, satisfies the null

hypothesis. This artificial regression is

ι = G1

(
θ̂1,θ

0
2

)
c1 +G2

(
θ̂1,θ

0
2

)
c2 + residuals. (13.93)

This is just a special case of the C(α) regression (13.91), and so any asymp-
totically valid test of the artificial hypothesis c2 = 0 based on (13.93) provides
a valid Wald-like test.

LM, C(α), and Wald-like tests based on the OPG regression are so sim-
ple that it seems inviting to suggest that all tests other than the LR test can
most conveniently be computed by means of an OPG regression. However, as
is clear from (13.85) for the LM test, all tests based on the OPG regression
use the outer-product-of-the-gradient estimator of the information matrix.
Although this estimator has the advantage of being parametrization indepen-
dent, numerous Monte Carlo experiments have shown that its finite-sample
properties are almost always very different from its nominal asymptotic ones
unless sample sizes are very large, often on the order of many thousand. In
particular, these experiments suggest that OPG tests often have a size far
in excess of their nominal asymptotic size. True null hypotheses are rejected
much too often, in some especially bad cases, almost all the time. See, among
others, Davidson and MacKinnon (1983a, 1985c, 1992a), Bera and McKen-
zie (1986), Godfrey, McAleer, and McKenzie (1988), and Chesher and Spady
(1991). Although some experiments have suggested that OPG-based tests
have about as much power as other variants of the classical tests if a way can
be found to correct for their size, no one has found any easy and convenient
way to perform the necessary size correction.

In view of this rather disappointing feature of the OPG regression, we
must conclude this section with a firm admonition to readers to use it with
great care. In most cases, it is safe to conclude that a restriction is compatible
with the data if a test statistic computed using the OPG regression fails to
reject the null hypothesis. But it is generally not safe to conclude that a
restriction is incompatible with the data if an OPG test statistic rejects the
null, at least not for samples of any ordinary size. Of course, if something is
known about the properties of the particular OPG test being used, perhaps as
a result of Monte Carlo experiments, one may then be able to draw conclusions
from an OPG test statistic that rejects the null.

However, the OPG regression would be important even if one never ac-
tually used it to calculate test statistics. Its use in theoretical asymptotic
calculations can make such calculations much simpler than they might oth-
erwise be. Moreover, as we will see in the next two chapters, there exist
other artificial regressions, not quite so generally applicable as the OPG one
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perhaps, and not quite so utterly elementary to set up, but generally possess-
ing much better finite-sample properties. Results that are true for the OPG
regression are true for these other artificial regressions as well.

13.8 Further Reading and Conclusion

The three classical tests, as the word “classical” implies, have a long history
and have generated a great deal of literature; see Engle (1984) and Godfrey
(1988) for references. In this chapter, we have tried to emphasize the common
aspects of tests underlying the very considerable diversity of testing proce-
dures and to emphasize the geometrical interpretation of the tests. A simpler
discussion of the geometry of the classical tests may be found in Buse (1982).
We have pointed out that there is a common asymptotic random variable to
which all the classical test statistics tend as the sample size tends to infinity
and that the distribution of this asymptotic random variable is chi-squared,
central if the null hypothesis under test is true, and noncentral otherwise. The
actual noncentrality parameter is a function of the drifting DGP considered
as a model of the various possibilities that exist in the neighborhood of the
null hypothesis. Because the mathematics involved is not elementary, we did
not discuss the details of how this noncentrality parameter may be derived,
but the intuition is essentially the same as for the case of nonlinear regression
models discussed in Section 12.4.

The asymptotic properties of the classical tests under DGPs other than
those satisfying the null hypothesis is studied in a well-known article of Gallant
and Holly (1980) as well as in the survey article of Engle (1984). In these
articles, only drifting DGPs that satisfied the alternative hypothesis were
taken into account. The Gallant and Holly article provoked a substantial
amount of further research. One landmark of the literature in which this
research is reported is a paper by Burguete, Gallant, and Souza (1982), in
which an ambitious project of unification of a wide variety of asymptotic
methods is undertaken. Here, for the first time, drifting DGPs were considered
which, although in the neighborhood of the null hypothesis, satisfied neither
the null nor the alternative hypothesis. Subsequently, Newey (1985a) and
Tauchen (1985) continued the investigation of this approach and were led to
propose new tests and still more testing procedures (see Chapter 16). Our own
paper (Davidson and MacKinnon, 1987) pursued the study of general local
DGPs and was among the first to try to set the theory of hypothesis testing
in a geometrical framework in such a way that “neighborhoods” of a null
hypothesis could be formally defined and mentally visualized. The geometrical
approach had been gaining favor with econometricians and, more particularly,
statisticians for some time before this and had led to the syntheses found in
Amari (1985) and Barndorff-Nielsen, Cox, and Reid (1986); see the survey
article by Kass (1989). We should warn readers, however, that the last few
references cited use mathematics that is far from elementary.



Terms and Concepts 479

In many ways, the most intuitively satisfactory approach to testing is
provided by the concept of artificial regressions. This concept, which we have
been using since Chapter 6 and will develop further in the remainder of the
book, supplies, as readers have perhaps already sensed, much of the intuition
provided by higher-powered and more mathematically sophisticated analyses.
It also provides simple ways to compute test statistics in practice.

Terms and Concepts

C(α) tests
classical test statistics
conflict among testing criteria
efficient score form of LM statistic
inner product (for a Euclidean space)
invariance (to reparametrization)
leading-order term (of an asymptotic

expansion)
linear reparametrization
locally equivalent alternatives
locally equivalent models (models

that touch)
noncentral chi-squared distribution

outer-product-of-the-gradient (OPG)
regression

reparametrization of a parametrized
model

restricted estimates
restricted model
sample of size t
score vector (gradient vector)
smooth restrictions
unrestricted estimates
unrestricted model
vector sum
Wald-like statistics



Chapter 14

Transforming the Dependent Variable

14.1 Introduction

When we introduced the concept of a regression function in Chapter 2, we
defined it as the function that determines the mean of a dependent variable yt
conditional on an information set Ωt. With this definition, we can always write

yt = xt(β) + ut (14.01)

and assert that ut has mean zero conditional on Ωt, provided that xt(β) has
been specified correctly. But no matter how well xt(β) has been specified,
we cannot assert that ut is i.i.d. or has any other desirable properties. In
particular, there is no reason for it to be normally distributed, homoskedastic,
or even symmetric. Yet we need ut to be homoskedastic if the NLS estimates β̂
are to be efficient and inferences based on the usual least squares covariance
matrix estimator are to be valid.1 We also need ut to be symmetric (and
preferably normally distributed or close to it) if asymptotic results are to
provide a good guide to the properties of finite-sample estimators. Moreover,
if we wish to predict yt conditional on Ωt and construct any sort of forecast
interval, we must know (or at least be able to estimate) the distribution of ut.

If we can find the mean of yt conditional on Ωt, then we can presumably
just as well find the conditional mean of any smooth monotonic function of yt,
say τ(yt). For example, τ(yt) might be log yt, y

1/2
t , or y2t . If we write

τ(yt) = E
(
τ(yt) | Ωt

)
+ vt (14.02)

for some nonlinear τ(·), then the error term vt cannot be normally and inde-
pendently distributed, or n.i.d., if ut is n.i.d. in (14.01). Conversely, if vt is
n.i.d. in (14.02), ut cannot be n.i.d. in (14.01).

1 As we saw in Section 11.6 and will discuss further in Chapter 16, it is possible to
make asymptotically valid inferences even in the presence of heteroskedasticity
of unknown form. But finite-sample inferences will almost always be more
accurate if the error terms are homoskedastic to begin with.

480
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Let us now consider a concrete, and quite realistic, example. Suppose
that we estimate the model (14.01) when the DGP for yt is actually

log yt = log(mt) + vt, (14.03)

where mt is in the information set Ωt, and the error term vt is NID(0, σ2). It
follows that

yt = exp
(
log(mt) + vt

)
= mt exp(vt) ∼= mt(1 + vt) = mt +mtvt,

where the approximation exp(vt) ∼= 1 + vt that is used here will be a good
one if σ is small. If mt = xt(β0) for some β0, the nonlinear regression (14.01)
is at least approximately valid for the conditional mean of yt, although this
would not necessarily be the case if the transformation in (14.03) were not
logarithmic. But the error terms ut adhering to mt cannot possibly be n.i.d.
Instead, they will be heteroskedastic, with variance proportional to the square
of xt(β0). They will also be somewhat skewed to the right, especially if σ is
not very small, because of the fact that, for a > 0, ea − 1 > |e−a − 1|.
This fact implies that any given positive value of vt translates into a larger
absolute value of ut than the same absolute but negative value of vt. Since v
is symmetric, u must then be right-skewed.

This example demonstrates that, even when the dependent variable was
actually generated by a DGP with n.i.d. errors, using the wrong transfor-
mation of the dependent variable as the regressand will in general yield a
regression with error terms that are neither homoskedastic nor symmetric.
Thus, when we encounter heteroskedasticity and skewness in the residuals of
a regression, one possible way to eliminate them is to estimate a different
regression model in which the dependent variable has been subjected to a
nonlinear transformation. This is in fact an approach that has been used
extensively in econometrics and statistics, and we discuss it in some detail
in this chapter. We should, however, stress at the outset that in any given
case there may exist no transformation of the dependent variable that yields
symmetric and homoskedastic residuals. It is also possible that some form
of weighted least squares will work better than a model that involves trans-
forming the dependent variable. Thus the techniques to be discussed in this
chapter will not be useful in every case.

There are numerous ways in which transformations of the dependent
variable can be employed in what is otherwise a regression model. Let τ(x, λ)
denote a nonlinear transformation of x with scalar parameter λ that may or
may not have to be estimated. By far the most popular transformation is
the Box-Cox transformation, which was suggested by Box and Cox (1964) in
a very famous article; it will be discussed in the next section. One class of
models that uses such a transformation is the one originally suggested by Box
and Cox:

τ(yt, λ) = xt(β) + ut, (14.04)
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in which the transformation applies to the dependent variable only. This class
of models has been very popular in statistics but much less so in econometrics.
A second class of models is

τ(yt, λ) = τ
(
xt(β), λ

)
+ ut, (14.05)

in which the transformation τ(x, λ) is applied both to the dependent variable
and to the regression function. Models of this type have been advocated
by Carroll and Ruppert (1984, 1988), who call them “transform-both-sides”
models. These models have also been used quite extensively in statistics and
to a limited extent in econometrics; an early example is Leech (1975).

A third class of models is

τ(yt, λ) =

k∑
i=1

βiτ(Xti, λ) +

l∑
j=1

γjZtj + ut, (14.06)

where Xti and Ztj both denote observations on independent variables, the
distinction being that the Xti’s are subject to transformation and the Ztj ’s
are not. This is the approach that has generally been taken in econometrics,
with the transformation τ(x, λ) invariably being the Box-Cox transformation.2

The class of models (14.06) is more general than (14.04), at least if xt(β) in
that model is restricted to be linear, and in some ways it is also more general
than (14.05). It can be generalized further by allowing the value of λ used to
transform yt to differ from the value (or values) used to transform the Xti’s
(see Section 14.7).

Notice that whereas the models (14.04) and (14.05) are mainly concerned
with obtaining residuals that are homoskedastic and symmetric, while treating
the functional form of the regression function as essentially given, the model
(14.06) explicitly makes the functional form depend on λ. Perhaps as a result
of this, much of the early econometric literature seems to have been mainly
concerned with determining the functional form of the regression function
and largely unconcerned with the properties of the residuals. This lack of
concern was misplaced, because the key feature of any model involving a
transformation of the dependent variable is the fact that the transformation
directly affects the properties of the residuals.

The models (14.04), (14.05), and (14.06) may be called nonregression
models, because the dependent variable is not simply equal to the sum of a
regression function and an error term. Although these models are different,
and may yield quite different results in practice, they all have one thing in
common, namely, that the dependent variable is subject to a nonlinear trans-
formation with parameter λ. If λ were known, they could all be estimated by

2 Papers that either use or discuss this approach include Zarembka (1968, 1974),
White (1972), Heckman and Polachek (1974), Savin and White (1978), and
Spitzer (1976, 1978, 1982a, 1982b, 1984).
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nonlinear least squares and tested using the Gauss-Newton regression. But as
long as λ is unknown and has to be estimated, NLS is clearly not appropriate.
In most cases, a least squares algorithm would simply choose λ so as to make
τ(yt, λ) as small as possible in order to make the sum of squared residuals
as small as possible. It would thus inevitably yield nonsense results, as we
discussed in Chapter 8 in connection with the model (8.01).

In the next section, we discuss the Box-Cox transformation and the es-
timation of regression-like models in which the dependent variable has been
subjected to it. Maximum likelihood estimation turns out to be quite fea-
sible because the loglikelihood function incorporates a Jacobian term that
prevents λ from becoming too small. In Section 14.3, we digress slightly to
discuss some of the other useful properties of Jacobian terms in ML estima-
tion. In Section 14.4, we then discuss a new class of artificial regressions
called double-length artificial regressions and, in Section 14.5, we show how
these may be used for estimation and testing of models involving the Box-Cox
transformation. In Section 14.6, we discuss how one may test the specification
of linear and loglinear regression models against Box-Cox and other alterna-
tives. Finally, in Section 14.7, we briefly discuss some models that involve
generalizations of or alternatives to the Box-Cox transformation.

14.2 The Box-Cox Transformation

The Box-Cox transformation is by far the most commonly used nonlinear
transformation in statistics and econometrics. It is defined as

B(x, λ) =

 xλ − 1
λ

when λ 6= 0;

log(x) when λ = 0,

where the argument x must be positive. By l’Hôpital’s Rule, log x is the limit
of (xλ − 1)/λ as λ → 0. Figure 14.1 shows the Box-Cox transformation for
various values of λ. In practice, λ generally ranges from somewhat below 0
to somewhat above 1. It can be shown that B(x, λ′) ≥ B(x, λ′′) for λ′ ≥ λ′′,
and this inequality is evident in the figure. Thus the amount of curvature
induced by the Box-Cox transformation increases as λ gets farther from 1 in
either direction.

There are three varieties of Box-Cox model. We will refer to (14.04) and
(14.05) with τ(·) given by the Box-Cox transformation as the simple Box-Cox
model and the transform-both-sides Box-Cox model, respectively. We will
refer to (14.06) with this choice of τ(·) as the conventional Box-Cox model,
because it is by far the most commonly used in econometrics.

One reason for the popularity of the Box-Cox transformation is that it
incorporates both the possibility of no transformation at all (when λ = 1) and
the possibility of a logarithmic transformation (when λ = 0). Provided that
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Curves (from highest to lowest) correspond to

λ = 1.5, 1, 0.5, 0, −0.5 and −1.

x

B(x, λ)

Figure 14.1 Box-Cox transformations for various values of λ

the regressors include a constant term, subjecting the dependent variable to a
Box-Cox transformation with λ = 1 is equivalent to not transforming it at all.
Subjecting it to a Box-Cox transformation with λ = 0 is equivalent to using
log yt as the regressand. Since these are both very plausible special cases, it is
attractive to use a transformation that allows for both of them. Even when it
is not considered plausible in its own right, the conventional Box-Cox model
provides a convenient alternative against which to test the specification of
linear and loglinear regression models; see Section 14.6.

The Box-Cox transformation is not without some serious disadvantages,
however. Consider the simple Box-Cox model

B(yt, λ) = xt(β) + ut, ut ∼ NID(0, σ2). (14.07)

For most values of λ (but not for λ = 0 or λ = 1) the value of B(yt, λ) is
bounded either from below or above; specifically, when λ > 0, B(yt, λ) cannot
be less than −1/λ and, when λ < 0, B(yt, λ) cannot be greater than −1/λ.
However, if ut is normally distributed, the right-hand side of (14.07) is not
bounded and could, at least in principle, take on arbitrarily large positive or
negative values. Thus, strictly speaking, (14.07) is logically impossible as a
model for yt. This remains true if we replace xt(β) by a regression function
that depends on λ.

One way to deal with this problem is to assume that data on yt are
observed only when the bounds are not violated, as in Poirier (1978b) and
Poirier and Ruud (1979). This leads to loglikelihood functions similar to
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those to be discussed in Section 15.6.3 However, it is not at all clear why data
would ever be generated in this way, and both estimation and testing become
quite complicated when one takes this sort of sample truncation into account.
A second way to deal with the problem is simply to ignore it. This application
of the well-known “ostrich algorithm” makes sense if λ is nonnegative (or at
least not much less than zero) and yt is positive and large relative to σ for
all observations in the data set. When those two conditions are satisfied, we
can be sure that ut will be small relative to B(yt, λ) and xt(β); therefore, the
probability that the right-hand side of (14.07) would ever violate the bound
on the left-hand side will be very small.

We will adopt this second approach on the grounds that Box-Cox models
with negative values of λ are not of much interest and that, in many practi-
cal cases, the conditional mean of yt is always large relative to any variation
around that conditional mean. In such cases, it seems reasonable enough to
use models in which the dependent variable is subject to a Box-Cox transfor-
mation. However, in other cases, it may not be appropriate to use a Box-Cox
model; see Section 14.7.

Now let us consider how to obtain consistent estimates of λ and β in
(14.07). This is the simplest case to discuss, but everything that we will say
will apply also, with slight and obvious modifications, to the transform-both-
sides and conventional Box-Cox models as well, in which the transformation
parameter λ also appears in the regression function. Since least squares clearly
will not work in this case, it is natural to turn to maximum likelihood. Because
we have assumed that the ut’s are normally and independently distributed,
we can easily write down the loglikelihood function for this model. It is

`(y,β, λ, σ) = − n−
2

log(2π)− n log σ

− 1

2σ2

n∑
t=1

(
B(yt, λ)− xt(β)

)2
+ (λ− 1)

n∑
t=1

log yt.
(14.08)

The last term here is the summation over all observations of the logarithm of

∂B(yt, λ)

∂yt
=

∂

∂yt

(
yλt − 1

λ

)
= yλ−1t ,

which is the Jacobian of the transformation from yt to ut.

The role of this Jacobian term is crucial. In order to avoid having to
consider more than one case, let us assume for simplicity that all the yt’s are
greater than 1. Since

plim
λ→−∞

B(x, λ) = 0

3 A different approach, along similar lines, was suggested by Amemiya and Powell
(1981).
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for x > 1, letting λ → −∞ will then make B(yt, λ) → 0 for all t. Thus,
provided there is some value of β that makes the regression function xt(β)
equal zero for all t, the sum of squared residuals,

n∑
t=1

(
B(yt, λ)− xt(β)

)2
,

can be made arbitrarily small simply by letting λ tend to minus infinity. If
we concentrate (14.08) with respect to σ, the loglikelihood function becomes

`c(y,β, λ) = C− n−
2

log

( n∑
t=1

(
B(yt, λ)−xt(β)

)2)
+ (λ−1)

n∑
t=1

log yt, (14.09)

where C is a constant that does not depend on β or λ. Thus we see that when
we maximize the loglikelihood function, the value of λ will affect two things:
a sum-of-squares term and a Jacobian term. The Jacobian term prevents the
ML estimate of λ from tending to minus infinity, since that term tends to
minus infinity as λ does.

Maximizing (14.09) is not very difficult. The best approach, if appropri-
ate software is available, is to use a suitable procedure for nonlinear maximiza-
tion; see Section 14.5. A second approach is to use a grid search procedure in
which one searches over values of λ and estimates β by least squares condi-
tional on λ. A third approach is to make use of a trick that allows (14.09) to
be minimized using any nonlinear least squares algorithm. There are actually
two ways to do this. The simplest is to note that if all the yt’s are divided by
their geometric mean ẏ, the Jacobian term in (14.09) is then identically equal
to zero, because

n log ẏ =
n∑
t=1

log yt.

Thus, running any nonlinear regression that has residuals B(yt/ẏ, λ)− xt(β)
will yield valid estimates of β and λ. For example, one could define the re-
gressand as a vector of zeros and the regression function as B(yt/ẏ, λ)− xt(β)
and then use any NLS algorithm. This approach has been used for many years
but has the disadvantage of requiring yt to be rescaled; as we will see below,
rescaling is not always totally innocuous in the context of Box-Cox models.

A second way to use an NLS program was suggested by Carroll and
Ruppert (1988). One can rewrite (14.09) as

`c(y,β, λ) = C∗ − n−
2

log

(
n∑
t=1

(
B(yt, λ)− xt(β)

ẏλ

)2)
,

where C∗ does not depend on β or λ. Since this version of the loglikelihood
function has only a sum-of-squares term, it can be maximized by minimizing
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the sum of squared residuals:

n∑
t=1

(
B(yt, λ)− xt(β)

ẏλ

)2
.

One can do this using an NLS procedure by defining the regressand as a vector
of zeros and the regression function as

(
B(yt, λ)− xt(β)

)
/ẏλ.

Although all the techniques just described yield ML estimates λ̂ and β̂,
none of the methods based on least squares yields a valid estimate of the
covariance matrix of λ̂ and β̂. The reason for this is that, as we will see in
Section 14.5, the information matrix for Box-Cox models is not block-diagonal
in β, λ, and σ. Grid-search methods that estimate β conditional on λ yield
invalid covariance matrix estimates, because they ignore the fact that λ̂ is itself
an estimate. Methods that trick an NLS program into estimating λ̂ and β̂
jointly also yield invalid covariance matrix estimates, because they implicitly
assume that the covariance matrix is block-diagonal between σ and the other
parameters, which is not the case for Box-Cox models. Because it is very
tempting to use the incorrect standard error estimates printed by the least
squares package, we recommend that procedures based on least squares should
be used to estimate Box-Cox models only when more appropriate computer
software is unavailable.

One can, of course, obtain a valid estimated covariance matrix in a variety
of ways by inverting various estimates of the information matrix. The OPG
regression probably provides the easiest way to obtain a covariance matrix
estimate, but its finite-sample properties are not very good, and more special-
ized techniques that work better are available; see Spitzer (1984). In Sections
14.4 and 14.5, we will discuss a class of artificial regressions that can be used
to handle a wide class of models and seem to work very well for Box-Cox
models. Like all artificial regressions, these double-length regressions, as they
are called, can be used for estimation, inference, and specification testing.

We remarked earlier that rescaling the dependent variable may not be
innocuous in a Box-Cox model. In the transform-both-sides model, rescal-
ing the dependent variable has exactly the same effect that it would have if
there were no transformation, because both the dependent variable and the
regression function are transformed in the same way. Thus, if xt(β) is linear,
all the coefficients will simply be multiplied by the factor used to rescale the
dependent variable. If xt(β) is nonlinear, rescaling yt may well affect β in
more complicated ways and may even affect how well the model fits, but it will
do so only if rescaling would affect the fit of the model even if there were no
transformation involved. In the two other types of Box-Cox model, however,
things are not so simple.

There is one important invariance result for the conventional and simple
Box-Cox models. It is that, under certain conditions, the ML estimate of λ
is invariant to rescaling of the dependent variable. Suppose one multiplies yt
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by a constant α so that the dependent variable becomes αyt. The Box-Cox
transformation of αyt is

B(αyt, λ) = αλB(yt, λ) +B(α, λ).

The second term here is just a constant. Provided there is a constant term
(or the equivalent) in the regression function, the estimate of the constant will
always adjust automatically to accommodate it. If the regression function is
linear, all the parameter estimates except the constant will simply be rescaled
by αλ, as will the residuals and σ̂. For the conventional Box-Cox model, the
rescaling is more complicated, but the net effect is that the residuals are again
rescaled by αλ. This is also true for some, but by no means all, other nonlinear
regression functions xt(β). Provided that rescaling yt is equivalent to rescaling
the residuals in this way, the sum-of-squares term in (14.08), evaluated for an
arbitrary fixed λ at the β̂ that minimizes the sum of squared residuals and
at the corresponding σ̂2, is invariant under the rescaling. The second term
of (14.08), −n log σ, becomes −n log σ − nλ logα. The last, Jacobian, term
becomes

(λ− 1)
n∑
t=1

log yt + n(λ− 1) logα.

The whole operation thus adds −n logα, a quantity independent of all para-
meters, to the loglikelihood function concentrated with respect to β and σ2.
Hence it is clear that, provided rescaling yt is equivalent to rescaling the resid-
uals, the ML estimate λ̂ will not change when we rescale yt. Essentially this
result was originally proved by Schlesselman (1971).

Even when λ̂ is invariant to rescaling, the other parameters will generally
not be. In the conventional Box-Cox model, the effects of rescaling yt depend
on the value of λ. When λ = 1, so that it is really a linear regression model,
multiplying yt by α simply changes all the estimated coefficients by a factor
of α and has no effect on t statistics. When λ = 0, so that it is really
a loglinear regression model, multiplying yt by α means adding a constant
logα to the regressand, which affects the constant term but none of the other
coefficients. But except in these two cases, all of the other coefficients will
generally change when the dependent variable is rescaled. Moreover, because
of the lack of invariance of Wald tests to nonlinear reparametrizations, all of
the t statistics on the βi’s will change as well; see Spitzer (1984). In fact, it
is quite possible for a t statistic that is highly significant for one scaling of yt
to be entirely insignificant for another scaling. This of course implies that,
whatever the scaling of yt, one should not rely on t statistics (or on any other
sort of Wald test) in the context of Box-Cox models.
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14.3 The Role of Jacobian Terms in ML Estimation

Jacobian terms have appeared in loglikelihood functions in a variety of con-
texts in Chapters 8, 9, and 10. We have seen that whenever the dependent
variable is subject to a nonlinear transformation, the loglikelihood function
necessarily contains one or more Jacobian terms. In this section, we investi-
gate in more detail the role played by Jacobian terms in ML estimation. We
will continue our discussion of Box-Cox models in subsequent sections.

Recall that if a random variable x1 has density f1(x1) and another ran-
dom variable x2 is related to it by x1 = τ(x2), where the function τ(·) is
continuously differentiable and monotonic, then the density of x2 is given by

f2(x2) = f1
(
τ(x2)

)∣∣∣∣ ∂τ(x2)

∂x2

∣∣∣∣ . (14.10)

The second factor here is the absolute value of the Jacobian of the trans-
formation, and it is therefore often referred to as a Jacobian factor. In the
multivariate case, where x1 and x2 are m--vectors and x1 = τ (x2), the analog
of (14.10) is

f2(x2) = f1
(
τ (x2)

)∣∣detJ(x2)
∣∣,

where |detJ(x2)| is the absolute value of the determinant of the Jacobian
matrix J(x2) with typical element

Jij(x2) ≡ ∂τi(x2)

∂x2j
.

These results are discussed in Appendix B.

Jacobian factors in density functions give rise to Jacobian terms in log-
likelihood functions. These may arise whenever the transformation from the
observed dependent variable(s) to the error terms which drive the model has a
Jacobian matrix that is not the identity matrix. If the underlying error terms
are assumed to be normally distributed, the presence of these Jacobian terms
is often the only thing that makes the loglikelihood function something other
than just a transformation of the sum of squared residuals.

There are, however, circumstances in which the loglikelihood function
contains no Jacobian terms, even though the Jacobian matrix is not an iden-
tity matrix. We encountered a class of models for which this is the case in
Chapter 10. If we ignore the first observation, the Jacobian matrix for a re-
gression model with AR(1) errors is easily seen to be lower-triangular, with
diagonal elements equal to 1. Since the determinant of a triangular matrix is
the product of the diagonal elements, the Jacobian factor for such models is
simply unity, and the Jacobian term is consequently zero.

In this section, of course, we are concerned with the many other cases in
which Jacobian terms do appear in loglikelihood functions. Their appearance
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has several consequences. First of all, it means that nonlinear least squares
and the Gauss-Newton regression are not applicable to such models; tricks
such as the one we used in the previous section may allow NLS to be used
for estimation but will not allow inference to be based on NLS estimates in
the usual way. The OPG regression will be applicable, of course, and so will
more specialized artificial regressions such as the double-length regression to
be introduced in the next section.

Secondly, the presence of Jacobian terms ensures that we can never ob-
tain ML estimates at points in the parameter space where the Jacobian of the
transformation from the dependent variable(s) to the underlying error terms
is singular. At such points, it would not be possible to make this transforma-
tion at all. As the parameter vector approaches such a point, the determinant
of the Jacobian matrix tends to zero, and the logarithm of that determinant
therefore tends to minus infinity. We saw an example of this phenomenon
in Section 10.6, where the loglikelihood function for a regression model with
AR(1) errors was shown to tend to minus infinity as |ρ| → 1. The transfor-
mation for the first observation,

(1− ρ2)1/2
(
y1 − x1(β)

)
= ε1,

cannot be made when |ρ| = 1, and the loglikelihood function reflects this fact
by taking on a value of minus infinity.

This property of loglikelihood functions is for the most part a desirable
one, since it prevents us from obtaining estimates that make no sense. How-
ever, it does imply that loglikelihood functions for models with such Jacobian
terms must have multiple maxima. For example, in the simplest case in which
the singularity divides the parameter space into two regions, there must be
at least one maximum in each of those regions. Thus, if we make the mistake
of starting a maximization algorithm in the wrong region, the algorithm may
well fail to cross the singularity and will thus find a local maximum that is
not also a global one; see MacKinnon (1979). We will encounter additional
examples of singularities in loglikelihood functions in Chapter 18, when we
discuss the use of maximum likelihood to estimate simultaneous equations
models.

The third major consequence of the presence of Jacobian terms in log-
likelihood functions, and the one of most interest to us in this chapter, is that
maximum likelihood estimation, unlike least squares, can deal very easily with
transformations of the dependent variable, since, as we saw in the last sec-
tion, the presence of the transformation causes there to be a Jacobian term in
the loglikelihood function. A very common problem in applied econometric
work is deciding on the appropriate transformation of the dependent variable.
For example, economic theory might well be consistent with all three of the
following specifications:

H1 : yt = α1 + β1xt + ut, (14.11)
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H2 : log yt = α2 + β2 log xt + ut, and (14.12)

H3 :
yt
zt

= α3
1
zt

+ β3
xt
zt

+ ut, (14.13)

where zt and xt are observations on exogenous or predetermined variables.
The regression functions here are deliberately very simple, because just how
they are specified is irrelevant to the main argument.

It is clearly not appropriate to compare the sums of squared residuals or
the R2’s from (14.11), (14.12), and (14.13). Nevertheless, if one is willing to
assume normality, it is very easy to compare the values of the loglikelihood
functions from the three competing models. These loglikelihood functions,
concentrated with respect to the variance parameter, are, respectively,

`c1(y,β1) = C − n−
2

log

( n∑
t=1

(
yt − α1 − β1xt

)2)
, (14.14)

`c2(y,β2) = C − n−
2

log

( n∑
t=1

(
log yt − α2 − β2 log xt

)2)− n∑
t=1

log yt, (14.15)

and

`c3(y,β3) = C − n−
2

log

( n∑
t=1

(yt
zt
− α3

1
zt
− β3

xt
zt

)2)
−

n∑
t=1

log zt, (14.16)

where the constant C is the same for all three specifications.

What makes it possible to compare these three loglikelihood functions is
the Jacobian terms in (14.15) and (14.16). They arise because

∂ log yt
∂yt

=
1
yt

and
∂(yt/zt)

∂yt
=

1
zt
.

Thus, if one wishes to decide which of (14.11), (14.12), and (14.13) fits best,
one simply has to estimate each of them by NLS (or possibly OLS), retrieve
the values of the loglikelihood functions reported by the regression package,
subtract

∑
log yt in the case of (14.12) and

∑
log zt in the case of (14.13), and

compare the resulting values of `1, `2, and `3. Note that, for most regression
packages, the values of ` reported by the package for (14.12) and (14.13) will be
incorrect when yt (rather than log yt or yt/zt) is truly the dependent variable.
Because the package does not know that the regressand has been subjected to
a transformation, the reported values will omit the Jacobian terms in (14.15)
and (14.16).

This sort of procedure can actually be used to test, and possibly reject,
one or more of the competing models. It is easy to see that each pair of H1,
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H2, and H3 can be embedded in a more general model involving one extra
parameter. For example, the model

yt

zφt
= α

1

zφt
+ β

xt

zφt
+ ut

reduces to H1 when φ = 0 and to H3 when φ = 1. Similarly, the Box-Cox
model

B(yt, λ) = α+ βB(xt, λ) + ut (14.17)

reduces to H1 when λ = 1 and to H2 when λ = 0. Suppose that we estimate
H1 and H2, and that the values of `1 and `2 are −523.4 and −520.7, respec-
tively. Since we know that the embedding model (14.17) must fit at least as
well as whichever of H1 and H2 fits best, the unrestricted maximum of the
loglikelihood function must be at least as great as −520.7. Thus an LR test
statistic of H1 against the embedding model must be no less than

2
(
−520.7− (−523.4)

)
= 2(523.4− 520.7) = 5.4.

Since 5.4 exceeds the 5% critical value for a one-degree-of-freedom test, we
may conclude that the linear model H1 will be rejected at some level smaller
than 5% if it is tested against the embedding model, even though we have not
estimated the latter or calculated a formal test statistic.

This example illustrates a feature of LR tests that can be very convenient,
namely, that one can sometimes put a lower bound on the LR test statistic
without actually estimating the unrestricted model. It was noted by Sar-
gan (1964) in the context of choosing between linear and loglinear models, is
widely used by applied workers, and has recently been proposed as a basis for
model selection by Pollak and Wales (1991). The procedure works in only one
direction, of course. Thus the fact that the good performance of H2 allows
us to reject H1 in this example does not tell us anything about H2. It might
well be rejected too if we actually tested it against the embedding model (see
Section 14.6).

14.4 Double-Length Artificial Regressions

For all of the models discussed in Sections 14.1 and 14.2, the loglikelihood
function is equal to a sum of the contributions for each of the n observations;
(14.08) provides an example. Thus the OPG regression could clearly be used
for estimation and testing of these models. Given the generally poor finite-
sample performance of quantities calculated by means of the OPG regression,
however, one would prefer not to base inferences on it. Luckily, there is avail-
able another artificial regression, called the double-length artificial regression,
or DLR, that can also be used with these models and that performs very much
better than the OPG regression in finite samples. In this section, we provide
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a brief introduction to the DLR. In the next section, we show how it may be
used in estimating and testing Box-Cox models. The principal references on
this subject are Davidson and MacKinnon (1984a, 1988). Davidson and Mac-
Kinnon (1983a, 1985c), Bera and McKenzie (1986), Godfrey, McAleer, and
McKenzie (1988), and MacKinnon and Magee (1990) provide Monte Carlo
evidence which suggests that tests based on the DLR generally perform very
much better than tests based on the OPG regression in finite samples.

The class of models to which the DLR applies may be written as

ft(yt,θ) = εt, t = 1, . . . , n, εt ∼ NID(0, 1), (14.18)

where each ft(·) is a smooth function that depends on the random variable yt,
on a k--vector of parameters θ, and (implicitly) on some exogenous and/or
predetermined variables. Since the function ft(·) may also depend on lagged
values of yt, dynamic models are allowed. This may seem at first sight to
be a rather restrictive class of models, but it is actually quite general. For
example, a transform-both-sides model like (14.05) can, if the error terms are
assumed to be NID(0, σ2), be written in the form of (14.18) by making the
definitions

ft(yt,θ) ≡ 1−σ
(
τ(yt, λ)− τ

(
xt(β), λ

))
and θ ≡ [β

.... λ
.... σ].

In much the same way, other models involving transformations of the depen-
dent variable can be put into the form (14.18). It is even possible to put many
multivariate models into this form; see Davidson and MacKinnon (1984a).

For a model of the class to which the DLR applies, the contribution of
the tth observation to the loglikelihood function `(y,θ) is

`t(yt,θ) = − 1−
2

log(2π)− 1−
2
f 2
t (yt,θ) + kt(yt,θ),

where

kt(yt,θ) ≡ log

∣∣∣∣∂ft(yt,θ)

∂yt

∣∣∣∣
is a Jacobian term. Now let us make the definitions

Fti(yt,θ) ≡ ∂ft(yt,θ)

∂θi
and Kti(yt,θ) ≡ ∂kt(yt,θ)

∂θi

and define F (y,θ) and K(y,θ) as the n × k matrices with typical elements
Fti(yt,θ) and Kti(yt,θ). Similarly, let f(y,θ) be the n--vector with typical
element ft(yt,θ). It is easy to see that the gradient of `(y,θ) is

g(y,θ) = −F>(y,θ)f(y,θ) +K>(y,θ)ι, (14.19)

where ι denotes an n--vector each element of which is 1.
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The fundamental result that makes the DLR possible is that, for this
class of models, the information matrix I(θ) satisfies the equality

I(θ) = plim
n→∞

(
1−
n

(
F>(y,θ)F (y,θ) +K>(y,θ)K(y,θ)

))
(14.20)

and so can be consistently estimated by

1−
n

(
F>(y, θ̈)F (y, θ̈) +K>(y, θ̈)K(y, θ̈)

)
, (14.21)

where θ̈ is any consistent estimator of θ. We are interested in the implications
of (14.20) rather than how it is derived. The derivation makes use of some
rather special properties of the normal distribution and may be found in
Davidson and MacKinnon (1984a).

The principal implication of (14.20) is that a certain artificial regression,
which we call the DLR, has all the properties that we expect an artificial
regression to have. The DLR may be written as[

f(y,θ)
ι

]
=

[
−F (y,θ)

K(y,θ)

]
b + residuals. (14.22)

This artificial regression has 2n artificial observations. The regressand is
ft(yt,θ) for observation t and unity for observation t+ n, and the regressors
corresponding to θ are −Ft(y,θ) for observation t and Kt(y,θ) for observa-
tion t + n, where Ft and Kt denote, respectively, the tth rows of F and K.
Intuitively, the reason we need a double-length regression here is that each
genuine observation makes two contributions to the loglikelihood function: a
sum-of-squares term − 1

2f
2
t and a Jacobian term kt. As a result, the gradient

and the information matrix each involve two parts as well, and the way to
take both of these into account is to incorporate two artificial observations
into the artificial regression for each genuine one.

Why is (14.22) a valid artificial regression? As we noted when we dis-
cussed the OPG regression in Section 13.7, there are two principal conditions
that an artificial regression must satisfy. It is worth stating these conditions
somewhat more formally here.4 Let r(y,θ) denote the regressand for some
artificial regression and let R(y,θ) denote the matrix of regressors. Let the
number of rows of both r(y,θ) and R(y,θ) be n∗, which will generally be
either n or an integer multiple of n. The regression of r(y,θ) on R(y,θ) will
have the properties of an artificial regression if

R>(y,θ)r(y,θ) = ρ(θ)g(y,θ) and (14.23)

plim
n→∞

θ

(
1−
n
R>(y, θ̈)R(y, θ̈)

)
= ρ(θ) I(θ), (14.24)

4 For a fuller treatment of this topic, see Davidson and MacKinnon (1990).
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where θ̈ denotes any consistent estimator of θ. The notation plimθ indicates,
as usual, that the probability limit is being taken under the DGP characterized
by the parameter vector θ, and ρ(θ) is a scalar defined as

ρ(θ) ≡ plim
n→∞

θ

(
1

n∗
r>(y,θ)r(y,θ)

)
.

Because ρ(θ) is equal to unity for both the OPG regression and the DLR,
those two artificial regressions satisfy the simpler conditions

R>(y,θ)r(y,θ) = g(y,θ) and (14.25)

plim
n→∞

θ

(
1−
n
R>(y, θ̈)R(y, θ̈)

)
= I(θ), (14.26)

as well as the original conditions (14.23) and (14.24). However, these simpler
conditions are not satisfied by the GNR and are thus evidently too simple in
general.

It is now easy to see that the DLR (14.21) satisfies conditions (14.25) and
(14.26). For the first of these, simple calculation shows that

[
−F (y,θ)

K(y,θ)

]>[
f(y,θ)
ι

]
= −F>(y,θ)f(y,θ) +K>(y,θ)ι,

which by (14.19) is equal to the gradient g(y,θ). For the second, we see that

[
−F (y,θ)

K(y,θ)

]>[−F (y,θ)

K(y,θ)

]
= F>(y,θ)F (y,θ) +K>(y,θ)K(y,θ).

The right-hand side here is just the expression that appears in the fundamental
result (14.20). Hence it is clear that the DLR must satisfy (14.26). All this
discussion assumes, of course, that the matrices F (y,θ) and K(y,θ) satisfy
appropriate regularity conditions, which may not always be easy to verify in
practice; see Davidson and MacKinnon (1984a).

The DLR can be used in all the same ways that the GNR and the OPG
regression can be used. In particular, it can be used

(i) to verify that the first-order conditions for a maximum of the log-
likelihood function are satisfied sufficiently accurately,

(ii) to calculate estimated covariance matrices,

(iii) to calculate test statistics,

(iv) to calculate one-step efficient estimates, and

(v) as a key part of procedures for finding ML estimates.
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Use (i) was discussed in the context of the GNR in Section 6.1; use (ii) was
discussed in Sections 6.2, 10.4, and 13.7; use (iii) has been discussed exten-
sively throughout the book, beginning in Chapter 6; and uses (iv) and (v)
were discussed, in the context of the GNR, in Sections 6.6 and 6.8. Virtually
everything that has been said about the uses of the GNR and the OPG re-
gression applies equally well to the DLR and will therefore not be repeated
here.

Many different test statistics can be computed using the same double-
length artificial regression. In its score form, the LM statistic is

g̃>(nĨ)−1g̃, (14.27)

where g̃ ≡ g(y, θ̃) is the gradient evaluated at a set of restricted estimates θ̃.
If we run the DLR (14.22) with the quantities f(y,θ), F (y,θ), and K(y,θ)
evaluated at f̃ ≡ f(y, θ̃), F̃ ≡ F (y, θ̃), and K̃ ≡K(y, θ̃), the explained sum
of squares will be(

−f̃ >F̃ + ι>K̃
)(
F̃>F̃ + K̃>K̃

)−1(−F̃>f̃ + K̃>ι
)
. (14.28)

This clearly has the same form as the LM statistic (14.27). From (14.19), we
see that g̃ = −F̃>f̃ + K̃>ι. From (14.20), we see that I(θ) is consistently
estimated by n−1(F̃>F̃ + K̃>K̃) when the restrictions are true. Thus the
explained sum of squares from the DLR, expression (14.28), will provide an
asymptotically valid test statistic. As usual, pseudo-F and pseudo-t statistics
will also be valid.

The general expression for a DLR, (14.22), is deceptively simple. It may
therefore be illuminating to see what happens if we use a DLR in a simple
case that we already know how to handle. Consider a univariate nonlinear
regression model

yt = xt(β) + ut, ut ∼ NID(0, σ2).

When written in the form of (14.18), this model becomes

ft(yt,θ) ≡ 1−σ
(
yt − xt(β)

)
= εt. (14.29)

If β is a k--vector, θ will be a (k + 1)--vector. Now consider how we might
test restrictions on β using a DLR. The nature and number of the restrictions
is irrelevant for our purposes; for simplicity, one can think of them as r ≤ k
zero restrictions. Quantities denoted by ∼ are evaluated at ML (i.e., NLS)
estimates subject to those restrictions.

Calculating f(y,θ), F (y,θ), and K(y,θ) for the model (14.29), evalu-
ating them at restricted estimates θ̃, and substituting the results into (14.22),
yields the DLR [

ε̃
ι

]
=

[
X̃/σ̃ ε̃/σ̃

0 −ι/σ̃

] [
b
s

]
+ residuals. (14.30)
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Here ε̃ ≡ ũ/σ̃ denotes an n--vector of normalized residuals and X̃ denotes
an n × k matrix with typical element ∂xt(β)/∂βi, evaluated at β̃. The first
k regressors in (14.30) correspond to the elements of β, while the last one
corresponds to σ; they have coefficients b and s, respectively. It is evident that
the last regressor is orthogonal to the regressand. It is also orthogonal to all
the regressors that correspond to elements of β which were estimated without
restriction (by the first-order conditions) and, under the null hypothesis, it
should be uncorrelated with the remaining regressors as well. Thus it must be
valid simply to drop this last regressor. But when it is dropped, the second
half of the DLR becomes irrelevant, since the second halves of all remaining
regressors are zero. If the factors of 1/σ̃ are ignored, we are left with the
artificial regression

ũ = X̃b + residuals, (14.31)

which is simply the Gauss-Newton regression. Because the regressand is not
divided by σ̃, it is now necessary to divide the explained sum of squares from
(14.31) by an estimate of σ2 when computing the test statistic.

That the DLR is equivalent to the GNR when the latter is valid makes
perfect sense. Suppose that ESSDLR denotes the explained sum of squares
from (14.30) and ESSGN denotes the explained sum of squares from the mod-
ified GNR obtained from (14.31) by replacing ũ by ε̃. It can be shown that
these two test statistics are both functions of the same random variable. They
will not, however, be numerically identical, the exact relationship between
them being

ESSDLR =
ESSGN

1− ESSGN/(2n)
.

Because ESSDLR will always be larger than ESSGN, the DLR will always be
somewhat more prone to reject the null hypothesis than the Gauss-Newton
regression. The difference between them will usually be small, unless n is very
small or ESSGN is very large. If, instead of the explained sum of squares, t
or F statistics are used, it can be shown that the DLR and Gauss-Newton
regressions yield numerically identical results, except for slightly different cor-
rections for degrees of freedom.

There is, of course, no point using a DLR when a GNR will do, that is,
when both the null and alternative hypotheses are regression models. But
when the dependent variable is subject to a nonlinear transformation that
depends on unknown parameters, the GNR is not applicable. In the next
section, we show how the DLR may be used with Box-Cox models and other
models that involve transformations of the dependent variable.
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14.5 The DLR and Models Involving Transformations

It is straightforward to work out the specific form that the DLR takes for each
of the models (14.04), (14.05), and (14.06) for any specified transformation
τ(yt, λ). Consider (14.04) first. We can write

ft(yt,β, λ, σ) ≡ 1−σ
(
τ(yt, λ)− xt(β)

)
.

From (14.22), we see that the regressand for the DLR is

r(θ) =

[
ft(yt,β, λ, σ)

1

]
=

[ 1−σ
(
τ(yt, λ)− xt(β)

)
1

]
,

where the upper and lower quantities inside the tall brackets denote, respec-
tively, the tth and (t + n)th elements of the regressand. We will use this
notation extensively when discussing DLRs.

For all three models — (14.04), (14.05), and (14.06) — the Jacobian term
for the tth observation is

kt ≡ log

(
∂ft(yt,β, λ, σ)

∂yt

)
= log

(
τy(yt, λ)

)
− log σ,

where τy(yt, λ) denotes ∂τ(yt, λ)/∂yt. Thus the matrix of regressors for the
DLR that corresponds to (14.04) is

R(θ) =


1−σXt(β) − 1−σ τλ(yt, λ)

τ(yt, λ)− xt(β)

σ2

0
τyλ(yt, λ)

τy(yt, λ)
− 1−σ

, (14.32)

where τλ(yt, λ) denotes ∂τ(yt, λ)/∂λ, and τyλ(yt, λ) denotes ∂τy(yt, λ)/∂λ.
The two quantities in the first column of (14.32) denote the tth and (t+ n)th

rows of the k columns of the regressor matrix that correspond to β. Similarly,
the two quantities in each of the second and third columns denote the elements
of the regressor matrix that correspond to λ and σ, respectively.

When the transformation τ is the Box-Cox transformation,

τλ(y, λ) =
λyλ log y − yλ + 1

λ2
and

τyλ(y, λ)

τy(y, λ)
=
yλ−1 log(y)

yλ−1
= log(y).
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Hence the DLR for the simple Box-Cox model, (14.04) with τ(yt, λ) given by
the Box-Cox transformation, is[ 1−σut(yt,β, λ)

1

]
(14.33)

=

 1−σXt(β)
−(λyλt log yt − yλt + 1)

σλ2
ut(yt,β, λ)

σ2

0 log yt − 1−σ


 ba
s

 + residuals,

where b is a k--vector of coefficients corresponding to β, a and s are scalar
coefficients corresponding to λ and σ, and

ut(yt,β, λ) ≡ B(yt, λ)− xt(β).

If the DLR (14.33) is evaluated at unrestricted ML estimates θ̂ ≡ (β̂, λ̂, σ̂), all
the estimated coefficients will be zero. Since the first-order conditions for σ
imply that

σ̂ =

(
1−
n

n∑
t=1

û2t

)1/2
,

the total sum of squares from the artificial regression will be 2n. Thus the
OLS covariance matrix estimate will simply be

(
2n/(2n − k − 2)

)
(R̂>R̂)−1,

where R̂ denotes the matrix of regressors that appears in (14.33), evaluated
at the ML estimates. By the fundamental result (14.20), this OLS covariance
matrix provides a valid estimate of the asymptotic covariance matrix of the
ML estimator θ̂.

It is clear from (14.33) that this asymptotic covariance matrix is not
block-diagonal between β and the other parameters. Forming the matrix
R>R, dividing by n, and taking probability limits, we see that the (β,β)
block of the information matrix I(θ) is simply

σ−2 plim
n→∞

(
1−
n
X>(β)X(β)

)
, (14.34)

as it would be if this were a nonlinear regression model. The (σ, σ) element is
simply 2/σ2, which again is what it would be if this were a nonlinear regression
model. But I(θ) also contains a (λ, λ) element, a (λ, σ) element, and a (β, λ)
row and column, all of which are clearly nonzero. For example, the element
corresponding to βi and λ is

− plim
n→∞

(
1

nσ2λ2

n∑
t=1

Xti(β)
(
λyλt log yt − yλt + 1

))
.

The (λ, λ) and (λ, σ) elements can also be obtained in a straightforward fash-
ion and are easily seen to be nonzero.
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Because I(θ) is not block-diagonal between β and the other two para-
meters, the (β,β) block of its inverse will not be equal to the inverse of (14.34).
Thus, as we pointed out in Section 14.2, it is incorrect to make inferences us-
ing the estimated NLS covariance matrix for β conditional on λ. Similarly,
because the (λ, σ) element of I(θ) is nonzero, one cannot find the inverse of
the (k + 1) × (k + 1) block of the information matrix that corresponds to
β and λ jointly without inverting the entire information matrix. The esti-
mated covariance matrix obtained by tricking an NLS package into yielding
ML estimates will therefore be incorrect.

It should be clear that everything we have just said about the simple
Box-Cox model applies equally to the transform-both-sides model and to the
conventional model, since the Jacobian of the transformation is the same for
all these models. It is easy to work out the DLRs for the other two models.
In both cases, the regressand has the same form as the regressand of (14.33),
except that for the transform-both-sides model

ut(yt,β, λ) ≡ B(yt, λ)−B
(
xt(β), λ

)
and for the conventional Box-Cox model

ut(yt,β,γ, λ) ≡ B(yt, λ)−
k∑
i=1

βiB(Xti, λ)−
l∑

j=1

γjZtj .

The regressor that corresponds to σ also has the same form as the one that
appears in (14.33).

For the transform-both-sides model, the regressor corresponding to βi is[
1−σ
(
xt(β)

)λ−1
Xti(β)

0

]
,

and the regressor corresponding to λ is[ 1

σλ2

((
λ
(
xt(β)

)λ
log
(
xt(β)

)
−
(
xt(β)

)λ
+ 1
)
−
(
λyλt log yt − yλt + 1

))
log yt

]
.

For the conventional Box-Cox model, the regressors that correspond to βi
and γj , respectively, are[

1−σB(Xti, λ)

0

]
and

[
1−σZtj

0

]
, (14.35)

and the regressor that corresponds to λ is 1

σλ2

(∑k
i=1 βi

(
λXλ

ti logXti −Xλ
ti + 1

)
−
(
λyλt log yt − yλt + 1

))
log yt

. (14.36)
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We have now obtained DLRs for the three most common types of Box-
Cox models. DLRs for other types of models involving transformations of the
dependent variable can be derived in a similar fashion. All these DLRs can
be used as a key part of algorithms for estimating the models to which they
apply, in exactly the same way that GNRs can be used as part of algorithms
for estimating nonlinear regression models; see Section 6.8. Given some initial
value of λ (probably 0 or 1), it is easy to obtain initial estimates of the model’s
remaining parameters by OLS or NLS. That then provides a complete set of
parameter estimates, say θ(1), at which the DLR can be evaluated initially.
The coefficient estimates from the DLR, say t(1), can then be used to determine
the direction in which to update the parameter estimates, and the whole
process can be repeated as many times as necessary until some stopping rule
is satisfied.

The updating rule for the maximization algorithm has the form

θ (j+1) = θ (j) + α(j)t(j). (14.37)

Here θ (j) and θ (j+1) denote the vectors of estimates on the jth and (j + 1)th

iterations of the maximization algorithm, t(j) denotes the vector of coefficient
estimates from the DLR, and α(j) denotes the step length, which may be
chosen in various ways by the algorithm. This updating rule looks just like
the one for the Gauss-Newton regression discussed in Section 6.8, and works
for exactly the same reason. An algorithm based on Newton’s method (with
variable step length α) would use the updating rule

θ (j+1) = θ (j) − α(j)
(
H(θ (j))

)−1
g(θ (j)). (14.38)

The DLR at step j yields the coefficient vector

t(j) =
(
R>(θ (j))R(θ (j))

)−1
R>(θ (j))r(θ (j)).

By the properties of all artificial regressions, t(j) is asymptotically equal to
minus the inverse of the Hessian times the gradient. Hence it makes sense to

replace −
(
H(θ (j))

)−1
g(θ (j)) in (14.38) by t(j). That yields (14.37), which is

the updating rule based on the DLR. The stopping rule would normally also
be based on some measure of the explanatory power of the DLR, as discussed
in Section 6.8.

The DLR can, of course, be used for performing hypothesis tests of any
of the models we have been discussing. Since for these models the sum of
squares of the regressand is always 2n, the quantity 2n − SSR will always
equal the explained sum of squares, and it provides an asymptotically valid
test statistic that is very easy to calculate. As usual, pseudo-F and pseudo-t
statistics based on the artificial regression are also asymptotically valid. We
will not elaborate on these matters here, since there is really nothing new to
discuss; a special case will be discussed in the next section.
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It is perhaps worthwhile to interject a word of warning at this point. If the
regressand or any of the regressors in a DLR that is used for hypothesis testing
is constructed incorrectly, it is possible, and indeed likely, that the regression
will yield a computed test statistic which is large and entirely meaningless. It
is therefore a very good idea to check most of the calculations by first running
the DLR without those regressors that correspond to the parameters being
tested. This regression, like artificial regressions used to calculate covariance
matrices, should have no explanatory power at all if everything has been
constructed correctly. Unfortunately, one cannot check the test regressors in
this way, and an error in their construction can easily lead to nonsensical
results. For example, if one inadvertently added a constant term to a DLR,
it would almost certainly have substantial ability to explain the regressand,
because the second half of the latter is simply a vector of 1s.

14.6 Testing Linear and Loglinear Regression Models

In many applications, the dependent variable is always positive. Applied
econometricians must therefore decide whether a regression model should at-
tempt to explain the conditional mean of the original variable or of its log-
arithm. Both types of model are often plausible a priori. In this section,
we discuss techniques for choosing between, and testing the specification of,
models in which the regressand is the level or the logarithm of the dependent
variable. Tests based on the DLR turn out to be very useful for this purpose.

Suppose initially that both models are linear in the parameters. Thus
the two competing models are

yt =
k∑
i=1

βiXti +
l∑

j=1

γjZtj + ut, ut ∼ NID(0, σ2), and (14.39)

log yt =
k∑
i=1

βi logXti +
l∑

j=1

γjZtj + ut, ut ∼ NID(0, σ2), (14.40)

where the notation, not coincidentally, is the same as for the conventional
Box-Cox model. After both models have been estimated, it may be possible
to conclude that one of them should be rejected simply by comparing the
values of their loglikelihood functions, as discussed in Section 14.3. However,
such a procedure can tell us nothing about the validity of whichever of the
two models fits best. If both these models are reasonable ones, it is important
to test both of them before tentatively accepting either one.

There are numerous ways to test the specification of linear and loglinear
regression models like (14.39) and (14.40). The most commonly used tests
are based on the fact that these are both special cases of the conventional
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Box-Cox model,

B(yt, λ) =

k∑
i=1

βiB(Xti, λ) +

l∑
j=1

γjZtj + ut, ut ∼ NID(0, σ2). (14.41)

Conceptually the simplest way to test (14.39) and (14.40) against (14.41) is
to estimate all three models and use an LR test, as originally suggested by
Box and Cox (1964) in the context of the simple Box-Cox model. However,
because estimating (14.41) can require a certain amount of effort, it may be
more attractive to use an LM test instead.

Several ways of implementing this LM test are available. We will mention
ones based on artificial regressions only, since these are the easiest to compute,
and, if an LM test is not easy to compute, it has no advantage over the
corresponding LR test. It is obviously possible to construct LM tests of (14.39)
and (14.40) against (14.41) using either the OPG regression or the DLR.
The former tests were derived by Godfrey and Wickens (1981) and the latter
by Davidson and MacKinnon (1985c). The latter authors provided Monte
Carlo evidence that tests based on the DLR perform very much better in
finite samples than tests based on the OPG regression, a finding subsequently
confirmed by Godfrey, McAleer, and McKenzie (1988).

It is illuminating to discuss what the DLR looks like for testing linear
and loglinear regressions. When testing the linear model (14.39), the null
hypothesis is that λ = 1. In this case, the regressand of the DLR has tth

element ût/σ̂ and (t+ n)th element 1, where ût denotes the tth residual from
the linear model and σ̂ denotes the ML estimate of σ. The tth and (t+ n)th

elements of the regressors are then

for βi : Xti − 1 and 0;

for γj : Ztj and 0;

for σ : ût/σ̂ and − 1;

for λ :
k∑
i=1

β̂i
(
Xti logXti −Xti + 1

)
−
(
yt log yt − yt + 1

)
and σ̂ log yt.

These regressors are not quite what one might expect to get from (14.33),
(14.35), and (14.36), because they have all been multiplied by σ̂, something
that is harmless to do because it does not change the subspace spanned by
the columns of the regressor matrix. For the same reason, if one of the Ztj ’s
is a constant term, as will typically be the case, it is unnecessary to subtract 1
from the Xti’s.

When testing the loglinear model (14.40), the null hypothesis is that
λ = 0. In this case, the regressand of the DLR has tth element ũt/σ̃ and
(t+n)th element 1, where ũt denotes the tth residual from the loglinear model
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and σ̃ denotes the ML estimate of σ. The tth and (t + n)th elements of the
regressors are then

for βi : logXti and 0;

for γj : Ztj and 0;

for σ : ũt/σ̃ and − 1;

for λ : 1−
2

k∑
i=1

β̃i(logXti)
2 − 1−

2
(log yt)

2 and σ̃ log yt.

This time all regressors have been multiplied by σ̃. The regressor for λ was
derived with the aid of l’Hôpital’s Rule:

lim
λ→0

(
λxλ log x− xλ + 1

λ2

)
= 1−

2
(log x)2.

One test that is sometimes confused with LM tests such as the ones just
discussed is a test proposed by Andrews (1971) and modified by Godfrey and
Wickens (1981) so that it applies to the conventional Box-Cox model. The
idea is to take a first-order approximation to (14.41) around λ = 0 or λ = 1,
rearrange terms so that only log yt or yt appears on the left-hand side, and
then replace yt wherever it appears on the right-hand side by the fitted values
from the regression under test. The result is something that looks like the
original regression being tested, with the addition of one extra regressor. For
the linear null this extra regressor is

ŷt log ŷt − ŷt + 1−
k∑
i=1

β̂i(Xti logXti −Xti + 1),

and for the loglinear null it is

1−
2

(
(log ỹt)

2 −
k∑
i=1

β̃i(logXti)
2

)
,

where ŷt and ỹt denote the fitted values of yt from the linear and loglinear
models, respectively. The test statistic is simply the t statistic on the extra
regressor.

The Andrews test has the rather remarkable property that if the Xti’s
and Ztj ’s can be treated as nonstochastic, and if the error terms really are
normally distributed, the test statistic will actually have the t distribution in
finite samples. This follows from the fact that the test regressors depend on yt
only through the estimates β̂ and γ̂ (or β̃ and γ̃). The argument is similar to
the one used in Section 11.3 to show that the JA test is exact. It follows from
the same results of Milliken and Graybill (1970).
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However, the Andrews test is not really testing against the same alterna-
tive as the LM tests. Implicitly, it is testing in a regression direction, that is,
against an alternative that is also a regression model. But the Box-Cox model
(14.41) is not a regression model. The Andrews test must therefore have less
power than classical tests of linear and loglinear models against (14.41) when
the latter actually generated the data. Using techniques similar to those dis-
cussed in Chapter 12, it was shown in Davidson and MacKinnon (1985c) that,
as σ → 0, the noncentrality parameter for the Andrews test approaches that of
the classical tests, while as σ →∞, it approaches zero. Thus, except when σ
is small, one would expect the Andrews test to be seriously lacking in power,
and Monte Carlo results confirm this. One possible advantage of the Andrews
test should be noted, however. Unlike the LM tests we have discussed, it is
not sensitive, asymptotically, to failures of the normality assumption, because
it is simply testing in a regression direction.

Although tests based on the Box-Cox transformation are more popular, a
second approach to testing linear and loglinear models also deserves mention.
It treats the two models as nonnested hypotheses, in much the same way as
did the tests discussed in Section 11.3. This nonnested approach allows one to
handle more general types of model than the approach based on the Box-Cox
transformation, because the two models need not have the same number of
parameters, or indeed resemble each other in any way, and neither of them
needs to be linear in either variables or parameters. We can write the two
competing models as

H1 : yt = xt(β) + u1t, u1t ∼ NID(0, σ2
1), and (14.42)

H2 : log yt = zt(γ) + u2t, u2t ∼ NID(0, σ2
2). (14.43)

The notation here is similar to that used in the discussion of nonnested hypo-
thesis testing in Section 11.3 and should be self-explanatory. Notice that the
assumption of normally distributed error terms, which was not needed in our
previous discussion of nonnested tests, is needed here.

There are two obvious ways to derive nonnested tests for models like
(14.42) and (14.43). One is to attempt to implement the ideas of Cox (1961,
1962), as in Aneuryn-Evans and Deaton (1980). Unfortunately, this turns out
to be rather difficult. The second approach, which is much easier, is to base
them on some sort of artificial nesting. Consider the (somewhat arbitrary)
artificial compound model

HC : (1− α)

(
yt − xt(β)

σ1

)
+ α

(
log yt − zt(γ)

σ2

)
= εt, (14.44)

where the assumptions on u1t and u2t imply that εt is N(0, 1). Like the
artificial compound models introduced in Section 11.3, this one cannot be
estimated as it stands, because many of the parameters will in general be
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unidentified. However, following the procedure used to obtain the J and P
tests, we can replace the parameters of the model that is not being tested
by estimates. Thus, if we wish to test H1, we can replace γ and σ2 by ML
estimates γ̂ and σ̂2 so that HC becomes

H ′C : (1− α)

(
yt − xt(β)

σ1

)
+ α

(
log yt − zt(γ̂)

σ̂2

)
= εt.

It is straightforward to test H1 against H ′C by means of the DLR: (yt − x̂t)
σ̂1

1

 =

 X̂t
(yt − x̂t)

σ̂1
ẑt − log yt

0 −1 σ̂1/yt

 bs
a

+ residuals, (14.45)

where x̂t ≡ xt(β̂), X̂t ≡ Xt(β̂), and ẑt ≡ zt(γ̂). The DLR (14.45) is actually
a simplified version of the DLR that one obtains initially. First, σ̂1 times the
original regressor for σ1 has been subtracted from the original regressor for α.
Then the regressors corresponding to β and σ1 have been multiplied by σ̂1,
and the regressor corresponding to α has been multiplied by σ̂2. None of these
modifications affects the subspace spanned by the columns of the regressor,
and hence none of them affects the test statistic(s) one obtains. The last
column of the regressor matrix in (14.45) is the one that corresponds to α.
The other columns should be orthogonal to the regressand by construction.

Similarly, if we wish to test H2, we can replace β and σ1 by ML estimates
β̂ and σ̂1 so that HC becomes

H ′′C : (1− α)

(
yt − xt(β̂)

σ̂1

)
+ α

(
log yt − zt(γ)

σ2

)
= εt.

It is then straightforward to test H2 against H ′′C by means of the DLR log yt − ẑt
σ̂2

1

 =

 Ẑt log yt − ẑt
σ̂2

x̂t − yt

0 −1 σ̂2yt

 bs
a

+ residuals. (14.46)

Once again, this is a simplified version of the DLR that one obtains initially,
and the last column of the regressor matrix is the one that corresponds to α.

The tests we have just discussed evidently generalize very easily to models
involving any sort of transformation of the dependent variable, including Box-
Cox models and other models in which the transformation depends on one or
more unknown parameters. For more details, see Davidson and MacKinnon
(1984a). It should be stressed that the artificial compound model (14.44) is
quite arbitrary. Unlike the similar-looking model for regression models that
was employed in Section 11.3, it does not yield tests asymptotically equivalent
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to Cox tests. Moreover, little is known about the finite-sample properties of
tests based on DLRs like (14.45) and (14.46).

One final procedure that is worth mentioning is the PE test suggested
by MacKinnon, White, and Davidson (1983). It also starts from the artificial
compound model (14.44) but then follows essentially the approach of the
Andrews test so as to obtain a GNR that tests only in a regression direction.
The Gauss-Newton test regressions for the PE test are

yt − x̂t = X̂tb+ a(ẑt − log x̂t) + residual (14.47)

for the test of H1 and

log yt − ẑt = Ẑtc+ d(x̂t − exp ẑt) + residual (14.48)

for the test of H2. The easiest test statistics to use are the t statistics for a = 0
in (14.47) and d = 0 in (14.48). Like the Andrews test, the PE test is likely
to be seriously lacking in power, except when the error variance of the DGP
is very small. Its primary advantage is that, unlike tests based on the DLR,
it will be asymptotically insensitive to failures of the normality assumption.

14.7 Other Transformations

Models based on the Box-Cox transformation will not perform adequately in
every case. In particular, the conventional Box-Cox model is often not very
satisfactory, for reasons that we will discuss. In this section, we briefly discuss
a number of other transformations that can be useful in some cases. We will
not say much about methods of estimation and inference for these models,
except to note that they can all be estimated by maximum likelihood, using
the DLR as part of the maximization algorithm, and that the DLR can always
be used to compute covariance matrices and test statistics.

One major problem with the conventional Box-Cox model is that the
transformation parameter λ plays two different roles: It affects the properties
of the residuals, and it also affects the functional form of the regression func-
tion. For example, suppose the DGP were actually a linear regression model
with heteroskedastic errors having variance proportional to the square of the
conditional mean of the dependent variable:

yt = Xtβ0 + ut, ut ∼ N
(
0, σ2

0(Xtβ0)2
)
, (14.49)

where σ0 and β0 denote values under the DGP. If we estimated a conventional
Box-Cox model using data generated in this way, we would almost certainly
obtain an estimate of λ that was less than unity, because this would reduce
the amount of heteroskedasticity in the residuals. Thus we might incorrectly
conclude that a linear specification was inappropriate or even that a loglinear
one was appropriate.
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The problem is that the transformation parameter in the conventional
Box-Cox model affects both the form of the regression function and the
amount of heteroskedasticity in the residuals. One obvious solution is to
allow for heteroskedasticity explicitly, as in the model

B(yt, λ) =
k∑
i=1

βiB(Xti, λ) +
l∑

j=1

γjZtj + ut, ut ∼ N
(
0, σ2h(wtδ)

)
,

where h(·) is a skedastic function, wt is a vector of observations on indepen-
dent variables, and δ is a vector of parameters to be estimated. If one were
primarily interested in heteroskedasticity of the form that appears in (14.49),
the skedastic function h(wtδ) could be specified as (Xtβ)2. See, among oth-
ers, Gaudry and Dagenais (1979), Lahiri and Egy (1981), and Tse (1984).

Another possibility is to allow there to be more than one transformation
parameter, as in the models

B(yt, λ) =

k∑
i=1

βiB(Xti, φ) +

l∑
j=1

γjZtj + ut and (14.50)

B(yt, λ) = B

(( k∑
i=1

βiB(Xti, φ) +
l∑

j=1

γjZtj

)
, λ

)
+ ut, (14.51)

where, in both cases, ut is assumed to be N(0, σ2). The first of these models
is an obvious generalization of the conventional Box-Cox model and has been
used a certain amount in econometrics, sometimes with more than one φ
parameter. The second combines the conventional Box-Cox model with the
transform-both-sides model and has not been used to any extent. In both
cases, the parameter φ primarily affects the functional form of the regression
function, while the parameter λ primarily affects the properties of the error
terms. Of course, which of (14.50) or (14.51) will perform best on any given
data set, or whether either of them will perform significantly better than the
conventional Box-Cox model, is far from clear.

As we have seen, the Box-Cox transformation cannot be applied to vari-
ables that can take on zero or negative values. Various authors, including John
and Draper (1980) and Bickel and Doksum (1981), have proposed ways to ex-
tend it so that it can be used in such cases. For example, the Bickel-Doksum
proposal is to use the transformation

sign(y)|y|λ − 1

λ
(14.52)

instead of the Box-Cox transformation. It is logically possible to apply (14.52)
to variables that can take on small or negative (but not zero) values. However,
this transformation does not have particularly attractive properties; see Magee
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(1988). When λ is small, it is extremely steep for y near zero. In addition,
when y < 0, (14.52) has no limit as λ→ 0.

There is no reason to restrict attention to modified versions of the Box-
Cox transformation, since other transformations may well be more appropriate
for certain types of data. For example, when yt is constrained to lie between
zero and one, a model like

yt = Xt(β) + ut, ut ∼ N(0, σ2),

does not really make sense, because there is always a chance that ut could be
so large that yt would fall outside the 0-1 interval. In such a case, it may be
desirable to employ the transformation

τ(y) = log

(
y

1− y

)
,

since τ(y) can vary between minus infinity and plus infinity. This transforma-
tion does not involve an unknown parameter, and so it does not require one
to leave the regression framework; see Cox (1970).

An interesting family of transformations has been considered by Bur-
bidge, Magee, and Robb (1988) and MacKinnon and Magee (1990). These
transformations have the form θ(αy)/α, where the function θ(·) is assumed
to be monotonically increasing in its argument and to possess the properties:

θ(0) = 0; θ′(0) = 1; θ′′(0) 6= 0. (14.53)

Unlike the Box-Cox transformation, this transformation can be applied to
variables of either sign and to zero variables. Many functions θ(·) possess the
properties (14.53). One of the simplest is the function y + y2, for which the
transformation would be

θ(αy)
α

= y + αy2. (14.54)

Evidently, this will be a convex function of y when α is positive and a con-
cave function when α is negative. Any transformation of the form θ(αy)/α
satisfying (14.53) will be locally equivalent to (14.54), and so we see that a
test of α = 0 can be interpreted as testing against any form of local quadratic
nonlinearity.

For this transformation family, the model (14.04) would become

θ(αyt)
α

= xt(β) + ut, ut ∼ NID(0, σ2).

It is easy to test the null hypothesis that α = 0 using a DLR very similar
to the one used to test the null that λ = 1 in the simple Box-Cox model
(14.04); see MacKinnon and Magee (1990) for details. This test is sensitive
to several common forms of model misspecification, including nonlinearity in
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the regression function, heteroskedasticity, and skewness. It turns out to be
closely related to the well-known RESET test; see Section 6.5. One would
obtain the RESET test if the transformation were applied to xt(β) instead of
to yt, as in the model

yt =
θ
(
αxt(β)

)
α

+ ut, ut ∼ NID(0, σ2).

Since this is simply a nonlinear regression model, a test for α = 0 can be
based on a GNR. It is just the t test of a = 0 in

yt − xt(β̂) = Xt(β̂)b+ ax2t (β̂) + residual,

which is a form of the RESET test.

14.8 Conclusion

With the exception of the conventional Box-Cox model, models involving
transformations of the dependent variable have been used rather infrequently
in econometrics. This is surprising, because they often provide a simple and
parsimonious way to obtain a model with well-behaved residuals and there is
a large literature about them in statistics, including books by McCullagh and
Nelder (1983), Atkinson (1985), and Carroll and Ruppert (1988).

We have seen in this chapter that it is not at all difficult to handle models
of this type. Provided one is willing to assume normality — and some such
distributional assumption seems to be necessary once one leaves the regression
framework — it is straightforward to estimate them by maximum likelihood.
The double-length artificial regression is extremely useful in connection with
these models. Everything that one can do with the Gauss-Newton regression
for nonlinear regression models can be done with the DLR for models involving
transformations of the dependent variable. The OPG regression can be used
instead of the DLR but will generally perform less well.

Terms and Concepts

artificial observations (for DLR)
artificial regression (general

formulation)
Box-Cox models: conventional,

simple, and transform-both-sides
Box-Cox transformation
double-length artificial regression

(DLR)
Jacobian factors

Jacobian terms
linear versus loglinear regressions
maximization algorithms using the

DLR
nonlinear transformation
nonnested tests
nonregression models
PE test
RESET test



Chapter 15

Qualitative and Limited

Dependent Variables

15.1 Introduction

Regression models implicitly assume that the dependent variable, perhaps
after a logarithmic or some other transformation, can take any value on the
real line. Although this assumption is never strictly true with economic data,
it is often reasonable enough. However, it is not an acceptable assumption
when the dependent variable can take any specific value with probability
substantially greater than zero. Economists frequently have to deal with such
cases. Especially common are cases in which the dependent variable can take
only two values. For example, a person may be in the labor force or not, a
household may own or rent the home it lives in, a debtor may default on a
loan or not, a commuter may drive to work or take public transit, and so on.
These are all examples of binary dependent variables.

If we wish to explain economic variables like these in an econometric
model, we must take account of their discrete nature. Models that do so
are called qualitative response models, and they are usually estimated by
maximum likelihood. In the simplest and most commonly encountered case,
the dependent variable represents one of two alternatives. These are conven-
tionally coded as 0 and 1, a convention that turns out to be very convenient.
Models that attempt to explain 0-1 dependent variables are often called binary
response models or, less often, binary choice models. They are very widely
used in labor economics and many other areas of applied econometrics, as the
examples above perhaps serve to illustrate.

Regression models are also inappropriate for handling models involving
limited dependent variables, of which there are a great many varieties. Some-
times a dependent variable may be continuous on some interval(s) of the real
line but may take on one or more values with finite probability. For example,
consumer expenditures on any category of goods and services are generally
constrained to be nonnegative. Thus, if we observe expenditures on some
category for a sample of households, it is quite possible that those expendi-
tures will be zero for many households and positive for others. Since there
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is a positive probability that a particular value, zero, will occur in the data,
regression models are not appropriate for this type of data. Another type of
limited dependent variable model arises when only certain outcomes (such as
the positive ones in this example) are observed. This means that the sample
will not be a random one.

In this chapter, we deal with both qualitative response models and lim-
ited dependent variable models. This is an area in which there has been an
enormous amount of research over the past 20 years, and so our treatment
covers only a few of the most basic models. We will focus initially on binary
response models, because these are both the simplest and the most commonly
encountered models of this kind. They will be discussed in the next three
sections. Then, in Section 15.5, we briefly discuss qualitative response models
for cases involving more than two different responses. Finally, in the last three
sections, we turn our attention to some of the simplest models that involve
limited dependent variables.

15.2 Binary Response Models

In a binary response model, the value of the dependent variable yt can take
on only two values, 1 and 0, which indicate whether or not some event occurs.
We can think of yt = 1 as indicating that the event occurred for observation t
and yt = 0 as indicating that it did not. Let Pt denote the (conditional)
probability that the event occurred. Thus a binary response model is really
trying to model Pt conditional on a certain information set, say Ωt, that
consists of exogenous and predetermined variables. Specifying yt so that it is
either 0 or 1 is very convenient, because Pt is then simply the expectation of
yt conditional on Ωt:

Pt ≡ Pr(yt = 1 |Ωt) = E(yt |Ωt).

The objective of a binary response model is to model this conditional expec-
tation.

From this perspective, it is clear that the linear regression model makes
no sense as a binary response model. Suppose that Xt denotes a row vector
of length k of variables that belong to the information set Ωt, including a
constant term or the equivalent. Then a linear regression model would specify
E(yt |Ωt) as Xtβ. But E(yt |Ωt) is a probability, and probabilities must
lie between 0 and 1. The quantity Xtβ is not constrained to do so and
therefore cannot be interpreted as a probability. Nevertheless, a good deal of
(mostly older) empirical work simply uses OLS to estimate what is (rather
inappropriately) called the linear probability model,1 that is, the model

yt = Xtβ + ut.

1 See, for example, Bowen and Finegan (1969).
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In view of the much better models that are available, and the ease of estimat-
ing them using modern computer technology, this model has almost nothing
to recommend it. Even if Xtβ happens to lie between 0 and 1 for some β
and all observations in a particular sample, it is impossible to constrain Xtβ
to lie in that interval for all possible values of Xt, unless the values that the
independent variables can take are limited in some way (for example, they
might all be dummy variables). Thus the linear probability model is not a
sensible way to model conditional probabilities.

Several binary response models that do make sense are available and are
quite easy to deal with. The key is to make use of a transformation function
F (x) that has the properties

F (−∞) = 0, F (∞) = 1, and (15.01)

f(x) ≡ ∂F (x)

∂x
> 0. (15.02)

Thus F (x) is a monotonically increasing function that maps from the real
line to the 0-1 interval. Many cumulative distribution functions have these
properties, and we will shortly discuss some specific examples. Using various
specifications for the transformation function, we can model the conditional
expectation of yt in a variety of ways.

The binary response models that we will discuss consist of a transforma-
tion function F (x) applied to an index function that depends on the indepen-
dent variables and the parameters of the model. An index function is simply
a function that has the properties of a regression function, whether linear or
nonlinear. Thus a very general specification of a binary response model is

E(yt |Ωt) = F
(
h(Xt,β)

)
,

where h(Xt,β) is the index function. A more restrictive, but much more
commonly encountered, specification, is

E(yt |Ωt) = F (Xtβ). (15.03)

In this case, the index function Xtβ is linear and E(yt |Ωt) is simply a non-
linear transformation of it. Although Xtβ can in principle take any value on
the real line, F (Xtβ) must lie between 0 and 1 by property (15.01).

Because F (·) is a nonlinear function, changes in the values of the Xti’s,
that is the elements of Xt, necessarily affect E(yt |Ωt) in a nonlinear fash-
ion. Specifically, when Pt ≡ E(yt |Ωt) is given by (15.03), its derivative with
respect to Xti is

∂Pt
∂Xti

=
∂F (Xtβ)

∂Xti
= f(Xtβ)βi. (15.04)

For the transformation functions that are almost always employed, f(Xtβ)
achieves a maximum at zero and then falls asXtβ gets farther from zero. Thus



514 Qualitative and Limited Dependent Variables

(15.04) tells us that the effect on Pt of a change in one of the independent
variables is greatest when Pt = .5 and least when Pt is close to 0 or 1.

When binary response models are used in applied work, the linear index
function Xtβ is almost always employed, along with one of two particular
specifications for F (·). The resulting models are called the probit model and
the logit model. For the probit model, the transformation function F (x) is
the cumulative standard normal distribution function

Φ(x) ≡
∫ x

−∞

1√
2π

exp
(
− 1

2X
2
)
dX.

Since Φ(x) is a c.d.f., it automatically satisfies conditions (15.01) and (15.02).
The probit model can be written as

Pt ≡ E(yt |Ωt) = Φ(Xtβ).

Although there exists no closed-form expression for Φ(x), it is easily evaluated
numerically, and its first derivative is of course simply the standard normal
density function

φ(x) =
1√
2π

exp
(
− 1

2x
2
)
.

The probit model can be derived from a model involving an unobserved,
or latent, variable y∗t . Suppose that

y∗t = Xtβ + ut, ut ∼ NID(0, 1). (15.05)

We observe only the sign of y∗t , which determines the value of the observed
binary variable yt according to the relationship

yt = 1 if y∗t > 0 and yt = 0 if y∗t ≤ 0. (15.06)

For example, we could think of y∗t as an index of the (net) utility obtained
from some action. If the action yields positive utility, it will be undertaken;
if not, then it will not be. Since we observe only whether or not the action is
undertaken, we observe only the sign of y∗t . Because of this, we can normalize
the variance of ut to be unity. If ut actually had some other variance, say σ2,
dividing y∗t , β, and ut by σ would yield a model observationally identical to
the one we started with.

We can now ask what the probability is that yt = 1. Some straightforward
manipulations yield

Pr(yt = 1) = Pr(y∗t > 0) = Pr(Xtβ + ut > 0)

= 1− Pr(ut ≤ −Xtβ) = 1− Φ(−Xtβ) = Φ(Xtβ).
(15.07)
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The last equality in (15.07) makes use of the fact that the standard normal
density function is symmetric around zero. The final result, Φ(Xtβ), is just
the probability that we would get by letting Φ(·) play the role of F (·) in
(15.03). Thus we have derived the probit model from the latent variable model
consisting of (15.05) and (15.06). That the probit model can be derived in
this way is one of its attractive features.

The logit model is very similar to the probit model but has a number of
features that make it easier to deal with. For the logit model, the function
F (x) is the logistic function

Λ(x) ≡ (1 + e−x)−1 =
ex

1 + ex
,

which has first derivative

λ(x) ≡ ex

(1 + ex)2
= Λ(x)Λ(−x).

The second equality here will later prove to be very useful. The logit model
is most easily derived by assuming that

log

(
Pt

1− Pt

)
= Xtβ,

which says that the logarithm of the odds is equal to Xtβ. Solving for Pt, we
find that

Pt =
exp(Xtβ)

1 + exp(Xtβ)
=
(
1 + exp(−Xtβ)

)−1
= Λ(Xtβ).

It is also possible to derive the logit model from a latent variable model like
(15.05) and (15.06) but with errors that follow the extreme value distribution
instead of the normal; see, among others, Domencich and McFadden (1975),
McFadden (1984), and Train (1986).

In practice, the logit and probit models tend to yield extremely similar
results. In most cases, the only real difference between them is in the way
the elements of β are scaled. This difference in scaling occurs because the
variance of the distribution for which the logistic function is the c.d.f. can
be shown to be π2/3, while that of the standard normal is of course unity.
The logit estimates therefore all tend to be larger than the probit estimates,
although usually by a factor of somewhat less than π/

√
3.2 Figure 15.1 plots

2 Amemiya (1981) suggests that 1.6 may be a better estimate of the factor by
which logit estimates tend to exceed probit ones than π/

√
3 ∼= 1.81. As Greene

(1990a) observes, a justification for this regularity is that φ(0)/λ(0) ∼= 1.6.
Recall from (15.04) that the derivatives of Pt with respect to Xti are equal to
f(Xtβ)βi. If Xtβ is roughly zero on average and the logit and probit models
are to predict the same effect on Pt of a given change in one of the Xti’s, then
the coefficients for the logit model must be roughly 1.6 times those of the probit
model. This approximation can be expected to work less well when the average
value of Pt is far from .5.
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Figure 15.1 Three possible choices for F (x)

the standard normal c.d.f., the logistic function, and the logistic function
rescaled to have variance unity. The similarity of the standard normal c.d.f.
and the rescaled logistic function is striking.

In view of their similar properties, it is perhaps curious that both the
logit and the probit models continue to be widely used, while models that
genuinely differ from them are rarely encountered. There are as many ways
in which such models could be specified as there are plausible choices for the
transformation function F (x). For example, one such choice is

F (x) = π−1 arctan(x) + 1
2 . (15.08)

Since this is the cumulative distribution function of the Cauchy distribution,
its derivative is

f(x) =
1

π(1 + x2)
,

which is the Cauchy density (see Section 4.6). Because the behavior of the
Cauchy distribution function in the tails is very different from that of either
Φ(x) or Λ(x), there is at least the possibility that a binary response model
based on (15.08) might perform substantially better or worse than a probit
or logit model. On the other hand, there is very little chance that those two
models will yield results which differ substantially, unless the sample size is
very large indeed.

All three choices for F (·) that we have discussed are skew-symmetric
around zero. That is, they have the property that 1− F (x) = F (−x), which
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implies that f(x) = f(−x). This is sometimes a convenient property, but
there is no a priori reason for it to hold. Choices for F (·) that do not have
this property will potentially yield quite different results from those produced
by the logit and probit models. One way to obtain the same effect is to specify
the model as

E(yt |Ωt) = F
(
h(Xtβ)

)
,

where F (·) is Φ(·) or Λ(·), and h(·) is a nonlinear transformation. This sug-
gests a way to test the validity of the skew-symmetry assumption, a subject
that we will take up in Section 15.4.

15.3 Estimation of Binary Response Models

At present, by far the most common way to estimate binary response models
is to use the method of maximum likelihood. We will restrict our attention
to this method and assume, for simplicity, that the index function is simply
Xtβ. Then, according to the binary response model (15.03), F (Xtβ) is the
probability that yt = 1 and 1−F (Xtβ) is the probability that yt = 0. Thus, if
yt = 1, the contribution to the logarithm of the likelihood function for obser-
vation t is log

(
F (Xtβ)

)
, while if yt = 0, that contribution is log

(
1− F (Xtβ)

)
.

Hence the loglikelihood function is

`(y,β) =
n∑
t=1

(
yt log

(
F (Xtβ)

)
+ (1− yt) log

(
1− F (Xtβ)

))
. (15.09)

This function is globally concave whenever log
(
F (x)

)
and log

(
1 − F (x)

)
are

concave functions of the argument x; see Pratt (1981). This condition is sat-
isfied by many binary response models, including the logit and probit models.
Therefore, the loglikelihood functions for these models are very easy to max-
imize numerically.3

The first-order conditions for a maximum of (15.09) are

n∑
t=1

(yt − F̂t)f̂tXti
F̂t(1− F̂t)

= 0, i = 1, . . . , k, (15.10)

where F̂t ≡ F (Xtβ̂) and f̂t ≡ f(Xtβ̂), with β̂ denoting the vector of ML
estimates. Whenever the loglikelihood function is globally concave, these first-
order conditions define a unique maximum if they are satisfied at all. It can
be verified that logit, probit, and many other binary response models satisfy

3 In the usual case, in which F (·) is skew-symmetric, it is much better to evaluate
log(F (−Xtβ)) rather than log(1−F (Xtβ)) when writing computer programs.
This avoids the risk that 1− F (Xtβ) may be evaluated quite inaccurately when
F (Xtβ) is close to unity. Because F (·) need not be skew-symmetric, however,
we will retain the more general notation.
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the regularity conditions needed for the ML estimates β̂ to be consistent and
asymptotically normal, with asymptotic covariance matrix given by the in-
verse of the information matrix in the usual way. See, for example, Gouriéroux
and Monfort (1981). In the case of the logit model, the first-order conditions
(15.10) simplify to

n∑
t=1

(
yt − Λ(Xtβ̂)

)
Xti = 0, i = 1, . . . , k,

because λ(x) = Λ(x)
(
1− Λ(x)

)
. Notice that conditions (15.10) look just like

the first-order conditions for weighted least squares estimation of the nonlinear
regression model

yt = F (Xtβ) + et, (15.11)

with weights given by (
F (Xtβ)

(
1− F (Xtβ)

))−1/2
.

This makes sense, since the variance of the error term in (15.11) is

E(e2t ) = E
(
yt − F (Xtβ)

)2
= F (Xtβ)

(
1− F (Xtβ)

)2
+
(
1− F (Xtβ)

)(
F (Xtβ)

)2
= F (Xtβ)

(
1− F (Xtβ)

)
.

Thus one way to obtain ML estimates of any binary response model is to
apply iteratively reweighted nonlinear least squares to (15.11) or to whatever
nonlinear regression model is appropriate if the index function is notXtβ. For
most models, however, this is generally not the best approach, and a better
one is discussed in the next section.

Using the fact that ML is equivalent to a form of weighted NLS for
binary response models, it is obvious that the asymptotic covariance matrix
for n1/2(β̂ − β0) must be (

1−
n
X>Ψ(β0)X

)−1
,

where X is an n× k matrix with typical row Xt and typical element Xti, and
Ψ(β) is a diagonal matrix with typical diagonal element

Ψ(Xtβ) =
f 2(Xtβ)

F (Xtβ)
(
1− F (Xtβ)

) . (15.12)

The numerator reflects the fact that the derivative of F (Xtβ) with respect to
βi is f(Xtβ)Xti, and the denominator is simply the variance of et in (15.11).
In the logit case, Ψ(Xtβ) simplifies to λ(Xtβ).
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This asymptotic covariance matrix can also be obtained by taking the
inverse of the information matrix. As usual, this is equal to the expectation
of minus n−1 times the Hessian and also to the expectation of the outer
product of the gradient. The information matrix is simply

I(β) ≡ 1−
n
X>Ψ(β)X, (15.13)

with Ψ(β) defined by (15.12). For example, from (15.10) it is easy to see
that a typical element of the matrix n−1G>(β)G(β), where G(β) is the CG
matrix, is

1−
n

n∑
t=1

((
yt − F (Xtβ)

)
f(Xtβ)

F (Xtβ)
(
1− F (Xtβ)

))2XtiXtj .
It is a good exercise to show that the expectation of this expression is a typical
element of the information matrix (15.13).

Recognizing that estimates from a binary response model are essentially
weighted least squares estimates is quite illuminating. In the case of least
squares, each observation is given equal weight when the information matrix
is formed. In the binary response case, on the other hand, some observations
are given much more weight than others, because the weights Ψ(Xtβ) defined
in (15.12) can differ greatly. If one plots these weights as a function of Xtβ
for either the logit or probit models, one finds that the maximum weight will
be given to observations for which Xtβ = 0, implying that Pt = .5, while
relatively little weight will be given to observations for which Pt is close to 0
or 1. This makes sense, since when Pt is close to 0 or 1, a given change in β
will have little effect on Pt, while when Pt is close to .5, such a change will
have a much larger effect. Hence observations of the latter type provide much
more “information” than observations of the former type.

In Figure 15.2, the weights (15.12) are plotted for the probit and logit
cases (the latter rescaled to have variance unity) as a function of the index
Xtβ. Notice that the differences between these two models are more striking
than they were in Figure 15.1. The logit model gives more weight to obser-
vations for which Xtβ is near zero and far from zero, while the probit model
gives more weight to observations for which Xtβ takes intermediate values
(roughly, between 0.8 and 3.0). However, the differences that are apparent in
the figure rarely seem to matter much in practice.

As we have seen, one can think of a binary dependent variable as arising
from a latent variable model such as the one given by (15.05) and (15.06). It
is interesting to ask how much efficiency in estimation is lost by not observing
the latent variable. Clearly something must be lost, since a binary variable
like yt must provide less information than a continuous variable like y∗t . The
covariance matrix for the OLS estimates of β in (15.05) is (X>X)−1; remem-
ber that the error variance is normalized to unity. In contrast, the covariance
matrix for probit estimates of β is

(
X>Ψ(β)X

)−1
, where Ψ(β) was defined
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Figure 15.2 Weights for probit and rescaled logit models

by (15.12). The largest possible value for Ψ(Xtβ) is achieved when Pt = .5.
In the probit case, this value is 0.6366. Hence, in the best possible case, when
the data are such that Pt = .5 for all t, the covariance matrix for the probit
estimates will be equal to 1.57 (∼= 1/0.6366) times the OLS covariance matrix.
In practice, of course, this upper bound is most unlikely to be achieved, and
probit estimates may be very much less efficient than OLS estimates using
the latent variable would be, especially if Pt is near 0 or 1 for a large fraction
of the sample.

One practical problem with binary response models is that the first-order
conditions (15.10) do not necessarily have a finite solution. This can occur
when the data set fails to provide enough information to identify all the para-
meters. Suppose there is some linear combination of the independent vari-
ables, say zt ≡Xtβ

∗, such that

yt = 0 whenever zt ≤ 0, and

yt = 1 whenever zt > 0.

Then it will be possible to make `(y,β) tend to zero by setting β = αβ∗ and
letting α→∞. This will ensure that F (Xtβ)→ 0 for all observations where
yt = 0 and F (Xtβ) → 1 for all observations where yt = 1. The value of the
loglikelihood function (15.09) will therefore tend to zero as α→∞. But zero
is evidently an upper bound for this value. Thus, in circumstances like these,
the parameters β are not identified on the noncompact parameter space Rk in
the sense of definition 8.1, and we evidently cannot obtain sensible estimates
of β; see Albert and Anderson (1984).



15.3 Estimation of Binary Response Models 521

When zt is just a linear combination of the constant term and a single
independent variable, the latter is often said to be a perfect classifier, because
the yt’s can be classified as being 0 or 1 once the value of that variable is
known. For example, consider the DGP

y∗t = xt + ut, ut ∼ NID(0, 1);

yt = 1 if y∗t > 0 and yt = 0 if y∗t ≤ 0.
(15.14)

For this DGP, it would seem to be sensible to estimate the probit model

E(yt |xt) = Φ(β0 + β1xt). (15.15)

But suppose that, in the sample, xt is always either less than −4 or greater
than +4. When xt is less than −4, it is almost certain (the probability is
greater than 0.99997) that yt will be 0, and when xt is greater than +4, it is
almost certain that yt will be 1. Thus, unless the sample size is very large,
there are unlikely to be any observations for which xt < 0 and yt = 1 or ob-
servations for which xt > 0 and yt = 0. In the absence of such observations,
the variable xt will be a perfect classifier, and it will be impossible to ob-
tain sensible estimates of the parameters of (15.15). Whatever maximization
algorithm is being used will simply try to make β̂1 as large as possible.

Although this example is an extreme one, similar problems are likely to
occur whenever the model fits very well and the sample size is small. There
will be a perfect classifier whenever there exists a separating hyperplane in the
space of the explanatory variables such that all the observations with yt = 0
are on one side and all the observations with yt = 1 are on the other. This
is likely to happen when the model fits well and when there are only a few
observations for which yt = 1 or, alternatively, for which yt = 0. Nevertheless,
it may be possible to obtain ML estimates when n is as small as k + 1 and
when there is only one observation for which yt = 1 or yt = 0.

In regression models, it is common to test the hypothesis that all slopes
are zero by using an F test. For binary response models, the same hypothesis
can easily be tested by using a likelihood ratio test. A model with a constant
term can be written as

E(yt |Ωt) = F
(
β1 +X2tβ2

)
, (15.16)

where X2t consists of Xt without the constant and β2 is a (k − 1)--vector.
Under the null hypothesis that β2 = 0, (15.16) becomes

E(yt |Ωt) = F
(
β1
)

= E(yt).

This just says that the conditional mean of yt is equal to its unconditional
mean, which can be estimated by ȳ. Therefore, if we denote the estimate of
β1 by β̄1, ȳ = F (β̄1). From (15.09), it is easy to work out that the value of
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the loglikelihood function under the null hypothesis is

`(y, β̄1,0) = n ȳ log(ȳ) + n(1− ȳ) log(1− ȳ). (15.17)

Twice the difference between the unrestricted value `(y, β̂1, β̂2) and the re-
stricted value `(y, β̄1,0) yields an LR test statistic that will be asymptotically
distributed as χ2(k − 1). Since the right-hand side of (15.17) is very easy to
calculate, so is the test statistic. However, a test statistic that is even easier
to calculate will be discussed in the next section.

Numerous measures of goodness of fit, comparable to theR2 for regression
models, have been proposed for binary response models, and many statistics
packages print some of these. See, among others, Cragg and Uhler (1970), Mc-
Fadden (1974a), Hauser (1977), Efron (1978), Amemiya (1981), and Maddala
(1983). The simplest of these pseudo R2’s is the one suggested by McFadden.
It is simply defined as

1− `U
`R
, (15.18)

where `U is the unrestricted value `(y, β̂1, β̂2), and `R is the restricted value
`(y, β̄1,0). Expression (15.18) is a plausible measure of goodness of fit because
it must lie between 0 and 1. We saw above that the loglikelihood function
(15.09) for binary choice models is bounded above by 0, which implies that
`U and `R always have the same sign unless `U is zero. But `U can be zero
only if the unrestricted model fits perfectly, that is, if there exists a perfect
classifier. Thus we see that expression (15.18) will be equal to 1 in this case,
equal to 0 when the restricted and unrestricted values of the loglikelihood are
the same, and between 0 and 1 in all other cases.

Although (15.18) and other measures of goodness of fit may be useful
for obtaining a rough idea of how well a particular binary response model
performs, there is no need to use them if the object is to compare the per-
formance of two or more different binary response models estimated on the
same data set. The best way to do that is simply to compare the values of the
loglikelihood functions, using the fact that loglikelihood values for any binary
response model of the form (15.03) are directly comparable. Sometimes, we
can even reject a model on the basis of such a comparison. For example, sup-
pose that on a particular data set the loglikelihood value for a particular logit
model exceeds that for a probit model with the same index function by more
than 1.92, which is half of 3.84, the 5% critical value for a test statistic that is
distributed as χ2(1). It is clearly possible to embed the competing logit and
probit models in a more general model having one more parameter. The more
general model would necessarily fit at least as well as the logit model; see the
discussion in Section 14.3. Thus, in this example, we could reject at the 5%
level the hypothesis that the probit model generated the data. Of course, it
is rare for the difference between the fit of logit and probit models that differ
in no other way to be this great, unless the sample size is exceedingly large.
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15.4 An Artificial Regression

There exists a very simple and very useful artificial regression for binary re-
sponse models. Like other artificial regressions, it can be used for a variety of
purposes, including parameter estimation, covariance matrix estimation, and
hypothesis testing. This artificial regression was suggested by Engle (1984)
and Davidson and MacKinnon (1984b). It can be derived in several ways,
of which the easiest is to treat it as a modified version of the Gauss-Newton
regression.

As we have seen, the binary response model (15.03) can be written in the
form of the nonlinear regression model (15.11), that is, as yt = F (Xtβ) + et.
We have also seen that the error term et has variance

V (Xtβ) ≡ F (Xtβ)
(
1− F (Xtβ)

)
, (15.19)

which implies that (15.11) must be estimated by GNLS. The ordinary GNR
corresponding to (15.11) would be

yt − F (Xtβ) = f(Xtβ)Xtb + residual, (15.20)

but this is clearly inappropriate because of the heteroskedasticity of the et’s.
Instead, we must multiply both sides of (15.20) by the square root of the
inverse of (15.19). This yields the artificial regression(
V (Xtβ)

)−1/2(
yt−F (Xtβ)

)
=
(
V (Xtβ)

)−1/2
f(Xtβ)Xtb + residual, (15.21)

which looks like the GNR for a nonlinear regression model estimated by
weighted least squares (see Section 9.4). Regression (15.21) is a special case of
what we will call the binary response model regression, or BRMR. This form
of the BRMR is valid for any binary response model of the form (15.03).4 In
the case of the logit model, it simplifies to(

λ(Xtβ)
)−1/2(

yt − Λ(Xtβ)
)

=
(
λ(Xtβ)

)1/2
Xtb + residual.

The BRMR satisfies the general properties of artificial regressions that we
discussed in Section 14.4. In particular, it is closely related both to the gradi-
ent of the loglikelihood function (15.09) and to the information matrix. The

4 Some authors write the BRMR in other ways. For example, in Davidson and
MacKinnon (1984b), the regressand was defined as

yt

(
1− F (Xtβ)

F (Xtβ)

)1/2
+ (yt − 1)

(
F (Xtβ)

1− F (Xtβ)

)1/2
.

It is a good exercise to verify that this is just another way of writing the
regressand of (15.21).
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transpose of the regressand times the matrix of regressors yields a vector with
typical element

n∑
t=1

(
yt − F (Xtβ)

)
f(Xtβ)Xti

F (Xtβ)
(
1− F (Xtβ)

) ,

which is a typical element of the gradient vector for the loglikelihood function
(15.09). The transpose of the matrix of regressors times itself yields a matrix
with typical element

n∑
t=1

f 2(Xtβ)

F (Xtβ)
(
1− F (Xtβ)

)XtiXtj . (15.22)

The probability limit of n−1 times (15.22) is a typical element of the informa-
tion matrix (15.13).

Whenever the loglikelihood function is globally concave, as it is for the
logit and probit models, binary response models are easy to estimate in a
number of different ways. One approach that generally works well is to use an
algorithm similar to the ones described in Section 6.8. In such an algorithm,
the BRMR is used to determine the direction in which to change β at each
step. The values of β at iterations j + 1 and j are related by

β(j+1) = β(j) + α(j)b(j),

where b(j) denotes the vector of OLS estimates from the BRMR (15.21) eval-
uated at β(j), and α(j) is a scalar determined by the algorithm. The initial
estimates β(1) could be chosen in several ways. One that is easy to use and
seems to work well in practice is simply to set the constant term to F−1(ȳ)
and the other coefficients to zero. The starting values then correspond to
estimates of a restricted model with all slopes equal to zero.

By evaluating it at the ML estimates β̂, the BRMR can also be used to
obtain an estimated covariance matrix for the parameter estimates. The co-
variance matrix estimate from OLS estimation of regression (15.21) evaluated

at β̂ will be

s2
(
X>Ψ̂X

)−1
, (15.23)

where s is the standard error of the regression. This standard error will tend
to 1 asymptotically, although it will not actually equal 1 in finite samples.
The matrix Ψ̂ is a diagonal matrix with typical diagonal element

Ψ̂tt =
f 2(Xtβ̂)

F (Xtβ̂)
(
1− F (Xtβ̂)

) .
This is just expression (15.12) with β replaced by β̂. Thus the estimated OLS
covariance matrix (15.23) provides a valid estimate of the covariance matrix
of β̂. The matrix (X>Ψ̂X)−1, which is just (15.23) divided by s2, also does
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so and is probably to be preferred, since the factor of s2 in (15.23) simply
introduces additional randomness into the estimate of the covariance matrix.

As usual, the covariance matrix of β̂ can also be estimated as minus the
inverse of the numerical Hessian or as the inverse of the outer product of the
CG matrix, Ĝ>Ĝ. In the case of the logit model, minus the numerical Hessian
is actually equal to the estimated information matrix X>Ψ̂X, because

∂2`(β)

∂βi∂βj
=

∂

∂βj

( n∑
t=1

(
yt − Λ(Xtβ)

)
Xti

)
= −

n∑
t=1

λ(Xtβ)XtiXtj .

However, in the case of most other binary response models, including the
probit model, minus the Hessian will differ from, and generally be more com-
plicated than, the information matrix.

Like all artificial regressions, the BRMR is particularly useful for hy-
pothesis testing. Suppose that β is partitioned as [β1

.... β2], where β1 is a
(k− r)--vector and β2 is an r--vector. If β̃ denotes the vector of ML estimates
subject to the restriction that β2 = 0, we can test that restriction by running
the BRMR

Ṽ
−1/2
t (yt − F̃t) = Ṽ

−1/2
t f̃tXt1b1 + Ṽ

−1/2
t f̃tXt2b2 + residual, (15.24)

where F̃t ≡ F (Xtβ̃), f̃t ≡ f(Xtβ̃), and Ṽt ≡ V (Xtβ̃). Here Xt has been par-
titioned into two vectors, Xt1 and Xt2, corresponding to the partitioning of β.
The regressors that correspond to β1 are orthogonal to the regressand, while
those that correspond to β2 are not. All the usual test statistics for b2 = 0
are valid. However, in contrast to the case of the Gauss-Newton regression,
there is no particular reason to use an F test, because there is no variance
parameter to estimate. The best test statistic to use in finite samples, accord-
ing to Monte Carlo results obtained by Davidson and MacKinnon (1984b),
is probably the explained sum of squares from regression (15.24). It will be
asymptotically distributed as χ2(r) under the null hypothesis. Note that nR2

will not be equal to the explained sum of squares in this case, because the
total sum of squares will not be equal to n.

In one very special case, the BRMR (15.24) becomes extremely simple.
Suppose the null hypothesis is that all the slope coefficients are zero. In
this case, Xt1 is just unity, Xtβ̃ = β̃1 = F−1(ȳ), and, in obvious notation,
regression (15.24) becomes

V̄ −1/2(yt − F̄ ) = V̄ −1/2f̄ b1 + V̄ −1/2f̄Xt2b2 + residual.

Neither subtracting a constant from the regressand nor multiplying the re-
gressand and regressors by a constant has any effect on the F statistic for
b2 = 0. Thus it is clear that we can test the all-slopes-zero hypothesis simply
by calculating an F statistic for c2 = 0 in the linear regression

y = c1 +X2c2 + residuals.
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We have thus encountered a situation in which the linear probability model is
useful. If one wants to test the null hypothesis that none of the regressors has
any ability to explain variation in the dependent variable, then it is perfectly
valid just to use the ordinary F statistic for all slopes equal to zero in an OLS
regression of y on X.

Of course, one can use the BRMR to compute C(α) and Wald-like tests
as well as LM tests. Essentially everything that was said about such tests
in Sections 6.7 and 13.7 remains applicable in the context of binary response
models. One cannot use the explained sum of squares as a test statistic, but
one can use the reduction in the explained sum of squares due to the addition
of the test regressors. Wald-like tests may be particularly useful when the
index function is linear under the alternative hypothesis but nonlinear under
the null, since the alternative can be estimated by means of a standard logit
or probit program. If the restrictions appear to be consistent with the data,
a different BRMR can then be used to obtain one-step estimates.

The BRMR is useful for testing all aspects of the specification of binary
response models. Before we can even tentatively accept any such model, we
have to test whether F (Xtβ) is a correct specification for the probability that
yt = 1 conditional on the information set Ωt. Testing for possibly omitted
variables that belong to Ωt is an important part of this process, and we have
already seen how to do so using the BRMR (15.24). But even if Xt is specified
correctly, the rest of the model may not be.

Consider the latent variable model given by (15.05) and (15.06). Since
binary response models are typically estimated using cross-section data, and
such data frequently exhibit heteroskedasticity, it is quite possible that the
error terms in the equation for y∗t might be heteroskedastic. If they were, the
probit model would no longer be appropriate, and estimates of β based on
it would be inconsistent; see Yatchew and Griliches (1984). Since any binary
response model can be thought of as arising from a latent variable model, it is
clearly important to test such models for heteroskedasticity. We now discuss
one way to do so.

A more general specification than equation (15.05) that allows for het-
eroskedastic errors is

y∗t = Xtβ + ut, ut ∼ N
(
0, exp(2Ztγ)

)
, (15.25)

where Zt is a row vector of length q of observations on variables that belong
to the information set Ωt. To ensure that both β and γ are identifiable, Zt
must not include a constant term or the equivalent. Combining (15.25) with
(15.06) yields the model

E(yt |Ωt) = Φ

(
Xtβ

exp(Ztγ)

)
. (15.26)

When γ = 0, (15.25) reduces to (15.05) and (15.26) reduces to the ordinary
probit model. Even when a binary response model other than the probit
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model is being used, it still seems quite reasonable to consider the alternative
hypothesis

E(yt |Ωt) = F

(
Xtβ

exp(Ztγ)

)
.

We can test against this form of heteroskedasticity by testing the hypothesis
that γ = 0. The appropriate BRMR is

V̂
−1/2
t (yt − F̂t) = V̂

−1/2
t f̂tXtb+ V̂

−1/2
t f̂tZt(−Xtβ̂)c + residual, (15.27)

where F̂t, f̂t, and V̂t are evaluated at ML estimates β̂ assuming that γ = 0.
The explained sum of squares from (15.27) will be asymptotically distributed
as χ2(q) under the null hypothesis.

It is also important to test the specification of the transformation function
F (·). As we noted earlier, a natural way to do so is to consider an alternative
model of the form

E(yt |Ωt) = F
(
h(Xtβ, α)

)
, (15.28)

where h(x,α) is a nonlinear function of x, and α is either a parameter or
a vector of parameters such that h(Xtβ,α) = Xtβ for some value of α.
Stukel (1988) suggests a rather complicated family of two-parameter functions
h(x,α) that leads to a very general family of models. This family includes
the logit model as a special case, when α = 0, and allows the skew-symmetry
assumption to be imposed or not. The BRMR can easily be used to test
against this alternative by testing the null hypothesis that α = 0.

A simpler test can be based on the family of models

E(yt |Ωt) = F

(
τ(αXtβ)

α

)
,

which is a special case of (15.28). Here τ(·) may be any function that is
monotonically increasing in its argument and satisfies the conditions

τ(0) = 0, τ ′(0) = 1, and τ ′′(0) 6= 0.

By the use of l’Hôpital’s Rule, MacKinnon and Magee (1990) show that

lim
α→0

(
τ(αx)
α

)
= x and lim

α→0

(
∂
(
τ(αx)/α

)
∂α

)
= 1

2x
2τ ′′(0). (15.29)

Hence the BRMR for testing the null hypothesis that α = 0 is

V̂
−1/2
t (yt − F̂t) = V̂

−1/2
t f̂tXtb+ aV̂

−1/2
t (Xtβ̂)2f̂t + residual, (15.30)

where the constant factor of τ ′′(0)/2 that arises from (15.29) is irrelevant
for testing and has been omitted. Thus regression (15.30) simply treats the
squared values of the index function evaluated at β̂ as if they were observations
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on a possibly omitted regressor. This test bears a strong resemblance to the
RESET test for regression models that was discussed in Section 6.5. We can
use either the ordinary t statistic for a = 0 or, preferably, the explained sum
of squares as test statistics.

An enormous variety of specification tests can be based on the BRMR. In
fact, almost every specification test for regression models that can be based on
an artificial regression has an analog for binary response models. In general,
we can write the artificial regression for performing such a test as

V̂
−1/2
t (yt − F̂t) = V̂

−1/2
t f̂tXtb+ Ẑtc + residual, (15.31)

where Ẑt is a 1 × r vector that may depend on the ML estimates β̂ and on
anything in the information set Ωt. The intuition for (15.31) is quite simple.
If F (Xtβ) is the correct specification of E(yt |Ωt), then (15.31) without the Zt
regressors is the artificial regression that corresponds to the DGP. Any addi-
tional regressors Zt that depend on Ωt should have no significant explanatory
power when they are added to that regression.

It is even possible to use the BRMR to compute nonnested tests very
similar to the P test (see Section 11.3). Suppose we have two competing
models:

H1 : E(yt |Ωt) = F1(X1tβ1) and

H2 : E(yt |Ωt) = F2(X2tβ2),

which may differ either because F1(·) is not the same as F2(·) or because X1t

is not the same as X2t or for both reasons. There are numerous ways to nest
H1 and H2 in an artificial compound model. One of the simplest is

HC : E(yt |Ωt) = (1− α)F1(X1tβ1) + αF2(X2tβ2),

although this artificial model is not actually a binary response model. We
can test H1 against HC in essentially the way we did for regression models.
We first replace β2 by its ML estimate β̂2 and then construct an artificial
regression to test the null hypothesis that α = 0. This artificial regression is

V̂
−1/2
t (yt − F̂1t) = V̂

−1/2
t f̂1tX1tb+ aV̂

−1/2
t (F̂2t − F̂1t) + residual.

The test regressor is simply the difference between the probabilities that yt = 1
according to the two models, multiplied by V̂

−1/2
t , the weighting factor that

is also used for the regressand and the other regressors.

Estimating the two standard binary response models, i.e., the probit and
logit models with linear index functions, is extremely easy with most regres-
sion packages, and estimating models that involve nonstandard transforma-
tion functions and/or nonlinear index functions is generally not very difficult.
Since testing such models by means of the BRMR is also very easy, there is
absolutely no excuse for the specifications of binary response models to be
tested any less thoroughly than those of regression models.
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15.5 Models for More than Two Discrete Responses

Although many discrete dependent variables are binary, discrete variables
that can take on three or more different values are by no means uncommon
in economics. A variety of qualitative response models has been devised to
deal with such cases. These fall into two types: models designed to deal with
ordered responses and models designed to deal with unordered responses.
An example of ordered response data would be results from a survey where
respondents are asked to say whether they strongly agree, agree, neither agree
nor disagree, disagree, or strongly disagree with some statement. Here there
are five possible responses, which evidently can be ordered in a natural way.
An example of unordered response data would be results from a survey of how
people choose to commute to work. The possible responses might be: walk,
bicycle, take the bus, drive with others in a car pool, and drive alone. Al-
though one could probably make cases for ordering these responses in certain
ways, there is clearly no one natural way to order them.

The most common way to deal with ordered response data is to use an
ordered qualitative response model, usually either the ordered probit model
or the ordered logit model. As an example, consider the latent variable model

y∗t = Xtβ + ut, ut ∼ NID(0, 1), (15.32)

where, for a reason that will soon become evident, Xt does not include a
constant term. What we actually observe is a discrete variable yt that can
take on only three values:

yt = 0 if y∗t < γ1

yt = 1 if γ1 ≤ y∗t < γ2

yt = 2 if γ2 ≤ y∗t .

(15.33)

The parameters of this model are β and γ ≡ [γ1
.... γ2]. The γi’s are thresholds

that determine what value of yt a given value of y∗t will map into. This is
illustrated in Figure 15.3. The number of elements in γ is always one fewer
than the number of choices. When there are only two choices, this model
becomes indistinguishable from an ordinary binary response model, with the
single element of γ playing the role of the constant term.

The probability that yt = 0 is

Pr(yt = 0) = Pr(y∗t < γ1) = Pr(Xtβ + ut < γ1)

= Pr(ut < γ1 −Xtβ)

= Φ(γ1 −Xtβ).
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Figure 15.3 Relation between y∗t and yt in an ordered probit model

Similarly, the probability that yt = 1 is

Pr(yt = 1) = Pr(γ1 ≤ y∗t < γ2) = Pr(γ1 ≤Xtβ + ut < γ2)

= Pr(ut < γ2 −Xtβ)− Pr(ut ≤ γ1 −Xtβ)

= Φ(γ2 −Xtβ)− Φ(γ1 −Xtβ),

and the probability that yt = 2 is

Pr(yt = 2) = Pr(y∗t ≥ γ2) = Pr(Xtβ + ut ≥ γ2)

= Pr(ut ≥ γ2 −Xtβ)

= Φ(Xtβ − γ2).

Thus the loglikelihood function for the ordered probit model that consists of
(15.32) and (15.33) is

`(β, γ1, γ2) =
∑
yt=0

log
(
Φ(γ1 −Xtβ)

)
+
∑
yt=2

log
(
Φ(Xtβ − γ2)

)
+
∑
yt=1

log
(
Φ(γ2 −Xtβ)− Φ(γ1 −Xtβ)

)
.

(15.34)

Notice that γ2 must be greater than γ1, since otherwise Pr(yt = 1) would be
negative and the last term in (15.34) would be undefined.

Maximizing the loglikelihood function (15.34) is relatively straightfor-
ward, as is generalizing the model to handle more than three responses. It is
also evident that one could use some other transformation function in place
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of the standard normal in (15.34) and still have a perfectly sensible model.
The form of the loglikelihood function would otherwise be unchanged. For
further discussion of ordered qualitative response models, see Greene (1990a,
Chapter 20), Terza (1985), and Becker and Kennedy (1992). This approach
is not by any means the only way to deal with ordered discrete responses.
Alternative approaches are discussed by McCullagh (1980), Agresti (1984),
and Rahiala and Teräsvirta (1988).

The key feature of ordered qualitative response models is that all the
choices depend on a single index function. This makes sense when the re-
sponses have a natural ordering but does not make sense otherwise. A dif-
ferent sort of model is evidently necessary to deal with unordered responses.
The simplest approach is to employ the multinomial logit model (or multiple
logit model), which has been widely used in applied work. An early example
is Schmidt and Strauss (1975). A closely related model called the conditional
logit model is also widely used; see below.5

The multinomial logit model is designed to handle J + 1 responses. Ac-
cording to this model, the probability that any one of them is observed is

Pr(yt = 0) =
1

1 +
∑J
j=1 exp(Xtβ

j)
(15.35)

Pr(yt = l) =
exp(Xtβ

l)

1 +
∑J
j=1 exp(Xtβ

j)
for l = 1, . . . , J. (15.36)

Here Xt is a row vector of length k of observations on variables that belong to
the information set of interest, and β1 through βJ are k--vectors of parameters.
When J = 1, it is easy to see that this model reduces to the ordinary logit
model with a single index function Xtβ

1. For every additional alternative,
another index function and k more parameters are added to the model.

Some authors prefer to write the multinomial logit model as

Pr(yt = l) =
exp(Xtβ

l)∑J
j=0 exp(Xtβ

j)
for l = 0, . . . , J (15.37)

by defining an extra parameter vector β0, all elements of which are identically
zero. This way of writing the model is more compact than (15.35) and (15.36)
but does not make it as clear that the ordinary logit model is a special case
of the multinomial one.

Estimation of the multinomial logit model is reasonably straightforward,
since the loglikelihood function is globally concave. This loglikelihood function

5 Terminology in this area is often used in different ways by different authors.
The terms “multinomial logit model,” “multiple logit model,” and “conditional
logit model” are sometimes used interchangeably.
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can be written as

`(β1, . . . ,βJ) =

J∑
j=1

∑
yt=j

Xtβ
j −

n∑
t=1

log

(
1 +

J∑
j=1

exp(Xtβ
j)

)
.

This function is a sum of contributions from each observation. Each con-
tribution has two terms: The first is Xtβ

j, where the index j is that for
which yt = j (or zero if j = 0), and the second is minus the logarithm of the
denominator that appears in (15.35) and (15.36).

One important property of the multinomial logit model is that

Pr(yt = l)

Pr(yt = j)
=

exp(Xtβ
l)

exp(Xtβ
j)

= exp
(
Xt(β

l − βj)
)

(15.38)

for any two responses l and j (including response zero if we interpret β0 as
a vector of zeros). Thus the odds between any two responses depend solely
on Xt and on the parameter vectors associated with those two responses.
They do not depend on the parameter vectors associated with any of the
other responses. In fact, we see from (15.38) that the log of the odds between
responses l and j is simply Xtβ

∗, where β∗ ≡ (βl − β j). Thus, conditional
on either j or l being chosen, the choice between them is determined by an
ordinary logit model with parameter vector β∗.

Closely related to the multinomial logit model is the conditional logit
model pioneered by McFadden (1974a, 1974b). See Domencich and McFadden
(1975), McFadden (1984), and Greene (1990a, Chapter 20) for detailed treat-
ments. The conditional logit model is designed to handle consumer choice
among J (not J + 1) discrete alternatives, where one and only one of the
alternatives can be chosen. Suppose that when the ith consumer chooses
alternative j, he or she obtains utility

Uij = Wijβ + εij ,

where Wij is a row vector of characteristics of alternative j as they apply to
consumer i. Let yi denote the choice made by the ith consumer. Presumably
yi = l if Uil is at least as great as Uij for all j 6= l. Then if the disturbances
εij for j = 1, . . . , J are independent and identically distributed according to
the Weibull distribution, it can be shown that

Pr(yi = l) =
exp(Wilβ)∑J
j=1 exp(Wijβ)

. (15.39)

This closely resembles (15.37), and it is easy to see that the probabilities must
add to unity.

There are two key differences between the multinomial logit and con-
ditional logit models. In the former, there is a single vector of independent
variables for each observation, and there are J different vectors of parameters.
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In the latter, the values of the independent variables vary across alternatives,
but there is just a single parameter vector β. The multinomial logit model is
a straightforward generalization of the logit model that can be used to deal
with any situation involving three or more unordered qualitative responses.
In contrast, the conditional logit model is specifically designed to handle con-
sumer choices among discrete alternatives based on the characteristics of those
alternatives.

Depending on the nature of the explanatory variables, there can be a
number of subtleties associated with the specification and interpretation of
conditional logit models. There is not enough space in this book to treat
these adequately, and so readers who intend to estimate such models are
urged to consult the references mentioned above. One important property of
conditional logit models is the analog of (15.38):

Pr(yi = l)

Pr(yi = j)
=

exp(Wilβ)

exp(Wijβ)
. (15.40)

This property is called the independence of irrelevant alternatives, or IIA,
property. It implies that adding another alternative to the model, or changing
the characteristics of another alternative that is already included, will not
change the odds between alternatives l and j.

The IIA property can be extremely implausible in certain circumstances.
Suppose that there are initially two alternatives for traveling between two
cities: flying Monopoly Airways and driving. Suppose further that half of
all travelers fly and the other half drive. Then Upstart Airways enters the
market and creates a third alternative. If Upstart offers a service identical to
that of Monopoly, it must gain the same market share. Thus, according to
the IIA property, one third of the travelers must take each of the airlines and
one third must drive. So the automobile has lost just as much market share
from the entry of Upstart Airways as Monopoly Airways has! This seems
very implausible.6 As a result, a number of papers have been devoted to the
problem of testing the independence of irrelevant alternatives property and
finding tractable models that do not embody it. See, in particular, Hausman
and Wise (1978), Manski and McFadden (1981), Hausman and McFadden
(1984), and McFadden (1987).

This concludes our discussion of qualitative response models. More de-
tailed treatments may be found in surveys by Maddala (1983), McFadden
(1984), Amemiya (1981; 1985, Chapter 9), and Greene (1990a, Chapter 20),
among others. In the next three sections, we turn to the subject of limited
dependent variables.

6 One might object that a price war between Monopoly and Upstart would con-
vince some drivers to fly instead. So it would. But if the two airlines offered
lower prices, that would change one or more elements of the Wij ’s associated
with them. The above analysis assumes that all the Wij ’s remain unchanged.
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15.6 Models for Truncated Data

Limited dependent variable models are designed to handle samples that have
been truncated or censored in some way. These two terms are easily confused.
A sample has been truncated if some observations that should have been there
have been systematically excluded from the sample. For example, a sample of
households with incomes under $100,000 necessarily excludes all households
with incomes over that level. It is not a random sample of all households.
If the dependent variable is income, or something correlated with income,
results using the truncated sample could potentially be quite misleading.

On the other hand, a sample has been censored if no observations have
been systematically excluded, but some of the information contained in them
has been suppressed. Think of a “censor” who reads people’s mail and blacks
out certain parts of it. The recipients still get their mail, but parts of it
are unreadable. To continue the previous example, suppose that households
with all income levels are included in the sample, but for those with incomes
in excess of $100,000, the amount reported is always exactly $100,000.7 In
this case, the censored sample is still a random sample of all households,
but the values reported for high-income households are not the true values.
One can think of discrete dependent variables as being the outcome of an
even more extreme type of censoring. For example, if it were reported only
that household income was in one of several dollar ranges, the dependent
variable would consist of ordered qualitative responses. However, censoring
this extreme is not usually referred to as censoring.

Econometricians have devised a large number of models for dealing with
truncated and censored data. We have space to deal with only a few of the
simplest ones. Greene (1990a, Chapter 21) provides an excellent recent survey.
Other valuable surveys of all or parts of this area include Dhrymes (1986),
Maddala (1983, 1986), and Amemiya (1984; 1985, Chapter 10). In addition,
an issue of the Journal of Econometrics (Blundell, 1987) is devoted to the
important topic of specification testing in limited dependent variable (and
also qualitative response) models.

We will consider the simplest sort of truncated dependent variable model
first. Suppose that for all t (observed or not) the mean of yt conditional on
some information set Ωt is given by a nonlinear regression function xt(β),
which might well be the linear regression function Xtβ. Then, if the error
terms are normally and independently distributed, we can write

yt = xt(β) + ut, ut ∼ NID(0, σ2). (15.41)

7 This type of censoring is not uncommon with survey data. It may occur either
because the surveyors desire to protect the privacy of high-income respondents
or because the survey was not designed with the needs of econometric analysis
in mind.
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Now suppose that yt is observed only if yt ≥ y l, where y l is some fixed lower
bound. The probability that yt will be observed is

Pr(yt ≥ y l) = Pr
(
xt(β) + ut ≥ y l

)
= 1− Pr

(
ut < y l − xt(β)

)
= 1− Φ

(
1−σ
(
y l − xt(β)

))
= Φ

(
− 1−σ

(
y l − xt(β)

))
.

Thus, when xt(β) = y l, the probability that any observation will be observed
is one-half. As xt(β) increases (or decreases) relative to y l, the probability of
observing yt likewise increases (or decreases). This is a simple example of a
truncated regression model.

Whether truncation is a problem for estimation of (15.41) depends on
what the purpose of that estimation is. Least squares estimation would be
appropriate if we were interested in the mean of yt conditional on Ωt and
conditional on yt being greater than y l. But that is unlikely to be what we
are interested in. We defined xt(β) as the mean of yt conditional on Ωt, with
no reference to y l. If that is indeed what we are interested in, least squares
estimates of (15.41) could be seriously misleading.

The problem is that the mean of ut conditional on yt ≥ y l is not zero.
Only if ut is large enough will yt exceed y l and only then will observation t
be included in the sample. Thus, for observations that are in the sample,
E(ut) > 0. In fact, it can be shown that

E(ut | yt ≥ y l) =
σφ
(
(y l − xt(β))/σ

)
Φ
(
−(y l − xt(β))/σ

) . (15.42)

Evidently, the conditional mean of ut in this case is positive and depends on
xt(β). This result uses the fact that if a random variable z is standard normal,
the mean of z conditional on z ≥ z∗ is φ(z∗)/Φ(−z∗); see Johnson and Kotz
(1970a). Similarly, the mean of z conditional on z ≤ z∗ is −φ(z∗)/Φ(z∗). So
if truncation were from above instead of below, the conditional mean of ut
would be negative instead of positive.

We clearly cannot obtain consistent estimates of β using least squares
estimates when the error terms have positive mean (15.42) that depends on
xt(β). Goldberger (1981) provides some expressions for the size of the incon-
sistency in certain cases, and in the next section (see Table 15.1) we provide
some illustrative numerical results which suggest that it can be very large.
The obvious remedy is to use the method of maximum likelihood. The den-
sity of yt conditional on yt ≥ y l is simply the unconditional density of yt
restricted to values of yt ≥ y l, divided by the probability that yt ≥ y l:

σ−1φ
(
(yt − xt(β))/σ

)
Φ
(
−(y l − xt(β))/σ

) .
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Thus the loglikelihood function, which is the sum of the logs of these densities
over all t, is

`(y,β, σ) = − n−
2

log(2π)− n log(σ)− 1

2σ2

n∑
t=1

(
yt − xt(β)

)2
−

n∑
t=1

log

(
Φ
(
− 1−σ

(
y l − xt(β)

)))
.

(15.43)

The first three terms in (15.43) make up the loglikelihood function that corre-
sponds to nonlinear least squares regression; see equation (8.81), for example.
The last term is new, however. It is minus the summation over all t of the
logarithms of the probabilities that an observation with regression function
xt(β) will belong to the sample. Since these probabilities must be less than 1,
this term must always be positive. The presence of this fourth term causes
the ML estimates of β and σ to differ from their least squares counterparts
and ensures that the ML estimates are consistent.

Evidently, this model could easily be modified to allow for other forms
of truncation, such as truncation from above or truncation from both above
and below. Readers may find it illuminating to work out the loglikelihood
function for the regression model (15.41) if the sample is truncated according
to each of the following two rules:

yt observed when yt ≤ yu and

yt observed when y l ≤ yt ≤ yu,

where yu is now a fixed upper bound.

It is usually not difficult to maximize the loglikelihood function (15.43),
using any of the standard approaches. Greene (1990b) discusses some prob-
lems that could potentially arise and shows that, in practice, the loglikelihood
function will almost always have a unique maximum, even though it is not, in
general, globally concave. The covariance matrix of the ML estimates [β̂

.... σ̂]
will be (k + 1)× (k + 1), assuming that β is a k--vector, and may as usual be
estimated in several ways. Unfortunately, the only artificial regression that is
at present known to be applicable to this model is the OPG regression. As
usual, inferences based on it should be treated with caution unless the sample
size is very large.

It should be clear that consistency of the ML estimates of β and σ ob-
tained by maximizing (15.43) depends critically on the assumptions that the
error terms ut in (15.41) really are normally, independently, and identically
distributed. Otherwise, the probability that yt is observed will not be equal to
Φ
(
−(y l − xt(β))/σ

)
. These assumptions are equally critical for all regression

models involving truncated or censored dependent variables; see, for exam-
ple, Hurd (1979) and Arabmazar and Schmidt (1981, 1982). A number of
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techniques have therefore been suggested for obtaining estimates that are not
sensitive to assumptions about the distribution of the error terms. However,
none of them is as yet widely used in applied econometric work, and to discuss
any of them would take us well beyond the scope of this book. See, among
others, Miller (1976), Buckley and James (1979), Powell (1984, 1986), Duncan
(1986), Horowitz (1986), Ruud (1986), and Lee (1992).

15.7 Models for Censored Data

The simplest regression model that involves a censored dependent variable is
the tobit model, so called because it is closely related to the probit model and
was originally suggested by Tobin (1958). A simple form of the tobit model is

y∗t = xt(β) + ut, ut ∼ NID(0, σ2),

yt = y∗t if y∗t > 0; yt = 0 otherwise.
(15.44)

Here y∗t is a latent variable that is observed only when it is positive. When
the latent variable is negative, zero is observed instead. Tobin’s original mo-
tivation was to study household expenditures on durable goods, which may
be zero for some households and positive for others.

It is easy to modify the tobit model so that censoring occurs at some value
other than zero, so that censoring is from above rather than from below, or
so that the value at which censoring occurs changes (in a nonstochastic way)
over the sample. For example, y∗t might be the demand for seats on an airline
flight, yct might be the capacity of the aircraft (which could vary over the
sample if different aircraft were used on different flights), and yt might be the
number of seats actually occupied. Then the second line of (15.44) would be
replaced by

yt = y∗t if y∗t < yct ; yt = yct otherwise.

The tobit model has been very widely used in applied work. Applications of it
have dealt with such diverse topics as unemployment (Ashenfelter and Ham,
1979), the expected age of retirement (Kotlikoff, 1979), the demand for copper
(MacKinnon and Olewiler, 1980), and even the number of extramarital affairs
(Fair, 1978).

It is just as invalid to use least squares regression with censored data as
with truncated data. Table 15.1 contains some illustrative numerical results
for OLS estimation of the model

y∗t = β0 + β1xt + ut, ut ∼ NID(0, σ2),

where yt is derived from y∗t by either truncation or censoring from below
at y′. For this illustration, the true values of β0, β1, and σ were all unity,
and xt was uniformly distributed on the (0,1) interval. Each line of the table
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Table 15.1 Inconsistency Caused by Truncation and Censoring

y′ fraction < y′ plim(β̂0) plim(β̂1) plim(β̃0) plim(β̃1)

0.0 0.076 1.26 0.77 1.07 0.93
0.5 0.167 1.48 0.63 1.18 0.83
1.0 0.316 1.77 0.49 1.37 0.69
1.5 0.500 2.12 0.37 1.67 0.50
2.0 0.684 2.51 0.28 2.06 0.31
2.5 0.833 2.93 0.21 2.51 0.16

corresponds to a different value of y′ and hence to a different proportion of
limit observations. Estimates based on the truncated sample are denoted
by β̂0 and β̂1, while those based on the censored sample are denoted by β̃0
and β̃1.8

It appears from the results in the table that the inconsistency due to
truncation or censoring can be very large, with truncation (at least in this ex-
ample) resulting in more inconsistency than censoring. As one would expect,
the inconsistency increases with the proportion of limit observations. Notice
that for the censored case, plim(β̃1)/β1 is essentially equal to the proportion of
nonlimit observations in the sample, 1−Pr(yt < y′). Greene (1981a) derived
this result analytically for all slope coefficients in a linear regression model,
under the special assumption that the regressors are normally distributed. It
seems to provide a very good approximation for many other cases, including
the one analyzed in the table.

The tobit model is usually estimated by maximum likelihood. For sim-
plicity, we will discuss estimation of the simple tobit model given by (15.44).
It is easy to see that

Pr(yt = 0) = Pr(y∗t ≤ 0) = Pr
(
xt(β) + ut ≤ 0

)
= Pr

(
ut
σ
≤ −xt(β)

σ

)
= Φ

(
− 1−σxt(β)

)
.

Thus the contribution to the loglikelihood function made by observations with
yt = 0 is

`t(yt,β, σ) = log

(
Φ
(
− 1−σxt(β)

))
. (15.45)

8 These results were obtained by means of a Monte Carlo experiment that in-
volved 500 replications, each with 50,000 observations. Although experimental
error should be very small, the last digits reported in the table may not be
quite correct. For example, it is easy to see that in this example the fraction
truncated or censored when y′ is 1.5 must be 0.50, and that is the number re-
ported in the table. However, the number actually observed in the experiments
was 0.498.
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Conditional on yt being positive, the density of yt is

σ−1φ
(
(yt − xt(β))/σ

)
Pr(yt > 0)

. (15.46)

However, the contribution to the loglikelihood function made by observations
with yt > 0 is not the logarithm of (15.46), because these observations occur
only with probability Pr(yt > 0). Multiplying (15.46) by Pr(yt > 0) and
taking the logarithm leaves us with

log

(
1−σφ
(
1−σ
(
yt − xt(β)

)))
, (15.47)

which is the contribution to the loglikelihood function for an observation in a
regression model without censoring.

The loglikelihood function for the tobit model is thus

∑
yt=0

log

(
Φ
(
− 1−σxt(β)

))
+
∑
yt>0

log

(
1−σφ
(
1−σ
(
yt − xt(β)

)))
. (15.48)

The first term is just the sum over all limit observations of expression (15.45),
and the second is the sum over all nonlimit observations of expression (15.47).
The first term looks like the corresponding term in the loglikelihood function
for a probit model. This may be seen by making the regression function linear
and imposing the normalization σ = 1, in which case Φ

(
−xt(β)/σ

)
becomes

1− Φ
(
Xtβ

)
, and then comparing the loglikelihood function with (15.09). In

contrast, the second term in (15.48) looks just like the loglikelihood function
for a nonlinear regression model.

Thoughtful readers may feel that there is something fishy about this
loglikelihood function. After all, the first term is a summation of the logs
of a number of probabilities, while the second term is a summation of the
logs of a number of densities. This rather strange mixture arises because the
dependent variable in a tobit model is sometimes a discrete random variable
(for the limit observations) and sometimes a continuous one (for the nonlimit
observations). Because of this mixture of discrete and continuous random
variables, standard proofs of the consistency and asymptotic normality of ML
estimators do not apply to the tobit model. However, Amemiya (1973c), in a
well-known paper, has shown that the ML estimator does indeed have all the
usual asymptotic properties. He also provides expressions for the elements of
the information matrix.

It is not difficult to maximize the loglikelihood function (15.48). Although
it is not globally concave in its natural parametrization, Olsen (1978) showed
that when xt(β) = Xtβ, it does have a unique maximum. The key argument is
that the model can be reparametrized in terms of the parameters α ≡ β/σ and
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h ≡ 1/σ, and the loglikelihood function can be shown to be globally concave in
the latter parametrization. This implies that it must have a unique maximum
no matter how it is parametrized. The (k + 1)× (k + 1) covariance matrix of
the ML estimates may as usual be estimated in several ways. Unfortunately,
as with the truncated regression model discussed in the previous section, the
only artificial regression that is presently known to be applicable to this model
is the OPG regression.

There is an interesting relationship among the tobit, truncated regression,
and probit models. Suppose, for simplicity, that xt(β) = Xtβ. Then the tobit
loglikelihood function can be rewritten as

∑
yt>0

log

(
1−σφ
(
1−σ
(
yt −Xtβ

)))
+
∑
yt=0

log

(
Φ
(
− 1−σXtβ

))
. (15.49)

Now let us both add and subtract the term
∑
yt>0 log

(
Φ(Xtβ/σ)

)
in (15.49),

which then becomes∑
yt>0

log

(
1−σφ
(
1−σ
(
yt −Xtβ

)))
−
∑
yt>0

log

(
Φ
(
1−σXtβ

))

+
∑
yt=0

log

(
Φ
(
− 1−σXtβ

))
+
∑
yt>0

log

(
Φ
(
1−σXtβ

))
.

(15.50)

The first line here is the loglikelihood function for a truncated regression
model; it is just (15.43) with y l = 0 and xt(β) = Xtβ and with the set
of observations to which the summations apply adjusted appropriately. The
second line is the loglikelihood function for a probit model with index function
Xtβ/σ. Of course, if all we had was the second line here, we could not
identify β and σ separately, but since we also have the first line, that is not a
problem.

Expression (15.50) makes it clear that the tobit model is like a truncated
regression model combined with a probit model, with the coefficient vectors in
the latter two models restricted to be proportional to each other. Cragg (1971)
argued that this restriction may sometimes be unreasonable and proposed
several more general models as plausible alternatives to the tobit model. It
may sometimes be desirable to test the tobit model against one or more of
these more general models; see Lin and Schmidt (1984) and Greene (1990a,
Chapter 21).

As we mentioned earlier, it is easy to modify the tobit model to handle
different types of censoring. For example, one possibility is a model with
double censoring. Suppose that

y∗t = xt(β) + ut, ut ∼ NID(0, σ2),

yt = y∗t if y lt ≤ y∗t ≤ yut ; yt = y lt if y∗t < y lt ; yt = yut if y∗t > yut .
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This model has been investigated by Rosett and Nelson (1975) and Nakamura
and Nakamura (1983), among others. It is easy to see that the loglikelihood
function is∑

y l
t≤y∗t≤yut

log

(
1−σφ
(
1−σ
(
yt −Xtβ

)))
+
∑
y∗t<y

l
t

log

(
Φ
(
1−σ
(
y lt −Xtβ

)))

+
∑
y∗t>y

u
t

log

(
Φ
(
− 1−σ

(
yut −Xtβ

)))
.

(15.51)

The first term corresponds to nonlimit observations, the second to observa-
tions at the lower limit y lt , and the third to observations at the upper limit yut .
Maximizing (15.51) is quite straightforward.

Numerous other models for regression on truncated and censored data
have been proposed in the literature. Many of these deal with situations in
which there are two or more jointly dependent variables. Some important
examples are Nelson and Olsen (1978) and Lee (1981); see the surveys of
Amemiya (1985, Chapter 10) and Dhrymes (1986). We do not have space
to discuss this literature in any detail. However, it is worth mentioning one
frequently encountered special case.

Suppose that y∗t is a latent variable determined by the model

y∗t = Xtβ + ut, ut ∼ NID(0, σ2), (15.52)

and that yt is derived from y∗t by some form of censoring or truncation. As
a result, the model that is actually estimated is a probit, tobit, or truncated
regression model. Which one of these is appropriate will of course depend on
what type of truncation or censoring is involved in going from y∗t to yt. Now
suppose that one or more of the independent variables in the vector Xt may
be correlated with the error terms ut. If it is, the usual ML estimates of β
will clearly be inconsistent.

Luckily, it is very easy to test for inconsistency caused by possible cor-
relation between some of the independent variables and the error terms in
(15.52). The test is very similar to the DWH test for inconsistency caused by
possible endogeneity that was discussed in Section 7.9. Suppose that W is a
matrix of instrumental variables that includes all the columns of X (a matrix
with typical row Xt) which are known to be exogenous or predetermined.
To perform the test, one first regresses the remaining columns of X, say X∗,
on W and saves the residuals MWX

∗. Then one computes either an LR or
LM test for the hypothesis that γ = 0 in the fictitious latent variable model

y∗t = Xtβ + (MWX
∗)tγ + ut, ut ∼ NID(0, σ2).

Here (MWX
∗)t serves as an estimate of the stochastic parts of the possibly

endogenous variables in Xt. If these variables are not correlated with ut, and
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the latent variable model is specified correctly, the vector γ should be zero.
This test was used by MacKinnon and Olewiler (1980) and is discussed in
more detail by Smith and Blundell (1986).

It is understood that both the null and alternative models for this test are
actually probit, tobit, or truncated regression models, depending on how yt is
obtained from y∗t . As usual, LM tests may be based on artificial regressions.
Since only the OPG regression is available for the tobit and truncated regres-
sion models, it may be preferable to use an LR test in these cases. When one
does estimate the alternative model, it turns out that the estimates of β are
consistent even if the null hypothesis is false, just as they were in the linear
regression case examined in Section 7.9. However, the ordinary covariance
matrix produced by this procedure is not valid asymptotically when γ 6= 0,
for the same reason that it was not valid in the linear regression case.

15.8 Sample Selectivity

In Section 15.6, we discussed models in which the sample was truncated ac-
cording to the value of the dependent variable. In many practical cases,
however, truncation is based not on the value of the dependent variable but
rather on the value of another variable that is correlated with it. For example,
people may choose to enter the labor force only if their market wage exceeds
their reservation wage. Then a sample of people who are in the labor force
will exclude those whose reservation wage exceeds their market wage. If the
dependent variable is anything that is correlated with either reservation or
market wages, use of least squares will yield inconsistent estimates. In this
case, the sample may be said to have been selected on the basis of the differ-
ence between market and reservation wages, and the problem that this type
of selection causes is often referred to as sample selectivity bias. Heckman
(1974, 1976, 1979), Hausman and Wise (1977), and Lee (1978) are pioneering
papers on this subject.

The best way to understand the key features of models involving sample
selectivity is to examine a simple model in some detail. Suppose that y∗t
and z∗t are two latent variables, generated by the bivariate process

[
y∗t
z∗t

]
=

[
Xtβ

Wtγ

]
+

[
ut
vt

]
,

[
ut
vt

]
∼ NID

(
0,

[
σ2 ρσ

ρσ 1

])
, (15.53)

where Xt and Wt are vectors of observations on exogenous or predetermined
variables, β and γ are unknown parameter vectors, σ is the standard deviation
of ut and ρ is the correlation between ut and vt. The restriction that the
variance of vt is equal to 1 is imposed because only the sign of z∗t will be
observed. In fact, the variables that are actually observed are yt and zt, and
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they are related to y∗t and z∗t as follows:

yt = y∗t if z∗t > 0; yt = 0 otherwise;

zt = 1 if z∗t > 0; zt = 0 otherwise.

There are two types of observations: ones for which both yt and zt are observed
to be zero and ones for which zt = 1 and yt is equal to y∗t . The loglikelihood
function for this model is thus∑

zt=0

log
(
Pr(zt = 0)

)
+
∑
zt=1

log
(
Pr(zt = 1)f(y∗t | zt = 1)

)
, (15.54)

where f(y∗t | zt = 1) denotes the density of y∗t conditional on zt = 1. The
first term of (15.54) is the summation over all observations for which zt = 0
of the logarithms of the probability that zt = 0. It is exactly the same as
the corresponding term in a probit model for zt by itself. The second term
is the summation over all observations for which zt = 1 of the probability
that zt = 1 times the density of yt conditional on zt = 1. Using the fact that
we can factor a joint density any way we like, this second term can also be
written as ∑

zt=1

log
(
Pr(zt = 1 | y∗t )f(y∗t )

)
,

where f(y∗t ) is the unconditional density of y∗t , which is just a normal density
with conditional mean Xtβ and variance σ2.

The only difficulty in writing out the loglikelihood function (15.54) ex-
plicitly is to calculate Pr(zt = 1 | y∗t ). Since ut and vt are bivariate normal,
we can write

z∗t = Wtγ + ρ
(
1−σ
(
y∗t −Xtβ

))
+ εt, εt ∼ NID

(
0, (1− ρ2)

)
.

It follows that

Pr(zt = 1 | y∗t ) = Φ

(
Wtγ + ρ

(
(yt −Xtβ)/σ

)
(1− ρ2)1/2

)
,

since yt = y∗t when zt = 1. Thus the loglikelihood function (15.54) becomes∑
zt=0

log
(
Φ(−Wtγ)

)
+
∑
zt=1

log
(
1−σφ
(
(yt −Xtβ)/σ

))

+
∑
zt=1

log

(
Φ

(
Wtγ + ρ

(
(yt −Xtβ)/σ

)
(1− ρ2)1/2

))
.

(15.55)

The first term looks like the corresponding term for a probit model. The
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second term looks like the loglikelihood function for a linear regression model
with normal errors. The third term is one that we have not seen before.

Maximum likelihood estimates can be obtained in the usual way by max-
imizing (15.55). However, this maximization is relatively burdensome, and so
instead of ML estimation a computationally simpler technique proposed by
Heckman (1976) is often used. Heckman’s two-step method is based on the
fact that the first equation of (15.53) can be rewritten as

y∗t = Xtβ + ρσvt + et. (15.56)

The idea is to replace y∗t by yt and vt by its mean conditional on zt = 1 and on
the realized value of Wtγ. As can be seen from (15.42), this conditional mean
is φ(Wtγ)/Φ(Wtγ), a quantity that is sometimes referred to as the inverse
Mills ratio. Hence regression (15.56) becomes

yt = Xtβ + ρσ
φ(Wtγ)

Φ(Wtγ)
+ residual. (15.57)

It is now easy to see how Heckman’s two-step method works. In the first step,
an ordinary probit model is used to obtain consistent estimates γ̂ of the para-
meters of the selection equation. In the second step, the selectivity regressor
φ(Wtγ)/Φ(Wtγ) is evaluated at γ̂, and regression (15.57) is estimated by
OLS for the observations with zt = 1 only. This regression provides a test
for sample selectivity as well as an estimation technique. The coefficient on
the selectivity regressor is ρσ. Since σ 6= 0, the ordinary t statistic for this
coefficient to be zero can be used to test the hypothesis that ρ = 0; it will be
asymptotically distributed as N(0, 1) under the null hypothesis. Thus, if this
coefficient is not significantly different from zero, the investigator may reason-
ably decide that selectivity is not a problem for this data set and proceed to
use least squares as usual.

Even when the hypothesis that ρ = 0 cannot be accepted, OLS estimation
of regression (15.57) yields consistent estimates of β. However, the OLS
covariance matrix is valid only when ρ = 0. In this respect, the situation
is very similar to the one encountered at the end of the previous section,
when we were testing for possible simultaneity bias in models with truncated
or censored dependent variables. There are actually two problems. First of
all, the residuals in (15.57) will be heteroskedastic, since a typical residual is
equal to

ut − ρσ
φ(Wtγ)

Φ(Wtγ)
.

Secondly, the selectivity regressor is being treated like any other regressor,
when it is in fact part of the error term. One could solve the first problem by
using a heteroskedasticity-consistent covariance matrix estimator (see Chap-
ter 16), but that would not solve the second one. It is possible to obtain a
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valid covariance matrix estimate to go along with the two-step estimates of β
from (15.57). However, the calculation is cumbersome, and the estimated co-
variance matrix is not always positive definite. See Greene (1981b) and Lee
(1982) for more details.

It should be stressed that the consistency of this two-step estimator, like
that of the ML estimator, depends critically on the assumption of normality.
This can be seen from the specification of the selectivity regressor as the
inverse Mills ratio φ(Wtγ)/Φ(Wtγ). When the elements of Wt are the same
as, or a subset of, the elements of Xt, as is often the case in practice, it is
only the nonlinearity of φ(Wtγ)/Φ(Wtγ) as a function of Wtγ that makes the
parameters of the second-step regression identifiable. The exact form of the
nonlinear relationship depends critically on the normality assumption. Pagan
and Vella (1989), Smith (1989), and Peters and Smith (1991) discuss various
ways to test this crucial assumption. Many of the tests suggested by these
authors are applications of the OPG regression.

Although the two-step method for dealing with sample selectivity is
widely used, our recommendation would be to use regression (15.57) only as
a procedure for testing the null hypothesis that selectivity bias is not present.
When that hypothesis is rejected, ML estimation based on (15.55) should
probably be used in preference to the two-step method, unless it is computa-
tionally prohibitive.

15.9 Conclusion

Our treatment of binary response models in Sections 15.2 to 15.4 was reason-
ably detailed, but the discussions of more general qualitative response models
and limited dependent variable models were necessarily quite superficial. Any-
one who intends to do empirical work that employs this type of model will
wish to consult some of the more detailed surveys referred to above. All of
the methods that we have discussed for handling limited dependent variables
rely heavily on the assumptions of normality and homoskedasticity. These
assumptions should always be tested. A number of methods for doing so have
been proposed; see, among others, Bera, Jarque, and Lee (1984), Lee and
Maddala (1985), Blundell (1987), Chesher and Irish (1987), Pagan and Vella
(1989), Smith (1989), and Peters and Smith (1991).
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Terms and Concepts

binary dependent variable
binary response (or binary choice)

models
binary response model regression

(BRMR)
censored data
conditional logit model
double censoring
Heckman’s two-step method
independence of irrelevant alternatives

(IIA)
index function
inverse Mills ratio
latent variable models
latent variables
limited dependent variable models
limited dependent variables
linear probability model

logistic function
logit model
multinomial (or multiple) logit model
ordered and unordered responses
ordered logit model
ordered probit model
ordered qualitative response model
perfect classifiers
probit model
qualitative response models
sample selectivity bias
selected sample
selectivity regressor
tobit model
transformation function
truncated data
truncated regression model



Chapter 16

Heteroskedasticity and Related Topics

16.1 Introduction

Most of the results that we have obtained for regression models up to this
point have explicitly or implicitly relied on the assumption that the error
terms are homoskedastic, and some results have depended on the further as-
sumption that they are normally distributed. Both the homoskedasticity and
normality assumptions often seem to be violated in practice, however. This is
likely to be the case when the data pertain to cross sections of observations on
households or firms or to time series of observations on financial assets. In this
chapter, we deal with a number of important topics related to heteroskedas-
ticity, nonnormality, and other failures of the usual assumptions about the
error terms of regression models.

As we saw in Chapter 9, it is perfectly easy to estimate a regression model
by weighted least squares (i.e., GLS) when the error terms are heteroskedastic
with a pattern of heteroskedasticity that is determined by a known skedastic
function. We also saw that it is reasonably easy to estimate a regression
model by feasible GLS or maximum likelihood when the parameters of the
skedastic function are not known, but its form is. Moreover, as we saw in
Chapter 14, subjecting the dependent variable (and possibly the regression
function as well) to an appropriate nonlinear transformation may eliminate
heteroskedasticity altogether. Valuable as these techniques can sometimes
be, they do not allow us to handle the all-too-common case in which little or
nothing is known about the skedastic function.

In Section 16.2, we discuss the properties of NLS (and OLS) estimates
when the error terms are heteroskedastic. Under reasonable assumptions, the
estimates remain consistent and asymptotically normal, but their asymptotic
covariance matrix differs from the usual one. In Section 16.3, we then show
that it is possible to employ a heteroskedasticity-consistent covariance matrix
estimator even when almost nothing is known about the form of the skedas-
tic function. This very important result allows one to make asymptotically
valid inferences from linear and nonlinear regression models under quite weak
conditions. It also provides a justification for the heteroskedasticity-robust
Gauss-Newton regression that we discussed in Section 11.6.

547
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In Section 16.4, we discuss the idea of autoregressive conditional het-
eroskedasticity, or ARCH, which has proved to be extremely useful for mod-
eling the error terms associated with regression models for certain types of
time-series data, especially data from financial markets. Then, in Sections
16.5 and 16.6, we discuss some aspects of testing for heteroskedasticity that
were not previously covered in Section 11.5. In particular, we discuss the
implications of the fact that, for any model with error terms distributed in-
dependently of the regression function, regression directions and skedastic
directions are orthogonal to each other.

In Section 16.7, we turn our attention to tests for normality of error
terms, focusing on tests for skewness and excess kurtosis. It turns out to be
very easy to test for normality in the context of regression models. In the
next section, we then introduce a very broad class of tests called conditional
moment tests. These tests are closely related to information matrix tests,
which are discussed in Section 16.9.

16.2 Least Squares and Heteroskedasticity

The properties of the ordinary and nonlinear least squares estimators when
they are applied to models with heteroskedastic errors are very similar. For
simplicity, we therefore begin with the linear case. Suppose that we estimate
the linear regression model

y = Xβ + u,

where X is an n × k matrix which satisfies the usual asymptotic regularity
condition that n−1X>X tends in the limit to a positive definite matrix which
is O(1). The data are actually generated by

y = Xβ0 + u, E(u) = 0, E(uu>) = Ω, (16.01)

whereΩ is a diagonal matrix with diagonal elements ω2
t that are bounded from

above and below. We are interested in the properties of the OLS estimator β̂
when the DGP is (16.01). Clearly,

β̂ =
(
X>X

)−1
X>y = β0 +

(
X>X

)−1
X>u. (16.02)

It follows that

plim
n→∞

(β̂) = β0 + plim
n→∞

(
1−
n
X>X

)−1
plim
n→∞

(
1−
n
X>u

)
.

Thus it is clear that β̂ will estimate β consistently provided that

plim
n→∞

(
1−
n
X>u

)
= 0.
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As we saw in Section 9.5, this condition will not always hold when the error
terms are not i.i.d. Although the discussion there was not rigorous, it was
clear that three types of situations had to be ruled out. Two of these involved
nondiagonal Ω matrices, and the third involved unbounded variances. Since
all three of these are ruled out by the assumptions we have already made, we
may plausibly assert that β̂ is in fact consistent. For a much fuller treatment
of this subject, see White (1984).

If X can be treated as fixed, it is easy to see from (16.02) that

V (β̂ − β0) = E
((
X>X

)−1
X>uu>X

(
X>X

)−1)
=
(
X>X

)−1
X>ΩX

(
X>X

)−1
.

(16.03)

We will refer to the last expression here as the generalized OLS covariance
matrix. It may be compared with the usual OLS covariance matrix,

σ2
0

(
X>X

)−1
, (16.04)

where σ2
0 would in this case be the probability limit of the average of the ω2

t ’s,
and with the GLS covariance matrix,(

X>Ω−1X
)−1

.

The Gauss-Markov Theorem (Theorem 5.3) implies that(
X>X

)−1
X>ΩX

(
X>X

)−1 − (X>Ω−1X)−1
must be a positive semidefinite matrix. It will be a zero matrix in the (rela-
tively rare) circumstances in which Kruskal’s Theorem applies and OLS and
GLS estimates coincide (see Section 9.3).

There are evidently two different problems if we use OLS when we should
have used weighted least squares, or GLS. The first is that the OLS estimates
will be inefficient, which is a consequence of the Gauss-Markov Theorem. The
second is that the standard OLS covariance matrix (16.04) will in most cases
not equal the generalized OLS covariance matrix, which is the right-most
expression in (16.03). How severe each of these problems is will evidently
depend on the exact forms of X and Ω.

It may be illuminating to look at a numerical example. The model is

yt = β0 + β1xt + ut,

and the DGP is
yt = 1 + xt + ut, ut ∼ N(0, xαt ),

with n = 100, xt uniformly distributed between 0 and 1, and α a parameter
that takes on various values. Table 16.1 shows the standard deviations of the
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Table 16.1 Correct and Incorrect Standard Errors

β̂0 β̂0 β̃0 β̂1 β̂1 β̃1
α (Incorrect) (Correct) (Incorrect) (Correct)

0.5 0.164 0.134 0.110 0.285 0.277 0.243
1.0 0.142 0.101 0.048 0.246 0.247 0.173
1.5 0.127 0.084 0.019 0.220 0.231 0.136
2.0 0.116 0.074 0.0073 0.200 0.220 0.109
2.5 0.107 0.068 0.0030 0.185 0.212 0.083
3.0 0.100 0.064 0.0013 0.173 0.206 0.056
3.5 0.094 0.061 0.0007 0.163 0.200 0.033
4.0 0.089 0.059 0.0003 0.154 0.195 0.017

OLS estimates β̂0 and β̂1 and the GLS estimates β̃0 and β̃1; for the former,
both the correct standard deviations and the incorrect ones obtained from the
usual formula are shown.1

Even though this example is very simple, the results in Table 16.1 illus-
trate two things. First of all, GLS may be only a little more efficient than
OLS, as it is when α = 0.5, or it may be vastly more efficient, as it is for the
larger values of α. Second, the usual OLS standard errors may be either too
large (as they always are for β0) or too small (as they usually are for β1).

Although the usual OLS covariance matrix (16.04) is generally invalid in
the presence of heteroskedasticity, there is one special situation in which it
is valid. The difference between the usual and generalized OLS covariance
matrices is

σ2
0

(
X>X

)−1 − (X>X)−1X>ΩX(X>X)−1.
The key expression here is the middle factor in the second term, namely,
X>ΩX. Since Ω is diagonal, this matrix is

n∑
t=1

ω2
tXt
>Xt,

where Xt denotes the tth row of X. This is simply a weighted average of the
matrices Xt

>Xt, with weights ω2
t . In most cases, these weights will be related

to the corresponding rows of the X matrix. Suppose, however, that they are
not. Then

plim
n→∞

(
1−
n

n∑
t=1

ω2
tXt
>Xt

)
= plim
n→∞

(
1−
n

n∑
t=1

ω2
t

)
plim
n→∞

(
1−
n

n∑
t=1

Xt
>Xt

)
. (16.05)

1 These results were obtained numerically, using 20,000 replications. They should
be accurate to the number of digits shown.
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Here we have multiplied each of the matrices Xt
>Xt by the probability limit of

the average weight, instead of by the individual weights. If the weights really
are unrelated to Xt

>Xt, this is a perfectly valid thing to do.

It is clear that the OLS estimate of the error variance will tend to

plim
n→∞

(
1−
n

n∑
t=1

ω2
t

)
≡ σ2

0 .

Hence the right-hand side of (16.05) can be rewritten as

σ2
0 plim
n→∞

(
1−
n

n∑
t=1

Xt
>Xt

)
= σ2

0 plim
n→∞

(
1−
n
X>X

)
.

Thus, if (16.05) holds, we can see that n times the generalized OLS covariance
matrix (16.03) has a probability limit of

σ2
0 plim
n→∞

(
1−
n
X>X

)−1
, (16.06)

which is the conventional asymptotic covariance matrix for OLS.

One commonly encountered situation in which (16.05) and (16.06) hold
occurs when X consists solely of a constant term. In that case, Xt

>Xt is just
unity for all t, and

plim
n→∞

(
1−
n

n∑
t=1

ω2
tXt
>Xt

)
= plim
n→∞

(
1−
n

n∑
t=1

ω2
t

)
= σ2

0 .

Thus, if we are estimating a mean, the usual formula for the standard error
of the sample mean will be valid whether or not there is heteroskedasticity.

All of the above results can easily be extended to the nonlinear regression
case. Suppose that we estimate the nonlinear regression model y = x(β) +u
by NLS when the DGP is

y = x(β0) + u, E(u) = 0, E(uu>) = Ω,

where Ω has the same properties as those we assumed in the linear case.
Then it is not hard to see that the following asymptotic relationship, which
is equation (5.39) written in a slightly different way, holds just as in the
homoskedastic case:

n1/2(β̂ − β0)
a
=
(
n−1X0

>X0

)−1
n−1/2X0

>u. (16.07)

Here X0 denotes X(β0), the matrix of derivatives of x(β) with respect to β,
evaluated at β0. From (16.07), we immediately conclude that the asymptotic
covariance matrix of the NLS estimator is

plim
n→∞

((
n−1X0

>X0

)−1(
n−1X0

>ΩX0

)(
n−1X0

>X0

)−1)
. (16.08)

This is, of course, directly analogous to the second line of (16.03).
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16.3 Covariance Matrix Estimation

At first glance, the generalized OLS covariance matrix estimator and its NLS
analog (16.08) do not seem to be very useful. To compute them we need
to know Ω, but if we knew Ω, we could use GLS or GNLS and obtain
more efficient estimates. This was the conventional wisdom among econo-
metricians until a decade ago. But an extremely influential paper by White
(1980) showed that it is in fact possible to obtain an estimator of the co-
variance matrix of least squares estimates that is asymptotically valid when
there is heteroskedasticity of unknown form.2 Such an estimator is a called a
heteroskedasticity-consistent covariance matrix estimator, or HCCME.

The key to obtaining an HCCME is to recognize that we do not have
to estimate Ω consistently. That would indeed be an impossible task, since
Ω has n diagonal elements to estimate. The asymptotic covariance matrix
of a vector of NLS estimates, under heteroskedasticity, is given by expression
(16.08), which can be rewritten as

plim
n→∞

(
1−
n
X0
>X0

)−1
plim
n→∞

(
1−
n
X0
>ΩX0

)
plim
n→∞

(
1−
n
X0
>X0

)−1
. (16.09)

The first and third factors here are identical, and we can easily estimate them
in the usual way. A consistent estimator is

1−
n
X̂>X̂,

where X̂ ≡ X(β̂). The only tricky thing, then, is to estimate the second
factor. White showed that this second factor can be estimated consistently by

1−
n
X̂>Ω̂X̂, (16.10)

where Ω̂ may be any of several different inconsistent estimators of Ω. The
simplest version of Ω̂, and the one that White proposed in the context of linear
regression models, has tth diagonal element equal to û2t , the tth squared least
squares residual.

Unlike Ω, the middle factor of (16.09) has only 1
2 (k2 + k) distinct ele-

ments, whatever the sample size. That is why it is possible to estimate it
consistently. A typical element of this matrix is

plim
n→∞

(
1−
n

n∑
t=1

ω2
tXtiXtj

)
, (16.11)

2 Precursors of White’s paper in the statistics literature include Eicker (1963,
1967) and Hinkley (1977), as well as some of the early papers on bootstrapping
(see Chapter 21).
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where Xti ≡ Xti(β0). On the other hand, a typical element of (16.10) is

1−
n

n∑
t=1

û2t X̂tiX̂tj . (16.12)

Because β̂ is consistent for β0, ût is consistent for ut, û
2
t is consistent for

u2t , and X̂ti is consistent for Xti. Thus expression (16.12) is asymptotically
equal to

1−
n

n∑
t=1

u2tXtiXtj . (16.13)

Under our assumptions, we can apply a law of large numbers to (16.13); see
White (1980, 1984) and Nicholls and Pagan (1983) for some technical details.
It follows immediately that (16.13), and so also (16.12), tends in probability
to (16.11). Consequently, the matrix(

n−1X̂>X̂
)−1(

n−1X̂>Ω̂X̂
)(
n−1X̂>X̂

)−1
(16.14)

consistently estimates (16.09). Of course, in practice one ignores the factors
of n−1 and uses the matrix(

X̂>X̂
)−1
X̂>Ω̂X̂

(
X̂>X̂

)−1
(16.15)

to estimate the covariance matrix of β̂.

Asymptotically valid inferences about β may be based on the HCCME
(16.15) in the usual way. However, one must be cautious when n is not large.
There is a good deal of evidence that this HCCME is somewhat unreliable in
finite samples. After all, the fact that (16.14) estimates (16.09) consistently
does not imply that the former always estimates the latter very well in finite
samples.

It is possible to modify the HCCME (16.15) so that it has better finite-
sample properties. The major problem is that the squared least squares resid-
uals û2t are not unbiased estimates of the squared error terms u2t . The easiest
way to improve the HCCME is simply to multiply (16.15) by n/(n− k). This
is analogous to dividing the sum of squared residuals by n−k rather than n to
obtain the OLS variance estimator s2. A second, and better, approach is to de-
fine the tth diagonal element of Ω̂ as û2t/(1− ĥt), where ĥt ≡ X̂t(X̂

>X̂)−1X̂t
>

is the tth diagonal element of the “hat” matrix P̂X that projects orthogonally
onto the space spanned by the columns of X̂. Recall from Section 3.2 that, in
the OLS case with constant variance σ2, the expectation of û2t is σ2(1 − ht).
Thus, in the linear case, dividing û2t by 1−ht would yield an unbiased estimate
of σ2 if the error terms were actually homoskedastic.

A third possibility is to use a technique called the “jackknife” that we will
not attempt to discuss here; see MacKinnon and White (1985). The resulting
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HCCME is moderately complicated but can be approximated very well simply
by defining the tth diagonal element of Ω̂ as

û2t(
1− ĥt

)2 . (16.16)

This may seem to involve overcorrecting for the tendency of least squares
residuals to be too small, since in the linear case with homoskedasticity the
expectation of (16.16) would be greater than σ2. But when the error terms
actually are heteroskedastic, observations with large variances will tend to
influence the parameter estimates more than observations with small variances
and will therefore tend to have residuals that are very much too small. Thus,
to the extent that large variances are associated with large values of ĥt, this
overcorrection may actually be a good thing.

We have now mentioned four different HCCMEs. We will refer to these
as HC0 through HC3. They differ only in how the tth elements of Ω̂ are
defined:

HC0 : û2t

HC1 :
n

n− k
û2t

HC2 :
û2t

1− ĥt

HC3 :
û2t(

1− ĥt
)2 .

MacKinnon and White (1985) investigated the finite-sample performance of
pseudo-t statistics based on these four HCCMEs.3 They found that HC0 per-
formed worst, tending to overreject the null hypothesis quite severely in some
cases, with HC1 doing better, HC2 doing better still, and HC3 performing
best of all. Subsequent work by Chesher and Jewitt (1987), Chesher (1989),
and Chesher and Austin (1991) has provided some insight into the reasons for
these results and suggests that HC3 will not always perform better than HC2.

As a practical matter, one should never use HC0, since HC1 costs no
more to compute and always performs better. When the diagonals of the hat
matrix are available, one should definitely use HC2 or HC3 rather than HC1.
Which of these should be used is not entirely clear, however. HC2 is in some
ways more appealing, but HC3 generally seems to perform better in Monte
Carlo experiments.

Although many regression packages now compute HCCMEs, they often
produce only the least desirable of these, namely, HC0. Messer and White

3 Actually, they investigated the performance of the jackknife rather than that
of the HCCME that we have called HC3, but subsequent computer simulations
suggest that HC3 behaves very similarly to the jackknife.
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(1984) suggest an ingenious way to compute any of these HCCMEs by means
of a program intended for instrumental variables estimation. Let ǔt denote
some estimate of ut: ût in the case of HC0, ût/(1−ht)1/2 in the case of HC2,
and so on. The procedure suggested by Messer and White is to construct the
artificial variables

y∗t ≡
yt
ǔt
, X∗t ≡

Xt

ǔt
, and Zt ≡Xtǔt

and regress y∗t on X∗t using Zt as a vector of instruments. The IV coefficient
estimates obtained in this way are identical to those from an OLS regression
of yt on Xt, and the IV covariance matrix is proportional to the HCCME
corresponding to whatever set of residuals ǔt was used. The factor of propor-
tionality is s2, the IV estimate of the error variance, which will tend to unity
as n → ∞. Thus, unless s2 = 1, as it will be if ǔt = ût and the regression
package divides by n rather than n− k, one simply divides the IV covariance
matrix by s2. This procedure works only if none of the ǔt’s is identically zero;
ways to handle zero residuals are discussed in the original article. Of course,
any HCCME can be calculated directly using many different programming
languages. The key thing is to set up the calculations in such a way that the
n× n matrix Ω̂ never has to be formed explicitly.

There are two different ways to use HCCMEs for testing hypotheses.
The most straightforward is simply to construct Wald tests and pseudo-t
statistics in the usual way, using the HCCME instead of the usual least
squares covariance matrix estimator. However, as we saw in Section 11.6,
it is also possible to construct LM, or C(α), tests based on what we called the
heteroskedasticity-robust Gauss-Newton regression, or HRGNR. Suppose the
alternative hypothesis is

y = x(β,γ) + u,

with β a k--vector and γ an r--vector, where the null hypothesis is γ = 0. Let
X́ and Ź denote matrices of derivatives of x(β,γ) with respect to the elements
of β and γ, respectively, evaluated at root-n consistent estimates [β́

.... 0].
Then if ḾX denotes the matrix that projects orthogonally onto S⊥(X́), ú
denotes an n--vector of residuals with typical element út = yt − xt(β́,0), and
Ώ denotes an n×n diagonal matrix with typical diagonal element ú2t , the test
statistic

ú>ḾXŹ
(
Ź>ḾXΏḾXŹ

)−1
Ź>ḾX ú (16.17)

is asymptotically distributed as χ2(r). This test statistic is equal to n minus
the sum of squared residuals from the artificial regression

ι = ÚḾXŹb + residuals,

where ι, as usual, is an n--vector each element of which is 1, and Ú is an n×n
diagonal matrix with the vector ú on the principal diagonal. We gave precise
instructions for computing (16.17) in Section 11.6.
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It is now possible to see just why the HRGNR works. The matrix in the
middle of (16.17) is simply an HCCME for the covariance matrix of the vector
Ź>ḾX ú, which should have mean zero, asymptotically, if the null hypothesis
is correct. For more on the HRGNR, see Davidson and MacKinnon (1985b)
and Wooldridge (1990a, 1990b, 1991a). There is some evidence that the
HRGNR test statistic (16.17) is closer to its asymptotic distribution in finite
samples than are Wald test statistics based on HCCMEs; see Davidson and
MacKinnon (1985b).

The key insight behind the HCCME is that one can consistently estimate
a matrix like the one in the middle of (16.09) without being able to estimateΩ
consistently. This basic idea will come up again in the next chapter, when
we discuss the estimation technique known as the generalized method of mo-
ments. Among other things, this will allow us to calculate estimates that
are asymptotically more efficient than least squares estimates when there is
heteroskedasticity of unknown form.

16.4 Autoregressive Conditional Heteroskedasticity

Econometricians frequently encounter models estimated using time-series data
where the residuals are quite small for a number of successive periods of time,
then much larger for a while, then smaller again, and so on, generally for no ap-
parent reason. This is particularly common with data on stock prices, foreign
exchange rates, or other prices determined in financial markets, where volatil-
ity generally seems to vary over time. There has recently been a great deal
of literature on ways to model this phenomenon. The seminal paper is Engle
(1982b), in which the concept of autoregressive conditional heteroskedastic-
ity, or ARCH, was first proposed. The basic idea of ARCH is that the variance
of the error term at time t depends on the size of the squared error terms in
previous time periods. However, there are many different ways in which this
basic idea can be modeled, and the literature is correspondingly very large.

Let ut denote the tth error term adhering to some regression model. Then
the original ARCH model can be written as

σ2
t ≡ E(u2t |Ωt) = α+ γ1u

2
t−1 + γ2u

2
t−2 + · · ·+ γpu

2
t−p, (16.18)

where Ωt denotes the information set on which σ2
t , the variance of ut, is to

be conditioned. This information set typically consists of everything dated
t − 1 or earlier. This particular model is called the ARCH(p) process. Its
resemblance to the AR(p) process discussed in Chapter 10 is striking and
accounts for the name given to these models. We can see from (16.18) that
the conditional variance of ut depends on the values of u2t realized in the past.
In order to ensure that this conditional variance is always positive, it must be
assumed that α and all the γi’s are nonnegative.
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The simplest version of (16.18) is the ARCH(1) process,

σ2
t = α+ γ1u

2
t−1. (16.19)

The conditional variance of ut given by (16.19) may be compared with the
unconditional variance σ2 ≡ E(u2t ). Assuming that the ARCH(1) process is
stationary, which it will be if γ1 < 1, we can write

σ2 = α+ γ1σ
2.

This implies that

σ2 =
α

1− γ1
.

Thus the unconditional variance of ut depends on the parameters of the ARCH
process and will in general be different from the conditional variance given by
equation (16.19).

Under the null hypothesis of homoskedastic errors, all the γi’s are zero.
As Engle (1982b) first showed, it is easy to test this hypothesis by running
the regression

û2t = a+ c1û
2
t−1 + c2û

2
t−2 + · · ·+ cpû

2
t−p + residual, (16.20)

where ût denotes a residual from least squares estimation of the regression
model to which the ut’s adhere. One then calculates an ordinary F test
(or simply n times the centered R2) for the hypothesis that c1 through cp
are zero. This artificial regression has the same form as the one for testing
the homoskedasticity assumption that we discussed in Section 11.5, but the
regressors are now lagged squared residuals rather than independent variables.
Thus, for any regression model estimated using time-series data, it is very easy
to test the null hypothesis of homoskedasticity against the alternative that the
errors follow an ARCH(p) process.

Testing for ARCH errors plays the same role in analyzing the second
moments of a time-series regression model as testing for AR errors does in
analyzing the first moments. Just as finding evidence of AR errors may or
may not indicate that the error terms really follow an AR process, so find-
ing evidence of ARCH errors may or may not indicate that there really is
autoregressive conditional heteroskedasticity. In both cases, other forms of
misspecification may lead to what looks like evidence of AR or ARCH er-
rors. With slight modifications, the analysis of Chapter 12 applies to tests in
skedastic directions (i.e., tests for heteroskedasticity) just as it does to any
other specification test.

Many variants of the ARCH model have been proposed. A particularly
useful variant is the generalized ARCH, or GARCH, model, suggested by
Bollerslev (1986). The GARCH(p, q) model may be written as

σ2
t = α+

p∑
i=1

γiu
2
t−i +

q∑
j=1

δjσ
2
t−j



558 Heteroskedasticity and Related Topics

or, in more compact notation, as

σ2
t = α+A(L,γ)u2t +B(L, δ)σ2

t ,

where γ and δ are parameter vectors with typical elements γi and δj , respec-
tively, and A(L,γ) and B(L, δ) are polynomials in the lag operator L. In the
GARCH model, the conditional variance σ2

t depends on its own past values as
well as on lagged values of u2t . This means that σ2

t effectively depends on all
past values of u2t . In practice, a GARCH model with very few parameters of-
ten performs as well as an ARCH model with many parameters. In particular,
one simple model that often works very well is the GARCH(1, 1) model,

σ2
t = α+ γ1u

2
t−1 + δ1σ

2
t−1. (16.21)

In practice, one must solve a GARCH model to eliminate the σ2
t−j terms

from the right-hand side before one can estimate it. The problem is essentially
the same as estimating a moving average model or an ARMA model with a
moving average component; see Section 10.7. For example, the GARCH(1, 1)
model (16.21) can be solved recursively to yield

σ2
t =

α

1− δ1
+ γ1

(
u2t−1 + δ1u

2
t−2 + δ21u

2
t−3 + δ31u

2
t−4 + · · ·

)
. (16.22)

Various assumptions can be made about the presample error terms. The
simplest is to assume that they are zero, but it is more realistic to assume
that they are equal to their unconditional expectation.

It is interesting to observe that, when γ1 and δ1 are both near zero, the
solved GARCH(1, 1) model (16.22) looks like an ARCH(1) model. Because
of this, it turns out that an appropriate test for GARCH(1, 1) errors is sim-
ply to regress the squared residuals on a constant term and on the squared
residuals lagged once. In general, an LM test against GARCH(p, q) errors is
the same as an LM test against ARCH(max(p, q)) errors. These results are
completely analogous to the results for testing against ARMA(p, q) errors that
we discussed in Section 10.8.

There are three principal ways to estimate regression models with ARCH
and GARCH errors: feasible GLS, one-step efficient estimation, and maxi-
mum likelihood. In the simplest approach, which is feasible GLS, one first
estimates the regression model by ordinary or nonlinear least squares, then
uses the squared residuals to estimate the parameters of the ARCH or GARCH
process, and finally uses weighted least squares to estimate the parameters of
the regression function. This procedure can run into difficulties if the condi-
tional variances predicted by the fitted ARCH process are not all positive, and
various ad hoc methods may then be used to ensure that they are all positive.

The estimates of the ARCH parameters obtained by this sort of feasible
GLS procedure will not be asymptotically efficient. Engle (1982b) therefore



16.4 Autoregressive Conditional Heteroskedasticity 559

suggested using a form of one-step efficient estimation. This method is a bit
too complicated to discuss here, however.

The third popular estimation method is to use maximum likelihood, as-
suming normally distributed errors. Suppose that the model to be estimated is
a nonlinear regression model with GARCH(p, q) errors that are conditionally
normal:

yt = xt(β) + ut, ut = σtεt,

σ2
t = α+A(L,γ)u2t +B(L, δ)σ2

t , εt ∼ NID(0, 1).
(16.23)

The loglikelihood function for this model is

C − 1−
2

n∑
t=1

log
(
σ2
t (α,γ, δ,β)

)
− 1−

2

n∑
t=1

(
yt − xt(β)

)2
σ2
t (α,γ, δ,β)

, (16.24)

where C is a constant and

σ2
t (α,γ, δ,β) ≡ α+A(L,γ)

(
yt − xt(β)

)2
+B(L, δ)σ2

t . (16.25)

Because this is a GARCH model, one must solve (16.25) recursively for σ2
t in

order to evaluate (16.24). The algebra is fairly messy, but, with appropriate
software, estimation is not unduly difficult.

The model (16.23) is clearly one to which the double-length artificial
regression (DLR), introduced in Section 14.4, is applicable. If we make the
definition

ft(yt,θ) ≡
yt − xt(β)(

α+A(L,γ)
(
yt − xt(β)

)2
+B(L, δ)σ2

t

)1/2 ,
it is clear that this model is a special case of the class of models (14.18).
Obtaining the derivatives needed to implement the DLR is not trivial, espe-
cially when δ 6= 0, but essentially the same effort is needed to implement
any asymptotically efficient estimation technique. The DLR can be used to
obtain one-step efficient estimates, starting from OLS estimates and consis-
tent estimates of the ARCH parameters obtained from them, or as part of a
procedure for ML estimation. Of course, the DLR also provides a natural and
relatively convenient way to perform a wide variety of specification tests for
models with ARCH and GARCH errors.

One of the many developments of the original ARCH idea is the important
class of models called the ARCH-in-mean, or ARCH-M, class. This class of
models was introduced by Engle, Lilien, and Robins (1987). These models are
like other ARCH models except that the conditional variance σ2

t enters into
the regression function for the conditional mean. Thus (16.23) would become

yt = xt(β, σ
2
t ) + ut, ut = σtεt,

σ2
t = α+A(L,γ)u2t +B(L, δ)σ2

t , εt ∼ NID(0, 1).
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Many theories in financial economics make use of measures of risk. To the
extent that the conditional variance of an error term is a measure of risk, it
seems logical that σ2

t should enter the regression function as a measure of risk.
The information matrix for ARCH-M models is not block diagonal between β
on the one hand and γ and δ on the other. Thus the feasible GLS and one-step
efficient estimation techniques that work for other ARCH models cannot be
used. Maximum likelihood is the estimation technique that is almost always
employed.

The literature on ARCH is large and growing very rapidly. Engle and
Bollerslev (1986) provides a useful survey of the early work in the field. En-
gle and Rothschild (1992) is a collection of recent papers, including Boller-
slev, Chou, and Kroner (1992), which provides a very extensive bibliography.
Engle, Hendry, and Trumble (1985) provides Monte Carlo evidence on the
finite-sample properties of ARCH estimators and test statistics. Empirical pa-
pers include Domowitz and Hakkio (1985), Bollerslev, Engle, and Wooldridge
(1988), McCurdy and Morgan (1988), and Nelson (1991).

16.5 Testing for Heteroskedasticity

In Section 11.5, we discussed some tests for heteroskedasticity based on arti-
ficial regressions similar to the Gauss-Newton regression, in which the regres-
sand was a vector of squared residuals. In this section, we discuss these and
other tests for heteroskedasticity in more detail.

Suppose the null hypothesis is

yt = xt(β) + ut, ut ∼ IID(0, σ2),

and the alternative hypothesis is that the regression function is still xt(β),
but with

E
(
u2t
)

= h(α+Ztγ),

where h(·) is a positive-valued function that may be linear or nonlinear, Zt is
a 1× q vector of observations on exogenous or predetermined variables, and α
and γ are unknown parameters. We saw in Section 11.5 that the hypothesis
γ = 0 may be tested by testing the hypothesis that c = 0 in the artificial
regression

v̂ = ιa∗ +Zc + residuals. (16.26)

Here v̂ is a vector with typical element û2t , ι is a vector with every element 1,
and Z is a matrix with typical row Zt. The test statistic may be either n
times the centered R2 or the ordinary F statistic for c = 0. We derived this
test as an application of general results for Gauss-Newton regressions.

In Section 11.5, we said little about how the matrix Z may be chosen.
There are a great many ways to do so. It may consist of observations on any



16.5 Testing for Heteroskedasticity 561

exogenous or predetermined variables that belong to the information set on
which y is being conditioned, or functions of such variables, and it may have
one column or many. One approach is to specify particular heteroskedastic
alternatives that seem plausible and derive Z accordingly. The regression
(16.20) used to test for ARCH(p) errors is one particular example in which
the matrix Z is made up exclusively of lagged squared residuals. As an-
other example, multiplicative heteroskedasticity often seems plausible if the
regressand is always substantially larger than zero. Thus, in this case, one
reasonable alternative hypothesis would be

E
(
u2t
)

= α
(
Xtβ

)γ
. (16.27)

Since the null hypothesis then corresponds to γ = 0, α can be identified with
σ2. The derivative of the right-hand side of (16.27) with respect to γ is

α
(
Xtβ

)γ
log(Xtβ). (16.28)

Evaluating (16.28) under the null hypothesis that γ = 0 yields σ̂2 log(Xtβ̂).
Thus, to test the hypothesis that γ = 0, we simply have to regress û2t on a
constant and log(Xtβ̂). The test statistic is the t statistic on the latter. It
should be asymptotically distributed as N(0, 1) under the null hypothesis.

There are many specifications of heteroskedasticity that, like (16.27), may
seem plausible in particular cases. These lead to various specifications of Z.
When there is good a priori reason to suspect that heteroskedasticity has a
particular form, it makes sense to test against that form and then to use
feasible GLS or ML to take account of it if the null hypothesis is rejected.

On the other hand, if there is little a priori information about what
form heteroskedasticity may take if it is present, specifying Z becomes much
harder. One approach was suggested by White (1980). We saw in Section 16.2
that, for a linear regression model estimated by OLS, the conventional OLS
covariance matrix is asymptotically valid provided that E(u2t ) is the same
unconditionally as it is conditional on the squares and cross-products of all the
regressors. White therefore suggested that Z should consist of the squares and
cross-products of all the regressors, dropping the constant term and any other
columns that would cause [ι Z ] not to have full rank. Like all the regression-
based tests that we are discussing, White’s test will have a noncentrality
parameter that is nonzero whenever there is any correlation between u2t and
any of the elements of Zt. Thus, if the sample is large enough, White’s test is
certain to detect any heteroskedasticity that would cause the OLS covariance
matrix to be inconsistent.

Although White’s test is consistent against a very wide range of het-
eroskedastic alternatives, it may not be very powerful in finite samples. The
problem is that the number of columns in Z will be very large if the number
of regressors in X is not quite small. In general, Z will have k(k + 1)/2− 1
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columns if X includes a constant term. Thus, for k = 10, White’s test will
have 54 degrees of freedom; for k = 20 (which is not by any means a large
number for studies using cross-section data), it will have 209 degrees of free-
dom. These are rather large numbers. As we saw in Chapter 12, tests with
many degrees of freedom are likely to lack power unless the sample size is
very large. One could of course modify White’s test in various ad hoc ways,
such as dropping the columns of Z that correspond to cross-products of the
regressors. Such modifications might or might not improve the power of the
test. It would depend on how much the noncentrality parameter was reduced,
relative to the effect of fewer degrees of freedom; see Section 12.5.

It is possible to derive regression-based tests for heteroskedasticity as
Lagrange multiplier tests under the assumption of normally distributed error
terms. That was in fact how they were originally derived by Godfrey (1978c)
and Breusch and Pagan (1979). The maintained hypothesis is

yt = xt(β) + ut, ut ∼ NID
(
0, h(α+Ztγ)

)
, (16.29)

and we wish to test the restriction that γ = 0. The LM test may be derived
in a straightforward fashion by writing down the loglikelihood function that
corresponds to (16.29), obtaining the gradient and the information matrix,
evaluating these at the NLS estimates of β, and forming the usual quadratic
form. We leave this as an exercise for the reader.

The LM test statistic that one obtains in this way can be written as

1

2σ̂4
v̂>MιZ

(
Z>MιZ

)−1
Z>Mιv̂, (16.30)

where, as before, v̂ is an n--vector with typical element û2t , and Mι is the
matrix that takes deviations from the mean. Under the null hypothesis, this
test statistic will be asymptotically distributed as χ2(q). Expression (16.30)
is equal to one-half the explained sum of squares from the regression

v̂

σ̂2
− ι = aι+Zc + residuals. (16.31)

This result depends on the fact that the regressand here has mean zero by
construction. The FWL Theorem then implies that the explained sum of
squares from (16.31) is unchanged if all the regressors are replaced by the
deviations from their means.

It is easy to see why (16.30) must be asymptotically distributed as χ2(q).
The normality assumption implies that û2t/σ̂

2 is asymptotically distributed as
χ2(1). The vector

n−1/2
(
v̂/σ̂2

)>MιZ (16.32)

is simply a weighted average of n random variables, each of them initially
χ2(1) but recentered to have mean zero because of the presence of Mι. Since
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the variance of a random variable that has the χ2(1) distribution is 2 (see
Section 4 of Appendix B), the vector (16.32) must have covariance matrix

2−
n
Z>MιZ. (16.33)

The LM test statistic (16.30) is simply a quadratic form in the vector (16.32)
and the inverse of the matrix (16.33). Provided that a central limit theorem
applies to (16.32), which it will under weak conditions on the matrix Z, this
quadratic form must have the χ2(q) distribution asymptotically.

The LM test (16.30) is very closely related to the nR2 and F tests based
on regression (16.26) that we have already discussed. In fact, the centered
R2’s from (16.26) and (16.31) are numerically identical, since the only differ-
ence between those two regressions is that the regressand of (16.31) has been
rescaled and translated so that it has sample mean zero. The result that the
LM statistic is equal to one-half the explained sum of squares from (16.31)
depends critically on the assumption of normality, which was used to obtain
(16.33). Without that assumption, which Koenker (1981) and others have
criticized as unwarranted in most cases, we would be left with an F or nR2

test as before.

The test statistic (16.30) based on the normality assumption tends to
be somewhat more powerful than F or nR2 tests calculated from the same
artificial regression, because heteroskedasticity often creates the appearance
of excess kurtosis, which tends to reduce the magnitude of any test that is
using an estimate of the variance of û2t . Another advantage of the LM test
(16.30) is that it can be modified so that it is almost exact in finite samples; see
Honda (1988). Thus there are some advantages to the LM form of these tests,
if the normality assumption is a reasonable one. Because that assumption
can itself be tested quite easily, as we will see in Section 16.7, it may not
be unreasonable to use LM tests for heteroskedasticity when the normality
assumption appears to be acceptable to the data.

To this point, our discussion of tests for heteroskedasticity has focused
exclusively on tests based on artificial regressions. Numerous other tests have
been proposed, and some of these are quite widely used. One particularly
well-known test is the venerable F test of Goldfeld and Quandt (1965), which
is easy to compute and often performs well. The idea is to order the data
according to the value of some variable that is thought to be responsible for
heteroskedasticity, then estimate the model over the first and last thirds of
the sample, and calculate the test statistic

SSR3/(n3 − k)

SSR1/(n1 − k)
, (16.34)

where SSR1 and SSR3 denote the sums of squared residuals from the first
and last thirds of the sample, and n1 and n3 denote the associated sample
sizes. Given normally distributed error terms, this test statistic would under
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the null hypothesis be exactly distributed as F (n3 − k, n1 − k); even without
normality, it would have approximately that distribution in large samples.
Notice that the Goldfeld-Quandt test is a two-tailed test, something that is
rather unusual for an F test, since we want to reject the null hypothesis if the
test statistic (16.34) is either too large or too small.

Other notable tests for heteroskedasticity have been proposed by Glej-
ser (1969), Szroeter (1978), Harrison and McCabe (1979), Ali and Giacotto
(1984), Evans and King (1985, 1988), and Newey and Powell (1987). Several
of those papers, along with MacKinnon and White (1985) and Griffiths and
Surekha (1986), provide Monte Carlo evidence on the properties of one or
more tests. See also Godfrey (1988, Sections 4.5 and 5.5).

16.6 Skedastic Directions and Regression Directions

In Chapter 12, we presented a fairly detailed analysis of what determines the
power of tests in regression directions, that is, tests of whether a regression
function is specified correctly. A similar analysis could be undertaken of the
power of tests in skedastic directions, that is, tests of whether a skedastic
function is specified correctly. The results of such an analysis would be very
similar to those of Chapter 12. In particular, we would find that tests in
skedastic directions locally equivalent to the directions in which the DGP dif-
fers from the null hypothesis would have the largest noncentrality parameters
(or NCPs) among all such tests and that, for any given NCP, the power of a
test would be inversely related to its number of degrees of freedom. Readers
may find it a good exercise to verify these results.

In this section, we will be concerned with a different issue. What happens
if one tests in a skedastic direction when the skedastic function is correctly
specified but the regression function is not? It seems clear that any misspec-
ification of the regression function will cause the residuals to be misbehaved.
In many cases, if one omits a regressor that has nonconstant variance, for ex-
ample, the residuals will be heteroskedastic. Thus it might seem that testing
for certain forms of heteroskedasticity would be a good way to detect mis-
specification of regression functions. That turns out not to be the case, as we
will now see.

Let the model of interest be

y = x(β) + u, E(u) = 0, E(uu>) = σ2 I.

As in Section 12.5, we will suppose that the data are actually generated by a
drifting DGP of the form

y = x(β0) + αn−1/2a+ u, E(u) = 0, E(uu>) = σ2
0 I. (16.35)

Here β0 and σ2
0 denote particular values of β and σ2, a is an n--vector that
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may depend on exogenous variables, on the parameter vector β0, and possibly
on past values of yt, and α is a parameter that determines how far the DGP
is from the simple null hypothesis

y = x(β0) + u, E(u) = 0, E(uu>) = σ2
0 I. (16.36)

The drifting DGP (16.35) tends to this simple null hypothesis as n→∞. As
we saw in Section 12.3, the vector a can be specified in many ways in order
to correspond to any sort of misspecification of x(β).

Now let us see what happens when we test the null hypothesis that the
ut’s are homoskedastic against the alternative that

E(u2t ) = h(α+Ztγ),

where Zt is a 1 × q vector. If we do not assume that the error terms are
normally distributed, one possible test statistic (in χ2 form) is n times the
centered R2 from a regression of v̂, a vector with typical element û2t , on a
constant and Z. This test statistic can be written as

v̂>MιZ(Z>MιZ)−1Z>Mιv̂

n−1v̂>Mιv̂

=
(n−1/2v̂>MιZ)(n−1Z>MιZ)−1(n−1/2Z>Mιv̂)

n−1v̂>Mιv̂
,

(16.37)

where Mι denotes the matrix that takes deviations from the mean. To see
how (16.37) is distributed asymptotically under the DGP (16.35), we must
see what happens to the quantities

n−1/2v̂>MιZ, n
−1Z>MιZ, and n−1v̂>Mιv̂

as n→∞. For the second of these, we will simply assume that

plim
n→∞

(
1−
n
Z>MιZ

)
exists and is a positive definite matrix. The key is what happens to the other
two quantities, n−1/2v̂>MιZ and n−1v̂>Mιv̂.

In Section 12.4, we obtained the result that, under a DGP like (16.35),

û ≡ y − x̂ = MX

(
u+ αn−1/2a

)
+ o
(
n−1/2

)
, (16.38)

where MX denotes the matrix that projects onto S⊥(X0). Using this result,
it can be shown that both n−1/2v̂>MιZ and n−1v̂>Mιv̂ tend to the same
quantities when α is nonzero as they do when α = 0. The proof is slightly
tedious but not difficult, and readers may find it illuminating to work through
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Table 16.2 Power of Various Tests When the DGP Has AR(1) Errors

AR(1) AR(1) ARCH(1) ARCH(1)

n ρ Power at 1% Power at 5% Power at 1% Power at 5%

50 0.566 66.0 85.3 6.5 14.3
100 0.400 82.2 94.2 8.4 15.8
200 0.283 87.1 96.2 7.1 14.3
400 0.200 89.9 97.1 5.6 11.7
800 0.141 90.8 97.4 3.6 8.7

1600 0.100 90.8 97.5 2.3 7.1
3200 0.071 91.3 97.6 1.8 5.8
6400 0.050 92.0 98.0 1.6 5.7

12800 0.035 92.2 97.9 1.3 5.4

it. Thus we conclude that the test statistic (16.37) must have the same asymp-
totic distribution — namely, χ2(q) — under (16.35) as under (16.36). It will
therefore have asymptotic power equal to its size.

This result may at first seem rather remarkable. It says that if the sample
size is large enough, and if the DGP differs from the null hypothesis by an
amount proportional to n−1/2, then a test in any skedastic direction will have
power equal to its size. In contrast, a test in any regression direction that
is not orthogonal to MXa will have power greater than its size. In practice,
of course, sample sizes are not infinite and DGPs are always a finite distance
from the null hypothesis, so we would not expect these results to hold exactly.
But they do strongly suggest that tests in skedastic directions will be much
less powerful than tests in appropriate regression directions when it is the
regression function that is misspecified.

To illustrate how this asymptotic result applies in finite samples, consider
the following example. The data are generated by an AR(1) process with a
constant term and parameter ρ equal to 4/n1/2. The null hypothesis is that yt
is equal to a constant plus white noise errors. This null is tested against two
alternatives by means of LM tests based on artificial regressions. The two
alternatives are that the error terms follow an AR(1) process, which is in
fact the case, and that they follow an ARCH(1) process. The percentage of
the time that these two tests reject the null hypothesis at the 1% and 5%
levels, for various sample sizes and the corresponding values of ρ, are shown
in Table 16.2. These results are based on a Monte Carlo experiment, with
10,000 replications for each sample size.

We see from Table 16.2 that, in this case, the test against AR(1) errors
always has a great deal more power than the test against ARCH(1) errors.
As the sample size increases and ρ approaches zero, the power of the former
test initially increases somewhat and then levels off. In contrast, the power of
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the latter test at first increases slightly, but then begins to decrease steadily
toward its asymptotic size of either 1% or 5%. Although we have not discussed
them, similar results hold for the case in which the regression function is
correctly specified and the skedastic function is misspecified. If the DGP
approaches the null at an appropriate rate in this case, tests in regression
directions will asymptotically have power equal to their size.

It is important to keep the results of this section in mind when one is
testing the specification of a regression model. They strongly suggest that
if only the regression function is misspecified, then tests in some regression
directions should have much lower P values than tests in any skedastic di-
rections. Conversely, if only the skedastic function is misspecified, then tests
in some skedastic directions should have much lower P values than tests in
any regression directions. If, on the contrary, the tests in regression directions
that reject the null most strongly have P values roughly comparable to those
of the tests in skedastic directions that reject the null most strongly, then it
seems quite likely that both the regression function and the skedastic function
are misspecified.

16.7 Tests for Skewness and Excess Kurtosis

Although it is valid to use least squares whenever the error terms that adhere
to a regression function have zero mean and a covariance matrix that satisfies
mild regularity conditions, least squares yields an optimal estimator only in
special circumstances. For instance, we saw in Chapter 9 that when the
covariance matrix of the error terms is not a scalar matrix, it is the GLS
rather than the OLS estimator which is efficient. Thus information about
the second moments of the error terms will in general lead to an efficiency
gain in the estimation of the parameters of the regression function. The same
is true for moments of the error terms of order higher than the second. For
instance, if the error terms are severely leptokurtic, that is, if their distribution
has very thick tails, least squares may be highly inefficient relative to some
other estimator that takes the leptokurtosis into account. Similarly, if the
error terms are skewed, it will be possible to do better than least squares by
using an estimator that recognizes the presence of the skewness. Of course,
skewed error terms may well indicate that the model is misspecified; perhaps
the dependent variable should have been transformed prior to estimation, for
example (see Chapter 14).

All of this suggests that it is generally wise to test the hypothesis that
the errors are normally distributed. In practice, one rarely goes beyond their
third- and fourth-order moments; this means testing for skewness and excess
kurtosis. Recall from Section 2.6 that, for a normal distribution with variance
σ2, the third central moment, which determines skewness, is zero, while the
fourth central moment, which determines kurtosis, is 3σ4. If the third central
moment is not zero, the distribution is skewed. If the fourth central moment
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is larger than 3σ4, the distribution said to be leptokurtic, while if the fourth
central moment is smaller than 3σ4, the distribution is said to be platykurtic.
In practice, residuals are frequently leptokurtic and rarely platykurtic.

One approach to testing the normality assumption is to embed the normal
distribution within some more general family of distributions and then devise
LM tests for the null hypothesis that the embedding parameters are zero.
When this approach is employed, as in Jarque and Bera (1980) and Kiefer and
Salmon (1983), the tests that result turn out to be simply tests for skewness
and excess kurtosis. We will therefore not discuss the embedding approach
but will assume from the outset that we wish to test the hypotheses

E(u3t ) = 0 and E(u4t ) = 3σ4,

where ut denotes a typical error term, which is assumed to be IID(0, σ2).

In the case of regression models, tests for skewness and excess kurtosis
are almost always based on residuals. If ût is the tth residual from a regression
model with a constant term, one can test for skewness by finding the sample
mean and standard deviation of a vector with typical element û3t and then
constructing an (asymptotic) t statistic for the hypothesis that the true mean
is zero. Similarly, one can test for excess kurtosis by finding the sample mean
and standard deviation of a vector with typical element û4t − 3σ̂4, where σ̂
is the ML estimate of σ, and constructing the same sort of (asymptotic) t
statistic. These may not be the best procedures to use, however, because the
estimated standard deviations used to construct the test statistics do not take
full account of the implications of the normality hypothesis.

Suppose that the error terms ut adhering to some regression model are
distributed as NID(0, σ2). Then, if the residuals are denoted ût and the ML
estimate of their variance is σ̂2, it can be shown (see below) that

plim
n→∞

(
1−
n

n∑
t=1

(
û3t
σ̂3

)2)
= 6 (16.39)

and

plim
n→∞

(
1−
n

n∑
t=1

(
û4t
σ̂4
− 3

)2)
= 24. (16.40)

These two results make it very simple to calculate test statistics. We simply
make use of the normalized residuals

et ≡
ût − µ̂
σ̂

,

where µ̂ denotes the sample mean of the ût’s (which may be nonzero for
models that do not include the equivalent of a constant term). Then a test
statistic for skewness is

(6n)−1/2
n∑
t=1

e3t (16.41)
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and a test statistic for excess kurtosis is

(24n)−1/2
n∑
t=1

(
e4t − 3

)
. (16.42)

Each of these test statistics will be asymptotically distributed as N(0, 1) under
the null hypothesis of normality. Each of their squares will be asymptotically
distributed as χ2(1). Moreover, since it can be shown that these two statistics
are independent, the sum of their squares will be asymptotically distributed
as χ2(2). These test statistics were suggested (in a slightly different form)
by Jarque and Bera (1980);4 see also White and MacDonald (1980) and Bera
and Jarque (1981, 1982).

We have not yet justified the results (16.39) and (16.40). In order to do
so, we start from a standard result about the N(0, 1) distribution. If a random
variable z is distributed as N(0, 1), then all of its odd-order moments are zero
(the distribution is symmetric), and the even-order moments are given by the
formula

E(z2n) =
n∏
i=1

(2i− 1);

see Section 4 of Appendix B. An easy extension of this result tells us that if z
is distributed as N(0, σ2), then

E(z2n) = σ2n
n∏
i=1

(2i− 1). (16.43)

Thus, if the normalized residuals were in fact distributed as NID(0, 1), we
would find that the left-hand side of (16.39) was equal to the sixth moment of
the N(0, 1) distribution, or 15. Similarly, the left-hand side of (16.40) would
be

plim
n→∞

(
1−
n

n∑
t=1

(
z8 − 6z4 + 9

))
= 105− 18 + 9 = 96.

That these results are not true is a consequence of the fact that the normal-
ized residuals are calculated using estimates of the error mean and standard
deviation.

To take account of this fact, the easiest way to proceed is to imagine
basing a test on the OPG regression that we first discussed in Section 13.7.
Suppose, for simplicity, that the regression model to be tested is

yt = β + ut, ut ∼ NID(0, σ2); (16.44)

including regressors in addition to the constant term does not change the
results. When everything is evaluated at true values, the OPG regression that

4 Kiefer and Salmon (1983) proposed test statistics that appear to be somewhat
different but are in fact numerically identical to (16.41) and (16.42).
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corresponds to this model can be written as

1 = but + s
(
u2t − σ2

)
+ residual, (16.45)

where we have replaced yt − β by ut and multiplied the first regressor by σ2

and the second by σ3. (Since we are interested in computing test statistics,
not estimating covariance matrices, it is perfectly legitimate to multiply any
of the regressors by a constant.) A test of (16.44) against any alternative at
all can be based on an OPG regression. We simply have to add one or more
appropriately specified columns to (16.45).

For testing against the alternative that the error terms are skewed, the
natural regressor to add to (16.45) is u3t . The test statistic will simply be the
t statistic associated with that regressor. The numerator of this statistic is
thus simply the mean of the regressor, after it has been projected off the other
two regressors. Under the null hypothesis, the test regressor is already asymp-
totically orthogonal to the second regressor in (16.45), since all odd moments
of a centered normal distribution are zero. But it will not be orthogonal to
the first regressor in (16.45). Projecting u3t off ut yields

u3t − ut

(∑n
t=1 u

4
t∑n

t=1 u
2
t

)
a
= u3t − 3σ2ut. (16.46)

The asymptotic equality here is obtained by dividing each of the summations
by n and then taking probability limits. It is easily verified from (16.43) that
the variance of u3t − 3σ2ut is 6σ6.

Similarly, for testing against the alternative that the error terms have a
fourth moment not equal to 3σ4, the natural regressor to add to (16.45) is
u4t − 3σ4. Once again, the numerator of the test statistic will be the mean
of that regressor, after it has been projected off the other two. In this case,
the test regressor is asymptotically orthogonal to the first regressor in (16.45),
but not to the second. Projecting the test regressor off the latter yields

u4t − 3σ4 −
(
u2t − σ2

)∑n
t=1

(
u6t − u4tσ2 − 3u2tσ

4 + 3σ6
)∑n

t=1

(
u4t − 2u2tσ

2 + σ4
)

a
= u4t − 6u2tσ

2 + 3σ4.

(16.47)

The asymptotic equality here is obtained in the same way as for (16.46). It
is easily verified that the variance of u4t − 6u2tσ

2 + 3σ4 is 24σ8.

Now suppose that we replace ut by et and σ by unity in the expressions
on the right-hand sides of (16.46) and (16.47). Then it is easily seen that

n∑
t=1

(
e3t − 3et

)
=

n∑
t=1

e3t and

n∑
t=1

(
e4t − 6e2t + 3

)
=

n∑
t=1

(
e4t − 3

)
.
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The right-hand sides of these expressions are simply the numerators of the test
statistics (16.41) and (16.42). From these equalities, we see that the latter
must have asymptotic variances equal to n times those of expressions (16.46)
and (16.47) when σ = 1. This explains where the denominators of the test
statistics come from and completes the demonstration of (16.39) and (16.40).

The above demonstration makes it clear why inclusion of regressors other
than the constant will not change the result. If such a regressor is denoted
by Xt, then the column corresponding to it in the OPG regression (16.45)
has typical element Xtut. But this element has zero covariance with both
u3t − 3σ2ut and u4t − 6u2tσ

2 + 3σ4, and so the test columns are automatically
asymptotically orthogonal to any regression direction. In fact, because they
are also orthogonal to any skedastic direction, the tests could be used with
normalized residuals from a regression for which a skedastic function had been
estimated.

The reason for the simplicity of the tests for skewness and excess kurtosis
that we discussed in this section is that, as we have just seen, we are largely
able to ignore the fact that residuals from regression models depend on model
parameters which have been estimated. With more general models, we often
cannot ignore this fact. It seems plausible that variants of the OPG regression
should provide one valid way to test for skewness and kurtosis in such models.
As we will see in the next section, that is indeed the case. Such tests are
actually special cases of an important and very general class of tests called
conditional moment tests.

16.8 Conditional Moment Tests

One important approach to model specification testing that we have not yet
discussed is to base tests directly on certain conditions that the error terms of
a model should satisfy. Such tests are sometimes called moment specification
tests but are more frequently referred to as conditional moment, or CM, tests.
They were first suggested by Newey (1985a) and Tauchen (1985) and have
been further developed by White (1987), Pagan and Vella (1989), Wooldridge
(1991a, 1991b), and others. The basic idea is that if a model is correctly
specified, many random quantities which are functions of the error terms
should have expectations of zero. The specification of a model sometimes
allows a stronger conclusion, according to which such functions of the error
terms have zero expectations conditional on some information set — whence
the terminology of conditional moment tests.

Since an expectation is often referred to as a moment, the condition that
a random quantity has zero expectation is generally referred to as a moment
condition. Even if a population moment is zero, its empirical counterpart,
which we will call an empirical moment, will (almost) never be so exactly, but
it should not be significantly different from zero. Conditional moment tests
are based directly on this fact.
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Conditional moment tests can be used to test many different aspects
of the specification of econometric models. Suppose that the economic or
statistical theory behind a given parametrized model says that for each obser-
vation t there is some function of the dependent variable yt and of the model
parameters θ, say mt(yt,θ), of which the expectation is zero when the DGP
used to compute the expectation is characterized by θ. Thus, for all t and for
all θ,

Eθ
(
mt(yt,θ)

)
= 0. (16.48)

We may think of (16.48) as expressing a moment condition. In general, the
functions mt may also depend on exogenous or predetermined variables.

Even though there is a different function for each observation, it seems
reasonable, by analogy with empirical moments, to take the following expres-
sion as the empirical counterpart of the moment in condition (16.48):

m(y, θ̂) ≡ 1−
n

n∑
t=1

mt(yt, θ̂), (16.49)

where θ̂ denotes a vector of estimates of θ. Expression (16.49) is thus a form
of empirical moment. A one-degree-of-freedom CM test would be computed
by dividing it by an estimate of its standard deviation and would be asymp-
totically distributed as N(0, 1) under suitable regularity conditions. There
might well be more than one moment condition, of course, in which case the
test statistic could be calculated as a quadratic form in the empirical moments
and an estimate of their covariance matrix and would have the chi-squared
distribution asymptotically.

It is clear that the tests for skewness and excess kurtosis which we dis-
cussed in the preceding section are special cases of CM tests. A condition like
E(u3t ) = 0 is an (unconditional) moment condition, and a test statistic like
(16.41) is just the empirical counterpart of the moment involved, divided by
an estimate of its standard deviation. What may be less clear is that, once
we allow the possibility of conditional moments, virtually all the specification
tests we have discussed so far can be thought of as CM tests. For example,
consider a linear regression model like

yt = Xtβ + ut, ut ∼ IID(0, σ2), (16.50)

where Xtβ is specified to be the mean of yt conditional on some information
set Ωt. If this model is specified correctly, then the conditional expectation
E(ut |Ωt) should be zero. This conditional moment condition implies that
ut should be orthogonal to any variable that belongs to Ωt. Hence, for any
zt ∈ Ωt, the unconditional moment E(utzt) should be zero. The corresponding
empirical moment is

n∑
t=1

ûtzt = û>z, (16.51)
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where ût denotes the estimate of ut from OLS estimation of (16.50), û is an
n--vector with typical element ût, and z is an n--vector with typical element zt.
We have not bothered to divide (16.51) by n, since it must be divided by
something that estimates its standard deviation consistently in order to obtain
a conditional moment test statistic.

Expression (16.51) is, of course, the numerator of the ordinary t statistic
for γ = 0 in the regression

yt = Xtβ + γzt + ut. (16.52)

The denominator of that t statistic is a consistent estimator of the standard
deviation of (16.51). Hence the ordinary t statistic for γ = 0 in (16.52) can be
thought of as a CM test, as can a variety of more complicated test statistics
that estimate the variance of (16.51) in different ways. For example, one could
use one of the HCCMEs discussed in Section 16.3 to obtain a test statistic that
would be valid in the presence of heteroskedasticity of unknown form. This
might be either a Wald-type test, in which the estimates of the covariance
matrix were based on OLS estimates of the unrestricted model (16.52), or an
LM-type test, in which they were based on OLS estimates of the restricted
model (16.50), as in the case of the HRGNR.

These examples suggest that the CM tests which one obtains by explicitly
writing down moment conditions will frequently be ones that are already
familiar from other approaches. That is indeed very often the case. For
example, consider testing the hypothesis that the r--vector θ2 is equal to zero
in a model estimated by maximum likelihood. Here the natural “moment
conditions” to use are that

E
(
gi(θ1,0)

)
= 0 for i = k − r + 1, . . . , k.

These conditions state that the r elements of the score vector g(θ) which
correspond to the elements of θ2 should have expectation zero under the null
hypothesis that θ2 = 0. To obtain empirical moments, we simply replace
θ1 by the restricted ML estimates θ̃1. This yields the score vector g(θ̃).
Therefore, in this case, the familiar score form of the LM test can be regarded
as a CM test.

In these cases and many others, CM tests often turn out to be exactly
the same as more familiar specification tests based on the LM principle or
the DWH principle. What then are the advantages of deriving tests as CM
tests rather than in some other way? Pagan and Vella (1989) argue, primarily
in the context of limited dependent variable models, that it is often much
easier and more natural to write down plausible moment conditions than to
derive LM tests. That is indeed frequently the case. We implicitly followed
the CM approach in the previous section, when we derived tests of normality
by explicitly testing for skewness and kurtosis, rather than by formulating an
alternative model and working out LM tests. As we remarked there, we could



574 Heteroskedasticity and Related Topics

have obtained similar test statistics by using the latter approach, but it would
have been a lot more work. Thus the CM approach may be attractive when it
is easy to write down the moment conditions that one would like to test and
their empirical counterparts.

However, simply writing down a set of empirical moments does not, by
itself, allow one to obtain a test statistic. One must also be able to estimate
their covariance matrix. As we will see very shortly, if we are dealing with
a model estimated by maximum likelihood, to which the familiar OPG re-
gression applies, it is possible to do this in a mechanical way by using that
regression. But although this procedure allows one to derive CM tests di-
rectly from an OPG regression, these tests, like others computed from OPG
regressions, frequently have poor finite-sample properties. If one wishes to
derive CM tests with good finite-sample properties, one may well be obliged
to undertake a detailed examination, of the sort undertaken in the last sec-
tion, of how the empirical moments are distributed. Alternatively, in some
cases, the tests may be computed by means of artificial regressions with better
finite-sample properties than the OPG regression. The moral is that deriving
CM tests is not always an easy thing to do.

We now discuss an important result, due to Newey (1985a), which permits
CM tests to be computed by an OPG regression. Suppose, for simplicity, that
we are interested in testing a single moment condition, say Eθ

(
mt(yt,θ)

)
= 0.

The corresponding empirical moment is m(y, θ̂), defined in expression (16.49).
If we knew the true value of θ, it would clearly be very easy to obtain a test
statistic. We would simply require that condition CLT (see Definition 4.16)
apply to n1/2m(y,θ), and then we could estimate the asymptotic variance of
this expression by

1−
n

n∑
t=1

m2
t (yt,θ). (16.53)

Constructing a test statistic that would be asymptotically distributed as
N(0, 1) would then be very easy. The problem is that in most cases we do
not know θ but merely have a vector of ML estimates θ̂. As we will see in
a moment, the asymptotic variance of n1/2m(y, θ̂) is generally smaller than
that of n1/2m(y,θ), and so it is not generally correct to estimate the former
simply by using θ̂ instead of θ in (16.53).

We begin by performing a first-order Taylor expansion of n1/2m(y,θ)
with respect to the k--vector θ around the true parameter vector θ0. The
result, when we evaluate it at θ = θ̂, is

n1/2m(y, θ̂) ∼= n1/2m(y,θ0) + µ0
>n1/2(θ̂ − θ0). (16.54)

Here µ0 denotes the vector of derivatives of m(y,θ) with respect to θ, eval-
uated at θ0. Because each of the terms in (16.54) is O(1), the differences
between m(y, θ̂) and m(y,θ0) cannot be ignored asymptotically.
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Next, we derive a useful and general result that will allow us to replace
the vector of derivatives µ0 in (16.54) by something more manageable. The
moment condition under test is given by (16.48). The moment can be written
out explicitly as

Eθ
(
mt(yt,θ)

)
=

∫ ∞
−∞

mt(yt,θ)Lt(yt,θ)dyt. (16.55)

Differentiating the right-hand side of (16.55) with respect to the components
of θ, we obtain, by the same sort of reasoning as led to the information matrix
equality (8.44),

Eθ
(
mt(θ)Gt(θ)

)
= −Eθ

(
Nt(θ)

)
. (16.56)

Here Gt(θ) is the contribution made by observation t to the gradient of the
loglikelihood function, and the 1 × k row vector Nt(θ) has typical element
∂mt(θ)/∂θi.

5 The most useful form of our result is obtained by summing
(16.56) over t. Let m(θ) be an n--vector with typical element mt(θ), and let
N(θ) be an n× k matrix with typical row Nt(θ). Then

1−
n
Eθ
(
G>(θ)m(θ)

)
= − 1−

n
Eθ
(
N>(θ)ι

)
, (16.57)

where, as usual, G(θ) denotes the CG matrix. In (16.54), µ0 = n−1N0
>ι,

where N0 ≡ N(θ0). By the law of large numbers, this will converge to the
limit of the right-hand side of (16.57), and so also to the limit of the left-hand
side. Thus, if G0 ≡ G(θ0), we can assert that

µ0 = 1−
n
N0
>ι

a
= − 1−

n
G0
>m0. (16.58)

We next make use of the very well-known result (13.18) on the relation-
ship between ML estimates, the information matrix, and the score vector:

n1/2(θ̂ − θ0)
a
= I−10 n−1/2g0. (16.59)

Since the information matrix I0 is asymptotically equal to n−1G0
>G0 (see

Section 8.6), and g0 = G0
>ι, (16.59) becomes

n1/2(θ̂ − θ0)
a
=
(
n−1G0

>G0

)−1
n−1/2G0

>ι.

This result, combined with (16.58), allows us to replace the right-hand side
of (16.54) by

n−1/2m0
>ι− n−1m0

>G0

(
n−1G0

>G0

)−1
n−1/2G0

>ι = n−1/2m0
>MGι, (16.60)

where MG denotes the matrix that projects orthogonally onto S⊥(G0).

5 Our usual notation would have been Mt(θ) instead of Nt(θ), but this would
conflict with the standard notation for complementary orthogonal projections.
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The result (16.60) makes clear just what the difference is between the
empirical moment evaluated at the unknown θ0 and evaluated at the ML
estimates θ̂, that is, between n−1/2m0

>ι and n−1/2m̂>ι. The effect of using
the estimates is an implicit orthogonal projection of the vector m0 onto the
orthogonal complement of the space S(G0) associated with the model para-
meters. This projection is what causes the variance of the expression that we
can actually calculate to be smaller than the variance of the corresponding
expression based on the true parameters. The variances used in the skewness
and kurtosis tests discussed in the last section can also be computed using
(16.60).

We are now ready to obtain an appropriate expression for the asymptotic
variance of n−1/2m̂>ι. We require, as we suggested earlier, that n−1/2m0

>ι
should satisfy CLT and that, in a neighborhood of θ0, n−1m>(θ)Gi(θ) should
satisfy WULLN (Definition 4.17) for all i = 1, . . . , k. The asymptotic variance
is then clearly plim(n−1m0

>MGm0), which can be consistently estimated by
n−1m̂>M̂Gm̂. This suggests using the test statistic

n−1/2m̂>ι(
n−1m̂>M̂Gm̂

)1/2 =
m̂>ι(

m̂>M̂Gm̂
)1/2 , (16.61)

which will be asymptotically distributed as N(0, 1).

The connection with the OPG regression is now evident. The test statistic
(16.61) is almost the t statistic on the coefficient b from the following OPG
regression:

ι = Ĝc+ bm̂ + residuals. (16.62)

Asymptotically, the statistic (16.61) and the t statistic from (16.62) are equiv-
alent, because the sum of squared residuals from (16.62) tends to n for large
sample sizes under the null hypothesis: The regressors Ĝ are always orthog-
onal to ι, and m̂ is orthogonal to ι if the moment condition is satisfied. This
result is very satisfactory. Without the regressor m̂, which is the vector that
serves to define the empirical moment, regression (16.62) would be just the
OPG regression associated with the original model, and the SSR would always
be equal to n. Thus the OPG version of the CM test, like all the other tests
we have discussed that are implemented by artificial regressions, is just a test
for the significance of the coefficients on one or more test regressors.

It is now plain how to extend CM tests to a set of two or more moment
conditions. One simply creates a test regressor for each of the empirical
moments so as to produce an n× r matrix R̂ ≡ R(θ̂), where r is the number
of moment conditions. One then uses the explained sum of squares from the
OPG regression

ι = Ĝc+ R̂b + residuals

or any other asymptotically equivalent test of the artificial hypothesis b = 0.
It is now clear that, as we suggested above, any test capable of being car-
ried out by means of an OPG regression can be interpreted as a CM test.
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One simply has to interpret the test columns in the regression as empirical
moments.

An interesting variant of the test regression (16.62) was suggested by
Tauchen (1985). In effect, he interchanged the regressand ι and the test
regressor m̂ so as to obtain the regression

m̂ = Ĝc∗ + b∗ι + residuals. (16.63)

The test statistic is the ordinary t statistic for b∗ = 0. It is numerically
identical to the t statistic on b in (16.62). This fact follows from a result we
obtained in section 12.7, of which we now give a different, geometrical, proof.
Apply the FWL Theorem to both (16.62) and (16.63) so as to obtain the two
regressions

M̂Gι = b(M̂Gm̂) + residuals and

M̂Gm̂ = b∗(M̂Gι) + residuals.
(16.64)

These are both univariate regressions with n observations. The single t sta-
tistic from each of them is given by the product of the same scalar factor,
(n − 1)1/2, and the cotangent of the angle between the regressand and the
regressor (see Appendix A). Since this angle is unchanged when the regressor
and regressand are interchanged, so is the t statistic. The FWL Theorem
implies that the t statistics from the first and second rows of (16.64) are equal
to those from the OPG regression (16.62) and Tauchen’s regression (16.63),
respectively, times the same degrees of freedom correction. Thus we con-
clude that the t statistics based on the latter two regressions are numerically
identical.

Since the first-order conditions for θ̂ imply that ι is orthogonal to all
of the columns of Ĝ, the OLS estimate of b∗ in (16.63) will be equal to the
sample mean of the elements of m̂. This would be so even if the regressors
Ĝ were omitted from the regression. However, because θ has been estimated,
those regressors must be included if we are to obtain a valid estimate of the
variance of the sample mean. As is the case with all the other artificial regres-
sions we have studied, omitting the regressors that correspond to parameters
estimated under the null hypothesis results in a test statistic that is too small,
asymptotically.

Let us reiterate our earlier warnings about the OPG regression. As we
stressed when we introduced it in Section 13.7, test statistics based on it often
have poor finite-sample properties. They tend to reject the null hypothesis
too often when it is true. This is just as true for CM tests as for LM tests
or C(α) tests. If possible, one should therefore use alternative tests that have
better finite-sample properties, such as tests based on the GNR, the HRGNR,
the DLR (Section 14.4), or the BRMR (Section 15.4), when these procedures
are applicable. Of course, they will be applicable in general only if the CM
test can be reformulated as an ordinary test, with an explicit alternative
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hypothesis from which test regressors can be generated. If it is not possible
to reformulate the CM test in this manner, and one has to use the OPG
regression, one should be very cautious when a test suggests rejecting the
null. It is often wise to check finite-sample properties by means of Monte
Carlo experiments (see Chapter 21).

16.9 Information Matrix Tests

One important type of conditional moment test is the class of tests called
information matrix, or IM, tests. These were originally suggested by White
(1982), although the conditional moment interpretation is more recent; see
Newey (1985a) and White (1987). The basic idea is very simple. If a model
that is estimated by maximum likelihood is correctly specified, the information
matrix must be asymptotically equal to minus the Hessian. If it is not correctly
specified, that equality will in general not hold, because the proof of the
information matrix equality depends crucially on the fact that the joint density
of the data is the likelihood function; see Section 8.6.

Consider a statistical model characterized by a loglikelihood function of
the form

`(y,θ) =
n∑
t=1

`t(yt,θ),

where y denotes an n--vector of observations yt, t = 1, . . . , n, on a dependent
variable, and θ denotes a k--vector of parameters. As the subscript t indi-
cates, the contribution `t made by observation t to the loglikelihood function
may depend on exogenous or predetermined variables that vary across the n
observations. The null hypothesis for the IM test is that

plim
n→∞

(
1−
n

n∑
t=1

(
∂2`t(θ)

∂θi∂θj
+
∂`t(θ)

∂θi

∂`t(θ)

∂θj

))
= 0, (16.65)

for i = 1, . . . , k and j = 1, . . . , i. Expression (16.65) is a typical element of the
information matrix equality. The first term is an element of the Hessian, and
the second is the corresponding element of the outer product of the gradient.
Since the number of such terms is 1

2k(k+1), the number of degrees of freedom
for an IM test is potentially very large.

Without the probability limit, the left-hand side of (16.65) looks like an
empirical moment. This suggests, correctly, that one can calculate IM tests
by means of the OPG regression, a procedure that was originally suggested
by Chesher (1983) and Lancaster (1984). One simply has to construct an
n× 1

2k(k + 1) matrix Z(θ) with typical element

∂2`t(θ)

∂θi∂θj
+
∂`t(θ)

∂θi

∂`t(θ)

∂θj
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and evaluate it at the ML estimates θ̂ to obtain Ẑ. Then one performs an OPG
regression, with regressors Ĝ and Ẑ, and uses n minus the SSR as the test
statistic. Provided the matrix [Ĝ Ẑ ]>[Ĝ Ẑ ] has full rank asymptotically,
the test statistic will be asymptotically distributed as χ2

(
1
2k(k + 1)

)
. When

some of the columns of Ĝ and Ẑ are perfectly collinear, as quite often happens,
the number of degrees of freedom for the test must of course be reduced
accordingly.

It is illuminating to consider as an example the univariate nonlinear re-
gression model

yt = xt(β) + ut, ut ∼ NID(0, σ2),

where xt(β) is a twice continuously differentiable function that depends on β,
a p--vector of parameters, and also on exogenous and predetermined vari-
ables which vary across observations. Thus the total number of parameters is
k = p+ 1. For this model, the contribution to the loglikelihood function from
the tth observation is

`t(β, σ) = − 1−
2

log(2π)− log(σ)− 1

2σ2

(
yt − xt(β)

)2
.

Thus the contribution from the tth observation to the regressor corresponding
to the ith element of β is

Gti(β, σ) =
1

σ2

(
yt − xt(β)

)
Xti(β), (16.66)

where, as usual, Xti(β) denotes the derivative of xt(β) with respect to βi.
Similarly, the contribution from the tth observation to the regressor corre-
sponding to σ is

Gt,k(β, σ) = − 1

σ
+

1

σ3

(
yt − xt(β)

)2
. (16.67)

Using (16.66) and (16.67), it is easy to work out the regressors for the
OPG version of the IM test. We make the definitions

êt ≡
1

σ̂

(
yt − xt(β̂)

)
, X̂ti ≡ Xti(β̂), and X∗tij(β) ≡ ∂Xti(β)

∂βj
.

Then, up to multiplicative factors that can have no effect on the fit of the
regression, and hence no effect on the value of the IM test statistic, the re-
gressors for the test regression are

for βi : êtX̂ti; (16.68)

for σ : ê2t − 1; (16.69)

for βi × βj : (ê2t − 1)X̂tiX̂tj + σ̂êtX̂
∗
tij ; (16.70)

for σ × βi : (ê3t − 3êt)X̂ti; (16.71)

for σ × σ : ê4t − 5ê2t + 2. (16.72)
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Expressions (16.68) and (16.69) give the elements of each row of Ĝ, while
expressions (16.70)–(16.72) give the elements of each row of Ẑ. When the
original regression contains a constant term, (16.69) will be perfectly collinear
with (16.70) when i and j both index the constant. Therefore, the latter will
have to be dropped and the degrees of freedom for the test reduced by one to
1
2 (p+ 2)(p+ 1)− 1.

Expressions (16.68)–(16.72) show what forms of misspecification the IM
test is testing for in the nonlinear regression context. It is evident from (16.71)
that the (βi, σ) regressors are those corresponding to skewness interacting with
the X̂ti’s. It appears that such skewness, if present, would bias the estimates
of the covariances of β̂ and σ̂. If we add five times (16.69) to (16.72), the result
is ê4t − 3, from which we see that the linearly independent part of the (σ, σ)
regressor is testing in the kurtosis direction. Either platykurtosis or leptokur-
tosis would lead to bias in the estimate of the variance of σ̂. It is evident from
(16.70) that if xt(β) were linear, the (βi, βj) regressors would be testing for
heteroskedasticity of exactly the type that White’s (1980) test is designed to
detect; see Section 16.5. In the nonlinear regression case considered here, how-
ever, these regressors are testing at the same time for misspecification of the
regression function. For more details on the special case of linear regression
models, see Hall (1987).

The above analysis suggests that, in the case of regression models, it
is probably more attractive to test directly for heteroskedasticity, skewness,
kurtosis, and misspecification of the regression function than to use an IM test.
We have already seen how to test for each of these types of misspecification
individually. Individual tests may well be more powerful and more informative
than an IM test, especially if only a few things are actually wrong with the
model. If one is primarily interested in inferences about β, then testing for
skewness and kurtosis may be optional.

There is one very serious problem with IM tests based on the OPG re-
gression. In finite samples, they tend to reject the null hypothesis much
too often when it is true. In this respect, IM tests seem to be even worse
than other specification tests based on the OPG regression. Monte Carlo
results demonstrating the dreadful finite-sample performance of the OPG ver-
sion of the IM test may be found in Taylor (1987), Kennan and Neumann
(1988), Orme (1990a), Hall (1990), Chesher and Spady (1991), and David-
son and MacKinnon (1992a). In some of these papers, there are cases in
which OPG IM tests reject correct null hypotheses virtually all the time. The
problem seems to grow worse as the number of degrees of freedom increases,
and it does not go away quickly as the sample size increases. One extreme
example, given in Davidson and MacKinnon (1992a), is a linear regression
model with 10 regressors, and thus 65 degrees of freedom, for which the OPG
form of the IM test rejects the true null hypothesis at the nominal 5% level
an amazing 99.9% of the time when n = 200 and 92.7% of the time even
when n = 1000.
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Luckily, alternative methods of calculating IM tests are available in many
cases. These invariably have much better finite-sample properties than the
OPG version but are not as widely applicable. Various techniques have been
suggested by Chesher and Spady (1991), Orme (1990a, 1990b), and David-
son and MacKinnon (1992a). In the last of these papers, we made use of an
important result due to Chesher (1984), who showed that the implicit alterna-
tive of the IM test is a model with random parameter variation. This allowed
us explicitly to construct a test against this type of alternative for the class
of models to which the DLR is applicable (see Section 14.4). Orme (1990b)
suggests alternative varieties of double- and even triple-length regressions for
computing IM tests in other types of models.

Obtaining an IM test statistic that is inconsistent with the null hypothesis
(which might have to be a very big number indeed if the OPG version of the
test is being used), does not necessarily mean that one has to abandon the
model being tested. What it does mean is that one has to use more robust
methods of inference. In the case of regression models, we saw in Section 16.3
that one can make valid inferences in the presence of heteroskedasticity of
unknown form by using an HCCME instead of the conventional least squares
covariance matrix. In the more general case of models estimated by maximum
likelihood, a similar option is open to us. Recall the result

V ∞
(
n1/2(θ̂ − θ0)

)
= H−1(θ0)I(θ0)H−1(θ0), (16.73)

which was originally (8.42). We obtained this result before we proved the
information matrix equality, which we used to obtain the simpler result that

V ∞
(
n1/2(θ̂ − θ0)

)
= I−1(θ0). (16.74)

Moreover, the assumptions used to obtain (16.73) were not as strong as those
used to obtain the information matrix equality. This suggests that (16.73) may
be true more generally than (16.74), and that is indeed the case, as White
(1982) has shown. Thus, if there is reason to believe that the information
matrix equality does not hold, it may be a good idea to employ the following
estimator for the covariance matrix of θ̂:

Ĥ−1(Ĝ>Ĝ)Ĥ−1, (16.75)

where Ĥ denotes the Hessian matrix evaluated at the ML estimates θ̂. As
the natural analog of (8.42), expression (16.75) will be asymptotically valid

under weaker conditions than either −Ĥ−1 or (Ĝ>Ĝ)−1.
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16.10 Conclusion

This chapter has covered quite a lot of important material, much of it rel-
atively recent and some of it only tangentially related to the topic of het-
eroskedasticity. The unifying theme of the chapter is a concern with moments
of the dependent variable higher than the first. In the next chapter we con-
tinue to emphasize the role of moments by introducing an important method
of estimation called the generalized method of moments. Some of the material
covered in this chapter, such as HCCMEs and conditional moment tests, will
reappear there.

Terms and Concepts

autoregressive conditional
heteroskedasticity (ARCH)

ARCH-in-mean (ARCH-M)
ARCH(p) model
conditional moment tests (CM tests)
empirical moments
GARCH(p, q) model
generalized ARCH model (GARCH)
generalized OLS covariance matrix
Goldfeld-Quandt test for

heteroskedasticity

heteroskedasticity-consistent
covariance matrix estimator
(HCCME)

information matrix tests (IM tests)
moment conditions (conditional and

unconditional)
moment specification tests
skedastic directions
tests for skewness and kurtosis
White’s test for heteroskedasticity



Chapter 17

The Generalized Method of Moments

17.1 Introduction and Definitions

We saw in the last chapter that if a model is correctly specified, there will
often be conditional moments which are zero. The essential idea of the gener-
alized method of moments, or GMM, is that moment conditions can be used
not only to test model specification but also to define model parameters, in
the sense of providing a parameter-defining mapping for a model. The very
simplest example of this is a model in which the only parameter of interest
is the expectation of the dependent variable. This is a special case of what
is called a location model. If each observation on a dependent variable y is a
drawing from a distribution with expectation m, then the moment E(y −m)
must be zero. This fact serves to define the parameter m, since if m′ 6= m,
E(y −m′) 6= 0. In other words, the moment condition is satisfied only by the
true value of the parameter.

According to the (ordinary) method of moments, if one has a sample of
independent drawings from some distribution, one can estimate any moment
of the distribution by the corresponding sample moment. This procedure is
justified very easily by invoking the law of large numbers in its simplest form.
Thus, for the location model, if the sample is denoted by yt, t = 1, . . . , n, the
method of moments estimator of m is just the sample mean

m̂ = 1−
n

n∑
t=1

yt. (17.01)

When one speaks of the generalized method of moments, several gener-
alizations are in fact implied. Some involve no more than relaxing regularity
conditions, for instance, the assumption of i.i.d. observations. Since many
different laws of large numbers can be proved (recall the list in Section 4.7),
there is no reason to limit oneself to the i.i.d. case. But the essential gener-
alizations follow from two facts. The first is that conditional moments may
be used as well as unconditional ones, and the second is that moments may
depend on unknown parameters.

It is the second of these that we now use to obtain the generalized method
of moments estimator, or GMM estimator, of m in the location model. We
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forget that m is itself a moment and instead use the moment condition

E(y −m) = 0 (17.02)

in order to define m. The essence of the method of moments, whether ordinary
or generalized, is to replace population moments by sample moments. We
therefore replace the expectation in (17.02) by the sample mean and define m̂
implicitly by

1−
n

n∑
t=1

(yt − m̂) = 0,

which can immediately be solved to yield the same estimator as in (17.01).

The most frequently used estimator in econometrics, the OLS estimator,
can be regarded as a GMM estimator. Deriving it in this way will point up
many general features of GMM estimation. When one writes

y = Xβ + u, (17.03)

the usual interpretation is that

E(yt |Ωt) = Xtβ for t = 1, . . . , n, (17.04)

where Ωt is some information set. This implies that E(ut |Ωt) = 0. Fre-
quently, additional assumptions are made about u, such as serial indepen-
dence, homoskedasticity, or even normality. For present purposes, none of
these extra assumptions is necessary.

If, as usual, k denotes the number of parameters in (17.03), it is clear that
we need at least k moment conditions in order to define a full set of parameter
estimates. But (17.04) seems to provide no more than one. The way out of this
problem constitutes one of the most important features of GMM. Since (17.04)
provides the conditional moment condition E(ut |Ωt) = 0, it follows that, for
any vector w such that wt ∈ Ωt, the unconditional moments E

(
wt(yt−Xtβ)

)
are zero. At the very least, the regressors Xt belong to the information set Ωt,
and there are precisely k of them. We may therefore use the k regressors to
define k unconditional moment conditions. The sample counterparts of these
are given by the column vector

1−
n

n∑
t=1

Xt
>(yt −Xtβ).

It is at once clear that setting these sample counterparts equal to zero gives
the first-order conditions (1.03) used in the definition of the OLS estimator.
It appears, then, that the OLS estimator, considered as a GMM estimator,
should be applicable without any of the assumptions, such as homoskedas-
ticity or serial independence, that are often made about the second moments
of the error terms, that is, their variance-covariance structure. Indeed, the
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consistency of the OLS estimator follows solely from the fact that it satisfies
certain moment conditions. This will follow from the proof of consistency of
the GMM estimator in the next section, although it can easily be seen directly.

The simple instrumental variables estimator of equation (7.25) can be
derived in the same way as the OLS estimator. Possible endogeneity of the
regressors X in (17.03) may mean that we do not wish to impose the con-
dition E(ut |Ωt) = 0. However, we do claim, either by prior knowledge or
assumption, to have an n × k matrix W of valid instruments, with typical
row Wt ∈ Ωt. This implies that we may utilize the k moment conditions
E(Wtut) = 0. The sample counterparts of these moment conditions are

1−
n

n∑
t=1

Wt
>(yt −Xtβ) = 0

or, omitting the factor of n−1 and using matrix notation,

W>(y −Xβ) = 0. (17.05)

These are the first-order conditions that define the simple IV estimator.

Both of the above examples show that instrumental variables, including
regressors used as instruments, generate moment conditions like those used
for conditional moment specification testing in Section 16.8. Just as moment
conditions may arise from many sources, so instrumental variables of many
sorts may suggest themselves in the context of some given econometric model.
As a result, there are usually far more instruments available than are needed
to identify the model parameters. Recall that, in the context of the linear
regression model (17.03), any vector w such that wt ∈ Ωt can be used. These
extra instruments, as we will see shortly, can be used in the GMM context,
just as they are in the IV context, to generate overidentifying restrictions
which can be used for two distinct purposes: to improve the efficiency of the
parameter estimates and to test the specification of the model.

GMM estimation is of course in no way limited to linear regression mod-
els. We now wish to make some definitions in a more general nonlinear context,
but one that is still relatively simple. We therefore limit ourselves temporarily
to the case of just identified models. The more realistic case of overidentified
models will be taken up in the next section.

Our first task is to find some way to characterize models that we may
hope to estimate by GMM. In Chapter 5, we defined an econometric model
as a set of DGPs. A parametrized model was defined as a model along with
a parameter-defining mapping, which associates a parameter vector in some
parameter space with each DGP of the model. In the GMM context, there
are many possible ways of choosing the model, i.e., the underlying set of
DGPs. One of the advantages of GMM as an estimation method is that it
permits models which consist of a very large number of DGPs. In striking



586 The Generalized Method of Moments

contrast to ML estimation, where the model must be completely specified, any
DGP is admissible if it satisfies a relatively small number of restrictions or
regularity conditions. Sometimes, the existence of the moments used to define
the parameters is the only requirement needed for a model to be well defined.
Sometimes, an investigator is willing to impose further structure on a model,
thereby eliminating DGPs that would otherwise have been contained in the
model. This may be done by making assumptions such as homoskedasticity,
or serial independence, or the existence of moments other than those actually
used to define the parameters. It is not our immediate concern to specify just
how the model is specified, and so we simply suppose that a set of DGPs M
has been chosen to serve as the model.

The next requirement is the parameter-defining mapping. This is pro-
vided by the moment conditions themselves, which give an implicit definition
of the mapping. Let fti(yt,θ), i = 1, . . . , k, be a function of a dependent
variable or vector of dependent variables yt. This function is assumed to have
expectation zero for all the DGPs of the model characterized by the k--vector
of parameters θ. In general, because all the theory in this chapter is asymp-
totic, t, which indexes the observations, may take on any positive integer
value. In practice, the functions fti will frequently depend on exogenous and
predetermined variables as well as on the dependent variable(s). Then the
moment conditions

E
(
fti(yt,θ)

)
= 0, i = 1, . . . , k, (17.06)

yield a parameter-defining mapping under suitable regularity conditions. The
effect of these regularity conditions must be that, for each DGP µ in the
model M, there is one and only one parameter vector θ in some predefined
parameter space Θ that makes the expectations in (17.06) vanish. It is gen-
erally convenient to require in addition that, for all DGPs in the model, and
for all θ ∈ Θ, the expectations in (17.06) exist.

As is the case with all the other parametrized models we have consid-
ered, the existence of a well-defined parameter-defining mapping guarantees
that the model parameters are asymptotically identified. Whether or not
they are identified by a given sample depends on whether or not there is a
unique solution to what we may call the estimator-defining equations that are
the sample counterparts to the moment conditions (17.06). These estimator-
defining equations, which equate empirical moments to zero, are

1−
n

n∑
t=1

fti(yt,θ) = 0, i = 1, . . . , k. (17.07)

If there is a unique θ̂ that satisfies (17.07), then the model is identified by the
data and θ̂ is, by definition, the GMM estimator of θ.

The generalized method of moments was suggested under that name by
Hansen (1982), but the basic idea goes back at least as far as Sargan (1958). A
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special case of GMM called two-step two-stage least squares was proposed by
Cumby, Huizinga, and Obstfeld (1983). One of the motivations for developing
the method was the increase in interest during the early 1980s in rational ex-
pectations models. A fundamental principle of these models is that errors in
expectations should be independent of all variables in the information sets of
the agents formulating the expectations. Consequently, prediction errors, fail-
ures to achieve optimality, and other (quantifiable) consequences of imperfect
foresight should, if expectations are indeed formed rationally, be independent
of variables present in agents’ information sets when expectations are formed.
This independence gives rise to various conditional moment conditions, which
then provide the (unconditional) moment conditions on which GMM estima-
tion can be based. The first important application of this idea is found in
Hansen and Singleton (1982), in which they use the stochastic Euler condi-
tions associated with agents’ problems of intertemporal optimization as the
source of their conditional moment conditions. Other applications of GMM in-
clude Dunn and Singleton (1986), Eichenbaum, Hansen, and Singleton (1988),
and Epstein and Zin (1991).

We have now briefly sketched most of the important issues connected
with GMM estimation. It remains to consider how to treat overidentifying
restrictions, to work out the theoretical properties of GMM estimators, to
see how best to compute GMM estimators in practice, and to find testing
procedures similar to conditional moment tests but in the GMM context.
In the next section, we discuss the asymptotic theory of what are called M-
estimators, that is, estimators defined by the maximization or minimization of
some criterion function. We forge the link between these estimators and GMM
estimators and briefly discuss regularity conditions. Next, in Section 17.3, we
turn to questions of efficiency and inference, treating the two together because
both depend on the asymptotic covariance matrix of the parameter estimates.
These topics are also discussed in Section 17.4, which is concerned primarily
with the choice of instruments and moment conditions. Section 17.5 discusses
the practical problem of covariance matrix estimation. This is more critical
for GMM than for many other techniques, because it affects the weighting
matrix that is used in the criterion function. Finally, Section 17.6 discusses
specification testing in the context of GMM estimation.

17.2 Criterion Functions and M-Estimators

In Chapter 7, the IV estimator for the linear regression model was defined by
the minimization of the criterion function

(y −Xβ)>PW (y −Xβ); (17.08)

see equation (7.15). Let k denote the number of regressors and l ≥ k the num-
ber of instruments. In the just identified case, in which l = k, the minimized
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value of the criterion function is zero. This value is achieved at the value
of β given by the simple IV estimator, defined by the k conditions (17.05).
When l > k, the minimized value is in general greater than zero, since it is
not in general possible to solve what is now the set of l conditions (17.05)
for k unknowns.

The overidentified case in the GMM context is similar. There are l
estimator-defining equations (17.07) but just k unknown parameters. Instead
of solving a set of equations, the left-hand sides of these equations are used to
define a criterion function which is subsequently minimized to provide para-
meter estimates. Consider (17.08) again. If we write it as

(y −Xβ)>W
(
W>W

)−1
W>(y −Xβ), (17.09)

we see that the expression is a quadratic form made up from the empirical
moments W>(y−Xβ) and the inverse of the positive definite matrix W>W.
This positive definite matrix is, under homoskedasticity and serial indepen-
dence of the error terms, proportional to the covariance matrix of the vector of
moments, the factor of proportionality being the variance of the error terms.
Omitting this factor of proportionality does not matter, because the β which
minimizes (17.09) is unchanged if (17.09) is multiplied by any positive scalar.

It is not necessary to use the covariance matrix of the empirical moments
W>(y −Xβ) if one merely wishes to obtain consistent, rather than efficient,
estimates of β by the minimization of the criterion function. If we replace
(W>W )−1 in (17.09) by any asymptotically nonrandom, symmetric, positive
definite l × l matrix A(y), the criterion function becomes

(y −Xβ)>WA(y)W>(y −Xβ), (17.10)

and the resulting estimator is easily seen to be

β̂ =
(
X>WA(y)W>X

)−1
X>WA(y)W>y.

If l = k and W>X is square and nonsingular, this expression reduces to the
simple IV estimator (W>X)−1W>y, whatever the choice of A. The choice
of A is immaterial in this case because the number of moment conditions is
equal to the number of parameters, which implies that (17.10) always achieves
a minimum of zero for any A.

In general, if W is a matrix of valid instruments, β̂ provides a consistent
estimator of β, as can be seen by standard arguments. Under homoskedas-
ticity and serial independence of the error terms, however, β̂ is less efficient
than the usual IV estimator β̃ ≡ (X>PWX)−1X>PWy, unless A is propor-
tional to (W>W )−1. The proof of this result is similar to the proofs of the
Gauss-Markov Theorem (Theorem 5.3) and of the Cramér-Rao lower bound
in Section 8.8. We demonstrate that the difference β̂ − β̃ is asymptotically
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uncorrelated with β̃. This implies that the asymptotic covariance matrix of β̂
is the sum of the asymptotic covariance matrices of β̃ and of the difference
between the two estimators. Therefore, β̂ must be less efficient than β̃. The
difference between the two estimators is

β̂ − β̃ =
(
X>WAW>X

)−1
X>WAW>y −

(
X>PWX

)−1
X>PWy

=
(
X>WAW>X

)−1
X>WAW>MW

X y, (17.11)

where the oblique projection matrix MW
X is defined by

MW
X = I−X

(
X>PWX

)−1
X>PW .

The derivation of (17.11) was not spelled out in detail, because it is essentially
the same as several previous ones; see, for example, (7.59).

Since MW
X X = 0, we can replace y in expression (17.11) by u if indeed

y = Xβ0 + u for some β0. It is now possible to see that β̃ is asymptotically
uncorrelated with (17.11). The random part of β̃ is just X>PWu, and the
random part of (17.11) isW>MW

X u. When the error terms are homoskedastic
and serially independent with error variance σ2, the matrix of asymptotic
covariances of these random parts is

plim
n→∞

(
1−
n
σ2X>PW (MW

X )>W
)
.

But this is zero, as we set out to prove, since

X>PW (MW
X )>W = X>W −X>PWX

(
X>PWX

)−1
X>W = 0.

In the next section, we will discuss this result further. Plainly, it confers
some sort of optimality or efficiency on the usual IV estimator, and it will be
interesting to study the precise nature of this optimality.

In the more general GMM context, we may construct a criterion function
for estimation purposes by using an arbitrary, symmetric, positive definite,
possibly data-dependent matrix A(y) that is O(1). We will refer to A as a
weighting matrix and require that, for each DGP µ in the model M,

plim
n→∞

µA(y) = A0(µ), (17.12)

where A0(µ) is a nonrandom, symmetric, positive definite, finite matrix. Let
F (y,θ) denote the matrix with typical element fti(yt,θ) where, as in (17.07),
fti(yt,θ) denotes the contribution from the tth observation to the ith moment.
We suppose that θ ∈ Θ ⊆ Rk and that 1 ≤ i ≤ l, with l > k. Then if ι, as
usual, denotes an n--vector with each element equal to 1, the empirical moment
conditions are given by

F>(y,θ)ι = 0,
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and a possible criterion function for estimating θ is

ι>F (y,θ)A(y)F>(y,θ)ι. (17.13)

We now establish the key result needed in order to show that the esti-
mator θ̂ derived by minimizing (17.13) is consistent under certain regularity
conditions. This result is that if a sample is generated by the DGP µ ∈ M,
the true parameter vector θ(µ) minimizes the probability limit of n−2 times
the criterion function (17.13):

θ(µ) = argmin
θ∈Θ

(
plim
n→∞

µ

(
n−2ι>F (y,θ)A(y)F>(y,θ)ι

))
. (17.14)

The notation plimµ implies that the DGP used to compute the probability
limit is µ, and (17.14) implies that this probability limit is nonrandom. The
rather strange factor of n−2 arises because we have assumed that the limiting
weighting matrix A0(µ) is O(1). Since we expect in general that F>ι is O(n),
we need two factors of n−1 for (17.14) to be O(1) as n→∞.

For the result (17.14) to be true, we need to be able to apply a law of large
numbers to n−1F>ι = n−1

∑n
t=1 Ft

>, where Ft is the tth row of F . Since F
depends on parameters, the law of large numbers must apply uniformly with
respect to these, and so we will simply assume that condition WULLN given
in Definition 4.17 applies to each component of the sequence {Ft>(θ)} at least
in some neighborhood of the true parameter vector θ0 ≡ θ(µ). This permits
us to make the following definition:

m(µ,θ) = plim
n→∞

µ

(
1−
n
F>(θ)ι

)
= lim
n→∞

(
1−
n

n∑
t=1

Eµ
(
Ft(θ)

))
. (17.15)

The population moment conditions (17.06) along with the requirement that
these conditions identify the parameters guarantee that

m(µ,θ0) = 0 and m(µ,θ) 6= 0 if θ 6= θ0. (17.16)

Since plimµA(y) = A0(µ), it follows that

plim
n→∞

µ

(
n−2ι>F (y,θ)A(y)F>(y,θ)ι

)
= m>(µ,θ)A0(µ)m(µ,θ).

SinceA0(µ) is positive definite, this expression is zero for θ = θ0 and (strictly)
positive otherwise. This establishes (17.14).

The result (17.14) implies that the estimator of θ obtained by minimizing
the criterion function (17.13) is consistent, by the same arguments used in
Chapters 5 and 8 to show the consistency of the NLS and ML estimators.
As in Chapter 8, for a GMM model to be asymptotically identified on a
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noncompact parameter set, we must assume that there are no sequences of
parameter vectors without limit point such that (17.13) evaluated at the points
of the sequence tends from above to the value of (17.13) at the true parameter
vector θ0; recall Definition 8.1.

It is convenient at this point to leave the specific GMM case and treat
the more general problem of M-estimators. This terminology arose in the lit-
erature on robust estimation — see Huber (1972, 1981) — but in econometrics
it is often used to refer to any estimator based on the maximization or min-
imization of a criterion function. In recent years, substantial effort has gone
into the development of a unified theory for all estimators of this type. A
landmark paper is Burguete, Gallant, and Souza (1982). Our treatment will
be relatively elementary; for more detailed treatments, readers should consult
Bates and White (1985), Gallant (1987), or Gallant and White (1988).

We must first establish some notation. Let us suppose that we are work-
ing with a parametrized model (M,θ). The range of the parameter-defining
mapping θ will be a parameter space Θ ∈ Rk. Let Qn(yn,θ) denote the value
of some criterion function, where yn is a sample of n observations on one or
more dependent variables, and θ ∈ Θ. Notice that, by a slight abuse of nota-
tion, we use θ both for the parameter-defining mapping and for the values of
the mapping. Strictly speaking, we should write θ(µ) for the parameters asso-
ciated with a DGP µ ∈M, but it is usually unnecessary to specify µ explicitly.
Usually, Qn will depend on exogenous or predetermined variables as well as
the dependent variable(s) yn. Then in order for the sequence Q ≡ {Qn} to be
appropriate for the estimation of the parameters θ, we require that Q should
identify these parameters, in the following sense:

Definition 17.1.

A sequence of criterion functions Q asymptotically identifies a para-
metrized model (M,θ) if, for all µ ∈M and for all θ ∈ Θ,

Q̄(µ,θ) ≡ plim
n→∞

µQ
n(yn,θ)

exists and satisfies the inequality Q̄
(
µ,θ(µ)

)
< Q̄(µ,θ) for all para-

meter vectors θ 6= θ(µ). Further, in the event that Θ is not compact,
there exist no sequences {θm} without limit point such that

lim
m→∞

Q̄(µ,θm) = Q̄
(
µ,θ(µ)

)
.

Then, although we provide no rigorous proof, it is highly intuitive that the
estimator θ̂Q ≡ {θ̂nQ} defined by

θ̂nQ = argmin
θ∈Θ

Qn(yn,θ) (17.17)

should be consistent for θ, that is,

plim
n→∞

µ θ̂
n
Q = θ(µ). (17.18)
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A nonrigorous proof of (17.18) follows exactly the same arguments as those
used in Section 8.4, leading to equation (8.31). The formal result can be
stated as follows:

Theorem 17.1. Consistency of M-Estimators

The M-estimator defined by the minimization of a sequence of crite-
rion functions Q is consistent for the parameters of a parametrized
model (M,θ) if the sequence Q identifies the model in the sense of
Definition 17.1.

It is implicit in Definition 17.1 that Qn(θ) = O(1) as n → ∞. Thus
many of the criterion functions that are actually used will need to be multi-
plied by factors of powers of n before it can be checked whether they satisfy
Definition 17.1. The sum-of-squares function used in NLS estimation and the
loglikelihood function used in ML estimation, for instance, are both O(n) and
must therefore be divided by n, as in equations (5.10) and (8.31). Since in
(17.12) we have assumed that A is O(1), the criterion function (17.13) must
be divided by n2, as we already mentioned in connection with (17.14).

With consistency of the M-estimator (17.17) established, it is time now to
turn to asymptotic normality. As always, this requires that additional regu-
larity conditions be satisfied. So far, we have made no particular assumptions
about the form of the criterion function Qn. The sum-of-squares function and
the loglikelihood function both can be expressed as a sum of n contributions,
one for each observation of the sample. The GMM criterion function (17.13)
has a slightly more complicated structure: It is a quadratic form made up
from a positive definite matrix and a vector F>ι of which each component is
a sum of contributions.

The first additional requirement is that the M-estimator under study
should be, in the terminology of Chapter 8, of Type 2, that is, it should be a
solution of the first-order conditions for an interior minimum of the criterion
function Q. Dropping the explicit dependence on n and Q of θ̂, and the
explicit dependence on n of Q, we can write these first-order conditions as

∂Q

∂θj
(θ̂) = 0 for j = 1, . . . , k. (17.19)

Since θ̂ is consistent if Q identifies θ, it is natural to perform a short Taylor
expansion of the conditions (17.19) about θ = θ0. This gives

∂Q

∂θj
(θ0) +

k∑
i=1

∂2Q

∂θj∂θi
(θ∗j )

(
θ̂i − θ0

i

)
= 0, for j = 1, . . . , k, (17.20)

where θ∗j is a convex combination of θ0 and θ̂. Then, provided the Hessian

matrix H(θ), with typical element ∂2Q(θ)/∂θj∂θi, is invertible in the neigh-
borhood of θ0, we obtain

θ̂ − θ0 = − (H∗)
−1
g(θ0), (17.21)
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where g(θ) denotes the gradient of Q, that is, the k--vector with typical com-
ponent ∂Q(θ)/∂θj . As usual, H∗ denotes a matrix of which the elements are
evaluated at the appropriate θ∗j .

If we are to be able to deduce the asymptotic normality of θ̂ from (17.21),
it must be possible to apply a law of large numbers to H∗ and a central limit
theorem to n1/2g(θ0). We would then obtain the result that

n1/2(θ̂ − θ0)
a
= −

(
plim
n→∞

H0

)−1

n1/2g(θ0). (17.22)

What regularity conditions do we need for (17.22)? First, in order to justify
the short Taylor expansion in (17.20), it is necessary that Q be at least twice
continuously differentiable with respect to θ. If so, then it follows that the
Hessian of Q is O(1) as n → ∞. Because of this, we denote it by H0 rather
than H; see Section 8.2. Then we need conditions that allow the application
of a law of large numbers and a central limit theorem. Rather formally, we
may state a theorem based closely on Theorem 8.3 as follows:

Theorem 17.2. Asymptotic Normality of M-Estimators

The M-estimator derived from the sequence of criterion functions Q
is asymptotically normal if it satisfies the conditions of Theorem 17.1
and if in addition

(i) for all n and for all θ ∈ Θ, Qn(yn,θ) is twice continuously differ-
entiable with respect to θ for almost all y, and the limit function
Q̄(µ,θ) is twice continuously differentiable with respect to θ for
all θ ∈ Θ and for all µ ∈M;

(ii) for all DGPs µ ∈ M and for all sequences {θn} that tend in
probability to θ(µ) as n→∞, the Hessian matrix Hn(yn,θn) of
Qn with respect to θ tends uniformly in probability to a positive
definite, finite, nonrandom matrix H(µ); and

(iii) for all DGPs µ ∈ M, n1/2 times the gradient of Qn(yn,θ), or
n1/2g

(
yn,θ(µ)

)
, converges in distribution as n → ∞ to a multi-

variate normal distribution with mean zero and finite covariance
matrix V (µ).

Under these conditions, the distribution of n1/2
(
θ̂ − θ(µ)

)
tends to

N
(
0, H(µ)−1V (µ)H(µ)−1

)
.

It is not worth spending any time on the proof of Theorem 17.2. What we
must do, instead, is to return to the GMM case and investigate the conditions
under which the criterion function (17.13), suitably divided by n2, satisfies
the requirements of the theorem. Without further ado, we assume that all
of the contributions fti(yt,θ) are at least twice continuously differentiable
with respect to θ for all θ ∈ Θ, for all yt, and for all allowed values of any
predetermined or exogenous variables on which they may depend. Next, we
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assume that the sequences

1−
n

n∑
t=1

∂fti
∂θj

(yt,θ) and 1−
n

n∑
t=1

∂2fti
∂θj∂θm

(yt,θ)

for i = 1, . . . , l and j,m = 1, . . . , k all satisfy condition WULLN. This permits
us to define limiting functions as follows:

dij(µ,θ) ≡ plim
n→∞

µ

(
1−
n

n∑
t=1

∂fti
∂θj

(yt,θ)

)
. (17.23)

We will let D denote the l × k matrix with typical element dij . Recalling
the definition of m in (17.15), we can now assert that the limiting criterion
function Q̄ for the sample criterion function

Qn(yn,θ) ≡ n−2ι>F (yn,θ)A(yn)F>(yn,θ)ι (17.24)

is given by
Q̄(µ,θ) = m>(µ,θ)A0(µ)m(µ,θ). (17.25)

Even though we have assumed the twice continuous differentiability of
the contributions fti, it is in general necessary to assume separately that
Q̄ is twice continuously differentiable. We therefore make this additional
assumption, which allows us to conclude that dij(µ,θ) is the derivative of
mi(µ,θ), the ith component of m(µ,θ), with respect to θj . The matrix A(y)
and the limiting matrix A0(µ) do not depend on the parameter vector θ, and
so we find that the gradient of Q̄ with respect to θ is given by the vector

2D>A0m. (17.26)

At first sight, there seems to be no convenient matrix expression for the Hes-
sian of Q̄, since D is itself a matrix. However, if θ = θ0, we have from (17.16)
that m(µ,θ0) = 0. As a result, the limiting Hessian evaluated at the true
parameters is simply

H(µ) = 2D>(µ,θ0)A0(µ)D(µ,θ0). (17.27)

By now we can with very little more in the way of assumptions ensure
that the criterion functions (17.24) and the limiting function (17.25) satisfy
conditions (i) and (ii) of Theorem 17.2. In particular, we can ensure that
H(µ) is positive definite by the requirement that D(µ,θ0) should be of full
rank, that is, of rank k. This requirement is analogous to the requirement
of strong asymptotic identifiability discussed in Chapter 5 (see Theorem 5.2
and the subsequent discussion), and we will use the same term for it in the
new context. What it means is that, as the k components of θ vary in the
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neighborhood of θ0, the l components of m(µ,θ) also vary in k independent
directions in Rl.

Condition (iii) is a little trickier, since it involves a central limit theorem.
Notice first that the gradient of Q̄, evaluated at θ = θ0, is zero, from (17.26).
This is simply a reflection of the consistency of the estimator. We must
therefore go back and consider n1/2 times the gradient of Qn in more detail.
From (17.24) we obtain, dropping the explicit sample-size dependence,

n1/2gj ≡ n1/2 ∂Q

∂θj
= 2

(
1−
n

n∑
t=1

∂Ft
∂θj

)
A

(
n−1/2

n∑
s=1

Fs
>
)
, (17.28)

where everything is evaluated at (y,θ0) and, as before, Ft is the tth row of the
matrix F . Clearly, it is just the last factor of this expression, n−1/2

∑n
s=1 Fs

>,
that must be studied in order to obtain the asymptotic distribution, since
everything else tends to a well-behaved, nonrandom, probability limit. We
will not concern ourselves in this chapter with drifting DGPs, and so it will
be enough for present purposes to require that, for each µ ∈ M, the vector
sequence {Ft(yt,θ0)} obeys condition CLT of Definition 4.16. This is now
enough for condition (iii) of Theorem 17.2, and so we can conclude that θ̂, the
GMM estimator obtained by maximizing (17.13), is asymptotically normal.
Note that condition CLT may be stronger than we would like, since it rules
out some forms of serial correlation; see Section 17.5.

It remains to compute the asymptotic covariance matrix of n1/2(θ̂− θ0).
We begin by considering the asymptotic covariance matrix of (17.28), V (µ).
Let the l × l matrix Φ(µ) be defined so as to have typical element

Φij(µ) ≡ plim
n→∞

µ

(
1−
n

n∑
t=1

fti(yt,θ0)ftj(yt,θ0)

)
. (17.29)

By CLT, this is the asymptotic covariance matrix of n−1/2
∑n
t=1 Ft(yt,θ0).

Then, given definition (17.23), the asymptotic covariance matrix of (17.28) is

V (µ) = 4D>(µ,θ0)A0(µ)Φ(µ)A0(µ)D(µ,θ0). (17.30)

Next, recall from Theorem 17.2 that the asymptotic covariance matrix of
n1/2(θ̂ − θ0) is H−1

0 V0H
−1
0 and that, from (17.27), H0 = 2D>A0D. We thus

obtain the following result:

V
(
n1/2(θ̂ − θ0)

)
=
(
D>A0D

)−1
D>A0ΦA0D

(
D>A0D

)−1
. (17.31)

This expression is not especially simple, although it can often be simplified,
as we will see in the next section. It is not hard to estimate V

(
n1/2(θ̂− θ0)

)
consistently; one can simply estimate dij by

1−
n

n∑
t=1

∂fti
∂θj

(y, θ̂), (17.32)
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A0 by A(y), and Φij by expression (17.29) without the probability limit.
Although this yields a consistent estimate of (17.30), it is often a very noisy
one. We will discuss this issue further in Section 17.5, but it is still far from
being completely resolved.

It is interesting to illustrate (17.31) for the case of the IV estimator
defined by (17.08). The result will enable us to construct a heteroskedasticity-
consistent estimate of the covariance matrix of the latter. We merely have
to establish some notational equivalences between the IV case and the more
general case discussed above. In the IV case, the elements of the matrix F
become fti = Wti(yt −Xtβ). Therefore,

D = −plim
n→∞

(
1−
n
W>X

)
(17.33)

and

A0 = plim
n→∞

(
1−
n
W>W

)−1

. (17.34)

The matrix Φ is obtained from (17.29):

Φ = plim
n→∞

(
1−
n

n∑
t=1

(
yt −Xtβ

)2
Wt
>Wt

)
= plim
n→∞

(
1−
n
W>ΩW

)
, (17.35)

where Ω is the diagonal matrix with typical element E(yt −Xtβ)2. By sub-
stituting (17.33), (17.34), and (17.35) into (17.31), we obtain the following
expression for the asymptotic covariance matrix of the IV estimator:

plim
n→∞

((
1−
n
X>PWX

)−1
1−
n
X>PWΩPWX

(
1−
n
X>PWX

)−1
)
. (17.36)

The matrix (17.36) is clearly analogous for IV estimation to (16.08) for NLS
estimation: It provides the asymptotic covariance matrix in the presence of
heteroskedasticity of unknown form. Thus we see that HCCMEs of the sort
discussed in Section 16.3 are available for the IV estimator. One can use any of
the inconsistent estimators Ω̂ suggested there in order to obtain a consistent
estimator of plim

(
n−1X>PWΩPWX

)
.

Readers may reasonably wonder why we have obtained a covariance ma-
trix robust only to heteroskedasticity and not also to serial correlation of
the error terms. The answer is that the covariance matrix V of (17.30) is
valid only if condition CLT is satisfied by the contributions to the empiri-
cal moments. That condition will not be satisfied if the error terms have an
arbitrary pattern of correlation among themselves. In Section 17.5, we will
discuss methods for dealing with serial correlation, but these will take us out
of the asymptotic framework we have used up to now.
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17.3 Efficient GMM Estimators

It is not completely straightforward to answer the question of whether GMM
estimators are asymptotically efficient, since a number of separate issues are
involved. The first issue was raised at the beginning of the last section, in
connection with estimation by instrumental variables. We saw there that, for
a given set of empirical moments W>(y −Xβ), a whole family of estimators
can be generated by different choices of the weighting matrix A(y) used to
construct a quadratic form from the moments. Asymptotically, the most effi-
cient of these estimators is obtained by choosing A(y) such that it tends to a
nonrandom probability limit proportional to the inverse of the limiting covar-
iance matrix of the empirical moments, suitably weighted by an appropriate
power of the sample size n. This turns out to be true quite generally, as we
now show.

Theorem 17.3. A Necessary Condition for Efficiency

A necessary condition for the estimator obtained by minimizing the
quadratic form (17.13) to be asymptotically efficient is that it should
be asymptotically equal to the estimator defined by minimizing (17.13)
withA(y) independent of y and equal to the inverse of the asymptotic
covariance matrix of the empirical moments n−1/2F>(θ)ι.

Note that, when the necessary condition holds, the form of the asymptotic
covariance matrix of the GMM estimator θ̂ becomes much simpler. For arbi-
trary limiting weighting matrix A0, that matrix was given by (17.31). If
the necessary condition is satisfied, then A0 in (17.31) may be replaced by
the inverse of Φ, which, according to its definition (17.29), is the asymptotic
covariance of the empirical moments. Substituting A0 = Φ−1 into (17.31)
gives the simple result that

V
(
n1/2(θ̂ − θ0)

)
=
(
D>Φ−1D

)−1
.

Theorem 17.3 will be proved if we can show that, for all symmetric,
positive definite matrices A0, the difference(

D>A0D
)−1
D>A0ΦA0D

(
D>A0D

)−1 −
(
D>Φ−1D

)−1
(17.37)

is positive semidefinite. To show this, we rewrite (17.37) as(
D>A0D

)−1
D>A0

(
Φ−D

(
D>Φ−1D

)−1
D>
)
A0D

(
D>A0D

)−1
. (17.38)

Since the matrix D>A0D is nonsingular, (17.38) is positive definite if the
matrix in large parentheses is. Since Φ is a positive definite, symmetric l × l
matrix, we can find another positive definite, symmetric l × l matrix Ψ such
that Ψ2 = Φ−1. In terms of Ψ, the matrix in large parentheses becomes

Ψ−1
(
I− PΨD

)
Ψ−1 = Ψ−1MΨDΨ

−1, (17.39)
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where PΨD andMΨD are, as the notation suggests, the orthogonal projections
onto the space spanned by columns of the l×k matrix ΨD and its orthogonal
complement, respectively. We see that (17.39) is indeed a positive semidefinite
matrix, which proves Theorem 17.3.

Theorem 17.3 can often be reinterpreted in terms of optimal instruments
or optimal weights, because the first-order conditions for a minimum of a cri-
terion function constructed with an optimal weighting matrix look just like
empirical moment conditions. If there are k parameters to estimate, there will
be precisely k first-order conditions. Thus a model that was originally over-
identified can be made to look as though it were just identified. Consider the
asymptotic criterion function m>(θ)Φ−1m(θ) constructed using the optimal
asymptotic weighting matrix Φ−1. The first-order conditions for a minimum
are given by the k components of the equation

D>(θ)Φ−1m(θ) = 0. (17.40)

Suppose we can find a consistent estimator Φ̂ such that

plim
n→∞

µ Φ̂ = Φ(µ).

If Dt(y,θ) denotes the l × k matrix with typical element ∂fti(yt,θ)/∂θj ,
(17.23) implies that

plim
n→∞

µ

(
1−
n

n∑
t=1

Dt(y,θ)

)
= D(θ).

Therefore, using these two equations and (17.15), the empirical counterpart
of (17.40) is seen to be(

1−
n

n∑
t=1

Dt
>(y,θ)

)
Φ̂−1

(
1−
n

n∑
t=1

Ft(y,θ)

)
. (17.41)

The empirical moments (17.41) are readily seen to constitute a set of k
linear combinations of the original empirical moments n−1

∑n
t=1 Ft. Setting

them equal to zero gives k equations for k unknowns, and the solution of
these equations is the GMM estimator obtained by minimizing the quadratic
form in the empirical moments constructed with an optimal weighting matrix.
We may call the moments (17.41) the optimal moments associated with the
original set. By means of some examples, we will see how these optimal
moments can in many instances serve to define optimal instruments or weights.

Consider first the case of the IV estimator when there are more instru-
ments than regressors. The first-order conditions for the minimization of the
criterion function (17.08) are

X>PW (y −Xβ) = 0. (17.42)
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These can be solved to yield the IV (or 2SLS) estimator

β̃ ≡
(
X>PWX

)−1
X>PWy, (17.43)

which is the same as the simple IV estimator obtained by using the instru-
ments PWX. Thus using the whole matrix of l instruments W in an optimal
fashion is equivalent to using the k instruments which are the columns of the
matrix PWX.

A more interesting example is provided by the IV estimator in the pres-
ence of heteroskedasticity of unknown form. In the last section, we showed
how to construct an HCCME for the IV estimator (17.43) based on (17.36).
When there is heteroskedasticity, however, the estimator (17.43) no longer
satisfies the necessary condition for asymptotic efficiency. We can construct
an estimator that does satisfy it by starting from the moment conditions
(17.05). Let Ω be a diagonal n×n matrix with typical element Ωtt = E(u2

t ),
where ut = yt −Xtβ. Then the covariance matrix of the empirical moments
in (17.05) is simply W>ΩW. Thus a criterion function that satisfies the
necessary condition for efficiency is

(y −Xβ)>W
(
W>ΩW

)−1
W>(y −Xβ).

The first-order conditions for a minimum of this function are

X>W
(
W>ΩW

)−1
W>(y −Xβ) = 0,

which lead to the estimator

β̂ =
(
X>W (W>ΩW )−1W>X

)−1
X>W (W>ΩW )−1W>y. (17.44)

The optimal instruments that produce this estimator are the columns of the
matrix W (W>ΩW )−1W>X. Here we have implicitly assumed that Ω is
known. In the more realistic case in which it is unknown, we can estimate
W>ΩW consistently in various ways, using the inconsistent estimators of Ω
discussed in Section 16.3.

Operational versions of the estimator (17.44) were first proposed by Cragg
(1983), for the case in which the regressors X can be treated as instruments,
and by Cumby, Huizinga, and Obstfeld (1983) for the more general case. The
latter authors actually considered a more complicated estimator that allowed
for serial correlation as well as heteroskedasticity and called it two-step two-
stage least squares; this estimator will be discussed in Section 17.5. We will
refer to (17.44) with Ω replaced by an n × n diagonal matrix with squared
2SLS residuals on the diagonal by the acronym H2SLS, because it is a modified
version of the conventional 2SLS estimator that attains greater efficiency in
the presence of heteroskedasticity of unknown form. By the same token, we
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will refer to Cragg’s estimator, which uses OLS residuals to estimate Ω, as
HOLS.

It is illuminating to look at these estimators a bit more closely. If the
regressors are the only available instruments, then setting W = X in (17.44)
gives nothing more than the usual OLS estimator. Cragg therefore suggests
using powers or cross-products of the regressors as additional instruments. If
not all of the regressors can serve as instruments and there are only enough
other instruments for the model to be just identified, then W>X is a square
nonsingular matrix and (17.44) reduces to the simple IV estimator. In both
cases, then, (17.44) may well be inefficient. This allows us to see that the
necessary condition for efficiency of Theorem 17.3 is not sufficient.

In the overidentified case, HOLS will be more efficient than the OLS
estimator and H2SLS will be more efficient than the usual IV estimator, but
neither will be efficient in the absolute sense in general. One exception to
this remark arises if there is no heteroskedasticity and Ω is just a scalar
matrix. Setting Ω = σ2I in (17.44) gives the ordinary IV estimator (17.43).
When (17.44) is computed using some suitable Ω̂, it will differ numerically
from (17.43) when the error terms actually are homoskedastic, although the
difference will vanish asymptotically. When there is heteroskedasticity, we
see that if the regressors can be treated as instruments, the existence of other
valid instruments can lead to improved efficiency. Even if not all the regressors
can be used as instruments, it is possible to achieve an efficiency gain by use of
(17.44) instead of (17.43). We will look further at the source of this efficiency
gain in the next section, when we consider conditional moment conditions.

A few remarks are in order about cases in which GMM estimators are
inefficient even when an optimal weighting matrix is used. It turns out that
the efficiency or inefficiency of a GMM estimator depends on the underlying
model M for which it is used. Very loosely speaking, we may say that the less
restricted is M, the more likely is the GMM estimator to be efficient. From
an opposite perspective, the more restrictions are involved in the specification
of M, the more likely is it that an estimator more efficient than the GMM
estimator can be found.

An example may help in understanding this point. Consider a parame-
trized model (M1,θ) suitable for estimation by maximum likelihood, with a
one-to-one parameter-defining mapping θ : M1 → Θ ⊆ Rk. The ML estimator
can be treated as a GMM estimator in which the empirical moments are the
components of the score vector g(θ). The asymptotic efficiency of maximum
likelihood then implies that of GMM. Now suppose that θ is restricted to
satisfy θ2 = 0, where θ2 is an r--dimensional subvector of θ ≡ [θ1

.... θ2]. These
restrictions define a new, restricted model, which we may denote by M0, with
M0 ⊂ M1. Using maximum likelihood, the restricted model M0 can be esti-
mated in exactly the same way as the unrestricted model M1, and the ML
estimator for the former is generally more efficient than the ML estimator for
the latter.
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In the GMM framework, things may be expressed somewhat differently.
The k components of the score vector g(θ) provide k moment conditions which
should be satisfied by all DGPs in M1, including those in M0. If an investigator
has reasons for choosing M0 as the model to study, then presumably the
moment conditions should be evaluated with θ2 set equal to zero, but even
so, there are k conditions for only k − r parameters; in other words, there
are overidentifying restrictions. The ML procedure ignores these and instead
selects just k − r of these conditions, namely, those given by the derivatives
of the loglikelihood function with respect to θ1. The theory of ML estimation
tells us that this choice is asymptotically efficient, and so if precisely those
conditions were used in a just identified GMM procedure, it too would be
efficient.

However, the usual GMM procedure would be to construct a quadratic
form from all the components of the gradient and an estimate of its covar-
iance matrix, which could be any suitable estimate of the information matrix.
Denoting this estimate by Î, we obtain

g>(θ1,0) Î−1g(θ1,0). (17.45)

Minimizing this expression with respect to θ1 will, in general, lead to a dif-
ferent set of estimates from those yielded by maximizing the restricted log-
likelihood function, but it can be seen that the two sets of estimates are
asymptotically equivalent. (Showing this is a good exercise.) This means
that the GMM estimator is asymptotically efficient provided the overidentify-
ing restrictions are used.

The parameters θ can in many cases be identified by other sets of the k
moment conditions than those provided by the derivatives of the loglikelihood
function with respect to θ1. In general, one may select any k − r conditions
and solve them to obtain different GMM estimates, which will not be asymp-
totically efficient. (Showing this is also a good exercise.) It is even possible
to select a number of conditions between k − r and k, form a quadratic form
with the inverse of the appropriate block of the information matrix estimate,
and minimize it to obtain yet another set of inefficient GMM estimates.

The conclusion to be drawn from all this is that there exist multiple pos-
sibilities for a set of moment conditions capable of identifying the parameters
of the model M0, with or without overidentifying restrictions. Only some of
these possibilities lead to asymptotically efficient estimates. A proper discus-
sion of these issues would lead us far afield. Although there is no trouble
understanding just what is going on in the ML context, a rigorous treatment
for the more general case seems still to be lacking, although a number of spe-
cial cases are well understood. Interested readers may consult Chamberlain
(1986, 1987), Hansen (1985), and Hansen, Heaton, and Ogaki (1988). Fortu-
nately, things are simpler in the case of models defined by conditional moment
conditions, which we go on to discuss in the next section.
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17.4 Estimation with Conditional Moments

The moment conditions that we have used up to now have all been uncon-
ditional ones. In practice, however, it is the exception rather than the rule
for an econometric model to be specified solely in terms of unconditional mo-
ments. In the literature on rational expectations models, for instance, econ-
omic theory requires that agents’ errors of prediction should be orthogonal to
all variables in their information sets at the time the predictions are made. In
the simple context of the linear regression model y = Xβ + u, it is usual to
assume not only that an error term ut is uncorrelated with the regressors X
but also that its expectation conditional on the regressors is zero, which car-
ries the additional implication that it is uncorrelated with any function of the
regressors. In a time-series context, it is very common to suppose that the
error ut has expectation zero conditional on all the past regressors as well as
on the current ones.

Formally, it is easy to write down a set of parameter-defining equations in
terms of conditional moments. Often there is only one such equation, which
may be written as

E
(
ft(yt,θ) |Ωt

)
= 0 for all t = 1, . . . , n, (17.46)

where Ωt is the information set for observation t. We will make the simplify-
ing assumption that Ωt ⊆ Ωs for t < s. In (17.46) we are interpreting ft(yt,θ)
as some sort of error, such as a prediction error made by economic agents.
The case of IV estimation of a linear regression model provides a simple ex-
ample. In that case, (17.46) is interpreted as saying that the errors, just one
per observation, are orthogonal to the information set defined by the set of
instruments. It would be possible for there to be several parameter-defining
equations like (17.46), as in the case of a multivariate regression model, but
for simplicity we will in this section assume that there is just one.

In theory, there is no identification problem posed by the fact that there
is only a single parameter-defining equation, because there is an infinite num-
ber of possible instruments in the sort of information set we consider. In
practice, of course, one has to choose a finite number of these in order to
set up a criterion function for GMM estimation. Most of this section will
be taken up with establishing some results that affect this choice. First, we
will demonstrate that the more instruments are used, the more precise is the
GMM estimator. Next we show that, despite this, the asymptotic covariance
matrices of the GMM estimators which can be constructed from instruments
contained in the information sets Ωt are bounded below. The lower bound,
which is akin to the Cramér-Rao lower bound introduced in Chapter 8, is
often called the GMM bound. In theory at least, there exists an optimal set
of instruments which allows the GMM bound to be achieved, and the optimal
instruments can in some cases be computed or estimated.

We construct a set of l instruments w1, . . . ,wl that can be grouped into
an n× l matrix W such that Wti ∈ Ωt for all t = 1, . . . , n and i = 1, . . . , l. We
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require of course that l ≥ k, where the parameter vector θ̂ has k elements. The
empirical moment conditions that we use for estimation can be expressed as

W>f(θ) = 0, (17.47)

where f is an n--vector with typical component ft. If l = k, the estimator
θ̂ is obtained by solving the k equations (17.47). If l > k, it is obtained by
minimizing the quadratic form constructed from the components of the left-
hand side of (17.47) and an estimate of their covariance matrix. Let Ω denote
the covariance matrix of the ft’s. Thus, if the DGP is denoted by µ and the
true parameter vector by θ0,

Ωts = Eµ
(
ft(θ0)fs(θ0) |Ωt

)
for all t ≤ s.

Then the conditional covariance matrix of the empirical moments in (17.47)
is Φ ≡W>ΩW.

In the usual case, with l > k, the criterion function used for obtaining
parameter estimates is

f(θ)>W
(
W>ΩW

)−1
W>f(θ).

The asymptotic covariance matrix of this estimator is given by the probability
limit of (D>Φ−1D)−1, where

Dij = plim
n→∞

(
1−
n

n∑
t=1

Wti
∂ft
∂θj

)
. (17.48)

Let J(y,θ) denote the n × k matrix with typical element ∂ft(yt,θ)/∂θj .
1

Then the right-hand side of (17.48) is the limit of n−1W>J. Thus the asymp-
totic covariance matrix of n1/2(θ̂ − θ0) reduces to the limit of((

1−
n
J>W

)(
1−
n
W>ΩW

)−1(
1−
n
W>J

))−1

. (17.49)

The first result about how to choose the instruments W optimally is
simple and intuitive. It is that if we increase the number of instruments, the
limiting covariance matrix (17.49) cannot increase. Imagine that instead of
the empirical moment conditions (17.47) we use a set of linear combinations
of them. That is, we replace (17.47) by

B>W>f(θ) = 0,

1 The notation J was chosen because the matrix is the Jacobian of f with respect
to θ and because F was previously used to denote something else.
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for some l × p matrix B, where p ≤ l. It is easy to see that this corresponds
to replacing D by B>D and Φ by B>ΦB. Consider the difference

D>Φ−1D −D>B
(
B>ΦB

)−1
B>D

between the inverses of the k×k asymptotic covariance matrices corresponding
to the instruments W and WB, respectively. If, as before, we denote by Ψ a
symmetric l × l matrix such that Ψ2 = Φ−1, this difference is

D>Ψ
(
I− Ψ−1B

(
B>Ψ−2B

)−1
B>Ψ−1

)
ΨD. (17.50)

This matrix is clearly positive semidefinite, because the matrix in large paren-
theses is the orthogonal projection off the columns of Ψ−1B. For any two
symmetric, positive definite matrices P and Q of the same dimension, P −Q
is positive semidefinite if and only if Q−1 − P−1 is positive semidefinite (see
Appendix A). Thus the fact that (17.50) is positive semidefinite establishes
our first result.

This result might seem to suggest that one should always use as many
instruments as possible in order to get as efficient estimates as possible. Such
a conclusion is generally wrong, however. Recall the discussion in Section 7.5,
illustrated by Figure 7.1. There we saw that, in the ordinary IV context,
there is a trade-off between asymptotic efficiency and bias in finite samples.
The same trade-off arises in the GMM case as well. Using a large number
of overidentifying restrictions may lead to a smaller asymptotic covariance
matrix, but the estimates may be seriously biased. Another argument against
the use of too many instruments is simply that there are inevitably diminishing
returns, on account of the existence of the GMM bound.

The second result shows how to choose the instruments W optimally. It
says that if we set W = Ω−1J in (17.47), then the asymptotic covariance
matrix that results is smaller than the one given by any other choice. From
(17.49) it then follows that the GMM bound for the asymptotic covariance
matrix is plim (n−1J>Ω−1J)−1. Unfortunately, as we will see, this result is
not always useful in practice.

The proof is very simple. As with the first result, it is easiest to work
with the inverses of the relevant covariance matrices. Let the symmetric
n × n matrix Υ be defined so that Υ 2 ≡ Ω. Then, suppressing limits and
factors of n for the moment, we see that

J>Ω−1J − J>W
(
W>ΩW

)−1
W>J

= J>Υ−1
(
I− ΥW

(
W>Υ 2W

)−1
W>Υ

)
Υ−1J .

(17.51)

Since the matrix in large parentheses is the orthogonal projection off the
columns of ΥW, this expression is positive semidefinite, and the second result
is established.
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It is perfectly possible that the tth row Jt of the matrix J may not
belong to the information set Ωt. In this case, we must not ignore the limits
and factors of n in (17.51). Each of the matrix expressions then tends to a
nonstochastic probability limit, which by the law of large numbers is the limit
of the (conditional) expectations of the matrices. Consequently, Jt should
when necessary be replaced by E(Jt |Ωt).

Notice thatΩ−1J is a matrix of exactly k instruments. We have therefore
shown that, in the context of a model with conditional moment conditions, it
is possible to choose instruments such that, although there are no overidentify-
ing restrictions, an asymptotically efficient estimator is obtained. The asymp-
totic covariance matrix associated with this estimator is plim(n−1J>Ω−1J).
In practice, it may or may not be easy to compute or to estimate the optimal
instruments. Clearly, the matrix J(θ) can be computed directly as a func-
tion of θ by differentiating the empirical moments. But then one needs some
estimate of θ, unless the moments are linear with respect to θ. A possible
strategy is first to obtain a consistent but inefficient estimate and use it to
define approximately optimal instruments, which will then lead to asymptot-
ically efficient estimates. If the initial estimate is not very accurate, it may
well be desirable to use an iterative procedure by which successive estimates
define successively closer approximations to the optimal instruments.

To obtain optimal instruments, it is also necessary to estimate the ma-
trix Ω consistently, at least up to a multiplicative factor. If the ft’s are ho-
moskedastic and serially independent, one may of course simply use an identity
matrix for Ω. If they follow some known pattern of heteroskedasticity and/or
autocorrelation, with parameters that can be estimated consistently, then a
two-step or iterative procedure can be used. But if there can be arbitrary
patterns of heteroskedasticity or autocorrelation, the matter is, if not quite
hopeless, at least very difficult to treat. Usually, optimal instruments cannot
be computed, and one must make do with less than optimal instruments.

Let us see how the results of this section can be applied to a simple
case. Consider a linear regression model for which information sets Ωt are
known for each observation. Then the moment condition that defines the
parameter vector β is E(yt−Xtβ |Ωt) = 0. In terms of our general notation,
ft = yt −Xtβ, and the matrix J is simply equal to X. Similarly, the matrix
Ω is just the covariance matrix of the ft’s, that is, of the error terms. Thus,
provided that Xt ∈ Ωt, the optimal instruments are the columns of Ω−1X.
The empirical moment conditions become

X>Ω−1(y −Xβ) = 0,

and we see, as we could have expected, that the efficient estimator is the GLS
estimator.

This example should make clear at least some of the difficulties that may
attend the computation of optimal instruments. As we saw in Section 9.5, if
the form of the matrix Ω is known and depends on a vector of parameters
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that can be consistently estimated by an auxiliary procedure, feasible GLS
yields estimates asymptotically equivalent to those of a true GLS procedure.
Similarly, in the GMM context, if the form ofΩ is known, it may be possible to
estimate the optimal instruments and thereby obtain asymptotically efficient
GMM estimates. However, it is often the case that Ω is of unknown form and
cannot be estimated consistently. We will see how to deal with such cases in
the next section.

It is relatively easy to extend the GLS procedure discussed above to the
case in which some elements of Xt do not belong to the set Ωt and instru-
mental variables must therefore be used. As we saw above, in this case Jt
is to be replaced by its expectation conditional on Ωt in the definition of the
optimal instruments, which are therefore the columns of Ω−1E(Xt |Ωt). In
the special case of homoskedastic and serially uncorrelated errors, this result
shows us that the best instrumental variables to use are the expectations of
the regressors conditional on all variables that are orthogonal to the error
terms. In practice, these conditional expectations are not usually available,
and one simply has to use whatever instruments are available.

If Ω is known or can be estimated by a feasible procedure, one can
choose some available set of instruments W and form the empirical moment
conditions

W>Ω−1(y −Xβ) = 0. (17.52)

There should normally be more instruments than parameters, since the opti-
mal instruments are not available and overidentifying restrictions will there-
fore improve efficiency. In order to satisfy the necessary condition of Theo-
rem 17.3, the criterion function must make use of the covariance matrix of
the left-hand side of (17.52). This is, asymptotically,

plim
n→∞

(
1−
n
W>Ω−1

(
y −Xβ

)(
y −Xβ

)>Ω−1W
)

= plim
n→∞

(
1−
n
W>Ω−1W

)
.

The appropriate criterion function is therefore

(y −Xβ)>Ω−1W
(
W>Ω−1W

)−1
W>Ω−1(y −Xβ),

which leads to the first-order conditions

X>Ω−1W
(
W>Ω−1W

)−1
W>Ω−1(y −Xβ) = 0. (17.53)

This equation defines a seemingly complicated estimator. In fact, it can be
interpreted quite simply, just as the GLS estimator can, in terms of a trans-
formation matrix η such that η>η = Ω−1. Let

y∗ ≡ ηy, X∗ ≡ ηX, and Z ≡ ηW.

Then (17.53) becomes

X∗>Z
(
Z>Z

)−1
Z>
(
y∗ −X∗β

)
= X∗>PZ

(
y∗ −X∗β

)
= 0.
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This equation defines an ordinary IV estimator in terms of the transformed
variables y∗ and X∗ and the transformed instruments Z. Thus the estimator
defined by (17.53) can be calculated with no more difficulty than the GLS
estimator. It is appropriate to use it when GLS or feasible GLS would have
been appropriate except for possible correlation of the error terms with the
regressors.

The estimator defined by (17.53) bears a close resemblance to the H2SLS
estimator (17.44) defined in the last section. In fact, replacing W in the lat-
ter by Ω−1W yields the former. The theory developed in this section shows
that if it is possible to choose W as the conditional expectations of the regres-
sorsX (or linear combinations of them), then the estimator defined by (17.53)
is asymptotically efficient, and the H2SLS estimator is not. The advantage
of H2SLS is that it can be calculated in the presence of heteroskedasticity
of unknown form, since n−1W>ΩW can be estimated consistently by use
of inconsistent estimators of Ω. (17.53), on the other hand, can be formu-
lated only if Ω itself can be consistently estimated, because expressions like
n−1W>Ω−1W and n−1W>Ω−1y cannot be estimated consistently without
a consistent estimate of Ω. Thus both estimators are useful, but in different
circumstances.

The concept of the GMM bound was introduced, not under that name,
by Hansen (1985), who also provided conditions for optimal instruments. The
arguments used in order to derive the bound have a longer history, however,
and Hansen traces the history of the search for efficient instruments back as
far as Basmann (1957) and Sargan (1958).

17.5 Covariance Matrix Estimation

In previous sections, we mentioned the difficulties that can arise in estimat-
ing covariance matrices in the GMM context. In fact, problems occur at two
distinct points: once for the choice of the weighting matrix to be used in
constructing a criterion function and again for estimating the asymptotic co-
variance matrix of the estimates. Fortunately, similar considerations apply to
both problems, and so we can consider them together.

Recall from (17.31) that the asymptotic covariance matrix of a GMM
estimator computed using a weighting matrix A0 is(

D>A0D
)−1
D>A0ΦA0D

(
D>A0D

)−1
,

in the notation of Section 17.2. If the necessary condition for efficiency of
Theorem 17.3 is to be satisfied, it is required that A0

a
= Φ−1, where Φ is the

l × l asymptotic covariance matrix of the empirical moments n−1/2F>(θ)ι
with typical element

n−1/2
n∑
t=1

fti(yt,θ).
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Thus the problem is to find a consistent estimator Φ̂ of Φ. If we can do so,
we can minimize the criterion function

ι>F (θ)Φ̂−1F>(θ)ι. (17.54)

If a typical element of D̂ is defined by (17.32), the asymptotic covariance
matrix of θ̂ may then be estimated by

1−
n

(
D̂>Φ̂−1D̂

)−1
. (17.55)

It is clear that we must proceed in at least two steps, because Φ̂ is to be
an estimate of the covariance matrix of the empirical moments evaluated at
the true parameter values. Thus before Φ̂ can be calculated, it is necessary
to have a preliminary consistent estimator of the parameters θ. Since one
can use an arbitrary weighting matrix A0 without losing consistency, there
are many ways to find this preliminary estimate. Then Φ̂ can be computed,
and subsequently, by minimizing (17.54), a new set of parameter estimates
can be obtained. If it seems desirable, one may repeat these steps one or
more times. In theory, one iteration is enough for asymptotic efficiency but,
in practice, the original estimates may be bad enough for several iterations to
be advisable.

Our previous definition of Φ, (17.29), was based on the assumption that
the empirical moments fti were serially independent. Since we wish to relax
that assumption in this section, it is necessary to make a new definition ofΦ, in
order that it should still be the asymptotic covariance matrix of the empirical
moments. We therefore make the definition:

Φ ≡ lim
n→∞

(
1−
n

n∑
t=1

n∑
s=1

Eµ
(
Ft
>(yt,θ0)Fs(yt,θ0)

))
, (17.56)

where Ft is the tth row of the n× l matrix F. Since the DGP µ will remain
fixed for what follows, we will drop it from our notation. (17.56) differs from
(17.29) in that it allows for any pattern of correlation of the contributions Ft
to the empirical moments and remains valid even if no central limit theorem
does. It is necessary, of course, to assume that the limit in (17.56) exists. Our
task now is to find a consistent estimator of (17.56).

The first step is to define the autocovariances of the empirical moments
as follows:

Γ (j) =


1−
n

n∑
t=j+1

E
(
Ft
>(θ0)Ft−j(θ0)

)
for j ≥ 0

1−
n

n∑
t=−j+1

E
(
F>t+j(θ0)Ft(θ0)

)
for j < 0.

(17.57)



17.5 Covariance Matrix Estimation 609

In terms of the l× l matrices Γ (j), the right-hand side of (17.56) without the
limit becomes

Φn ≡
n−1∑

j=−n+1

Γ (j). (17.58)

If there were no correlation between successive observations t, then only Γ (0)
would be nonzero, and we would have

Φn = Γ (0) = 1−
n

n∑
t=1

E
(
Ft
>(θ0)Ft(θ0)

)
. (17.59)

Since the case of serial independence is often of interest, it is worthwhile to
examine a couple of concrete examples. Consider the linear regression model
y = Xβ + u, where X is an n × k matrix and W is an n × k instrument
matrix. For this model, which is just identified,

Ft(β) = Wt(yt −Xtβ). (17.60)

Thus, from (17.59), we obtain

Φn = 1−
n

n∑
t=1

E(u2
t )Wt

>Wt, ut ≡ yt −Xtβ0. (17.61)

If the true covariance matrix of the error terms u is the diagonal matrix
Ω, then we saw in Section 16.3 that lim

(
n−1W>ΩW

)
can be consistently

estimated by (17.61) without the expectation and with β0 replaced by any
consistent estimator β̂. The estimator defined by the empirical moments
(17.60) is the usual simple IV estimator (W>X)−1W>y, and so, by use of
(17.33) and (17.31), we see that its asymptotic covariance matrix can be
estimated by (

1−
n
W>X

)−1(
1−
n
W>Ω̂W

)(
1−
n
X>W

)−1

, (17.62)

where Ω̂ is the diagonal n × n matrix with typical diagonal element û2
t , the

square of the tth IV residual. This has the form of a standard HCCME
(Section 16.3). If there are more instruments in W than there are regressors
in X, we can, as in (17.43), simply replace W by PWX. If we make that
substitution, then the limit of (17.62) becomes identical to (17.36).

We remarked above that an estimator of Φ can be used for two distinct
purposes: to estimate the covariance matrix for any set of GMM estimates and
to estimate the optimal weighting matrix. We have just provided an example
of the former, by rederiving the HCCME for the case of IV estimation. We
now provide an example of the latter, by rederiving the H2SLS estimator of
Section 17.3. Recall that this estimator is generally more efficient than OLS
or IV in the presence of heteroskedasticity of unknown form.
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The empirical moments are the l components ofW>(y−Xβ), with l > k,
and our estimate of their asymptotic covariance matrix is W>Ω̂W. The
inverse of this estimate can be used as the weighting matrix in the criterion
function

(y −Xβ)>W
(
W>Ω̂W

)−1
W>(y −Xβ).

The first-order conditions for a minimum of this criterion function are given by

X>W
(
W>Ω̂W

)−1
W>(y −Xβ) = 0,

and solving these yields the H2SLS estimator (17.44), with the estimator Ω̂
replacing Ω.

It is tempting to suppose that, just as in the HCCME case, we can esti-
mate the autocovariances (17.57) simply by omitting the expectations in that
expression, evaluating the Ft’s at some preliminary consistent estimate θ̂, and
then substituting the Γ̂ (j)’s thus obtained into (17.58) in order to obtain a
suitable estimate of Φ. Unfortunately, life is not so simple. The sample auto-
covariance matrix of order zero, Γ̂ (0), is just (17.59) without the expectation
and evaluated at θ̂. It is a consistent estimator of the true autocovariance
matrix of order zero Γ (0). But the sample autocovariance matrix Γ̂ (j) of
order j is not consistent for the true autocovariance matrix for arbitrary j
such that −n + 1 ≤ j ≤ n − 1. The reason is not hard to find. Suppose for
instance that j = n − 2. Then from (17.57) we see that Γ (j), and so also
Γ̂ (j), has only two terms. No conceivable law of large numbers can apply to
only two terms, and so Γ̂ (j) tends to zero as n→∞ on account of the factor
of n−1 in the definition.

This observation suggests a way out of the difficulty. We could perhaps
reasonably limit our attention to models in which the autocovariance of order j
genuinely does tend to zero as j →∞. If the stochastic processes that define
a DGP have the mixing property of Definition 4.13, for example, it can be
shown that the autocovariances would indeed tend to zero. (See the discussion
following Definition 4.13.) Then it would seem reasonable to truncate the
sum in (17.58) by eliminating terms for which |j| is greater than some chosen
threshold.

If we denote this threshold by p, then we would have the following esti-
mator for Φ:

Φ̂ = Γ̂ (0) +

p∑
j=1

(
Γ̂ (j) + Γ̂ (j)>

)
, (17.63)

where we have used the fact that Γ (−j) = Γ (j)>, as can readily be seen
from the definition (17.57). It is possible to modify (17.63) by introducing
a degrees-of-freedom correction in the shape of a factor n/(n− k) motivated
by the fact that k parameters have been estimated. Whether this is in fact
desirable in finite samples is not something that has been much investigated
at the time of writing.
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The estimator (17.63) was proposed by Hansen (1982) and White and
Domowitz (1984), and was used in some of the earlier published work that
employed GMM estimation, such as Hansen and Singleton (1982). From the
point of view of theory, it is necessary to let the truncation parameter p,
usually referred to as the lag truncation parameter, go to infinity at some
suitable rate. A typical rate would be n1/4, in which case p = o(n1/4). This
ensures that, for large enough n, all the nonzero Γ (j)’s are estimated con-
sistently. Unfortunately, this type of result is not of much use in practice,
where one typically faces a given, finite n. We will return to this point a little
later, and for the meantime suppose simply that we have somehow selected
an appropriate value for p.

A much more serious difficulty associated with (17.63) is that, in finite
samples, it need not be positive definite or even positive semidefinite. If one
is unlucky enough to be working with a data set that yields a nondefinite Φ̂,
then (17.63) is unusable. There are numerous ways out of this difficulty. The
most widely used was suggested by Newey and West (1987a). It is simply to
multiply the Γ̂ (j)’s by a sequence of weights that decrease as |j| increases.
Specifically, the estimator that they propose is

Φ̂ = Γ̂ (0) +

p∑
j=1

(
1− j

p+ 1

)(
Γ̂ (j) + Γ̂ (j)>

)
. (17.64)

It can be seen that the weights 1 − j/(p + 1) decrease linearly with j from
a value of 1 for Γ̂ (0) by steps of 1/(p + 1) down to a value of 1/(p + 1) for
|j| = p. The use of such a set of weights is clearly compatible with the idea
that the impact of the autocovariance of order j diminishes with |j|.

We will not attempt even to sketch a proof of the consistency of the
Newey-West or similar estimators. We have alluded to the sort of regularity
conditions needed for consistency to hold: Basically, the autocovariance mat-
rices of the empirical moments must tend to zero quickly enough as p increases.
It would also go well beyond the scope of this book to provide a theoretical
justification for the Newey-West estimator. It rests on considerations of the
so-called “frequency domain representation” of the Ft’s and also of a number
of notions associated with nonparametric estimation procedures. Interested
readers are referred to Andrews (1991b) for a rather complete treatment of
many of the issues. This paper suggests some alternatives to the Newey-West
estimator and shows that in some circumstances they are preferable. However,
the performance of the Newey-West estimator is never greatly inferior to that
of the alternatives. Consequently, its simplicity is much in its favor.

Let us now return to the linear IV model with empirical moments given
by W>(y−Xβ). In order to be able to use (17.64), we suppose that the true
error terms ut ≡ yt−Xtβ0 satisfy an appropriate mixing condition. Then the
sample autocovariance matrices Γ̂ (j) for j = 0, . . . , p, for some given p, are
calculated as follows. A preliminary consistent estimate of β is first obtained
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by the ordinary IV procedure. Next, the residuals ût are combined with the
instruments in the direct product V̂ ≡ û∗W. Then Γ̂ (j) is n−1 times the
l × l matrix of inner products of the columns of V̂ with these same columns
lagged j times, the initial unobserved elements being replaced by zeros. As
we saw above, Γ̂ (0) is just n−1W>Ω̂W, where Ω̂ = diag(û2

t ). Finally, Φ̂ is
formed by use of (17.64).

As before, the Φ̂ thus obtained can be used for two purposes. One is
to form what is called a heteroskedasticity and autocorrelation consistent, or
HAC, covariance matrix estimator for the ordinary IV estimator. Since the IV
estimator is based on the empirical moments W>(y−Xβ) and the weighting
matrix (W>W )−1, as can be seen from (17.09), the HAC covariance matrix
estimator is found by applying the formula (17.31) to the present case and
using (17.33) and (17.34). We obtain(
X>PWX

)−1
X>W

(
W>W

)−1
nΦ̂
(
W>W

)−1
W>X

(
X>PWX

)−1
. (17.65)

In the simple case in which W = X, this rather complicated formula becomes(
X>X

)−1
nΦ̂
(
X>X

)−1
.

When there is no serial correlation, implying that nΦ̂ = W>Ω̂W, this sim-
plifies to the familiar HCCME (16.15), specialized to the case of a linear
regression model. It is a good exercise to see what (17.65) reduces to when
there is no serial correlation and W 6= X.

More interesting than the HAC covariance matrix estimator is the esti-
mator analogous to the H2SLS estimator, (17.44). For this, instead of using
(W>W )−1 as weighting matrix, we use the inverse of Φ̂, calculated in the
manner described above by use of the ordinary IV estimator as the preliminary
consistent estimator. The criterion function becomes

(y −Xβ)>WΦ̂−1W>(y −Xβ),

and the estimator, which is sometimes called two-step two-stage least squares,
is therefore

β̂ =
(
X>WΦ̂−1W>X

)−1
X>WΦ̂−1W>y. (17.66)

This is very similar to (17.44), in which the matrix Φ̂ is replaced by W>Ω̂W.
Indeed, in the absence of autocorrelation, n−1W>Ω̂W is the appropriate
estimator of Φ. It is easier to obtain an estimate of the asymptotic covariance
matrix of (17.66) than of the ordinary IV estimator. It is simply

V̂ (β̂) =
(
X>WΦ̂−1W>X

)−1
.

So far, there is very little practical experience of the estimator (17.66).
One reason for this is that econometricians often prefer to model dynamics ex-
plicitly (see Chapter 19) rather than leaving all the dynamics in the error term
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and employing a specification-consistent estimator. Even if the latter provides
consistent estimates of some parameters, it may say nothing about the most
interesting ones and may allow serious specification errors to go undetected.
Another reason is that there is little evidence concerning the properties of
(17.66) in finite samples. The results of Cragg (1983) and Tauchen (1986) for
related estimators suggest that these may sometimes be poor.

One important practical problem is how to choose the lag truncation
parameter p. Theory is signally unhelpful here. As we mentioned earlier, there
are results establishing rates at which p may tend to infinity as the sample
size tends to infinity. But if an investigator has a sample of precisely 136 ob-
servations, what value of p should be chosen? Andrews (1991b) confronts this
problem directly and provides data-dependent methods for choosing p, based
on the estimation of an optimal value of a parameter he defines. It is fair to
say that none of his methods is elementary, and we cannot discuss them here.
Perhaps the most encouraging outcome of his investigations is that, in the
neighborhood of the optimal value of p, variations in p have little influence on
the performance of the HAC estimator.

Andrews (1991b) also provides valuable evidence about HAC covariance
matrix estimators, (17.64) and others, from Monte Carlo experiments. Per-
haps the most important finding is that none of the HAC estimators he con-
siders is at all reliable for sample sizes up to 250 or so if the errors follow an
AR(1) process with autocorrelation parameter greater than 0.9. This disap-
pointing result is related to the fact that AR(1) processes with parameters
near unity are close to having what is called a unit root. This phenomenon is
studied in Chapter 20, and we will see that unit roots throw most conventional
econometric theory into confusion.

If we stay away from unit roots and near-unit roots, things are more
orderly. We saw in Chapter 16 that it is possible to use HCCMEs even in the
presence of homoskedasticity with little loss of accuracy, provided that one of
the better HCCMEs is used. It appears that much the same is true for HAC
estimators. With an ordinary regression model with serially uncorrelated,
homoskedastic errors, the loss of precision due to the use of the Newey-West
estimator, say, as opposed to the usual OLS estimator, σ̂2(X>X)−1, is small.
With some of the other HAC estimators considered by Andrews, the loss is
smaller still, which implies that the Newey-West estimator is generally not
the best available. Similarly, if the errors are heteroskedastic but still serially
uncorrelated, then an HCCME is much better than the OLS estimator but
only very slightly better than the HAC estimator.

If the errors are autocorrelated at order one and homoskedastic, both the
OLS estimator and the HCCME are dominated not only by the HAC estima-
tor, as one would expect, but also by the straightforward estimator computed
by estimating the autocorrelation parameter ρ and using the covariance matrix
estimator of a feasible GLS procedure. This last estimator is in these circum-
stances preferable to the HAC ones. In fact, it is only when the errors are
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both heteroskedastic and serially correlated that the HAC estimators really
come into their own. Even in these circumstances, it is possible, with some
patterns of heteroskedasticity, that the feasible GLS estimator, which takes no
account of possible heteroskedasticity, can outperform the HAC estimators.
But that is probably the exception rather than the rule, for Andrews finds
other patterns of heteroskedasticity, which, in combination with serial correl-
ation, require the use of HAC estimators for reasonably accurate inference.

Clearly, the last word on HAC estimators has by no means been said.
For instance, in the usual implementation of the Newey-West estimator for
linear IV models, we have that Γ̂ (0) is just n−1W>Ω̂W, with Ω̂ the rather
poor estimator associated with the HC0 form of the HCCME. It would seem
reasonable to suppose that it would be better to use other forms of Ω in the
Newey-West estimator, just as it is in HCCMEs, and to find similar ways of
improving the estimators Γ̂ (j) for j 6= 0. At the time of writing, however, no
evidence is available on whether these conjectures are justified. A quite differ-
ent approach, which we do not have space to discuss, was recently suggested
by Andrews and Monahan (1992).

In the next section, we will leave behind the “grubby details” of covar-
iance matrix estimation, assume that a suitable covariance matrix estimator
is available, and turn our attention to asymptotic tests of overidentifying re-
strictions and other aspects of specification testing in GMM models.

17.6 Inference with GMM Models

In this section, we undertake an investigation of how hypotheses may be tested
in the context of GMM models. We begin by looking at tests of overidentifying
restrictions and then move on to develop procedures akin to the classical tests
studied in Chapter 13 for models estimated by maximum likelihood. The
similarities to procedures we have already studied are striking. There is one
important difference, however: We will not be able to make any great use of
artificial linear regressions in order to implement the tests we discuss. The
reason is simply that such artificial regressions have not yet been adequately
developed. They exist only for some special cases, and their finite-sample
properties are almost entirely unknown. However, there is every reason to
hope and expect that in a few years it will be possible to perform inference
on GMM models by means of artificial regressions still to be invented.

In the meantime, there are several testing procedures for GMM models
that are not difficult to perform. The most important of these is a test of the
overidentifying restrictions that are usually imposed. Suppose that we have
estimated a vector θ of k parameters by minimizing the criterion function

ι>F (θ)Φ̂−1F>(θ)ι, (17.67)

in which the empirical moment matrix F (θ) has l > k columns. Observe that
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we have used a weighting matrix Φ̂−1 that satisfies the necessary condition
of Theorem 17.3 for the efficiency of the GMM estimator. Only k moment
conditions are needed to identify k parameters, and so there are l − k over-
identifying restrictions implicit in the estimation we have performed. As we
emphasized in Chapter 7, where we first encountered overidentifying restric-
tions, it should be a routine practice always to test these restrictions before
making any use of the estimation results.

One way of doing so, suggested by Hansen (1982), is to use as a test
statistic the minimized value of the criterion function. The test statistic is
simply (17.67) evaluated at θ = θ̂ and divided by the sample size n:

1−
n
ι>F̂ Φ̂−1F̂>ι, (17.68)

where, as usual, we write F̂ for F (θ̂). The factor of n−1 is necessary to offset
the factor of n in Φ̂−1, which arises from the fact that Φ is defined in (17.29)
as the covariance matrix of n−1/2F0

>ι. The definition (17.29) therefore implies
that if the overidentifying restrictions are correct, the asymptotic distribution
of n−1/2F0

>ι is N(0,Φ).

However, for reasons that should by now be quite familiar, the asymptotic
distribution of F̂>ι is not the same as the asymptotic distribution of F0

>ι. In
order to obtain the correct asymptotic covariance matrix for the former vector,
we perform a short Taylor expansion as follows:

n−1/2F̂>ι
a
= n−1/2F0

>ι+ 1−
n

k∑
j=1

n∑
t=1

∂Ft
>

∂θj
(θ0)n1/2(θ̂ − θ0)j

a
= n−1/2F0

>ι+D(µ,θ0)n1/2
(
θ̂ − θ0

)
.

Letting D denote D(µ,θ0), it follows from (17.22), (17.27), and (17.28) that

n1/2
(
θ̂ − θ0

) a
= −

(
D>Φ−1D

)−1
D>Φ−1n−1/2F0

>ι.

Therefore,

n−1/2F̂>ι
a
=
(
I−D

(
D>Φ−1D

)−1
D>Φ−1

)
n−1/2F0

>ι. (17.69)

Let Ψ̂ be a symmetric, positive definite l× l matrix such that Ψ̂2 = Φ̂−1.
Then the minimized criterion function (17.68) becomes the squared norm of
the vector n−1/2Ψ̂ F̂>ι. From (17.69), this vector is asymptotically equiva-
lent to

Ψ
(
I−D

(
D>Ψ2D

)−1
D>Ψ2

)
n−1/2F0

>ι

=
(
I− ΨD

(
D>Ψ2D

)−1
D>Ψ

)
Ψn−1/2F0

>ι

= MΨDΨn
−1/2F0

>ι,
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where Ψ2 = Φ−1, and MΨD is the l × l orthogonal projection matrix onto
the orthogonal complement of the k columns of ΨD. By construction, the
l--vector n−1/2ΨF0

>ι has the N(0, I) distribution asymptotically. It follows,
then, that (17.68) is asymptotically distributed as chi-squared with number
of degrees of freedom equal to the rank of MΨD, that is, l− k, the number of
overidentifying restrictions.

Hansen’s test of overidentifying restrictions is completely analogous, in
the present more general context, to the one for IV estimation discussed in
Section 7.8, based on the criterion function (7.56). It is a good exercise to work
through the derivation given above for the simple case of a linear regression
model with homoskedastic, serially uncorrelated errors, in order to see how
closely the general case mimics the simple one.2

Hansen’s test of overidentifying restrictions is perhaps as close as one can
come in econometrics to a portmanteau specification test. Because models es-
timated by GMM are subject to so few restrictions, their “specification” is not
very demanding. In particular, if nothing more is required than the existence
of the moments used to identify the parameters, then only two things are left
to test. One is the set of any overidentifying restrictions used, and the other
is parameter constancy.3 Because Hansen’s test of overidentifying restrictions
has as many degrees of freedom as there are overidentifying restrictions, it
may be possible to achieve more power by reducing the number of degrees of
freedom. However, if Hansen’s test statistic is small enough numerically, no
such test can reject, for the simple reason that Hansen’s statistic provides an
upper bound for all possible test statistics for which the null hypothesis is the
estimated model. This last fact follows from the observation that no criterion
function of the form (17.67) can be less than zero.

Tests for which the null hypothesis is not the estimated model are not
subject to the bound provided by Hansen’s statistic. This is just as well, of
course, since otherwise it would be impossible to reject a just identified model
at all. A test for parameter constancy is not subject to the bound either,
although at first glance the null hypothesis would appear to be precisely the
estimated model. The reason was discussed in Section 11.2 in connection
with tests for parameter constancy in nonlinear regression models estimated
by means of instrumental variables. Essentially, in order to avoid problems
of identification, it is necessary to double the number of instruments used, by
splitting the original ones up as in (11.09). Exactly the same considerations
apply for GMM models, of course, especially those that are just identified
or have few overidentifying restrictions. But if one uses twice as many in-
struments, the null model has effectively been changed, and for that reason,

2 Hansen’s test statistic, (17.68), is sometimes referred to as the J statistic. For
obvious reasons (see Chapter 11) we prefer not to give it that name.

3 Tests of parameter constancy in models estimated by GMM are discussed by
Hoffman and Pagan (1989) and Ghysels and Hall (1990).
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Hansen’s statistic no longer provides a bound for statistics used to test para-
meter constancy.

One may reasonably wish to test other aspects of a GMM model than
just the overidentifying restrictions and parameter constancy. In such cases,
what is to be tested is not the specification of the model but rather whether
further restrictions on the model could be entertained. This suggests the use
of tests based on the Wald principle. Suppose then that we wish to test a set
of r restrictions of the form

r(θ) = 0, where r : Θ→ Rr; (17.70)

recall (13.02). The parameter k--vector θ is defined in the context of a suitable
model, estimated in its unrestricted form by minimizing the criterion function
(17.67). The model may be either overidentified or just identified. As usual,
let R(θ) ≡ Dθr(θ). Then, by analogy with (8.78) and (13.05), we may form
a Wald statistic as follows:

W = n r̂>
(
R̂(D̂>Φ̂−1D̂)−1R̂>

)−1
r̂. (17.71)

The justification is precisely the same as for the Wald and Wald-like statistics
we have seen previously: The asymptotic covariance matrix of n1/2r(θ̂) is
R(D>Φ−1D)−1R>. The difficulties with this test are also the same as those
associated with other Wald tests, in that the statistic is not invariant under
reparametrization of the restrictions. Consequently, the statistic (17.71) is
generally not recommended and should be used with care if it is used at all.

It is also possible to base tests of models estimated by GMM on the LM
and LR principles. For an LM test, we will perform only a restricted esti-
mation, defined by minimizing (17.67) subject to the restrictions (17.70), to
obtain restricted estimates θ̃. The classical LM test is based on the gradient
of the loglikelihood function, evaluated at the restricted estimates. The log-
likelihood function is a criterion function, and it is therefore natural to base
an LM test in the present context on the gradient of the criterion function
(17.67). It is easy to see that this gradient is asymptotically proportional to
the random k--vector

n−1/2D>Φ−1F>ι.

Evaluated at θ0, this vector is asymptotically normal, with mean zero and
covariance matrix

lim
n→∞

(
1−
n
D>Φ−1D

)
,

which suggests that an appropriate test statistic is

LM = 1−
n
ι>F̃ Φ̃−1D̃

(
D̃>Φ̃−1D̃

)−1
D̃>Φ̃−1F̃>ι, (17.72)

where D̃ is defined by (17.32) with θ̃ in place of θ̂, F̃ ≡ F (θ̃), and Φ̃ is a
suitable estimator of Φ; at the end of the last section, we promised not to go
into details of how Φ̃ should be calculated.
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It is a routine exercise to show that, under the null hypothesis, LM as
given by (17.72) is distributed as chi-squared with r degrees of freedom. It
is more interesting to show that, when the unrestricted model is just identi-
fied, (17.72) is numerically identical to the asymptotically chi-squared statis-
tic (17.68) for overidentifying restrictions, provided that the same estimator
is used for Φ in both statistics. In fact, this follows immediately from the ob-
servation that D is square and nonsingular for just identified models. Since
D−1 exists, we can simplify (17.72) to obtain

1−
n
ι>F̃ Φ̃−1F̃>ι. (17.73)

This is identical to (17.68), since the θ̂ used there is a restricted estimate,
being the result of estimation subject to the overidentifying restrictions.

Notice that (17.72) cannot be numerically larger than (17.73) and will in
general be smaller. This is an example of the bound discussed above. It can
be most easily seen by rewriting the former as

1−
n
ι>F̃ Ψ̃ Ψ̃D̃

(
D̃>Ψ̃ Ψ̃D̃

)−1
D̃>Ψ̃ Ψ̃ F̃>ι

and the latter as
1−
n
ι>F̃ Ψ̃ Ψ̃ F̃>ι.

Thus (17.73) is seen to be the squared length of the vector n−1/2Ψ̃ F̃>ι, and
(17.72) is seen to be the squared length of that vector after it has been pro-
jected onto the subspace spanned by the columns of Ψ̃D̃.

The LR statistic for GMM models has the same simplicity as it has in
the context of models estimated by maximum likelihood. It is simply the
difference between the criterion functions (17.68) evaluated at the restricted
and unrestricted estimates:

LR = 1−
n

(
ι>F̃ Φ̃−1F̃>ι− ι>F̂ Φ̂−1F̂>ι

)
. (17.74)

This result may at first glance appear too good to be true. After all, even in
the classical context, a factor of 2 is needed to form the LR test. The catch is
that the result depends critically on the supposition that the weighting matrix
used in the criterion function satisfies the efficiency condition of Theorem 17.3.
Without this, as we will discuss briefly at the end of this section, things are
much messier. Notice that Φ̂ and Φ̃ will often be the same in (17.74), because
if it is complicated to estimate Φ, it is sensible to do so only once.

We will not prove the validity of (17.74). However, one special case at
least shows that this LR statistic is plausible. When a model is just identified,
the minimized criterion function is zero: The k empirical moment conditions
can be satisfied exactly with k parameters available to be adjusted. The
difference of criterion functions is thus just the restricted criterion function,
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and that, as we have seen, is both Hansen’s statistic and the LM statistic in
these circumstances.

Finally, we consider C(α) tests. Let θ́ be a parameter vector satisfying
the restrictions r(θ́) = 0. Then the test statistic can be formed as though
it were the difference of two LM statistics, one for the restricted and one for
the unrestricted model, both evaluated at θ́. Suppose, for simplicity, that the
parameter vector θ can be partitioned as [θ1

.... θ2] and that the restrictions
can be written as θ2 = 0. The first term of the C(α) statistic has the form
(17.72) but is evaluated at θ́ rather than the genuine constrained estimator θ̃.
The second term should take the form of an LM statistic appropriate to the
constrained model, for which only θ1 may vary. This corresponds to replac-
ing the matrix D̃ in (17.72) by D́1, where the partition of D as [D1 D2]
corresponds to the partition of θ. The C(α) test statistic is therefore

C(α) = 1−
n
ι>F́ Φ̂−1D́

(
D́>Φ̂−1D́

)−1
D́>Φ̂−1F́>ι

− 1−
n
ι>F́ Φ̂−1D́1

(
D́1
>Φ̂−1D́1

)−1
D́1
>Φ̂−1F́>ι.

(17.75)

Here, as before, Φ̂ is a suitable estimate of Φ. To show that (17.75) is asymp-
totically equivalent to the true LM statistic, it is enough to modify the details
of the proof of the corresponding asymptotic equivalence in Section 13.7.

In the general case in which the restrictions are expressed as r(θ) = 0,
another form of the C(α) test may be more convenient, since forming a matrix
to correspond to D1 may not be simple. This other form is

ι>F́ Φ̂−1D́
(
D́>Φ̂−1D́

)−1
Ŕ>
(
Ŕ
(
D́>Φ̂−1D́

)−1
Ŕ>
)−1

Ŕ
(
D́>Φ̂−1D́

)−1
D́>Φ̂−1F́>ι.

For this statistic to be useful, the difficulty of computing the actual con-
strained estimate θ̃ must outweigh the complication of the above formula.
The formula itself can be established, at the cost of some tedious algebra, by
adapting the methods of Section 8.9. We leave the details to the interested
reader.

The treatment we have given of LM, LR, and Wald tests has largely fol-
lowed that of Newey and West (1987b). This article may be consulted for more
details of regularity conditions sufficient for the results merely asserted here to
hold. Another paper on testing models estimated by GMM is Newey (1985b).
Nonnested hypothesis tests for models estimated by GMM are discussed by
Smith (1992). These papers do not deal with C(α) tests, however.

An interesting question is whether the conditional moment tests discussed
in the last chapter in the context of models estimated by maximum likelihood
have any counterpart for models estimated by GMM. For simplicity, suppose
that there is a single conditional moment of which the expectation is zero if
the model is correctly specified. If the corresponding empirical moment is
used as an overidentifying restriction, then it can be tested in the same way
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as any other overidentifying restriction, by one of the procedures described
above.

Another possibility is a moment not used for identifying or overident-
ifying the model parameters, such as one generated by an instrument which,
while belonging to the appropriate information set, is not chosen as one of
the instruments used in the estimation procedure. It is easy in principle to
see how to construct a conditional moment test in this case. The model
must be estimated again with the moment condition to be tested used as an
overidentifying restriction. In practice, this is easier said than done, for the
matrix Φ will have to be extended so as to have another row and column
for the new moment. The difference between the two minimized criterion
functions, with and without the extra moment, will then serve as an LR test
statistic.

The underlying reason for which conditional moment tests are, at least
potentially, harder to perform in a GMM context than in a maximum like-
lihood one is the unavailability of artificial regression methods. This is in
turn due to the difficulty of obtaining estimates of the matrix Φ if we wish
to impose as little structure as possible on our models. For those cases in
which we are happy to impose enough restrictions that Φ is easily estimated,
conditional moment tests are no more difficult to perform than in the fully
specified maximum likelihood context.

We have restricted our attention in this section to models estimated by
the minimization of criterion functions with weighting matrices satisfying the
efficiency condition of Theorem 17.3. The principal reason for this is that, even
if an inefficient weighting matrix may sometimes be convenient for estimation
purposes, testing cannot be done without estimating the covariance matrix Φ
of the empirical moments, whatever weighting matrix is used. It therefore
makes little sense to base inference on inefficient estimates if the hard work
of efficient estimation, namely, the estimation of Φ, has been done. Another
point is simply that the theory of tests based on inefficient parameter estimates
is substantially more complicated than the theory we have presented here.

17.7 Conclusion

The asymptotic theory underlying the generalized method of moments is in-
deed very general. It has the beauty of those theories that draw seemingly
very disparate matters together and provide a unified treatment of all of them.
We have seen in this chapter how almost every single estimator considered so
far in this book can be regarded as a GMM estimator, and in many cases we
have been led naturally to significant extensions of existing estimation proce-
dures by adopting the GMM point of view, largely by making these procedures
robust to a wider variety of specifications than those originally envisaged.

For reasons of simplicity, all of the examples of GMM estimators pre-
sented in this chapter have been in the context of linear models. We should
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emphasize that this is in no way a restriction of the method. The exten-
sion of our simple examples to the case of nonlinear regressions is completely
straightforward, theoretically at least. In practice, of course, all but the sim-
plest GMM estimation must be performed by the numerical minimization of
a criterion function, with all of the usual attendant difficulties. These difficul-
ties notwithstanding, the most significant empirical applications of the GMM
have been to nonlinear models.

So far, it is impossible to say to what extent the GMM will affect standard
econometric practice. Testing is, as we have just seen, often significantly
harder with a GMM model than with the other sorts of models we have
studied. Another point on which not much can be said is whether GMM
estimators and test statistics have decent properties in samples of the sizes
usually encountered in econometrics. Further research will no doubt clear up
many of these questions. We will encounter one application of GMM in the
next chapter, which deals with simultaneous equations models.

Terms and Concepts

autocovariances (of empirical
moments)

C(α) tests for GMM models
criterion function
empirical moments
estimator-defining equation
generalized method of moments

(GMM)
GMM bound
GMM estimator
Hansen’s test of overidentifying

restrictions
heteroskedasticity and autocorrelation

consistent (HAC) covariance matrix
estimator

H2SLS estimator (two-step, two-stage
least squares)

HOLS estimator

lag truncation parameter
location model
LM tests for GMM models
LR tests for GMM models
M-estimators
method of moments (ordinary)
moment condition
optimal instruments
optimal moments
optimal weights
parameter-defining mapping
sample autocovariance matrix
strong asymptotic identifiability
two-step two-stage least squares
Type 2 M-estimator
Wald tests for GMM models
weighting matrix



Chapter 18

Simultaneous Equations Models

18.1 Introduction

For many years, the linear simultaneous equations model was the center-
piece of econometric theory. We discussed a special case of this model, a
two-equation demand-supply model, in Section 7.3. The purpose of that dis-
cussion was simply to show that simultaneity induces correlation between the
regressors and error terms of each equation of the system, thus causing OLS
to be inconsistent and justifying the use of instrumental variables. The in-
consistency of least squares estimators of individual equations in simultaneous
equations models is by no means the only econometric issue that arises in such
models. In this chapter, we therefore discuss simultaneous equations models
at some length.

Much of the early work on simultaneous equations models was done under
the auspices of the Cowles Commission; references include Koopmans (1950)
and Hood and Koopmans (1953). This work heavily influenced the direction
of econometric theory for many years. For a history of the early development
of econometrics, see Morgan (1990). Because the literature on simultaneous
equations models is vast, we will be able to deal with only a small part of it.
There are many surveys of the field and many textbook treatments at various
levels. Two useful survey articles are Hausman (1983), which deals with
the mainstream literature, and Phillips (1983), which deals with the rather
specialized field of small-sample theory in simultaneous equations models, a
subject that we will not discuss at all.

The essential feature of simultaneous equations models is that two or
more endogenous variables are determined jointly within the model, as a
function of exogenous variables, predetermined variables, and error terms.
Up to this point, we have said very little about what we mean by exogenous
and predetermined variables. Since the role of such variables in simultaneous
equations models is critical, it is time to rectify that omission. In Section 18.2,
we will therefore discuss the important concept of exogeneity at some length.

Most of the chapter will be concerned with the linear simultaneous equa-
tions model. Suppose there are g endogenous variables, and hence g equations,

622



18.1 Introduction 623

and k exogenous or predetermined variables. Then the model can be written
in matrix form as

YΓ = XB +U. (18.01)

Here Y denotes an n× g matrix of endogenous variables, X denotes an n× k
matrix of exogenous or predetermined variables, Γ denotes a g × g matrix of
coefficients, B denotes a k× g matrix of coefficients, and U denotes an n× g
matrix of error terms.

It is at once clear that the model (18.01) contains too many coefficients
to estimate. A typical observation for the l th equation can be written as

g∑
i=1

ΓilYti =
k∑

j=1

BjlXtj + utl.

Multiplying all of the Γil’s and Bjl’s by any nonzero constant would simply
have the effect of multiplying utl by that same constant for all t, but would
not change the pattern of the error terms across observations at all. Thus it
is necessary to impose some sort of normalization on each of the equations
of the model. The obvious one is to set Γii = 1 for all i; each endogenous
variable, y1 through yg, would then have a coefficient of unity in one and only
one equation. However, as we saw in Section 7.3, many other normalizations
could be used. We could, for example, set Γ1l = 1 for all l; the coefficient on
the first endogenous variable would then be unity in every equation.

The model (18.01) makes no sense if the matrix Γ cannot be inverted,
since otherwise it would be impossible to determine Y uniquely as a function
of X and U. We may therefore postmultiply both sides of (18.01) by Γ−1 to
obtain

Y = XBΓ−1 +UΓ−1 (18.02)

= XΠ + V . (18.03)

Expression (18.02) is the restricted reduced form, or RRF, and expression
(18.03) is the unrestricted reduced form, or URF. The restrictions are that
Π = BΓ−1. Notice that, even in the unlikely event that the columns of U
were independent, the columns of V would not be. Thus the various equations
of the reduced form are almost certain to have correlated errors.

The imposition of normalization restrictions is necessary but not sufficient
to obtain estimates of Γ and B. The problem is that, unless we impose some
restrictions on it, the model (18.01) has too many coefficients to estimate.
The matrix Γ contains g2 − g coefficients, because of the g normalization
restrictions, while the matrix B contains gk. There are thus g2 + gk − g
structural coefficients in total. But the matrix Π in the unrestricted reduced
form contains only gk coefficients. It is obviously impossible to determine
the g2 + gk− g structural coefficients uniquely from the gk coefficients of the
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URF. Thus we will have to impose at least g2− g restrictions on Γ and/or B
in order to be able to identify the model. There is an enormous literature on
identification in simultaneous equations models, which discusses conditions
under which some or all of the coefficients of such models may be identified.
We will discuss the principal results of this literature in Section 18.3.

Most of the remainder of the chapter deals with various estimation meth-
ods for simultaneous equations models. Section 18.4 discusses maximum likeli-
hood estimation of the entire model under the assumption of normality, a tech-
nique known as full-information maximum likelihood, or FIML. The following
section deals with maximum likelihood estimation of individual equations, a
technique known as limited-information maximum likelihood, or LIML. Sec-
tion 18.6 then discusses three-stage least squares, or 3SLS, which is derived
as an application of the generalized method of moments. Finally, nonlinear
simultaneous equations models are briefly discussed in Section 18.7.

18.2 Exogeneity and Causality

In the case of a single regression equation, we are estimating the distribution,
or at least the mean and variance, of an endogenous variable conditional on the
values of some explanatory variables. In the case of a simultaneous equations
model, we are estimating the joint distribution of two or more endogenous
variables conditional on the values of some explanatory variables. But we
have not yet discussed the conditions under which one can validly treat a
variable as explanatory. This includes the use of such variables as regressors in
least squares estimation and as instruments in instrumental variables or GMM
estimation. For conditional inference to be valid, the explanatory variables
must be either predetermined or exogenous in one or other of a variety of
senses to be defined below.

In a time-series context, we have seen that random variables which are
predetermined can safely be used as explanatory variables in least squares
estimation, at least asymptotically. In fact, lagged endogenous variables are
regularly used both as explanatory variables and as instrumental variables.
However, there are a great many cases, including of course models estimated
with cross-section data, in which we want to use variables that are not prede-
termined as explanatory variables. Moreover, the concept of predetermined-
ness turns out to be somewhat trickier than one might expect, since it is not
invariant to reparametrizations of the model. Thus it is clear that we need a
much more general concept than that of predeterminedness.

It is convenient to begin with formal definitions of the concept of pre-
determinedness and the related concept of strict exogeneity. In this, we are
following the standard exposition of these matters, given in Engle, Hendry,
and Richard (1983). Readers should be warned that this paper, although a
standard reference, is not easy to read. Our discussion will be greatly sim-
plified relative to theirs and will be given in a more general context, since
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they restrict themselves to fully specified parametric models capable of being
estimated by maximum likelihood. We will, however, make use of one of their
specific examples as a concrete illustration of a number of points.

Let the 1 × g vector Yt denote the tth observation on a set of variables
that we wish to model as a simultaneous process, and let the 1× k vector Xt

be the tth observation on a set of explanatory variables, some or all of which
may be lagged Yt’s. We may write an, in general nonlinear, simultaneous
equations model as

ht(Yt,Xt,θ) = Ut, (18.04)

where ht is a 1× g vector of functions, somewhat analogous to the regression
function of a univariate model, θ is a p--vector of parameters, and Ut is a 1×g
vector of error terms. The linear model (18.01) is seen to be a special case of
(18.04) if we rewrite it as

YtΓ = XtB +Ut

and define θ so that it consists of all the elements of Γ and B which have to
be estimated. Here Xt and Yt are the tth rows of the matrices X and Y . A
set of (conditional) moment conditions could be based on (18.04), by writing

E
(
ht(Yt,Xt,θ)

)
= 0,

where the expectation could be interpreted as being conditional on some ap-
propriate information set.

Definition 18.1.

The explanatory variables Xt are predetermined in equation i of the
model (18.04), for i = 1, . . . , g, if, for all t = 1, . . . , n,

Xt
‖ ui,t+s for all s ≥ 0.

Here the symbol ‖ is used to express statistical independence. The definition
applies to any context, such as the time-series one, in which there is a natural
ordering of the observations. The next concept does not require this.

Definition 18.2.

The explanatory variables Xt are strictly exogenous in equation i of
(18.04) if, for all t = 1, . . . , n,

Xt
‖ Us for all s = 1, . . . , n.

If (18.04) represents a structural form, then either predeterminedness
or strict exogeneity allows us to treat this form as a characterization of the
process generating Yt conditional on Xt. Thus we may, for example, write
down a loglikelihood function based on (18.04), which can be maximized in
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order to provide consistent estimates of the parameters θ; see Section 18.4. If
(18.04) is thought of as providing conditional moment conditions, then either
predeterminedness or strict exogeneity allows us to use the columns of the
matrix X as instruments for the estimation of θ by some sort of IV procedure,
such as 2SLS, 3SLS, or GMM. In claiming this, we assume of course that there
are enough instruments in X to identify all of the parameters in θ.

Unfortunately, the concept of strict exogeneity is much too restrictive, at
least for time-series applications. In this context, very few variables are strictly
exogenous, although many are predetermined. However, as we now show, a
variable can be predetermined or not in one and the same model depending
on how the model is parametrized. Furthermore, predeterminedness is not
always necessary for consistent estimation. Thus predeterminedness is not a
very satisfactory concept.

Consider the following simultaneous model, taken from Engle, Hendry,
and Richard (1983):

yt = βxt + ε1t (18.05)

xt = δ1xt−1 + δ2yt−1 + ε2t, (18.06)

where the error terms are normally, independently, and identically distributed
for each t, with covariance matrix

Σ ≡
[
σ11 σ12
σ12 σ22

]
.

If σ12 6= 0, xt is correlated with ε1t and estimation of (18.05) by OLS will not
be consistent because xt is not predetermined in (18.05).

Now let us consider the expectation of yt conditional on xt and all lagged
yt’s and xt’s. We have

E(yt |xt, yt−1, xt−1 · · ·) = βxt + E(ε1t |xt, yt−1, xt−1 · · ·). (18.07)

Notice that ε2t is defined by (18.06) as a linear combination of the conditioning
variables. Thus the conditional expectation of ε1t in (18.07) is

E(ε1t | ε2t) =
σ12
σ22

ε2t =
σ12
σ22

(xt − δ1xt−1 − δ2yt−1).

We may therefore write

yt = bxt + c1xt−1 + c2yt−1 + vt, (18.08)

with
b = β +

σ12
σ22

, c1 = − δ1
σ12
σ22

, c2 = − δ2
σ12
σ22

, (18.09)

and with vt independent of xt. Thus xt is predetermined in (18.08), whatever
the value of σ12, even though it is not predetermined in (18.05) when σ12 6= 0.
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We will return to this model later. Meanwhile, let us work toward a con-
cept more suitable than predeterminedness in the simultaneous model context.
Because what is at issue is whether the explanatory variables Xt are deter-
mined simultaneously with the Yt’s, we will need to work with DGPs that
generate Yt and Xt jointly. As usual, we may represent a DGP by a prob-
ability density function, or better its logarithm, which can be expressed as
the sum of contributions from each of the observations; see Section 8.2. The
contribution from observation t has the form

`t(Yt,Xt |Ωt). (18.10)

This expression is the log of the joint density of Yt and Xt conditional on the
information set Ωt. The latter consists of the whole sample of observations
on both Yt and Xt from the first up to the (t− 1)th.

Expression (18.10) can itself be decomposed into two contributions, one
the log of the density of Yt conditional on Xt and Ωt and the second the log
of the density of Xt conditional on Ωt alone:

`t(Yt,Xt |Ωt) = `Yt (Yt |Xt,Ωt) + `Xt (Xt |Ωt), (18.11)

in obvious notation. What we would like to be able to do at this point is to
forget about the second of the contributions in (18.11), since it concerns only
the explanatory variables.

Under what conditions could we drop the second contribution? To answer
that question, let us first consider a model, M, comprised of DGPs represented
by sets of contributions of the form (18.11). Next, let us define a parameter-
defining mapping θ : M → Θ ∈ Rp that associates a p--vector of parameters
θ(µ) ∈ Θ to each µ ∈M. The parameter vector θ includes all the parameters
of interest, i.e., all those that we are interested in estimating. As we will see
below, there may well be other parameters, called nuisance parameters, that
we are not interested in estimating.

Definition 18.3.

The explanatory variables Xt are weakly exogenous for the paramet-
rized model (M,θ) if

(i) there exists a submodel MX that contains DGPs for the explana-
tory variables Xt only;

(ii) there exists a conditional submodel MY that contains DGPs for
the endogenous variables Yt conditional on the explanatory vari-
ables Xt;

(iii) the full model M consists of all joint DGPs (µY, µX), where µX is
an arbitrary element of MX and µY an arbitrary element of MY ;
and

(iv) there exists a parameter-defining mapping θY : MY → Θ such
that, for any µ ≡ (µY, µX) ∈M, θ(µ) = θY (µY ).
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This definition needs a few words of explanation. The DGPs of the
submodel MX are characterized by sequences of contributions like the `Xt ’s
in (18.11), while those of MY are characterized by contributions like the `Yt ’s
of that equation. Thus the contributions that characterize the DGPs of both
submodels are such that, for observation t, the density is conditional on all
of Ωt. This means in particular that the process by which Xt is generated can
perfectly well depend on lagged Yt’s. The force of point (iii) of the definition
is that the full model M, the DGPs of which have contributions like the entire
right-hand side of (18.11), must contain all possible combinations of elements
of MX and MY. Point (iv) says that the model parameters depend only on the
conditional DGP which generates the Yt’s conditional on the Xt’s. In other
words, the parameters associated with the DGP (µY, µX) depend only on µY.
If µX is replaced by another DGP for the explanatory variables, say νX, the
parameters do not change.

Engle, Hendry, and Richard claim that weak exogeneity in the sense of
the above definition is precisely what is needed for us to be able to estimate
and perform inference on the parameters θ without taking the submodel MX

into account. For models to be estimated by maximum likelihood, this is clear
enough. The loglikelihood function is the sum of contributions like (18.11).
Only the first term, from the submodel MY, may depend on θ. Maximization
of the complete loglikelihood function is therefore equivalent to maximization
of the partial loglikelihood function

`Y (Y n,Xn;θ) ≡
n∑

t=1

`Yt (Yt |Xt,Ωt;θ)

with respect to θ. Similarly, for inference, the gradient and Hessian of the full
loglikelihood function ` with respect to θ are identical to those of the partial
loglikelihood function `Y.

Let us see how Definition 18.3 works with the model defined by (18.05)
and (18.06). Clearly, (18.06) corresponds to the submodel MX and (18.05)
corresponds to the submodel MY. Observe that (18.06) does indeed make use
of lagged values of yt. Notice that if the “parameters” δ1 and δ2 were defined
within the parameter-defining mapping, weak exogeneity would be completely
out of the question, since the δi’s appear only in the submodel MX. To avoid
this seeming difficulty, we will assume that the parameter-defining mapping
defines only the parameter β. Thus, in this case, we are treating the δi’s,
along with the elements of the covariance matrix Σ, as nuisance parameters.
The only parameter of interest is β.

A DGP of the submodel MX can now be specified by giving the values
of the nuisance parameters δi and the marginal density of the error terms ε2t,
which will depend on the unconditional variance σ22 but not on σ11 or σ12.
For a DGP in MY, it is necessary to specify the value of β, the parameter
of interest, and the density of ε1t conditional on ε2t, which will involve σ11
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and σ12. At this stage, conditions (i), (ii), and (iv) of Definition 18.3 are sat-
isfied. The variable xt will therefore be weakly exogenous for the model given
by (18.05) and (18.06) and the parameter β if we can also satisfy condition
(iii), which requires that we should be able to put together any two DGPs,
one from each submodel. But this is not possible in general, because the in-
equality σ11σ22 ≥ σ2

12 must be satisfied in order that the covariance matrix
of the joint distribution of ε1t and ε2t should be positive semidefinite. Only
if we restrict the overall model so that σ12 = 0 will the inequality be satisfied
automatically, and so only in this case will xt be weakly exogenous.

We see therefore that the weak exogeneity of xt is, in this case, the same
as its predeterminedness. What if now we look at the model given by (18.08)
and (18.06)? Recall that xt is predetermined for (18.08) quite generally. In
fact, it will also be weakly exogenous generally if we change the parameter-
defining mapping (but not the underlying model M) so that it now defines
the parameter b instead of β. Notice that even if we include as parameters of
interest c1, c2, and the variance of the error terms vt in (18.08), along with b, β
cannot be recovered from these parameters without σ12. The weak exogeneity
follows from the fact that, by construction, vt is uncorrelated with ε2t.

The advantage of weak exogeneity over predeterminedness in the present
context is that its definition makes reference to a particular parameter-defining
mapping. This means that we may say that xt is weakly exogenous for β
or not, as the case may be, and that it is always weakly exogenous for b.
Predeterminedness on the other hand is defined relative to an equation, like
(18.05) or (18.08), rather than a parameter-defining mapping.

Another concept that can be important when one wishes to work con-
ditionally with respect to a set of explanatory variables is that of Granger
causality. As the name suggests, the concept was developed by Granger
(1969). Other definitions of causality have been suggested, notably by Sims
(1972). The Granger and Sims definitions of causality are often, although
not always, equivalent; see Chamberlain (1982) and Florens and Mouchart
(1982). For most purposes, it seems that Granger causality, or rather its
opposite, Granger noncausality, is the most useful concept.

We now give a definition of Granger noncausality. Like the definition of
weak exogeneity, it is made in the context of models M that contain DGPs
capable of generating two sets of variables Yt and Xt. Unlike that definition,
this one makes no use of a parameter-defining mapping and does not make
the distinction between the Yt’s as endogenous variables and the Xt’s as
explanatory variables. In the definition, Y t−1 and Xt−1 denote the rows of
the matrices Y and X, respectively, prior to the tth. Thus Ωt consists of Y t−1

and Xt−1.

Definition 18.4.

The variables Y t−1 do not Granger cause the variables Xt in a model
M containing DGPs characterized by contributions (18.11) if and
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only if
`Xt (Xt |Ωt) = `Xt (Xt |Xt−1).

In words, Y t−1 does not Granger cause Xt if the distribution of Xt

conditional on the past of both Xt and Yt is the same as that condi-
tional on the past of Xt alone.

A useful way of expressing Granger noncausality is to say that the past of Yt

contains no information about Xt that is not already contained in the past of
Xt itself. Although it is not strictly correct, it is common to say simply that
the variables Yt do or do not Granger cause the variables Xt, rather than
that the variables Y t−1 do or do not do so. This usage normally leads to no
ambiguity.

It is evident from (18.06) that, in the model given by that equation and
(18.05), yt does Granger cause xt, unless δ2 = 0. Thus, even if σ12 = 0, which
means that xt is weakly exogenous for the parameter β in (18.05), the process
generating xt depends on the past of the endogenous variable yt. On the other
hand, if δ2 = 0 but σ12 6= 0, yt does not Granger cause xt, even though xt
is not weakly exogenous for β. Thus the two ideas of weak exogeneity and
Granger noncausality are separate: Neither one implies nor is implied by the
other.

As we have seen, the presence of Granger causality does not prevent us
from estimating β efficiently and performing inference on it without taking the
process that generates xt into account if xt is weakly exogenous for β. Con-
versely, failure of weak exogeneity does not prevent us from making efficient
forecasts of yt conditional on xt if yt does not Granger cause xt. Specifically,
suppose that we set up a forecasting equation for xt based only on its own
past. If (18.05) and (18.06) are true, we find that

E(xt |xt−1) = (δ1 + βδ2)xt−1. (18.12)

One would therefore forecast xt in terms of the lagged value xt−1 and an
estimate of the autoregressive parameter δ1 + βδ2, obtained, perhaps, by re-
gressing xt on itself lagged once. If next we wish to forecast yt conditional on
our forecast of xt, we would develop a forecasting equation giving the forecast
of yt as a function of that of xt and the past of both variables. From (18.08),

E(yt |xt,Ωt) = bxt + c1xt−1 + c2yt−1, (18.13)

where b, c1, and c2 are defined by (18.09). Now if we replace xt in (18.13) by
the forecast (18.12), we obtain a forecast

b(δ1 + βδ2)xt−1 + c1xt−1 + c2yt−1. (18.14)

It can be deduced immediately from (18.05) and (18.06) that

E(yt |Ωt) = βδ1xt−1 + βδ2yt−1.
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Therefore, if (18.14) is to provide an unbiased forecast, we require that

b(δ1 + βδ2) + c1 = βδ1 and c2 = βδ2.

By using the definitions (18.09), it can be seen that these requirements can
both be met if either δ2 = 0 or b = 0. The former of these two conditions is
precisely that of Granger noncausality. The latter corresponds to the special
case in which xt contains no information about yt not already contained in Ωt

and is of less interest to us in the present context.

The conclusion in general is that, when our goal is forecasting, forecasts
of the variables Yt may be made conditional on forecasts of the variables Xt if
Y t−1 does not Granger cause Xt. On the other hand, if our goal is estimation
of or inference about certain parameters, we may proceed conditionally with
respect to Xt if these variables are weakly exogenous for the parameters in the
context of the model in which they are defined. It can be interesting to put
the two ideas together and define circumstances in which all of these activities
may safely be performed conditional on Xt. The appropriate concept is that
of strong exogeneity, which we now define.

Definition 18.5.

The explanatory variables Xt are strongly exogenous for the para-
metrized model (M,θ) containing DGPs that generate endogenous
variables Yt along with the Xt’s if they are weakly exogenous and
Y t−1 does not Granger cause Xt.

This completes our discussion of causality and exogeneity. For a much
fuller discussion, readers are referred to the Engle-Hendry-Richard paper. In
addition to introducing the concepts of weak and strong exogeneity, that paper
introduces yet another concept, called super exogeneity. It is important for
policy analysis but not for estimation and inference, and will therefore not
concern us here.

18.3 Identification in Simultaneous Equations Models

The issue of identification in simultaneous equations models is, in principle,
no different from what we have already discussed in the general context of
parametrized models. If for a given model M a parameter-defining mapping
can be defined, then the parameters of the model are identified, in the sense
that one and only one parameter vector is associated with each DGP in M.
However, even when such a mapping exists, the data must satisfy certain con-
ditions for the parameters to be identified by a given data set, and the DGP
must satisfy certain conditions for them to be identified asymptotically. In
Chapter 5, we defined and discussed in some detail the concept of asymptotic
identifiability and contrasted it with identification by a given data set. It
is the former concept that is of primary interest in the context of simultan-
eous equations models. All of the preferred estimation methods are based
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on asymptotic theory, and one cannot hope to obtain consistent parameter
estimates if the parameters are not asymptotically identified.

In this section, we will discuss the asymptotic identifiability of a linear
simultaneous equations model by the two-stage least squares estimator intro-
duced in Section 7.5. This may seem a very limited topic, and in a certain
sense it is indeed limited. However, it is a topic that has given rise to a truly
vast literature, to which we can in no way do justice here; see Fisher (1976) and
Hsiao (1983). There exist models that are not identified by the 2SLS estimator
but are identified by other estimators, such as the FIML estimator, and we will
briefly touch on such cases later. It is not a simple task to extend the theory
we will present in this section to the context of nonlinear models, for which
it is usually better to return to the general theory expounded in Section 5.2.

We begin with the linear simultaneous equations model, (18.01). This
model consists of DGPs that generate samples for which each observation
is a g--vector Yt of dependent variables, conditional on a set of exogenous
and lagged dependent variables Xt. Since the exogenous variables in Xt are
assumed to be weakly exogenous, their generating mechanism can be ignored.
In order to discuss identification, little needs to be assumed about the error
terms Ut. They must evidently satisfy the condition that E(Ut) = 0, and
it seems reasonable to assume that they are serially independent and that
E(Ut

>Ut) = Σt, where Σt is a positive definite matrix for all t. If inferences
are to be based on the usual 2SLS covariance matrix, it will be necessary to
make the further assumption that the error terms are homoskedastic, that is,
Σt = Σ for all t.

It is convenient to treat the identification of the parameters of a simult-
aneous equations model equation by equation, since it is entirely possible that
the parameters of some equations may be identified while the parameters of
others are not. In order to simplify notation, we will consider, without loss
of generality, only the parameters of the first equation of the system, that
is, the elements of the first columns of the matrices Γ and B. As we re-
marked in Section 18.1, restrictions must be imposed on the elements of these
matrices for identification to be possible. It is usual to assume that these
restrictions all take the form of zero restrictions on some elements. A variable
is said to be excluded from an equation if the coefficient corresponding to that
variable for that equation is restricted to be zero; otherwise, it is said to be
included in the equation. As discussed in Section 6.4, it is always possible
in the context of a single equation to perform a reparametrization such that
all restrictions take the form of zero restrictions. But in the context of a
simultaneous equations model, such reparametrizations exist in general only
if there are no cross-equation restrictions, that is, restrictions which involve
the parameters of more than one equation of the system. If there are cross-
equation restrictions, then to all intents and purposes we leave the context of
linear systems. We would in any case have to abandon the 2SLS estimator if
we wished to impose cross-equation restrictions.
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Let us partition the matrix Y as follows:

Y = [y Y1 Y2 ] , (18.15)

where the column vector y is the endogenous variable with coefficient unity in
the first equation of the system, the columns of the n× g1 matrix Y1 are the
endogenous variables not excluded from that equation by zero restrictions,
and the columns of the n × (g − g1 − 1) matrix Y2 are those endogenous
variables that are excluded. Similarly, the matrix X of exogenous variables
is partitioned as

X = [X1 X2 ], (18.16)

where the columns of the n× k1 matrix X1 are the exogenous variables that
are included in the equation, and those of the n× (k− k1) matrix X2 are the
excluded exogenous variables.

Corresponding to the above partitioning of Y and X, we may partition
the coefficient matrices Γ and B as

Γ =

 1 Γ02

−γ1 Γ12

0 Γ22

 and B =

[
β1 B12

0 B22

]
. (18.17)

The rows of Γ are partitioned as are the columns of Y in (18.15), and the
rows of B are partitioned as are the columns of X in (18.16). In addition, the
columns of both Γ and B are partitioned so as to separate the first columns
of each matrix from the other columns, since the first columns contain the
parameters of the first equation of the system. The first equation can therefore
be written as

y = Y1γ1 +X1β1 + u = Zδ + u, (18.18)

where the n × (g1 + k1) regressor matrix Z is [X1 Y1], and the parameter
vector δ is [β1

.... γ1].

In order to obtain 2SLS estimates of δ, we must make use of instru-
mental variables. The columns of X1, being exogenous, may serve as their
own instruments, and the columns of X2 provide additional instruments. If
the columns of X are the only instruments available, then it is plain that
a necessary condition for the identifiability of δ, either in finite samples or
asymptotically, is that X should have at least as many columns as Z. This
condition is equivalent to the requirement that X2 should have at least as
many columns as Y1, i.e., that k − k1 ≥ g1. In words, what is required is
that the number of excluded exogenous variables should be at least as great
as the number of included endogenous variables. This is the celebrated order
condition for identification. As we will see, however, it is only a necessary
condition and not generally a sufficient one.1

1 If one allows for the possibility of cross-equation restrictions, the order condition
is no longer even necessary.
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It may not be obvious that the columns of X exhaust the supply of
available instruments. Why can we not make use of any other exogenous or
predetermined variables that happen to be correlated with the endogenous
variables Y1? Even if the order condition for identification is satisfied, would
we not be well advised to use any other available instruments to obtain more
efficient estimates? It turns out that using additional instruments will not suc-
ceed in asymptotically identifying otherwise unidentified parameters. More-
over, under homoskedasticity and serial independence of the error terms u,
using additional instruments will lead to no efficiency gain.

In order to obtain these results, we consider the restricted reduced form
(18.02) corresponding to (18.01). By a slight abuse of notation, we will write
this simply as

Y = XΠ + V , (18.19)

defining Π to be BΓ−1. It will be necessary to partition Π conformably with
the partitions (18.17) of Γ and B:

Π =

[
π1 Π11 Π12

π2 Π21 Π22

]
. (18.20)

The partition of the rows here is the same as that of the rows of B in (18.17),
and the partition of the columns is the same as that of the rows of Γ in the
same equation, or of the columns of Y in (18.15). We will assume that the
data were generated by a process (18.19) with Π = Π0 = B0Γ

−1
0 .

Let us now consider the identifiability of the parameter vector δ in the
equation (18.18) for any admissible instrument matrix W, that is, any matrix
W such that plim(n−1W>W ) is a positive definite nonstochastic matrix and
such that plim(n−1W>V ) = 0. From the results of Section 7.8, δ is identi-
fiable by the data if the matrix Z>PWZ is positive definite and is asymptot-
ically identifiable if plim(n−1Z>PWZ) is positive definite. In order to study
this probability limit, consider the matrix

1−
n
W>Z = 1−

n
W>[X1 Y1 ]

= 1−
n
W>[X1 X1Π11 +X2Π21 + V1 ] , (18.21)

where the block V1 of the error matrix V corresponds to the block Y1 of Y
in (18.15), and the reduced form coefficients are evaluated at Π = Π0.

The asymptotic orthogonality of the instruments W and the error terms
V means that the probability limit of (18.21) is

plim
n→∞

(
1−
n
W>[X1 X1Π11 +X2Π21 ]

)
. (18.22)

This makes it clear that, whatever the choice of the instrument matrix W, the
rank of the matrix (18.22) cannot exceed k, the number of linearly independent
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exogenous variables. All of the columns of the partitioned matrix in (18.22)
are columns of X or linear combinations of columns of X. It follows that the
rank of plim(n−1Z>PWZ) can also never exceed k. Thus, if Z has more than
k columns, that is, if the order condition is violated, then plim(n−1Z>PWZ)
is singular and, hence, not positive definite. We conclude that the order
condition is indeed necessary for the asymptotic identifiability of δ, whatever
set of instruments may be used.

Next we show that, under homoskedasticity and serial independence of
the errors u, the columns ofX provide optimal instruments for the estimation
of δ. There are two possible cases. In the first case, S(X) ⊂ S(W ). Since X1

and X2 lie in S(X), we see from (18.22) that

plim
n→∞

(
1−
n
Z>PWZ

)
= plim

n→∞

(
1−
n
Z>PXZ

)
= plim

n→∞

(
1−
n

[X1 X1Π11 +X2Π21 ]>[X1 X1Π11 +X2Π21 ]
)
.

Thus including additional instruments in W beyond those in X can yield no
asymptotic efficiency gain. Since it will surely contribute to finite-sample bias
(see Section 7.5), one would never want to do so.

In the second case, S(X) is not a subspace of S(W ). This implies that,
asymptotically, W must have less explanatory power for Z than X does.
Therefore, plim(n−1Z>PXZ) − plim(n−1Z>PWZ) is a positive semidefinite
matrix for all such instrument matrices W. It follows (see Appendix A)
that plim(n−1Z>PWZ)−1−plim(n−1Z>PXZ)−1 is also a positive semidefinite
matrix. Thus the asymptotic covariance matrix one obtains by using X as
the matrix of instruments, namely, σ2 plim(n−1Z>PXZ)−1, provides a lower
bound for the asymptotic covariance matrix of any IV estimator.

From the above discussion and the results of Section 7.8, it is clear that
the necessary and sufficient condition for the asymptotic identification of δ
by use of the optimal instruments X is simply that plim(n−1Z>PXZ) should
be nonsingular. This condition is referred to in the traditional literature on
simultaneous equations models as the rank condition for identification, for
obvious reasons. However, the condition is seldom expressed in so simple a
fashion. Instead, the condition is typically expressed in terms of the coeffi-
cients Γ and B of the structural form or else of the coefficients Π of the
restricted reduced form. Since we have defined Π in terms of Γ and B alone,
any condition that can be expressed in terms of one set of coefficients can be
expressed in terms of the other.

We will now show how the rank condition that plim(n−1Z>PXZ) should
be nonsingular can be expressed in terms of restrictions on Π in the DGP.
The parameters γ1 and β1 of the first structural equation can be identified if
and only if they can be uniquely recovered from the matrix Π of restricted
reduced form parameters. This matrix, by definition, satisfies the equation
ΠΓ = B, the first column of which can, by virtue of the partitions (18.17)
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and (18.20), be expressed as

π1 −Π11γ1 = β1

π2 −Π21γ1 = 0.

The first of these two equations serves to define β1 in terms of Π and γ1, and
allows us to see that β1 can be identified if γ1 can be. The second equation
shows that γ1 is determined uniquely if and only if the submatrix Π21 has
full column rank, that is, if the rank of the matrix is equal to the number
of columns (see Appendix A). The submatrix Π21 has k − k1 rows and g1
columns. Therefore, if the order condition is satisfied, there are at least as
many rows as columns. The condition for the identifiability of γ1, and so also
of β1, is thus simply that the columns of Π21 in the DGP should be linearly
independent.

It is instructive to show why this last condition is equivalent to the
rank condition in terms of plim(n−1Z>PXZ). If, as we have tacitly assumed
throughout this discussion, the exogenous variables X satisfy the condition
that plim(n−1X>X) is positive definite, then plim(n−1Z>PXZ) can fail to
have full rank only if plim(n−1X>Z) has rank less than g1 + k1, the number
of columns of Z. The probability limit of the matrix n−1X>Z follows from
(18.22), with X replacing W. If, for notational simplicity, we drop the prob-
ability limit and the factor of n−1, which are not essential to the discussion,
the matrix of interest can be written as[

X1
>X1 X1

>X1Π11 +X1
>X2Π21

X2
>X1 X2

>X1Π11 +X2
>X2Π21

]
. (18.23)

This matrix does not have full column rank of g1+k1 if and only if there exists
a nonzero (g1+k1)--vector θ ≡ [θ1

.... θ2] such that postmultiplying (18.23) by θ
gives zero. If we write this condition out and rearrange slightly, we obtain[

X1
>X1 X1

>X2

X2
>X1 X2

>X2

] [
θ1 +Π11θ2
Π21θ2

]
= 0. (18.24)

The first matrix on the left-hand side here is just X>X and is therefore
nonsingular. The condition reduces to the two vector equations

θ1 +Π11θ2 = 0 (18.25)

Π21θ2 = 0. (18.26)

If these equations hold for some nonzero θ, it is clear that θ2 cannot be zero.
Consequently, the second of these equations can hold only if Π21 has less than
full column rank. It follows that if the rank condition in terms of Z>PXZ
does not hold, then it does not hold in terms of Π21 either. Conversely,
suppose that (18.26) holds for some nonzero g1--vector θ2. Then Π21 does
not have full column rank. Define θ1 in terms of this θ2 and Π by means
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of (18.25). Then (18.25) and (18.26) together imply (18.24), and the original
rank condition fails. The two versions of the rank condition are therefore
equivalent.

We conclude this section by stating, without proof, a third version of the
rank condition, also equivalent to the other two, but this time in terms of the
structural parameters Γ and B. It is not possible to express this condition
exclusively in terms of the parameters γ1 and β1 of the first equation itself.
On the contrary, it is only the values of the other parameters that determine
whether or not γ1 and β1 are identified. This third statement of the rank
condition is formulated as follows. Form the (g − g1 − 1 + k − k1) × (g − 1)
matrix [

Γ22

B22

]
.

Then the rank condition is satisfied if and only if this matrix has full column
rank g − 1.

In this section, we have discussed only the most important conclusions
of a long research program. Hsiao (1983) provides a much more extensive
treatment. We have not dealt with issues such as cross-equation restrictions
and restrictions involving the covariance matrix Σ; see Rothenberg (1971),
Richmond (1974), and Hausman and Taylor (1983), among others. In prac-
tice, the order condition for identification is much more useful than the rank
condition because it is much easier to verify. The rank condition is of sub-
stantial theoretical interest, however, and it is instructive to see that it can
be expressed as the very simple condition that the probability limit of a cer-
tain matrix should have full rank. It is thus equivalent to the condition that
a certain 2SLS estimator, namely, the one that uses all exogenous and pre-
determined variables as instruments, should have a nonsingular asymptotic
covariance matrix.

18.4 Full-Information Maximum Likelihood

Methods for estimating simultaneous equations models can usefully be clas-
sified in two different ways. One natural division is between single-equation
methods and full-system methods. The former, of which the principal exam-
ples are 2SLS and LIML, estimate the model one equation at a time. The
latter, of which the principal examples are 3SLS and FIML, estimate all the
parameters of the model at once. The adjectives “limited-information” and
“full-information” that are part of the names of LIML and FIML make it clear
that the former is a single-equation method and the latter is a full-system one.
Single-equation methods are easier to use, while full-system methods poten-
tially yield more efficient estimates.

The other natural division is between methods based on maximum likeli-
hood, namely, LIML and FIML, and methods based on instrumental variables
or the generalized method of moments, of which the best-known examples are
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2SLS and 3SLS. ML methods yield estimates that are invariant to repara-
metrization (see Section 8.3), while IV methods do not. We have already
discussed 2SLS at length in Chapter 7. In this section, we will provide a fairly
detailed treatment of FIML, which differs from 2SLS according to both clas-
sification schemes. Discussions of LIML and of 3SLS will follow in subsequent
sections.

All simultaneous equations estimators attempt to deal with the fact that
the error terms of structural equations are correlated with whatever endo-
genous variables appear in the equation. This correlation causes OLS to be
inconsistent. As we have seen, 2SLS deals with it by “instrumenting out”
the offending regressors. FIML, on the other hand, deals with it by maxi-
mizing a likelihood function that involves a Jacobian term and is not simply
a transformation of the sum of squared residuals. FIML also deals with two
problems that arise in the case of any multivariate model, whether or not it
involves simultaneity; see Section 9.9. One problem is that, except in rare
cases, the errors from different equations will be correlated. Single-equation
techniques such as 2SLS and LIML simply ignore this problem. In contrast,
full-system techniques like FIML and 3SLS take it into account and should
therefore yield more efficient estimates in general. A second problem is that,
in many models, there may be cross-equation restrictions. Single-equation
methods necessarily ignore this problem, but full-system ones like FIML take
it into account. When the full system is set up, parameters that appear in
more than one equation are automatically treated differently from parameters
that appear in only one.

The linear simultaneous equations model (18.01), with error terms that
are assumed to be normally distributed, homoskedastic, and serially indepen-
dent, can be written as

YtΓ = XtB +Ut, Ut ∼ N(0,Σ), (18.27)

where the notation should be quite familiar by now. Recall that Yt is 1 × g,
Γ is g × g, Xt is 1 × k, B is k × g, Ut is 1 × g, and Σ is g × g. The easiest
way to derive the density of Yt is to start with the density of Ut, which is

(2π)−g/2|Σ|−1/2 exp
(
− 1−

2
UtΣ

−1Ut
>
)
.

We then replace Ut by YtΓ −XtB and multiply by an appropriate Jacobian
factor. This factor is the absolute value of the determinant of the Jacobian
of the transformation from Yt to Ut, that is, the determinant of Γ. Thus the
Jacobian factor is |detΓ |.2 The result is

(2π)−g/2|detΓ ||Σ|−1/2 exp
(
− 1−

2

(
YtΓ −XtB

)
Σ−1

(
YtΓ −XtB

)>).
2 In this chapter, we use |A| to denote the determinant of A and |detA| to

denote the absolute value of the determinant. It is necessary to use the “det”
notation, which we prefer to avoid, only when the absolute value is involved.
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From this, we see that the loglikelihood function is

`(B,Γ,Σ) =

n∑
t=1

`t(B,Γ,Σ) = − ng−−
2

log(2π) + n log |detΓ |

− n−
2

log |Σ| − 1−
2

n∑
t=1

(
YtΓ −XtB

)
Σ−1

(
YtΓ −XtB

)>. (18.28)

It is a convenient first step in maximizing `(B,Γ,Σ) to concentrate it
with respect to Σ or, as we did in Section 9.9, with respect to the inverse
matrix Σ−1. Since

∂`

∂Σ−1
= n−

2
Σ − 1−

2

n∑
t=1

(
YtΓ −XtB

)>(YtΓ −XtB
)
,

(see Appendix A) it is evident that

Σ(B,Γ ) = 1−
n

(
YΓ −XB

)>(YΓ −XB). (18.29)

We may substitute (18.29) into (18.28) to obtain

`c(B,Γ ) = − ng−−
2

(
log(2π) + 1

)
+ n log |detΓ |

− n−
2

log
∣∣∣ 1−n(YΓ −XB)>(YΓ −XB)∣∣∣. (18.30)

This concentrated loglikelihood function looks very much like (9.65), the con-
centrated loglikelihood function for a multivariate regression model. Note
that we have used the same trick as we did there to evaluate the second
term of the last line of (18.28). The difference between (9.65) and (18.30) is
due to the presence of the Jacobian term n log |detΓ |, the role of which will
be discussed below. The FIML estimator will not be defined if the matrix
(YΓ −XB)>(YΓ −XB) that appears in (18.30) does not have full rank for
all admissible values of B and Γ, and this requires that n ≥ g+k. This result
also suggests that n may have to be substantially greater than g + k if FIML
is to have good finite-sample properties; see Sargan (1975) and Brown (1981).

It is illuminating to derive this concentrated loglikelihood function in an
entirely different way. This time, we start from the restricted reduced form
corresponding to (18.27), which is

Yt = XtBΓ
−1 + Vt. (18.31)

This system of equations is just a special case of the multivariate regression
model considered in Section 9.9, expressed in the form of (9.43), with a set
of regression functions ξt ≡ XtBΓ

−1 that are nonlinear functions of the
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elements of B and Γ . The concentrated loglikelihood function corresponding
to (18.31) is therefore given by (9.65). For our particular case, (9.65) becomes

− ng−−
2

(
log(2π) + 1

)
− n−

2
log
∣∣∣ 1−n(Y −XBΓ−1)>(Y −XBΓ−1)∣∣∣. (18.32)

This new expression for `c(B,Γ ) is equal to the one we derived previously,
(18.30). The equality of (18.30) and (18.32) follows from the fact that

− n−
2

log
∣∣∣ 1−n(Y −XBΓ−1)>(Y −XBΓ−1)∣∣∣

= − n−
2

log
∣∣∣ 1−n(Γ>)−1Γ>

(
Y −XBΓ−1

)>(Y −XBΓ−1)ΓΓ−1∣∣∣
= n log |detΓ | − n−

2
log
∣∣∣ 1−n(YΓ −XB)>(YΓ −XB)∣∣∣.

The fact that the concentrated loglikelihood function for a linear simult-
aneous equations model can be written in two quite different ways, as (18.30)
and (18.32), is illuminating. It makes it absolutely clear that the structural
and restricted reduced forms are simply different ways of writing the same
model. We can treat the linear simultaneous equations model either as a spe-
cial type of model, with concentrated loglikelihood function given by (18.30),
or as a special case of a nonlinear multivariate regression model, with loglike-
lihood function the same as for any other multivariate regression model. If
we write it in the latter way, we can use all the results already obtained for
multivariate regression models in Chapter 9. However, because the coefficient
matrix BΓ−1 depends nonlinearly on coefficients from all the equations in the
model, (18.32) is generally less convenient to work with than (18.30).

When it was originally proposed by researchers at the Cowles Commission
(Koopmans, 1950), FIML was not computationally feasible, because maxi-
mizing the loglikelihood function (18.30) requires numerical optimization. As
computers improved and this type of computation became more practical,
a number of procedures for maximizing the loglikelihood function were pro-
posed, and most standard econometric packages now incorporate at least one
of them. References include Rothenberg and Leenders (1964), Chow (1968),
Hausman (1974, 1975), and Dagenais (1978).

As usual, the asymptotic covariance matrix of the FIML parameter esti-
mates B̂, Γ̂, and Σ̂ can be estimated in several different ways. One approach
that is relatively easy but not recommended for small samples is to use the
OPG regression. This artificial regression can be based on the unconcen-
trated loglikelihood function (18.28) but not on the concentrated one (18.30),
because the latter is not written as a sum of contributions. A second approach
is to start from the form (18.32) of the loglikelihood function. As we showed
in Section 9.9, the block of the information matrix associated with the para-
meters of the regression functions of a multivariate regression model is given
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as in (9.69), and this block can be computed by means of the Gauss-Newton
regression (9.58). A third way to estimate the asymptotic covariance matrix of
B̂ and Γ̂ is to make use of the result that 3SLS and FIML are asymptotically
equivalent; this approach will be discussed in Section 18.6.

The Jacobian term log |detΓ | that explicitly appears in (18.30) plays a
very important role in estimation. Its presence is of course essential if the
ML estimates are to be consistent. Moreover, as the determinant of Γ tends
to zero, this term tends to minus infinity. Hence the loglikelihood function
must tend to minus infinity whenever the determinant of Γ tends to zero.
This makes sense, because the model cannot be solved when |detΓ | = 0,
which implies that the likelihood of such a set of parameter values is zero.
In effect, this means that the space of possible values of Γ is divided into
a number of regions, separated by singularities where |detΓ | = 0. In the
case of the demand-supply model discussed in Section 7.3, for example, there
is only one singularity, which occurs where the slopes of the demand and
supply functions are equal. We cannot normally expect that a numerical
maximization algorithm will cross such a singularity, even though it might
happen to do so. Thus, when we try to maximize a loglikelihood function
numerically, we are unlikely to find the global maximum if the region in which
the algorithm starts does not contain it. This suggests that it may be very
important to choose starting values carefully when using FIML.

Although FIML is based on the assumption that the error terms are mul-
tivariate normal, this assumption is not needed to ensure that the estimates
B̂ and Γ̂ are consistent and asymptotically normal. When FIML is used and
the error terms are not normally distributed, it is a QML estimator rather
than an ML estimator, and it will not be asymptotically efficient. As we saw
in Section 9.6, any regression model may validly be estimated by ML under
the assumption of normally distributed error terms, whether or not that as-
sumption is correct. This result applies to FIML because, as (18.32) makes
clear, FIML is in effect just estimating a certain nonlinear multivariate regres-
sion model. When the underlying simultaneous equations model is nonlinear,
however, this result does not necessarily apply; see Phillips (1982).

Testing model specification is just as important for simultaneous equa-
tions models as for any other econometric model. The full range of classical
tests — LM, LR, Wald, and C(α) — is of course available for this purpose.
However, because FIML estimation is relatively costly and difficult, applied
workers may be tempted to forgo extensive specification testing of models that
are estimated by FIML. It is therefore worth keeping in mind the fact that
many types of misspecification of the structural model (18.01) imply similar
misspecification of the unrestricted reduced form (18.03). For example, if any
of the error terms of the structural model is serially correlated, then, except
in very special circumstances, all of the reduced form error terms must also
be serially correlated. Similarly, if any of the structural error terms is het-
eroskedastic, then all of the reduced form error terms must be heteroskedastic.
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By the same token, if the parameters of the structural model are not constant
over the entire sample, then the parameters of the URF will not be constant ei-
ther. Since the equations of the URF are estimated by ordinary least squares,
it is very easy to test them for evidence of misspecification such as serial cor-
relation, heteroskedasticity, and nonconstant coefficients. If they fail any of
these tests, then one may reasonably conclude that the structural model is
misspecified, even if one has not actually estimated it. The converse is not
true, however, since these tests may well lack power, especially if only one of
the structural equations is misspecified.

One additional misspecification test that should always be performed is
a test of any overidentifying restrictions. In Section 7.8, we discussed how
to test overidentifying restrictions for a single equation estimated by IV or
2SLS. Here we are interested in all of the overidentifying restrictions for the
entire system. The number of degrees of freedom for the test is equal to
the number of elements in the Π matrix of the URF, gk, minus the number
of free parameters in B and Γ jointly. In most cases there will be some
overidentifying restrictions, and in many cases there will be a large number
of them. The most natural way to test these is probably to use an LR test.
The restricted value of the loglikelihood function is the value of (18.30) at the
FIML estimates B̂ and Γ̂, and the unrestricted value is

− ng−−
2

(
log(2π) + 1

)
− n−

2
log
∣∣∣ 1−n(Y −XΠ̂)>(Y −XΠ̂)∣∣∣ , (18.33)

where Π̂ denotes the OLS estimates of the parameters of the URF. As usual,
twice the difference between the unrestricted and restricted values of the log-
likelihood function will be asymptotically distributed as χ2 with as many
degrees of freedom as there are overidentifying restrictions. If one suspects
that the overidentifying restrictions are violated and therefore does not want
to bother estimating the structural model, one could instead use a Wald test,
as suggested by Byron (1974).

We have not yet explained why the OLS estimates Π̂ are also the ML
estimates. It can easily be seen from (18.33) that, in order to obtain ML
estimates of Π, we need to minimize the determinant∣∣(Y −XΠ)>(Y −XΠ)

∣∣. (18.34)

Suppose that we evaluate this determinant at any set of estimates Π́ not
equal to Π̂. Since we can always write Π́ = Π̂ + A for some matrix A,
(18.34) becomes ∣∣(Y −XΠ̂ −XA)>(Y −XΠ̂ −XA)

∣∣
=
∣∣(MXY −XA)>(MXY −XA)

∣∣
=
∣∣Y>MXY +A>X>XA

∣∣.
(18.35)
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Because the determinant of the sum of two positive definite matrices is always
greater than the determinants of either of those matrices (see Appendix A),
it follows from (18.35) that (18.34) will exceed |Y>MXY | for all A 6= 0.
This implies that Π̂ minimizes (18.34), and so we have proved that equation-
by-equation OLS estimates of the URF are also ML estimates for the entire
system.

If one does not have access to a regression package that calculates (18.33)
easily, there is another way to do so. Consider the recursive system

y1 = Xη1 + e1

y2 = Xη2 + y1α1 + e2

y3 = Xη3 + [y1 y2]α2 + e3

y4 = Xη4 + [y1 y2 y3]α3 + e4,

(18.36)

and so on, where yi denotes the ith column of Y . This system of equations
can be interpreted as simply a reparametrization of the URF (18.03). It is
easy to see that if one estimates these equations by OLS, all the residual
vectors will be mutually orthogonal: ê2 will be orthogonal to ê1, ê3 will be
orthogonal to ê2 and ê1, and so on. According to the URF, all the yi’s are
linear combinations of the columns of X plus random errors. Therefore, the
equations of (18.36) are correct for any arbitrary choice of the α parameters:
The ηi’s simply adjust to whatever choice is made. If, however, we require
that the error terms ei should be orthogonal, then this serves to identify a
particular unique choice of the α’s. In fact, the recursive system (18.36) has
exactly the same number of parameters as the URF (18.03): g vectors ηi, each
with k elements, g − 1 vectors αi, with a total of g(g − 1)/2, and g variance
parameters, for a total of gk + (g2 + g)/2. The URF has gk parameters in
Π and (g2 + g)/2 in the covariance matrix Ω, for the same total. What has
happened is that the α parameters in (18.36) have replaced the off-diagonal
elements of the covariance matrix of V in the URF.

Since the recursive system (18.36) is simply a reparametrization of the
URF (18.03), it should come as no surprise that the loglikelihood function for
the former is equal to (18.33). Because the residuals of the various equations
in (18.36) are orthogonal, the value of the loglikelihood function for (18.36)
is simply the sum of the values of the loglikelihood functions from OLS es-
timation of the individual equations. This result, which readers can easily
verify numerically, sometimes provides a convenient way to compute the log-
likelihood function for the URF. Except for this purpose, recursive systems
are not generally of much interest. They do not convey any information that
is not already provided by the URF, and the parametrization depends on an
arbitrary ordering of the equations.
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18.5 Limited-Information Maximum Likelihood

One problem with FIML and other full-system methods is that they require
the investigator to specify the structure of all the equations in the model.
Misspecification of any one equation will in general lead to inconsistent esti-
mation of all equations. To avoid this problem, when efficiency is not crucial,
investigators may well prefer to employ single-equation methods. The easiest
and most widely used of these is 2SLS, but it has two important drawbacks.
The estimates it yields are not invariant to reparametrization and, as we saw
in Section 7.5, they can be seriously biased in finite samples. LIML is an
alternative technique that yields invariant estimates which in many respects
have better finite-sample properties than 2SLS. Although it was proposed by
Anderson and Rubin (1949) prior to the invention of 2SLS and has been the
subject of much theoretical study, it has been little used by applied econo-
metricians.

As its name suggests, the basic idea of LIML is to use only limited infor-
mation about the structure of the model. Suppose that we wish to estimate
a single equation, say the first, of a structural model like (18.01). We wrote
down such an equation in Section 18.3 as (18.18). We must take account of
the fact that some of the variables which appear on the right-hand side of
(18.18), the ones that correspond to columns of Y1, are endogenous. The sim-
plest way to do this is just to write the unrestricted reduced form equations
for them:

Y1 = X1Π11 +X2Π21 + V1, (18.37)

where the notation is identical to that used in Section 18.3. Combining (18.18)
and (18.37), we obtain the system of equations

y − Y1γ1 = X1β1 + u

Y1 = X1Π11 +X2Π21 + V1.
(18.38)

Notice that Y2 does not appear in this system of equations at all. If we
are interested in the first equation only, endogenous variables that do not
appear in it are irrelevant. The equation system (18.38) can be estimated by
maximum likelihood, and the estimates of γ1 and β1 that result will be the
LIML estimates. Any FIML package can be used to do this.

Actually, we do not need a FIML package to obtain ML estimates of
(18.38). The matrix of coefficients on the endogenous variables in this system
of equations is [

1 0

−γ1 I

]
. (18.39)

Because this matrix is triangular, its determinant is simply the product of the
elements on the principal diagonal, which is 1. Thus the Jacobian term in
the loglikelihood function vanishes, and the loglikelihood function for (18.38)



18.5 Limited-Information Maximum Likelihood 645

has the same form as the loglikelihood function for any set of linear seemingly
unrelated regressions (see Section 9.9). This implies that one can use any
program for estimation of SUR systems to obtain LIML estimates. More-
over, application of feasible GLS to a system like (18.38), starting from 2SLS
estimates for the first equation and OLS estimates for the remaining ones,
will yield estimates asymptotically equivalent to LIML estimates. Iterating
the feasible GLS procedure until it converges will yield the actual LIML esti-
mates, and such a procedure has been suggested by Pagan (1979).

In practice, LIML estimates are rarely computed in this way, because
there is a much more efficient method of computing them. Developing it will
require a certain amount of algebra, but the final results will be quite simple.
From (18.30), (18.32), and the fact that |Γ | = 1, we see that ML estimates
may be obtained by minimizing∣∣(Y −XBΓ−1)>(Y −XBΓ−1)

∣∣ =
∣∣(YΓ −XB)>(YΓ −XB)

∣∣. (18.40)

What we will now show is that minimizing the determinant on the right-hand
side here is equivalent to minimizing a ratio of quadratic forms and that this,
in turn, can be achieved by solving a certain eigenvalue problem.

Let us begin by writing out the matrix BΓ−1 that appears on the left-
hand side of (18.40). Using (18.17) and an expression for the inverse of (18.39),
we see that

BΓ−1 =

[
β1 B12

0 B22

][
1 0

γ1 I

]
=

[
β1 +B12γ1 B12

B22γ1 B22

]
.

The right-most matrix here is just the restricted version of Π. The top part
corresponds to X1 and the bottom part to X2. Since β1 does not appear in
the bottom part and can vary freely, it is clear that, whatever the value of γ1,
we can find values of β1 andB12 such that the top part is equal to anything at
all. In other words, the restrictions on the structural equation (18.37) do not
impose any restrictions on the rows of Π that correspond to X1. In general,
however, they do impose restrictions on the rows that correspond to X2.

As we saw in the previous section, minimizing a determinant like (18.34)
subject to no restrictions is equivalent to using OLS. In this case, since there
are no restrictions on the rows ofΠ that correspond toX1, we can use OLS to
estimate those parameters, and then concentrate them out of the determinant.
When we do this, the determinant on the right-hand side of (18.40) becomes∣∣(YΓ −XB)>M1(YΓ −XB)

∣∣,
where, as usual, M1 denotes the matrix that projects orthogonally onto
S⊥(X1).

We will now introduce some new notation. First, we will let γ denote the
vector [1

.... −γ1]; therefore, Yγ ≡ y − Y1γ1. Second, we will let Y ∗ denote
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M1Y , Y ∗1 denote M1Y1, and X∗ denote M1X2. The determinant on the
right-hand side of (18.40) can then be rewritten as∣∣∣∣ (Y ∗γ)>(Y ∗γ) (Y ∗γ)>(Y ∗1 −X∗B22)

(Y ∗1 −X∗B22)>(Y ∗γ) (Y ∗1 −X∗B22)>(Y ∗1 −X∗B22)

∣∣∣∣ . (18.41)

This determinant depends only on the parameters γ and B22. The next step
is to concentrate out the parameters contained in B22 as well, so as to obtain
an expression that depends only on the data and γ. Doing this will require
us to make heavy use of the following result, which is proved in Appendix A:∣∣∣∣A>A A>B

B>A B>B

∣∣∣∣ = |A>A||B>MAB|, (18.42)

where, as usual, MA ≡ I − A(A>A)−1A>. Applying this result to (18.41)
yields

(Y ∗γ)>(Y ∗γ)
∣∣(Y ∗1 −X∗B22)>Mv(Y ∗1 −X∗B22)

∣∣, (18.43)

where Mv denotes the matrix that projects orthogonally onto S⊥(v), and
v ≡ Y ∗γ. There is only one determinant in (18.43), not two, because the first
factor is a scalar.

The parameters B22 appear only in the second factor of (18.43). This
factor is the determinant of the matrix of sums of squares and cross-products
of the residuals from the system of regressions

MvY
∗
1 = MvX

∗B22+ residuals.

As we saw in the previous section, this determinant can be minimized by
setting B22 equal to the estimates obtained by applying OLS to each equa-
tion separately. The matrix of residuals thus obtained is MMvX∗MvY

∗
1 ,

where MMvX∗ denotes the projection off S(MvX
∗). Now observe that

MMvX∗Mv = Mv,X∗ , the projection off S(v,X∗). Consequently, the sec-
ond factor of (18.43), minimized with respect to B22, is∣∣(Y ∗1 )>Mv,X∗Y ∗1

∣∣. (18.44)

The fact that v andX∗ appear in a symmetrical fashion in (18.44) can be
exploited in order to make (18.44) depend on γ only through a scalar factor.
Consider the determinant∣∣∣∣ v>MX∗v v>MX∗Y ∗1

(Y ∗1 )>MX∗v (Y ∗1 )>MX∗Y ∗1

∣∣∣∣ . (18.45)

By use of (18.42), this determinant can be factorized just as (18.41) was. We
obtain

(v>MX∗v)
∣∣(Y ∗1 )>Mv,X∗Y ∗1

∣∣. (18.46)
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Using the facts that M1MX∗ = MX and that v = M1Yγ, (18.45) can be
rewritten as∣∣∣∣γ>Y>MXYγ γ>Y>MXY1

Y1
>MXYγ Y1

>MXY1

∣∣∣∣ =
∣∣Γ>Y>MXYΓ

∣∣ =
∣∣Y>MXY

∣∣. (18.47)

The first equality here is easily verified by making use of expression (18.39)
for Γ and the definitions of γ and Y ; remember that γ is the first column
of Γ. The second equality is a result of the fact that |Γ | = 1. It implies that
(18.47) does not depend on Γ at all.

We can now, finally, write down a simple expression, which, when min-
imized with respect to γ, is equal to the minimized value of the original de-
terminant (18.40). From (18.46) and (18.47), we see that (18.44) is equal to

∣∣(Y ∗1 )>Mv,X∗Y ∗1
∣∣ =
|Y>MXY |
v>MX∗v

=
|Y>MXY |
γ>Y>MXYγ

.

Hence, using (18.43), the original determinant (18.40) must be equal to

v>v |Y>MXY |
γ>Y>MXYγ

=
(γ>Y>M1Yγ)|Y>MXY |

γ>Y>MXYγ
= κ|Y>MXY |, (18.48)

where the scalar κ has been defined implicitly as

κ ≡ γ>Y>M1Yγ

γ>Y>MXYγ
. (18.49)

Since |Y>MXY | does not depend on γ at all, minimizing (18.48) is equivalent
to minimizing κ. Thus, if we can minimize (18.49) with respect to γ, we can
obtain LIML estimates γ̂ and a corresponding value of κ, say κ̂. Because they
may be obtained in this way, LIML estimates are sometimes referred to as
least variance ratio estimates.

Before we consider how to obtain the LIML estimates γ̂, let us discuss
some implications of (18.48) and (18.49). First of all, it should be obvious that
κ̂ ≥ 1. Since S(X1) is a subspace of S(X), the numerator of (18.49) cannot
be smaller than the denominator for any possible γ. In fact, for an equation
that is overidentified, κ̂ will always be greater than 1 in finite samples. For
an equation that is just identified, κ̂ will be exactly equal to 1 because the
number of free parameters to be estimated is then just equal to k, the rank
of X. Thus, in this case, it is possible to choose γ so that the numerator and
denominator of (18.49) are equal.

Expression (18.48) implies that the maximized value of the concentrated
loglikelihood function for LIML estimation of a single equation is

− ng−−
2

log(2π)− n−
2

log(κ̂)− n−
2

log |Y>MXY |. (18.50)
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The maximized value of the concentrated loglikelihood function for ML esti-
mation of the unrestricted reduced form is

− ng−−
2

log(2π)− n−
2

log |Y>MXY |.

Thus an LR statistic for testing the overidentifying restrictions implicit in
a single structural equation is simply n log(κ̂). This test statistic was first
proposed by Anderson and Rubin (1950).

Finding κ̂ is quite easy. The set of first-order conditions that we obtain
by differentiating (18.49) with respect to γ is

2Y>M1Yγ (γ>Y>MXYγ)− 2Y>MXYγ (γ>Y>M1Yγ) = 0.

If we divide both sides by 2γ>Y>MXYγ, this becomes

Y>M1Yγ − κY>MXYγ = 0. (18.51)

An equivalent set of first-order conditions can be obtained by premultiplying
(18.51) by (Y>MXY )−1/2 and inserting that factor multiplied by its inverse
before γ. After some rearrangement, this yields(

(Y>MXY )−1/2Y>M1Y (Y>MXY )−1/2 − κI
)
(Y>MXY )1/2γ = 0.

This set of first-order conditions now has the form of a standard eigenvalue-
eigenvector problem for a real symmetric matrix (see Appendix A). It is thus
clear that κ̂ will be an eigenvalue of the matrix

(Y>MXY )−1/2Y>M1Y (Y>MXY )−1/2 (18.52)

and that (Y>MXY )1/2γ̂ will be the corresponding eigenvector. In fact, κ̂
must be the smallest eigenvalue, because it is the smallest possible value of
the ratio (18.49).

One way to compute LIML estimates, then, is to find the eigenvector of
(18.52) that corresponds to the smallest eigenvalue, and from that to com-
pute γ̂, which, if the first element is normalized to unity, will be [1

.... −γ̂1].
One can then obtain β̂1 by regressing y − Y1γ̂1 on X1. Another approach is
both simpler and more illuminating, however. Consider the first-order con-
ditions (18.51). If we express them in terms of y and Y1 instead of Y , and
evaluate them at the LIML estimates, they can be rewritten as([

y>M1y y>M1Y1

Y1
>M1y Y1

>M1Y1

]
− κ̂

[
y>MXy y>MXY1

Y1
>MXy Y1

>MXY1

])[
1

−γ̂1

]
= 0.

When the rows corresponding to Y1 are multiplied out, this becomes

Y1
>(M1 − κ̂MX)y − Y1

>(M1 − κ̂MX)Y1γ̂1 = 0.
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Solving for γ̂1 then yields

γ̂1 =
(
Y1
>(M1 − κ̂MX)Y1

)−1
Y1
>(M1 − κ̂MX)y.

Since X1 ∈ S(X), M1 − κ̂MX = M1(I− κ̂MX). Using this fact and a little
algebra, which we leave as an exercise, it can be shown that γ̂1 can also be
computed using the formula[

β̂1

γ̂1

]
=

[
X1
>X1 X1

>Y1

Y1
>X1 Y1

>(I− κ̂MX)Y1

]−1[
X1
>y

Y1
>(I− κ̂MX)y

]
, (18.53)

which yields β̂1 as well. Then if we define Z as [X1 Y1] and δ as [β1
.... γ1],

as in (18.18), (18.53) can be written in the very simple form

δ̂ =
(
Z>(I− κ̂MX)Z

)−1
Z>(I− κ̂MX)y. (18.54)

Equation (18.53) is one way of writing LIML as a member of what is
called the K-class of estimators; see Theil (1961) and Nagar (1959). Equation
(18.54) is a simpler way of doing the same thing. The K-class consists of
all estimators that can be written in either of these two forms, but with an
arbitrary scalar K replacing κ̂. We use K rather than the more traditional k
to denote this scalar in order to avoid confusion with the number of exogenous
variables in the system. The LIML estimator is thus a K-class estimator with
K = κ̂. Similarly, as is evident from (18.54), the 2SLS estimator is a K-class
estimator with K = 1, and the OLS estimator is a K-class estimator with
K = 0. Since κ̂ = 1 for a structural equation that is just identified, it follows
immediately from (18.54) that the LIML and 2SLS estimators coincide in this
special case.

It can be shown that K-class estimators are consistent whenever K tends
to 1 asymptotically at a rate faster than n−1/2; see Schmidt (1976), among
others. Even though the consistency of LIML follows from general results
for ML estimators, it is interesting to see how this result for the K-class
applies to it. We have already seen that n log(κ̂) is the LR test statistic
for the null hypothesis that the overidentifying restrictions on the structural
equation being estimated are valid. If we Taylor expand the logarithm, we
find that n log(κ̂) ∼= n(κ̂ − 1). Since this test statistic has an asymptotic
χ2 distribution, it must be O(1), and so κ̂ − 1 must be O(n−1). This then
establishes the consistency of LIML.

There are many other K-class estimators. For example, Sawa (1973)
has suggested a way of modifying the 2SLS estimator to reduce bias, and
Fuller (1977) and Morimune (1978, 1983) have suggested modified versions of
the LIML estimator. Fuller’s estimator, which is the simplest of these, uses
K = κ̂ − α/(n − k), where α is a positive constant that must be chosen by
the investigator. One good choice is α = 1, since it yields estimates that
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are approximately unbiased. In contrast to the LIML estimator, which has
no finite moments (see Mariano (1982) and Phillips (1983) for references),
Fuller’s modified estimator has all moments finite provided the sample size is
large enough.

The covariance matrix for the vector of K-class estimates δ̂ may be esti-
mated in various ways. The most natural estimate to use is

σ̂2
(
Z>(I− κ̂MX)Z

)−1
, (18.55)

where
σ̂2 = 1−

n
(y −Zδ̂)>(y −Zδ̂).

Wald test statistics for restrictions on γ1 and β1, including asymptotic t statis-
tics, can be computed using (18.55) in the usual way. It is probably preferable
to use LR statistics, however, as these will be invariant to reparametriza-
tion and can easily be computed from the concentrated loglikelihood function
(18.50).

The result that K-class estimators are consistent whenever K tends to 1
asymptotically at an appropriate rate may seem to suggest that 2SLS has
better finite-sample properties than LIML. After all, for 2SLS K is identi-
cally equal to 1, while for LIML K = κ̂, and κ̂ is always greater than 1
in finite samples. The result that LIML has no finite moments also might
seem to suggest that LIML is inferior to 2SLS, since, as we saw in Section 7.5,
2SLS has as many finite moments as there are overidentifying restrictions. On
the contrary, it turns out that in many cases 2SLS actually has worse finite-
sample properties than LIML in most respects. Anderson, Kunitomo, and
Sawa (1982), for example, present analytical results which show that LIML
approaches its asymptotic normal distribution much more rapidly than does
2SLS. Unlike the distribution of the 2SLS estimator, which, as we have seen,
tends to be severely biased in some cases, the distribution of the LIML esti-
mator is generally centered near the true value. Since the latter distribution
has no moments, however, we cannot say that LIML is less biased than 2SLS.

Figure 18.1 provides an illustration of how LIML performs in finite sam-
ples. It shows the distributions of the 2SLS estimator, the LIML estimator,
and Fuller’s modified LIML estimator with α = 1 (denoted LIMLF in the
figure) for the case we examined previously in Section 7.5. Because there are
six overidentifying restrictions and only 25 observations, all of the estimators
diverge quite substantially from their asymptotic distributions. In this case,
the 2SLS estimator is severely biased downward. In contrast, the LIML esti-
mator appears to be almost unbiased in the sense that its median is very close
to the true value of 1. The distribution of Fuller’s modified LIML estimator
generally lies between those of 2SLS and LIML. Its upper tail is much thinner
than that of LIML, but its median is somewhat below the true value.

In practice, it is often not easy to decide which K-class estimator to
use. Mariano (1982) discusses a number of analytical results and provides
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Figure 18.1 Distributions of 2SLS and LIML estimates

some guidance as to when LIML is likely to perform better than 2SLS. The
latter should be avoided when the number of overidentifying restrictions is
large, for example. However, much depends on the particular model and data
set. If 2SLS and LIML yield very similar results, then it does not matter
which we employ. If they yield substantially different results, however, then it
does matter. Perhaps the best thing in that case is to perform a Monte Carlo
experiment, specifically designed to investigate the performance of alternative
estimators for the model and data set in question; see Chapter 21.

18.6 Three-Stage Least Squares

The last of the four principal estimation methods for linear simultaneous
equations models that we will discuss is three-stage least squares, or 3SLS.
Like FIML, 3SLS is a full-system method, in which all the parameters that
appear in a model are estimated jointly. As its name suggests, 3SLS can be
computed in three stages. The first two stages are those of 2SLS, applied
separately to each equation of the system. The third stage is then essentially
the same as the final stage in feasible GLS estimation of an SUR system
(Section 9.7). The method was proposed by Zellner and Theil (1962).

The simplest way to derive the 3SLS estimator, and its asymptotic prop-
erties, is to apply the principles of the generalized method of moments to the
system of linear simultaneous equations models (18.01). For the tth observa-
tion, this system can be written as

YtΓ = XtB +Ut.
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The assumption that all the variables contained in the matrix X are either
exogenous or predetermined implies that, for all observations t,

E
(
YtΓ −XtB |Xt

)
= 0.

The equalities here can readily be interpreted as conditional moment con-
ditions in the sense of Chapter 17. Since, as we saw in Section 18.3, the
exogenous variables are efficient instruments for 2SLS if the error terms are
homoskedastic and serially independent, it seems reasonable to consider the
following set of unconditional moment conditions:

E
(
Xt
>(YtΓ −XtB)

)
= 0. (18.56)

Since Xt has k components and YtΓ − XtB has g components, there is a
total of gk moment conditions. If the order condition for identification were
satisfied with equality, there would be precisely gk parameters to be estimated.
Thus (18.56) always provides at least as many moment conditions as there
are parameters in the system, and more if the system is overidentified. Of
course, whether or not these moment conditions actually serve to identify the
parameters asymptotically depends on whether the rank condition is satisfied.

It is convenient to rearrange the elements of the k × g matrix (18.56)
as one single gk--vector. First, let us write each equation of the system in a
notation similar to that of (18.18):

yi = Ziδi + ui, for i = 1, . . . , g,

where the matrix of regressors Zi appearing in the ith equation is [Xi Yi],
with ki included exogenous variables Xi and gi included endogenous vari-
ables Yi, and the (ki + gi)--vector of parameters δi is [βi

.... γi]. Then define
the row vector Ft of gk elements as follows:

Ft ≡ [ut1Xt · · · utgXt],

where uti ≡ yti − (Zi)tδi. Each component of Ft is the contribution from
observation t to one of the empirical moments derived from (18.56). The
n× gk matrix F is defined to have typical row Ft.

In order to obtain GMM estimates, it is necessary to find an estimate of
the covariance matrix of the gk moments (18.56). We will initially make the
same assumptions about the error terms that we made for FIML and LIML.
We assume that each of the vectors ui is homoskedastic and serially inde-
pendent (the assumption of homoskedasticity will be relaxed later). We also
assume that, for each observation t, the uti’s are correlated among themselves,
with g × g contemporaneous covariance matrix Σ, independent of t. We will
let σij denote a typical element of Σ and σij denote a typical element of Σ−1.
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It is quite easy to derive the covariance matrix of the vector of empirical
moments F>ι. It is

E
(
F>ιι>F

)
=

n∑
t=1

E
(
Ft
>Ft

)
=

n∑
t=1

E[ut1Xt · · · utgXt]
>[ut1Xt · · · utgXt]. (18.57)

The last expression in (18.57) is a gk × gk matrix that is most easily written
in partitioned form, with each block of the partitioned matrix being k × k.
For each t, E(utiutj) = σij . Because the elements σij do not depend on t, we
obtain σ11X>X · · · σ1gX

>X
...

. . .
...

σg1X
>X · · · σggX

>X

, (18.58)

that is, a matrix with typical block σijX
>X. We will need the inverse of

the matrix (18.58) in order to form a criterion function like (17.54) that can
be used to obtain estimates of the parameter vectors δi, i = 1, . . . , g. The
block structure of (18.58) makes this quite easy. One can verify by a simple
multiplication of partitioned matrices that the inverse is a matrix with typical
block σij(X>X)−1 (recall that σij is a typical element of Σ−1).

It is convenient to express the vector of empirical moments F>ι in a parti-
tioned form like that of (18.58), as a function of the data and the parameters
of the model. The result is a vector with typical block X>(yi − Ziδi), for
i = 1, . . . , g:

F>ι =

X>(y1 −Z1δ1)
...

X>(yg −Zgδg)

. (18.59)

Then, if we construct a quadratic form from the vector (18.59) and the matrix
(18.58), we obtain the criterion function

g∑
i=1

g∑
j=1

σij
(
yi −Ziδi

)>X(X>X)−1X>(yj −Zjδj
)

=

g∑
i=1

g∑
j=1

σij
(
yi −Ziδi

)>PX

(
yj −Zjδj

)
.

(18.60)

Since we are tacitly assuming that there are no cross-equation restrictions, the
parameters δi appear only in the residual for equation i. Thus the first-order
conditions for a minimum of (18.60) can be written quite simply as

g∑
j=1

σijZi
>PX

(
yj −Zjδj

)
= 0, for i = 1, . . . , g. (18.61)
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In order to make (18.61) operational, we need to estimate the covariance
matrix Σ of the error terms. In the case of an SUR model, we could use OLS
on each equation individually. Since OLS is inconsistent for simultaneous
equations models, we use 2SLS on each equation instead. Thus the first two
“stages” of 3SLS are simply the two stages of 2SLS, applied to each separate
equation of (18.01). The covariances of the error terms are then estimated
from the 2SLS residuals:

σ̃ij = 1−
n

n∑
t=1

ũtiũtj . (18.62)

Of course, these residuals must be the genuine 2SLS residuals, not the res-
iduals from OLS estimation of the second-stage regressions; see Section 7.5.
Thus we see that the 3SLS estimators δ̃1 through δ̃g must jointly solve the
first-order conditions

g∑
j=1

σ̃ijZi
>PX

(
yj −Zj δ̃j

)
= 0. (18.63)

The solution is easy to write down. If δ ≡ [δ1
.... · · · .... δg] and matrices enclosed

in square brackets [·] denote partitioned matrices characterized by a typical
block, then the 3SLS estimator δ̃ can be written very compactly as

δ̃ =
[
σ̃ijZi

>PXZj

]−1[ g∑
j=1

σ̃ijZi
>PXyj

]
. (18.64)

It is more common to see the 3SLS estimator written using an alternative
notation that involves Kronecker products; see almost any econometrics text-
book. Although Kronecker products can sometimes be useful (Magnus and
Neudecker, 1988), we prefer the compact notation of (18.64).

The 3SLS estimator is closely related both to the 2SLS estimator and
to the GLS estimator for multivariate SUR models in which the explanatory
variables are all exogenous or predetermined. If we assume thatΣ is diagonal,
conditions (18.63) become simply

σ̃iiZi
>PX

(
yi −Ziδi

)
= 0,

which are equivalent to the conditions for equation-by-equation 2SLS. Thus
3SLS and 2SLS will be asymptotically (but not numerically) equivalent when
the structural form errors are not contemporaneously correlated. It is also
easy to see that the SUR estimator for linear models is just a special case
of the 3SLS estimator. Since all regressors can be used as instruments in
the SUR case, it is no longer necessary to use 2SLS in the preliminary stage.
Equivalently, the fact that each regressor matrix Zi is just a submatrix of the
full regressor matrix, X, implies that PXZi = Zi. Thus (18.63) simplifies to

g∑
j=1

σ̃ijZi
>(yj −Zjδj

)
= 0,
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which is what the defining equation (9.54) for the feasible GLS estimator of
an SUR system without cross-equation restrictions becomes in the linear case.
We see that the relation between 3SLS and equation-by-equation 2SLS is the
same as that between feasible GLS SUR estimation and equation-by-equation
OLS.

On the basis of (18.64), it is natural to conjecture that the covariance
matrix of the 3SLS estimator can be estimated by

[σ̃ijZi
>PXZj ]

−1. (18.65)

This is indeed the case, and it can easily be shown by using the general
result (17.55) for GMM estimation. We have seen that for the Φ̃−1 of that
expression we should use the matrix with typical block σ̃ij(X>X)−1. For D̃,
the matrix of derivatives of the empirical moments with respect to the model
parameters, we can see that the appropriate matrix must be block-diagonal,
with typical diagonal block given by −X>Zi. (We are deliberately ignoring
factors of powers of n here.) Since we are dealing with a linear system, D̃
does not depend on any estimated parameters. Thus a suitable estimate of
the asymptotic covariance matrix is given by the inverse of the matrix with
typical block

Zi
>X σ̃ij

(
X>X

)−1
X>Zj = σ̃ijZi

>PXZj ,

which is simply (18.65).

Since the simultaneous equations model (18.01) is equivalent to the re-
stricted reduced form (18.02), one might reasonably ask why an estimator like
3SLS cannot simply be derived from (18.02), since its form is precisely that
of an SUR system. The answer is, of course, that it can be. However, unless
each equation of the system is just identified, the restrictions will be nonlinear.
Essentially this approach is taken by Chamberlain (1984). The advantage of
the approach we have taken is that it avoids the difficulties associated with
dealing with nonlinear restrictions.

Another point of similarity between 3SLS and SUR estimation is that
both are numerically equivalent to the corresponding equation-by-equation
procedure if each equation is just identified. For SUR systems, this means
simply that all the regressors appear as explanatory variables in each equation
(if not, there would be overidentifying restrictions implied by requiring that
the errors of an equation in which some regressors were absent should be
orthogonal to the absent regressors as well as those included in the equation).
We saw in Section 9.8, by means of Kruskal’s Theorem, that SUR estimates
are numerically identical to equation-by-equation OLS estimates in this case.
It is a good exercise to verify that the same result holds in the 3SLS context.

If we assume that the error terms contained in the matrix U of (18.01)
are normally distributed, then the efficiency properties of all ML estimation
procedures guarantee the asymptotic efficiency of the FIML estimator. It is
then natural to ask whether the 3SLS estimator shares FIML’s asymptotic
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efficiency, and the answer, as we will see directly, turns out to be that it
does. We could readily obtain a straightforward proof of this result if we had
an expression for the asymptotic covariance matrix of the FIML estimator,
which we could compare with (18.65). However, we chose not to derive such
an expression in Section 18.4, because one of the easiest ways to obtain an
estimate of the FIML covariance matrix is to use the 3SLS estimate (18.65),
evaluated at the FIML estimates. Instead, our proof of the asymptotic equiv-
alence of 3SLS and FIML is based on the fact that the FIML estimator can
be interpreted as an instrumental variables estimator.

This result, which was first proved in Hausman (1975), is of considerable
interest in itself, for it explicitly provides the optimal instruments associated
with ML estimation of the system (18.01). As we might expect, these can
be found by considering the first-order conditions for the maximization of the
loglikelihood function, which we take in the form (18.28). If we denote the ith

column of Γ or B by Γi or Bi, respectively, and continue to let σij denote a
typical element of Σ−1, then (18.28) can be rewritten as

`(B,Γ,Σ) = − ng−−
2

log(2π) + n log |detΓ | − n−
2

log |Σ|

− 1−
2

n∑
t=1

g∑
i=1

g∑
j=1

σij
(
YtΓi −XtBi

)(
YtΓj −XtBj

)
.

(18.66)

The chief difficulty with writing down explicit first-order conditions for a
maximum of (18.66) is that B and Γ are restricted so as to have numerous
zero elements and so that one element of each column of Γ equals unity.
Consequently, we may not set the derivatives of (18.66) equal to zero with
respect to elements of Γ or B that are so restricted. What we will do to get
around this difficulty is to begin by writing out a matrix of partial derivatives
of `(B,Γ,Σ) with respect to the elements of B that will have exactly the
same shape as the matrix B. By this we mean that the ij th element of the
partial derivative matrix will be the partial derivative of ` with respect to the
ij th element of B. We can perform a similar exercise for Γ and then equate
to zero only the appropriate elements of the two matrices of derivatives.

The matrix B appears only in the last term of (18.66), and so we may
restrict attention to that term for the moment. It is convenient to compute
the partial derivative matrix element by element and then to arrange these
derivatives as the appropriate k× g matrix. Since each factor in the last term
of (18.66) is a scalar, each derivative is easy to calculate. With respect to the
ij th element, we obtain

n∑
t=1

g∑
m=1

σimXtj

(
YtΓm −XtBm

)
. (18.67)

We wish to find a matrix of which the ij th element is (18.67). Since j is
attached as a subscript only to the element Xtj , we can write down the j th
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column of the desired matrix by arranging the elementsXtj as a column. This
gives

n∑
t=1

g∑
m=1

σimXt
>(YtΓm −XtBm

)
=

g∑
m=1

σimX>
(
YΓm −XBm

)
= X>

(
YΓ −XB

)
(Σ−1)i, (18.68)

where (Σ−1)i is the ith column of Σ−1. Now observe that the successive
expressions in (18.68) are k--vectors. To complete our exercise, all we need do
is to arrange them side by side as a k × g matrix, and it is now obvious that
this matrix is just X>(YΓ −XB)Σ−1.

We now have to compute the derivatives (18.66) with respect to the g×g
matrix Γ. Operations exactly similar to those carried out for B show that
the matrix of derivatives with respect to the last term of (18.66) is

−Y>(YΓ −XB)Σ−1.

This is a g×g matrix, as required. But Γ also appears through its determinant
in the second term of (18.66). Recall (or see Appendix A) that the derivative of
the logarithm of the determinant of a matrix with respect to the ij th element
of that matrix is the jith element of the inverse of the matrix. Consequently,
the partial derivative matrix corresponding to Γ is

n(Γ−1)>− Y>
(
YΓ −XB

)
Σ−1. (18.69)

We can obtain a more convenient expression than (18.69) by making use
of the first-order conditions for the elements of the covariance matrixΣ. From
(18.29), we see that these conditions give

Σ̂ = n−1(YΓ̂ −XB̂)>(YΓ̂ −XB̂), (18.70)

where Σ̂, Γ̂, and B̂ denote FIML estimates. If this equation is premultiplied
by nΣ̂−1, postmultiplied by Γ̂−1, and transposed, we find that

n(Γ̂−1)>= Y>(YΓ̂ −XB̂)Σ̂−1 − (Γ̂−1)>B̂>X>(YΓ̂ −XB̂)Σ̂−1. (18.71)

Since XB̂Γ̂−1 is the matrix of fitted values from estimation of the restricted
reduced form, it will ease notation and clarify the subsequent analysis if we
denote this matrix simply by Ŷ . Thus (18.71) can be rewritten as

n(Γ̂−1)>= Y>(YΓ̂ −XB̂)Σ̂−1 − Ŷ>(YΓ̂ −XB̂)Σ̂−1.
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Consequently, the matrix (18.69), evaluated at the ML estimates, becomes

−Ŷ>(YΓ̂ −XB̂)Σ̂−1.

Now at last we can select the elements of the two partial derivative ma-
trices which are actually zero when evaluated at the ML estimates. The
parameters that appear in the ith equation are found in the ith columns of
the matrices Γ and B, and so the appropriate partial derivatives are found in
the ith columns of the partial derivative matrices. For the matrix correspond-
ing to B, this column is X>(YΓ̂ −XB̂)(Σ̂−1)i. From this column we wish to
select only those rows for which the corresponding element of the column Bi

is unrestricted, that is, the elements corresponding to the n × ki matrix Xi.
Since in order to select rows of a matrix product, we need only select the
corresponding rows of the left-most factor, the zero elements are those of the
ki--vector Xi

>(YΓ̂ −XB̂)(Σ̂−1)i.

By exactly similar reasoning, we find that, for each i = 1, . . . , g, the
gi--vector Ŷi

>(YΓ̂ −XB̂)(Σ̂−1)i is zero, where Ŷi contains only those columns
of Ŷ that correspond to the matrix Yi of endogenous variables included as
regressors in the ith equation. If we write Ẑi ≡ [Xi Ŷi], then all the first-
order conditions corresponding to the parameters of the ith equation can be
written as

Ẑi
>(YΓ̂ −XB̂)(Σ−1)i = 0.

These conditions can be further simplified. Note that

(YΓ̂ −XB̂)(Σ̂−1)i =

g∑
j=1

σ̂ij
(
YΓ̂j −XB̂j

)
=

g∑
j=1

σ̂ij
(
yj −Zj δ̂j

)
.

The full set of first-order conditions defining the FIML estimates can thus be
written as

g∑
j=1

σ̂ijẐi
>(yj −Zj δ̂j

)
= 0, for i = 1, . . . , g. (18.72)

The conditions (18.72) are now in a form very similar indeed to that of
the conditions (18.63) that define the 3SLS estimator. In fact, if we let Ȳi

denote the n× gi matrix of fitted values from the unrestricted reduced form,
so that Ȳi = PXYi for i = 1, . . . , g, then

PXZi = PX

[
Xi Yi

]
=
[
Xi Ȳi

]
≡ Z̄i.

Thus the conditions (18.63) that define the 3SLS estimator can be written as

g∑
j=1

σ̃ijZ̄i
>(yj −Zj δ̃j

)
= 0. (18.73)



18.6 Three-Stage Least Squares 659

The differences between the conditions defining the 3SLS estimates and those
defining the FIML estimates can be seen immediately from (18.73) and
(18.72). They are:

(i) The covariance matrix estimate is formed from the equation-by-equation
2SLS residuals for 3SLS and from the FIML residuals for FIML;

(ii) The fitted values of Y used in the instruments are those of the unre-
stricted reduced form for 3SLS and those of FIML for FIML.

Both differences reflect the fact that, unlike 3SLS, FIML is a joint estimation
procedure: One must solve the conditions (18.72) simultaneously with the
first-order conditions (18.70) forΣ in order to obtain any of the ML estimates.

Another way to make the distinction between the two procedures is to
say that they use different estimates of the same optimal instruments. These
instruments are a little tricky to write down. In order to do so without too
much trouble, we may form a long ng--vector of all the contributions to the
empirical moments. This vector can be written in partitioned form as[

y1 −Z1δ1
.... · · · .... yg −Zgδg

]
, (18.74)

a typical block of which is the n--vector yi − Ziδi. In total, there are p ≡∑g
i=1(gi + ki) parameters to be identified, and so the vector (18.74) must be

premultiplied by precisely that number of row vectors, each with ng elements,
so as to yield the defining equations for the estimates. It can be seen without
too much difficulty that the p× ng matrix that is needed to produce (18.72)
or (18.73) is made up from blocks of the form σijWi

>, where Wi means a
matrix of the form [XΠi Xi] for some choice of the n×gi matrices Πi. This
typical block is a (gi + ki)× n matrix, as required.

The 3SLS and FIML estimators differ as to how Σ and the Πi’s are
chosen. The real, unobservable, optimal instruments are given by setting Σ
equal to the true error covariance matrix Σ0 and setting Πi = B0Γ

−1
0 , using

the true parameter matrices. Evidently, both Σ̃ and Σ̂ are consistent for Σ0.
Similarly, both the matrix Π̄ such that Ȳ = PXY = XΠ̄ obtained from the
unrestricted reduced form and the matrix B̂Γ̂−1 obtained from FIML esti-
mation are consistent for B0Γ

−1
0 . Both procedures therefore use consistent

estimates of the true optimal instruments, and so both procedures are asymp-
totically equivalent and asymptotically efficient. Notice that this conclusion
applies only to the estimation of Γ and B: The procedures are not equivalent
as regards the estimation of the covariance matrix Σ.

Numerical equivalence between FIML and 3SLS can be obtained by iter-
ating the latter. At each stage of the iteration, the residuals of the previous
stage are used to generate the updated estimate of Σ, while the parameter es-
timates of the previous stage are used to generate the updated estimate of Π.
Such an iterative procedure, which is probably of more theoretical than prac-
tical interest, starts from 3SLS and converges to FIML for all parameters,
including those of Σ. This iterative scheme, and many others, is discussed in
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Hendry (1976), which also provides an extensive bibliography for much of the
simultaneous equations literature in existence at that time.

As we suggested in Section 18.4, a convenient way to calculate an estimate
of the covariance matrix of the FIML estimator of Γ and B is to use an
expression similar to (18.65). If we replace the 3SLS estimate Σ̃ by the FIML
estimate Σ̂, and the PXZi’s of 3SLS by the Ẑi’s of FIML, the result is[

σ̂ijẐi
>Ẑj

]−1
.

Just as FIML applied to a system in which only one equation is over-
identified degenerates to LIML for that one equation, so does 3SLS degenerate
to 2SLS for one single overidentified equation in an otherwise just identified
system. This result is of some practical importance, although the proof is not
very interesting and is therefore omitted. The result implies that the reason we
cited in Section 18.5 for sometimes preferring LIML to FIML, namely, a wish
to avoid imposing possibly false overidentifying restrictions, would lead one
in a least squares context never to go beyond 2SLS. Since the computational
burden of 3SLS relative to 2SLS is considerable if one is interested in only one
equation, it is important to realize that this added burden gives no advantage
unless at least some of the other equations of the system are overidentified.

Since 3SLS is a special case of GMM estimation, it can easily be gen-
eralized to take account of heteroskedasticity of unknown form in the errors,
something that is not possible for FIML. If there is no information about the
form of heteroskedasticity, then we are not in a position to improve the choice
(18.56) of empirical moment conditions used to identify the parameters. But
we can replace the estimate (18.58) of their covariance matrix based on the
assumption of homoskedasticity by a heteroskedasticity-consistent estimate.
Under serial independence of the errors, (18.57) is still a proper expression
of the covariance matrix of the empirical moments. A typical block of this
matrix is

n∑
t=1

E
(
utiutjXt

>Xt

)
.

It is clear that, as with other HCCMEs, 1/n times this matrix can be consis-
tently estimated by

1−
n

n∑
t=1

E
(
ũtiũtjXt

>Xt

)
,

which, if we make the definition Ω̃ij = diag(ũtiũtj), for i, j = 1, . . . , g, can be
written more simply as

1−
n
X>Ω̃ijX. (18.75)

If we use this expression to construct a criterion function based on the em-
pirical moment conditions (18.56), we find a new estimator, defined by the
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equations
g∑

j=1

Zi
>X
(
X>Ω̃ijX

)−1
X>
(
yj −Zjδj

)
= 0.

Solving these equations yields the estimator

δ̌ =
[
Zi
>X
(
X>Ω̃ijX

)−1
X>Zj

]−1[ g∑
j=1

Zi
>X
(
X>Ω̃ijX

)−1
X>yj

]
. (18.76)

Not surprisingly, the structure of (18.76) is very similar to that of the H2SLS
estimator (17.44), and we will therefore call this the H3SLS estimator. Its
asymptotic covariance matrix can be estimated by the inverse of a matrix
with typical block

Zi
>X
(
X>Ω̃ijX

)−1
X>Zj .

In the presence of heteroskedasticity of unknown form, H3SLS should be more
efficient, asymptotically, than 3SLS or FIML. How well it performs in finite
samples, however, is largely unknown at present.

It is clear that we could generalize the H3SLS estimator even further by
using an HAC covariance matrix estimator instead of the HCCME (18.75);
see, for example, Gallant (1987, Chapter 6). This will, however, be a desir-
able thing to do only if the presence of serial correlation is compatible with
the model being correctly specified and if the sample size is quite large. For
most time-series applications, FIML or 3SLS will be the preferred full-system
estimators, because heteroskedasticity will be largely absent and serial correl-
ation will be present only if the model is misspecified. When the sample size
is large and heteroskedasticity is severe, however, as in many cross-section
applications, H3SLS is likely to be the full-system estimator of choice.

18.7 Nonlinear Simultaneous Equations Models

Up to this point, we have said very little about nonlinear simultaneous equa-
tions models. A simultaneous equations model may be nonlinear in three
different ways. First of all, Yt may depend on nonlinear functions of some of
the exogenous or predetermined variables. As usual, this type of nonlinear-
ity causes no problem at all and can be dealt with simply by redefining Xt.
Secondly, some of the parameters may appear nonlinearly in the structural
model for Yt, perhaps because there are nonlinear restrictions on them. This
is the type of nonlinearity that we deal with routinely when estimating non-
linear regression models, and it causes no new problems in the context of
simultaneous equations models. Finally, there may be nonlinearities involv-
ing the endogenous variables. This type of nonlinearity does raise a serious
new problem.
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The problem with models that are nonlinear in the endogenous variables
is that for such models there is nothing equivalent to the unrestricted reduced
form for a linear simultaneous equations model. It is generally difficult or
impossible to solve for the endogenous variables as functions of the exogenous
variables and the error terms. Even when it is possible, Yt will almost always
depend nonlinearly on both the exogenous variables and the error terms. Con-
sider, for example, the extremely simple two-equation model

y1 = αy2 +X1β1 + u1

y2 = γ1y1 + γ2y
2
1 +X2β2 + u2,

(18.77)

where the notation is conventional and we have omitted t subscripts for clarity.
If we substitute the right-hand side of the first equation of (18.77) into the
second, we obtain

y2 = γ1
(
αy2 +X1β1 + u1

)
+ γ2

(
αy2 +X1β1 + u1

)2
+X2β2 + u2.

Since this equation is quadratic in y2, it will generally have two solutions.
Depending on the parameter values and the values of the Xi’s and the ui’s,
both or neither of these solutions will be real. Even if there is a real solution,
it will not be linear in the exogenous variables. Therefore, simply using the
components of X1 and X2 as instruments will not be optimal.

This example illustrates the sort of problems that can arise with any
simultaneous equations model that is nonlinear in the endogenous variables.
At the very least, there is a problem choosing the instruments to use. One
approach, as we noted in Section 7.6, is to use powers and even cross-products
of the exogenous variables as instruments, along with the exogenous variables
themselves. If the sample size is very large, this approach may work reasonably
well, but in most cases it will be far from clear how many instruments to use, or
which ones. Adding additional instruments will generally improve asymptotic
efficiency but will also tend to worsen finite-sample bias. More seriously, it is
quite possible to estimate a model that cannot be solved for some perfectly
reasonable values of the exogenous variables and the error terms. Thus models
that are nonlinear in the endogenous variables should probably be avoided if
at all possible.

It appears that LIML is not a viable procedure for estimating nonlinear
simultaneous equations models. The classical LIML procedure discussed in
Section 18.5 is designed for linear models only. One might think that one could
obtain LIML estimates of a nonlinear structural equation by using a routine
for nonlinear FIML on a system consisting of the one structural equation
together with g − 1 linear reduced form equations. But that would make
sense only if the reduced form equations were in fact linear, which will almost
never be the case. Thus, for single-equation estimation, the only procedures
that are available are ones based on instrumental variables.
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We discussed the estimation of single-equation nonlinear models by IV
methods in Section 7.6, and there is only a little more to be said on the
subject. Suppose that the structural equation of interest can be written as

y = x(δ) + u,

where δ is an l--vector of parameters, and the vector of nonlinear functions
x(δ) implicitly depends on at least one endogenous variable and some number
of exogenous and predetermined variables. Then ifW denotes an n×mmatrix
of instruments, we have seen that IV estimates may be obtained by minimizing
the criterion function (

y − x(δ)
)>PW

(
y − x(δ)

)
. (18.78)

The resulting estimates are often called nonlinear two-stage least squares or
NL2SLS estimates, following the terminology of Amemiya (1974), although
the estimation does not actually proceed in two stages. We discussed this
point in Section 7.6.

The criterion function (18.78) can be derived as a GMM procedure by
starting with the moment conditions

E
(
W>

(
y − x(δ)

))
= 0

and assuming that E(uu>) = σ2I. That assumption may sometimes be too
strong. If it were incorrect, minimizing (18.78) would yield inefficient esti-
mates and an inconsistent estimate of the covariance matrix of the parameter
estimates. A less restrictive assumption is that E(uu>) = ∆, where ∆ is
a diagonal matrix with unknown (but bounded) diagonal elements. We can
obtain estimates analogous to the H2SLS estimates of Section 17.3 by using
a two-step procedure. In the first step, we minimize (18.78), so as to obtain
consistent but inefficient parameter estimates and residuals ũt, and then use
the latter to construct the matrix W>∆̃W, where ∆̃ has typical diagonal
element ũ2t . In the second step, we minimize the criterion function(

y − x(δ)
)>W (

W>∆̃W
)−1
W>(y − x(δ)

)
.

As usual, we could drop the assumption that ∆ is diagonal and use an HAC
estimator, if that were appropriate (see the remarks at the end of the preceding
section).

Full-system estimation of nonlinear simultaneous equations models is typ-
ically done by some sort of IV (or GMM) procedure or by FIML. We will
briefly discuss these two approaches in turn. Suppose the ith equation of the
system can be written for all observations as

fi(Y ,X,θ) = ui, (18.79)
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where fi(·) is an n--vector of nonlinear functions, ui is an n--vector of error
terms, and θ is a p--vector of parameters to be estimated. In general, subject
to whatever restrictions need to be imposed for the system to be identified, all
the endogenous and exogenous variables and all the parameters may appear
in any equation.

The first step in any sort of IV procedure is to choose the instruments
to be used. If the model is nonlinear only in the parameters, the matrix of
optimal instruments is X. As we have seen, however, there is no simple way
to choose the instruments for models that are nonlinear in one or more of the
endogenous variables. The theory of Section 17.4 can be applied, of course,
but the result that it yields is not very practical. Under the usual assumptions
about the error terms, namely, that they are homoskedastic and independent
across observations but correlated across equations for each observation, one
finds that a matrix of instruments W will be optimal if S(W ) is equal to the
subspace spanned by the union of the columns of the E(∂fi/∂θ). This result
was originally derived by Amemiya (1977). It makes sense but is generally
not very useful in practice. For now, we simply assume that some valid n×m
matrix of instruments W is available, with m ≥ p.

A nonlinear IV procedure for full-system estimation, similar in spirit to
the single-equation NL2SLS procedure based on minimizing (18.78), was first
proposed by Jorgenson and Laffont (1974) and called nonlinear three-stage
least squares, or NL3SLS. The name is somewhat misleading, for the same
reason that the name “NL2SLS” is misleading. By analogy with (18.60), the
criterion function we would really like to minimize is

g∑
i=1

g∑
j=1

σijfi
>(Y ,X,θ)PWfj(Y ,X,θ). (18.80)

In practice, however, the elements σij of the inverse of the contemporaneous
covariance matrix Σ will not be known and will have to be estimated. This
may be done in several ways. One possibility is to use NL2SLS for each
equation separately. This will generally be easy, but it may not be possible if
some parameters are identified only by cross-equation restrictions. Another
approach which will work in that case is to minimize the criterion function

g∑
i=1

fi
>(Y ,X,θ)PWfi(Y ,X,θ), (18.81)

in which the unknown covariance matrix Σ is replaced by the identity matrix.
The estimator obtained by minimizing (18.81) will evidently be a valid GMM
estimator and thus will be consistent even though it is inefficient. Whichever
inefficient estimator is used initially, it will yield g vectors of residuals úi from
which the matrix Σ may be estimated consistently in exactly the same way
as for linear models; see (18.62). Replacing the unknown σij ’s in (18.80) by
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the elements σ́ij of the inverse of the estimate of Σ then yields the criterion
function

g∑
i=1

g∑
j=1

σ́ijfi
>(Y ,X,θ)PWfj(Y ,X,θ), (18.82)

which can actually be minimized in practice.

As usual, the minimized value of the criterion function (18.82) provides
a test statistic for overidentifying restrictions; see Sections 7.8 and 17.6. If
the model and instruments are correctly specified, this test statistic will be
asymptotically distributed as χ2(m − p); recall that m is the number of in-
struments and p is the number of free parameters. Moreover, if the model is
estimated unrestrictedly and subject to r distinct restrictions, the difference
between the two values of the criterion function will be asymptotically dis-
tributed as χ2(r). If the latter test statistic is to be employed, it is important
that the same estimate of Σ be used for both estimations, since otherwise the
test statistic may not even be positive in finite samples.

When the sample size is large, it may be less computationally demanding
to obtain one-step efficient estimates rather than actually to minimize (18.82).
Suppose the initial consistent estimates, which may be either NL2SLS esti-
mates or systems estimates based on (18.81), are denoted θ́. Then a first-order
Taylor-series approximation to fi(θ) ≡ fi(Y ,X,θ) around θ́ is

fi(θ́) + Fi(θ́)(θ − θ́),

where Fi is an n×p matrix of the derivatives of fi(θ) with respect to the p ele-
ments of θ. If certain parameters do not appear in the ith equation, the corre-
sponding columns of Fi will be identically zero. The one-step estimates, which
will be asymptotically equivalent to NL3SLS estimates, are simply θ̀ = θ́ − t́,
where t́ denotes the vector of linear 3SLS estimates

t́ =

[
g∑

i=1

g∑
j=1

σ́ijF́i
>PW F́j

]−1[ g∑
i=1

g∑
j=1

σ́ijF́i
>PW f́j

]
. (18.83)

Compare expression (18.64), for the case with no cross-equation restrictions.

It is clear that NL3SLS can be generalized to handle heteroskedasticity of
unknown form, serial correlation of unknown form, or both. For example, to
handle heteroskedasticity one would simply replace the matrix PW in (18.82)
and (18.83) by the matrix

W
(
W>ΏijW

)−1
W>,

where, by analogy with (18.76), Ώij = diag(útiútj) for i, j = 1, . . . , g. The
initial estimates θ́ need not take account of heteroskedasticity. For a more
detailed discussion of this sort of procedure, and of NL3SLS in general, see
Gallant (1987, Chapter 6).
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The other full-systems estimation method that is widely used is nonlinear
FIML. For this, it is convenient to write the equation system to be estimated
not as (18.79) but rather as

ht(Yt,Xt,θ) = Ut, Ut ∼ NID(0,Σ), (18.84)

where θ is still a p--vector of parameters, ht is a 1 × g vector of nonlinear
functions, and Ut is a 1 × g vector of error terms. There need be no conflict
between (18.79) and (18.84) if we think of the ith element of ht(·) as being
the same as the tth element of fi(·).

The density of the vector Ut is

(2π)−g/2|Σ|−1/2 exp
(
− 1−

2
UtΣ

−1Ut
>
)
.

To obtain the density of Yt, we must replace Ut by ht(Yt,Xt,θ) and multiply
by the Jacobian factor |detJt|, where Jt ≡ ∂ht(θ)/∂Yt, that is, the g × g
matrix of derivatives of ht with respect to the elements of Yt. The result is

(2π)−g/2|detJt||Σ|−1/2 exp
(
− 1−

2
ht(Yt,Xt,θ)Σ−1ht

>(Yt,Xt,θ)
)
.

It follows immediately that the loglikelihood function is

`(θ,Σ) = − ng−−
2

log(2π) +
n∑

t=1

log |detJt| − n−
2

log |Σ|

− 1−
2

n∑
t=1

ht(Yt,Xt,θ)Σ−1ht
>(Yt,Xt,θ).

(18.85)

This may then be maximized with respect to Σ and the result substituted
back in to yield the concentrated loglikelihood function

`c(θ) = − ng−−
2

(
log(2π) + 1

)
+

n∑
t=1

log |detJt|

− n−
2

log
∣∣∣ 1−n n∑

t=1

ht
>(Yt,Xt,θ)ht(Yt,Xt,θ)

∣∣∣. (18.86)

Inevitably, there is a strong resemblance between (18.85) and (18.86) and their
counterparts (18.28) and (18.30) for the linear case. The major difference is
that the Jacobian term in (18.85) and (18.86) is the sum of the logs of n dif-
ferent determinants. Thus every time one evaluates one of these loglikelihood
functions, one has to calculate n different determinants. This can be very
expensive if g or n is large. Of course, the problem goes away if the model is
linear in the endogenous variables, since Jt will then be the same for all t.
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One difficulty with nonlinear FIML is that it is not clear how to test
all the overidentifying restrictions or even just what they may be in many
cases. In the case of a linear simultaneous equations model, any structural
form imposes nonlinear restrictions on the unrestricted reduced form, and it
is easy to test those restrictions by means of an LR test. In the case of a
simultaneous equations model that is nonlinear in the endogenous variables,
however, we generally cannot even write down the URF, let alone estimate it.
Any restriction that one can write down, whether a cross-equation restriction
or a restriction on an individual equation, can of course be tested by using
any of the classical tests. But there will in general be no way to test all the
overidentifying restrictions at once. There is a related problem with NL3SLS
estimation, of course. Even though the minimized value of the criterion func-
tion (18.82) provides a test statistic, it does so only for the overidentifying
restrictions associated with a particular matrix of instruments W, which may
not provide a good approximation to the true, unknown URF.

The relationship between nonlinear FIML and NL3SLS is not as sim-
ple as the relationship between linear FIML and 3SLS. The two nonlinear
methods will be asymptotically equivalent whenever the model is linear in the
endogenous variables. They will not be equivalent in general, however. When
they are not equivalent, nonlinear FIML will be more efficient, asymptotic-
ally, than NL3SLS. However, this greater efficiency comes at a price. When
nonlinear FIML and NL3SLS are not asymptotically equivalent, the former
may be inconsistent if the error terms are not in fact distributed as multi-
variate normal. In contrast, as we have seen, the assumption of normality is
not needed for linear FIML to be consistent. For more on these points, see
Amemiya (1977) and Phillips (1982). Amemiya (1985, Chapter 8) and Gal-
lant (1987, Chapter 6) provide more detailed treatments of nonlinear FIML
than we do.

There is a fairly large literature on the computation of nonlinear FIML
estimates. As usual, many different algorithms can be used to maximize
the loglikelihood function or the concentrated loglikelihood function, some
of which take advantage of special features of particular classes of model.
References include Eisenpress and Greenstadt (1966), Chow (1973), Dagenais
(1978), Belsley (1979, 1980), Fair and Parke (1980), Parke (1982), and Quandt
(1983).

18.8 Conclusion

It may strike some readers as curious that we have covered a topic as im-
portant as the simultaneous equations model so late in this book. We did of
course cover some aspects of the subject in Chapter 7, as part of our discus-
sion of instrumental variables. The reason we did not attempt a full treatment
earlier in the book is that we wanted readers to have obtained a clear under-
standing of maximum likelihood estimation and specification testing and of
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the generalized method of moments. This then allowed us to develop all of
the estimation methods and tests discussed in this chapter as straightforward
applications of ML and GMM. Once one recognizes that this is the case, it
is very much easier to understand simultaneous equations models and the
statistical techniques associated with them.

Terms and Concepts

cross-equation restrictions

endogenous variable

excluded variable

exogeneity

exogenous variable

full-information maximum likelihood
(FIML)

Granger causality

Granger noncausality

H3SLS estimator

included variable

K-class estimator

least variance ratio estimates

limited-information maximum
likelihood (LIML)

linear simultaneous equations model

nonlinear FIML

nonlinear simultaneous equations
model

nonlinear three-stage least squares
(NL3SLS)

nonlinear two-stage least squares
(NL2SLS)

nuisance parameter
order condition for identification
overidentifying restrictions
parameters of interest
partial loglikelihood function
predetermined variable
rank condition for identification
recursive systems
restricted reduced form (RRF)
simultaneous equations models
strict exogeneity
strong exogeneity
super exogeneity
three-stage least squares (3SLS)
unrestricted reduced form (URF)
weak exogeneity



Chapter 19

Regression Models for

Time-Series Data

19.1 Introduction

A great deal of applied econometric work uses time-series data, and there are
numerous econometric problems uniquely associated with the use of this type
of data. One of these is serial correlation, which we discussed at length in
Chapter 10. In this chapter and its successor, we discuss some other problems
that are frequently encountered when using time-series data and some of the
methods designed to handle them. In Section 19.2, we discuss the problem of
“spurious” regressions between economic time series. This section introduces
some important concepts that will be taken up again in Chapter 20, where we
discuss unit roots and cointegration. Section 19.3 deals with the estimation
of distributed lags. Section 19.4 deals with dynamic regression models, in
which one or more lags of the dependent variable appear among the regressors.
Section 19.5 discusses the estimation of vector autoregressive models for multi-
variate time series. The final two sections deal with seasonality. Section 19.6
provides an introduction to seasonal adjustment procedures, and Section 19.7
discusses various ways of modeling seasonal variation in regression models.

19.2 Spurious Regressions

Many economic time series trend upward over time. This is certainly true
of most series that measure, or are measured in terms of, nominal prices, at
least for this century. It is also true of many series that measure the levels of
real economic variables, such as consumption, output, investment, imports,
or exports. Many trending series can be broadly characterized by one of the
following two models:

yt = γ1 + γ2t+ ut and (19.01)

yt = δ1 + yt−1 + ut, (19.02)

where the error terms ut will, in general, be neither independent nor identically
distributed. They will, however, be stationary if the model is appropriate for
the time series in question. The first of these models, (19.01), says that yt is

669
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trend-stationary, that is, stationary around a trend. In contrast, the second
model, (19.02), says that yt follows a random walk with drift. The drift
parameter δ1 in (19.02) plays much the same role as the trend parameter γ2
in (19.01), since both cause yt to trend upward over time. But the behavior
of yt is very different in the two cases, because in the first case detrending it
will produce a variable that is stationary, while in the second case it will not.

There has been a great deal of literature on which of these two models,
the trend-stationary model (19.01) or the random walk with drift (19.02),
best characterizes most economic time series. Nelson and Plosser (1982) is a
classic paper, Campbell and Mankiw (1987) is a more recent one, and Stock
and Watson (1988a) provides an excellent discussion of many of the issues.
In the next chapter we will discuss some of the methods that can be used
to decide whether a given time series is well characterized by either of these
models. For now, what concerns us is what happens if we use time series
that are described by either of these two models as dependent or independent
variables in a regression model.

If a time series with typical element xt trends upward forever, then
n−1

∑n
t=1 x

2
t will diverge to +∞. Thus, if such a series is used as a regressor

in a linear regression model, the matrix n−1X>X cannot possibly tend to a
finite, positive definite matrix. All of the asymptotic theory we have used in
this book is therefore inapplicable to models in which any of the regressors is
well characterized by (19.01) or (19.02).1 This does not mean that one should
never put a trending variable on the right-hand side of a linear or nonlinear
regression. Since the samples we actually observe are finite, and often quite
small, we can never be sure that a series will trend upward forever. Moreover,
the desirable finite-sample properties of least squares regression hold whether
or not the regressors trend upward. But if we wish to rely on conventional
asymptotic theory, it would seem to be prudent to specify our models so that
strongly trending variables do not appear on the right-hand side. This in
turn means that the dependent variable cannot be strongly trending. The
most common approach is to take first differences of all such variables before
specifying the model.

One compelling reason for taking first differences of trending variables
is the phenomenon of spurious regression. It should be obvious that if two
variables, say yt and xt, both trend upward, a regression of yt on xt is very

1 The fact that standard asymptotic theory is inapplicable to such models does
not mean that no such theory applies to them. For example, we studied a
simple model of regression on a linear trend in Section 4.4 and found that the
least squares estimator of the coefficient on the trend term was consistent, but
with a variance that was O(n−3) instead of the more conventional O(n−1).
Moreover, since there exist CLTs that apply to such models, the usual proce-
dures for inference are asymptotically valid. For example, if ut ∼ IID(0, σ2)
and Sn ≡ n−3/2

∑n
t=1 tut, then Sn tends in distribution to N(0, σ2/3). Notice

that the normalizing factor here is n−3/2 rather than n−1/2.
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likely to find a “significant” relationship between them, even if the only thing
they have in common is the upward trend. In fact, the R2 for a regression
of yt on xt and a constant will tend to unity as n→∞ whenever both series
can be characterized by (19.01), even if there is no correlation at all between
the stochastic parts of yt and xt. Readers may find it illuminating to prove
this result and are advised to look at Section 4.4 for some useful results.

It is intuitively very plausible that we should observe apparently signif-
icant, but actually spurious, relationships between unrelated variables that
both trend upward over time. Granger and Newbold (1974) discovered what
appears at first to be a much more surprising form of spurious regression.
They considered time series which are generated by random walks without
drift, that is, series generated by a process like yt = yt−1 + ut. What they
found, by Monte Carlo experiment, is that if xt and yt are independent ran-
dom walks, the t statistic for β = 0 in the regression

yt = α+ βxt + ut (19.03)

rejects the null hypothesis far more often than it should and tends to reject
it more and more frequently the larger is the sample size n. Subsequently,
Phillips (1986) proved that this t statistic will reject the null hypothesis all
the time, asymptotically.

Some Monte Carlo results on spurious regressions are shown in Table 19.1.
Each column shows the proportion of the time, out of 10,000 replications, that
the t statistic for β = 0 in some regression rejected the null hypothesis at the
5% level. For column 1, the regression is (19.03), and both xt and yt are
generated by independent random walks with n.i.d. errors. For column 2,
xt and yt are the same as for column 1, but a lagged dependent variable is
added to the regression. For columns 3 and 4, the regression is simply (19.03)
again. For column 3, both xt and yt are generated by independent random
walks with drift, the drift parameter δ1 being one-fifth the size of the standard
error σ (this ratio is the only parameter that affects the distribution of the
t statistic). For column 4, both xt and yt are independent trend-stationary
series, with the trend coefficient γ2 being 1/25 the size of σ.

The results in columns 3 and 4 of the table are not very surprising, since
xt and yt are both trending upward. The only interesting thing about these
results is how rapidly the number of rejections increases with the sample size.
This is a consequence of the fact that, in both these cases, the amount of
information in the sample is increasing at a rate faster than n. It is evidently
increasing faster in the trend case than in the case of the random walk with
drift.

In contrast, the results in columns 1 and 2 of the table may be surprising.
After all, xt and yt are totally independent series, and neither contains a trend.
So why do we often — very often indeed for large sample sizes — find evidence
of a relationship when we regress yt on xt? One answer should be obvious to
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Table 19.1 Spurious Rejections and Sample Size

n Random Walk Lag Added Drift Trend

25 0.530 0.146 0.645 0.066
50 0.662 0.154 0.825 0.431
75 0.723 0.162 0.905 0.987

100 0.760 0.162 0.945 1.000
250 0.847 0.169 0.997 1.000
500 0.890 0.167 1.000 1.000
750 0.916 0.170 1.000 1.000

1000 0.928 0.169 1.000 1.000
2000 0.947 0.168 1.000 1.000

everyone who has read Chapter 12. The significant t statistics are not telling
us that β 6= 0 in (19.03), since that is an incorrect model. They are simply
telling us that the null hypothesis, which is (19.03) with β = 0, is false. It
is false because, if yt is generated by a random walk, then yt is certainly not
equal to a constant plus a stationary error term. Thus, when we test the null
hypothesis, even against an alternative that is also false, we often reject it.

This intuitive explanation is not entirely satisfactory, however. Standard
asymptotic analysis does not apply here, because if yt is generated by a ran-
dom walk, n−1

∑n
t=1 y

2
t diverges. Therefore, the analysis of Chapter 12 is

not appropriate. Moreover, the intuitive explanation does not explain why,
for large enough sample sizes, there always appears to be a relationship be-
tween yt and xt. One might well think that since the processes generating xt
and yt are independent, any correlation between them should vanish asymp-
totically, but that is apparently not happening here. To explain these results
requires nonstandard asymptotic analysis of a type that we will discuss in the
next chapter. Phillips (1986) is the classic reference and Durlauf and Phillips
(1988) provides further results.

The fact that (19.03) is a misspecified model is clearly not the whole
story, as the results in column 2 make clear. These results are for the model

yt = δ1 + βxt + δ2yt−1 + ut,

which includes the DGP as a special case when δ2 = 1 and the other two
parameters equal 0. Nevertheless, the null hypothesis that β = 0 is rejected
about three times as often as it should be, and there is absolutely no indi-
cation that this tendency to overreject declines as the sample size increases.
The t statistic overrejects in this case because it is not asymptotically dis-
tributed as N(0, 1). Since both the regressors here are generated by random
walks, the matrix n−1X>X does not tend to a finite, positive definite matrix,
and standard asymptotic theory does not apply. As we will see in the next



19.3 Distributed Lags 673

chapter, there are many cases like this one, in which t statistics follow non-
standard distributions asymptotically. These distributions are at the present
time generally calculated by means of Monte Carlo experiments.

A series that follows a random walk, with or without drift, is often said to
be integrated of order one, or I(1) for short. The idea behind this terminology
is that the series must be differenced once in order to make it stationary.
Thus a stationary series may be said to be I(0). In principle, a series could
be integrated of other orders as well. One might occasionally run into a series
that is I(2), and if one mistakenly differences a series that is I(0), the result
will be I(−1). However, the vast majority of the time, applied econometricians
deal with time series that are either I(0) or I(1). If a series is initially I(1),
it may be differenced once to make it I(0). How to decide whether or not a
series needs to be differenced will be discussed at length in the next chapter.

In the remainder of this chapter, we will assume that all series are I(0)
and do not contain any nonstochastic trends. These assumptions ensure that
neither spurious regression nor nonstandard asymptotics will be a problem.
They may seem to be heroic assumptions, however. Luckily, the techniques
to be discussed in the next chapter do make it feasible to ensure that these
assumptions are not grossly violated in practice.

19.3 Distributed Lags

It is often the case that a dependent variable yt is thought to depend on
several current and lagged values of an independent variable xt. One way to
model this type of dependence is to use a distributed lag model such as

yt = α+

q∑
j=0

βjxt−j + ut, ut ∼ IID(0, σ2), (19.04)

where the constant term α and the coefficients βj are to be estimated. Here
the integer q is the length of the longest lag; in some cases, it makes sense to
think of q as being infinite, but for the moment we will assume that it is finite.
The regression function might well depend on other independent variables as
well, of course, but we ignore that possibility to keep the notation simple.

The obvious problem with a model like (19.04) is that, because xt will
often be highly correlated with xt−1, xt−2, and so on, least squares estimates
of the coefficients βj will tend to be quite imprecise. Numerous ways to handle
this problem have been proposed, and we will discuss some of these shortly.
The first thing to recognize, however, is that it may not be a problem at all.
Often, interest centers not on the individual coefficients but on their sum, γ
say, which measures the long-run effect on yt of a given change in xt. Even
when the individual βj ’s are estimated very imprecisely, their sum may be
estimated with sufficient precision.
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Let V (β̂) denote the covariance matrix of the vector of least squares
estimates β̂ with typical element β̂j . Then, if γ̂ denotes the sum of the β̂j ’s,
the variance of γ̂ is

V (γ̂) = ι>V (β̂)ι =

q∑
j=0

V (β̂j) + 2

q∑
j=1

j−1∑
k=0

Cov(β̂j , β̂k). (19.05)

If xt−j is positively correlated with xt−k for all j 6= k, the covariance terms
in (19.05) will usually be negative. When they are large and negative, as is
often the case, V (γ̂) may be much smaller than the sum of the V (β̂j)’s or,
indeed, than any individual V (β̂j).

If the parameter of interest is γ rather than the individual βj ’s, the easiest
approach is simply to estimate a reparametrized version of (19.04) by least
squares. This reparametrized version is

yt = α+ γxt +

q∑
j=1

βj(xt−j − xt) + ut. (19.06)

It is easy to verify that the coefficient γ on xt in (19.06) is indeed equal to the
sum of the βj ’s in (19.04). The advantage of this reparametrization is that
the standard error of γ̂ is immediately available from the regression output.

If interest does center on the individual βj ’s, collinearity becomes more
of a problem. Many ways of tackling this problem have been proposed. Some
of them involve imposing restrictions on the parameters of (19.04), while oth-
ers involve estimating models in which one or more lags of the dependent
variable appear among the regressors. The latter approach is fundamentally
different from the former and will be discussed in the next section. The most
popular example of the former approach is to use what are called polynomial
distributed lags, or PDLs. These are also sometimes called Almon lags after
the article in which they were first proposed, Almon (1965).

In a polynomial distributed lag, the coefficients βj of (19.04) are all re-
quired to lie on a polynomial of some degree d. This polynomial may or may
not be subject to further restrictions, such as end-point restrictions. As a sim-
ple example, if the polynomial were of degree two, with no further restrictions
imposed on it, we would have

βj = η0 + η1j + η2j
2 for j = 0, . . . , q. (19.07)

Provided that q > 2, there will be fewer parameters ηi than βj . Thus we see
that (19.07) imposes q − 2 restrictions on the βj ’s.

Estimation of a model subject to the restrictions imposed by a PDL is
conceptually straightforward. For example, to estimate (19.04) subject to
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(19.07), we would simply substitute η0 + η1j+ η2j
2 for each of the βj ’s in the

former. This would yield

yt = α+ η0

q∑
j=0

xt−j + η1

q∑
j=0

jxt−j + η2

q∑
j=0

j2xt−j + ut

= α+ η0zt0 + η1zt1 + η2zt2 + ut.

(19.08)

This is just a linear regression model, with three new regressors zti that are
transformations of the original q + 1 regressors, in addition to the constant
term. This is an example of a PDL(q, 2) model. For a more general PDL(q,d)
model, which must always have d < q, there would be d+ 1 regressors.

The restrictions that (19.07) imposes on the βj ’s are simply linear re-
strictions. Solving (19.07), we find that

−β3 + 3β2 − 3β1 + β0 = 0,

−β4 + 3β3 − 3β2 + β1 = 0,

−β5 + 3β4 − 3β3 + β2 = 0, and so on.

These restrictions can be rewritten as Rβ = 0, where in this case the matrix
R would be

R =


1 −3 3 −1 0 · · · 0 0 0 0
0 1 −3 3 −1 · · · 0 0 0 0
...

...
...

...
...

...
...

...
...

0 0 0 0 0 · · · 1 −3 3 −1

.
Since the restrictions are linear, they can easily be tested. Either an ordinary
F test or its heteroskedasticity-robust equivalent (see Section 11.6) can be
used. The restricted model is (19.08), the unrestricted model is (19.04), and
the number of restrictions is in this case q−2. More generally, for a PDL(q, d)
model there will be q − d restrictions.

One should always test the restrictions imposed by any sort of PDL before
even tentatively accepting a model that incorporates those restrictions. These
restrictions are of two sorts. First, there is the restriction that the length
of the longest lag is no more than q. Second, there are whatever further
restrictions are imposed by the PDL. For a given q, reducing the degree of the
polynomial from d to d−1 results in a more restrictive model. However, for a
given degree of polynomial, reducing q simply results in a different, nonnested,
model, which may fit better or worse. Thus we can test a PDL(q, d) model
against a PDL(q, d + 1) model using an ordinary F test, but we cannot test
a PDL(q, d) model against a PDL(q+ 1, d) model in the same way. The best
approach is probably to settle the question of lag length first, by starting
with a very large value of q and then seeing whether the fit of the model
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deteriorates significantly when it is reduced, without imposing any restrictions
on the shape of the distributed lag. After q has been determined, one can
then attempt to determine d, once again starting with a large value and then
reducing it. An excellent empirical example is Sargan (1980c). Specifying the
final model in this way is an example of pretesting, which we discussed in
Section 3.7; see Trivedi (1978).

Most econometrics packages allow users to specify models that include
PDLs and to estimate such models using OLS, IV, and sometimes other forms
of estimation. These implementations are typically a good deal more sophis-
ticated than our discussion so far may suggest. For example, they often allow
the investigator to specify additional restrictions on the shape of the lag, such
as restrictions that βq = 0. More important, good packages use more so-
phisticated types of polynomials than the ordinary ones we have described.
The problem with the latter is that the variables zti tend to be very highly
correlated with each other. This can result in the X>X matrix being nu-
merically singular. By using other types of polynomials, such as orthogonal
polynomials, one can greatly reduce this correlation and thus eliminate this
type of numerical problem. References include Cooper (1972b), Trivedi and
Pagan (1979), Sargan (1980c), and Pagano and Hartley (1981).

An interesting variant of the PDL approach was suggested by Shiller
(1973). As we have seen, the restrictions imposed by a PDL can always be
written as Rβ = 0 for some suitably defined r × k matrix R. Here r = q − d
and k is the number of elements of β, which will generally be greater than q+1
if there are regressors besides the constant and the lags of xt. Shiller suggested
that, instead of requiring these restrictions to hold exactly, we should merely
require that they hold approximately. Thus, instead of stipulating that each
row of Rβ should equal zero, he proposed that it should equal a random
variable with mean zero and some specified variance. One advantage of this
approach is that d can be quite low without imposing overly strong restrictions
on the data. Since the estimates do not have to conform exactly to the shape
of the assumed polynomial, d = 2 is generally adequate.

This type of restriction is called a stochastic restriction, because it is not
expected to hold exactly. Stochastic restrictions are very different from any
other type of restriction that we have discussed. In many cases, they seem
quite plausible, in contrast to exact restrictions, which often seem excessively
strong. In the PDL case, for example, it is surely implausible that the βj ’s
should actually lie on a polynomial of any given degree but quite plausible that
they should lie reasonably close to such a polynomial. It is conceptually, but
not always computationally, easy to deal with stochastic restrictions, or any
sort of stochastic prior information, if one adopts the viewpoint of Bayesian
statistics; see Zellner (1971) and Drèze and Richard (1983). In contrast, it
is computationally, but not conceptually, easy to deal with them if one stays
within the classical framework. We will do the latter, discussing computation
and avoiding discussion of the conceptual difficulties.
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The estimation technique that Shiller suggested using is a special case of
what Theil and Goldberger (1961) and Theil (1963) called mixed estimation.
Mixed estimation is a very simple way to combine sample information with
stochastic prior information. It can be thought of as an approximation to
a full-fledged Bayesian estimation procedure. The easiest situation in which
to justify mixed estimation is one in which, before we undertook to estimate
some model, we had previously obtained estimates of one or more parameters
of the model, using an entirely independent data set. For simplicity, suppose
that the model to be estimated is the linear regression model

y = Xβ + u, u ∼ IID(0, σ2
u I), (19.09)

where β is a k--vector. Suppose further that a vector of prior estimates β̌ is
available, along with their true covariance matrix V (β̌). We can write the
relationship between these estimates and the unknown parameter vector β as

β̌ = β + v, E(vv>) = V (β̌) ≡ η−1(η>)−1. (19.10)

The right-hand side of this expression for the covariance matrix uses a stan-
dard result on positive definite matrices, first encountered in Chapter 9. If we
premultiply both sides of (19.10) by the k × k matrix η, the result is

ηβ̌ = ηβ + e, E(ee>) = I. (19.11)

This looks like a linear regression with k observations and k independent vari-
ables. The regressand is ηβ̌, the matrix of regressors is η, and the covariance
matrix of the error terms is I.

It should now be easy to see how we can use the information in β̌ to
improve our estimates of β. We simply have to estimate a single GLS regres-
sion with n+ k observations, n of them corresponding to the observations in
our sample and k of them corresponding to (19.11). This regression can be
written as [

y

σuηβ̌

]
=

[
X
σuη

]
β +

[
u
σue

]
. (19.12)

The errors of this regression are i.i.d. with variance σ2
u . Regression (19.12)

assumes that we know σu, since we have to multiply the last k observations
by it in order to ensure that they are given the right weight relative to the
first n observations. Asymptotically, of course, we will get the same results if
we use any consistent estimate of σu.

In this example, mixed estimation is not very controversial. It is simply a
convenient way to take account of previous estimates while utilizing a new set
of data. In the distributed lag case, however, the prior information about β
does not come from previous estimation. Instead, it is a set of stochastic
restrictions, which Shiller called a smoothness prior because it reflects the
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belief that the coefficients βj of a distributed lag should vary smoothly as a
function of j. These restrictions may seem reasonable to the investigator, but
they are not based on data. In the general case, we can write the stochastic
restrictions as

Rβ = v, v ∼ N(0, σ2
v I). (19.13)

This formulation allows for a wide variety of stochastic linear restrictions on
β and includes, as a special case, the imposition of smoothness priors on the
coefficients of a distributed lag. The matrix R is r×k and, in the smoothness
prior case, it will have r = q − d rows.

In order to estimate (19.09) while imposing the stochastic restrictions
(19.13), we simply rewrite the latter as 0 = Rβ + v, as we did in (19.12).
The restrictions then look like observations of a regression. Next, we stack
the actual observations on top of the artificial ones. This yields[

y

0

]
=

[
X

R

]
β +

[
u
v

]
. (19.14)

In effect, what we have done is to add r extra observations to the original data
set. The variance of the “error terms” associated with these extra observations
is σ2

v , while the variance of the genuine error terms is σ2
u .

Let us now make the definition λ ≡ σu/σv. If λ were known, GLS esti-
mation of (19.14) would be equivalent to OLS estimation of the model[

y

0

]
=

[
X

λR

]
β +

[
u

λv

]
. (19.15)

The OLS estimate of β from (19.15) is

β̃ =
(
X>X + λ2R>R

)−1
X>y.

This expression is simple to compute and simple to understand. As σv →∞,
λ → 0 and β̃ → β̂. Thus, as the amount of information embodied in the
stochastic restrictions goes to zero, the mixed estimates β̃ tend to the OLS
estimates β̂. At the other extreme, as σv → 0, λ → ∞ and β̃ converges to
a set of estimates which satisfy the restrictions Rβ = 0. The latter result
is easily seen. Since r < k, it is always possible to make the last r rows
of (19.15) fit perfectly by choosing β̃ to satisfy the restrictions exactly. As
λ→∞, the SSR for (19.15) will become infinitely large if the last r rows do
not fit perfectly. To avoid this, the least squares procedure will ensure that
they do fit perfectly. Thus, as can be shown using tedious matrix algebra, the
limit of β̃ as λ→∞ is precisely the least squares estimator that results from
imposing the restrictions exactly.

The major problem with this procedure is that λ will never be known.
Even if one is willing to specify σv a priori, something that may not be easy to
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do, σu still has to be estimated. There are various ways around this problem —
see Shiller (1973) and Taylor (1974) — but none of them is entirely satisfactory.
Essentially, one has to estimate σu from the unrestricted estimation of (19.09),
either assume a value for σv or estimate σv from the unrestricted estimates
of β, and then construct an estimate of λ. This turns the mixed estimation
procedure into a form of feasible GLS. Asymptotically, it will yield the same
estimates as if λ were known, but its finite-sample performance may not be
as good.

One should always test stochastic restrictions before accepting estimates
based on them. Since imposing such restrictions is equivalent to adding phony
observations, the obvious way to test them is to use a standard test for the
equality of two sets of regression coefficients (Section 11.2). We can think of
(19.15) as a model for the entire (augmented) sample, with β restricted to
be the same for the first n and remaining r observations. Estimating (19.15)
yields the restricted sum of squared residuals RSSR needed to construct an F
test. Since r < k, any attempt to estimate the parameters using the second
subsample alone will yield estimates that fit perfectly. Thus the unrestricted
sum of squared residuals USSR needed to construct an F statistic is simply
the sum of squared residuals from OLS estimation of (19.09). The number of
degrees of freedom for the test is r, and so the F statistic is just

(RSSR−USSR)/r

USSR/(n− k)
.

Of course, one could use some other form of test statistic, such as one based
on the HRGNR (11.66), instead of an F statistic. If the test rejects the
null hypothesis that β is the same for both the sample observations and the
phony ones, one should either increase σv or change the form of the matrix R,
probably by increasing d.

Although polynomial distributed lags, whether imposed as exact restric-
tions or as stochastic ones, can be useful when a model like (19.04) is ap-
propriate, such models are very often not appropriate. The problem is that
(19.04) is not a dynamic model. Although yt depends on lagged values of xt,
it does not depend on lagged values of itself. As a consequence, only the
current value of the error term ut affects yt. But if the error term is thought
of as reflecting the combined influence of many variables that are unavoid-
ably omitted from the regression, this should seem strange. After all, if xt
affects yt via a distributed lag, why should not the variables that are relegated
to the error term do likewise? This argument suggests that the error terms
in a model like (19.04) may often be serially correlated. Of course, one can
then proceed to model the ut’s as following some sort of ARMA process. But
a better approach will often be to respecify the original model. We consider
how to do so in the next section.
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19.4 Dynamic Regression Models

Any regression model in which the regression function depends on lagged val-
ues of one or more dependent variables is called a dynamic model. The only
dynamic models that we have discussed so far are models with serially corre-
lated errors (Chapter 10); after transformation, models with AR or MA errors
involve lags of the dependent variable. These models may seem somewhat ar-
tificial, but dynamic models can arise for many other reasons.

One simple and commonly encountered dynamic model is the partial
adjustment model, which has a long history in economics dating back at least
as far as Nerlove (1958). Suppose that the desired level of some economic
variable yt is y∗t , which is assumed to be related to a vector of exogenous
variables Xt as follows:

y∗t = Xtβ
∗ + et. (19.16)

Because of some sort of adjustment costs, agents cannot set yt equal to y∗t
in every period. Instead, yt is assumed to adjust toward y∗t according to the
equation

yt − yt−1 = (1− δ)(y∗t − yt−1) + vt. (19.17)

Solving (19.16) and (19.17) for yt, we find that

yt = yt−1 − (1− δ)yt−1 + (1− δ)Xtβ
∗ + (1− δ)et + vt

= Xtβ + δyt−1 + ut,
(19.18)

where β ≡ (1 − δ)β∗ and ut ≡ (1 − δ)et + vt. If we wish to estimate β∗, we
can easily solve for it from the OLS estimates of β and δ.

The partial adjustment model makes sense only if 0 < δ < 1 and if,
in addition, δ is not too close to 1, since otherwise the implied speed of
adjustment becomes implausibly slow. Equation (19.18) can be solved for yt
as a function of current and lagged values of Xt and ut. The result is

yt =

∞∑
j=0

δ j(Xt−jβ + ut−j). (19.19)

Thus this model corrects a major deficiency that we previously identified in
distributed lag models: yt now depends on lagged values of the error terms ut
as well as on lagged values of the exogenous variablesXt. Notice that the solu-
tion in (19.19) depends on the assumption that |δ| < 1, which is a stationarity
condition for this model.

The partial adjustment model is only one of many economic models that
can be used to justify the inclusion of one or more lags of the dependent
variables in regression functions. Numerous others are discussed in Dhrymes
(1971) and Hendry, Pagan, and Sargan (1984). We will not attempt to discuss
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any of these. Instead, we will focus on some of the general issues that arise
when one attempts to specify and estimate dynamic regression models.

One problem that arises whenever the X matrix includes lagged depen-
dent variables is that OLS will not yield unbiased estimates. This problem
arises because X is a stochastic matrix, some elements of which are correlated
with some elements of u. Thus

E
(
(X>X)−1X>u

)
6=
(
X>X

)−1
X>E(u).

The easiest way to see this is to consider a very simple example. Suppose that

yt = βyt−1 + ut, |β| < 1, ut ∼ IID(0, σ2). (19.20)

The OLS estimate of β is

β̂ =

∑n
t=2 ytyt−1∑n
t=2 y

2
t−1

. (19.21)

If we substitute (19.20) into (19.21), we find that

β̂ =
β
∑n

t=2 y
2
t−1 +

∑n
t=2 utyt−1∑n

t=2 y
2
t−1

= β +

∑n
t=2 utyt−1∑n
t=2 y

2
t−1

. (19.22)

The second term on the right-hand side of (19.22) does not have expectation
zero, because the numerator and denominator are not independent. Finding
its expectation is not at all easy. Thus we conclude that in this model, and in
all models in which there are lagged dependent variables, the OLS estimator
is biased.

Of course, the OLS estimator β̂ is consistent, as previous results have
shown (Section 5.3). If we divide both the numerator and the denominator of
the random term on the right-hand side of (19.22) by n and take probability
limits, we find that

plim
n→∞

β̂ = β +
plimn→∞

(
n−1

∑n
t=2 utyt−1

)
plimn→∞

(
n−1

∑n
t=2 y

2
t−1
) = β.

The plim in the numerator here is zero. This follows from the facts that
E(utyt−1) = 0, which implies that n−1

∑n
t=2 utyt−1 is just the mean of n

quantities that have expectation zero, and that these quantities have finite
variance, which they do because |β| < 1 implies that the process generating
the yt’s is stationary. The plim in the denominator is finite, which again
requires stationarity, and so the ratio of the two plims is zero.

Even in a very simple model like (19.20), the finite-sample properties
of the OLS estimator β̂ are quite difficult to work out analytically and will
depend on the (unknown) value of β; we will present some Monte Carlo results
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in Chapter 21. In more complicated models, investigators have little choice but
to rely on asymptotic theory. This is usually not a bad thing to do, although
there is obviously a risk that incorrect inferences will be drawn, especially
when the sample size is small or the model is close to being nonstationary.

We now consider a broad class of dynamic linear regression models that
can be very useful in practice. These models have a single dependent vari-
able yt and, for simplicity of notation, a single independent variable xt. An
autoregressive distributed lag, or ADL, model can be written as

yt = α+

p∑
i=1

βiyt−i +

q∑
j=0

γjxt−j + ut, ut ∼ IID(0, σ2) (19.23)

or, using lag-operator notation, as

A(L,β)yt = α+B(L,γ)xt + ut, ut ∼ IID(0, σ2).

Here A(L,β) and B(L,γ) denote polynomials in the lag operator with co-
efficients β and γ, respectively. Because there are p lags on yt and q lags
on xt, this is sometimes called an ADL(p, q) model. If there are additional
independent variables, as will frequently be the case, they would appear as
additional regressors in (19.23).

A simple, but widely encountered, special case of (19.23) is the ADL(1, 1)
model

yt = α+ β1yt−1 + γ0xt + γ1xt−1 + ut. (19.24)

Because most results that are true for the ADL(1,1) model are also true, with
obvious modifications, for the more general ADL(p, q) model, we will for the
most part confine our discussion to this special case.

Many commonly encountered models for time series are special cases
of the ADL(1, 1) model. A static regression model is a special case with
β1 = γ1 = 0, a univariate AR(1) model is a special case with γ0 = γ1 = 0, a
partial adjustment model is a special case with γ1 = 0, a static model with
AR(1) errors is a special case with γ1 = −β1γ0, a model in first differences is
a special case with β1 = 1 and γ1 = −γ0, and so on. The ADL(1, 1) model
provides a natural alternative against which to test any of these special cases.
A test of the common factor restrictions implied by error terms that follow
an AR(1) process is an example of this; see Section 10.9.

Now let us see how xt affects yt in the long run in the ADL(1, 1) model.
Without the error terms, xt and yt would converge to steady-state long-run
equilibrium values x∗ and y∗ given by

y∗ = α+ β1y
∗ + γ0x

∗ + γ1x
∗.

Solving this for y∗ as a function of x∗ yields

y∗ =
α

1− β1
+
γ0 + γ1
1− β1

x∗ =
α

1− β1
+ λx∗.
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Thus we see that the long-run derivative of y∗ with respect to x∗ (this will be
an elasticity if both series are in logarithms) is

λ ≡ γ0 + γ1
1− β1

. (19.25)

Evidently, this result makes sense only if |β1| < 1, which, as one would expect,
is a stability condition for this model.

One interesting and important feature of ADL models is that they can
be rewritten in many different ways without affecting their ability to explain
the data or changing the least squares estimates of the coefficients of interest.
For example, (19.24) can be rewritten in all of the following ways:

∆yt = α+ (β1 − 1)yt−1 + γ0xt + γ1xt−1 + ut; (19.26)

∆yt = α+ (β1 − 1)yt−1 + γ0∆xt + (γ0 + γ1)xt−1 + ut; (19.27)

∆yt = α+ (β1 − 1)yt−1 − γ1∆xt + (γ0 + γ1)xt + ut; (19.28)

∆yt = α+ (β1 − 1)(yt−1 − xt−1) + γ0∆xt

+ (γ0 + γ1 + β1 − 1)xt−1 + ut; (19.29)

∆yt = α+ (β1 − 1)(yt−1 − λxt−1) + γ0∆xt + ut. (19.30)

Here ∆ is the first-difference operator: ∆yt ≡ yt − yt−1. In (19.30), λ is
the parameter defined in (19.25). The fact that (19.24) can be rewritten in
many different ways without changing the least squares parameter estimates is
often very convenient. For example, if one is interested in the sum of the γi’s,
estimates and standard errors can be obtained directly from OLS estimation
of (19.27) or (19.28), and if one is interested in λ, they can be obtained by
NLS estimation of (19.30).

The most interesting of the equivalent specifications (19.24) and (19.26)–
(19.30) is possibly (19.30), in which the model is written in what is called
its error-correction form. The parameter λ appears directly in this form
of the model. Although the error-correction form is nonlinear, estimation
is very easy because the model is just a linear model reparametrized in a
nonlinear way. The difference between yt−1 and λxt−1 measures the extent to
which the long-run equilibrium relationship between xt and yt is not satisfied.
Consequently, the parameter β1−1 can be interpreted as the proportion of the
resulting disequilibrium that is reflected in the movement of yt in one period.
In this respect, β1 − 1 is essentially the same as the parameter δ − 1 of the
partial adjustment model. The term (β1 − 1)(yt−1 − λxt−1) that appears in
(19.30) is often called an error-correction term, and a model such as (19.30)
is sometimes called an error-correction model, or ECM. Such models were
first used by Hendry and Anderson (1977) and Davidson, Hendry, Srba, and
Yeo (1978). We will discuss them at greater length in the next chapter.
Notice that the error-correction term is implicitly present in the various other
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forms of (19.24), since its coefficient can be recovered from all of them. Some
authors impose the restriction that λ = 1, which may be reasonable if xt
and yt are similar in magnitude. This is equivalent to the restriction that
β1 +γ0 +γ1 = 1 and may therefore be tested very easily by using the ordinary
t statistic on xt−1 in (19.29).

The key fact to remember when attempting to specify dynamic regres-
sion models is that there are generally a great many a priori plausible ways
to do so. It is a serious mistake to limit attention to one particular type
of model, such as distributed lag models or partial adjustment models. Be-
cause it includes so many other models as special cases, the ADL(p, q) family
of models will often provide a good place to start. In many cases, setting
p = q = 1 will be sufficiently general, but with quarterly data it may be wise
to start with p = q = 4. In order to obtain a reasonably parsimonious and
readily interpretable model, it will generally be necessary to impose a number
of restrictions on the initial ADL(p, q) specification. Because ADL models
can be written in so many different ways — recall (19.24) and (19.26) through
(19.30) — there are often many different restrictions that could be imposed.

Our discussion of dynamic regression models has been quite brief. For
more detailed treatments, see Hendry, Pagan, and Sargan (1984) or Banerjee,
Dolado, Galbraith, and Hendry (1993).

19.5 Vector Autoregressions

In Chapter 10, we introduced AR, MA, and ARMA models for univariate
time series. As one might expect, there exist multivariate versions of all
these models. We will not attempt to discuss vector moving average or vector
ARMA models, which can be quite complicated to deal with; see Fuller (1976)
or Harvey (1981, 1989). However, in this section, we will briefly discuss vector
autoregressive models, also known as vector autoregressions or VARs. These
constitute the easiest type of multivariate time series model to estimate, and
they have been widely used in economics in recent years.

Suppose that the 1 ×m row vector Yt denotes the tth observation on a
set of variables. Then a vector autoregressive model of order p, or VAR(p)
for short, can be written as

Yt = α+ Yt−1Φ1 + · · ·+ Yt−pΦp +Ut, Ut ∼ IID(0,Ω), (19.31)

where α is a 1 ×m row vector, and Φ1 through Φp are m ×m matrices of
coefficients to be estimated. If yti denotes the ith element of Yt and φj,ki
denotes the kith element of Φj , the ith column of (19.31) can be written as

yti = αi +

p∑
j=1

m∑
k=1

yt−j,kφj,ki + uti. (19.32)
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This is just a linear regression, in which yti depends on a constant term and
lags 1 through p of all of the m variables in the system. Thus (19.31) has the
form of an SUR system (Section 9.8).

Because exactly the same variables appear on the right-hand side of
(19.32) for all i, the OLS estimates for each equation are identical to the
GLS estimates for (19.31) as a whole. This is a consequence of Kruskal’s The-
orem, as we proved in Section 9.8. Thus it is very easy to estimate a VAR:
One simply applies OLS to each of the equations individually. Estimation can
be done very quickly if the software makes use of the fact that every equation
involves exactly the same set of regressors.

The use of VAR models has been advocated, most notably by Sims (1980),
as a way to estimate dynamic relationships among jointly endogenous variables
without imposing strong a priori restrictions. Empirical papers based on
this approach include Litterman and Weiss (1985) and Reagan and Sheehan
(1985). A major advantage of the approach is that the investigator does
not have to decide which variables are endogenous and which are exogenous.
Moreover, all the problems associated with simultaneous equations models
are avoided because VARs do not include any current variables among the
regressors. On the other hand, VARs tend to require the estimation of a
great many parameters, m + pm2 to be specific, and, as a result, individual
parameters often tend to be estimated quite imprecisely. We will return to
this point below.

Although the VAR model does not include current variables among the
regressors, contemporaneous correlations are implicitly accounted for by the
matrix Ω. This matrix is of interest for several reasons, not least because,
if the error terms are assumed to be normally distributed, the loglikelihood
function for the VAR(p) model (19.31), concentrated with respect to Ω, is
simply

`(Y , α, Φ1 · · · Φp) = C − n−
2

log
∣∣Ω(α, Φ1 · · · Φp)

∣∣.
Here Ω(α, Φ1 · · · Φp) means the value of Ω that maximizes the loglikelihood
conditional on α and Φ1 through Φp, and Y means the matrix with typical
row Yt. This result is an application of results on concentrated loglikelihood
functions for multivariate models that we derived in Section 9.9.

It is easy to see that Ω(α, Φ1 · · · Φp) is equal to

1−
n

n∑
t=1

(
Yt −α− Yt−1Φ1 · · · − Yt−pΦp

)>(Yt −α− Yt−1Φ1 · · · − Yt−pΦp

)
,

where we are implicitly assuming that p presample observations are available,
which implies that all n sample observations may be used for estimation. If
Ût denotes the 1×m row vector of OLS residuals for observation t, then

Ω(α̂, Φ̂1 · · · Φ̂p) ≡ Ω̂ = 1−
n

n∑
t=1

Ût
>Ût.
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Hence the maximized value of the loglikelihood function is

`(Y , α̂, Φ̂1 · · · Φ̂p) = C − n−
2

log |Ω̂|.

When specifying a VAR, it is important to determine how many lags need
to be included. If one wishes to test the null hypothesis that the longest lag
in the system is p against the alternative that it is p + 1, the easiest way to
do so is probably to compute the LR statistic

n
(
log |Ω̂(p)| − log |Ω̂(p+ 1)|

)
,

where the notation should be self-explanatory. This test statistic will be
asymptotically distributed as χ2(m2). However, unless the sample size n is
large relative to the number of parameters in the system (m+ pm2 under the
null, m + (p + 1)m2 under the alternative), the finite-sample distribution of
this test statistic may differ substantially from its asymptotic one.

One use of VAR models is to test the null hypothesis that some variable
does not Granger cause another variable. We discussed the concept of Granger
causality in Section 18.2. In the context of a VAR, yt1 may be said to Granger
cause yt2 if any lagged values of yt1 are significant in the equation for yt2. On
the other hand, the null hypothesis that yt1 does not Granger cause yt2 cannot
be rejected if all lagged values of the former are jointly insignificant in the
equation for the latter. Thus one can easily test the null hypothesis that
any variable in a VAR(p) does not Granger cause any one of the others by
performing an asymptotic F test with p and n−(1+pm) degrees of freedom.2

Of course, any results depend on the maintained hypothesis that all relevant
variables have been included in the VAR. If a variable yt3 is omitted from
a VAR, we may incorrectly conclude that yt1 Granger causes yt2, when in
fact yt1 has no effect on yt2 independent of its effect through the omitted
variable.

As we remarked earlier, one serious practical problem with VARs is that
they generally require the estimation of a number of parameters that is large
relative to the sample size. Litterman (1979, 1986) suggested that if the objec-
tive is to use a VAR for forecasting, this problem may be solved by imposing
stochastic restrictions, very much like the ones we discussed in Section 19.2
for imposing smoothness priors on distributed lags. For example, one might
impose the prior that all coefficients have mean zero and some variance that
is not too small, except for the coefficient of yt−1,i in the equation for yti.
Litterman proposed a mixed estimation procedure similar to the one we dis-
cussed in Section 19.2, and has reported that these “Bayesian” VARs provide
better forecasts than conventional unrestricted VARs.

2 The properties of various causality tests, including this one, were studied by
Geweke, Meese, and Dent (1983).
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19.6 Seasonal Adjustment

Many economic time series tend to follow a regular pattern over the course
of every year. This type of behavior is referred to as seasonal variation or
seasonality. It may be the result of regular seasonal weather patterns or of
social customs such as statutory holidays, summer vacations, and the like.
The presence of seasonality has important implications for applied economet-
ric work that uses time-series data. At best, when we are able to model
seasonality explicitly, it makes such work a good deal harder. At worst, when
we simply use data that have been “seasonally adjusted” in some mechanical
way, it may dramatically reduce our ability to make correct inferences about
economic relationships.

To fix ideas, consider Figure 19.1, which shows the logarithm of housing
starts in Canada, quarterly, for the period 1968:1 to 1987:4.3 It is clear that
seasonal variation in this series is very pronounced. Housing starts tend to
be much lower in the first quarter than in any other, presumably because
winter weather makes construction difficult at that time of year. However,
the pattern of seasonality seems to vary considerably from one year to the
next, in a fashion that does not seem to be independent of the overall level
of housing starts. In the recession year of 1982, for example, there is far less
seasonal variation than usual, and the lowest level of housing starts is recorded
in the third quarter instead of the first.

There are two quite different views on the nature of seasonality in econ-
omic data. One view is that seasonal variation is a fundamental part of many
economic time series and, when it is present, we should attempt to explain
it. Thus, ideally, an econometric model for a dependent variable yt should
explain any seasonal variation in it by seasonal variation in the independent
variables, perhaps by including weather variables or seasonal dummy vari-
ables among the latter. Unfortunately, as we will see in the next section, this
can make the business of specifying and estimating econometric models for
monthly and quarterly series rather complicated.

A second view, associated with Sims (1974), is that seasonality is simply
a type of noise that contaminates economic data. Economic theory cannot
be expected to explain this noise, which in the case of independent variables
amounts to a sort of errors in variables problem. One should therefore use
what are called seasonally adjusted data, that is, data which have been mas-
saged in some way so that they supposedly represent what the series would
have been in the absence of seasonality. Indeed, many statistical agencies,
especially in the United States, release only seasonally adjusted figures for
many series. In this section, we will discuss the nature of seasonal adjustment
procedures and the consequences of using seasonally adjusted data.

3 These figures were taken from the CANSIM database of Statistics Canada.
They are the logarithm of series number D2717.
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Figure 19.1 Housing starts in Canada, 1968–1987

The idea of seasonally adjusting a time series to remove the effects of
seasonality is intuitively appealing but very hard to make rigorous without
resorting to highly unrealistic assumptions. Seasonal adjustment of a series yt
makes sense if for all t we can write yt = y∗t + yst , where y∗t is a time series
that contains no seasonal variation at all, and yst is a time series that contains
nothing but seasonal variation. But this is an extreme assumption. Even if it
holds, it is not necessarily easy to divide yt between y∗t and yst , which is what
seasonal adjustment procedures attempt to accomplish.

One approach to seasonal adjustment, which is quite popular among
econometricians but is almost never used by statistical agencies, is to make
use of least squares regression. Suppose, for concreteness, that the data are
quarterly, and consider the seasonal dummy variables

D1 =


1
0
0
−1
...

 D2 =


0
1
0
−1
...

 D3 =


0
0
1
−1
...

,

which we first encountered in Section 1.4. These dummy variables have been
defined in such a way that they sum to zero over each full year. Now suppose
that we regress the n--vector y on a constant and D ≡ [D1 D2 D3]:

y = β +Dγ + u. (19.33)
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Then a “seasonally adjusted” series y∗ may be constructed as

y∗ ≡ β̂ + û, (19.34)

where β̂ is the estimate of β, and û is the vector of residuals from OLS
estimation of (19.33). Thus all the variation in y that can be explained by
the seasonal dummy variables has been removed to create y∗.

This approach was advocated by Lovell (1963). He showed, by an ap-
plication of the FWL Theorem, that the OLS estimates obtained from the
following two regressions are identical:

y∗ = X∗β + u and (19.35)

y = Xβ +Dγ + u. (19.36)

The first regression here uses data “seasonally adjusted” by the procedure of
(19.33) and (19.34). The second simply regresses raw data y on raw data X,
where X must include a constant term or the equivalent, and on the seasonal
dummy variables D. This result seems to suggest that it does not matter
whether we use seasonally adjusted data or raw data and seasonal dummies.
Such a conclusion is true only for data that have been seasonally adjusted by
regression, however.

There are several serious problems with seasonal adjustment by regres-
sion. First of all, it is clear from standard results on least squares residuals
that in finite samples a regression like (19.33) will remove too much variation
from the original series, attributing some of it incorrectly to variation in the
seasonal dummy variables (Thomas and Wallis, 1971). Secondly, if there is an
upward trend in the series being adjusted, a regression like (19.33) will incor-
rectly attribute some of the trend to the seasonal dummies. As a result, the
estimate of the first-quarter seasonal effect will be too low, and the estimate of
the fourth-quarter seasonal effect will be too high. One obvious solution is to
add a trend term to the regression and treat it the same way as the constant
term (Jorgenson, 1964). This implies, however, that X must include a trend
term as well as a constant if the result that (19.35) and (19.36) are to yield
the same estimates is to hold.

The most serious problem with the regression approach is that it does
not allow the pattern of seasonality to change over time. As Figure 19.1
illustrates, seasonal patterns often do seem to change over time. One way
to model this is to add additional seasonal dummy variables that have been
interacted with powers of an annually increasing linear time trend such as

T ≡ [1 1 1 1 2 2 2 2 · · · ].

The reason that the trend term must take this rather odd form is to ensure
that, when it is multiplied by the seasonal dummies, the resulting trending
dummies always sum to zero over each year. If one simply multiplied seasonal
dummies by an ordinary trend term, that would not be the case.
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The FWL Theorem applies to regressions (19.35) and (19.36) however
the seasonal dummy variables are defined. Thus we might have

D ≡ [D1 D2 D3 D1∗T D2∗T D3∗T D1∗T ∗T D2∗T ∗T D3∗T ∗T ].

Here there are three sets of seasonal dummies: the ordinary ones that are
constant over time, dummies that are interacted with a linear trend, and
dummies that are interacted with a quadratic trend. Trending seasonal dum-
mies sometimes seem to work well in finite samples, in the sense that they may
provide a good approximation to some actual pattern of changing seasonality.
But they clearly make no sense asymptotically, because the seasonal varia-
tion must eventually become infinitely large if the coefficients on the trending
dummies are nonzero in regression (19.33).

For the housing starts data of Figure 19.1, interestingly enough, trending
seasonal dummies are no use at all. Regressing these data on a constant and
three seasonal dummies yields four significant coefficients and an R2 of 0.48.
Adding either three linearly trending seasonal dummies or three linearly and
three quadratically trending dummies to the regression does not improve the
fit significantly. Thus it would appear either that the seasonal variation of
this series really has not been changing over time, despite visual evidence
to the contrary, or that it has been doing so in a way that cannot be well
approximated by regression on trending seasonal dummy variables.

Another way to deal with seasonal patterns that change over time is to
use frequency domain methods; see Engle (1974), Sims (1974), and Hylleberg
(1977, 1986). The first step is to transform the data on yt from the time do-
main to the frequency domain, usually by means of a fast Fourier transform.4

After the transformation, each observation corresponds to a certain frequency
rather than to a certain time period. Some of these observations are then
deleted, in bands around the seasonal frequencies and their harmonics. The
wider the bands, the greater are the number of observations (i.e., frequen-
cies) deleted, and the greater is the chance that all seasonal variation will be
removed from the data. Finally, the data are transformed back to the time
domain, yielding a seasonally adjusted series.

Sims (1974) showed that this technique is equivalent to a form of sea-
sonal adjustment by regression. Consider regression (19.33) and the season-
ally adjusted series defined in (19.34). The latter would be equivalent to the
frequency domain adjusted series just described if the matrix D were rede-
fined to equal a certain set of variables that are trigonometric functions of
time. The first three or eleven of these variables (in the cases of quarterly
and monthly data, respectively) span exactly the same subspace as three or

4 For an introduction to frequency domain methods, see Harvey (1981). For a
description of the fast Fourier transform, see Press, Flannery, Teukolsky, and
Vetterling (1986, Chapter 12).
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eleven seasonal dummy variables. Thus, if the seasonal pattern were constant
over time, it would be necessary to exclude only as many specific frequencies
as there are time periods in the year. Excluding additional frequencies in
bands around the seasonal frequencies and their harmonics is done to allow
for seasonal patterns that change over time. This is equivalent to including
additional trigonometric functions of time in the regression. The number of
trigonometric variables included, which is the same as the number of frequen-
cies excluded in the frequency domain approach, will increase linearly with
the sample size if the width of the bands remains unchanged.

Official statistical agencies almost never employ any sort of regression-
based seasonal adjustment procedure. Besides the problems with such proce-
dures that we have already discussed, they suffer from an important practical
difficulty. As time goes by and the sample size increases, the estimates of γ
in (19.33) will change, and so every element of y∗ will change every time a
new observation becomes available. This is clearly a most undesirable feature
from the point of view of users of official statistics.

The seasonal adjustment procedures actually used by statistical agencies
are generally very complicated. They attempt to deal with a host of practical
problems, including trends, time-varying seasonality, changes in the number
of shopping days and the dates of holidays, the fact that less information is
available near the beginning and end of the sample (because presample and
postsample observations are not available), and identities that may link cer-
tain series to each other. These procedures are primarily designed to produce
data that are easily interpreted by economists seeking to determine how well
the economy is performing, rather than to produce data that will necessarily
be most useful to econometricians. The best-known of these official procedures
is the X-11 method pioneered by the United States Census Bureau (Shisken,
Young, and Musgrave, 1967). For a discussion of it and related procedures,
see Hylleberg (1986); Figure 5.1 of that book depicts a flowchart that reveals
the extreme complexity of the X-11 procedure.

Despite the complexity of the X-11 method and its relatives, they can
often be approximated remarkably well by much simpler procedures based on
what are called linear filters. Let y be an n--vector of observations (often
in logarithms rather than levels) on a series that has not been seasonally
adjusted. Then a linear filter consists of an n × n matrix Φ, with rows that
sum to 1, which premultiplies y to yield a seasonally adjusted series y∗. Each
row of the filter consists of a vector of filter weights. Thus each element y∗t of
the seasonally adjusted series is equal to a weighted sum of current, leading,
and lagged values of yt.

Let us consider a simple example for quarterly data. Suppose we first
create three-term and eleven-term moving averages

zt ≡ 1−
3

(
yt−4 + yt + yt+4

)
and wt ≡

1

11

−5∑
j=5

yt−j .
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The difference between zt and wt is a rolling estimate of the amount by which
the value of yt for the current quarter tends to differ from its average value
over the year. Thus one way to define a seasonally adjusted series would be

y∗t ≡ yt − zt + wt

= .0909yt−5 − .2424yt−4 + .0909yt−3 + .0909yt−2

+ .0909yt−1 + .7576yt + .0909yt+1 + .0909yt+2

+ .0909yt+3 − .2424yt+4 + .0909yt+5.

(19.37)

This example corresponds to a linear filter in which the pth row of Φ (for
5 < p < n − 5) would consist first of p − 6 zeros, followed by the eleven
coefficients that appear in (19.37), followed by n− p− 5 more zeros.

This example was deliberately made too simple, but the basic approach
that it illustrates may be found, in various modified forms, in almost all official
seasonal adjustment procedures. The latter generally do not actually employ
linear filters, but do employ a number of moving averages in a way similar to
the example. These moving averages tend to be longer than the ones in the
example; zt generally consists of at least 5 terms and wt consists of at least
25 terms with quarterly data. They also tend to give progressively less weight
to observations farther from t. The weight given to yt by these procedures is
generally between 0.75 and 0.9, but it is always well below 1. For more on the
relationship between official procedures and ones based on linear filters, see
Wallis (1974), Burridge and Wallis (1984), and Ghysels and Perron (1993).

We have asserted that official seasonal adjustment procedures in most
cases have much the same properties as linear filters applied to either the levels
or the logarithms of the raw data. This assertion can be checked empirically.
If it is true, regressing a seasonally adjusted series y∗t on enough leads and lags
of the corresponding seasonally unadjusted series yt should yield an extremely
good fit. The coefficient on yt should be large and positive, but less than 1, and
the coefficients on yt+j should be negative whenever j is an integer multiple
of 4 or 12, for quarterly and monthly data, respectively.

As an illustration, we regressed the logarithm of the seasonally adjusted
housing start series for Canada that corresponds to the unadjusted series in
Figure 19.1 on a constant and the current value and 13 leads and lags of
the unadjusted series, for the period 1957:1 to 1986:4. The R2 was .992 and
the coefficient on the current period value was 0.80. We also regressed the
logarithm of real personal consumption expenditure, seasonally adjusted at
annual rates, on a constant, the current value and 13 leads and lags of the
corresponding unadjusted series, for 1953:1 to 1984:4.5 This time, the R2

5 All data were taken from the CANSIM database of Statistics Canada. The
adjusted and unadjusted housing start series are numbers D2717 and D4945.
The adjusted and unadjusted expenditure series are D20131 and D10131.
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was a remarkable .999996, and the coefficient on the current period value was
0.82. In both cases, all the coefficients on yt+j for j an integer multiple of 4
were negative, as expected. Thus it appears that a linear filter provides an
extremely good approximation to the seasonal adjustment procedure actually
used in the case of the expenditure data and a reasonable approximation in
the case of the housing starts data.

If seasonal adjustment is performed using a linear filter, it is not difficult
to analyze the effects of using seasonally adjusted data. Suppose that the
same filter is applied to all the series used in a regression of y∗ on X∗. Then
the least squares estimates will be given by

β̃ =
(
X∗>X∗

)−1
X∗>y∗

=
(
X>Φ>ΦX

)−1
X>Φ>Φy.

We see that β̃ is simply a vector of GLS estimates, with the n×n matrix Φ>Φ
playing the role of the inverse of the covariance matrix of the error terms. Thus
we conclude that OLS regression following seasonal adjustment by means of
a linear filter is equivalent to GLS, provided that the same linear filter is used
for all series. Unfortunately, official seasonal adjustment procedures do not
use the same filter for all series (or even for the same series at different points
in time). As a result, this result is rarely applicable (Wallis, 1974).

Nevertheless, it is worth discussing the properties of β̃. These will evi-
dently depend on how yt is generated. One possibility is that

y = Xβ0 + u, u ∼ IID(0, σ2I), (19.38)

which implies that any seasonality in y is in fact fully accounted for by sea-
sonality in the independent variables. Then

plim
n→∞

β̃ = β0 + plim
n→∞

(
1−
n
X>Φ>ΦX

)−1
plim
n→∞

(
1−
n
X>Φ>Φu

)
= β0. (19.39)

Thus, although there is no reason to use seasonally adjusted data in this case,
doing so does not cause least squares estimates to be inconsistent. However,
the Gauss-Markov Theorem implies that these estimates will be less efficient
than OLS estimates using unadjusted data would be. This must be the case,
since the seasonal adjustment procedure reduces the variation in the indepen-
dent variables and hence reduces the precision of the estimates of β. Moreover,
the second equality of (19.39) requires that all elements of X be independent
of all elements of u and thus implicitly rules out the possibility that X may
include lagged dependent variables.

A second possibility, which makes the use of seasonally adjusted data
much more attractive, is that the DGP is

y − ys = (X −Xs)β0 + u, u ∼ IID(0, σ2I). (19.40)
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Here ys and Xs denote the seasonal parts of y and X. Suppose that the filter
weights have been chosen so that all seasonality is eliminated. This implies
that Φys = 0 and ΦXs = 0, which in turn implies that

Φy = Φ
(
(X −Xs)β0 + ys + u

)
= Φ(Xβ0 + u).

If we substitute Φ(Xβ0 + u) for Φy in the first line of (19.39), the rest of
(19.39) then follows as before, and we conclude that β̃ is consistent for β0.

In this second case, the alternative of simply regressing the seasonally
unadjusted data y on X is not at all attractive. The OLS estimate of β is

β̂ =
(
X>X

)−1
X>y

= β0 +
(
X>X

)−1
X>
(
−Xsβ0 + ys + u

)
,

which clearly will not be consistent for β0 unless X is asymptotically orthog-
onal to both Xs and ys. But such a condition could hold only if none of the
variables in X displayed any seasonal variation. Thus, if one wishes to use
seasonally unadjusted data, one must explicitly incorporate seasonality in the
model. We will take up this topic in the next section.

Remember that these results hold only if the same linear filter is used
for the seasonal adjustment of all the series. If different filters are used for
different series, which will almost always be the case for officially adjusted
data, we cannot assert that regressions which employ seasonally adjusted data
will yield consistent estimates, whether the data are generated by a model like
(19.38) or a model like (19.40). We can only hope that any such inconsistency
will be small. See Wallis (1974).

A much more serious limitation of the above results on consistency is
that they assume the absence of any lagged dependent variables among the
regressors. When there are lagged dependent variables, as will be the case for
every dynamic model and for every model transformed to allow for serially
correlated errors, there is no reason to believe that least squares regression
using data adjusted by linear filters will yield consistent estimates. In fact,
recent work has provided strong evidence that, in models with a single lag
of the dependent variable, estimates of the coefficient on the lagged variable
generally tend to be severely biased when seasonally adjusted data are used.
See Jaeger and Kunst (1990), Ghysels (1990), and Ghysels and Perron (1993).

In order to illustrate this important result, we generated artificial data
from a special case of the model

yt = α+ βyt−1 +Dtγ + ut, ut ∼ N(0, σ2), (19.41)

where Dt is the tth row of an n× 3 matrix of seasonal dummy variables. The
series yt was then subjected to a linear filter that might reasonably be used
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Figure 19.2 Bias due to seasonal adjustment

for seasonal adjustment,6 and the “adjusted” series was then regressed on a
constant and its own lagged value to yield an estimate β̃. This was done for
199 values of β from −0.99 to 0.99, for several different sample sizes, and the
experiments were repeated a large number of times to reduce experimental
error (see Chapter 21).

Figure 19.2 shows the estimated bias of β̃ as a function of β. Results are
shown for n = 50 (based on 4000 replications) and for n = 400 (based on 2000
replications). Note that n is the number of observations for the seasonally
adjusted series, which is 24 less than the number for the original series. From
the figure it is clear that, for most values of β, β̃ is severely biased upward.
This bias does not go away as the sample size is increased; in fact, for many
values of β, it is more severe for n = 400 than for n = 50. The conclusion
seems inescapable that β̃ is an inconsistent estimator and that the magnitude
of this inconsistency is generally severe.

One other interesting result came out of this series of experiments. The
estimate of σ using seasonally adjusted data was noticeably biased downward,
generally averaging between 87% and 92% of the true value. In contrast, when
the true model (19.41) was estimated using unadjusted data, the estimate of σ
was almost unbiased, as one would expect. These results are consistent with
the empirical results of Plosser (1979a), who found that models estimated us-

6 The current value of the unadjusted series was given a weight of 0.84. The
12 lagging and leading values were given weights of 0.08, 0.07, 0.06, −0.16,
0.05, 0.05, 0.04, −0.12, 0.03, 0.03, 0.02, and −0.08. The precise values of these
weights did not affect the qualitative results.
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ing seasonally adjusted data always had smaller residual variances than cor-
responding models using raw data. Nevertheless, Plosser found that forecasts
based on the former models were often less accurate than forecasts based on
the latter. These results suggest that one should never choose a model based
on seasonally adjusted data over a model based on raw data simply because
the former seems to fit better.

It is very common to employ seasonally adjusted data in applied econo-
metric work, and indeed in many cases it is difficult to avoid doing so. How-
ever, the results discussed in this section suggest that this may often be unwise.
Even for static models, there are likely to be problems if official seasonal ad-
justment procedures effectively apply different filters to different series. For
dynamic models, the potential inconsistency from using seasonally adjusted
data appears to be severe. In the next section, we therefore discuss vari-
ous approaches to the specification and estimation of models using seasonally
unadjusted data.

19.7 Modeling Seasonality

The results of the preceding section suggest that, when raw data are available,
it is probably better to use them than to rely on official seasonally adjusted
data. However, doing so often requires a good deal of extra work. Simply
estimating a model designed for nonseasonal data is rarely appropriate. Such
an approach is likely to yield severely biased parameter estimates if seasonal
variation in one or more of the independent variables happens to be correlated
with (but not responsible for) seasonal variation in the dependent variable.
There are numerous ways to deal with seasonal variation in regression models.
We discuss some of the principal ones in this section.

The simplest strategy for specifying regression models using seasonally
unadjusted data is just to add seasonal dummy variables to a linear regression
model, as in equation (19.36). If the seasonal pattern has been constant over
time, so that three seasonal dummies (in the case of quarterly data) or eleven
seasonal dummies (in the case of monthly data) adequately account for the
effects of seasonality, this approach may be appropriate. However, it will not
work well if the seasonal pattern in the dependent or any of the independent
variables has changed substantially during the sample period. One possibility
in such a case is to include one or more sets of seasonal dummies interacted
with annually increasing trends, along with the ordinary seasonal dummies.
The significance of additional sets of dummies can easily be tested by means
of F tests in the usual way. A serious objection to this approach, as we noted
previously, is that it makes no sense asymptotically. Moreover, a model that
uses trending seasonals is likely to be unsuitable for forecasting, since even
if the trending seasonals adequately account for changing seasonal patterns
within the sample, there is no reason to expect them to do so outside the
sample. Davidson and MacKinnon (1983c) provides a somewhat extreme
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example of this approach. In that paper, as many as 15 seasonal dummy
variables, with trends up to the fourth order, were included in models using
quarterly data, because this seemed to be necessary to account for all the
seasonality in the data.

A second strategy is to model the error terms of a regression model as
following some sort of seasonal ARMA process, that is, an ARMA process
with nonzero coefficients only at seasonal lags. One such process, which might
be appropriate for quarterly data, is the simple AR(4) process that we first
encountered in Section 10.5:

ut = ρ4ut−4 + εt, εt ∼ IID(0, ω2), (19.42)

where ρ4 is a parameter to be estimated, and ω2 is the variance of εt. Another
purely seasonal AR process for quarterly data is

ut = ρ4ut−4 + ρ8ut−8 + εt, εt ∼ IID(0, ω2), (19.43)

which is analogous to an AR(2) process for nonseasonal data.

In many cases, error terms may exhibit both seasonal and nonseasonal
serial correlation. This suggests combining a seasonal with a nonseasonal
process. Suppose, for example, that we wish to combine an AR(1) process
and a simple AR(4) process. One approach is to combine them additively,
yielding

ut = ρ1ut−1 + ρ4ut−4 + εt, εt ∼ IID(0, ω2). (19.44)

A second approach is to combine them multiplicatively, as in

(1− ρ1L)(1− ρ4L4)ut = εt, εt ∼ IID(0, ω2).

This can be rewritten without using lag-operator notation as

ut = ρ1ut−1 + ρ4ut−4 − ρ1ρ4ut−5 + εt, εt ∼ IID(0, ω2). (19.45)

Both (19.44) and (19.45) seem plausible, and there seems to be no compelling
a priori reason to prefer one or the other.

Evidently, a great many different AR and ARMA processes could be used
to model seasonal variation in the error terms of a regression model. There is
a large literature on seasonal ARMA processes; see, among others, Box and
Jenkins (1976), Harvey (1981), and Ghysels (1991). Whether such processes
provide a good way to model seasonality is not at all clear, however. On
the one hand, they generally provide a rather parsimonious way to do so; for
example, (19.42) uses just one extra parameter, and (19.43) uses just two.
Moreover, it is certainly true that if a regression model has not adequately
accounted for seasonality, there will very often be evidence of fourth-order
serial correlation. Thus testing for it often provides a useful diagnostic test.
But, just as evidence of first-order serial correlation does not mean that the
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error terms really follow an AR(1) process, evidence of fourth-order serial
correlation does not mean that they really follow an AR(4) process.

The big problem with seasonal ARMA processes is that they cannot cap-
ture one very important feature of seasonality, namely, the fact that different
seasons of the year have different characteristics; summer is not simply winter
with a different label. As far as an ARMA process is concerned, however, sum-
mer is just winter with a different label. If the error terms display a particular
seasonal pattern at the beginning of the sample, then it is quite likely that
they will display a similar pattern a year later. But for a stationary ARMA
process, the influence of initial conditions tends to zero as time passes. Thus
there is no reason to believe that the seasonal pattern 10 or 20 years after the
beginning of the sample will in any way resemble the initial pattern. In fact,
for T large enough, the expectations of uT , uT+1, uT+2, and uT+3 conditional
on u1 through u4 are all (nearly) zero. Thus using an ARMA process to
model seasonality means assuming that any particular pattern of seasonality
is transitory; in the long run, any pattern is possible. This implies that one
would surely not want to use an ARMA process to model the seasonal pattern
of something like the price of strawberries, since the model would say nothing
about whether that price is likely to be unusually high in the middle of winter
or at harvest time. One obvious way to get around this problem would be to
include seasonal dummy variables in the model as well. The dummy variables
would allow the different seasons to be genuinely different, while the seasonal
ARMA process would allow the seasonal pattern to evolve over time.

A third strategy is to allow some or all of the coefficients of the regression
function to be different in every season. Thus, if the original model had k
coefficients, one would estimate a model with as many as 4k or 12k coefficients.
This would make sense if variations in the pattern of seasonality over time were
associated with changes in the values of some of the independent variables over
time. The obvious objection to this approach is that the number of coefficients
would often be much too large relative to the sample size, and they would
all tend to be estimated very imprecisely. Gersovitz and MacKinnon (1978)
therefore suggested using smoothness priors, similar to the ones discussed in
Section 19.3 for estimating distributed lags, to prevent the coefficients from
varying too much from one season to the next. This may be a reasonable
constraint to impose in the case of monthly data but would seem to be hard
to justify in the case of quarterly data.

A fourth strategy is to incorporate seasonal dynamics directly into the
specification of the regression function, using some form of seasonal ADL
model. A very simple model of this type is

(1− L4)yt = β0 + β1(1− L4)xt + β2(yt−4 − λxt−4) + ut.

This looks like an ADL(1, 1) model written in its error correction form —
compare (19.30) — but with four-period lags instead of one-period ones. It
is almost certainly too simple, of course, and might well benefit from the
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addition of seasonal dummies or additional lags of yt and xt. A well-known
paper that estimates seasonal ADL models is Davidson, Hendry, Srba, and
Yeo (1978).

With the arguable exception of seasonal ADL models, the strategies that
we have discussed so far are essentially mechanical. One starts with a non-
seasonal model and then modifies it to handle seasonality. That is clearly
not the ideal way to proceed. Ideally, one would like to incorporate season-
ality into the model from the beginning. This of course is likely to make the
whole model-building exercise much harder, and perhaps that explains why
relatively few authors have attempted to do it. Exceptions include Plosser
(1979b), Miron (1986), and Osborn (1988, 1991). Unless the underlying econ-
omic theory explicitly takes account of seasonality, it will be very difficult for
econometricians to incorporate it into the models they estimate.

19.8 Conclusion

In this chapter, we have discussed a number of problems that commonly arise
when one attempts to estimate regression models using time-series data. In
most of the chapter, we have assumed that all the series are stationary, or
I(0), so that we could employ standard estimation methods and standard
asymptotic theory. For many series, however, that assumption may be vio-
lated unless one takes first differences prior to estimation. But how can one
decide when differencing is necessary? In the next chapter, we discuss how
to answer that question, along with several very important topics that are
closely related to it.

Terms and Concepts

Almon lag
ADL(p, q) and ADL(1, 1) models
autoregressive distributed lag (ADL)

model
distributed lag model
dynamic model
error-correction form (of ADL model)
error-correction model (ECM)
error-correction term
filter weights
first-difference operator
Granger causality in VARs
integrated variables
I(0) and I(1) variables
linear filter
mixed estimation
partial adjustment model

PDL(q, d) model
polynomial distributed lag (PDL)
random walk, with and without drift
regression-based seasonal adjustment

procedure
seasonality
seasonally adjusted data
seasonal ADL model
seasonal AR process
seasonal ARMA process
seasonal variation
smoothness priors
spurious regression
stochastic restrictions
trend-stationary variable
vector autoregressive model
VAR(p) process



Chapter 20

Unit Roots and Cointegration

20.1 Introduction

As we saw in the last chapter, the usual asymptotic results cannot be ex-
pected to apply if any of the variables in a regression model is generated by a
nonstationary process. For example, in the case of the linear regression model
y = Xβ + u, the usual results depend on the assumption that the matrix
n−1X>X tends to a finite, positive definite matrix as the sample size n tends
to infinity. When this assumption is violated, some very strange things can
happen, as we saw when we discussed “spurious” regressions between totally
unrelated variables in Section 19.2. This is a serious practical problem, be-
cause a great many economic time series trend upward over time and therefore
seem to violate this assumption.

Two obvious ways to keep standard assumptions from being violated
when using such series are to detrend or difference them prior to use. But
detrending and differencing are very different operations; if the former is ap-
propriate, the latter will not be, and vice versa. Detrending a time series yt
will be appropriate if it is trend-stationary, which means that the DGP for yt
can be written as

yt = γ0 + γ1t+ ut, (20.01)

where t is a time trend and ut follows a stationary ARMA process. On the
other hand, differencing will be appropriate if the DGP for yt can be written as

yt = γ1 + yt−1 + ut, (20.02)

where again ut follows a stationary ARMA process. If the ut’s were serially
independent, (20.02) would be a random walk with drift, the drift parameter
being γ1. They will generally not be serially independent, however. As we
will see shortly, it is no accident that the same parameter γ1 appears in both
(20.01) and (20.02).

The choice between detrending and differencing comes down to a choice
between (20.01) and (20.02). The main techniques for choosing between them
are various tests for what are called unit roots. The terminology comes from
the literature on time-series processes. Recall from Section 10.5 that for an AR

700



20.1 Introduction 701

process A(L)ut = εt, where A(L) denotes a polynomial in the lag operator,
the stationarity of the process depends on the roots of the polynomial equation
A(z) = 0. If all roots are outside the unit circle, the process is stationary.
If any root is equal to or less than 1 in absolute value, the process is not
stationary. A root that is equal to 1 in absolute value is called a unit root.
When a process has a unit root, as (20.02) does, it is said to be integrated of
order one or I(1). A series that is I(1) must be differenced once in order to
make it stationary.

The obvious way to choose between (20.01) and (20.02) is to nest them
both within a more general model. There is more than one way to do so. The
most plausible model that includes both (20.01) and (20.02) as special cases
is arguably

yt = γ0 + γ1t+ vt; vt = αvt−1 + ut

= γ0 + γ1t+ α
(
yt−1 − γ0 − γ1(t− 1)

)
+ ut, (20.03)

where ut follows a stationary process. This model was advocated by Bhargava
(1986). When |α| < 1, (20.03) is equivalent to the trend-stationary model
(20.01); when α = 1, it reduces to (20.02).

Because (20.03) is nonlinear in the parameters, it is convenient to repara-
metrize it as

yt = β0 + β1t+ αyt−1 + ut, (20.04)

where
β0 ≡ γ0(1− α) + γ1α and β1 ≡ γ1(1− α).

It is easy to verify that the estimates of α from least squares estimation of
(20.03) and (20.04) will be identical, as will the estimated standard errors of
those estimates if, in the case of (20.03), the latter are based on the Gauss-
Newton regression. The only problem with the reparametrization (20.04) is
that it hides the important fact that β1 = 0 when α = 1.

If yt−1 is subtracted from both sides, equation (20.04) becomes

∆yt = β0 + β1t+ (α− 1)yt−1 + ut, (20.05)

where ∆ is the first-difference operator. If α < 1, (20.05) is equivalent to
the model (20.01), whereas, if α = 1, it is equivalent to (20.02). Thus it
is conventional to test the null hypothesis that α = 1 against the one-sided
alternative that α < 1. Since this is a test of the null hypothesis that there
is a unit root in the stochastic process which generates yt, such tests are
commonly called unit root tests.

At first glance, it might appear that a unit root test could be accom-
plished simply by using the ordinary t statistic for α − 1 = 0 in (20.05), but
this is not so. When α = 1, the process generating yt is integrated of order
one. This means that yt−1 will not satisfy the standard assumptions needed
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for asymptotic analysis. In consequence, as we will see below, this t statistic
does not have the N(0, 1) distribution asymptotically. It is in fact used as a
test statistic, but not in conjunction with the usual critical values from the
Student’s t or normal distributions.

The first half of this chapter is concerned with tests for unit roots. In
the next section, we describe a number of popular unit root tests, all of which
are based on regressions similar to (20.05), and all of which rely on the highly
unrealistic assumption that the error terms ut are serially uncorrelated. In
Section 20.3, we then discuss some of the asymptotic theory that has been
developed for these tests. In Section 20.4, we relax the assumption that the
error terms are serially uncorrelated and also discuss some other problems
that complicate the use of unit root tests.

The second half of the chapter deals with the important concept of co-
integration between two or more series, each of which is I(1). This concept
is introduced in Section 20.5. Cointegration tests, which are closely related
to unit root tests, are discussed in Section 20.6. If the dependent variable in
a regression model is cointegrated with one or more of the regressors, that
fact has important implications for the type of model that one should con-
struct. Single-equation methods for estimation using I(1) series are discussed
in Section 20.7, and methods based on vector autoregressions in Section 20.8.

20.2 Testing for Unit Roots

The simplest and most widely used tests for unit roots were developed by
Fuller (1976) and Dickey and Fuller (1979). These tests are generally referred
to as Dickey-Fuller, or DF, tests. A particularly good exposition of them may
be found in Dickey, Bell, and Miller (1986). Dickey-Fuller tests are based on
regressions similar to (20.05). Three such regressions are commonly employed,
of which regression (20.05) is the most complicated. The other two are

∆yt = (α− 1)yt−1 + ut and (20.06)

∆yt = β0 + (α− 1)yt−1 + ut. (20.07)

These two regressions may both be derived in exactly the same way as (20.05).
The first of them, regression (20.06), is extremely restrictive, so much so that it
is hard to imagine ever using it with economic time series. Its only advantage
is that it is easier to analyze than the other two test regressions. The second,
regression (20.07), is also fairly restrictive, but it would make sense if yt had
no trend. Note that, in the case of (20.07), β0 = 0 whenever α = 1, because
β0 is really γ0(1− α).

There are two different types of DF test based on each of the three regres-
sions (20.05), (20.06), and (20.07). One type of test is computed in exactly
the same way as the ordinary t statistic for α−1 = 0 in any of the regressions.
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Since these statistics do not have the Student’s t distribution, even asymptot-
ically, they are usually referred to as τ statistics rather than t statistics. We
will call the τ statistics based on (20.06), (20.07), and (20.05): τnc, τc, and
τct, respectively.1 The second type of test is based directly on the estimated
coefficient α̂− 1. The test statistic is

z = n(α̂− 1). (20.08)

By analogy with the three τ statistics, we will denote the three principal
variants of this z statistic as znc, zc, and zct.

The z statistic (20.08) may seem strange for two reasons: It does not
depend on an estimate of σ, and the normalizing factor is n rather than n1/2.
To see why it has these features, let us consider the simplest case, namely,
(20.06). In this case,

α̂ =

∑
ytyt−1∑
y2
t−1

,

where the summations will run from 1 to n if y0 is available and from 2
to n otherwise. We will assume that y0 is available, since it simplifies some
derivations, and will suppose that the data are generated by the random walk

yt = yt−1 + ut, ut ∼ IID(0, σ2).

This implies that the DGP is in fact a special case of the model being esti-
mated. In order to avoid dependence on the infinite past, it is necessary to
assume that y−j is equal to some known value for some j ≥ 0. For concrete-
ness and simplicity, we will assume that y−1 = 0.

Under these assumptions,

α̂ =

∑
y2
t−1∑
y2
t−1

+

∑
utyt−1∑
y2
t−1

= 1 +

∑
utyt−1∑
y2
t−1

.

Rearranging terms, we find that

α̂− 1 =

∑
utyt−1∑
y2
t−1

. (20.09)

It is clear that both ut and yt−1 must be proportional to σ. Thus both the
numerator and the denominator of (20.09) must be proportional to σ2. These
factors of proportionality cancel out, and so we see that the distribution of
α̂− 1 does not depend on σ. This result depends on the assumption that y−1

is 0. If y−1 takes on a fixed nonzero value, the result holds only asymptotically.

1 The notation used for these statistics varies from author to author. We prefer
this notation because it is mnemonic: nc stands for “no constant,” c stands for
“constant,” and ct stands for “constant and trend.”
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The second strange feature of (20.08), namely, that the normalizing factor
is n rather than n1/2, is a little harder to explain. Let us first define the partial
sum process St as

St =
t∑

s=0

us,

which allows us to write2

yt = y−1 + St = St.

Substituting St−1 for yt−1 in the right-hand side of (20.09) then yields

α̂− 1 =

∑
utSt−1∑
St−1St−1

. (20.10)

The numerator here can also be written as

n∑
t=1

(t−1∑
s=0

usut

)
.

The summation in parentheses has t terms: u0ut, u1ut, u2ut, and so on up to
ut−1ut. The full sum therefore has

∑n
t=1 t = 1

2n(n+ 1) = O(n2) terms. Since
we have assumed that the error terms are independently distributed, each of
these terms must have mean zero. On the assumption that a central limit
theorem can be applied to their sum, the order of that sum will be the square
root of n2. Thus the sum is O(n).

In a similar fashion, the denominator of (20.10) can be written as

n∑
t=1

(t−1∑
r=0

t−1∑
s=0

urus

)
.

Each of the double summations within the parentheses has t2 terms. Of these,
t are of the form u2

s, and the remaining t2 − t have mean zero. Thus each
double summation will be O(t), and hence also O(n), and will have positive
mean. Summing n of these then yields a quantity that must be O(n2). Thus
we see that the right-hand side of (20.10) is O(n)/O(n2) = O(n−1). We
therefore conclude that the normalizing factor n in (20.08) is precisely what
is needed to ensure that the test statistic z is O(1) under the null hypothesis.

2 Without the assumption that y−1 = 0, the second equality here would not
hold, and subsequent expressions would be more complicated. However, terms
involving y−1 would not be of the highest order and so would not affect the final
results. In models (20.05) and (20.07), no assumption about y−1 is necessary,
because including a constant term in the regression means that all the data
effectively have their means removed.
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The analysis for regressions (20.07) or (20.05) is more complicated than
for (20.06), but the conclusion is the same: α̂ − 1 must be normalized by
a factor of n instead of by a factor of n1/2. This makes it quite clear that
standard asymptotic theory does not apply to the τ statistics, of which α̂− 1
is the numerator. And standard asymptotic theory certainly does not apply
to the z statistics themselves. In fact, as we will see in the next section, the
six test statistics that we have discussed so far all have different asymptotic
distributions.

There is no reason for unit root tests to be based only on regressions
(20.05), (20.06), or (20.07). In particular, it is perfectly valid to include other
nonstochastic regressors, such as seasonal dummy variables, in these regres-
sions. It does not make sense to add seasonal dummy variables to (20.06),
since there is no constant term in the model on which it is based. However,
it may make sense to add seasonal dummy variables to (20.05) or (20.07).
Because the seasonal dummies are of the same order as the constant term,
which is already included, their inclusion does not change the asymptotic
distributions of the test statistics.

It is also possible to include powers of time. The trend-stationary model
(20.01) can be generalized by adding t2 as an additional variable, thus im-
plying that yt is stationary around a quadratic trend. Similarly, the random
walk with drift (20.02) can be generalized by adding a linear time trend, thus
allowing the drift term to change over time. A combined model that nests
these two models can be written, after the usual reparametrization, as

∆yt = β0 + β1t+ β2t
2 + (α− 1)yt−1 + ut. (20.11)

As one might expect on the basis of what happens for (20.05) and (20.07),
β2 = 0 in this model when α = 1. Tests based on equation (20.11), and
on equations with even higher powers of time included, were advocated by
Ouliaris, Park, and Phillips (1989). The two test statistics for α = 1 based
on (20.11) will be referred to as zctt and τctt, where ctt stands for “constant,
trend, and trend squared.” Because the squared trend term increases more
rapidly with t than either the constant or the linear trend, the asymptotic
distributions of these tests are different from those of the other tests that we
have discussed.

20.3 Asymptotic Theory for Unit Root Tests

The asymptotic theory for regressions that involve I(1) variables, which in-
cludes the regressions on which unit root tests are based, is very different
from the more standard asymptotic theory that we have used throughout this
book. It is therefore impossible to do more in this section than to state some
important results and attempt to provide some intuition as to why they hold.
The classic papers in this area are Dickey and Fuller (1979), Phillips (1987),
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and Phillips and Perron (1988). Banerjee, Dolado, Galbraith, and Hendry
(1993) provide a readable introduction to some of the basic results.

Conventional central limit theorems, which are so useful for estimators
that approach their true values at rates proportional to n−1/2, are of no use in
the case of unit root tests. Instead, it is necessary to employ what are called
functional central limit theorems, because they involve taking the limit of
certain quantities in a function space; see Billingsley (1968) or Hall and Heyde
(1980). We will not attempt to prove, or even state formally, a functional
central limit theorem. However, we will try to provide some intuition as to
why such theorems are useful in this context.

The key idea that makes it possible to use functional central limit theo-
rems is the idea of mapping from the sequence {0, 1, 2, . . . , n}, which indexes
observations, into the fixed interval [0, 1]. Suppose we divide that interval into
n + 1 parts, with divisions at 1/(n + 1), 2/(n + 1), and so on. We can then
associate observation 0 with the subinterval defined by 0 ≤ r < 1/(n + 1),
observation 1 with the subinterval defined by 1/(n+ 1) ≤ r < 2/(n+ 1), and
so on. As n → ∞, each of these subintervals tends in width to zero. Then if
[rn] denotes the largest integer that is not greater than rn, for r ∈ [0, 1], we
find that

[r(n+ 1)] = 0 for 0 ≤ r < 1

n+ 1
,

[r(n+ 1)] = 1 for
1

n+ 1
≤ r < 2

n+ 1
,

and so on up to

[r(n+ 1)] = n for
n

n+ 1
≤ r < 1.

Thus every real r in the interval [0, 1] is uniquely associated with one of the
indices 0, 1, . . . , n.

Now consider the standardized partial sum process

Rn(r) ≡ 1

σ
√
n
S[r(n+1)] ≡

1

σ
√
n

[r(n+1)]∑
s=0

us, r ∈ [0, 1].

This is simply the ordinary partial sum process that we encountered in the
previous section, divided by the standard deviation of the ut’s and by the
square root of the sample size, and indexed by r instead of by t. It can be
shown by means of a functional central limit theorem that, under relatively
weak conditions on the ut’s, Rn(r) converges to what is called a standardized
Wiener process and is denoted W (r). Intuitively, a Wiener process is like
a continuous random walk defined on the interval [0, 1]. Even though it is
continuous, it varies erratically on any subinterval, with each increment being
independent. For fixed r, W (r) ∼ N(0, r), a fact that can sometimes be
useful.
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The principal results on the asymptotics of unit root test statistics are
that, under the null hypothesis of a unit root, they converge to various func-
tions of Wiener processes. Unfortunately, such functions generally have distri-
butions that cannot be expressed in any convenient way and must be evaluated
numerically. To give some idea of what theoretical results on the asymptotics
of unit root test statistics look like, we now state the principal results of
Phillips (1987) for the statistics znc and τnc:

znc ⇒
1
2

(
W 2(1)− 1

)∫ 1

0
W 2(r)dr

(20.12)

τnc ⇒
1
2

(
W 2(1)− 1

)(∫ 1

0
W 2(r)dr

)1/2
. (20.13)

Here the notation ⇒ denotes weak convergence in a function space, which is
analogous to convergence in distribution. Similar results for the zc, zct, τc,
and τct test statistics may be found in Phillips and Perron (1988).

One important feature of these results is that they do not depend on the
assumption that the variances of the error terms ut are constant. The asymp-
totic distributions of the unit root test statistics that we have discussed are
the same under heteroskedasticity of unknown form as under homoskedastic-
ity. However, it is essential that there be no correlation between ut and ut−j
for all j 6= 0. Thus the test statistics we have discussed are not valid when
the error terms are serially correlated. When serial correlation is present, the
test statistics must be modified to take it into account. Two different ways
to do this will be discussed in the next section.

Although results like (20.12) and (20.13) are of considerable theoretical
interest, they are not very useful in practice, because the distributions of the
quantities on the right-hand side are not known analytically. However, critical
values for the eight test statistics that we have discussed have been tabulated
by various numerical methods, including Monte Carlo simulation. The best-
known reference is probably Fuller (1976), in which certain asymptotic critical
values for τnc, τc, τct, and the corresponding z tests are tabulated, along with
finite-sample critical values for a few selected sample sizes. Kiviet and Phillips
(1990) show that the finite-sample distributions of z tests can be calculated
numerically, in very much the same way as the finite-sample distribution of
the Durbin-Watson statistic (Section 10.8), and they tabulate some critical
values using that technique. Nabeya and Tanaka (1990) show how to compute
the asymptotic distributions of z statistics analytically and tabulate some
asymptotic critical values for znc, zc, and zct. MacKinnon (1991) uses Monte
Carlo methods to estimate response surfaces (see Section 21.7) for several τ
tests. These allow critical values to be read off for any sample size, as well as
for n =∞.



708 Unit Roots and Cointegration

Table 20.1 Asymptotic Critical Values for Unit Root Tests

Test Statistic 1% 2.5% 5% 10% 97.5%

τnc −2.56 −2.23 −1.94 −1.62 1.62
τc −3.43 −3.12 −2.86 −2.57 0.24
τct −3.96 −3.66 −3.41 −3.13 −0.66
τctt −4.37 −4.08 −3.83 −3.55 −1.21

znc −13.7 −10.4 −8.0 −5.7 1.6
zc −20.6 −16.9 −14.1 −11.2 0.4
zct −29.4 −25.1 −21.7 −18.2 −1.8
zctt −36.6 −31.8 −28.1 −24.2 −4.2

Unfortunately, all finite-sample critical values for unit root tests depend
on one or another highly unrealistic assumption about the error terms, usually
that they are NID(0, σ2). The asymptotic critical values, in contrast, are
valid much more generally, since they do not require that either normality or
homoskedasticity be assumed. Thus it may be safer to use asymptotic critical
values, treating them with appropriate caution, than to rely on finite-sample
values that may be quite inappropriate in practice.

Table 20.1 contains asymptotic critical values, computed by methods
similar to those of MacKinnon (1991), for the eight different tests we have
discussed. Most of the critical values in the table are lower-tail ones, since
the alternative of interest when we perform unit root tests is almost always
that the process is stationary, not that it is explosive. These values differ
slightly, in a few cases, from those published in Fuller (1976). The discrepan-
cies, which appear to be due primarily to experimental randomness, are never
more than two units in the least significant digit and should therefore be of
no consequence in applied work.

It is clear from Table 20.1 that the asymptotic behavior of unit root
test statistics is very different from the asymptotic behavior of any other test
statistic we have encountered so far. Suppose that α0 denotes the true value
of α. In the stationary case, when |α0| < 1, a t statistic for α = α0 would
be asymptotically distributed as N(0, 1) under the null hypothesis. Thus the
2.5% and 97.5% critical values for such a test statistic would be ±1.96. These
may be contrasted with the same critical values for the τ tests in the table.
The 2.5% critical values are always less than −1.96 and become increasingly
negative as more regressors are added to the test regression. Similarly, the
97.5% critical values are always less than 1.96 and are actually less than zero
for the τct and τctt tests.

Figure 20.1 shows the cumulative distribution function of τct for the case
n = 1000, which is almost indistinguishable from the asymptotic case. What
is plotted is actually the empirical distribution function of τct based on a
Monte Carlo experiment; since there were five million replications, experi-
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Figure 20.1 Distribution of τct for n = 1000

mental error should be negligible. For comparison, the c.d.f. of the standard
normal distribution is also shown. The differences between the two are strik-
ing, with the c.d.f. of τct everywhere far to the left of the standard normal
c.d.f. The principal reason for this is that α̂ is severely biased toward zero
when α0 = 1. This bias has serious consequences for the power of these tests
to reject the null hypothesis of a unit root. For example, if one is doing a
one-sided test at the 5% level, the asymptotic critical values for zc, zct, and
zctt are, respectively, −14.1, −21.7, and −28.1. Thus, if n = 100, α̂ must be
less than 0.859, 0.783, and 0.719 in these three cases for the null hypothesis to
be rejected. Evidently, the power of unit root tests may be small if the data
are actually generated by a trend-stationary model with error terms that are
serially correlated.

We have remarked several times that, under the null hypothesis that
α = 1, the parameters β0 in regression (20.07), β1 in regression (20.05), and
β2 in regression (20.11) must equal zero. Let us refer to the parameter that
must equal zero in a test regression as βk; here k = 0 if only a constant is
included, and k is equal to the number of trend terms included otherwise.
The result that βk = 0 follows directly from the algebra when one derives
these regressions as reparametrized versions of regressions like (20.03), since
βk = (1−α)γk. There is also a more fundamental explanation, however. The
presence of a unit root increases the order of yt. So does adding a constant
term, a trend term, or a trend squared term. If the order of yt is to be the
same both under the null hypothesis of a unit root and under the alternative
of trend-stationarity, it is necessary that the test regression should include a
certain nonstochastic regressor with a coefficient that is zero under the null
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and nonzero under the alternative. For example, consider (20.05), for which
k = 1. Under the null hypothesis, it reduces to

∆yt = β0 + β1t+ ut.

Under the alternative of stationarity, we know that ∆yt must be O(1). But
the trend term here is O(n). The only way that ∆yt can have the same order
under the null as under the alternative is for β1 to equal zero under the null.

All of the asymptotic results for Dickey-Fuller tests depend on βk being
zero. This can fail to be the case when there is a unit root only if the DGP is
not a special case of the model being tested. For example, if k = 0 and there
were a drift term γ1 in the DGP, the constant β0 in the model being tested
would appear to be nonzero. In any such case with βk 6= 0, the asymptotic
results change dramatically, as West (1988) showed. It turns out that, in
these circumstances, t statistics for α = 1 actually do have the standard
normal distribution asymptotically.

Although this result is remarkable, it is not actually very useful. There
are two problems with it. First of all, the normal distribution provides a good
approximation to the finite-sample distributions of τ -type unit root tests only
if βk is quite large relative to σ. Hylleberg and Mizon (1989) and Kwiatowski
and Schmidt (1990) provide Monte Carlo evidence on this for the cases k = 0
and k = 1, respectively. When βk/σ and n are within the ranges commonly
encountered for economic time series, they find that the DF distributions gen-
erally provide a much better approximation to the distributions of τ statistics
than does the standard normal distribution. The second problem is that unit
root tests based on regressions with βk 6= 0 tend to lack power. In fact, for
k ≥ 1 the power of such tests goes to zero as n → ∞. Thus, asymptotically,
they never reject the null hypothesis at all when it is false, even though they
may reject it when it is true. This result is discussed in Perron (1988) and
Campbell and Perron (1991).

20.4 Serial Correlation and Other Problems

All of the unit root tests that we have discussed so far are valid only under
the assumption that the error terms in the test regressions are serially un-
correlated. This assumption is very often untenable, because the regression
functions for the test regressions do not depend on any economic variables.
This makes it very likely that the error terms will display serial correlation.
Therefore, we need unit root tests that are (asymptotically) valid in the pres-
ence of serial correlation. There are two quite different ways to compute such
tests. Perhaps surprisingly, the new tests turn out to have the same asymp-
totic distributions as some of the tests that we have already discussed.

The simplest unit root tests that are valid in the presence of serial cor-
relation of unknown form are modified versions of the Dickey-Fuller τ tests.
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These are often called augmented Dickey-Fuller tests, or ADF tests. They
were proposed originally by Dickey and Fuller (1979) under the assumption
that the error terms follow an AR process of known order. Subsequent work
by Said and Dickey (1984) and Phillips and Perron (1988) showed that they
are asymptotically valid under much less restrictive assumptions. Consider
the test regressions (20.05), (20.06), (20.07), or (20.11). We can write any of
these regressions as

∆yt = Xtβ + (α− 1)yt−1 + ut, (20.14)

whereXt consists of whatever set of nonstochastic regressors is included in the
test regression: nothing at all for (20.06), a constant for (20.07), a constant
and a linear trend for (20.05), and so on.

Now suppose, for simplicity, that the error term ut in (20.14) follows the
stationary AR(1) process ut = ρut−1 + εt. Then (20.14) would become

∆yt = Xtβ − ρXt−1β + (ρ+ α− 1)yt−1 − αρyt−2 + εt

= Xtβ
∗ + (ρ+ α− 1− αρ)yt−1 + αρ(yt−1 − yt−2) + εt (20.15)

= Xtβ
∗ + (α− 1)(1− ρ)yt−1 + αρ∆yt−1 + εt. (20.16)

We are able to replace Xtβ − ρXt−1β by Xtβ
∗ in (20.15), for some choice

of β∗, because every column of Xt−1 lies in S(X). This is a consequence of
the fact that Xt can include only such deterministic variables as a constant, a
linear trend, and so on (see Section 10.9). Thus each element of β∗ is a linear
combination of the elements of β.

Equation (20.16) is a linear regression of ∆yt on Xt, yt−1, and ∆yt−1.
This is just the original regression (20.14), with one additional regressor,
∆yt−1. Adding this regressor has caused the serially dependent error term ut
to be replaced by the serially independent error term εt. The ADF version of
the τ statistic, which we will refer to as the τ ′ statistic, is simply the ordinary
t statistic for the coefficient on yt−1 in (20.16) to be zero. If the serial correla-
tion in the error terms of (20.14) were fully accounted for by an AR(1) process,
this τ ′ statistic would have exactly the same asymptotic distribution as the
ordinary DF τ statistic for the same specification of Xt. The fact that the
coefficient on yt−1 is (α−1)(1−ρ) rather than α−1 does not matter. Because
it is assumed that |ρ| < 1, this coefficient can be zero only if α = 1. Thus a
test for the coefficient on yt−1 to be zero is equivalent to a test for α = 1.

It is evidently very easy to compute τ ′ statistics using regressions like
(20.16), but it is not so easy to compute the corresponding z′ statistics. If the
coefficient of yt−1 were multiplied by n, the result would be n(α̂ − 1)(1 − ρ̂)
rather than n(α̂ − 1). This test statistic clearly would not have the same
asymptotic distribution as z. Thus, in order to compute a valid z′ statistic
from regression (20.16), it is necessary to divide the coefficient of yt−1 by 1−ρ̂;
see Dickey, Bell, and Miller (1986).
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In this simple example, we were able to handle serial correlation by adding
a single regressor, ∆yt−1, to the test regression. It is easy to see that if ut
followed an AR(p) process, we would have to add p additional regressors,
∆yt−1, ∆yt−2, and so on up to ∆yt−p. But what if the error terms followed
an MA or ARMA process? In that case, the moving average component of
the error terms could be modeled only by an infinite-order AR process, so it
would seem that we would have to add an infinite number of lagged values of
∆yt. This is impossible of course. But, luckily, we do not have to do anything
so extreme. As Said and Dickey (1984) showed, one can validly use ADF
tests even when there is a moving average component in the errors, provided
one lets the number of lags of ∆yt that are included tend to infinity at an
appropriate rate, which turns out to be a rate no faster than n1/3. One simply
acts as if the errors follow an AR(p) process and allows p to grow at a rate
no faster than n1/3.

In practice, of course, since n is fixed and does not tend to infinity,
knowing the critical rate n1/3 provides no help in choosing p. Moreover,
investigators do not know what process is actually generating the error terms.
Thus what is generally done is simply to add as many lags of ∆yt as are
necessary to remove evidence of serial correlation in the error terms. Monte
Carlo evidence (Schwert, 1989) suggests that ADF tests perform quite well
under the null hypothesis even when the process generating the error does
include an MA component.

The second way to obtain unit root test statistics that are valid despite
the presence of serial correlation of unknown form is to use the nonparametric
unit root tests of Phillips (1987) and Phillips and Perron (1988). In this
approach, the test statistics are based on the original test regression (20.14),
but they are modified so that serial correlation does not affect their asymptotic
distributions. These tests are called nonparametric because no parametric
specification of the error process is involved.

The nonparametric z statistic corresponding to some specification of the
matrix X in (20.14) can be written as

z∗ = n(α̂− 1)− n2(ω̂2 − σ̂2)

2y>MXy
. (20.17)

This is just the ordinary z statistic minus a correction term that tends to
zero asymptotically when there is no serial correlation. Here σ̂2 denotes any
consistent estimate of σ2 and ω̂2 denotes any consistent estimate of

ω2 ≡ lim
n→∞

(
1−
n
E
(
S2
n

))
.

When there is no serial correlation, ω2 = σ2 because

E
(
S2
n

)
= E

( n∑
s=1

n∑
t=1

usut

)
= nσ2.
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When there is serial correlation, however, ω2 will differ from σ2, because
E(usut) 6= 0 for at least some t 6= s.

The calculation of z∗ defined in (20.17) is not entirely straightforward,
because there are many possible choices for ω̂2. The problem of estimating ω2

is similar to the problem of estimating covariance matrices in the presence
of heteroskedasticity and serial correlation of unknown form. We discussed
how to do that in Section 17.5. One particularly simple technique is the one
suggested by Newey and West (1987a). Using it, the estimate of ω2 is

ω̂2 = 1−
n

(
n∑

t=1

û2
t + 2

p∑
j=1

wjp

( n∑
t=j+1

ûtût−j

))
, (20.18)

where wjp = 1 − j/(p + 1). Other weighting functions could also be used,
so long as they have the property that ω̂2 is necessarily positive. The lag
truncation parameter p must grow at a rate no faster than n1/4 if ω̂2 is to be
consistent for ω2.

Nonparametric τ statistics are obtained by modifying ordinary τ statistics
in much the same way as z∗ modifies z:

τ∗ =
σ̂τ

ω̂
− n(ω̂2 − σ̂2)

2ω̂y>MXy
. (20.19)

Once the quantities necessary to compute z∗ are available, it is easy to com-
pute τ∗ as well. However, there is some evidence — see Phillips and Perron
(1988) and Schwert (1989) — that z∗ statistics tend to have more power than
ADF τ ′ and nonparametric τ∗ statistics.

Since different investigators might well choose different values of p, or use
different weights wjp, they might well obtain different values of z∗ or τ∗ for the
same data. This is unfortunate but inevitable. To confuse matters further,
there are other techniques for estimating ω2, in addition to the one used in
(20.18). Some of these have desirable properties and some have undesirable
ones; see Andrews (1991a, 1991b) and Ouliaris, Park, and Phillips (1989),
among others. The finite-sample properties of these different techniques can
differ substantially. However, they always seem to be poor for at least some
specifications of the error process (Schwert, 1989). The finite-sample behav-
ior of τ ′ statistics is also not always well approximated by their asymptotic
distributions, but it never seems to be as bad as the behavior of z∗ and τ∗

statistics can be.

Since there are so many ways to compute nonparametric unit root test
statistics, none of which has good finite-sample properties under the null hypo-
thesis in all cases, it is potentially dangerous to rely on any of these statistics.
Before making important inferences on the basis of one or more of them, it
would be advisable to conduct a Monte Carlo experiment (see Chapter 21) to
investigate their performance with data similar to those actually used.
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Serial correlation is not the only complication that one is likely to en-
counter when trying to compute unit root test statistics. One very serious
problem is that these statistics are severely biased against rejecting the null
hypothesis when they are used with data that have been seasonally adjusted
by means of a linear filter or by the methods used by government statistical
agencies. In Section 19.6, we discussed the tendency of the OLS estimate of
α in the regression yt = β0 + αyt−1 + ut to be biased toward 1 when yt is
a seasonally adjusted series. This bias is present for all the test regressions
we have discussed. Even when α̂ is not actually biased toward 1, it will be
less biased away from 1 than the corresponding estimate using an unfiltered
series. Since the tabulated distributions of the test statistics are based on
the behavior of α̂ for the latter case, it is likely that test statistics computed
using seasonally adjusted data will reject the null hypothesis substantially less
often than they should according to the critical values in Table 20.1. That
is exactly what Ghysels and Perron (1993) found in a series of Monte Carlo
experiments.

If possible, one should therefore avoid using seasonally adjusted data to
compute unit root tests. One possibility is to use annual data. This may
cause the sample size to be quite small, but the consequences of that are not
as severe as one might fear. As Shiller and Perron (1985) point out, the power
of these tests depends more on the span of the data (i.e., the number of years
the sample covers) than on the number of observations. The reason for this is
that if α is in fact positive but less than 1, it will be closer to 1 when the data
are observed more frequently. Thus a test based on n annual observations may
have only slightly less power than a test based on 4n quarterly observations
that have not been seasonally adjusted and may have more power than a test
based on 4n seasonally adjusted observations.

If quarterly or monthly data are to be used, they should if possible not be
seasonally adjusted. Unfortunately, as we remarked in Chapter 19, seasonally
unadjusted data for many time series are not available in many countries.
Moreover, the use of seasonally unadjusted data may make it necessary to
add seasonal dummy variables to the regression and to account for fourth-
order or twelfth-order serial correlation.

A second major problem with unit root tests is that they are very sensitive
to the assumption that the process generating the data has been stable over
the entire sample period. Perron (1989) showed that the power of unit root
tests is dramatically reduced if the level or the trend of a series has changed
exogenously at any time during the sample period. Even though the series
may actually be stationary in each of the two parts of the sample, it can be
almost impossible to reject the null that it is I(1) in such cases.

Perron therefore proposed techniques that can be used to test for unit
roots conditional on exogenous changes in level or trend. His tests are per-
formed by first regressing yt on a constant, a time trend, and one or two
dummy variables that allow either the constant, the trend, or both the con-
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stant and the trend to change at one specified point in time. The residuals
from these regressions are then used in a regression like (20.06), and the usual
z, τ , z∗, and τ∗ statistics can then be calculated. The asymptotic distributions
of these test statistics are not the same as those of zct and τct, as they would
be (because of the FWL Theorem) if no dummy variables were included in
the initial regressions. Instead, they depend on what dummy variables are
included and where in the sample the break occurred. Asymptotic critical
values are tabulated in Perron (1989).

Much empirical work, following the classic paper of Nelson and Plosser
(1982), has seemed to show that unit roots are very often present in macro-
economic time series. Perron argued that when one takes account of either the
great crash of 1929 (for annual series that end prior to 1973) or the oil shock
of 1973 (for quarterly post-war series), these results change dramatically and
most U.S. macroeconomic time series appear not to have a unit root. Whether
this somewhat controversial result will pass the test of time is not yet clear.

There has been a great deal of empirical work that uses unit root tests;
prominent examples include Nelson and Plosser (1982), Mankiw and Shapiro
(1985), Campbell and Mankiw (1987), Perron and Phillips (1987), and DeJong
and Whiteman (1991). Because of the various problems we have discussed,
and because different tests tend to yield different results, it is difficult to draw
conclusive inferences about whether economic time series do or do not have
unit roots. This suggests that, when one is building regression models that
involve time series which may or may not have unit roots, one should not
employ a strategy that will work well only if they are in fact either I(0) or
I(1). We will return to that subject in Section 20.8. Before doing so, however,
we will discuss the important topic of cointegration.

20.5 Cointegration

Economic theory often suggests that certain pairs of economic variables should
be linked by a long-run equilibrium relationship. Although the variables may
drift away from equilibrium for a while, economic forces may be expected to
act so as to restore equilibrium. Examples of such variables might include in-
terest rates on assets of different maturities, prices of similar commodities in
different countries (if purchasing power parity holds in the long run), dispos-
able income and consumption, government spending and tax revenues, wages
and prices, the money supply and the price level, or spot and future prices
of a commodity. There is no reason to restrict attention to pairs of variables,
of course, although it is often easiest to do so. There may well be groups
of three, four, or more variables that can be expected to be linked by some
long-run equilibrium relationship.

Most of the variables mentioned in the previous paragraph are I(1), or at
least they appear to be when some (but not necessarily all) unit root tests are
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employed. We know that variables which are I(1) tend to diverge as n→∞,
because their unconditional variances are proportional to n. Thus it might
seem that such variables could never be expected to obey any sort of long-run
equilibrium relationship. But in fact it is possible for two or more variables to
be I(1) and yet for certain linear combinations of those variables to be I(0).
If that is the case, the variables are said to be cointegrated. If two or more
variables are cointegrated, they must obey an equilibrium relationship in the
long run, although they may diverge substantially from equilibrium in the
short run. The concept of cointegration is fundamental to the understanding
of long-run relationships among economic time series. It is also quite recent.
The earliest reference is probably Granger (1981), the best-known paper is
Engle and Granger (1987), and two relatively accessible articles are Hendry
(1986) and Stock and Watson (1988a).

Suppose, to keep matters simple, that we are concerned with just two
variables, yt1 and yt2, each of which is known to be I(1). Then, in the simplest
case, yt1 and yt2 would be cointegrated if there exists a vector η ≡ [1 −η2]>

such that, when the two variables are in equilibrium,

[y1 y2 ]η ≡ y1 − η2y2 = 0. (20.20)

Here y1 and y2 denote n--vectors with typical elements yt1 and yt2, respec-
tively. The 2--vector η is called a cointegrating vector. It is clearly not unique,
since it could be multiplied by any nonzero scalar without affecting the equal-
ity in (20.20).

Realistically, one might well expect yt1 and yt2 to be changing systemat-
ically as well as stochastically over time. Thus one might expect (20.20) to
contain a constant term and perhaps one or more trend terms as well. If we
write Y = [y1 y2], (20.20) can be rewritten to allow for this possibility as

Yη = Xβ, (20.21)

where, as in (20.14), X denotes a nonstochastic matrix that may or may not
have any elements. If it does, the first column will be a constant, the second,
if it exists, will be a linear time trend, the third, if it exists, will be a quadratic
time trend, and so on. Since Y could contain more than two variables, (20.21)
is actually a very general way of writing a cointegrating relationship among
any number of variables.

At any particular time t, of course, an equality like (20.20) or (20.21)
cannot be expected to hold exactly. We may therefore define the equilibrium
error νt as

νt = Ytη −Xtβ, (20.22)

where Yt and Xt denote the tth rows of Y and X, respectively. In the special
case of (20.20), this equilibrium error would simply be yt1 − η2yt2. The m
variables yt1 through ytm are said to be cointegrated if there exists a vector η
such that νt in (20.22) is I(0).
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This is, at first sight, quite a remarkable property for νt to have. Thus it
may not be immediately obvious that we can actually generate variables which
are I(1) but cointegrated. An example may therefore be in order. Consider
the following bivariate model:

λ1yt1 − yt2 = ut1, (1− ρ1L)ut1 = εt1,

yt1 − λ2yt2 = ut2, (1− ρ2L)ut2 = εt2,
(20.23)

where yt1 and yt2 are random variables and λ1 and λ2 are parameters, and[
εt1
εt2

]
∼ N(0,Ω).

When both ρ1 and ρ2 are less than 1 in absolute value, both y1 and y2 will
obviously be I(0). When both ρ1 and ρ2 are equal to 1, both y1 and y2 will
be I(1), and they will not be cointegrated. However, when one of the ρi’s is
less than 1 and the other is equal to 1, both variables will be I(1), but they
will be cointegrated. For example, suppose that ρ2 < 1 and ρ1 = 1. Then the
cointegrating vector would be [1 −λ2], and the equilibrium error would be

ut2 = yt1 − λ2yt2 = εt2 + ρ2ut−1,2.

As long as ρ2 < 1, this equilibrium error will be stationary, and y1 and y2 will
be cointegrated.

The concept of cointegration brings with it two obvious econometric ques-
tions. The first is how to estimate the cointegrating vector η, and the second
is how to test whether two or more variables are in fact cointegrated. These
questions are of course closely related; the answer to the second depends on
the answer to the first. The first will be discussed now, and the second will
be the topic of the next section.

The easiest way to estimate a cointegrating vector is to rewrite (20.22)
as a regression and then to use OLS. This approach is associated with Engle
and Granger (1987). Thus, if the coefficient on y1 were arbitrarily normalized
to unity, we could run the regression

y1 = Xβ + Y ∗η∗ + ν, (20.24)

where Y ∗ is an n × (m − 1) matrix with columns y2 through ym, and the
parameter vector η∗ is equal to minus the m−1 free elements of the parameter
vector η that appears in (20.22).

There are apparently two serious problems with running a regression like
(20.24). The first problem is that if the yit’s are cointegrated, they are surely
determined jointly, which implies that the error term will almost certainly
not be independent of the regressors. In the case of (20.23), with ρ1 = 1 and
ρ2 < 1, for example, the relationship between yt1 and yt2 is

yt1 = λ2yt2 + ρ2(yt−1,1 − λ2yt−1,2) + εt2. (20.25)
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Thus, if we regress yt1 on yt2, the error term is implicitly

ρ2(yt−1,1 − λ2yt−1,2) + εt2, (20.26)

and both terms here are correlated with yt2. The second problem is that, in
a regression like (20.24) we are regressing a variable which is I(1) on one or
more other I(1) variables. This seems like a most undesirable thing to do,
since it is a situation in which spurious regressions are very likely to arise (see
Section 19.2).

Despite these apparent problems, when yt1 through ytm are in fact coint-
egrated, the OLS estimates from regression (20.24) will be consistent. Indeed,
they will be super-consistent; instead of approaching their true values at a
rate proportional to n−1/2, the OLS estimates will approach them at a rate
proportional to n−1. The first apparent problem does not matter asymptotic-
ally because yt2 is I(1) and the two components of the error term in (20.26) are
I(0) (the first component is I(0) only if yt1 and yt2 are in fact cointegrated).
Thus terms that involve the error term will be asymptotically negligible rel-
ative to terms that involve yt2. The second apparent problem does not arise
asymptotically for a similar reason, namely, that the (true) cointegrating rela-
tionship among the yti’s creates terms that dominate any terms which might
ordinarily cause spurious regressions. Another consequence of this is that the
R2 from (20.24) will tend to unity as n→∞.

To see why we obtain super-consistent estimates from regression (20.24),
consider the simplest case, in which m = 2 and X is a null matrix. In this
case, the OLS estimate of η2, the single element of η∗, will be

η̂2 =

∑n
t=1 yt1yt2∑n

t=1 y
2
t2

.

If the two series really are cointegrated, we can write

yt1 = η2yt2 + νt,

where the νt’s follow some sort of stationary process. Hence

η̂2 = η2 +

∑n
t=1 νtyt2∑n
t=1 y

2
t2

. (20.27)

Since yt2 is I(1), we can write it as

yt2 = St2 + vt2,

where St2 is a partial sum process and vt2 is an error term, which would be
i.i.d. if yt2 were a random walk but will, in general, be serially correlated.
Hence the second term in (20.27) is∑n

t=1

(
νtvt2 + νtSt2

)∑n
t=1

(
S2
t2 + 2St2vt2 + v2

t2

) . (20.28)
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Both terms in the numerator can be shown, by arguments similar to those
used in Section 20.2, to be O(n). The highest-order term in the denominator
is the first one, which can be shown to be O(n2). Thus the ratio (20.28) is
O(n)/O(n2) = O(n−1). This allows us to conclude that η̂2 approaches the
true value η2 at a rate proportional to n−1.

This result is very important, and it generalizes to the case in which η is
an m--vector; see Stock (1987). There are m different ways to run a regression
like (20.24), one for each of the yi’s. These will yield m different estimated
cointegrating vectors, all of them super-consistent. Since regressions involv-
ing stationary series always yield estimates that are root-n consistent, we can
substitute η̂ for η in such regressions without affecting their asymptotic prop-
erties. Because the discrepancies between η and η̂ will be O(n−1), they will be
asymptotically negligible relative to the estimation errors in such regressions.

Unfortunately, the fact that η̂ is super-consistent does not imply that
it always has good properties in finite samples. Part of the problem is that,
because expression (20.28) does not have mean zero, η̂ will, in general, be
biased. This bias can be quite large in practice; see Banerjee, Dolado, Hendry,
and Smith (1986) and Stock (1987). One source of bias is evident from (20.25).
This equation includes the term ρ2(yt−1,1 − λ2yt−1,2), which we ignore when
we simply regress yt1 on yt2. The omitted term looks like an error-correction
term. Since the omitted term is I(0) and yt2 is I(1), leaving it out does not
matter asymptotically. But, especially if ρ2 is large, there may be substantial
finite-sample correlation between yt−1,1 − λyt−1,2 and yt1. This can cause
finite-sample bias and loss of efficiency.

Ways to obtain better estimates of η have been suggested by several
authors, including Phillips and Hansen (1990) and Saikkonen (1991). The
approach of the latter author is particularly elegant. He proves that asymp-
totically efficient estimates may be obtained by running the least squares
regression

y1 = Xβ + Y ∗η∗ +

p∑
j=−p

∆Y ∗−jγj + e, (20.29)

where ∆Y ∗−j denotes an n× (m− 1) matrix, each column of which is a vector
of first differences of the corresponding column of Y ∗, lagged j periods, and γj
denotes an (m− 1)--vector of coefficients. Thus equation (20.29) simply adds
p leads and p lags of the first differences of Y ∗ to regression (20.24). Doing
this removes the deleterious effects that short-run dynamics in the equilibrium
errors ν have on the estimates of η. Because the latter are not asymptotically
normally distributed, the concept of efficiency that Saikkonen uses is not the
standard one that we have discussed in this book, and his paper is far from
elementary. Of course, his result is purely an asymptotic one. If n is not
large relative to p(m − 1), there may be so many additional regressors in
(20.29) that the finite-sample properties of the least squares estimates of η∗

will actually be poor.
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20.6 Testing for Cointegration

The most popular tests for cointegration, which are very closely related to
unit root tests, were suggested by Engle and Granger (1987). The basic idea
is very simple. If yt1 through ytm are in fact cointegrated, the true equilibrium
error term νt must be I(0). If they are not cointegrated, however, νt must be
I(1). Thus one can test the null hypothesis of noncointegration against the
alternative of cointegration by performing a unit root test on νt.

If νt were actually observed, the unit root test statistics would have the
same asymptotic distributions as the ones discussed above. However, in al-
most all cases, νt will not be observed, because at least some elements of η will
be unknown. It is therefore necessary to estimate η. This could in principle be
done in several ways, but the simplest approach is to apply OLS to regression
(20.24). This procedure yields a vector of residuals, or estimated equilibrium
errors, ν̂. If the variables yt1 through ytm are in fact not cointegrated, re-
gression (20.24) is a spurious one, and the vector ν̂ should have a unit root.
Conventional unit root test statistics may be calculated using this vector of
residuals. For obvious reasons, such tests are often called residual-based co-
integration tests. Because ν̂ depends on one or more estimated parameters,
which under the null hypothesis are the parameters of a spurious regression,
the asymptotic distributions of residual-based cointegration test statistics are
not the same as those of ordinary unit root test statistics.

The model (20.23) may provide some useful insights. Since it is the value
of ρ2 (or possibly the value of ρ1) that determines whether the two series are
cointegrated in that model, it should not be surprising that tests of the null
hypothesis of noncointegration should look like tests of the null hypothesis
that an individual series has a unit root. It should also not be surprising
that the null hypothesis is that the two series are not cointegrated, since,
conditional on ρ1 = 1, they will be cointegrated unless ρ2 happens to equal 1.

Residual-based cointegration tests may be adapted from any of the unit
root tests discussed above, provided the right critical values are used. The
simplest procedure, sometimes called the Engle-Granger test, or the EG test,
involves first estimating the cointegrating regression (20.24) and then using
an ordinary Dickey-Fuller τ test, based on the regression

∆ν̂t = (α− 1) ν̂t−1 + et. (20.30)

Since serial correlation is very often a problem, it is more common to use an
augmented Engle-Granger test, or AEG test, which is related to the EG test in
exactly the same way as the ADF τ ′ test is related to the ordinary DF τ test.
Thus the AEG test is just the t statistic on α− 1 in a regression like (20.30)
but with enough lags of ∆ν̂t included as additional regressors to eliminate
any evidence of serial correlation. Nonparametric z∗ and τ∗ tests may also
be used, as Phillips and Ouliaris (1990) suggested. These are computed in
almost exactly the same way as they were in expressions (20.17) and (20.19):
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The residuals from regression (20.30) are used to compute σ̂2 and ω̂2, and the
quantity ν̂>ν̂ replaces the quantity y>MXy.

Critical values for all these tests depend on the number of I(1) variables
on the right-hand side of the cointegrating regression (20.24) and on the nature
of the nonstochastic regressors in that regression. Some relatively inaccurate
critical values were published by Engle and Granger (1987), Engle and Yoo
(1987), and Phillips and Ouliaris (1990). Table 20.2 contains reasonably accu-
rate asymptotic critical values (the last digit is unlikely to be wrong by more
than one unit) for the statistics τc, τct, τctt, zc, zct, and zctt, for various values
of m, obtained by methods similar to those used in MacKinnon (1991). Crit-
ical values for the τnc and znc statistics are not included in the table, because
it almost never makes sense to use them in practice. Recall that m is the
number of endogenous variables; m − 1 is therefore the number of elements
of the cointegrating vector which have to be estimated. If some elements are
known a priori, one must use the critical values for a smaller value of m. In
the extreme case in which all elements of the cointegrating vector are known,
one would use the critical values for unit root tests of Table 20.1.

Because the cointegrating regression includes the columns of X among
the regressors, it is not necessary to include X in the test regression (20.30).
The FWL Theorem does not quite apply here, because the fact that one
observation has been dropped at the beginning means that the vector ν̂−1

will not be quite orthogonal to the columns of X. However, ν̂−1 will be
orthogonal to X asymptotically. Thus it makes no difference, asymptotically,
whether X is included in the test regression or not.

The OLS estimates of η depend on which one of the yi’s is treated as
the regressand. Changing the regressand will, in finite samples, change the
residual vector ν̂ and hence change the calculated values of any cointegration
test statistics based on that vector. This is rather unfortunate, because there
are already a great many possible test statistics. Thus, for cointegration tests
even more than for unit root tests, there are likely to be plenty of opportunities
for different tests to yield conflicting inferences.

All the problems that afflict ordinary unit root tests also afflict the
residual-based cointegration tests that we have discussed. One problem is
that asymptotic critical values may be seriously misleading in finite samples.
Unfortunately, finite-sample critical values depend on the specific features of
the DGP, such as the nature of any heteroskedasticity or serial correlation
that may be present, which are generally unknown in practice. Another prob-
lem, originally discussed in Section 20.4, is that cointegration tests are often
severely lacking in power when they are used with seasonally adjusted data
or when the process generating any one of the series has changed over time.
Thus failure to reject the null hypothesis of noncointegration may provide
only very weak evidence that two or more series are in fact not cointegrated.

Although tests based on the residual vector ν̂ are by far the most popu-
lar ones, numerous other cointegration tests have been proposed. References
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Table 20.2 Asymptotic Critical Values for Cointegration Tests

Test Statistic 1% 2.5% 5% 10% 97.5%

m = 2
τc −3.90 −3.59 −3.34 −3.04 −0.30
τct −4.32 −4.03 −3.78 −3.50 −1.03
τctt −4.69 −4.40 −4.15 −3.87 −1.52

zc −28.3 −23.9 −20.6 −17.1 −0.7
zct −35.8 −31.1 −27.3 −23.4 −3.2
zctt −42.6 −37.5 −33.4 −29.1 −5.8

m = 3
τc −4.29 −4.00 −3.74 −3.45 −0.85
τct −4.66 −4.37 −4.12 −3.84 −1.39
τctt −4.99 −4.70 −4.45 −4.17 −1.81

zc −35.2 −30.4 −26.7 −22.7 −2.4
zct −42.0 −36.9 −32.8 −28.5 −5.0
zctt −48.5 −43.0 −38.7 −34.0 −7.6

m = 4
τc −4.64 −4.35 −4.10 −3.81 −1.30
τct −4.97 −4.68 −4.43 −4.15 −1.73
τctt −5.27 −4.98 −4.73 −4.45 −2.09

zc −41.6 −36.5 −32.4 −28.1 −4.5
zct −48.1 −42.6 −38.2 −33.5 −7.0
zctt −54.3 −48.5 −43.9 −38.9 −9.8

m = 5
τc −4.96 −4.66 −4.42 −4.13 −1.68
τct −5.25 −4.96 −4.72 −4.43 −2.04
τctt −5.53 −5.24 −4.99 −4.72 −2.36

zc −47.8 −42.3 −38.0 −33.3 −6.7
zct −54.0 −48.2 −43.5 −38.5 −9.3
zctt −60.0 −53.9 −49.0 −43.7 −12.1

m = 6
τc −5.25 −4.96 −4.71 −4.42 −2.01
τct −5.52 −5.23 −4.98 −4.70 −2.32
τctt −5.77 −5.49 −5.24 −4.96 −2.61

zc −53.8 −48.0 −43.4 −38.4 −9.1
zct −59.7 −53.7 −48.8 −43.5 −11.8
zctt −65.5 −59.2 −54.1 −48.6 −14.6

include Stock and Watson (1988b), Phillips and Ouliaris (1990), Johansen
(1988, 1991), and Johansen and Juselius (1990, 1992). Johansen’s approach
will be discussed in Section 20.8. Campbell and Perron (1991) provide an
overview of several of these tests, which are all a good deal harder to com-
pute than the residual-based ones we have discussed. In addition, every test
statistic seems to require a different set of critical values.
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20.7 Model-Building with Cointegrated Variables

Many economic time series are, or at any rate appear to be, integrated of order
one. From the results of Section 19.2 on spurious regressions, and the results
of this chapter, it is clear that regressing the levels of a series which is I(1) on
the levels of one or more other series which are also I(1) is generally not a good
thing to do. At worst, we may “discover” an entirely spurious relationship.
At best, we may consistently estimate the elements of some cointegrating
vector, but standard asymptotic theory will not apply to our estimates, and
we may therefore be led to make incorrect inferences about the parameters
we have estimated. The study of ways to specify and estimate models for
I(1) variables is an active and somewhat controversial area of research. Much
of the more theoretical material, such as Park and Phillips (1988, 1989) and
Phillips (1991a), is technically too demanding to be treated in this book. In
this section, we will therefore content ourselves with discussing some simple
special cases and some relatively simple results. We will discuss the estimation
of vector autoregressions involving cointegrated variables in the next section.

The classical approach to dealing with integrated variables, especially in
the time-series literature, has been to difference them as many times as needed
to make them stationary. This approach has the merit of simplicity. Once all
series have been transformed to stationarity, dynamic regression models may
be specified in the usual way, and standard asymptotic results apply. The
problem with this approach is that differencing eliminates the opportunity to
estimate any relationships between the levels of the dependent and indepen-
dent variables. But cointegration implies that such relationships exist, and,
as the examples at the beginning of Section 20.5 suggest, they are often of
considerable economic interest. Thus simply using differenced data is often
not an appropriate strategy.

A second approach is to estimate some sort of error-correction model, or
ECM. We discussed these models in Section 19.4, under the assumption that
all the variables were stationary. Error-correction models are still appropriate
when that assumption no longer holds. In fact, they are particularly attractive
when the dependent variable is I(1). However, one must exercise some care
when trying to estimate or draw inferences from such models.

A simple but widely applicable single-equation ECM, similar to equation
(19.30), can be written as

∆yt = ztα+ β(yt−1 − λxt−1) + γ∆xt + ut, ut ∼ IID(0, σ2). (20.31)

The dependent variable here is yt, and the principal independent variable
is xt. These two variables are assumed to be I(1) and cointegrated, which
implies that the error-correction term β(yt−1−λxt−1) is I(0). The row vector
zt includes a constant term and any other independent variables, all of which
are assumed to be either nonstochastic or I(0). If (20.31) does not allow
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sufficiently rich dynamics, it can easily be extended by including more lags of
∆xt and increasing the lag on the error-correcting term.

If λ were known, there would clearly be no problem estimating (20.31)
by least squares. The regressand and all the regressors would be either non-
stochastic or I(0). Thus the estimates of α, β, and γ would be root-n con-
sistent and asymptotically normal, and their covariance matrix could be esti-
mated in the usual way. But in most cases λ will not be known. There are
then several ways to proceed. The simplest is the Engle-Granger two-step
method proposed by Engle and Granger (1987). The first step is to regress
yt on xt, including a constant term and possibly a trend if the latter ap-
pears in zt. As we have seen, this will yield a super-consistent estimate of
λ, say λ̃. The second step is to replace λ by λ̃ in (20.31) and then estimate
that equation using OLS. Because of the super-consistency of λ̃, Engle and
Granger are able to show that the resulting estimates of the other parameters
are asymptotically the same as they would be if λ were known.

The principal merit of the Engle-Granger two-step procedure is simplicity.
However, there is a good deal of Monte Carlo evidence that it often does not
work very well in finite samples; see Banerjee, Dolado, Hendry, and Smith
(1986) and Banerjee, Dolado, Galbraith, and Hendry (1993). The problem
is that λ̃ often seems to be severely biased. This bias then causes the other
parameter estimates to be biased as well. The problem appears to be least
severe when the R2 of the cointegrating regression is close to 1, as it must be
when the sample size is sufficiently large. Thus a relatively low value of the
R2 from the cointegrating regression should be taken as a warning that the
two-step procedure may not work well.

The simplest alternative to the Engle-Granger two-step procedure is to
estimate a model like

∆yt = ztα+ βyt−1 + δxt−1 + γ∆xt + ut, (20.32)

in which the new parameter δ is implicitly equal to −βλ. This regression
looks rather odd, since the regressand is I(0) and two of the regressors are
I(1). One might therefore expect that standard asymptotic distribution the-
ory would not apply to some or all of the parameter estimates. The asymptotic
distribution theory for this equation is indeed nonstandard, but the practical
problems turn out to be much less severe than one might expect.

The key results for regressions like (20.32) were proved by Sims, Stock,
and Watson (1990). They considered the asymptotic distributions of the
individual coefficients in a linear regression involving I(1) variables. They
showed that if a parameter θ can be written as the coefficient of an I(0)
variable with zero mean, then n1/2(θ̂ − θ0) will be asymptotically normally
distributed, with the usual asymptotic standard error. Now consider (20.32)
again. In that equation, γ is written as the coefficient of an I(0) variable.
Provided that zt includes a constant term, the zero-mean requirement can
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easily be met. Moreover, as is clear from (20.31), β can be written as the
coefficient of yt−1 − λxt−1, which is I(0) because x and y are cointegrated.
By renormalizing the cointegrating regression so that xt−1 has a coefficient
of unity, we see that δ can also be written as the coefficient of a variable
which is I(0). Thus standard asymptotic distribution theory applies to all the
economically interesting coefficients in (20.32).

Although one can make inferences about individual coefficients in equa-
tion (20.32) in the usual way, one must be careful if one tries to do anything
else. For example, a joint test statistic for β and δ to be zero, or to have any
other particular values, would not have the usual χ2 distribution asymptot-
ically. As another example, one might well choose to compute λ̃ as −δ̃/β̃,
where β̃ and δ̃ denote least squares estimates. Since λ cannot be written as
the coefficient of a mean-zero I(0) variable, standard asymptotic distribution
theory would not apply to it.

Estimating equation (20.31) directly by nonlinear least squares is equiv-
alent to estimating equation (20.32) by OLS. The fits of both equations will
be the same, as will be the estimates of parameters that appear in both. The
results of Banerjee, Dolado, Hendry, and Smith (1986) suggest that these
estimates will be better than those obtained by the Engle-Granger two-step
procedure, but this conclusion has been disputed by Engle and Yoo (1987,
1991). It would seem that the relative merits of these two estimation proce-
dures may depend heavily on the details of the DGP.

The estimation techniques that have been discussed in this section are
all single-equation ones, and they are not in general efficient. Although the
two-step procedure is always super-consistent for λ, it is not asymptotically
efficient. At the end of Section 20.5, we discussed Saikkonen’s procedure for
estimating a cointegrating vector η efficiently. Another approach was pro-
posed by Engle and Yoo (1991). It involves a three-step estimation procedure
that starts from the Engle-Granger two-step estimates and uses an artificial
regression to implement a single Gauss-Newton step. Other authors, including
Johansen (1988, 1991) and Phillips (1991a), have proposed various full-system
estimation methods. The approach of Johansen will be discussed in the next
section.

There has been a good deal of empirical work involving cointegration
tests and the estimation of models for cointegrated variables. Examples in-
clude Hall (1986), Baillie and Selover (1987), Campbell (1987), Campbell and
Shiller (1987), Corbae and Ouliaris (1988), Granger and Lee (1989), Kunst
and Neusser (1990), Johnson (1990), and King, Plosser, Stock, and Watson
(1991). One interesting extension is to the case of seasonal time series pro-
cesses; see Hylleberg, Engle, Granger, and Yoo (1990).
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20.8 Vector Autoregressions and Cointegration

One of the most interesting approaches to the full-system estimation of models
involving cointegrated variables was developed in Johansen (1988, 1991) and
Johansen and Juselius (1990, 1992). It is based on the estimation of a vector
autoregression, or VAR, by maximum likelihood; see Section 19.5 for more
on VARs. In this section, we briefly discuss this approach.

Consider the following VAR in the levels of a set of variables:

Yt = Yt−1Π1 + · · ·+ Yt−pΠp +Ut. (20.33)

The notation here is similar to that used in Section 19.5: Yt and Ut are 1×m
row vectors, and Π1 through Πp are m × m matrices of coefficients. For
simplicity, there are no constant terms, although this assumption is rarely
realistic. The VAR (20.33) can be reparametrized as

∆Yt = ∆Yt−1Γ1 + · · ·+ ∆Yt−p+1Γp−1 − Yt−pΠ +Ut, (20.34)

where Γ1 = Π1 − I, Γ2 = Π2 + Γ1, Γ3 = Π3 + Γ2, and so on. Thus the
matrix Π is related to the Πi’s of (20.33) by

Π = I−Π1 − · · · −Πp.

By stacking the n observations in (20.34), we can write the full system as

∆Y = ∆Y−1Γ1 + · · ·+ ∆Y−(p−1)Γp−1 − Y−pΠ +U, (20.35)

in obvious notation. Each term in (20.35) is an n×m matrix.

The matrix Π, which is sometimes called the impact matrix, determines
whether or not, and to what extent, the system (20.35) is cointegrated. If we
assume as usual that the differenced variables ∆Y are stationary, then every
term in (20.34) except Yt−pΠ is an element of a stationary process. This
implies that YΠ must itself be stationary. Trivially, YΠ will be stationary
if Π is a matrix of zeros. That is what it must be when none of the series is
cointegrated with any of the others. At the other extreme, if the matrixΠ has
full rank m, the only way for YΠ to be stationary is for Y to be stationary,
which means that each of its columns is stationary. These columns are the
different series, yi, i = 1, . . . ,m, that make up the system (20.33).

In between these two extremes, if all the variables in Y are nonstationary,
(20.34) implies that there must be cointegration, and any vector in the range
of Π must be a cointegrating vector. Suppose that Π has rank r, with
0 < r < m. If that is the case, we can write Π as

Π = −ηα>, (20.36)
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where α and η are m × r matrices, and the minus sign is introduced here
for later convenience. From (20.36), we see that Y−pΠ = −Y−pηα>. The
cointegrating vectors are proportional to the columns of the matrix η. Thus,
for each column, say ηi, Y ηi is a stationary random variable. When r = 1,
there is a single cointegrating vector, which is proportional to η1. When
r = 2, there is a two-dimensional space of cointegrating vectors, spanned
by η1 and η2, and so on. The two extreme cases are those in which r = 0,
when there are no cointegrating vectors at all, and r = m, when any linear
combination of the yi’s will be stationary, because each yi will be I(0).

The approach of Johansen (1988, 1991) is to estimate the VAR (20.34)
subject to the constraint (20.36) for various values of r, using maximum like-
lihood. This estimation is based on the assumption that the error vector Ut is
multivariate normal for each t and independent across observations. This as-
sumption is not as restrictive as it may seem, since if there are enough lagged
differences of Y included in (20.34), they should remove any evidence of se-
rial correlation in the residuals. It is possible to maximize the loglikelihood
function analytically conditional on any value of r, as Johansen showed, by a
method very similar to that used in Section 18.5 for obtaining LIML estimates.

The system (20.35) with the constraint (20.36) imposed can be written as

∆Y = ∆Y−1Γ1 + · · ·+ ∆Y−(p−1)Γp−1 + Y−pηα
>+U. (20.37)

We know (recall the concentrated loglikelihood function (9.65)) that the ML
estimates of the parameters of this system are obtained by minimizing the de-
terminant of the matrix of squares and cross-products of the residuals, that is∣∣∣(∆Y −∆Y−1Γ1 − · · · −∆Y−(p−1)Γp−1 − Y−pηα>

)>(
∆Y −∆Y−1Γ1 − · · · −∆Y−(p−1)Γp−1 − Y−pηα>

)∣∣∣.
It can be seen from this expression that not all of the elements of η and α
can be identified, since the factorization (20.36) is not unique for a given Π.
In fact, if B is any nonsingular r × r matrix,

ηBB−1α = ηα.

Thus η can be constructed by taking any r linearly independent m--vectors
in the r--dimensional space S(Π). Once a specific choice has been made for
the matrix η, α is subsequently uniquely determined. This fact allows us
to circumvent the apparent problem that the regression functions in (20.37)
depend nonlinearly on the parameters.

We may concentrate out the parameters contained in the matrices Γ1

through Γp−1 by replacing them by least squares estimates. Thus, if we
let M∆ denote the orthogonal projection onto S⊥(∆Y−1 · · ·∆Y−(p−1)), the
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determinant to be minimized can be expressed as a function of η and α
alone, as follows: ∣∣∣(∆Y − Y−pηα>)>M∆

(
∆Y − Y−pηα>

)∣∣∣. (20.38)

Let us write Y ∗−p for M∆Y−p and ∆Y ∗ for M∆∆Y . Then (20.38) can be
expressed as ∣∣∣(∆Y ∗ − Y ∗−pηα>)>(∆Y ∗ − Y ∗−pηα>)∣∣∣. (20.39)

It is now easy to concentrate this expression with respect to α, for, if we
hold η fixed, the residuals in (20.39) depend linearly on α. If V ≡ Y ∗−pη, we
obtain the determinant ∣∣(∆Y ∗)>MV ∆Y ∗

∣∣. (20.40)

By use of the same trick we had recourse to in Section 18.5, we can
treat (20.40) as one factor in the decomposition of the determinant of a larger
matrix. Consider ∣∣∣∣ (∆Y ∗)>∆Y ∗ (∆Y ∗)>V

V >∆Y ∗ V>V

∣∣∣∣ .
By the result (A.26) of Appendix A, this matrix can be factorized either as∣∣V>V ∣∣∣∣(∆Y ∗)>MV ∆Y ∗

∣∣
or as ∣∣(∆Y ∗)>∆Y ∗∣∣∣∣V>M∗V

∣∣,
where M∗ projects orthogonally onto S⊥(∆Y ∗). Since |(∆Y ∗)>∆Y ∗| does
not depend on η, we see that minimizing (20.40) is equivalent to minimizing
the ratio

|V>M∗V |
|V>V |

=

∣∣η>(Y ∗−p)>M∗Y ∗−pη
∣∣∣∣η>(Y ∗−p)>Y ∗−pη

∣∣ (20.41)

with respect to η. The minimum of (20.40) is then the minimum of (20.41)
times |(∆Y ∗)>∆Y ∗|.

The least variance ratio problem that had to be solved in the LIML
context (see (18.49)) involved a ratio of quadratic forms rather than the de-
terminants that appear in (20.41). Even so, the present problem can be solved
by the same technique as (18.49), namely, by converting the problem into an
eigenvalue-eigenvector problem. Before we go into details, notice that (20.41)
is invariant if η is replaced by ηB, for any nonsingular r× r matrix B. This
is precisely what we noted earlier in speaking of the nonuniqueness of (20.36).
We therefore cannot expect to obtain a unique minimizing η but only an
r--dimensional subspace.
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For the actual minimization, it is convenient to work with a transfor-
mation of η. Let S denote any m × m matrix with the property that
S>S = (Y ∗−p)>Y ∗−p, and define the m × r matrix ζ as Sη. The ratio (20.41)
becomes ∣∣ζ>(S−1)>(Y ∗−p)>M∗Y ∗−pS

−1ζ
∣∣∣∣ζ>ζ∣∣ . (20.42)

Since all that matters is the subspace spanned by the r columns of ζ, we
may without loss of generality choose ζ such that ζ>ζ = Ir. Let us define
the m ×m positive definite matrix A to be the matrix that appears in the
numerator of (20.42). Then we have to minimize |ζ>Aζ| with respect to ζ
subject to the constraint that ζ>ζ = I.

In order to perform this minimization, it turns out to be enough to con-
sider the eigenvalue-eigenvector problem associated with A. If we solve this
problem, we will obtain an orthogonal matrix Z, the columns of which are
orthonormalized eigenvectors of A, and a diagonal matrix Λ, the diagonal
elements of which are the eigenvalues of A, which must evidently lie between
zero and unity. Then AZ = ZΛ. If the columns of Z and Λ are arranged
in increasing order of the eigenvalues λ1, . . . , λm, we may choose the ML es-
timate ζ̂ to be the first r columns of Z. Geometrically, the columns of ζ̂
span the space spanned by the eigenvectors of A that correspond to the r
smallest eigenvalues. The fact that Z is orthogonal means that ζ̂ satisfies the
constraint, and the choice of the smallest eigenvalues serves to minimize the
determinant |ζ>Aζ|.

The ML estimate of the space of cointegrating vectors S(η) can now be
recovered from ζ̂ by the formula η̂ = S−1ζ̂. The matrix α̂ needed in order to
obtain ML estimates of the parameters contained in the matrix Π can then
be obtained as the OLS estimates from the multivariate regression of ∆Y ∗ on
Y ∗−pη̂. Subsequently, estimates of the matrices Γi, i = 1, . . . , p − 1, can also
be obtained by OLS.

Often, we are not especially interested in the parameters of the VAR
(20.35). The focus of our interest is more likely to be testing the hypothesis
of noncointegration against an alternative of cointegration of some chosen
order. Should the null hypothesis that r = 0 be rejected, we may then wish
to test the hypothesis that r = 1 against the alternative that r = 2, and
so forth. The eigenvalues λi, i = 1, . . . ,m, provide a very convenient way
to do this, in terms of a likelihood ratio test. It is clear that if we select
some value of r, the minimized determinant |ζ>Aζ| is just the product of
the r smallest eigenvalues, λ1 · · ·λr. The minimum of (20.40) is this product
multiplied by |(∆Y ∗)>∆Y ∗|. If r = 0, then the minimum of (20.40) is simply
this last determinant. Likelihood ratios for different values of r are therefore
just products of some of the eigenvalues, raised to the power n/2; recall (9.65).
If we take logs and multiply by 2 in order to obtain an LR statistic, we obtain
−n times the sum of the logs of the appropriate eigenvalues.
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Specifically, to test the null that r = r1, 0 ≤ r1 < m, against the alter-
native that r = r2, r1 < r2 ≤ m, the LR test statistic is

LR = −n
r2∑

i=r1+1

log λi. (20.43)

This expression is clearly analogous to the LR statistic (18.50) in the context of
LIML. However, it will not have the usual asymptotic chi-squared distribution.
Instead, under the various nulls that can be tested, the LR statistics (20.43)
will have nonstandard asymptotic distributions that depend on the number of
“degrees of freedom” r2 − r1 and on whether the VAR includes a constant or
a trend term. These distributions are tabulated by simulation, for a limited
number of cases, in Johansen and Juselius (1990). Conditional on a given
value of r, inference about the elements of (suitably normalized) cointegrating
vectors can also be performed by means of LR statistics, which will then have
their standard chi-squared asymptotic distributions under the null hypotheses
being tested. This is a convenient property of the VAR approach.

20.9 Conclusion

We have seen in this chapter that the asymptotic theory for I(1) variables is
very different from the ordinary asymptotic theory with which we are familiar.
Because they are so different, we have not attempted to deal with the former
in any depth. We have simply tried to present some of the principal results
in an intuitive fashion, and to provide appropriate references. Much of the
material we have discussed is quite new, because research in this area has
been so active during the past ten years, and some of it is still controversial.
Readers may find ample evidence of this assertion by reading Phillips (1991b,
1991c) and other articles in Pesaran (1991).

Terms and Concepts

augmented Dickey-Fuller (ADF) tests
augmented Engle-Granger (AEG)

tests
cointegrated variables
cointegrating vector
cointegration
Dickey-Fuller (DF) tests
Engle-Granger (EG) tests
Engle-Granger two-step method
equilibrium error
functional central limit theorems
impact matrix

nonparametric unit root tests
partial sum process
residual-based cointegration tests
span (of time-series data)
standardized partial sum process
standardized Wiener process
super-consistent estimator
τ , τ ′, and τ∗ tests
unit root tests
unit roots
vector autoregression (VAR)
z and z∗ tests



Chapter 21

Monte Carlo Experiments

21.1 Introduction

Most of the methods for estimation and hypothesis testing discussed in this
book have statistical properties that are known only asymptotically. This
is true for nonlinear models of all types, for linear simultaneous equations
models, and even for the univariate linear regression model once we dispense
with the strong assumption of fixed regressors or the even stronger assump-
tion that the error terms are normally and identically distributed. Thus, in
practice, exact finite-sample theory can rarely be used to interpret estimates
or test statistics. Unfortunately, unless the sample size is very large indeed, it
is difficult to know whether asymptotic theory is sufficiently accurate to allow
us to interpret our results with confidence.

There are basically two ways to deal with this situation. One is to re-
fine asymptotic approximations such as those we have derived in this book
by adding terms of lower order in the sample size n, typically terms that are
O(n−1/2) or O(n−1). These more refined approximations are variously re-
ferred to as finite-sample approximations or as asymptotic expansions. The
asymptotic expansions approach has been most extensively employed in study-
ing the properties of estimators of simultaneous equations models and estima-
tors of univariate linear dynamic models. This approach can, in some cases,
yield valuable insights into the behavior of estimators and test statistics. Un-
fortunately, it frequently involves mathematics that are either more advanced
or more tedious than most applied econometricians are comfortable with. It is
often applicable only to relatively simple models, and it tends to produce re-
sults that are complicated and very difficult to interpret, in part because they
often depend on unknown parameters. Moreover, these results are themselves
only approximations; while they are generally better than asymptotic ap-
proximations, they may not be accurate enough. Ideally, one would like to be
able to use asymptotic expansions routinely, as part of econometric software
packages, in order to obtain confidence intervals and hypothesis tests more
accurate than the asymptotic ones discussed in this book. Unfortunately, this
ideal situation appears to be a very long way off, although recent work such as
Rothenberg (1988) has perhaps moved us a little closer. Two useful surveys of
methods based on asymptotic expansions are Phillips (1983) and Rothenberg
(1984). A somewhat critical review of the literature is Taylor (1983).

731
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The second approach, which is the one we discuss in this chapter, is to
investigate the finite-sample properties of estimators and test statistics by
using Monte Carlo experiments. The term “Monte Carlo” is used in many
disciplines to refer to procedures in which quantities of interest are approxi-
mated by generating many random realizations of some stochastic process and
averaging them in some way.1 Since this is rarely feasible without a powerful
computer, the literature on Monte Carlo methods tends to be quite recent.
The asymptotic expansions approach requires a great deal of highly skilled la-
bor. In contrast, the Monte Carlo approach, as Summers (1965) emphasized,
is relatively capital-intensive. It economizes on skilled labor by using a great
deal of computer time.

In econometric applications of Monte Carlo methods, the quantities of
interest are generally various aspects of the distributions of estimators and
test statistics, such as the mean and mean squared error of an estimator, the
size of a test statistic under the null hypothesis, or the power of a test sta-
tistic under some specified alternative hypothesis. Hendry (1984) provides a
provocative survey. Most of the literature on Monte Carlo methods, however,
is not specifically concerned with statistics or econometrics but rather with
methods of approximating multidimensional integrals or simulating nonlinear
systems. Nevertheless, general references such as Hammersley and Hand-
scomb (1964), Rubinstein (1981), Kalos and Whitlock (1986), Ripley (1987),
and Lewis and Orav (1989) contain much useful material.

Although Monte Carlo methods are often seen as an alternative to the
asymptotic expansions approach, the two approaches should more properly be
regarded as complementary. Just as Monte Carlo experiments can be used to
check the validity of asymptotic approximations, so can they be used to check
the validity of approximations based on asymptotic expansions. Moreover,
there are many situations in which asymptotic expansions can be used to
analyze simple special cases, while focusing attention on the issues that need
to be examined for more general cases by means of Monte Carlo experiments.
However, since asymptotic expansions are beyond the scope of this book, we
will not provide much discussion of how they may be used in conjunction with
Monte Carlo methods.

A typical paper utilizing Monte Carlo methods in statistics or econo-
metrics presents results from several (perhaps many) related Monte Carlo
experiments. Each experiment involves several things that must be specified
by the experimenter. First, there must be an econometric model and a set
of estimators or test statistics associated with that model. The object of the
experiments is to investigate the finite-sample properties of those estimators
or test statistics. Second, there must be a data-generating process (DGP),

1 The term is reported to have originated with Metropolis and Ulam (1949). If it
had been coined a little later, it might have been called the “Las Vegas method”
instead of the “Monte Carlo method.”
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which is usually but not always a special case of the model. The DGP must
be specified completely. This means that if there are exogenous variables,
they or their distributions must be specified, as must the distributions of any
error terms. Each experiment consists of some number of replications, which
we will denote by N. Each replication involves generating a single set of data
from the DGP and calculating the estimators or test statistics of interest.
Typically, the number of replications is quite large (N = 1000, 2000, 5000,
and 10,000 are common choices), but it may sometimes be as small as 50 if
estimation is very time-consuming and accurate results are not needed. After
N replications have been performed, N observations on each of the estimators
or test statistics of interest will have been obtained, and this generated sample
is then subjected to statistical analysis to compute estimates of the quanti-
ties of interest. The results of a Monte Carlo experiment are thus themselves
estimates, and are therefore subject to experimental error. However, we can
make this error acceptably small by designing the experiment carefully, us-
ing a sufficiently large number of replications, and perhaps by using variance
reduction techniques (see Sections 21.5 and 21.6 below).

As the above discussion implies, it is rare for anyone to do a single Monte
Carlo experiment. Instead, investigators usually perform a set of related ex-
periments, in which the sample size n and other aspects of the DGP (such as
parameter values) are varied, in order to see how such variations affect the
estimators or test statistics of interest. If there are only a few experiments,
the results are normally presented in tabular form. If there are many experi-
ments, however, this can involve a great deal of material, which readers may
find hard to assimilate. One way of dealing with this problem is to estimate
a response surface, in which the results of each experiment are treated as a
single observation, and a regression model is fitted that relates the quantities
of interest to the sample size and to other aspects of the DGP that vary across
the experiments. Ideally, the estimates of the response surface summarize the
results of the experiments and provide a more compact and readily compre-
hended way of presenting results than a series of tables would. The response
surface approach will be discussed in Section 21.7.

In the remainder of this chapter, we discuss some important aspects of
Monte Carlo experiments in econometrics. Most Monte Carlo experiments
require the availability of a great many pseudo-random variates, that is, num-
bers which appear to have been drawn from some specified probability dis-
tribution. In the next two sections, we briefly discuss how these may be
generated on a computer. In Section 21.4, we discuss some other aspects of
designing a set of Monte Carlo experiments. In Sections 21.5 and 21.6, we
discuss variance reduction techniques, which can sometimes be used to in-
crease the precision of results for a given expenditure of computer time. In
the following section, we discuss the use of response surfaces. Finally, in Sec-
tion 21.8, we briefly discuss the statistical method known as the bootstrap,
which is closely related to Monte Carlo methods.
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21.2 Generating Pseudo-Random Numbers

Every Monte Carlo experiment requires a great many “random” variates, dis-
tributed according to some prespecified distribution(s). For example, consider
a small experiment dealing with a regression model that has fixed regressors.
Suppose there are to be 50 observations and 1000 replications. For such an
experiment, a total of 50,000 “random” variates would be needed just to gen-
erate the error terms. If there were three stochastic regressors, a further
150,000 “random” variates would be needed to generate the regressors. As we
will see in the next section, if we can find a way to obtain “random” numbers
uniformly distributed on the 0-1 interval, denoted U(0, 1), it is then usually
quite easy to obtain “random” variates distributed according to any distribu-
tion we specify. The fundamental problem is to obtain the original “random”
numbers. Although it is possible to acquire genuinely random numbers by ob-
serving physical processes such as the decay of radioactive isotopes, it would
be extremely inconvenient if we had to hook our computer to a physical ran-
dom number generator, or read a massive table of previously collected random
numbers, every time we wished to run a Monte Carlo experiment! Thus it is
evident that if Monte Carlo experiments are to be practical, we must find a
way to make the computer generate “random” numbers quickly and cheaply.

The quotation marks around “random” in the previous paragraph were
put there to emphasize the fact that what we need for purposes of a Monte
Carlo experiment is a way of obtaining numbers which have the same statis-
tical properties as random numbers, rather than numbers which are genuinely
random. In fact, no digital computer is capable of generating genuinely ran-
dom numbers, at least not if it is working correctly. But digital computers
are capable of generating sequences of pseudo-random numbers, which are
in fact purely deterministic. Programs that do so are called pseudo-random
number generators or, more commonly but less accurately, simply random
number generators. Pseudo-random numbers that are generated by a good
random number generator are, for the purposes of Monte Carlo experiments,
indistinguishable from sequences of genuinely random numbers, that is, actual
sequences of independent draws from the U(0, 1) distribution.

There are many ways to generate pseudo-random numbers. The most
common ones are variants of the congruential generator,

ηt =
zt
m
, zt = (λzt−1 + α)(mod m), (21.01)

where ηt is the tth random number generated, and zt is a positive integer. The
generator (21.01) depends on three parameters: λ is called the multiplier, α
is called the increment, and m is called the modulus. The notation (mod m)
means that we divide what precedes it by m and retain the remainder. Thus zt
must be smaller than m, and ηt must always lie between 0 and 1. It can be
shown that a congruential generator must always repeat itself eventually, in
at most m steps, and so it is evident that we want m to be a large number.
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Thus m is often chosen to be the largest integer that can be represented
exactly on a particular computer; this is frequently 231 − 1. With this choice
of m we could, in principle, generate somewhat more than two billion random
numbers before the sequence repeated itself. However, if m, λ, and α are
badly chosen, the sequence can repeat itself much more quickly than that and
may well display other symptoms of nonrandomness.

The choice of the increment α is not terribly important; one widely used
variant of (21.01) is the class of multiplicative congruential generators, in
which α is equal to zero. However, the choice of the multiplier λ is extremely
important. Certain choices are known to lead to relatively well-behaved gen-
erators, while others are known to lead to very ill-behaved ones. For more
details, see Kennedy and Gentle (1980), Knuth (1981), Rubinstein (1981),
Press, Flannery, Teukolsky, and Vetterling (1986), Ripley (1987), L’Ecuyer
(1988), and Lewis and Orav (1989).

Most of the time, econometricians performing a Monte Carlo experiment
will not need to write their own random number generators. If they are
using an efficient and high-quality one, the only thing they need to worry
about is how to supply the seed, that is, the initial value z0 which is needed
to generate z1 and which, for a given generator, uniquely determines the
entire sequence of random numbers. The seed may be specified more or less
arbitrarily as a large integer less than m, or it may be chosen “randomly”
based on the system clock. In either case, it should be recorded so that an
experiment can be repeated if necessary. The seed is supplied only the first
time the random number generator is called in a particular program. After
the first call, z0 is replaced by z1, then by z2, and so on. Thus, at any time,
the routine has available zt−1 to use in computing zt.

Unfortunately, there are many bad random number generators in exis-
tence and widespread use, and it is certainly not safe to rely on a generator
that has not been extensively tested. Such tests are discussed by most of the
books on Monte Carlo methods mentioned above; see also Fishman and Moore
(1982). What tests one might want to perform depend on what the random
numbers are being used for. If the model being studied is a time-series model,
for example, one would want to make sure that they are free of any serial
correlation. Note that poor random number routines can often be improved
by “shuffling” the numbers they produce or by combining several routines in
some way. For example, one might use two different routines to generate two
different random numbers, then use a third routine to determine randomly
which of the two to pick.

21.3 Generating Pseudo-Random Variates

Once one has access to a routine that can generate long sequences of pseudo-
random numbers ηt, each apparently independently distributed as U(0, 1),
there are several ways in which one can generate pseudo-random variates that
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Figure 21.1 The transformation method

appear to be drawn from any desired distribution. We will discuss two general
techniques, the transformation method and the rejection method, as well as
various special methods applicable to certain cases of interest.

The transformation method is based on the fact that the range of a cumu-
lative distribution function (c.d.f.) is the 0-1 interval. Thus, if u is distributed
according to the strictly increasing c.d.f. F (u), η = F (u) must be distributed
as U(0, 1). For any η, we can invert the c.d.f. so as to obtain u = F−1(η). To
obtain a sequence of ut’s distributed according to F (u), we simply generate a
sequence of ηt’s distributed as U(0, 1) and subject each of them to the trans-
formation F−1(ηt). This is illustrated in Figure 21.1. As can be seen from
the figure, any value of η on the vertical axis, such as η∗, is mapped uniquely
via F−1(η∗) into a corresponding value u∗ on the horizontal one.

The transformation method works well whenever F−1(·) is inexpensive
to compute. One such case is that of the exponential distribution, for which
the probability density function (p.d.f.) is

f(u) = θe−θu

(see Section 8.1), and the corresponding c.d.f. is

F (u) = 1− e−θu.

Setting η equal to F (u) and solving, we find that

u = F−1(η) = − 1

θ
log(1− η).

Thus, in this case, the transformation method can easily be used to generate
pseudo-random variates distributed according to the exponential distribution.
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The transformation method can be used to generate pseudo-random nor-
mal variates, but it requires a certain amount of computation because there
is no closed form expression for the standard normal c.d.f. Φ(·) or its inverse
Φ−1(·). An algorithm to calculate the latter numerically must be employed.
An alternative technique that is widely used is the Box-Muller method of Box
and Muller (1958). It uses the fact that if η1 and η2 are independent random
variates from U(0, 1), then the variates

u1 =
(
−2 log(η1)

)1/2
cos(2πη2) and u2 =

(
−2 log(η1)

)1/2
sin(2πη2)

are independent random variates from N(0, 1). See Rubinstein (1981) or
Press, Flannery, Teukolsky, and Vetterling (1986) for a proof. The latter
book also discusses a modified version of the Box-Muller method that should
be somewhat faster to compute. The major problem with the Box-Muller
technique is that it relies heavily on the independence of η1 and η2. If the
random number generator that is used to generate them is not a good one,
they may exhibit some dependence, and the resulting variates u1 and u2 may
be neither normally nor independently distributed.

Once one is able to obtain pseudo-random variates from N(0, 1), it is
straightforward to obtain pseudo-random variates from N(µ, σ2) or from the
multivariate normal distribution with any arbitrary mean vector µ and covar-
iance matrix Ω. If u denotes an l--vector each element of which is a pseudo-
random variate from N(0, 1), and if ψ is an l × l (usually triangular) matrix
such that ψ>ψ = Ω, it is easy to see that the l--vector v defined by

v ≡ µ+ψ>u

will follow the N(µ,Ω) distribution. It is also straightforward to obtain ran-
dom variates from the Cauchy, chi-squared, Student’s t, and F distributions,
simply by using the relationships between those distributions, the standard
normal distribution, and each other (see Appendix B). For example, to gen-
erate random variates from χ2(5), we could generate 5 independent random
variates from N(0, 1), square them, and sum their squares. This method
works well as long as the number of degrees of freedom is modest but would
not be recommended for generating random variates from, say, F (65, 1743).

The other frequently used and widely applicable method for generating
random variates is the rejection method. It can be used whenever the p.d.f.
f(u) is known. In its simplest version, the rejection method requires that the
domain of f(u) be a finite interval on the real line, say the interval [α, β].
One starts by obtaining two random variates from U(0, 1), say η1 and η2. The
first of these is transformed into ν1, a random variate from U(α, β), while the
second is transformed into ν2, a random variate from U(0, h), where h is a
number at least as large as the maximum of f(u). Once ν1 and ν2 have
been obtained, ν2 is compared with f(ν1). If ν2 exceeds f(ν1), the proposed
random variate ν1 is rejected and another pair (ν1, ν2) is drawn. If ν2 is less



738 Monte Carlo Experiments

..............................................
.................
..............
..............
.............
.............
..............
.............
.............
...........
.............
.............
............
............
............
..........
.............
..............
..............
.............
..............
............
............
............
.............
..............
..............
...............
................
.....................


h

ν1

ν2

• (ν01 , ν
0
2 )

• (ν11 , ν
1
2 )

α β
0

Figure 21.2 The rejection method

than or equal to f(ν1), however, ν1 is accepted and u is set equal to it. This
method is illustrated in Figure 21.2. Here the point (ν01 , ν

0
2) yields a value

of u, while the point (ν11 , ν
1
2) is rejected.

It is easy to see why the rejection method works. Although we pick ν1
initially from U(α, β), we accept it only if ν2 < f(ν1), and the probability
that this will happen is proportional to f(ν1). This version of the rejection
method is of course somewhat inefficient, since we have to generate, on av-
erage, 2h(β − α) random variates for every u that we actually obtain. If the
density f(u) has a tall spike, h will be large. If it has long tails, β − α will
be large. In either of these cases, 2h(β − α) will be large, and the method
may be quite inefficient. In a more general version of the rejection method,
the constant h is replaced by a function h(ν1), with ν1 then drawn from a
density proportional to h(ν1). Then ν2 is chosen to be U

(
0, h(ν1)

)
. Provided

that h(ν1) > f(ν1) everywhere on [α, β], which no longer needs to be a finite
interval, this method is valid; provided that it is easy to draw random variates
ν1 with probability proportional to h(ν1), and that the area under h(·) is not
too much larger than the area under f(·), it will work efficiently. Note that
h(·) is not itself a density, since h(ν1) must be greater than f(ν1) for all ν1
and hence must integrate to more than unity; it may be convenient to make
h(·) proportional to some well-known density, however.

21.4 Designing Monte Carlo Experiments

The hardest part of doing a set of Monte Carlo experiments is usually de-
signing them. Limitations on computing resources, the experimenter’s time,
and the amount of space that can reasonably be devoted to presenting the
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results mean that it is usually practical to perform only a small number of
experiments. These must be designed to shed as much light as possible on the
issues of interest.

The first thing to recognize is that results from Monte Carlo experiments
are necessarily random. At a minimum, this means that results must be re-
ported in a way which allows readers to appreciate the extent of experimental
randomness. Moreover, it is essential to perform enough replications so that
the results are sufficiently accurate for the purpose at hand. The number of
replications that is needed can sometimes be substantially reduced by using
variance reduction techniques, which will be discussed in the next two sec-
tions. Such techniques are by no means always readily available, however. In
this section, we consider various other aspects of the design of Monte Carlo
experiments.

We first consider the problem of determining how many replications to
perform. As an example, suppose that the investigator is interested in calcu-
lating the size of a certain test statistic (i.e., the probability of rejecting the
null hypothesis when it is true) at, say, the nominal .05 level. Let us denote
this unknown quantity by p. Each replication will generate a test statistic
that either exceeds or does not exceed the nominal critical value. These can
be thought of as independent Bernoulli trials. Suppose N replications are
performed and R rejections are obtained. Then the obvious estimator of p,
which is also the ML estimator, is R/N . The variance of this estimator is
N−1p(1− p), which can be estimated by R(N −R)/N3.

Now suppose that one wants the length of a 95% confidence interval on
the estimate of p to be approximately .01. Using the normal approximation
to the binomial, which is surely valid here since N will be a large number, we
see that the confidence interval must cover 2 × 1.96 = 3.92 standard errors.
Hence we require that

3.92

(
p(1− p)

N

)1/2
= .01. (21.02)

Assuming that p is .05, the nominal level of the test being investigated, we
can solve (21.02) for N. The result is N ∼= 7299. To be on the safe side (since
p may well exceed .05, implying that R/N may have a larger variance) the
investigator would probably choose N = 8000. This is a rather large number
of replications and may be expensive to compute. If one were willing to let
the 95% confidence interval on p have a length of .02, one could make do with
a sample one-quarter as large, or roughly 2000 replications.

If the objective of an experiment is to compare two or more estimators
or two or more test statistics, fewer replications may be needed to obtain a
given level of accuracy than would be needed to estimate the properties of
either of them with the same level of accuracy. Suppose, for example, that
we are interested in comparing the biases of two estimators, say θ̂ and θ̃, of a
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parameter the true value of which is θ0. On each replication, say the jth, we
obtain realizations θ̂j and θ̃j of each of the two estimators. The biases of the
two estimators are

B(θ̂) ≡ E(θ̂ − θ0) and B(θ̃) ≡ E(θ̃ − θ0),

which may be estimated by

B̂(θ̂) =
1−
N

N∑
j=1

(θ̂j − θ0) and B̃(θ̃) =
1−
N

N∑
j=1

(θ̃j − θ0).

The difference between B(θ̂) and B(θ̃) is

E(θ̂ − θ0)− E(θ̃ − θ0) = E(θ̂ − θ̃), (21.03)

which may be estimated by

1−
N

N∑
j=1

(θ̂j − θ̃j). (21.04)

It is possible and indeed likely that the variance of (21.04) will be substantially
smaller than the variance of either B̂(θ̂) or B̃(θ̃), because both θ̂j and θ̃j
depend on the same pseudo-random vector uj. The variance of (21.04) is

1−
N
V (θ̂) +

1−
N
V (θ̃)− 2−

N
Cov(θ̂, θ̃),

which will be smaller than the variance of either B̂(θ̂) or B̃(θ̃) whenever
Cov(θ̂, θ̃) is positive and large enough. This will very often be the case, since
it is likely that θ̂j and θ̃j will be strongly positively correlated. Thus it may
require far fewer replications to estimate (21.03) than to estimate B(θ̂) and
B(θ̃) with the same level of accuracy. Of course, this assumes that θ̂j and θ̃j
are obtained using the same set of pseudo-random variates, but that is how
the Monte Carlo experiment would normally be designed. We will encounter
an idea similar to this one when we discuss the method of antithetic variates
in the next section.

The second important thing to keep in mind when designing Monte Carlo
experiments is that the results will often be highly sensitive to certain aspects
of the experimental design and largely or totally insensitive to other aspects.
Obviously, one will want to vary the former across the experiments while
fixing the latter in a more or less arbitrary fashion. For example, many test
statistics related to regression models are invariant to the variance of the error
terms. Consider the ordinary t statistic for α = 0 in the regression

y = Xβ + αz + u. (21.05)



21.4 Designing Monte Carlo Experiments 741

Using the FWL Theorem and assuming that the data are generated by a
special case of (21.05) for which α = 0, we see that

t(α̂) =
z>MXu(

u>MX,zu/(n− k)
)1/2(

z>MXz
)1/2 , (21.06)

where there are n observations and a total of k regressors and, as usual, MX

and MX,z denote the matrices that project orthogonally onto the subspaces
S⊥(X) and S⊥(X, z), respectively. The finite-sample distribution of this sta-
tistic when the ut’s are not normally distributed is in general unknown and
might well be the subject of a Monte Carlo experiment. However, it is clear
from inspection of (21.06) that this distribution in no way depends on the var-
iance of the error terms which make up the error vector u in the DGP, since if
we multiply u by any positive constant, t(α̂) is unaffected. Thus, in this case,
we might as well fix the variance of the error terms at some arbitrary level,
since there would be nothing at all to be learned by varying it. Breusch (1980)
discusses a number of other invariance results for linear regression models; by
taking such results into account, one can in many cases simplify the design of
Monte Carlo experiments.

On the other hand, when there is reason to expect the results to be
sensitive to certain aspects of the DGP, it is important to conduct experiments
in which those aspects are varied over the range of interest. Just what aspects
of the DGP these will be must necessarily vary from case to case. The sample
size n will almost always be one of them, because it is almost always of
interest to see how rapidly the finite-sample properties of the quantities being
examined approach their (known) asymptotic limits. One exception might be
if the aim of the Monte Carlo experiment were to shed light on the properties
of a particular set of estimators or test statistics for a particular data set, so
that the experiment was being used as an adjunct to a piece of empirical work
(see Section 21.8). In contrast to this situation, up to the present time most
Monte Carlo experiments have been designed to shed light on the general
properties of certain statistical procedures, and it is hard to claim any sort of
generality when all results are for a single sample size.

The vast majority of the models that econometricians estimate are re-
gression models or close relatives of regression models. Thus, except in a few
special cases such as pure time-series models, conditioning variables (Xt’s) are
usually present. How these should be treated in Monte Carlo experiments is
not entirely clear. One approach is to generate the Xt’s in some way. Draw-
ing them from independent uniform, normal, or lognormal distributions is
popular when the experiment deals with cross-section data, while generating
them from various simple time-series processes such as AR(1), MA(1), and
ARMA(1, 1), with normal errors, is popular when the experiment deals with
time-series data. One can either draw a new set of Xt’s for each replica-
tion or draw a single set of Xt’s to be used in all replications. The latter
method is cheaper and makes sense if the Xt’s are supposed to be fixed in
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repeated samples, but it may yield results that depend on the idiosyncratic
characteristics of the particular set of Xt’s which was drawn.

Another possibility is to use genuine economic data for the Xt’s. If these
data are chosen with care, this approach can ensure that the Xt’s are indeed
typical of those which appear in econometric models. However, it raises a
problem of how to vary the sample size. If one uses either genuine data or a
single set of generated data, the matrix n−1X>X will change as the sample
size n changes. This may make it difficult to separate the effects of changes in
n from the effects of changes in n−1X>X. One solution to this problem is to
pick, or generate, a single set of Xt’s for a sample of size m and then repeat
these as many times as necessary to create Xt’s for samples of larger sizes.
This requires that n = cm, where c is an integer. Obvious choices for m are
50 and 100; n could then be any integer multiple of 50 or 100. The problem
with this approach, of course, is that no matter how many replications are
performed, all the results will depend on the choice of the initial set of Xt’s.

In many cases, how the Xt’s are chosen will not matter much. However,
there are cases for which it can have a substantial impact on the results. For
example, MacKinnon and White (1985) used Monte Carlo experiments to ex-
amine the finite-sample performance of various heteroskedasticity-consistent
covariance matrix estimators (HCCMEs; see Section 16.3). They used 50 ob-
servations on genuine economic data for the Xt’s, repeating these 50 observa-
tions as many times as necessary for each sample size. As Chesher and Jewitt
(1987) subsequently showed, the performance of the estimators depends crit-
ically on the ht’s, that is, the diagonal elements of the matrix PX ; the larger
are the largest ht’s, the worse will be the finite-sample performance of tests
based on all HCCMEs. When the X matrix is generated the way MacKinnon
and White generated it, with n = 50c, all of the ht’s must approach zero at
a rate proportional to 1/c (and hence also to 1/n). Thus MacKinnon and
White were guaranteed to find that results improved rapidly as the sample
size was increased. In contrast, Cragg (1983), doing Monte Carlo experiments
on a related issue (see Section 17.3), generated the Xt’s randomly from the
lognormal distribution. This distribution has a long right-hand tail and thus
occasionally throws up large values of certain Xt’s. These produce relatively
large values of ht, and as a result the largest values of ht tend to zero at a rate
very much slower than 1/n. Thus, as the Chesher-Jewitt analysis would have
predicted, Cragg found that finite-sample performance improved only slowly
as the sample size was increased.

More recently, Chesher and Peters (1994) have shown that the distribu-
tions of many estimators of interest to econometricians depend crucially on
the way the regressors are distributed. If the regressors are symmetrically
distributed about their medians, these estimators will have special properties
that do not hold in general. Since regressors used in Monte Carlo experiments
might well be symmetrically distributed, there is a risk that the results of such
experiments could be seriously misleading.
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The above examples should make two things clear. First, the way theXt’s
are generated can matter. Investigators should thus always think carefully
about how they generate them. Second, a good theoretical understanding of
a problem can make Monte Carlo experiments more informative and prevent
misleading conclusions which may stem from apparently minor aspects of the
experimental design.

One of the most challenging parts of any Monte Carlo experiment is
presenting the results. This is often a great deal harder than it might seem.
Here we discuss a few of the issues. One method that is sometimes very useful,
namely, the estimation of response surfaces, will not be discussed here but will
be dealt with extensively in Section 21.7.

When presenting results in tabular form, it is easy to overwhelm the
reader. Especially if several estimators or test statistics are being compared,
it is important to make comparisons as easy as possible. For example, if one is
interested in the mean squared error (MSE) of several competing estimators,
it might be much more informative to present the results as ratios relative to a
base case, rather than simply presenting results for each estimator separately.
A relatively simple and well-known estimator might serve as the base case, and
the results for each of the other estimators could then be presented as the ratio
of that estimator’s MSE to the MSE of the base-case estimator. Such a table
would be easy to assimilate because numbers below 1 would indicate better
performance than that of the base case, while numbers above 1 would indicate
worse performance. To avoid presenting a lot of experimental standard errors,
these ratios could be marked (using symbols such as ∗, †, or ∗∗) to indicate
when they differ from unity at specified levels of significance.

Experimenters often simply present tables of the estimated means, vari-
ances, and, perhaps, skewness and kurtosis coefficients for several different
estimators or test statistics. In the case of test statistics, tail-area probabil-
ities, i.e., estimated sizes, are often presented as well. Such tables are often
not very easy to assimilate. Graphical methods of presentation can sometimes
be very valuable as an alternative, although they must be used with restraint
owing to the amount of space that a number of graphs can take up. In the case
of competing test statistics, one might plot the empirical size-power tradeoff
curves (see Section 12.2) of several test statistics on the same axes. This will
make it clear if any of the test statistics has substantially better or worse
power for a given size than the others; an example may be found in Davidson
and MacKinnon (1982). In the case of competing estimators, one might sim-
ply plot the empirical distribution functions of all of them on the same axes,
as in Figures 7.1, 7.2, and 18.1. The major qualitative differences among the
competing estimators should then be quite clear. Besides being easy to un-
derstand, this approach makes it easy to deal with estimators (such as LIML)
that lack moments. For these estimators, MSEs can of course be extremely
misleading; see Sargan (1982).
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21.5 Variance Reduction: Antithetic Variates

As we have seen, obtaining sufficiently accurate results from a Monte Carlo
experiment can often require that a great many replications be computed.
This is not always feasible. In some cases, the number of replications that
is needed can be substantially reduced by using certain techniques for reduc-
ing the variance of experimental results. In the econometric literature, the
variance reduction techniques which have achieved prominence are the use of
antithetic variates and control variates. We discuss the former method in this
section and the latter method in the next one.

The idea of antithetic variates is to calculate two different estimates of
the quantity of interest in such a way that the two estimates are negatively
correlated. Their average will then be substantially more accurate than either
of them individually. Suppose that we wish to estimate some quantity θ, and
that in a single Monte Carlo experiment we can obtain two different unbiased
estimators of θ, say θ́ and θ̀. These are the antithetic variates. Then the
pooled estimator

θ̄ = 1−
2

(θ́ + θ̀) (21.07)

has variance

V (θ̄) = 1−
4

(
V (θ́) + V (θ̀) + 2Cov(θ́, θ̀)

)
,

where V (θ́) and V (θ̀) denote the variances of θ́ and θ̀. If Cov(θ́, θ̀) is negative,
V (θ̄) will be smaller than 1

4

(
V (θ́) + V (θ̀)

)
, which is the variance that we would

have obtained using the same number of replications to estimate θ from two
independent experiments. The extent to which we can gain by using antithetic
variates thus depends on how strong the negative correlation is between θ́
and θ̀.

One might ask why θ́ and θ̀ should receive equal weight in computing θ̄.
Let us therefore consider the weighted estimator

θ̈ ≡ wθ́ + (1− w) θ̀.

Differentiating the variance of θ̈ with respect to w and setting the result to
zero, we find that

w =
V (θ̀)− Cov(θ́, θ̀)

V (θ́) + V (θ̀)− 2Cov(θ́, θ̀)
,

which is satisfied by setting w = 1
2 whenever V (θ́) = V (θ̀). In most cases, the

variances of the two estimators will be equal, and so giving the two of them
equal weight will be optimal.

One way to implement the method of antithetic variates in the case of re-
gression models is to use each set of generated error terms twice, with the sign
reversed the second time. Suppose, for example, that we wished to estimate
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the mean of the NLS estimate α̂ of the exponent in the nonlinear regression
model

yt = βXα
t + ut. (21.08)

For each set of error terms uj, we could generate two realizations of y, with
tth elements

ý jt = βXα
t + ujt and ỳ jt = βXα

t − u
j
t .

We could then estimate the model using each of these two sets of data, thus
generating two different estimates of α, άj and ὰj . After N of these double
replications, we could then construct the estimator

ᾱ =
1

2N

N∑
j=1

(
άj + ὰj

)
,

which is analogous to the pooled estimator (21.07). The variance of ᾱ could
then be estimated as

1

N(N − 1)

N∑
j=1

(
1−
2

(άj + ὰj)− ᾱ
)2
. (21.09)

Since ᾱ is a simple average of ᾱj ≡ 1
2 (άj + ὰj) for j = 1, . . . , N, (21.09) is

simply the ordinary estimate of the variance of a sample mean.

It is clear that this method will work extremely well in the case of linear
regression models with fixed regressors. For the model y = Xβ + u, the jth

double replication would yield

β́j =
(
X>X

)−1
X>ý j =

(
X>X

)−1
X>
(
Xβ0 + uj

)
and

β̀j =
(
X>X

)−1
X>ỳ j =

(
X>X

)−1
X>
(
Xβ0 − uj

)
.

Therefore, we see that

β̄ ≡ 1−
2

(
β́ j + β̀ j

)
= 1−

2

(
β0 + β0 +

(
X>X

)−1
X>uj −

(
X>X

)−1
X>uj

)
= β0.

Thus, in a single double replication, we would obtain an answer with no
experimental error whatsoever. This occurs because β́j and β̀j are perfectly
negatively correlated.

Perfect negative correlation of the antithetic variates will not occur in
general. When it does, the problem is usually so simple that there is no
need to perform Monte Carlo experiments (although sometimes a very small
Monte Carlo experiment, consisting of just one double replication using anti-
thetic variates, can tell us that an estimator is unbiased more easily than a
theoretical analysis could). Less than perfect negative correlation often does
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Table 21.1 Means and Standard Errors of Monte Carlo Estimates

ά: 0.515960 (0.006709) β́: 1.019957 (0.016002)

ὰ: 0.488785 (0.006627) β̀: 1.088944 (0.016998)

ᾱ: 0.502372 (0.000425) β̄: 1.054451 (0.003404)

occur, however, and it means that in certain cases the use of antithetic variates
can greatly reduce the number of replications that are needed to estimate the
first moments of an estimator. Hendry and Trivedi (1972) used the technique
to study estimators for certain dynamic models, and Mikhail (1972, 1975)
used it to study certain simultaneous equations estimators.

Let us now consider the example (21.08) again. We conducted a small
Monte Carlo experiment based on this example, using a sample of size 50, with
a single set of Xt’s generated from the uniform distribution on the interval
(5, 15) and parameters α0 = 0.5, β0 = 1.0, and σ2

0 = 1.0 (here σ2
0 is the

variance of the ut’s, which are assumed to be normally distributed). The
results from 500 double replications are shown in Table 21.1.

In this case, the gains from using antithetic variates are apparently very
great. The standard error of ᾱ is 15.7 times smaller than the average of the
standard errors of ά and ὰ. This means that ᾱ, which is based on a total
of 1000 replications, is approximately as accurate as a naive Monte Carlo
estimate based on 246,000 replications! The gains are less dramatic in the
case of β, but they are still very substantial. The standard error of β̄ is 4.8
times smaller than the average of the standard errors of β́ and β̀, which means
that it is roughly as accurate as a naive estimate based on 23,500 replications.
Because ᾱ and β̄ are so accurate, we can see that NLS yields slightly biased
estimates in this case: t statistics for the null hypotheses that the means of
the estimates of α and β are the true values of 0.5 and 1.0 are, respectively,
5.58 and 16.00.

Although antithetic variates of the type we have described can greatly
reduce the number of Monte Carlo replications needed for precise estimation
of the means of estimators, they are of no help at all for estimating many
other features of their distributions. For example, in the OLS case discussed
above, the estimated covariance matrix of the β́j ’s is

1−
N

N∑
j=1

(
β́ j − β0

)(
β́ j − β0

)>,
and the estimated covariance matrix of the β̀j ’s is

1−
N

N∑
j=1

(
β̀ j − β0

)(
β̀ j − β0

)>.



21.6 Variance Reduction: Control Variates 747

It is easy to see that(
β́ j − β0

)(
β́ j − β0

)>=
(
X>X

)−1
Xuj(uj)>

(
X>X

)−1
=
(
X>X

)−1
X(−uj)(−uj)>

(
X>X

)−1
=
(
β̀ j − β0

)(
β̀ j − β0

)>.
Thus the estimated covariance matrices of the two antithetic variates will be
identical. From the point of view of estimating the covariance matrix of the
estimator, then, the second antithetic variate provides no useful information
at all. In a realistic situation, the covariance matrices of the two antithetic
variates will never be perfectly correlated, but they will be positively corre-
lated. The antithetic estimate of the covariance matrix will therefore be less
efficient than a naive estimate based on the same number of replications.

21.6 Variance Reduction: Control Variates

The second widely used technique for variance reduction is to employ control
variates. A control variate is a random variable of which the distribution (or
at least certain properties of the distribution) is known and that is correlated
with the estimator(s) or test statistic(s) which are being investigated. The
principal property that a control variate must have is a known population
mean. The divergence between the sample mean of the control variate in
the experiment and its known population mean is then used to improve the
estimates from the Monte Carlo experiment. This obviously works best if the
control variate is highly correlated with the estimators or test statistics with
which the experiment is concerned.

Typically, control variates are statistics which could never be computed
in practice but which can be calculated in the context of a Monte Carlo
experiment, because the DGP is known. For example, suppose the experiment
concerns the estimates of β from a nonlinear regression model with normal
errors,

y = x(β) + u, u ∼ N(0, σ2 I),

where x(β) depends only on β and on regressors that are fixed or at least
independent of u. We saw in Section 5.4 that

n1/2(β̂ − β0) =
(
n−1X0

>X0

)−1
n−1/2X0

>u+ o(1).

Thus it is natural to consider using the vector

β̈ =
(
X0
>X0

)−1
X0
>u

as a source of control variates. This vector will evidently be normally dis-
tributed with mean vector zero and covariance matrix σ2

0(X0
>X0)−1. It would
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be impossible to compute β̈ from a real data set, but in the context of a
Monte Carlo experiment, it is perfectly easy to do so. We know β0 and hence
X0 ≡ X(β0). Using these and the error vector uj that we generate at each
replication, we can easily compute β̈j.

Suppose that θ ≡ θ(β̂) is some scalar quantity of which we wish to
calculate the mean using the results of the Monte Carlo experiment. For
example, if we were interested in the bias of β̂2, θ would be β̂2 − β20; if we
were interested in the mean squared error of β̂3, θ would be (β̂3− β30)2; if we
were interested in the size of a test, θ would be 1 if the test rejected and 0
otherwise; and so on. On each replication, we obtain tj , a realization of θ,
which is equal to θ(β̂j). We also obtain a control variate τj , which would
normally be some function of β̈. The τj ’s must be known to have mean zero
and finite variance, which need not be known. If we were interested in the
bias of β̂2, for example, the natural choice for τ would be β̈2. In some other
cases, it is not so obvious how to choose τ , however, and there may be several
possible choices.

If the control variate τ were not available, we would estimate θ by

θ̄ ≡ 1−
N

N∑
j=1

tj ,

and this naive estimator would have variance V (θ̄) = N−1V (t), which could
be estimated by

V̂ (θ̄) =
1

N(N − 1)

N∑
j=1

(
tj − θ̄

)2
.

When the control variate τ is available, θ̄ will in most cases no longer be
optimal. Consider instead the control variate (CV) estimator

θ̈(λ) ≡ θ̄ − λτ̄ , (21.10)

where τ̄ is the sample mean of the τj ’s. This estimator involves subtracting
from θ̄ some multiple λ of the sample mean of the control variates; how λ
may be chosen will be discussed in the next paragraph. On average, what is
subtracted will be zero, since τj has population mean zero. This implies that
θ̈(λ) must have the same population mean as θ̄. But, in any given sample, the
mean of the τj ’s will be nonzero. If, for example, it is positive, and if τj and tj
are strongly positively correlated, it is very likely that θ̄ will also exceed its
population mean. Thus, by subtracting from θ̄ a multiple of the mean of the
τj ’s, we are likely to obtain a better estimate of θ.

The variance of the CV estimator (21.10) is

V
(
θ̈(λ)

)
= V (θ̄) + λ2V (τ̄)− 2λCov(θ̄, τ̄). (21.11)
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It is easy to minimize this with respect to λ. The optimal value of λ turns
out to be

λ∗ =
Cov(θ̄, τ̄)

V (τ̄)
. (21.12)

Substituting (21.12) into (21.11), the variance of θ̈(λ∗) is seen to be

V
(
θ̈(λ∗)

)
= V (θ̄)− Cov(θ̄, τ̄)2

V (τ̄)
= (1− ρ2)V (θ̄), (21.13)

where

ρ ≡ Cov(θ̄, τ̄)(
V (τ̄)V (θ̄)

)1/2
is the correlation between the tj ’s and the τj ’s. From (21.13), it is clear that
whenever this correlation is nonzero, there will be some gain to using the
control variate. If the correlation is high, the gain may be very substantial.
For example, if ρ = 0.95, the variance of θ̈(λ∗) will be 0.0975 times the variance
of θ̄. Using the control variate will then be equivalent to increasing the number
of replications by a factor of 10.26.

As the sample size n increases, the correlation between the control vari-
ate and the quantity of interest should increase, because the finite-sample
distribution of the latter should approach its asymptotic distribution as n is
increased. As a consequence, the efficiency gain from using the control vari-
ate should be greater for larger n. This is convenient, because the cost of
doing Monte Carlo experiments is often roughly proportional to nN, and the
increased efficiency of estimation as n increases will allow N to be reduced at
the same time.

Although V (τ̄) will often be known, Cov(θ̄, τ̄) will almost never be. Thus
we will generally have to estimate λ∗ in some way. Much of the literature on
Monte Carlo methods — for example, Hammersley and Handscomb (1964) and
Hendry (1984) — does not attempt to use λ∗ but instead arbitrarily sets λ = 1.
From (21.12) and the definition of ρ, we see that

λ∗ = ρ

(
V (θ̄)

V (τ̄)

)1/2
.

This implies that λ = 1 will be a good choice if ρ is close to 1 and V (θ̄) is
close to V (τ̄), but it is generally not the best choice. In many cases, ρ may
be significantly less than 1 and yet still be large enough to make the use of
control variates worthwhile, and in others V (τ̄) may not be close to V (θ̄) when
using the most natural definition of τ . Thus we would, in general, prefer to
estimate λ∗. The easiest way to do this is to run the regression

tj = θ + λτj + residual. (21.14)
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As the notation suggests, this regression not only yields an estimate of λ∗ but
an estimate of θ as well. The latter is in fact asymptotically equivalent to
θ̈(λ∗). Thus, as we will now show, regression (21.14) provides a remarkably
easy way to compute an asymptotically optimal CV estimator.

The OLS estimate of λ from (21.14) is

λ̂ =
(
τ>Mιτ

)−1
τ>Mιt,

where t, τ , and ι are vectors with typical elements tj , τj , and 1, and Mι is the
matrix I − ι(ι>ι)−1ι> that takes deviations from the mean. It is easy to see
that λ̂ is just the sample covariance of t and τ , divided by the sample variance
of τ . Thus it is the empirical counterpart of λ∗. Because the residuals of a
linear regression with a constant term must sum to zero, the OLS estimate
of θ can be written as

θ̂ = θ̄ − λ̂τ̄ .

This makes it clear that the OLS estimate θ̂ is equal to θ̈(λ̂). Since λ̂ is
consistent for λ∗ under rather weak assumptions, θ̂ will be asymptotically
equivalent to θ̈(λ∗).

Running regression (21.14) not only yields the CV estimate θ̂ but also
an estimate of the variance of that estimate, which we need in order to gauge
the accuracy of the results and decide whether N is sufficiently large. This
estimated variance is

σ̂2
(
ι>Mτ ι

)−1
,

where σ̂ is the standard error of regression (21.14). The second factor here
must tend to N−1, since τ (because it has mean zero) asymptotically has no
explanatory power for ι. Therefore, N−1σ̂2 would also be a valid estimate of
the variance of θ̂. Since σ2 is the variance of the part of the tj ’s that cannot
be explained by the τj ’s, it is clear that the better regression (21.14) fits, the
more accurate the CV estimate θ̂ will be.

Once the problem is stated in terms of regression (21.14), it becomes clear
that the link between θ and the τj ’s need not be close. Any random variable
that can be calculated along with tj can be used as a control variate, provided
that it is correlated with tj (either positively or negatively) and has mean
zero, finite variance, and finite covariance with tj . Since this is the case, there
may well be more than one natural choice for τ in many situations. Luckily,
formulating the problem as a linear regression makes it obvious how to handle
multiple control variates. The appropriate generalization of (21.14) is

t = θι+ Tλ + residuals, (21.15)

where T is an N × c matrix, each column of which consists of observations on
one of c control variates. Since all the columns of T have mean zero, the OLS
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estimate of θ from this regression will once again provide the estimate we are
seeking.2 This estimate is

θ̂ =
(
ι>MT ι

)−1
ι>MT t,

where MT = I− T (T>T )−1T>. Since N−1ι>MT ι tends to unity as N tends
to infinity, it is easy to see that the variance of θ̂ is once again just N−1σ2,
where σ is the true standard error of regression (21.15). Thus our objective in
choosing control variates is to make regression (21.15) fit as well as possible.

Suppose that we are interested in the size p of a certain test, that is,
the probability that the test will reject the null hypothesis when it is true.
We obtain N observations Tj on the test statistic and N observations on a
control variate Cj with known distribution. Let us construct a 0-1 variable tj
so that tj = 1 if Tj exceeds a certain critical value and tj = 0 otherwise.
Then the mean of the tj ’s is a naive estimate of p. Davidson and MacKinnon
(1981b) and Rothery (1982) considered this problem in detail and proposed
a method of using the control variate to estimate p based on the method of
maximum likelihood. It turns out that their estimator is identical to the OLS
estimator of θ from regression (21.14), with τj a variable equal to 1− s when
Cj exceeds the critical value for a test of size s, and −s otherwise. Since the
probability that Cj will exceed the critical value is s, τj defined in this way
clearly has population mean zero. This technique requires one to choose s.
Because we wish to maximize the correlation between the tj ’s and the τj ’s, it
seems logical to make s similar to the number of rejections actually observed
using Tj . However, any choice of critical values is somewhat arbitrary.

Letting τj take on only two values cannot be optimal, since it throws away
some of the information in the Cj ’s. One could just as easily use for τj any
function of Cj that is expected to be highly correlated with tj , minus its mean.
Given the multiplicity of possibilities, it would seem natural to use more than
one of them. For example, if Cj were known to be distributed as N(0, 1),
and one were interested in a two-tail test, one could use C2

j − 1 as a control
variate. It will have mean zero, since the expectation of a random variable
which is χ2(1) is 1, and it should be correlated with tj . One might well use
it in addition to one or more two-value control variates of the type described
above. Experience suggests that using several control variates generally yields
a more accurate estimate of θ than using just one control variate. In practice,
it is easy to experiment with various control variates by seeing which ones are
significant in regression (21.15).

2 It is interesting to observe that regression (21.15) is formally the same as re-
gression (16.63), Tauchen’s (1985) version of the OPG test regression. Both
regressions provide a way to estimate the mean of the regressand efficiently by
taking into account the correlation between it and the other regressors, which
are asymptotically orthogonal to the constant term.
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The use of regressions (21.14) and (21.15) has been advocated for some
time in the operations research literature; see Lavenberg and Welch (1981)
and Ripley (1987). These procedures were exposited and developed further in
Davidson and MacKinnon (1992b), in which it is shown how to use them for
estimating quantiles as well as moments and tail areas and how to construct
τ ’s that are approximately optimal for several cases of interest. In particular,
for the estimation of test sizes and powers, a way is suggested to construct bet-
ter, but more complicated, control variates than the two-value ones discussed
above.

To illustrate the use of control variates, we will consider a simple example
that was discussed by Hendry (1984). It is the stationary AR(1) model with
normal errors:

yt = βyt−1 + ut, ut ∼ N(0, σ2), t = 1, . . . , n. (21.16)

We assume that |β| < 1, which is just the stationarity condition, and that
y0 = 0. Stationarity implies that yt ∼ N

(
0, σ2/(1 − β2)

)
. Suppose that we

are interested in the mean of β̂, the OLS estimate of β. It is easy to see that
both the value of β̂ and its probability distribution are invariant to the value
of σ in the DGP, say σ0, but that its properties may well depend on both β0
and the sample size n. A serious investigation would therefore involve seeing
how the mean of β̂ depends on β0 and n; see Section 21.7 below. Since we
are here merely interested in illustrating the use of control variates, we will
consider only a few particular cases.3

The OLS estimate β̂, assuming that y0 is known, is

β̂ =

∑n
t=1 ytyt−1∑n
t=1 y

2
t−1

.

Under the DGP characterized by β0, this becomes∑n
t=1(β0yt−1 + ut)yt−1∑n

t=1 y
2
t−1

= β0 +

∑n
t=1 utyt−1∑n
t=1 y

2
t−1

. (21.17)

Although the numerator of the second term on the right-hand side of (21.17)
has mean zero, it is not independent of the denominator, and so E(β̂) 6= β0.
However, asymptotic theory tells us that β̂ is consistent and asymptotically
normal, since n1/2(β̂ − β0)

a∼ N(0, 1− β2
0).

Now consider the control variate

τ = n−1/2
n∑
t=1

utyt−1, (21.18)

3 Note that, although (21.16) looks like a regression model, antithetic variates
are not useful here. If one generates two sets of data using disturbance vectors
u and −u, the estimates of β that one obtains are identical.
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Table 21.2 Naive and CV Estimates of the Mean of β̂

β0 n Naive λ̂ Optimal CV

0.1 25 0.091814 (0.001932) 0.927 0.091461 (0.000548)
0.1 100 0.096499 (0.000978) 0.982 0.097889 (0.000140)
0.1 400 0.099731 (0.000502) 0.995 0.099499 (0.000036)

0.5 25 0.465589 (0.001745) 0.934 0.464972 (0.000666)
0.5 100 0.490394 (0.000876) 0.982 0.490013 (0.000182)
0.5 400 0.497774 (0.000439) 0.991 0.497430 (0.000048)

0.9 25 0.843872 (0.001188) 0.958 0.843656 (0.000841)
0.9 100 0.882824 (0.000497) 0.987 0.882975 (0.000246)
0.9 400 0.895824 (0.000228) 0.992 0.895530 (0.000066)

which, from (21.17), is n−1/2 times the numerator of the stochastic part of β̂.
The finite-sample distribution of the control variate τ defined in (21.18) is not
a simple one. However, it is easy to see that τ has mean zero. Provided that
|β| < 1, it is also easy to verify that τ has finite variance σ4

0/(1 − β2
0). Thus

it is legitimate to use τ as a control variate. From (21.17), it is clear that,
asymptotically, the correlation between τ and β̂−β0 will be unity. Therefore,
there is likely to be a strong positive correlation in finite samples.

The results of 10,000 replications for three values of β0 and three values
of n are presented in Table 21.2. For each β0 and sample size, we present
two estimates of the mean of β̂: the naive estimate, which does not use the
control variate, and the optimal CV estimate based on equation (21.14). The
table also gives the value of λ that is implicitly used to calculate the latter
when τ is transformed so that it has the same variance, asymptotically, as β̂.
Estimated standard errors are in parentheses. We see that, as is well known,
the OLS estimator of β is always biased toward zero and that the bias declines
sharply as n increases. We also see that the gain from using the control
variate varies markedly from case to case. For given β0, the proportional
gain increases with n. For given n, it decreases as β0 approaches one. In
the best case (n = 400, β0 = 0.1) using the control variate has the same
effect as increasing N from 10,000 to 1.9 million, while in the worst case
(n = 25, β0 = 0.9) it has the effect of increasing N to only just under 20, 000.
Interestingly, the values of λ̂ are always quite high, becoming very close to 1 for
n = 400. Evidently, there would be little cost to setting λ = 1 in this example.

How useful control variates are in practice will often depend on parameter
values. This is dramatically illustrated in Figure 21.3, which shows the esti-
mated standard errors of the naive and control variate estimates of β, for 101
values of β0 from zero to 0.9999 at intervals of 0.01. We used 0.9999 as the up-
per limit rather than 1.0, because the data were generated on the assumption
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Figure 21.3 Estimated standard errors of bias estimates, n = 25

of stationarity. Results for the interval from zero to −0.9999 would look the
same. Each estimate is based on 2000 replications, and the irregularities that
are evident in the figure reflect experimental error in estimating the standard
errors. It is very clear from the figure that, for most values of β0, the CV esti-
mates are very much more efficient than the naive ones. However, as β0 → 1,
both sets of estimates, especially the naive ones, suddenly become more ef-
ficient, and there is virtually nothing to choose between the CV and naive
estimates for β0 > 0.98. This explains why control variates have not been
employed in the Monte Carlo experiments used to determine the distributions
of unit root and cointegration test statistics (see Sections 20.3 and 20.6).

One might well be interested in other aspects of the OLS estimates of β
besides their mean. One possibility, for example, is their mean squared error.
In that case, it is no longer natural to use (21.18) as a control variate, but it
does seem plausible to use

1−
n

n∑
t=1

(
utyt−1

)2 − σ4
0

1− β2
0

, (21.19)

since it measures the variance of the numerator of the stochastic part of β̂.
Another possible control variate is

1−
n

n∑
t=1

y2t−1 −
σ2
0

1− β2
0

, (21.20)

which is the denominator of the stochastic part of β̂, minus its mean. Expres-
sion (21.20) was not mentioned earlier as a possible control variate because it
proved to be completely useless in the control variate regression for the mean
of β, but it does turn out to be useful in this case.
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Table 21.3 Naive and CV Estimates of the MSE of β̂

β0 n Naive One Control Variate Two Control Variates

0.1 25 .03739 (.510× 10−3) .03720 (.317× 10−3) .03728 (.272× 10−3)

0.1 100 .00959 (.134× 10−3) .00973 (.468× 10−4) .00970 (.390× 10−4)

0.1 400 .00252 (.351× 10−4) .00247 (.650× 10−5) .00246 (.524× 10−5)

0.5 25 .03161 (.522× 10−3) .03171 (.454× 10−3) .03139 (.384× 10−3)

0.5 100 .00777 (.734× 10−4) .00768 (.696× 10−4) .00767 (.542× 10−4)

0.5 400 .00193 (.281× 10−4) .00187 (.976× 10−5) .00188 (.756× 10−5)

0.9 25 .01725 (.413× 10−3) .01725 (.413× 10−3) .01731 (.377× 10−3)

0.9 100 .00277 (.563× 10−4) .00276 (.548× 10−4) .00274 (.439× 10−4)

0.9 400 .00054 (.922× 10−5) .00053 (.748× 10−5) .00053 (.534× 10−5)

Table 21.3 shows naive estimates and two sets of CV estimates of the
mean squared error of β̂, for the same nine cases as Table 21.2. Using only
one control variate, (21.19), generally yields more accurate estimates than
using no control variates, and using two control variates, (21.19) and (21.20),
always works better than using only one. However, the gains relative to the
naive estimator are always less than those achieved when estimating the mean;
compare Table 21.1. This illustrates the general result that control variates
tend to be most helpful for estimating means and progressively less helpful
for estimating higher moments; see Davidson and MacKinnon (1992b).

Given the highly variable gains from using control variates, it may be
advisable in cases for which computational costs are large to determine the
number of replications N adaptively. One could decide in advance the accept-
able level of precision for the various quantities to be estimated, then calculate
those quantities for an initial fairly small value of N (perhaps 500 or so), and
use those initial results to estimate how many replications would be needed
to obtain standard errors that are sufficiently small. Alternatively, one could
calculate standard errors of the quantities of interest after every few hundred
replications, stopping when they are sufficiently small. In practice, few Monte
Carlo experiments have been designed this way; N is generally just fixed in
advance, and the precision of the estimates is whatever it turns out to be.

21.7 Response Surfaces

As we have stressed above, one of the most difficult aspects of any Monte
Carlo experiment is presenting the results in a fashion that makes them easy
to comprehend. One approach that is sometimes very useful is to estimate a
response surface. This is simply a regression model in which each observa-
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tion corresponds to one experiment, the dependent variable is some quantity
that was estimated in the experiments, and the independent variables are
functions of the various parameter values, chosen by the experimenter, which
characterize each experiment. Response surfaces have been used by Hendry
(1979), Mizon and Hendry (1980), Engle, Hendry, and Trumble (1985), Er-
icsson (1991), and MacKinnon (1991), among others; they are discussed at
length in Hendry (1984). For criticisms of this approach, see Maasoumi and
Phillips (1982), along with the reply by Hendry (1982).

If a response surface that adequately explains the experimental results
can be found, this approach to summarizing Monte Carlo results has much
to recommend it. First of all, it may be a good deal easier to understand
the behavior of the estimator or test statistic of interest from the parameters
of a response surface than from several tables full of numbers. Secondly,
if the response surface is correctly specified, it eliminates, or at least greatly
reduces, what Hendry (1984) refers to as the problem of specificity. What this
means is that each individual experiment gives results for a single assumed
DGP only, and any set of Monte Carlo experiments gives results for a finite
set of assumed DGPs only. For other parameter values or values of n, the
reader must interpolate from the results in the tables, which is often difficult
to do. In contrast, a correctly specified response surface gives results for
whole families of DGPs rather than solely for the parameter values chosen by
the experimenter. The catch, of course, is that the response surface must be
correctly specified, and this is not always an easy task.

One of the most interesting features of response surfaces, which distin-
guishes them from most other applications of regression models in economics,
is that the data are generated by the experimenter. Thus, if the data are not
sufficiently informative, there is always an easy solution: Simply run more
experiments and obtain more data. In most cases, each data point for the
response surface corresponds to a single Monte Carlo experiment. The de-
pendent variable is then some quantity estimated by the experiment, such as
the mean or mean squared error of the estimates of a certain parameter or the
estimated size of a test. Because such estimates are normally accompanied by
estimates of their standard errors, estimates which should be very accurate
if the experiments involve a sufficient number of replications, the investigator
is in the unique position of being able to use GLS with a fully specified co-
variance matrix. If every experiment used a different set of random numbers,
each observation for the response surface would be independent, and this co-
variance matrix would therefore be diagonal. If the same random numbers
were used across several experiments, perhaps to increase the precision with
which differences across parameter values were estimated, the covariance ma-
trix would of course be nondiagonal, but the form of the nondiagonality would
be known, and the covariance matrix could easily be estimated.

To make the above remarks more concrete, let us denote the quantity
of interest by ψ. It must be a function of the sample size n and of the
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parameters that characterize the DGP, which we may denote by the vector α0.
We will model this function by Ψ(n,α0,γ), where Ψ is a specific functional
form that depends on a parameter vector γ, which will be estimated. The
response surface that we are trying to estimate is therefore characterized by
Ψ(n,α0,γ0) for some appropriate vector γ0. This expression tells us how ψ
responds to changes in n and α0. The ith experiment generates an estimate
ψ̂i and an associated estimated standard error σ̂(ψ̂i). The estimate ψ̂i may
be either a simple average over N replications (as we saw in Section 21.5, this
is the case even if antithetic variates are being used, except that it is then a
simple average over N double replications) or a CV estimate, probably one
obtained from regressions (21.14) or (21.15). In either case, if the number of
replications per experiment is reasonably large, we can be confident that ψ̂i is
very close to being normally distributed with mean Ψ(n,α0,γ0) and standard
deviation σ(ψ̂i), and that the latter will be well estimated by σ̂(ψ̂i). Thus the
response surface regression is

ψ̂i = Ψ(n,α0,γ) + vi, vi ∼ N
(
0, σ̂2(ψ̂i)

)
, i = 1, . . . ,M, (21.21)

where M is the number of experiments and hence the number of observations
for the response surface. Transforming (21.21) to eliminate heteroskedasticity,
we obtain

ψ̂i

σ̂(ψ̂i)
=
Ψ(n,α0,γ)

σ̂(ψ̂i)
+ εi, εi ∼ N(0, 1), i = 1, . . . ,M. (21.22)

The above arguments suggest that, provided the number of replications
per experiment is reasonably large, the specification of the error terms in
(21.22) as N(0, 1) should be an extremely good approximation. However,
some authors have claimed that the number of replications per experiment
can be much smaller when the aim is to estimate a response surface than it
would usually be in more conventional Monte Carlo experiments. For example,
Engle, Hendry, and Trumble (1985) uses only 21 replications per experiment.
It is true that the parameters γ of Ψ(n,α0,γ) can often be estimated with
great precision even when N is small, provided that M is sufficiently large,
because a large number of experiments can compensate for imprecise results
from each individual experiment. However, two problems can arise when N is
small. First of all, the distribution of ψ̂i − Ψ(n,α0,γ) may differ substantially
from the normal, and σ̂(ψ̂i) may provide a poor estimate of σ(ψ̂i). This
means that inference based on (21.22) may be problematical. Secondly, if ψ̂i
is not a precise estimate, it can be difficult to specify the functional form of
Ψ(n,α0,γ). As we will see below, the biggest practical problem with using
response surfaces is that the form of Ψ(n,α0,γ) is generally not known a
priori. Having precise estimates ψ̂i can be of enormous help in specifying the
functional form of Ψ(n,α0,γ).
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The best way to explain the estimation of response surfaces is to provide
a concrete example. The problem we will study is an aspect of the one dealt
with in the previous section and also used as an example by Hendry (1984),
namely, the bias of the OLS estimate β̂ in the stationary autoregressive model
(21.16). This is of course a problem which has been studied extensively by
other methods for a long time; see, for example, Hurwicz (1950). It is really
too simple to be the object of a Monte Carlo experiment, because one can in
fact calculate the bias of β̂ analytically, as in Sawa (1978), provided that the
error terms are normally distributed, as we assume. However, the required
calculations are by no means trivial, and there is no readily interpretable
formula that relates the bias of β̂ to the values of β0 and n.4 Phillips (1977)
attempts to derive such a formula by the method of asymptotic expansions.
Here we attempt to do so by estimating a response surface, using results from
Monte Carlo experiments to obtain data points.

We first generated data from 390 experiments, letting β0 vary from −0.95
to 0.95 by increments of 0.05 and, for each β0, letting n = 16, 25, 36, 49, 64,
81, 100, 150, 200, and 400. We deliberately did not use values of |β0| greater
than 0.95 because it would surely be difficult to characterize the behavior
of β̂ by a single response surface for both the stationary case and the unit
root case, and we have seen that odd things start to happen as |β0| → 1
(recall Figure 21.3). The number of replications used in the experiments was
relatively small: 2000 for n = 16 and 25; 1000 for n = 36 and 49; 500 for
n = 64, 81 and 100; and 250 for n = 150, 200, and 400. We used more
replications for smaller values of n because the CV estimates of the mean of β̂
were much less precise for a given number of replications. The regressand for
the response surface regression was the CV estimate of the mean of β̂, minus
β0, divided by the estimated standard error of the mean of β̂, both obtained
from regression (21.14). Note that the estimates of the mean of β̂ were quite
precise: The estimated standard errors varied from .000190 (for β0 = .05 and
n = 400) to .002813 (for β0 = .90 and n = 16).

Generating the data was easy,5 but specifying the response surface was
much harder. In this case, we can write equation (21.22) as

β̂i − β0
σ̂(β̂i)

=
Ψ(n, β0,γ)

σ̂(β̂i)
+ εi, εi ∼ N(0, 1), i = 1, . . . , 390,

4 Note that closely related problems, such as the properties of t statistics for
this model, cannot be handled analytically. Nankervis and Savin (1988) uses
an extremely comprehensive series of Monte Carlo experiments to study the
properties of t statistics in a slightly more complicated version of (21.16) in
which there is a constant term to be estimated. This paper is one of the best
available examples of Monte Carlo methods in action.

5 These experiments were originally run in 1988 and took about 16 hours on a
286-based personal computer. Since they would have taken less than ten min-
utes on a 486-based PC, it would have been feasible to use far more replications.
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where Ψ(n, β0,γ) is the bias function that we are trying to estimate. Asymp-
totic theory tells us that Ψ(n, β0,γ) must tend to zero as n→∞. This means
that there should be no constant term and all regressors should be divided
by some positive power of n. However, this still leaves an enormous range of
possibilities. We first estimated the very simple bias function

Ψ(n, β0,γ) = − 1.6890
(0.0108)

n−1β0

s = 1.8038, DW = 1.0322, R̄2 = 0.9844.

(21.23)

Hendry (1984) estimated a function of this form as a first approximation
but found it to be less than satisfactory. These results are also evidently
quite unsatisfactory. Although the R̄2 is very high, which implies that n−1β0
explains a very large percentage of the total variation in β̂−β0, the estimated
standard error of the equation is much larger than its theoretical value of 1,
and the Durbin-Watson statistic is far below 2. Since the data were ordered
by n (all observations for n = 16 first, then all observations for n = 25, and
so on), the low DW statistic strongly suggests that the relationship between
bias and sample size is misspecified.

The obvious next step was to add additional terms involving powers of β0
divided by powers of n to (21.23). The literature on asymptotic expansions,
for example, Phillips (1977), suggests that one should use powers which are
multiples of one-half. Thus one might attempt to estimate a general model of
the form

Ψ(n, β0,γ) =
6∑
a=1

6∑
b=1

γabn
−a/2β

b/2
0 (21.24)

and then attempt to simplify it by restricting many of the γab’s to equal zero.
One would want to let a and b range up to 6 because Hendry (1984) seemed
to find evidence that β3

0/n
3 belonged in Ψ(n, β0,γ). This model is bound to

fit much better than (21.23), but the estimates will be extremely imprecise
because there are 36 possible regressors of the form n−a/2βb/20 , and many
of them will be highly collinear. Thus we found it impossible to specify a
response surface in this way. There was simply no sensible way to get from
the general model (21.24) to a more parsimonious one. If this approach is
unsatisfactory in this very simple case, in which the DGP involves only one
parameter, it will surely be totally unsatisfactory in general.

We therefore took a very different approach, using graphical methods to
see what Ψ(n, β0,γ) must look like. This approach proved to be very fruitful.
It was possible only because our estimates of β̂−β0 were quite accurate, which
meant that plotting β̂ − β0 against β0 for various values of n, and plotting
β̂ − β0 against n for various values of β0, yielded readily interpretable plots.
This is one reason for not using small values of N in Monte Carlo experiments
intended for the estimation of response surfaces.
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Figure 21.4 Monte Carlo estimates of bias

Figure 21.4 shows the plots of β̂−β0 against β0 for n = 16 and n = 49. It
is evident that the relationship is essentially linear and skew-symmetric about
zero, except that for n = 16 (and to a lesser extent for other small values of n)
there is a rather abrupt reversal of the slope for large absolute values of β0.
It is also evident from the figure that the relationship between β̂ − β0 and β0
becomes less steep as n increases; the relationship for n = 400 (not shown to
avoid cluttering the figure) was almost flat.

The behavior of the relationship between β̂ − β0 and β0 for large abso-
lute values of β0 that is evident in Figure 21.4 suggests that one might want
to include functions of β3

0 in Ψ(n, β0,γ). However, there are other functions
of β0 which might also account for the shape evident in the figure, notably
β0/(1− β2

0) and β0/(1− β2
0)1/2. Regressing β̂ − β0 against β0 and one of β3

0 ,

β0/(1− β2
0), and β0/(1− β2

0)1/2 for various values of n led to the tentative

conclusion that β0/(1 − β2
0)1/2 best explained the observed relationship be-

tween β̂ − β0 and β0.

Similar plots and preliminary regressions suggested that n−1 and n−3/2

together accounted for almost all of the relationship between β̂ − β0 and the
sample size, and that n−1/2 and n−2 had no role to play. Thus we were
tentatively led to the specification

Ψ(n, β0,γ) = n−1
(
γ1 + γ2β0 + γ3β0/(1− β2

0)1/2
)

+ n−3/2
(
γ4 + γ5β0 + γ6β0/(1− β2

0)1/2
)
.

(21.25)

This is dramatically simpler than (21.24). When (21.25) was estimated, we
found that γ̃1, γ̃4, and γ̃5 were jointly insignificant, although γ̃4 by itself was
marginally significant at the 5% level. Since it is hard to see why β̂ should
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be biased when β0 = 0, and since in contrast to γ̃4 the other three significant
parameters were highly significant, we decided on the basis of these results
to set γ1, γ4, and γ5 in (21.25) to zero. Our estimates of the resulting model
were

Ψ(n, β0,γ) = − 1.9223
(0.0173)

n−1β0 − 0.1066
(0.0149)

n−1
β0

(1− β2
0)1/2

+ 1.3509
(0.0608)

n−3/2
β0

(1− β2
0)1/2

s = 1.0628, DW = 1.8649, R̄2 = 0.9946.

(21.26)

These results appear to be very good. All three parameters are highly signif-
icant, the standard error of the regression is slightly greater than 1, but not
significantly so at the 5% level, and the DW statistic is not significantly less
than 2. Tests for skewness and excess kurtosis revealed neither. Moreover,
when various other functions of β0 and n, such as n−1β0/(1 − β2

0), n−1β3
0 ,

n−3/2β0/(1 − β2
0), n−3/2β3

0 , n−2β0, and n−2β0/(1 − β2
0)1/2, were added to

Ψ(n, β0,γ), they were individually and jointly insignificant, and the three re-
gressors in (21.26) remained individually significant. For sample sizes in the
range we examined, the values predicted by (21.26) are very close to the ex-
act values tabulated by Sawa (1978), although the equation seems to predict
somewhat too much bias for very small values of n.

We conclude that the response surface (21.26) provides a good, although
not perfect, approximation to the bias function Ψ(n, β0,γ) over the interval
n = 16 to n = ∞ and β0 = −0.95 to β0 = 0.95. However, it probably
does not do so for very small values of n and for values of |β0| much greater
than 0.95. A much more extensive set of experiments, and in all likelihood a
considerably more complicated response surface, would be needed if we wished
to deal adequately with those cases. This response surface is graphed as a
function of β0 for various values of n in Figure 21.5. The tendencies for bias
to fall sharply as n increases, and to rise with |β0| except for a slight dip at
high values of |β0|, are quite evident in the figure.

In all the estimations reported so far, we used the CV estimates of β̂. It
would also have been possible to use the naive estimates of β̂. The estimated
response surface when we did so was

Ψ(n, β0,γ) = − 1.9272
(0.0366)

n−1β0 − 0.1306
(0.0274)

n−1
β0

(1− β2
0)1/2

+ 1.4983
(0.1141)

n−3/2
β0

(1− β2
0)1/2

s = 1.0811, DW = 1.8606, R̄2 = 0.9763.

(21.27)

These results are very similar to those using the CV estimates but are some-
what worse in every respect. Standard errors on the parameter estimates are
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Figure 21.5 Response surface estimates of bias

generally about twice as large, indicating that, on average, using the con-
trol variates is roughly equivalent to quadrupling the number of replications.
The slightly larger value of s probably indicates that the response surface fits
slightly less well for lower values of n. The use of control variates improves the
estimates of β̂ more for larger values of n. Thus the response surface (21.26),
which uses CV estimates, weights the results from experiments with larger
values of n more heavily than does the response surface (21.27), which uses
naive estimates. We would thus expect (21.27) to fit less well than (21.26),
as it does, if the response surface performs less well for smaller sample sizes.

This example concerns the estimation of a bias function. Estimation of
MSE functions, or size or power functions for test statistics, is conceptually
similar, although some details will of course differ. If the dependent vari-
able is the size or power of a test statistic, which we may denote by p, then
this dependent variable is constrained to lie between 0 and 1, and the logit
transformation

Λ(p) = log

(
p

1− p

)
may be useful. The reason for using this transformation is that Λ(p) can
vary between plus and minus infinity, which may make it easier to specify a
response surface as a linear function. Essentially, we would then be estimating
a logit model on grouped data (see Chapter 15).
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We believe that the above example is quite illuminating. It illustrates
how useful response surfaces can be, because of their ability to summarize a
great deal of experimental evidence in one relatively simple set of estimates
like (21.26), which can then be presented graphically as in Figure 21.5. It
also illustrates the practical difficulties of specifying a response surface. The
response surface approach will often be impractical if the DGP is characterized
by more than a very few parameters that affect the quantities being studied,
because it will simply be too difficult to specify the response surface in such
a case, at least if there is any interaction between the various parameters.
Graphical methods such as the ones we used can be extremely valuable in
specifying a response surface, but they do have limits, and it seems unlikely
that they would work well when the DGP has many parameters that interact
in complicated ways.

21.8 The Bootstrap and Related Methods

Up to this point, we have been concerned with “conventional” Monte Carlo
experiments in which the experimenter fully specifies the DGP for each ex-
periment. Although such experiments can be used as adjuncts to particular
pieces of empirical work and are sometimes fruitfully employed in this way,
they are much more commonly used to supplement theoretical work on the
properties of estimators and test statistics. In contrast, the technique known
as the bootstrap is specifically designed to be used in the context of empirical
work. As the name suggests, the idea of bootstrapping6 is to use the single
available data set to design a sort of Monte Carlo experiment in which the
data themselves are used to approximate the distribution of the error terms
or other random quantities in the model. The name is intended to express
the idea that the data should be allowed to pull themselves up by their own
bootstraps. This idea is implemented by performing a sort of Monte Carlo
experiment in which the error terms or other random quantities are usually
drawn not from an assumed distribution, such as the normal, but rather from
the empirical distribution function of their sample counterparts. Obtaining
artificial samples in this way is a special case of what is called resampling; see
Efron (1979).

We first encountered the empirical distribution function, or EDF, in Sec-
tion 4.5. If a sample of size n is denoted by {yt}nt=1, where the yt’s are
realizations of successive independent random variables, then the EDF is the
cumulative distribution function

F̂n(x) ≡ 1−
n

n∑
t=1

I(−∞,x)(yt),

6 In this literature, “bootstrap” is used as both a noun and a verb.
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← Normal approximation

Figure 21.6 Empirical distribution function based on 100 observations

where the indicator function I associated with the interval (−∞, x) is simply
a function that takes the value 1 if its argument is contained in the interval,
and 0 otherwise. Thus an EDF is a step function, the height of each step
being 1/n, and the width being equal to the difference between two successive
values of yt when the latter are ordered by ascending size. If two or more
observations are identical, which should happen with probability zero if the
density of the yt’s is continuous, there may be steps that have height an
integer multiple of 1/n. The EDF for a particular set of 100 observations on
a random variable y is shown in Figure 21.6; for comparison, a cumulative
normal distribution with the same mean and variance is also shown.

Suppose that one has calculated some statistic θ(y) from a set of data yt,
t = 1, . . . , n, denoted by the n--vector y; in practice, one might calculate many
different statistics, but, for simplicity, we will deal with only one of them. If
the finite-sample distribution of θ(y) is known, or if a good asymptotic ap-
proximation is available, there is no point to using the bootstrap. If, however,
neither of these is the case, one way to approximate the distribution of θ(y) is
to bootstrap this set of data. To do so, one must draw a number of bootstrap
samples, say B, each of size n, from the EDF of the observed data. This re-
sampling is done with replacement. Thus each bootstrap sample will contain
some of the original n observations more than once, and others of them not
at all, in a completely random order. Drawing a bootstrap sample is very
easy. Let y∗j (i) denote the jth observation of the ith bootstrap sample, where
i = 1, . . . , B. To obtain y∗j (i), we first generate a pseudo-random number from
the U(0, 1) distribution, use it to generate a random integer k that takes on
the values 1, . . . , n with equal probability, and then set y∗j (i) to yk. Repeating
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this operation n times yields a complete bootstrap sample, say y∗(i). We then
calculate θ

(
y∗(i)

)
and store the result. The whole operation is then repeated

for i = 1, . . . , B bootstrap samples, at the end of which we have B statistics
θ
(
y∗(i)

)
. These statistics are then used to estimate whatever features of the

distribution of θ(y) may be of interest.

The preceding paragraph has sketched the basic idea of the bootstrap,
which originated with Efron (1979). Relatively accessible references include
Efron (1982), Efron and Gong (1983), and Efron and Tibshirani (1986). More
theoretical references include Bickel and Freedman (1981), Freedman (1981),
and Hall (1987). The literature has become very large and sometimes very
technical in recent years, and we will make no attempt to survey it here.

Let us now illustrate the use of the bootstrap in a simple case. Consider
the data that were graphed in Figure 21.6. One can easily see from the figure
that these data were drawn from a distribution with fatter tails than the
normal. A cumulative normal distribution with the same mean and variance
as the data is drawn in the figure, and it is evident that the largest values in
each tail of the sample should have occurred with extremely low probability
according to the normal distribution. An investigator might therefore worry
about whether inferences based on the usual normal-theory estimates and
confidence intervals were valid in this case. One way to see if such worries are
justified is to bootstrap the statistics of interest.

Consider the mean of the yt’s. The sample mean is −0.0701, with a
standard error of 0.0889. Thus the usual 95% confidence interval based on
the Student’s t distribution with 99 degrees of freedom is (−0.2464, 0.1062).
We computed 10,000 bootstrap samples as described above and thus obtained
10,000 estimated means, µ∗(i). This choice of B is larger than is needed for
most purposes and ensures very small experimental error. From the distribu-
tion of the µ∗(i)’s, bootstrap confidence intervals can be obtained in several
ways; see Efron and Tibshirani (1986) for an introduction and Tibshirani
(1988) for more advanced methods. The first step is to sort the bootstrap
means µ∗(i) in ascending order, making µ∗(1) the smallest and µ∗(B) the
largest. If the distribution of the µ∗(i)’s is approximately symmetric, one can
then use what is called the percentile method. Suppose that we want a 95%
confidence interval. Then we simply pick

1−
2

(
µ∗(250) + µ∗(251)

)
as the lower limit of our confidence interval and

1−
2

(
µ∗(9750) + µ∗(9751)

)
as the upper limit. These values are chosen so that exactly 2.5% of the boot-
strap replications yielded µ∗(i)’s below the lower limit and 2.5% yielded µ∗(i)’s
above the upper limit of the confidence interval. Using the percentile method
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for the data of Figure 21.6 yields a confidence interval of (−0.2387, 0.1053)
for the mean of the yt’s, which is very similar to the interval based on the
Student’s t distribution.

If the distribution of the µ∗(i)’s is not symmetric, one may not want
to use the percentile method, because it is no longer optimal to omit the
same number of µ∗(i)’s from each end of their EDF if we want the confidence
interval to be as short as possible. One simple approach is to minimize the
quantity

1−
2

(
µ∗(l + .95B) + µ∗(l + .95B + 1)

)
− 1−

2

(
µ∗(l − 1) + µ∗(l)

)
with respect to the positive integer l < .05B.7 Thus the objective is to
find the shortest interval that includes 95% of the µ∗(i)’s. When the EDF
of the µ∗(i)’s is asymmetric, this modified percentile method will tend to
move the confidence interval away from the longer tail of the distribution,
because dropping observations at that end and adding them at the other end
will reduce the length of the estimated confidence interval. For the data of
Figure 21.6, the modified percentile method yields very similar results to the
ordinary percentile method and to the usual normal theory method: The 95%
confidence interval is (−0.2399, 0.1031).

In this example, then, the bootstrap has principally served to reassure
us that conventional methods of inference about the mean of the yt’s are
probably fairly reliable for this data set, despite the apparent excess kurtosis
relative to the normal case. But the same procedure could be employed to
investigate the distribution of any statistic θ(y) in which we were interested,
including ones for which more conventional methods of inference are difficult
or impossible. It is in such cases that the bootstrap can be particularly useful.

The bootstrap as just described can obviously be modified in various
ways. One could, for example, smooth the EDF of the yt’s somewhat and
draw bootstrap samples from the smoothed EDF instead of from the ordinary
EDF. If one knew or was willing to assume the form of the distribution of
the yt’s, one could use what is often called the parametric bootstrap, in which
the data are used to estimate the density of the yt’s, and bootstrap samples
are then generated from that estimated density. The parametric bootstrap
thus resembles an ordinary Monte Carlo experiment in which the parameters
of the DGP are estimated from the data set of interest.

There are some special features of bootstrap methods applied to regres-
sion models. Suppose the model is

yt = xt(β) + ut, t = 1, . . . , n, (21.28)

7 This assumes that .95B is an integer, which it will be if B is an integer multiple
of 100.
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where any variables on which xt(β) depends are assumed to be fixed or at
least independent of all the ut’s. If the latter are assumed to be i.i.d., the
natural approach is to bootstrap the residuals. With this approach, one first
estimates the model (21.28) by NLS, so as to obtain parameter estimates β̂
and residuals û1 through ûn, and then generates bootstrap samples from the
data-generating process

yj(i) = xj(β̂) + u∗j (i), j = 1, . . . , n, (21.29)

where the u∗j (i)’s are random samples with replacement from û1, . . . , ûn. If
xt(β) depends on past values of yt, this approach can still be employed, but
in (21.29) y1(i), . . . , yj−1(i) must be used in place of the actual lagged yt’s in
computing xj(β̂). Since the model (21.28) is nonlinear, bootstrapping it may
be rather expensive, and the technique is therefore used primarily with linear
models.

This approach has two other problems. The first is that, as usual, the
residuals ût tend to underestimate the error terms ut. This can be dealt with
by using the modified residuals

ũt =
ût

(1− ĥt)1/2
− 1−
n

n∑
s=1

ûs

(1− ĥs)1/2
, (21.30)

where
ĥt ≡ X̂t

(
X̂>X̂

)−1
X̂t
>

and X̂, as usual, is the matrix of the derivatives of xt(β) with respect to the
elements of β, evaluated at β̂. It is obvious why we would want to divide ût
by (1− ĥt)1/2. As we first saw in Section 3.2, in the case of a linear regression
model with i.i.d. errors,

E(u2t ) = (1− ht)σ2.

Therefore, dividing ût by (1− ht)1/2 would yield modified residuals with pre-
cisely the right variance. Dividing by (1− ĥt)1/2 is the natural analog of this
procedure for the nonlinear case and is justified by the theoretical result (5.57)
of Section 5.6. In (21.30), we then subtract the mean of the ût/(1− ĥt)1/2’s,
which will generally not be zero, in order to ensure that the ũt’s do have mean
zero; see Weber (1984).

The second problem with this approach to bootstrapping is that it as-
sumes that the error terms ut are independently and identically distributed.
When that assumption is doubtful, a second approach can be used. In this
second approach, we resample from

(
yt, xt(β̂)

)
rather than from ût or ũt. A

typical member of the bootstrap sample is
(
yk, xk(β̂)

)
, where k is a random

draw from 1, . . . , n. In the linear case, each element of the bootstrap sample
is (yk, Xk), where Xk is the kth row of the matrix of observations on the inde-
pendent variables. This second approach is clearly infeasible if xt(β) depends
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on lagged values of yt, since it does not make sense to use actual lagged yt’s,
and we have no way to generate lagged yt’s from the bootstrap. However, it
has the advantage of being valid even in the presence of heteroskedasticity.
Indeed, this form of bootstrapping yields results that are often very similar to
those from using a heteroskedasticity-consistent covariance matrix estimator.

Neither of these approaches to bootstrapping allows us to deal with mod-
els in which the error terms are thought to be serially dependent but the form
of the dependence is unknown. The resampling breaks up whatever depen-
dence there may be in the original data, and the bootstrap results thus cannot
be relied on if such dependence is a problem.

Applications of bootstrap methods to econometrics include Freedman
and Peters (1984), Korajczyk (1985), Bernard and Veall (1987), and Veall
(1987). The first two papers use the bootstrap to improve inferences for
estimated models for which available asymptotic theory might be expected to
be unreliable. The second two papers use it to estimate confidence intervals for
forecasts, something that is often extremely difficult to do analytically when
the forecasting technique is at all complicated. Fair (1980) is also concerned
with the accuracy of forecasts and, although his paper does not use the term,
it can be regarded as an example of the parametric bootstrap. Raj and
Taylor (1989) examine the finite-sample properties of test statistics based
on bootstrapping, and Veall (1992) shows how to use the bootstrap for model
selection.

As computer costs come down, it is likely that more and more applied
workers will turn to variants of the bootstrap to deal with models for which
asymptotic theory may be inadequate. This raises the question of whether
the bootstrap is itself adequate to handle such models. Except perhaps in
certain special cases, the only way to answer this question would seem to
be to perform Monte Carlo experiments in which the objects of interest are
bootstrap estimates. Unfortunately, this will often be very expensive, since if
there are N replications per experiment and B bootstrap samples are required
to obtain each bootstrap estimate, a single experiment would involve a total
of BN estimations. Unless each estimation can be done very quickly, such
an experiment could involve a great deal of computer time. However, as
computers become faster, we can certainly expect to see Monte Carlo studies
of the bootstrap in situations of interest to econometricians, as well as more
widespread use of the bootstrap in applied work.

21.9 Conclusion

By the time this book is published, computers with as much power as a large
mainframe of the early 1980s will be so cheap that the desk and maybe even
the briefcase of everyone who uses econometrics will be equipped with one.
In that environment, Monte Carlo methods are likely to be used much more
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extensively than has been the case up to now. Readers and editors will refuse
to accept results based on methods for estimation and hypothesis testing that
have statistical properties which are known only asymptotically, when they
know that better approximations can almost always be obtained at the cost
of a certain amount of computation. Some form of bootstrapping, which in
its parametric version closely resembles the more conventional Monte Carlo
experiments on which we have mainly concentrated, is thus likely to be used
routinely as part of many empirical papers.

Terms and Concepts

antithetic variates
asymptotic expansions (finite-sample

approximations)
the bootstrap (bootstrapping)
bootstrap sample
Box-Muller method
congruential generator (of pseudo-

random numbers)
control variates
empirical distribution function (EDF)
increment (for congruential generator)
modified percentile method
modulus (for congruential generator)
Monte Carlo experiment
Monte Carlo methods

multiplicative congruential generator
multiplier (for congruential generator)
parametric bootstrap
percentile method
pseudo-random numbers
pseudo-random variates
random number generator
rejection method
replications
resampling
response surface
seed (for random number generator)
specificity (problem of)
transformation method
variance reduction techniques



Appendix A

Matrix Algebra

A.1 Introduction

As anyone who has studied econometrics or any other mathematical discipline
knows, the difference between a result that seems obscure and difficult and a
result that seems clear and intuitive is often simply the notation that is used.
In almost all cases, the clearest notation for econometrics makes extensive use
of vectors and matrices. Readers of this book should already be reasonably
familiar with matrix algebra. This appendix is provided to aid those who wish
to refresh their memories and to collect results for easy reference. Readers
should note that Chapter 1 also contains a number of useful results on ma-
trices, in particular concerning projection matrices. In this appendix, proofs
will be given only if they are either short or interesting. Those interested in
a fuller and more rigorous treatment are referred to Lang (1987).

A.2 Elementary Facts about Matrices

An n × m matrix A is a rectangular array that consists of nm elements
arranged in n rows and m columns. The name of the matrix is conventionally
shown in boldface. A typical element of A might be denoted Aij or aij , where
i = 1, . . . , n and j = 1, . . . ,m. The first subscript always indicates the row
and the second always indicates the column. It is occasionally necessary to
show the elements of a matrix explicitly, in which case they are arrayed in
rows and columns and surrounded by large brackets, as in

B =

[
1 2 4

3 5 5

]
.

Here B is a 2× 3 matrix.

If a matrix has only one column or only one row, it is called a vector.
There are two types of vectors, column vectors and row vectors, the names
of which are self-explanatory. Since the first type is more common than the
second, a vector that is not specified to be a row vector should be treated
as a column vector. If a column vector has n elements, it may be referred

770
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to as an n--vector. Boldface is used to denote vectors as well as matrices. It
is conventional to use uppercase letters for matrices and lowercase letters for
vectors. However, it is sometimes necessary to ignore this convention.

If a matrix has the same number of columns and rows, it is said to be
square. A square matrix A is said to be symmetric if Aij = Aji for all i and j.
Symmetric matrices occur very frequently in econometrics. A square matrix
is said to be diagonal if Aij = 0 for all i 6= j; in this case, the only nonzero
entries are those on what is called the principal diagonal. Sometimes a square
matrix has all zeros above or below the principal diagonal. Such a matrix
is said to be triangular. If the nonzero elements are all above the diagonal,
it is said to be upper-triangular; if the nonzero elements are all below the
diagonal, it is said to be lower-triangular. Here are some examples:

A =

 1 2 4
2 3 6
4 6 5

 B =

 1 0 0
0 4 0
0 0 2

 C =

 1 0 0
3 2 0
5 2 6

.
In this case, A is symmetric, B is diagonal, and C is lower-triangular.

A special matrix that econometricians frequently make use of is I, which
denotes the identity matrix. It is a diagonal matrix with every diagonal
element equal to 1. A subscript is sometimes used to indicate the number of
rows and columns. Thus

I3 =

 1 0 0
0 1 0
0 0 1

.
A special vector that we use quite a lot in this book is ι, which denotes a
column vector every element of which is 1.

The transpose of a matrix is obtained by interchanging all its row and
column subscripts. Thus the ijth element of A becomes the jith element of
its transpose, which is denoted A>. Note that many authors use A′ rather
than A> to denote the transpose of A. The transpose of a symmetric matrix
is equal to the matrix itself. The transpose of a column vector is a row vector,
and vice versa. Here are some examples:

A =

[
1 2 4

3 5 5

]
A>=

 1 3
2 5
4 5

 b =

 1
3
5

 b>= [ 1 3 5 ] .

Addition and subtraction of matrices works exactly the way it does for
scalars, with the proviso that matrices can be added or subtracted only if they
are conformable. In the case of addition and subtraction, this just means that
they must have the same dimensions. If A and B are conformable, then a
typical element of A+B is simply Aij +Bij , and a typical element of A−B
is Aij −Bij .
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Matrix multiplication actually involves both additions and multiplica-
tions. It is based on what is called the inner product, or scalar product, of
two vectors. Suppose that a and b are n--vectors. Then their inner product is

a>b = b>a =
n∑

i=1

aibi. (A.01)

When two matrices are multiplied together, each element of the result is equal
to the inner product of one of the rows of the first matrix with one of the
columns of the second matrix. Thus, if C = AB,

Cik =
m∑
j=1

AijBjk.

Here we have implicitly assumed that A has m columns and that B has m
rows. If two matrices are to be conformable for multiplication, the first matrix
must have as many columns as the second has rows. The result then has as
many rows as the first matrix and as many columns as the second. One way
to make this explicit is to write something like

A
n×m

B
m×l

= C
n×l

.

One rarely sees this type of notation in a book or journal article, but it is
often convenient to use it when doing calculations, to verify that the matrices
being multiplied are indeed conformable and to derive the dimensions of their
product.

The outer product of two vectors a and b is ab>. In contrast to the inner
product, which is a scalar, the outer product is an n×n matrix if the vectors
are n--vectors.

Matrix multiplication and matrix addition interact in an intuitive way.
It is easy to check from the definitions of the respective operations that the
distributive property holds. That is,

A(B +C) = AB +AC.

In addition, both operations are associative, which means that

(A+B) +C = A+ (B +C) and

(AB)C = A(BC).

Matrix multiplication is, in general, not commutative. The fact that
it is possible to premultiply B by A does not imply that it is possible to
postmultiply B by A. In fact, it is easy to see that both operations are
possible if and only if one of the matrix products is square, in which case the
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other matrix product will be square also, although generally with different
dimensions. Even when both operations are possible, AB 6= BA except in
special cases. The rules for multiplying matrices and vectors together are the
same as the rules for multiplying matrices with each other; vectors are simply
treated as matrices that have only one column or only one row.

The identity matrix I is so called because when it is either premultiplied
or postmultiplied by any matrix, it leaves the latter unchanged. Thus, for
any matrix A, AI = IA = A, provided of course that the two matrices are
conformable in each case. It is easy to see why the identity matrix has this
property. The ij th element of AI is

m∑
k=1

AikIkj = Aij ,

since Ikj = 0 for k 6= j and Ikj = 1 for k = j. The special vector ι is also
useful. It comes in handy when one wishes to sum the elements of another
vector, because, for any n--vector b,

ι>b =
n∑

i=1

bi.

The transpose of the product of two matrices is the product of the trans-
poses of the matrices with the order reversed. Thus

(AB)>= B>A>. (A.02)

The reversal of the order is necessary for the transposed matrices to be con-
formable for multiplication. The result (A.02) can be proved immediately by
writing out the typical entries of both sides and checking that they are the
same:

(AB)ij
> = (AB)ji =

m∑
k=1

AjkBki =
m∑

k=1

(B>)ik(A>)kj = (B>A>)ij ,

where m is the number of columns of A and the number of rows of B. It is
always possible to multiply a matrix by its own transpose: If A is n×m, then
A> is m×n, A>A is m×m, and AA> is n×n. Both of these matrix products
are symmetric:

A>A = (A>A)> and AA>= (AA>)>, (A.03)

as follows directly by application of (A.02).

Every element of the product of two matrices is a summation. This
suggests that it may be convenient to use matrix algebra when dealing with
summations, and that is indeed the case. Suppose, for example, that we have
n observations on k regressors. These can be arranged into the n×k matrixX.
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Then the matrix of sums of squares and cross-products of the regressors can
be written very compactly asX>X. This is a k×k symmetric matrix, of which
a typical diagonal element is

∑n
t=1X

2
ti and a typical off-diagonal element is∑n

t=1XtiXtj .

It is frequently necessary to multiply a matrix by a scalar, and this works
exactly as one would expect: Each element of the matrix is multiplied by the
scalar. Occasionally, it is necessary to multiply two matrices together element
by element. The result is called the direct product (or sometimes the Schur
product) of the two matrices. The direct product of A and B is denoted
A∗B, and a typical element of it is AijBij .

A square matrix may or may not be invertible. If A is invertible, then it
has an inverse matrix A−1 with the property that

AA−1 = A−1A = I.

If A is symmetric, then so is A−1. If A is triangular, then so is A−1. Except
in certain special cases, it is not easy to calculate the inverse of a matrix by
hand. One such special case is that of a diagonal matrix, say D, with typical
diagonal element Dii. It is easy to verify that D−1 is also a diagonal matrix,
with typical diagonal element D−1ii .

It is often convenient to make use of the trace of a square matrix, which
is simply the sum of the elements on its principal diagonal. Thus

Tr(A) =
n∑

i=1

Aii.

A very useful property of the trace is that the trace of a product of two
matrices A and B is unaffected by the order in which the two matrices are
multiplied together. Since the trace is defined only for square matrices, both
AB and BA must be defined. Then we have

Tr(AB) =

n∑
i=1

(AB)ii =

n∑
i=1

m∑
j=1

AijBji =

m∑
j=1

(BA)jj = Tr(BA). (A.04)

The result (A.04) can be extended. If one considers a (square) product of sev-
eral matrices, the trace is invariant under what is called a cyclic permutation
of the factors. Thus, for instance,

Tr(ABC) = Tr(CAB) = Tr(BCA), (A.05)

as can be seen by successive applications of (A.04). This result can be ex-
tremely convenient, and several standard results on the properties of OLS
make use of it. For example, if X is an n× k matrix, (A.05) implies that

Tr
(
X(X>X)−1X>

)
= Tr

(
X>X(X>X)−1

)
= Tr(Ik) = k.
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A.3 The Geometry of Vectors

The elements of an n--vector can be thought of as the coordinates of a point in
an n--dimensional Euclidean space, which may be denoted En. The difference
between En and the more familiar Rn is that the former includes a specific
definition of the length of each vector in En. The length of a vector x is

‖x‖ ≡ (x>x)1/2.

This is just the square root of the inner product of x with itself. In scalar
terms, it is simply ( n∑

i=1

x2i

)1/2
. (A.06)

As the notation ‖·‖ indicates, the length of a vector is sometimes referred to as
its norm. This definition is inspired by the celebrated theorem of Pythagoras
about the squares of the sides of right-angled triangles. The definition (A.06)
is just a generalization of that result to an arbitrary number of dimensions.

There is actually more than one way to define an inner product. The
one that we defined above in (A.01), and the only one that we use explicitly
in this book, is called the natural inner product. The natural inner product
of two vectors y and x is often denoted 〈x,y〉 ≡ x>y. The norm of a vector
can be defined in terms of the natural inner product, since ‖x‖2 = 〈x,x〉. A
fundamental inequality linking norms and inner products is

|〈x,y〉| ≤ ‖x‖ ‖y‖. (A.07)

Only if x and y are parallel, that is, if y = αx for some scalar α, does the
inequality in (A.07) become an equality.

The concept of the length of a vector extends naturally to a concept of
the distance between two points in En. If x,y ∈ En, the distance between
x and y is just ‖x− y‖. Note that this definition is symmetric with respect
to x and y. The concept of inner product also allows us to define what we
mean in a general context by the angle between two vectors. For x,y ∈ En,
the angle φ ≡ 6 (x,y) can be defined in terms of its cosine, cosφ, as follows:

cosφ =
〈x,y〉
‖x‖ ‖y‖

.

This definition gives a value to cosφ that lies in the interval [−1, 1], by (A.07).
The definition is unique only if one restricts the possible range of φ to an
interval of length π (not 2π). Usually, the best interval to choose is [0, π].
With that choice, the angle between a vector and itself is 0, between a vector
and its negative is π, and between a vector and another vector orthogonal to
it is π/2. Vectors are orthogonal if their inner product is zero.
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The quantity used in econometrics that corresponds most closely to the
geometrical concept of the cosine of an angle is the R2 of a linear regression.
As discussed in Chapter 1, the R2 of the regression y = Xβ+u is the square
of the cosine of the angle between the n--vector y and the projection PXy of
that vector onto the span S(X) of the regressors.

Once the cosine of an angle φ has been found, it is possible to compute the
values of all the other trigonometric functions of φ. These functions are the
sine, sinφ, the tangent, tanφ, the cotangent, cotφ, the secant, secφ, and the
cosecant, cscφ. Of these, the only one that concerns us here is the cotangent,
for it is intimately related to the t statistics of linear regressions. In terms of
cosφ, cotφ is defined as follows, for φ ∈ [0, π]:

cotφ =
cosφ

(1− cos2 φ)1/2
. (A.08)

Unlike a cosine, which must lie between −1 and 1, a cotangent can evidently
take on any real value.

For the special case of a simple linear regression y = βx + u with no
constant term, the t statistic on x is

β̂

s(x>x)−1/2
, (A.09)

where β̂ is the OLS estimate of β, (x>x)−1x>y, and s is the OLS estimate
of σ, the standard deviation of the error terms. In geometrical notation, if φ
is the angle between y and x, we have

β̂ =
〈x,y〉
〈x,x〉

=
‖y‖
‖x‖

cosφ,

(x>x)1/2 = ‖x‖, and

s2 = (n− 1)−1
(
y>y − y>x(x>x)−1x>y

)
= (n− 1)−1‖y‖2(1− cos2 φ).

Substituting these results into expression (A.09) for the t statistic, we find
that the value of the statistic is

(n− 1)1/2
cosφ

(1− cos2 φ)1/2
= (n− 1)1/2 cotφ,

by (A.08). See Chapter 3 for an analogous result in the context of multiple
regression.
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A.4 Matrices as Mappings of Linear Spaces

An n×m matrix A can be thought of fruitfully as defining a mapping of Em

into En. One writes
A : Em → En.

Note the order of m and n here. The interpretation is simple. Since the
product of an n×m matrix and an m× 1 column vector is defined and is an
n× 1 column vector, we may define the action of A on an m--vector x, A(x),
as the matrix product Ax, and this is an n--vector. The mapping so defined
is linear, because, if α and β are arbitrary scalars,

A(αx+ βy) = αAx+ βAy,

by the standard properties of matrix operations.

The space Em of arguments to the mapping A is called the domain of the
mapping, and the space En of values is called the codomain. An important
linear subspace of the domain is the kernel of the matrix. It is defined as
follows:

N(A) ≡ {x ∈ Em | Ax = 0} .

We may say that the kernel of A is annihilated by A. An important linear
subspace of the codomain is called the range. The range is defined by the
expression

R(A) ≡ {y ∈ En | y = Ax for some x ∈ Em} .

The range may be described as the subspace of En that contains all points
that are the image of a point in Em under A. The set of points in Em that
are mapped into a point y ∈ En, that is, that have y as their image, is called
the preimage of the point y.

It is clear intuitively that the dimension of the Euclidean space Em is m.
We write dimEm = m. When dealing with subspaces like kernels or ranges,
the dimensions of these subspaces are less apparent. The necessary formal
definition is as follows. A linear space is of dimension n if there exist n linearly
independent vectors in the space and if all sets of more than n vectors of the
space are linearly dependent. A set of vectors xi, i = 1, . . . ,m, is said to
be linearly dependent if there exists a nontrivial linear combination of them
which is zero. That is, the xi’s are linearly dependent if there are m scalars
αi, not all zero, such that

m∑
i=1

αixi = 0. (A.10)

For Em itself, a suitable set of linearly independent vectors is provided by
the set of orthonormal basis vectors ei, i = 1, . . . ,m. Here ei is an m--vector
of which the ith element is 1 and all other elements are 0. The expression
on the left-hand side of (A.10), when computed with ei in place of xi, is the
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m--vector α with typical element αi. Clearly, this vector is zero only if αi = 0
for all i = 1, . . . ,m, and so the ei’s are linearly independent.

The orthogonal complement of a subspace M ⊆ Em is the linear space

M⊥ ≡
{
x ∈ Em | x>y = 0 for all y ∈M

}
.

If v is the dimension of the kernel of the n×m matrixA, and r is the dimension
of its range, then the following relation is true:

m− v = r. (A.11)

This says that the dimension of the orthogonal complement of the kernel is
equal to that of the range. A result underlying all the uses of projection
matrices throughout this book is that any vector z ∈ Em can be expressed
uniquely as the sum of two vectors, one in M and the other in M⊥, for any
linear subspace of Em. It can be deduced from this fact that

dimM + dimM⊥ = m.

The dimension of the range of a matrix is called the rank of the matrix.
The rank of A is sometimes denoted ρ(A). An n×m matrix A is said to be
of full rank if ρ(A) is equal to the lesser of m and n. The terminology reflects
the fact that ρ(A) could never exceed min(m,n), as (A.11) makes clear. If a
matrix has more rows than columns, and is of full rank, it is often convenient
to say simply that the matrix has full column rank, in order to express two
facts in one. Similarly, one may speak of a matrix being of full row rank.

The m columns of an n×m matrix can be considered as a set of n--vectors.
Thus one can write the ith column of A as ai ∈ En. It is easy to see that the
range of A is the set of all linear combinations of its columns ai. For this rea-
son, the range ofA is often referred to as the subspace spanned by the columns
of A or as the span of the columns of A or simply as the span of A. It is
convenient to let S(A) denote this subspace, and S⊥(A) denote its orthogonal
complement. The columns of A may be said to span the subspace S(A).

When a matrix is interpreted as a mapping of linear spaces, it is natural
to ascribe a norm to a matrix as well as to the vectors on which it acts. The
definition of the norm of an n×m matrix A follows the standard pattern for
defining norms of operators. It is as follows:

‖A‖ = max
x∈Em

‖Ax‖
‖x‖

.

It can be shown that any matrix A composed of finite elements has a finite
norm and that any matrix with zero norm must just be a zero matrix, that
is, a matrix all the elements of which are zero. If two matrices A and B have
dimensions such that the product AB exists, then it can also be shown that

‖AB‖ ≤ ‖A‖ ‖B‖.
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A.5 Partitioned Matrices

In this section, we introduce the important concept of a partitioned matrix
and derive some very useful formulas for inverting partitioned matrices. If a
matrix A has m columns, and if m1 and m2 are two positive integers such
that m1 + m2 = m, then one can define two submatrices of A, A1 and A2,
of dimensions n×m1 and n×m2, respectively, such that A1 consists of the
first m1 columns of A, and A2 consists of the last m2 columns of A. We write

A =
[
A1 A2

]
and refer to the object on the right-hand side of this relation as a partitioned
matrix.

The partitioning in the above case was done by columns. One can equally
well partition by rows or by both rows and columns, and there may be more
than two partitions for either. The submatrices created by partitioning a ma-
trix are called the blocks of the partition. If the n×m matrix A is partitioned
by its columns and the m× p matrix B is partitioned by its rows, the parti-
tioning may be conformable. That is, each block of the partition of A may
have just as many columns as the corresponding block of the partition of B
has rows. In this event, the ordinary rules of matrix multiplication may be
applied to the partitioned matrices as if the blocks were the actual elements
of the matrices.

The use of partitioning makes it easy to see that the range of a matrix A
is the set of all linear combinations of its columns ai. Thus let us partition A
so that each column is treated as a block:

A =
[
a1 a2 · · · am

]
.

If A premultiplies an m--vector x, we can “partition” x simply by writing out
its separate elements, and then we have

Ax =
[
a1 · · · am

]  x1...
xm


=

m∑
i=1

aixi.

Written like this, it is clear that the image of x underA is a linear combination
of the columns of A, defined by means of the elements of x.

We remarked above that partitioned matrices can be multiplied, if their
partitions are conformable, just as though their blocks were actual matrix
elements. The result of such a partitioned multiplication will necessarily be
a matrix the row partitioning of which is the same as that of the left-most
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factor of the matrix product, and the column partitioning of which is the same
as that of the right-most factor. This fact can be used to demonstrate some
other useful results. If we separate all the columns of the second factor of the
matrix product AB, we see that

AB = A
[
b1 · · · bm

]
=
[
Ab1 · · · Abm

]
,

where bi is a typical column of B. In words, the ith column of a matrix
product can be found by replacing the right-most factor of the product by
the ith column of that factor. Similarly, of course, the ith row of a matrix
product is found by replacing the left-most factor by its ith row.

Suppose that we consider a matrix X partitioned into two groups of
columns: X = [X1 X2]. The notation is chosen deliberately, for it is helpful
to the intuition to think of X as a matrix of regressors split into two subsets.
In particular, we will be able to apply the FWL Theorem (Section 1.4) in the
subsequent analysis. If X is n × k, then the matrix product X>X is k × k.
In partitioned form, we have

X>X =

[
X1
>

X2
>

]
[X1 X2 ] =

[
X1
>X1 X1

>X2

X2
>X1 X2

>X2

]
. (A.12)

We will now derive the inverse of the partitioned matrix which is the
right-most expression in (A.12). We know that the covariance matrix of the
OLS parameter estimates for the regression y = Xβ + u is proportional to
(X>X)−1. Further, if β is partitioned as

β =

[
β1

β2

]
,

conformably with the partition of X, then the covariance matrix of the es-
timates of β1 is proportional (with the same constant of proportionality) to
(X1
>M2X1)−1, where M2 = I−X2(X2

>X2)−1X2
> is the orthogonal projection

off the span of the columns of X2. This means that if (X>X)−1 is partitioned
in the same way as X>X, then the upper left block of the partitioned inverse
is (X1

>M2X1)−1.

Let us write (X>X)−1 in partitioned form as follows:

(
X>X

)−1
=

[
(X>X)−111 (X>X)−112

(X>X)−121 (X>X)−122

]
. (A.13)

We have just shown that

(
X>X

)−1
11

=
(
X1
>M2X1

)−1
. (A.14)
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If (A.12) and (A.13) are multiplied together, the answer must be an identity
matrix, which we may partition as

Ik =

[
Ik1

0
0 Ik2

]
,

where there are ki columns in Xi for i = 1, 2. The bottom left block of this
identity matrix is 0, and so by explicit multiplication we see that

X2
>X1

(
X1
>M2X1

)−1
+X2

>X2

(
X>X

)−1
21

= 0,

whence (
X>X

)−1
21

= −
(
X2
>X2

)−1
X2
>X1

(
X1
>M2X1

)−1
. (A.15)

The same sort of manipulation would yield an expression for (X>X)−122 , but
this is unnecessary, since we know by interchanging the 1s and 2s in the
expression for (X>X)−111 that (X>X)−122 = (X2

>M1X2)−1. This is not the
expression we would obtain directly, and we leave it as an exercise for the
reader to show that the two seemingly different expressions are in fact equal.

The partitioned matrices that we wish to invert are not all of the form
X>X. We can obtain general expressions from what we have already obtained
by writing out the projection matrix M2 explicitly. If X>X is written as[

A C>

C B

]
, (A.16)

and (X>X)−1 is written as [
D E>

E F

]
, (A.17)

then
D−1 = X1

>M2X1 = X1
>X1 −X1

>X2

(
X2
>X2

)−1
X2
>X1

= A−C>B−1C.

Thus, quite generally, we have the following relations between the blocks of
the two inverse partitioned matrices (A.16) and (A.17):

D =
(
A−C>B−1C

)−1
;

E = −B−1C
(
A−C>B−1C

)−1
= −

(
B −CA−1C>

)−1
CA−1;

F =
(
B −CA−1C>

)−1
.

These formulas require that the inverses of the diagonal blocks of the original
partitioned matrix exist.



782 Matrix Algebra

A.6 Determinants

We have several times alluded to the possibility that a square matrix may not
possess an inverse. If it does not, then the mapping that it defines will not
be invertible. In general, a mapping from one space to another is invertible
if and only if it is one-to-one and onto, a bijection in formal mathematical
terminology. More explicitly, the requirement is that there should correspond
to every point in the codomain of the mapping one and only one point in the
preimage of that point under the mapping. Then the inverse mapping, which
maps from the codomain to the domain of the original mapping, maps each
point in the codomain to its unique preimage.

We first show that only square matrices are invertible. If A is an n×m
matrix, we require for invertibility that, for every vector y ∈ En, there must
exist a unique vector x ∈ Em such that Ax = y. The inverse matrix A−1 is
then an m×n matrix that maps such a y into its corresponding x. A matrix
A of which the kernel contains more than the zero vector cannot possess an
inverse. Suppose that z ∈ N(A), z 6= 0; that is, Az = 0. Then, if Ax = y,
we also have that A(x + z) = Ax + Az = Ax, and both x and x + z
must belong to the preimage of y under A, contrary to the requirement that
permits an inverse mapping to exist. Thus, if A is n ×m and is invertible,
we find from (A.11) that m = r, the dimension of the range of A. Next, we
see that a matrix of which the range is not the full codomain cannot have
an inverse, for in that event there are elements of the codomain of which the
preimage is empty, contrary to the requirement for an inverse. This implies
that r = n, and since we have already seen that m = r, it follows that m = n.
Thus we have proved that only square matrices are invertible. The added
requirement that m = r implies that only square matrices of full rank are
invertible. Square matrices with rank less than full are called singular, and
square matrices with full rank are therefore sometimes called nonsingular. All
nonsingular square matrices are invertible.

How can one tell if a given square n × n matrix A is invertible, and, if
it is, how can one calculate its inverse? The answers to both these questions
are provided by the concept of the determinant of a square matrix. Since, for
the remainder of this section, we will be dealing only with square matrices,
all matrices should henceforth be understood to be square. The determinant
of a matrix is simply a scalar. We will let |A| denote the determinant of A
and |detA| denote the absolute value of the determinant of A.

The determinant of a matrix can be understood geometrically as the
n--dimensional volume of the rectilinear figure generated by the columns of
the matrix. In two dimensions, for instance, the two columns of a 2 × 2
matrix define a parallelogram, as shown in panel (a) of Figure A.1. The area
of this parallelogram is the determinant of the matrix. In three dimensions,
the three columns of a 3×3 matrix define a solid figure called a parallelepiped
(see Figure A.2), the volume of which is the determinant of the matrix. In



A.6 Determinants 783

..............................................................
..............................................................

..............................................................
..............................................................

................................... .............
......

..................
..................
..................
..................
..................
..................
..................
..................
..................
..................
..................
..................
.......................
...................

..................
..................
..................
..................
..................
..................
..................
..................
..................
..................
..................
..................
....

..............................................................
..............................................................

..............................................................
..............................................................

................

O

a1

a2

(a) The parallelogram defined
by a1 and a2

..............................................................
..............................................................

..............................................................
..............................................................

................................... .............
......

..................
..................
..................
..................
..................
..................
..................
..................
..................
..................
..................
..................
.......................
...................

.............
.............
.............
.............
.............
.............
.............
.............
.............
........................
...................

..................
..................
..................
..................
..................
..................
..................
..................
..................
..................
..................
..................
....

..............................................................
..............................................................

..............................................................
..............................................................

..............................................................
..............................................................

..............................................................
.............

.............
.............
.............
.............
.............
.............
.............
.............
.............
.....

O

a1

a2

M1a2

(b) Rectangle of equal area formed
with a1 and M1a2

Figure A.1 Determinants in two dimensions

higher dimensions, as we will see, we can extend the concept of determinant
algebraically in a natural way, although of course we cannot visualize the
results geometrically.

The area of a parallelogram is given in elementary texts on geometry
as base times height, where “base” means the length of one of the sides of
the parallelogram, and “height” means the perpendicular distance between
the two sides of which the length is the base. This means that the area of
a parallelogram can be computed as the area of a rectangle, as illustrated in
panel (b) of Figure A.1. Algebraically, if the columns of the 2 × 2 matrix A
are denoted a1 and a2, the area of the parallelogram is ‖a1‖ ‖M1a2‖, where
M1 is the orthogonal projection onto S⊥(a1). It is easy to check that one may
invert the roles of the two vectors without changing the value of the area.

For the n--dimensional case, we may make the following definition of the
absolute value of the determinant of the n× n matrix A = [a1 a2 · · · an]:

|detA| = ‖M(1)a1‖ ‖M(2)a2‖ · · · ‖M(n−1)an−1‖‖an‖

=
n∏

i=1

‖M(i)ai‖. (A.18)
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Figure A.2 A parallelepiped in three dimensions
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Here M(i) is the orthogonal projection off S(ai+1, . . . ,an), the span of the
last n − i columns of A, for i = 1, . . . , n − 1. To make the second line true,
M(n) = I.

The above definition gives only the absolute value of the determinant.
The sign will be a consequence of another property of determinants, namely,
anti-symmetry. The value of (A.18) is invariant to changes in the ordering of
the columns ofA, but when the sign is taken into account, we will require that
an interchange of any two columns of A will cause the sign of the determinant
to change. Consider the following partitioned matrix:

A =

[
a11 0

b B

]
. (A.19)

When the first column is projected off the others, the result will be a column
with a11 as first element and all other elements zero. Thus, by (A.18), the
absolute value of |A| is just |a11||detB|. The rule for signing the determinant
is a recursive one: We assume that |B| can be signed and then multiply its
sign by that of the element a11 to obtain the sign of |A|. To finish off the
recursion, we require that the sign of the determinant of a 1×1 matrix should
be the sign of the single element of the matrix.

In a moment, we will need to use the fact that the determinant of the
matrix (A.19), which does not depend on the (n− 1)--vector b, is equal to the
determinant of any matrix like (A.19), with a zero column in the place of b
but with an arbitrary row vector c> in place of the zeros in (A.19). Thus the
determinant of the matrix [

a11 c>

0 B

]
(A.20)

is equal to that of (A.19). To see this, recall that the absolute value of the
determinant is not affected by the order of the columns, and take the first
column of (A.20) as the column not subject to any projection in (A.18). All
other columns will then be projected off the first column and thereby lose
their first element, that is, the elements of c>.

A lower-triangular matrix is a special case of (A.19) in which the matrix
B is itself lower-triangular. Similarly, an upper-triangular matrix is a special
case of (A.20) in which the matrix B is itself upper-triangular. The fact that
the determinant of both these matrices is equal to |a11||detB| implies that if a
matrix A is triangular, its determinant is equal to the product of its diagonal
elements. To obtain this result, we simply apply the original result first to A,
then to its lower right-hand block, then to the lower right-hand block of that
block, and so on.

Another property of determinants is that they are invariant under inter-
changes of their rows as well as of their columns, again up to a change of sign.
This is clear from (A.18), since the norm of a vector does not depend on how
its rows are ordered; see (A.06).
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The operation of taking determinants is obviously not a linear operation.
Thus, in general, |A + B| 6= |A| + |B|. What is true, however, is that
if a column of a matrix is expressed as the sum of two vectors, then the
determinant is additive column by column. What this means is that

|a1 + b1 a2 · · · an |

= |a1 a2 · · · an | + |b1 a2 · · · an |.
(A.21)

Here the notation | · | with what appear to be the blocks of a partitioned
matrix inside denotes the determinant of that matrix. To see why (A.21) is
true, observe that the rank of the projection M(2) is only 1. It follows that,
for any n--vectors a and b, ‖M(2)(a+ b)‖ = ‖M(2)a‖+ ‖M(2)b‖. The result
follows from this fact and the definition (A.18).

The result (A.21) allows us to establish the classic method for evaluating
determinants by hand. This method is the expansion of the determinant by
a row or column. No one ever actually calculates determinants by hand any
more, except perhaps for the trivial 2 × 2 case, but our discussion of how
determinants can be expanded will lead to a number of useful results. We
will expand by the first column. In order to do so, we need a little notation.
Let Aij denote the (n − 1) × (n − 1) submatrix of A obtained by deleting
the ith row and the j th column. Let Aij denote the determinant of this
submatrix. We call (−1)i+jAij the cofactor of the element aij in A. Let αi

be the n--vector with all elements zero except the ith, which equals ai1. Then
notice that successive applications of (A.21) give

|A| =
n∑

i=1

|αi a2 · · · an | . (A.22)

If we write the ith row of the summand indexed by i in (A.22) as [ai1 ci
>],

then the ith row can be moved up to become the first, by a process of i− 1
interchanges of rows, which entail a factor of (−1)i−1. The result is the de-
terminant

(−1)i−1
∣∣∣∣ ai1 ci

>

0 Ai1

∣∣∣∣ ,
the value of which is ai1Ai1, by the definition of a cofactor. Thus the deter-
minant (A.22) can be written as

|A| =
n∑

i=1

ai1Ai1. (A.23)

Since Ai1 is itself a determinant, (A.23) allows a recursive evaluation of an
arbitrary determinant.
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It is easy enough to see that A can be evaluated by expanding by any
row or column. Formally,

|A| =
n∑

i=1

aijAij =
n∑

i=1

ajiAji (A.24)

for all j = 1, . . . , n. This result in turn shows that |A>| = |A|. If one expands
a determinant by a column, the j th say, and uses false cofactors, that is, those
corresponding to another column, the kth say, then we find that

n∑
i=1

aijAik = 0. (A.25)

This follows because (A.25) is the correct expansion of the determinant of a
matrix in which the kth column is replaced by the j th column. Any matrix
in which one column is the same as another has zero determinant, since when
the same column occurs for a second time in (A.18), it will be projected off
itself, giving a vector of zero norm.

For the same reason, any matrix in which one column is a linear com-
bination of the others will have a determinant of zero. A matrix satisfying
this condition does not have full rank, and so we see that a singular matrix
necessarily has a zero determinant. It is not hard to see that the converse
is also true: A matrix with zero determinant is necessarily singular. This all
makes sense geometrically, of course. If an n × n matrix does not have full
rank, the parallelepiped defined by the matrix will be an object of less than
n dimensions, and so its volume (in n--space) will be zero.

The results (A.24) and (A.25) can be used to construct the inverse of a
nonsingular matrix A. Consider the matrix B with typical element bij ≡ Aji,
which is just the transpose of the matrix of cofactors. We see that

(AB)ij =

n∑
k=1

aikAjk = |A|δij ,

where δij is the Kronecker delta, equal to 1 if i = j and equal to 0 otherwise.
Thus AB = |A|I, and so |A|−1B, which exists if and only if |A| 6= 0, must
be the inverse of A.

The result (A.24) allows us to compute the derivatives of the determinant
of a matrix with respect to the elements of the matrix. The cofactor Aij is
the determinant of a matrix that contains none of the elements of the ith row
or the j th column of A. It follows that the derivative of |A| with respect to
aij is just Aij , which is |A| times the jith element of A−1. This result may
be written in matrix notation as

∂|A|
∂A

= |A|(A−1)>.
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From it we may deduce the even more useful result that

∂ log |A|
∂A

= (A−1)>.

Although the determinant of a sum of matrices is not the sum of the de-
terminants in general, the determinant of a product of matrices is the prod-
uct of the determinants. Let A and B be two n × n matrices, both with
nonzero determinants. Then |AB| = |A||B|. A very useful corollary is that
|A−1| = |A|−1. This follows from the facts that A−1A = I and |I| = 1.

To conclude this section, we prove a result used in Chapters 18 and 20.
According to this result, we have∣∣∣∣A>A A>B

B>A B>B

∣∣∣∣ =
∣∣A>MBA

∣∣∣∣B>B∣∣ =
∣∣B>MAB

∣∣∣∣A>A∣∣ , (A.26)

where MA and MB are the orthogonal projections off the columns of the
matrices A and B, which can be assumed to be of full column rank without
loss of generality. We use the results (A.14) and (A.15) on inverting matrices
partitioned as above to write[

A>A A>B

B>A B>B

] [
(A>MBA)−1 0

−(B>B)−1B>A(A>MBA)−1 I

]
=

[
I A>B

0 B>B

]
.

It is evident that the determinant of the matrix on the right-hand side is just
|B>B|, while the determinant of the second matrix factor on the left-hand
side is |A>MBA|−1. The first equality in (A.26) then follows immediately.
The second equality can be proved by a similar argument, but using different
expressions for the inverse of the partitioned matrix.

A.7 Positive Definite Matrices

An n× n symmetric matrix A is said to be positive definite if the quadratic
form x>Ax is positive for all nonzero n--vectors x. If the quadratic form can
take on zero values but not negative values, it is positive semidefinite or non-
negative definite. Matrices that are negative definite or negative semidefinite
are defined analogously.

Any matrix of the form B>B is positive definite if B has full column
rank and positive semidefinite otherwise. To see this, observe that B>B is
symmetric and that, for any nonzero x,

x>B>Bx = (Bx)>(Bx) = ‖Bx‖2 ≥ 0.

This result can hold with equality only if Bx = 0. But, in that case, B
cannot have full rank, since to say that Bx = 0 means that the columns of
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B are not linearly independent. Similar reasoning shows that if A is positive
definite, then any matrix of the form B>AB is positive definite if B has full
column rank and positive semidefinite otherwise.

A positive definite matrix cannot be singular, since, if A is singular, there
must exist a nonzero x such that Ax = 0. But then x>Ax = 0 as well, which
means that A is not positive definite. Thus the inverse of a positive definite
matrix always exists. It too is positive definite, because, for any nonzero x,

x>A−1x = x>A−1AA−1x = (A−1x)>A(A−1x) > 0.

The inequality here follows directly from the fact that A is positive definite.

For any positive definite matrix A, we can find a matrix B such that
A = B>B. It is often necessary to construct such a B from a given A
in econometric applications; an example is the matrix η defined in (9.08).
Frequently, it is desirable to go further and find a triangular matrix B. We
now sketch an algorithm for such a triangular decomposition. It produces an
upper-triangular B from a given positive definite matrix A. An analogous
algorithm to produce a lower-triangular B can also be found.

We start by defining b11 =
√
a11, where aij and bij denote the ij th

elements of A and B, respectively. The whole first row of B is then obtained
by sequential application of the following formula, for j = 2, . . . , n:

b1j =
a1j
b11

.

Subsequent rows are computed sequentially, in such a way that, during the
computation of the ith row, the elements of the first through the (i− 1)th are
available. For the ith row, the elements bij are set equal to zero for j < i,
since B is to be upper-triangular. Then the ith diagonal element is

bii =

(
aii −

i−1∑
k=1

b2ki

)1/2
, (A.27)

in which the entire right-hand side is known. To complete the row, the ele-
ments bij for j > i are determined by the formula

bij =
1

bii

(
aij −

i−1∑
k=1

bkibkj

)
.

Again, everything that appears on the right-hand side is available by the time
it is needed. A calculation that we will not reproduce shows that the quantity
of which the square root is taken in (A.27) is guaranteed to be positive if A is
positive definite and also shows that the matrix B generated by the algorithm
satisfies the requirement that B>B = A. The results of the preceding section
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show that the determinant of a triangular matrix is just the product of its
diagonal elements. Thus one can obtain the determinant of B almost as a
by-product of the algorithm for finding B. The square of the determinant
of B is then the determinant of A.

In some manipulations of covariance matrices in the text, we make use
of the fact that if A and B are two positive definite matrices, then A−B is
positive definite if and only if B−1 −A−1 is. We now demonstrate this very
useful result. Let A−1/2 be a matrix such that (A−1/2)>A−1/2 = A−1. It can
be seen that

A−1/2A(A−1/2)>= (A−1/2)>AA−1/2 = I.

First, we show that if I − A is positive definite, then so is A−1 − I and
conversely. This follows from the result, proved above, that premultiplying a
positive definite matrix by any matrix with full rank and then postmultiplying
by the transpose of that matrix yields a positive definite matrix. Thus the
positive definiteness of I − A implies that of (A−1/2)>(I − A)A−1/2, which
is just A−1 − I. The converse result follows from inverting the roles of A
and A−1.

If A−B is positive definite, then so is A−1/2(A−B)(A−1/2)>, that is,
I−A−1/2B(A−1/2)>. The positive definiteness of this last matrix entails that

of (A1/2)>B−1A1/2 − I, where A1/2 is the inverse of A−1/2, and so also of

(A−1/2)>(A1/2)>B−1A1/2A−1/2− (A−1/2)>A−1/2, which is just B−1−A−1,
as required. Again, the converse result follows from inverting the roles of the
matrices and their inverses. A similar result is true for positive semidefinite
matrices: A−B is positive semidefinite if and only if B−1 −A−1 is.

A.8 Eigenvalues and Eigenvectors

A scalar λ is said to be an eigenvalue (or characteristic root, or latent root)
of a matrix A if there exists a nonzero vector x such that

Ax = λx. (A.28)

Thus the action of A on x produces a vector with the same direction as x,
but a different length unless λ = 1. The vector x is called the eigenvector
corresponding to the eigenvalue λ. Although these ideas are defined quite gen-
erally, we will restrict our attention here to the eigenvalues and eigenvectors
of real symmetric matrices.

The eigenvalue relationship (A.28) implies that

(A− λI)x = 0, (A.29)

from which we conclude that the matrix A− λI is singular. Its determinant,
|A − λI| is therefore equal to zero. It can be shown in a variety of ways
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that this determinant is a polynomial in λ, of degree n if A is n × n. The
fundamental theorem of algebra tells us that such a polynomial has n complex
roots, say λ1, . . . , λn. To each λi there must correspond an eigenvector xi.
This eigenvector is determined only up to a scale factor, because if xi is an
eigenvector corresponding to λi, then so is αxi for any nonzero scalar α. The
eigenvector xi does not necessarily have real elements if λi itself is not real.

If A is a real symmetric matrix, it can be shown that the eigenvalues λi
are in fact all real and that the eigenvectors can be chosen to be real as well.
If A is a positive definite matrix, then all its eigenvalues are positive. This
follows from the facts that

x>Ax = λx>x

and that both x>x and x>Ax are positive. The eigenvectors of a real sym-
metric matrix can be chosen to be mutually orthogonal. If one looks at two
eigenvectors xi and xj , corresponding to two distinct eigenvalues λi and λj ,
then xi and xj are necessarily orthogonal:

λixj
>xi = xj

>Axi = (Axj)
>xi = λjxj

>xi,

which is impossible unless xj
>xi = 0. If not all the eigenvalues are distinct,

then two (or more) eigenvectors may correspond to one and the same eigen-
value. When that happens, these two eigenvectors span a space that is or-
thogonal to all other eigenvalues by the reasoning just given. Since any linear
combination of the two eigenvectors will also be an eigenvector correspond-
ing to the one eigenvalue, one may choose an orthogonal set of them. Thus,
whether or not all the eigenvalues are distinct, eigenvectors may be chosen to
be orthonormal, by which we mean that they are mutually orthogonal and
each has norm equal to 1. Thus the eigenvectors of a real symmetric matrix
provide an orthonormal basis.

Let U ≡ [x1 · · · xn ] be a matrix the columns of which are an orthonor-
mal set of eigenvectors of A, corresponding to the eigenvalues λi, i = 1, . . . , n.
Then we can write the eigenvalue relationship (A.28) for all the eigenvalues
at once as

AU = UΛ, (A.30)

where Λ is a diagonal matrix with λi as its ith diagonal element. The ith

column of AU is Axi, and the ith column of UΛ is λixi. Since the columns of
U are orthonormal, we find that U>U = I, which implies that U>= U−1. A
matrix with this property is said to be an orthogonal matrix. Postmultiplying
(A.30) by U> gives

A = UΛU>. (A.31)

This equation expresses the diagonalization of A.
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Taking determinants of both sides of (A.31), we obtain

|A| = |U ||U>||Λ| = |U ||U−1||Λ| = |Λ| =
n∏

i=1

λi,

from which we deduce the important result that the determinant of a matrix
is the product of its eigenvalues. In fact, this result holds for nonsymmetric
matrices as well.

A result used in Chapter 18 is that if A is positive definite and B is
positive semidefinite, then

|A+B| ≥ |A|.

We show this first for the special case A = I and then deduce the general
result. The determinantal equation which defines the eigenvalues of the matrix
I +B is

|I +B − λI| = 0,

from (A.29). This becomes ∣∣B − (λ− 1)I
∣∣ = 0.

It follows that the eigenvalues λi of I +B satisfy the equation λi = 1 + µi,
where µi is an eigenvalue ofB. IfB is a positive semidefinite matrix, its eigen-
values are all greater than or equal to 0, which implies that the eigenvalues of
I+B are all greater than or equal to 1. Since the determinant of a matrix is
the product of its eigenvalues, we may conclude that the determinant of I+B
is greater than or equal to 1, which is the determinant of I.

Let A1/2 be a matrix such that A1/2(A1/2)>= A. Then, if B is positive
semidefinite,

|A+B| =
∣∣A1/2

(
I +A−1/2B(A−1/2)>

)
(A1/2)>

∣∣
=
∣∣(A1/2)

∣∣2∣∣I +A−1/2B(A−1/2)>
∣∣.(A.32)

The matrix A−1/2B(A−1/2)> is positive semidefinite because B is, and so the
last determinant factor in (A.32) is greater than 1. Since∣∣(A1/2)

∣∣2 = |A|,

we see that |A+B| ≥ |A|, as stated.
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Terms and Concepts

angle between two vectors
associative property (for matrix

addition and multiplication)
bijection
blocks of a partitioned matrix
codomain of a mapping
cofactor
column vector
conformable matrices
cyclic permutation (of the factors of a

product of matrices)
determinant
diagonal matrix
diagonalization (of a real symmetric

matrix)
dimension (of a Euclidean space)
direct product (Schur product)
distance between two points in En

distributive property (for matrix
addition and multiplication)

domain of a mapping
eigenvalue (or characteristic root, or

latent root)
eigenvector
Euclidean n--space, En

expansion of the determinant (by a
row or column)

false cofactors
full rank; full row rank; full column

rank
identity matrix
image and preimage
inner product (scalar product)
inverse mapping
inverse matrix
invertible matrix
kernel (of a matrix)
length (or norm) of a vector
linearly dependent vectors

linearly independent vectors
lower-triangular matrix
mapping defined by a matrix
natural inner product
negative definite matrix
negative semidefinite matrix
nonsingular square matrix
norm (of a matrix)
orthogonal complement (of a

subspace)
orthogonal matrix
orthogonal vectors
orthonormal basis
outer product
parallel vectors
parallelepiped
parallelogram
partitioned matrix
positive definite matrix
positive semidefinite (or nonnegative

definite) matrix
postmultiplication
premultiplication
principal diagonal of a square matrix
range (of a matrix)
rank (of a matrix)
row vector
singular square matrix
span (of the columns of a matrix)
square matrix
symmetric matrix
trace of a matrix
transpose of a matrix
triangular decomposition
triangular matrix
trigonometric functions: sine, cosine,

tangent, cotangent, secant, cosecant
upper-triangular matrix



Appendix B

Results from Probability Theory

B.1 Introduction

Readers of this book should already be reasonably familiar with probability
theory and statistics. This appendix is provided to aid those who wish to
refresh their memories and to collect results for easy reference. It is in no way
a substitute for a graduate-level textbook such as Casella and Berger (1990) or
Spanos (1986). Section B.2 reviews the basic concepts of random variables and
probability distributions. Section B.3 discusses moments of random variables
and some related results. Finally, Section B.4 reviews some of the probability
distributions that are most commonly used in econometrics.

B.2 Random Variables and Probability Distributions

The concept of a random variable underlies almost all of probability theory
and its daughter discipline of statistics. A fully formal definition of a random
variable requires the concept of a probability space, on which can be defined
a sigma-algebra, on which in turn can be defined a probability measure. We
cannot in this book go into details concerning these concepts, and interested
readers are referred to Billingsley (1979) for a proper treatment.

The essence of the matter, much simplified, is as follows. The first ne-
cessity is a set the elements of which would commonly be called the “states
of the world” in ordinary economic theory. This set, more correctly called
the event space or the outcome space, can be very simple. For example, if
we were dealing with a toss of a coin, it would consist of just two elements,
heads and tails. In other circumstances, it can be very complicated, so as to
cope with a full-blown stochastic process, either with a discrete index, like the
sequences of random variables encountered in the asymptotic theory given in
this book, or even with a continuous index. An instance of this last possibility
crops up with the Wiener processes mentioned in Chapter 20. In all cases, the
outcome space must have a rich enough structure that every possible outcome
is represented as a point in the space; different outcomes must correspond to
different points.

793
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Although every possible outcome must be represented in the outcome
space, it is not always possible to assign a probability to all of these outcomes.
Even if it is, the probability assigned may not be particularly informative. For
instance, if we consider a single random variable that can take values anywhere
on the real line, the probability that any single real number will be realized
is usually zero. Positive probabilities in such cases would be assigned only
to intervals of positive length. A structure is therefore needed to determine
just what subsets of the outcome space — what compound events in standard
probabilistic terminology — can have probabilities assigned to them. This
structure is the sigma-algebra of the formal theory.

The last essential ingredient is the probability measure: the means by
which probabilities actually are assigned to events, compound or simple. All
we really need to remember here is that probability measures must respect
the laws of probability that our intuition requires. These laws are remarkably
simple: The probability of the null event (nothing happens) is zero, the prob-
ability of the complete outcome space (something happens) is unity, and the
probability that one or other of a set of disjoint, or mutually exclusive, events
happens is the sum of the probabilities of the individual disjoint events.

We can now provide an informal definition of what we mean by a random
variable, or r.v. for short. The simplest case is a scalar random variable, one
that takes on a single real value. Such a random variable will be a mapping of
the outcome space into the real line, that is, an assignment of a real number
to each possible outcome. A moment’s reflection will show that this is indeed
what we mean by a random variable: a quantity the value of which depends
on the state of the world. In general, it is not the case that an arbitrary
mapping from the outcome space to the real line counts as a proper random
variable, because we insist that it should be possible to define a probability
distribution for each random variable. What this means, more specifically, is
that, if x is any r.v., we should be able to assign probabilities to events of the
form (x ≤ X) for all real numbers X. Let us denote the outcome space by Ω;
this is very standard notation in probability theory. Then the event (x ≤ X)
can be expressed more explicitly as the following subset of Ω:

(ω ∈ Ω | x(ω) ≤ X). (B.01)

This makes sense because x is a mapping of Ω into the real line.

For x to be a well-defined random variable, it must be possible to assign
a probability to each of the sets (B.01). Doing this yields the cumulative
distribution function, or c.d.f., of the random variable x, which is often de-
noted F (x) and is defined on the real line. Because the value of a c.d.f. is a
probability, a c.d.f. must take values in the interval [0, 1]. A typical c.d.f. is
defined by an equation of the form

Fx(X) = Pr
(
ω ∈ Ω | x(ω) ≤ X

)
.
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Usually, it is safe to omit the reference to ω and Ω and write simply Pr(x ≤ X).
By construction, a c.d.f. tends to zero as its argument tends to −∞, and to
unity as its argument tends to +∞. Further, it must be a weakly increasing
function of its argument. This is true because, if X1 < X2, then the event
(x ≤ X1) is included in the event (x ≤ X2) and therefore cannot have proba-
bility greater than that of (x ≤ X2). It is a good exercise to work this result
out in detail from the rule about summing the probabilities of disjoint sets of
events.

Random variables can take values that are vectors, matrices, or indeed
many other things. One that takes vector values is called a vector-valued
random variable. The probabilistic properties of a vector-valued r.v. x may
be represented by a generalization of the c.d.f. called a joint c.d.f. If x ∈ Rn,
then its joint c.d.f. is a function of n arguments, as follows:

Fx(X1, . . . , Xn) = Pr
(
(x1 ≤ X1) ∩ · · · ∩ (xn ≤ Xn)

)
.

Here xi denotes the ith component of x, and the sign ∩ has its usual sense of
the intersection of sets: The event in question is the set of all ω ∈ Ω such that
x1 ≤ X1 and x2 ≤ X2, and so on. A joint c.d.f. has similar properties to the
c.d.f. of a scalar random variable. It tends to zero when any of its arguments
tends to −∞, and it tends to unity when all of its arguments tend to +∞.
From a joint c.d.f., one can derive the marginal distribution of any of the
components of x. By this is meant simply the probability of that component
considered by itself as a scalar random variable. This marginal distribution is
of course represented by an ordinary c.d.f., which for component xi is given
by setting all the arguments of the joint c.d.f. that do not correspond to xi
equal to +∞:

Fxi
(Xi) = Fx(+∞, . . . , Xi, . . . ,+∞).

This then is the probability that xi ≤ Xi and that all components of x other
than xi take on any value at all. The marginal distribution of any subset of
the components of x is represented similarly by a joint c.d.f. obtained from the
original one by setting all arguments that do not correspond to the selected
components equal to +∞.

Once one considers joint probability distributions, it is possible to intro-
duce the important notion of statistical independence. Let x be an n--vector-
valued random variable, and suppose that it is partitioned as x = [x1

.... x2],
with x1 ∈ Rn1, x2 ∈ Rn2, and n1 + n2 = n. Then x1 and x2 are said to be
statistically independent, or often just independent, if the joint c.d.f. of the
full vector x is the product of the joint c.d.f.’s of x1 and x2. In straightforward
notation, this means that

Fx

(
X1,X2

)
= Fx

(
X1,∞2

)
Fx

(
∞1,X2

)
,

where ∞1 and ∞2 denote vectors all components of which equal +∞.
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The concept of a probability density function, or p.d.f., is very closely
related to that of a c.d.f. Whereas a distribution function exists for any well-
defined random variable, a p.d.f. exists only when the c.d.f. is differentiable.
For a scalar r.v., the density function, often denoted by f, is just the derivative
of the c.d.f.:

fx(X) ≡ F ′x(X).

The joint density of a set of r.v.’s, or equivalently, of a vector-valued r.v., is
obtained from the joint c.d.f. by differentiating it with respect to all of its
arguments:

fx(X1, . . . , Xn) =
∂nFx(X1, . . . , Xn)

∂X1 · · · ∂Xn
.

The fact that a c.d.f. varies from 0 to 1 implies that a density function must
be normalized to integrate to unity. By the fundamental theorem of calculus,∫ ∞

−∞
fx(X) dX =

∫ ∞
−∞

F ′x(X) dX

=
[
Fx(X)

]X=+∞
X=−∞ = 1− 0 = 1.

(B.02)

In like manner, one shows that the multiple integral of a joint density function
with respect to all its arguments as they range from −∞ to +∞ is equal to
unity. A still more useful result is that, if one integrates a joint p.d.f. with
respect to only some of its arguments, the result is the density of the marginal
distribution of the variables not “integrated out.” This is called their marginal
density. If two groups of r.v.’s are independent, then it is easy to see from the
definition of independence in terms of c.d.f.’s that independence implies that
the joint density of the two groups is the product of the marginal densities of
the two groups.

Another crucial property of a density function is that it is nonnegative.
This follows directly from its definition as the derivative of a weakly increasing
function. But it is also a reflection of a very useful property of a density, one
which allows us to use it to compute the probabilities of events associated
with a given random variable. Suppose that x is a scalar r.v. Then for any
interval [a, b] of the real line, we may wish to compute the probability that
x ∈ [a, b]. It follows directly from the definition of a c.d.f. that, if a < b,

Pr
(
x ∈ [a, b]

)
= Fx(b)− Fx(a).

By the same argument as that leading to (B.02), this probability is∫ b

a

fx(X) dX. (B.03)

Since (B.03) must hold for arbitrary a and b, it is clear that fx must be a
nonnegative function.
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B.3 Moments of Random Variables

One of the most important properties that a random variable may possess is
an expectation. It will be enough to define the expectation of a scalar r.v.;
for vector- or matrix-valued r.v.’s, expectations are defined component by
component. Thus, if x is a scalar random variable, its expectation is defined
as the value of the integral ∫ ∞

−∞
XdFx(X), (B.04)

if it exists. The sort of integral that appears in (B.04) is called a Stieltjes
integral, because of the presence of the integrator function Fx. Readers for
whom the concept of a Stieltjes integral is unfamiliar may wish to consult a
standard text on real analysis, such as Burrill and Knudsen (1969) or Mukher-
jea and Pothoven (1984), for details. We will not provide them here, because
these details are not very important for the points we wish to make. The
essential feature of a Stieltjes integral, from our present point of view, is that
if the integrator is differentiable, the Stieltjes integral may be expressed as an
ordinary integral in terms of its derivative. For (B.04), this gives the following
expression for the expectation of x:∫ ∞

−∞
Xfx(X) dX, (B.05)

where fx is the density of x. For the simplicity of our subsequent discussion,
we will deal only with differentiable c.d.f.’s.

Not every random variable has an expectation. The integral of a density
function always exists and equals 1. But, since X ranges from −∞ to ∞, the
integral (B.05) may well diverge at either limit of integration, or both, if the
density fx does not tend to zero fast enough. By a slight abuse of terminology,
the expectation of a random variable is sometimes called its mean. Strictly
speaking, a mean is a property of a sample of realized r.v.’s, rather than
of a probability distribution. In the rare circumstances where confusion is
possible, the expectation may be called a population mean to distinguish it
from the sample mean.

The expectation of a random variable is often referred to as its first
moment. The so-called higher moments are, if they exist, the expectations
of the powers of the r.v. Thus the second moment of a random variable x
is the expectation of x2, the third moment the expectation of x3, and so on.
Fractional moments can be defined analogously, but we will not use them in
this book. In general, the k th moment of the r.v. x is

mk ≡
∫ ∞
−∞

Xkfx(X) dX.
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Observe that the value of any moment depends only on the probability distri-
bution of the r.v. in question. For this reason, one often speaks of the moments
of the distribution rather than of a specific random variable. Note also that if
a distribution possesses a k th moment, it also possesses all moments of order
less than k.

The definition just given is of the uncentered moments of a distribution.
It is probably more common to work with the central moments, which are
defined as the ordinary moments of the difference between the random variable
and its expectation. Thus, if we write E(x) for the expectation of x, the k th

central moment of the distribution of x is

m̄k ≡ E
(
x− E(x)

)k
.

Far and away the most important central moment is the second. It is called
the variance of the r.v. The usual notation for a variance is σ2, and this
notation underlines the fact that a variance cannot be negative. The square
root, σ, is called the standard deviation of the distribution. Estimates of
standard deviations are often referred to as standard errors, especially when
the random variable in question is an estimated parameter.

It is often important to be able to define moments of vector-valued r.v.’s.
For the first moment, this is essentially trivial: The first moment of an
n--vector-valued random variable x is just an ordinary n--vector x̄ with typical
component x̄i ≡ E(xi). For the second and higher moments, things are not
so simple. For the central second moments, one needs to define an n× n ma-
trix, which is sometimes called the variance matrix, sometimes the covariance
matrix, and sometimes the variance-covariance matrix. Terminology is not
standard, but we prefer the middle form. The covariance matrix of x will be
denoted V (x) and is defined as

V (x) ≡ E
(
(x− x̄)(x− x̄)>

)
.

The diagonal elements of V (x) can be seen to be the separate variances of
the components of x. The off-diagonal element Vij is called the covariance of
the components xi and xj . Higher moments of vectors of r.v.’s can be defined
analogously. They require objects with more than two indices and are not
used in this book.

If one computes the expectation of the product of two independent ran-
dom variables, the result is just the product of the expectations of the r.v.’s
separately. This follows from the fact that the joint density of two independent
r.v.’s is just the product of the two marginal densities. Further, the covar-
iance of two independent random variables is zero. A standard trick question
in probability theory asks if two r.v.’s with zero covariance are necessarily
independent: The answer is NO. However, a zero covariance is enough for the
expectation of the product of two random variables to equal the product of
their separate expectations.
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One often needs to compute the variance of a linear combination of ran-
dom variables. Let these r.v.’s be components of a vector r.v. x, and let the
linear combination of interest be written as a>x for some nonrandom vector a.
It is easy to show that the variance of this linear combination is a>V (x)a.
Similarly, if one forms a vector of linear combinations of the components of x,
for example, by forming A>x for some suitable nonrandom matrix A, then

V (A>x) = A>V (x)A. (B.06)

If a random variable has a variance, its value can be used to provide a
bound for the probability mass in the tail of the distribution. By the tail of a
probability distribution, we mean an event of the form (x > X) or (x < X),
whereX is substantially to the right of the center of the distribution in the first
case and substantially to the left in the second. The first case defines the right
tail and the second defines the left tail of the distribution. The ambiguous
word “center” is used here because the whole definition of a tail is imprecise.
By center one may mean the expectation or the median or the mode or some
other measure of central tendency. The imprecision is probably due to the
fact that not all r.v.’s have means. If they do not, different measures of central
tendency may be appropriate for different r.v.’s. Sometimes we are interested
in the probability that a random variable lies in either tail, sometimes in the
probability that it lies in the right tail, and sometimes in the probability that
it lies in the left tail. Left tails are seldom of interest with r.v.’s that take on
only positive values.

The bound on the probability mass in the tails that we alluded to above
is known as the Chebyshev inequality. It can be derived as follows. Suppose
that the uncentered second moment of the r.v. x is V. If x is itself a cen-
tered random variable, then E(x) = 0 and V is its variance. The Chebyshev
inequality states that, for any positive number α,

Pr
(
|x| > α

)
≤ V

α2
. (B.07)

To see this, note that the definition of V is

V = E(x2) =

∫ ∞
−∞

X2fx(X) dX.

This integral can be split up into the sum of three integrals:

V =

∫ α

−α
X2fx(X) dX +

∫ ∞
α

X2fx(X) dX +

∫ −α
−∞

X2fx(X) dX. (B.08)

Consider the last two terms on the right-hand side above. The factor X2 in
the integrand is always greater than α2 over the range of integration in these
terms. Thus these terms are at least as great as

α2

(∫ ∞
α

fx(X) dX +

∫ −α
−∞

fx(X) dX

)
= α2 Pr

(
|x| > α

)
,
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by (B.03). Since all the terms in (B.08) are nonnegative, we conclude that

V ≥ α2 Pr
(
|x| > α

)
.

Reorganizing this inequality gives (B.07). From this follows a more familiar
form of the Chebyshev inequality, which states that, for a random variable x
with mean µ and variance σ2,

Pr

(∣∣∣x− µ
σ

∣∣∣ > α

)
≤ 1

α2
.

Taking the expectation of a random variable is a linear operation. If x
and y are two r.v.’s and a and b are two nonrandom real numbers, then
E(ax+ by) = aE(x) + bE(y). This follows directly from the definition (B.05)
of an expectation. In general, however, if g is a scalar-valued function of a
scalar random variable x, it is not the case that E

(
g(x)

)
= g

(
E(x)

)
. This

conclusion would be true only if g were an affine function, which means that
g(x) = ax+ b for two real numbers a and b.

On the other hand, if the function g is concave or convex, one can show
that the inequality between E

(
g(x)

)
and g

(
E(x)

)
has a particular sign. This

result is known as Jensen’s inequality. For concreteness, and because this is
the case that arises in the maximum likelihood theory of Chapter 8, suppose
that g is a concave function, like the logarithmic function. Then the inequality
asserts that

E
(
g(x)

)
≤ g
(
E(x)

)
.

To see this, suppose that g is differentiable, although the result holds without
this assumption. Then one way of expressing the concavity of g is through
the inequality

g(a) ≤ g(b) + g′(b)(a− b), for all real a, b. (B.09)

This inequality is depicted in Figure B.1, which should provide intuition for
Jensen’s inequality as well as for (B.09) itself. Denote E(x) by x̄. Then

E
(
g(x)

)
=

∫ ∞
−∞

g(X)fx(X) dX

≤
∫ ∞
−∞

(
g(x̄) + g′(x̄)(X − x̄)

)
fx(X) dX,

where the inequality follows from (B.09). The second line here is equal to

g(x̄) + g′(x̄)

(∫ ∞
−∞

Xfx(X) dX − x̄
∫ ∞
−∞

fx(X) dX

)
= g
(
E(x)

)
+ g′(x̄)(x̄− x̄) = g

(
E(x)

)
.
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y = g(b) + g′(b)(a− b)

Figure B.1 A typical concave function

This then proves Jensen’s inequality for the differentiable case.

If any function of a random variable x is evaluated at x, the result is
another random variable. This is as true for the density function fx as for
any other function. In econometrics, one is seldom interested in a single
density function but rather in a parametric family of density functions. In the
simple case in which there is only one parameter, such a family can be written
as f(x, θ), where θ is the parameter. The logarithm of this function is the
loglikelihood function associated with the parametric family. An important
property of such loglikelihood functions is that, under appropriate regularity
conditions, the derivative of log f(x, θ) is a random variable such that, if its
mean is calculated with the density corresponding to the same value of θ as
that at which the derivative is evaluated, that mean is zero if it exists. It is
worth sketching a proof of this result, which may be stated as

Eθ

(
∂ log f

∂θ

)
= 0, (B.10)

where the θ subscript on the expectation operator indicates that the expec-
tation is calculated using f(·, θ).

The proof of (B.10) makes use of a standard result on the differentiation of
integrals. This result states that the derivative with respect to a parameter θ
of an integral of the form ∫ b(θ)

a(θ)

g(y, θ) dy

is expressible in terms of the derivatives with respect to θ of the functions a,
b, and g, provided these exist, and equals

−a′(θ)g
(
a(θ), θ

)
+ b′(θ)g

(
b(θ), θ

)
+

∫ b(θ)

a(θ)

∂g(y, θ)

∂θ
dy,
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again provided the integral in this last expression exists. See any text on
real analysis, such as Burrill and Knudsen (1969) or Mukherjea and Pothoven
(1984), for this standard result.

To prove (B.10), we utilize the fact that the density function f is nor-
malized to integrate to unity for all values of the parameter θ. Suppose that
the support of the density function is the interval [a(θ), b(θ)] for each θ. This
means that the density is zero outside this interval or that there is zero prob-
ability that a r.v. distributed with density f(·, θ) will be realized outside this
interval. Then the normalization condition is∫ b(θ)

a(θ)

f(y, θ) dy = 1.

Since this condition holds for all admissible values of θ, it may be differentiated
with respect to θ, to give

−a′(θ)f
(
a(θ)

)
+ b′(θ)f

(
b(θ)

)
+

∫ b(θ)

a(θ)

∂f(y, θ)

∂θ
dy = 0. (B.11)

The last term here, the integral, can also be expressed as∫ b(θ)

a(θ)

f(y, θ)
∂ log f(y, θ)

∂θ
dy = Eθ

(
∂ log f

∂θ

)
.

We can see that, apart from the regularity conditions of differentiability
and the existence of the expectation of ∂ log f/∂θ, the result (B.10) requires
that the first two terms in (B.11) vanish for one reason or another. One
obvious way to achieve this is for the limits of the support of the density to
be independent of the parameter θ. For instance, if the support is the whole
real line, this will automatically be satisfied. Another way is for the density
to vanish on the boundary of its support, and this does indeed occur often
enough in practice. Difficulties can arise, however, if the support depends
on θ and the density is bounded away from zero on its entire support.

The reasoning used to establish (B.10) can be used equally well to es-
tablish the information matrix equality of maximum likelihood theory; see
Chapter 8.

B.4 Some Standard Probability Distributions

The most important probability distribution is without question the standard
normal distribution. This distribution crops up very frequently in econometric
theory, and the definitions of a great many other commonly encountered dis-
tributions can be made directly in terms of the standard normal distribution.
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Figure B.2 The standard normal density

The normal distribution has a density of which the graph is the famous or
infamous bell curve of elementary statistics and, sometimes, students’ grade
distributions; see Figure B.2.

The density of the standard normal distribution is defined on the full real
line, as follows:

φ(x) = (2π)−1/2 exp
(
− 1

2x
2
)
. (B.12)

In contrast to this p.d.f., which can be expressed entirely in terms of standard
functions, the standard normal c.d.f. must be defined explicitly as the integral

Φ(x) =

∫ x

−∞
φ(y) dy.

Note that φ and Φ are the usual notations for the standard normal p.d.f.
and c.d.f. Although Φ cannot be expressed in terms of standard functions, it
can easily be evaluated numerically.1 It is simple to check that φ satisfies all
the requirements for a probability density: It is positive everywhere, and it
integrates to unity. Therefore, since Φ is defined in terms of a proper density,
it must satisfy the requirements for a c.d.f.

Because the density (B.12) is symmetric about the origin, the mean of
the standard normal density is zero, as are all of the odd-ordered moments of
the distribution. The even moments are not hard to calculate. The variance
can be calculated by means of an integration by parts. Since the derivative of

1 Note that, in both the above definitions, we have for simplicity’s sake aban-
doned the use of uppercase variables. There should be no risk of confusion
between ordinary and random variables in what follows.
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φ(x) is −xφ(x), the indefinite integral of xφ(x) is −φ(x). Therefore,∫ ∞
−∞

x2φ(x) dx =

∫ ∞
−∞

x
(
xφ(x)

)
dx

=
[
− xφ(x)

]x=∞
x=−∞+

∫ ∞
−∞

φ(x) dx = 1, (B.13)

and we see that the standard normal variance is unity. This fact accounts
for the use of the term “standard” in this context. The higher even-ordered
moments of the standard normal density are almost as easy to calculate. The
answer, which is obtained by an inductive argument based on an integration
by parts like that used in (B.13), is that

m2k = (2k − 1)(2k − 3) · · · (3)(1).

Thus the 4th moment is (3)(1) = 3, the 6th is (5)(3)(1) = 15, and so on.

Any normally distributed r.v. with nonzero mean and nonunit variance
can be defined by translation and rescaling of a standard normal variable.
The family of distributions so defined therefore must have two parameters,
which can conveniently be taken as µ, the mean, and σ2, the variance. If y
is distributed normally with mean µ and variance σ2, it is said to have the
univariate normal distribution. One writes y ∼ N(µ, σ2). The density of y is

1−σφ
(y − µ

σ

)
= (2π)−1/2 1−σ exp

(
− (y − µ)2

2σ2

)
. (B.14)

This can be derived from (B.12) by using a result on transformations of ran-
dom variables that we will prove shortly. If y ∼ N(µ, σ2), then the r.v.
x ≡ (y − µ)/σ can be seen to have mean zero and variance unity. In fact,
x ∼ N(0, 1), which is the symbolic way of writing the standard normal distri-
bution.

An important extension of the univariate normal distribution is the mul-
tivariate normal distribution. The joint density of n independent N(0, 1)
variables is simply the product of n univariate N(0, 1) densities. Thus, if x is
an n--vector with typical component xi ∼ N(0, 1), the joint density is

fx(x) =

n∏
i=1

(2π)−1/2 exp
(
− 1

2x
2
i

)
= (2π)−n/2 exp

(
− 1

2 x
>x
)
. (B.15)

This density is written symbolically as the N(0, I) density. The first argument
is an n--vector of zeros, each element of which is, in this case, the mean of the
corresponding element of x. The second argument is an n×n identity matrix,
which is, in this case, the covariance matrix of x. This is the simplest example
of a multivariate normal density.
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A random vector that follows any multivariate normal distribution can be
derived from x ∼ N(0, I). Suppose that we consider a vector y of n random
variables constructed as linear combinations of the components of x. This
means that y ≡ A>x for some n × n nonrandom nonsingular matrix A. It
is clear that E(y) = 0 and that V (y) = A>A; see (B.06). The distribution
of the n--vector y is, by definition, the N(0,A>A) distribution. Thus we see
that, as with the N(0, I) distribution, the matrix argument is the covariance
matrix of the components of y. Since any covariance matrix V can be written
as A>A for suitable A, we can characterize the N(0,V ) density for arbitrary
positive definite V by finding the joint density of y.

The most general form of the multivariate normal distribution may be
obtained from a random n--vector y ∼ N(0,V ) by adding an n--vector µ.
Since E(y+µ) = µ, the expectation of the new random vector so created is µ.
Thus the general multivariate normal distribution, which has expectation µ
and covariance matrix V , is written symbolically as N(µ,V ).

Before we can derive the joint density of the N(µ,V ) distribution, we
must solve a more general problem. Suppose that we know the distribution
of a random variable x, where x is a scalar for the moment. Then what is
the distribution of another r.v. y that is a deterministic function of x? For
simplicity, let us suppose that y = g(x) for some monotonically increasing
function g. In terms of the c.d.f.’s, the calculation is straightforward:

Pr(y < Y ) = Pr
(
g(x) < Y

)
= Pr

(
x < g−1(Y )

)
= Fx

(
g−1(Y )

)
.

Note that g−1 exists by the assumption of the monotonicity of g. Thus the
c.d.f. of y is

Fy(Y ) = Fx
(
g−1(Y )

)
. (B.16)

We can then find the density of y by differentiating (B.16):

fy(Y ) = fx
(
g−1(Y )

) dg−1(Y )

dy
=
fx
(
g−1(Y )

)
g′
(
g−1(Y )

) . (B.17)

Thus the density of y is simply equal to the density of x divided by the first
derivative of g(·), where both are evaluated at g−1(Y ). Readers may find it
instructive to derive the general univariate normal density (B.14) from the
standard normal density (B.12) by applying this result.

There is a very simple mnemonic for both forms of the result (B.17). It
says simply that

fy(Y ) dy = fx(X) dx.

The mnemonic is translated into meaningful mathematics by dividing through
either by dy or by dx and then setting X = g−1(Y ) or else Y = g(X). The
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first possibility gives the middle expression of (B.17), while the second gives

fy
(
g(X)

)
g′(X) = fx(X),

which is equivalent to the right-most expression of (B.17).

If g were monotonically decreasing rather than increasing, (B.17) would
still hold if the derivative g′, which would be negative, were replaced by its ab-
solute value |g′|. (It is a good exercise to check this.) If g were not monotonic,
then its domain of definition would have to be split up into regions in which
it was monotonic, and (B.17) would apply in each of these regions, locally
at least. The catch is that one value Y may now correspond to more than
one X, and in that case the density of y at Y is the sum of the contributions
calculated using (B.17) at each of these.

In order to derive the density of the multivariate normal distribution, we
need to find a multivariate version of (B.17). Suppose that an n--vector-valued
r.v. y is given in terms of another n--vector-valued r.v. x by the deterministic
mapping y = g(x), which is assumed to be one to one. A rather trickier
argument than that used in the scalar case shows that

fy(Y ) = fx
(
g−1(Y )

)∣∣detJ(Y )
∣∣, (B.18)

where J(Y ), the Jacobian of the transformation from y to x, is the n × n
matrix of the derivatives of g−1(Y ) with respect to the elements of Y . The
notation |det(·)| means the absolute value of the determinant. The absolute
value of the determinant appears in (B.18) for essentially the same reason that
the absolute value of g′ enters in the univariate case when g′ can be negative.

It is often convenient when calculating the determinant in (B.18) to use
the fact that the Jacobian of the transformation from y to x is the inverse
of the Jacobian of the transformation from x to y, and the result that the
determinant of the inverse of a matrix is the reciprocal of the determinant of
the matrix itself. Thus, if J∗ denotes the Jacobian of g(X), an alternative
way of writing (B.18) is

fy(Y ) = fx
(
g−1(Y )

)∣∣detJ∗(Y )
∣∣−1.

Intrepid readers are encouraged to work through the derivation of (B.18). At
least for the 2 × 2 case, this is not difficult in principle. Readers versed in
the theory of integration will understand (B.18) intuitively on noting that the
determinant is the ratio of the infinitesimal volumes in the spaces of x and y,
respectively; see Appendix A.

We can now return to the problem of finding the multivariate normal
density. Suppose that x ∼ N(0, I) and y = A>x + µ. This implies that
y ∼ N(µ,V ), where V ≡ A>A. The Jacobian of the transformation from y



B.4 Some Standard Probability Distributions 807

to x in this case is (A>)−1. Since the density of x is (B.15), the result (B.18)
implies that the density of y must be

(2π)−n/2 |detA|−1 exp
(
− 1−

2
(y − µ)>A−1(A>)−1(y − µ)

)
= (2π)−n/2 |V |−1/2 exp

(
− 1−

2
(y − µ)>V −1(y − µ)

)
, (B.19)

where |V | is the determinant of V , which is always positive. The second line
uses the fact that the covariance matrix V is equal to A>A. (B.19) is the
standard way of writing the multivariate normal density for the general case
of y ∼ N(µ,V ).

Many well-known distributions can be defined in terms of the standard
normal distribution. The strangest of these is possibly the Cauchy distribu-
tion. By definition, this is the distribution of the ratio of two independent
standard normal random variables. Let x and y be two such r.v.’s. The joint
density of x and y is, from (B.15),

(2π)−1 exp
(
− 1−

2

(
x2 + y2

))
.

In order to derive the Cauchy density, we must change variables to the polar
coordinates r and θ that correspond to x and y. The relation between these
and the cartesian coordinates is

x = r cos θ ; y = r sin θ ;

r = (x2 + y2)1/2; θ = tan−1(y/x).

The determinant of the Jacobian of the transformation from (r, θ) to (x, y) is
r sin2 θ + r cos2 θ = r. Therefore, the joint density of r and θ is

(2π)−1re−r
2/2. (B.20)

This does not depend on θ at all, which implies that the density of θ must be
uniform on some interval. Clearly, since θ is an angle in radians, that interval
must be [0, 2π]. This result can be shown more formally by integrating (B.20)
with respect to r over the interval from 0 to ∞. The result, which is the
density of θ, is just (2π)−1. This is indeed the density of a random variable
that is uniformly distributed on the interval [0, 2π].

The Cauchy random variable z ≡ y/x is related to θ by the relation
z = tan θ. The (scalar) Jacobian of the transformation from z to θ is therefore
the reciprocal of the derivative of tan θ with respect to θ. This derivative
is sec2 θ. Before we write down the density of z, it is important to note
that, as θ varies from 0 to 2π, each value of z is generated exactly twice,
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since tan(π + θ) = tan θ. Thus we conclude that the density of the Cauchy
distribution is

2(2π)−1
1

sec2 θ
=

1

π(1 + tan2 θ)
=

1

π(1 + z2)
.

It is clear that if we try to calculate the expectation of a Cauchy r.v., we will
be confronted with the integral∫ ∞

−∞

z dz

π(1 + z2)
,

which diverges at both limits of integration. Thus the Cauchy distribution
has no moments.

Of much greater importance to econometrics than the Cauchy distribu-
tion is the chi-squared distribution. This distribution depends on two para-
meters, one a positive integer, called the number of degrees of freedom, and
one a positive real number, called the noncentrality parameter, or NCP. The
symbolic representation of a chi-squared random variable with n degrees of
freedom and NCP Λ is χ2(n,Λ). When the NCP is zero, as it often is, the r.v.
is said to follow the central chi-squared distribution. This is often represented
symbolically as χ2(n) rather than χ2(n, 0).

The central chi-squared distribution is defined by means of an n--vector x
distributed as N(0, I). Then the random variable y defined as x>x has the
χ2(n) distribution. It is clear that y is the sum of the squares of n independent
standard normal r.v.’s. It is not difficult to compute the density of the χ2(n)
distribution by use of this fact, provided that one knows about polar coordi-
nates in n dimensions. Fortunately, we do not use this density explicitly, and
so we will not take the trouble to derive it. It is worth noting that E(y) = n
and V (y) = 2n.

When the NCP is different from zero, the r.v. is said to follow the non-
central chi-squared distribution. A random variable with the χ2(n,Λ) distri-
bution may be constructed as the sum of the squares of n − 1 independent
standard normal r.v.’s, plus the square of another r.v., independent of the
others, distributed as N(Λ1/2, 1). It may also be constructed as the sum of
the squares of n independent r.v.’s xi, where xi ∼ N(µi, 1) and Λ =

∑n
i=1 µ

2
i .

The first definition is clearly just a special case of the second one. The proof
that the density depends only on the sum

∑n
i=1 µ

2
i and not on the individual

µi’s is beyond the scope of this appendix.

The noncentral chi-squared distribution has the following property. For
any positive number c,

Pr
(
χ2(n,Λ) > c

)
is an increasing function of n and of Λ. This result is easy to prove. Not at
all so easy to prove (the proof uses techniques well beyond the level of this
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book) is a result of Das Gupta and Perlman (1974). This result is at the
heart of all arguments dealing with the power of tests based on statistics in
asymptotically chi-squared form. It is as follows. For any α ∈ [0, 1], let cnα
satisfy the condition Pr(χ2(n) > cnα) = α. Thus cnα is the critical value for
a test of size α using the central chi-squared distribution with n degrees of
freedom. Then, for each NCP Λ,

Pr
(
χ2(n,Λ) > cnα

)
is a decreasing function of n. Thus, for a given NCP, test power will decline
as the number of degrees of freedom increases.

Many test statistics are calculated as a quadratic form involving a vector
of (asymptotically) normally distributed r.v.’s and an estimate of the inverse of
their covariance matrix. Such test statistics have the central chi-squared dis-
tribution asymptotically. This result depends on the fact that if the n--vector
x is distributed as N(0,V ), the quadratic form z ≡ x>V −1x has the χ2(n, 0)
distribution. In fact, for the sake of economy, we prove the more general result
that if x ∼ N(µ,V ), z will be distributed as χ2(n,µ>V −1µ).

Let η be a symmetric matrix such that V −1 = ηη, and consider the
random vector y ≡ ηx. We have constructed y so that y>y = x>V −1x = z.
The vector y is clearly multivariate normal, with mean ηµ and covariance
matrix ηV η = I. By the second definition of the noncentral chi-squared
distribution, z must be distributed as χ2(n,µ>V −1µ), as required. The result
that z ∼ χ2(n) for the special case of µ = 0 then follows immediately from
this more general result.

A closely related result is the following. Suppose that x ∼ N(0, In).
Then, if P is an n × n orthogonal projection matrix of rank r < n, the
idempotent quadratic form x>Px is distributed as χ2(r). To see this, it is
convenient to express the matrix P as Z(Z>Z)−1Z>, for some suitable n× r
matrix Z such that S(Z) = S(P ). Then

x>Px = x>Z
(
Z>Z

)−1
Z>x.

Evidently, the r--vector Z>x has the N(0,Z>Z) distribution. Therefore,
x>Px is a quadratic form in a multivariate normal r--vector and the inverse
of its covariance matrix. The result then follows immediately by the results
of the preceding paragraph.

The F distribution can be defined in terms of two independent random
variables, each of which follows a χ2 distribution. Since neither, one, or both
of these r.v.’s may be noncentral, the F distribution may be central, singly
noncentral, or doubly noncentral. The central F distribution with n and d
(for “numerator” and “denominator”) degrees of freedom is the distribution of
the ratio of two independent central χ2 r.v.’s with n and d degrees of freedom,
respectively, each divided by its degrees-of-freedom number. Symbolically,

F (n, d) =
χ2(n)/n

χ2(d)/d
.
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The singly noncentral F distribution with n and d degrees of freedom and
NCP Λ is the distribution of the ratio of a numerator r.v. distributed as
n−1χ2(n,Λ) and an independent denominator r.v. distributed as d−1χ2(d, 0).
The doubly noncentral F distribution with n and d degrees of freedom and
NCP’s Λn and Λd is the distribution of a ratio of a numerator distributed as
n−1χ2(n,Λn) and an independent denominator distributed as d−1χ2(d,Λd).
The densities of all of these F distributions are known and tabulated — see,
for instance, Abramowitz and Stegun (1965) — but are not usually of interest
to econometricians. In practice, all we usually need is a routine for computing
the c.d.f. and the inverse c.d.f. of the central F distribution, and such routines
are available in most good statistics packages.

Finally, we come to the Student’s t distribution, which is often simply
called the t distribution for short. The Student’s t distribution with n de-
grees of freedom is denoted t(n) and defined as the distribution of a standard
normal r.v. divided by an independent r.v. distributed as the square root of
n−1χ2(n, 0). Evidently, the square of a random variable that is distributed as
t(n) is distributed as central F (1, n). Given the definition of the central chi-
squared distribution, it is clear that the law of large numbers can be applied to
n−1χ2(n, 0) as n → ∞. Since the expectation of each squared standard nor-
mal variable in the definition is just unity, the limit of n−1χ2(n, 0) must be 1.
Consequently, the t(n) distribution tends to the standard normal distribution
as n→∞.

For most values of n, the t distribution looks very much like the standard
normal distribution, but it has somewhat thicker tails. The difference between
the t and standard normal distributions is very small for n ≥ 100; for example,
the 5% critical value on a two-tailed test is 1.960 for N(0, 1) and 1.984 for
t(100). However, this difference can be large for very small values of n. The
t(1) distribution is evidently the same as the Cauchy distribution, and it
therefore has no moments at all. The t(2) distribution has a first moment of
zero but has no second or higher moments. In general, the t(n) distribution
has moments only up to order n− 1.

Occasionally, the noncentral t distribution crops up. It is defined as

t(n, µ) =
N(µ, 1)(

n−1χ2(n, 0)
)1/2 .

The NCP is µ, and the square of such a random variable is distributed as
singly noncentral F with 1 and n degrees of freedom and NCP µ2.

For more details about the properties of the distributions discussed in this
section, readers may wish to consult Kendall and Stuart (1977) or Johnson
and Kotz (1970a, 1970b).
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Terms and Concepts

affine function
Cauchy distribution
Chebyshev inequality
chi-squared distribution, central and

noncentral
compound event
covariance
covariance matrix
cumulative distribution function, or

c.d.f.
degrees of freedom
event space, or outcome space
expectation
F distribution, central, singly

noncentral, and doubly noncentral
first, second, third, and higher

moments
idempotent quadratic form
integrator function
Jensen’s inequality
joint c.d.f.
joint density
loglikelihood function
marginal density
marginal distribution
mean, population and sample

measure of central tendency
moments of random variables, central

and uncentered
multivariate normal distribution
noncentrality parameter, or NCP
normalization (of a density)
probability density function, or p.d.f.
probability distribution
probability measure
probability space
random variable
scalar random variable
sigma-algebra
standard deviation
standard error
standard normal distribution
statistical independence
Stieltjes integral
Student’s t distribution, central and

noncentral
support of a density
tails of a distribution, right and left
univariate normal distribution
variance
vector-valued random variable
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Davidson, R., and J. G. MacKinnon (1985c). “Testing linear and loglinear
regressions against Box-Cox alternatives,” Canadian Journal of Economics, 18,
499–517.

Davidson, R., and J. G. MacKinnon (1987). “Implicit alternatives and the local
power of test statistics,” Econometrica, 55, 1305–29.

Davidson, R., and J. G. MacKinnon (1988). “Double-length artificial regressions,”
Oxford Bulletin of Economics and Statistics, 50, 203–17.

Davidson, R., and J. G. MacKinnon (1989). “Testing for consistency using
artificial regressions,” Econometric Theory, 5, 363–84.

Davidson, R., and J. G. MacKinnon (1990). “Specification tests based on
artificial regressions,” Journal of the American Statistical Association, 85,
220–27.

Davidson, R., and J. G. MacKinnon (1992a). “A new form of the information
matrix test,” Econometrica, 60, 145–57.

Davidson, R., and J. G. MacKinnon (1992b). “Regression-based methods for
using control variates in Monte Carlo experiments,” Journal of Econometrics,
54, 203–22.

Deaton, A. S. (1974). “The analysis of consumer demand in the United Kingdom,
1900-1970,” Econometrica, 42, 341–67.

Deaton, A. S. (1978). “Specification and testing in applied demand analysis,”
Economic Journal, 88, 524–36.

Deaton, A. S., and J. Muellbauer (1980). Economics and Consumer Behaviour,
Cambridge, Cambridge University Press.

DeJong, D. N., and C. H. Whiteman (1991). “The temporal stability of dividends
and stock prices: Evidence from the likelihood function,” American Economic
Review, 81, 600–617.

Dent, W. (1977). “Computation of the exact likelihood function of an ARIMA
process,” Journal of Statistical Computation and Simulation, 5, 193–206.

Dhrymes, P. J. (1971). Distributed Lags: Problems of Estimation and
Formulation, San Francisco, Holden-Day.

Dhrymes, P. (1986). “Limited dependent variables,” Ch. 27 in Handbook of
Econometrics, Vol. III, eds. Z. Griliches and M. D. Intriligator, Amsterdam,
North-Holland.

Dhrymes, P. J., R. Berner, and D. Cummins (1974). “A comparison of some
limited information estimators for dynamic simultaneous equations models with
autocorrelated errors,” Econometrica, 42, 311–32.

Dickey, D. A., W. R. Bell, and R. B. Miller (1986). “Unit roots in time series
models: Tests and implications,” The American Statistician, 40, 12–26.

Dickey, D. A., and W. A. Fuller (1979). “Distribution of the estimators for
autoregressive time series with a unit root,” Journal of the American
Statistical Association, 74, 427–31.



822 References

Domencich, T. A., and D. McFadden (1975). Urban Travel Demand, Amsterdam,
North-Holland.

Domowitz, I., and C. Hakkio (1985). “Conditional variance and the risk premium
in foreign exchange markets,” Journal of International Economics, 19, 47–66.
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Image (of a point under a mapping), 777
Impact matrix, 726
Implicit alternative hypothesis, 419
Implicit null hypothesis, 419
Included variable (in equation of a

simultaneous equations model), 632
Increment (in congruential random

number generator), 734–35
Independence

of error terms across time, 327
in probability, 59
of random variables, 795–96
statistical, 795–96
stochastic, 59
uncorrelated random variables, 59

Independence of irrelevant alternatives
(IIA property), 533

Independent and identically distributed
(i.i.d.), 42, 52

Independent random variables, 795–96
Independent variables, 41
Index function (for binary response

models), 513–14
Indicator function, 120, 121
Influential observations, 32–39
Information in observation t, 252–53
Information matrix

alternative estimators, 458–62
asymptotic or limiting, 253
average, 253
empirical Hessian estimator, 265
empirical Hessian estimator for

variance estimation example, 460
estimation of, 265–67
for models to which the DLR applies,

493–94
for nonlinear regression model, 281–84
observed vs. expected, 267
OPG estimator for variance estimation

example, 460–61
outer-product-of-the-gradient (OPG)

estimator, 265–66
and reparametrization, 465

Information matrix equality, 263–67
Information matrix (IM) test, 578–81

computation via OPG regression,
578–80

interpretation, 581
methods of computation, 580–81
for nonlinear regression model, 579–80
skewness and excess kurtosis, 580

Information set, 52–53
Inner product

natural, 4–5, 775
of random vectors, 450–51
of vectors, 771–72

Innovation (for stochastic process), 147,
327

Instrumental variables (instruments), 215
Instrumental variables (IV) estimation

and DWH tests, 237–42
finite-sample properties, 221–24
as GMM estimation, 585
and inefficient GMM estimation,

588–89
introduction, 209–10
linear regression model, 215–20
nonlinear regression model, 224–26
nonlinear simultaneous equations

models, 662–63
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regression model with AR(1) errors,
369–70

and serial correlation, 369–71
testing for serial correlation, 370–71
and tests for structural change, 379–80
and 2SLS, 220–24

Instruments
choice of, 218–20, 225–26
optimal, 598–600

Integrable function, 137
Integrated of order one, or I(1), 673, 701,

715–16
Integrated of order zero, or I(0), 673
Integrated variables, 673, 701, 715–16

regression models for, 723–25
Integrator function, 797
Intercept (of a simple linear regression

function), 55
Invariance

of classical test statistics, 463
of ML estimator, 246, 254, 463

Inverse
of a matrix, 774, 782, 786
of a partitioned matrix, 780–81

Inverse mapping, 782
Inverse Mills ratio, 544
Inverse power function, 429–33

example, 432–33
Invertibility condition for MA(1) process,

351–52
IV estimator

generalized, 216–18, 598–99
heteroskedasticity-consistent

covariance matrix, 596
simple, 218, 609

J test, 382–83
JA test, 385–86
Jacobian factors

distributions of functions of random
variables, 489, 805–6

in likelihood functions, 279–80
Jacobian terms

and DLR, 494
effects on ML estimation, 489–92
and FIML estimation, 638–39, 641
in loglikelihood functions, 279–80,

284–85, 347, 489–92
and singularities of loglikelihood

functions, 490
transformations of the dependent

variable, 490–92
Jensen’s inequality, 800–801
Joint density, 796

K-class estimators, 649–51

covariance matrix estimation, 650
finite-sample properties, 650–51

Kernel (of a matrix), 777
Kolmogorov’s existence theorem, 114–15
Kruskal’s Theorem, 294–95

for SUR systems, 313
Kurtosis, 62–64

excess, 62, 64
leptokurtosis, 62, 63, 567–68
mesokurtosis, 62, 63
platykurtosis, 62, 63, 567–68

Lag operator, 342
Lag truncation parameter (for HAC

estimator), 611, 613
Lagged dependent variable, 146

and covariance matrix for models with
AR errors, 339–40

and seasonal adjustment, 694–95
and serial correlation, 330–31

Lagrange multiplier principle, 88, 90–92,
274–75

Lagrange multiplier statistic
calculation via DLR, 501–2
calculation via GNR, 187–89
calculation via OPG regression, 474–75
and F statistic, 455–56
for linear regression models, 455–56
LM form, 91, 275–77
for models estimated by GMM, 617–18
for models estimated by ML, 275–78
for nonlinear regression models, 172–73
and reparametrization, 465–67
score form, 91, 275–76, 278, 437
Taylor expansion, 446
for variance estimation example,

460–61
Lagrange multiplier (LM) test, 91

for heteroskedasticity, 398–99, 562–63
for models estimated by ML, 275–78
for multivariate regression models,

314–15
for nonlinear regression models,

172–73, 187–89
Latent root (eigenvalue), 789
Latent variable, 514
Law (of a random variable), 107
Law of iterated expectations, 132
Law of large numbers, 106–8, 130–31, 134

condition WULLN, 137
simple weak, 121–22
strong, 106
weak, 106

Least squares residuals, 8
Least variance ratio estimates, 647
Length of a vector, 7, 775
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Leptokurtosis, 62, 63, 567–68
Leverage, 36–39, 70
Leverage point, 36
Likelihood equations, 249
Likelihood function, 244–45, 247–49

factorization of, 248–49
Likelihood ratio principle, 88, 92, 274–75
Likelihood ratio statistic, 437

and F statistic, 453–54
for linear regression models, 453–54
for models estimated by GMM, 618–19
for models estimated by ML, 275
for nonlinear regression models, 173–74
Taylor expansion, 446–47
for variance estimation example,

459–60
Likelihood ratio (LR) test, 92, 437

for cointegration in a VAR, 729–30
for models estimated by ML, 275
for nonlinear regression models, 173–74

Limit
almost sure, 106
in probability, 103

Limited dependent variable models,
511–12, 534–42

Limited-information maximum likelihood
(LIML) estimator, 644–51

Limits, 100–108
LIML estimation, 644–51

finite-sample properties, 650–51
least variance ratio method, 645–49
relation to K-class, 649–51
testing overidentifying restrictions,

647–48
using FIML package, 644
using SUR package, 644–45

Lindeberg condition, 135
Linear expenditure system, 306–8
Linear filters, 691–94
Linear vs. loglinear regression models,

491–92, 502–7
Andrews test, 504–5
Box-Cox alternative, 502–5
PE test, 507
tests based on the DLR, 503–4
tests based on the OPG regression, 503

Linear probability model, 512–13
Linear simultaneous equations model,

622–24, 631–61
Linearly dependent vectors, 777–78
Linearly independent vectors, 5, 6,

777–78
Ljung-Box test, 364
Locally equivalent alternatives, 359–60,

397, 419
geometry of, 470

and LM statistics, 469–70
Locally equivalent models, 469–70
Location model, 583–84
Logistic function, 515
Logit model, 514–16

conditional, 532–33
multinomial, 531–32
ordered, 529
relation to probit model, 515–16

Loglikelihood function, 245, 249, 801–2
for binary response models, 517
for censored dependent variable

models, 538–40
concentrated, 267–69, 280–81
mean of first derivative, 801–2
for models to which the DLR applies,

493–94
for multivariate nonlinear regression

model, 315
for nonlinear regression model, 279–80
partial, 628
for selectivity model, 543–44
for simple Box-Cox model, 485–86
for tobit model, 538–40
for truncated dependent variable

models, 536

MA(1) process, 351–56
regression model with MA(1) errors,

353–56
Maintained hypothesis, 78
Mantissa (for floating-point numbers), 25
Marginal density, 796
Marginal distribution, 795
Marginal significance level, 80
Martingale, 133
Martingale difference sequence, 134
Matrix, 770–73, 777-90

conformable, 771
diagonal, 771
full rank, column and row, 778
identity, 771, 773
invertible, 774, 782
as a mapping, 777
negative definite, 787
negative semidefinite, 787
nonnegative definite, 787
nonsingular, 782
orthogonal, 790
partitioned, 779–81
positive definite, 787–89
positive semidefinite, 787–88
singular, 782, 786
square, 771
symmetric, 771
triangular, lower- and upper-, 771
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Matrix of contributions to the gradient
(CG matrix), 252, 260–61

Matrix inverse, 774, 782, 786
Matrix multiplication, 772

associative property, 772
distributive property, 772
of partitioned matrices, 779–80
postmultiplication, 772–73
premultiplication, 772–73
transpose of a product, 773

Maximum likelihood estimate (MLE),
249–50

Type 1 vs. Type 2, 249–50
Maximum likelihood (ML) estimation

of ARCH models, 559
of binary response models, 517–21
FIML, 637–43
and GLS, 289–91, 301–5
introduction, 244–47
LIML, 644–51
of multivariate models, 315–19
of nonlinear regression models, 279–84
of regression model with AR(1) errors,

345–48
of simple Box-Cox model, 485–88
subject to restrictions, 276–77

Maximum likelihood estimator
asymptotic distribution, 260–63
definition, 251–52
equivalence to NLS estimator, 281
finite-sample properties, 247
and other root-n consistent estimators,

273–74
properties of, 245–47

Mean
population, 797
sample, 797

Mean squared error, 96
Mean squared error matrix, 96
Measure of central tendency, 799
Mesokurtosis, 62, 63
M-estimators, 587, 591–96

asymptotic normality, 592–96
consistency, 591–92
identification, 591
of Type 2, 592

Minimization algorithms, 44–45, 201–7
Minimum of a sum-of-squares function,

global and local, 44, 45
Mixed estimation, 676–79

and VARs, 686
Mixing sequence, 132–33
Model, as a set of DGPs, 53–54
Model parameters, 140
Model selection, 384

Modified percentile method (for
estimating confidence intervals), 766

Modulus (in congruential random number
generator), 734–35

Moment conditions, 571, 584
for OLS estimator, 584–85
for simple IV estimator, 585

Moment specification tests, 571–78
Moments

central, 62, 798
of a distribution, 123
first and higher, 797–98
of a random variable, 797–98
sample, 123
uncentered, 798

Monte Carlo experiments, 732–33
choosing number of replications,

738–40
experimental design, 740–41
generating regressors, 741–43
presentation of results, 743
problem of specificity, 756

Monte Carlo methods, 732–33
antithetic variates, 744–47
control variates, 747–55
replications, 732–33, 738–40
response surfaces, 733, 755–63
variance reduction techniques, 732–33,

744–55
Moving average process

first-order, 351–56
higher-order, 351

Multicollinearity, 51, 181–86
Multinomial logit model, 531–32
Multiple logit model, 531–32
Multiplicative congruential generator (of

random numbers), 735
Multiplier (in congruential random

number generator), 734–35
Multivariate nonlinear regression model,

305–8
feasible GLS estimation, 310–13
GLS estimation, 309–10
notation, 308
serial correlation, 371–72

Multivariate normal distribution, 804–7
Multivariate normality, 128, 136

Natural inner product, 4–5, 775
Nested models, 381
Newton’s method, 201–3
Noncentral chi-squared distribution,

412–13, 449, 808–9
Noncentral F distribution, 413–14,

809–10
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Noncentral t distribution, 413–14, 810
Noncentrality parameter (NCP),

412–13, 415–19, 808–9
computation via artificial regression,

415–16
example of calculating, 424–27
numerical calculation, 428

Nonlinear FIML estimation, 666–67
computation, 667
and NL3SLS, 667

Nonlinear IV estimator, 224–25
Nonlinear least squares (NLS), 3, 41

algorithms for, 201–7
asymptotic distribution of, 157
asymptotic efficiency of, 157–62,

281
geometry of, 43–47
and heteroskedasticity, 551
normal equations, 43–44
numerical properties, 44
residuals, 162–67

Nonlinear simultaneous equations
models, 661–67

FIML estimation, 666–67
GMM estimation, 663–65
IV estimation, 662–63
one-step estimation, 665
types of nonlinearity, 661–62

Nonlinear three-stage least squares
(NL3SLS), 664–65

and nonlinear FIML, 667
Nonlinear two-stage least squares

(NL2SLS), 225, 663
Nonnested hypothesis tests, 381–88

based on artificial nesting, 382–83
for binary response models, 528
encompassing tests, 386–87
finite-sample properties, 385–86
and IV estimation, 388
J test, 382–83
JA and PA tests, 385–86
linear vs. loglinear regression models,

505–7
linear regression case, 384–86
and model selection, 384
models with serial correlation, 387–88
P test, 382–83
possible outcomes, 383–84
power, 386–87

Nonnested models, 381–82
Nonparametric unit root tests, 712–13
τ∗ statistics, 713
z∗ statistics, 712–13

Nonregression directions, 403
Nonregression models, 482–83

Norm
of a matrix, 102, 778
of a vector, 102, 103, 775

Normal distribution, 60, 126–27
density of, 804
multivariate, 804–7
standard, 802–4
univariate, 804

Normal equations
for NLS estimator, 43–44
for OLS estimator, 9

Normality tests, 568–71
Normally and independently distributed

(n.i.d.), 53
Nuisance parameters, 627
Null hypothesis, 78
Numerical minimization algorithms,

44–45, 201–7
Gauss-Newton method, 203–5
modified Newton methods, 203
Newton’s method, 201–3
stopping rules, 205–7

Numerical optimization algorithms,
44–45, 201–7

and DLRs, 501
Numerical vs. statistical properties, 3,

164–65
Numerically unstable formula, 27

Oblique projection matrix, 292–93
One-step efficient estimation, 196–99, 270

for nonlinear simultaneous equations
models, 665

regression model with AR(1) errors,
335–37

OPG estimator of the information
matrix, 265–66

OPG regression, 471–78
computing C(α) tests, 475
computing CM tests, 574–77
computing LM tests, 474–75
computing Wald-like tests, 476–77
finite-sample properties, 477, 577–78
and first-order conditions, 472
introduction, 472
linear vs. loglinear models, 503
nR2 tests, 474–75
one-step efficient estimation, 473–74
and OPG estimator of information

matrix, 473
Tauchen’s variant, 577
tests for skewness and excess kurtosis,

569–71
for theoretical calculations, 477
variance estimate, 473
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Optimal instruments, moments, and
weights (for GMM estimation),
598–600

Order condition for identification, 633
Order symbols
O, o notation, 108–13
rules for manipulating, 111–12
same-order relation, 110
small-order relation, 109–10
stochastic order relations, 111

Ordered logit model, 529
Ordered probit model, 529–31
Ordered qualitative response models,

529–31
Ordinary least squares (OLS), 3

alternative HCCMEs, 553–55
bias for dynamic models, 681–82
computation of estimates, 25–31
computation of HCCMEs, 554–55
fitted values, 8, 12, 13
formula for estimator, 9
geometry of, 3–16, 39
as a GMM estimator, 584–85
and heteroskedasticity, 548–51
minimizing Euclidean distance, 7
normal equations, 9
numerical properties, 12, 13
residuals, 8, 9, 12, 13

Orthogonal complement (of a subspace),
778

Orthogonal decomposition (of a
Euclidean space), 10

Orthogonal matrix, 790
Orthogonal projection matrix, 9–11
Orthogonal vectors, 6, 775
Orthonormal basis (for a Euclidean

subspace), 30, 777
Orthonormal basis vectors, 777

and eigenvectors, 790
Ostrich algorithm, 485
Outcome space, 793–94
Outer product, 772
Outer-product-of-the-gradient (OPG)

regression, 435, 471–78
Overidentifying restrictions, 234–37

FIML estimation and testing, 642–43
GMM estimation and testing, 614–17
Hansen’s test, 614–17
LIML estimation and testing, 647–48
NL3SLS estimation and testing, 665
tests of, 235–37

P test, 382–83
P value, 80–81
PA test, 385–86
PE test, 507

Panel data, 117, 320–21, 325
Parallel vectors, 775
Parallelepiped, 782
Parallelogram, 782
Parameter of AR(1) process, ρ

asymptotic variance of NLS estimator,
340–41

stationarity condition, 327–28
Parameter space, 141, 248

dimensionality of, 141
Parameters of interest, 627
Parameter-defining mapping, 140–41, 254

for GMM estimation, 585–86
Parametric bootstrap, 766
Parametrization (of a model), 253–55
Parametrized model, 141, 142
Partial adjustment model, 680–81
Partial sum process, 704

standardized, 706
Partitioned matrix, 779–81

blocks of, 779
inverse of, 780–81

Passage to the limit, 100
Percentile method (for estimating

confidence intervals), 765–66
Perfect classifier, 521
Pitman drift or Pitman sequence

(sequence of local alternatives), 409
Platykurtosis, 62, 63, 567–68
Point-optimal tests, 363–64
Polynomial distributed lag (PDL)

models, 674–76
testing restrictions, 675–76

Poorly identified model, 50–51, 181–85
Population, 120
Positive definite matrix, 787–89

difference of inverses, 789
inverse of, 788
triangular decomposition, 788–89

Posterior probability, 81
Power function, 407

asymptotic, 410
inverse, 429–33

Power of a test, 79, 405–7
asymptotic, 417–19
when distribution is noncentral χ2,

414–15
effect of degrees of freedom, 414–15,

419–21
effect of NCP, 414–15, 419–21
geometry of, 415–19
regression vs. skedastic directions,

564–67
tradeoff between degrees of freedom

and NCP, 419–21
useful, 418
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Prais-Winsten transformation, 344
Precision (of a random variable), 144
Precision matrix (of a vector-valued

random variable), 144
Predetermined variable, 211, 622, 624–26
Predeterminedness, 624–26
Preimage (of a point under a mapping),

777
Preliminary test (pretest) estimator,

96–97
Principal diagonal (of a square matrix),

771
Prior information, 81
Probability density function (p.d.f.),

795–96
Probability distribution, 794–95
Probability limit (plim), 103

nondegenerate, 113
nonstochastic, 103–5

Probability measure, 793–94
Probability space, 793
Probit model, 514–16

ordered, 529–31
relation to logit model, 515–16
relation to tobit and truncated

regression models, 540
Projection matrix

oblique, 292–93
orthogonal, 9–11
range of, 10

Pseudo-F statistic, 92
Pseudo-F tests

for IV estimation, 229–31
Pseudo-ML estimator, 247
Pseudo-random number generators,

734–35
congruential, 734–35
multiplicative congruential, 735

Pseudo-random numbers, 734
Pseudo-random variates, 733, 735–38

Box-Muller method, 737
rejection method, 736–38
transformation method, 735–37

Pseudo-t statistic, 89
Pythagoras’ Theorem, 14

QR decomposition, 30, 39
Qualitative response models, 511

for more than two responses, 529–33
ordered responses, 529–31
unordered responses, 529, 531–33

Quasi-ML (QML) estimator, 247, 302

R2, 14–16
adjusted, 87
for binary response models, 522

centered, 14, 15
geometrical interpretation, 14, 15,

775–76
uncentered, 14

Random-effects model, 322–25
Random number generators, 734–35

congruential, 734–35
multiplicative congruential, 735

Random sampling with replacement, 120
Random variable, 102, 793–95

scalar, 794–95
vector-valued, 795

Random walk, with and without drift,
670–71

Range (of a mapping), 141, 777
Range (of a matrix), 777–79
Range (of a projection), 10
Rank (of a matrix), 4, 778
Rank condition for identification, 635–37
Rates of convergence, 108–13
Recursive system, 643
Reduced form

restricted, 213–14, 623
unrestricted, 214, 623, 642–43

Regressand, 4
Regression directions, 403, 417, 564–67

in which a model is wrong, 423–24
Regression function, 41, 46, 55–58

linear in parameters, 56
loglinear, 56, 57
multiple linear, 55, 56
multiplicative, 56
nonlinear, 57, 58
simple linear, 55

Regression manifold, 45–47
Regression model, 42

bootstrapping, 766–68
disturbance, 42
dynamic, 42, 146–47, 680–84
error term, 42, 58–64
linear, 41
loglinear, 56, 57
multivariate, 41, 305–8
nonlinear, 41
univariate, 41

Regression model with AR(1) errors
Cochrane-Orcutt procedure, 334–35
estimation, 331–37
estimation by back-and-forth search,

333
estimation by grid search, 333–34
Hildreth-Lu procedure, 333–34
ML estimation, 345–48
NLS estimation, 332
one-step efficient estimation, 335–37
as a restricted model, 336–37
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treatment of the first observation, 332,
344–50

Regression model with AR(p) errors
estimation, 351
treatment of the initial observations,

350–51
Regression model with MA(1) errors,

353–56
Regression models for integrated

variables, 723–25
Regression Specification Error Test

(RESET), 195–96, 510
Regressor matrix, 4
Rejection method (for generating

pseudo-random variates), 736–38
Rejection region, 78–79
Reparametrization

effect on classical test statistics,
461–71

of equality restrictions, 186–87
invariance of ML estimator, 246, 254
linear, 467
of a linear regression model, 16–19
and LM statistic, 465–67
meaning of invariance, 463
theory of, 253–54
and Wald statistic, 467–69

Replications (in Monte Carlo experi-
ments), 732–33, 738–40

Resampling, 763
Residual autocorrelations, 364
Residual-based cointegration tests,

720–21
Residuals

vs. error terms, 59, 163–64
excess kurtosis, 568–71
NLS, 162–67
OLS, 8, 9, 12, 13
skewness, 480–81, 568–71

Response surface, 733, 755–63
illustrative example, 757–62

Restricted estimates, 436
Restricted least squares, 16
Restricted model, 436
Restricted reduced form (RRF), 213–14,

623
Restrictions

geometry of, 170–72
incorrect, effects of, 95–96
linear, 78, 89
nonlinear, 89, 168, 197–98
overidentifying, 234–37
smooth, 436

Root-n consistent estimator, 271–72
Roots outside the unit circle, 342,

700–701

Row vector, 770–71

Sample
censored, 534
definition of, 115
rule for extending, 115–18
of size t, 436
truncated, 534

Sample autocovariance matrix, 610
Sample moments, 123

as estimators of population moments,
123

Sample selectivity, 542–45
Heckman’s two-step method, 544–45

Sample selectivity bias, 542
Scalar product, 771–72
Schur product (direct product), 378, 774
Score test, 276
Score vector, 91

of loglikelihood function, 250, 437
Seasonal adjustment, 687–96

forecasting, 695–96
frequency domain methods, 690–91
lagged dependent variables, 694–95
by linear filters, 691–94
official methods, 691–93
by regression, 688–90
using dummy variables, 23–24, 688–90
and unit root tests, 714
X-11 procedure, 691

Seasonal ADL models, 698–99
Seasonal AR process, 343, 697–98
Seasonal ARMA process, 697–98
Seasonal dummy variables, 23–24,

688–90, 696–97
Seasonality, 687–99

and smoothness priors, 698
Seed (for random number generator), 735
Seemingly unrelated regressions (SUR),

306
Selectivity regressor, 544
Sequence

basic concepts of, 100–101
centered, 104
convergent, 102
divergent, 102
ergodic, 132–33
formal definition, 101
member of and successor, 101
mixing, 132–33
of random variables, 102
real-valued, 101, 102
rule that defines, 101
standardized, 134
stationary, 132
uniform mixing, 132
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Sequence, continued
vector-valued, 136

Sequence of local alternatives, 409
and drifting DGP, 410

Sequence of local DGPs (drifting DGP),
409

Serial correlation, 60
appearance of due to misspecification,

331
consequences for least squares

estimator, 329–31
and instrumental variables estimation,

369–71
introduction, 327–29
and lagged dependent variables,

330–31
testing for, 357–64
and unit root tests, 710–15

Sigma-algebra, 793
Significance level (of a test), 79
Simple null hypothesis and drifting DGP,

410
Simultaneous equations bias (of least

squares estimator), 214, 215
Simultaneous equations model

estimation methods, 637–38
FIML estimation, 637–43
identification, 623–24, 631–37
K-class estimators, 649–51
LIML estimation, 644–51
linear, 212–15, 622–24, 631–61
misspecification, 641–42
nonlinear, 625, 661–67
normalization, 213, 623
OLS estimation of URF, 642–43
recursive system, 643
restricted reduced form (RRF),

213–14, 623
structural form, 212–13
unrestricted reduced form (URF), 214,

623, 642–43
Singular equation system, 307–8

and serial correlation, 372
Size-power tradeoff curve, 405–7, 414–15
Size of a test, 79, 405–7
Skedastic directions, 434, 564–67

tests in, 557
Skedastic function, 291, 396
Skewness, 62

example of skewed residuals, 480–81
and IM tests, 580
tests for, 567–71

Slope (of a simple linear regression
function), 55

Smoothness priors, 678
and seasonally varying coefficients, 698

and VARs, 686
Span (of time-series data), 714
Span of a matrix, 4, 778
Specificity (problem of), 756
Spurious regressions, 669–673
Standard deviation, 798
Standard error, 798
Standard normal distribution, 802–4

density of, 803
moments of, 803–4

Standardized Wiener process, 706–7
Stationarity condition

for AR(1) process, 327–28
for AR(p) process, 342

Stationarity region
for AR(1) process, 347
for AR(p) process, 351

Stationarity triangle (for AR(2) process),
342

Stationary sequence, 132
Stieltjes integral, 797
Stochastic expansion, 163
Stochastic process, 114–15, 152

explosive, 151, 153
Stochastic restrictions, 676–79

and VARs, 686
Stone-Geary utility function, 306–7
Stopping rules (for minimization

algorithms), 205–7
Strict exogeneity, 147, 624–26
Strictly exogenous variable, 624–26
Strong asymptotic identifiability, 155,

594–95
Strong exogeneity, 631
Strongly exogenous variable, 631
Structural change, 375–81

and unit root tests, 714–15
Student’s t distribution, 810

noncentral, 413–14, 810
relation to Cauchy distribution, 810
relation to F distribution, 84–85
relation to normal distribution, 810

Subspace of Euclidean space, 4
codimension of, 6
dimension of, 6, 777–78
orthogonal complement of, 6, 778
orthogonal decomposition of, 10
orthonormal basis for, 30

Sum of squared residuals (SSR), 8, 13
Sum-of-squares function, 43, 44, 50,

147–48, 298
average, 147
limiting, 148

Super-consistent estimator, 718–19
Super exogeneity, 631
Support (of a density function), 802
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SUR system, 306
feasible GLS estimation, 310–13

t distribution, 810
noncentral, 413–14, 810
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Supplement

S.1 Introduction

This Supplement to Estimation and Inference in Econometrics was written
over a period of several years following the publication of the book. It contains
a variety of material that was not included in the book at all, or that appeared
originally in a different form. It was expected that most of this material would
find a home in a second edition, but it was never written.

The following section is new. The material it discusses applies to all
root-n consistent, asymptotically normal estimators. It might be logical
to include this section in Chapter 5.

S.2 Functions of Parameter Estimates

In a great many cases, econometricians want to estimate, and make inferences
about, functions of parameter estimates. As long as the estimator has the
usual properties and asymptotic theory provides a good guide to them, this
is very easy to do.

For simplicity, let us start with the single parameter case. Suppose that
we have estimated a scalar parameter θ and that we are interested in γ ≡ g(θ),
where g(·) is a monotonic function that is continuously differentiable. Assum-
ing that the parameter estimate θ̂ is root-n consistent and asymptotically
normal, as most of the estimators discussed in this book are under standard
regularity conditions, we know that

n1/2(θ̂ − θ0)
a∼ N

(
0, V∞(θ̂)

)
, (S.01)

where θ0 denotes the true value of θ and V∞(θ̂) is a shorthand way of writing
V∞

(
n1/2(θ̂ − θ0)

)
, that is, the asymptotic variance of the expression on the

left-hand side of (S.01).

The obvious estimator of γ is γ̂ ≡ g(θ̂). To determine how γ̂ is distributed
asymptotically, we may Taylor expand g(θ̂) around θ0 to obtain

γ̂ = g(θ0) + g′(θ∗)(θ̂ − θ0), (S.02)

where g′ is the first derivative of g and, as usual, θ∗ is a convex combination
of θ0 and θ̂. Since the consistency of θ̂ implies that θ∗ → θ0 as n→∞, we can

875
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replace θ∗ by θ0 without affecting the asymptotic validity of equation (S.02).
Rearranging this equation and multiplying both sides by n1/2, we conclude
that

n1/2(γ̂ − γ0)
a
= g′0n

1/2(θ̂ − θ0), (S.03)

where γ0 ≡ g(θ0) and g′0 ≡ g′(θ0).

From equation (S.03), it is obvious that n1/2(γ̂ − γ0) is asymptotically
normally distributed with mean zero, since it is just g′0 times a quantity that
is asymptotically normal with mean zero; recall (S.01). It is also obvious that
the variance of n1/2(γ̂ − γ0) is (g′0)2V∞(θ̂). Thus we conclude that

n1/2(γ̂ − γ0)
a∼ N

(
0, (g′0)2V∞(θ̂)

)
. (S.04)

This result is very simple, and it leads immediately to a practical procedure
for making inferences about γ. If the estimated variance of θ̂ is V̂ (θ̂), then
the estimated variance of γ̂ will be

V̂ (γ̂) = g′(θ̂)2V̂ (θ̂). (S.05)

This method of estimating the variance is sometimes called the delta method.

Although the result (S.04) is simple and practical, it reveals one of the
problems with asymptotic theory. Whenever the relationship between θ̂ and
γ̂ is a nonlinear one, it is impossible that they should both be normally dis-
tributed in finite samples. Suppose that θ̂ really did happen to be normally
distributed. Then, unless g(·) were linear, γ̂ could not possibly be normally,
or even symmetrically, distributed, and vice versa. This implies that confi-
dence intervals or test statistics based on asymptotic theory may not always
be reliable in finite samples.

There is more than one way to construct confidence intervals for θ and γ.
Asymptotic theory suggests that we should use symmetric confidence inter-
vals, based on the normal distribution, for both of them. However, that would
not be a good thing to do if one of them had an asymmetric finite-sample dis-
tribution, which at least one of them must have when g(·) is sufficiently non-
linear. Suppose, for example, that for θ̂ the normality assumption is a good
one, that V̂ (θ̂) provides an accurate estimate of the variance of θ̂, and that,
in consequence, the level α confidence interval for θ is reasonably accurate.
This interval is given by

θ̂ − cα Ŝ(θ̂) to θ̂ + cα Ŝ(θ̂), (S.06)

where cα is a two-tail critical value based on the N(0, 1) distribution (see
Section 3.3), and Ŝ(θ̂) is the square root of V̂ (θ̂). For example, if α were .05,
cα would be 1.96.

A standard asymptotic confidence interval for γ is

γ̂ − cα Ŝ(γ̂) to γ̂ + cα Ŝ(γ̂), (S.07)
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where Ŝ(γ̂) is the square root of V̂ (γ̂). Instead of using (S.07), however, we
could transform the confidence interval (S.06) into a confidence interval for γ.
Assuming, for concreteness, that g′ > 0, the result would be

g
(
θ̂ − cα Ŝ(θ̂)

)
to g

(
θ̂ + cα Ŝ(θ̂)

)
. (S.08)

Similarly, we could transform the confidence interval (S.07) into a confidence
interval for θ. If g(·) is nonlinear, confidence intervals like (S.08) will be
asymmetric. Whether it is better to use a generally asymmetric confidence
interval like (S.08) instead of a symmetric interval like (S.07) depends on
the finite-sample distributions of both θ̂ and γ̂. We need to know a good
deal about both these distributions before we can make an informed decision
about which approach to follow.

The result (S.04) can easily be extended to the case in which both θ̂ and
γ̂ are vectors. Suppose that the former is a k--vector and the latter is an
l--vector, with l ≤ k. The relation between θ and γ is γ = g(θ), where g(·) is
an l--vector of monotonic functions that are continuously differentiable. The
vector equivalent of (S.01) is

n1/2(θ̂ − θ0)
a∼ N

(
0,V ∞(θ̂)

)
, (S.09)

where V ∞(θ̂) is the k× k asymptotic covariance matrix of n1/2(θ̂− θ0). It is
a straightforward exercise to show that the vector equivalent of (S.04) is

n1/2(γ̂ − γ0)
a∼ N

(
0,G0V

∞(θ̂)G0
>), (S.10)

where G0 is an l×k matrix with typical element ∂gi(θ)/∂θj , evaluated at θ0.
The asymptotic covariance matrix that appears in (S.10) is l × l, and it will
generally have full rank l if the matrix of derivatives G0 has full rank l.

In practice, by analogy with (S.05), the covariance matrix of γ̂ may be
estimated by

V̂ (γ̂) = ĜV̂ (θ̂)Ĝ>, (S.11)

where V̂ (θ̂) is the estimated covariance matrix of θ̂ and Ĝ ≡ G(θ̂). This
can be a very useful result in many applications, but, like all results based on
asymptotic theory, it should be used with caution.

The following section is new. The material it discusses applies to essen-
tially all asymptotically efficient estimators, including OLS, NLS, ML,
and efficient GMM.

S.3 Independence of Tests of Nested Hypotheses

In many cases, the hypotheses that we wish to test may be nested to a depth
of more than two. For example, as we saw in Chapter 10, we may test a
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linear regression model with serially independent errors against a model with
AR(1) errors, and we may in turn test the latter against a model with AR(2)
errors. In a rather different context, we may use a DWH test to test the null
hypothesis that consistent estimates can be obtained by OLS, and we may
then test the overidentifying restrictions that are implicit in 2SLS estimation;
see Chapter 7. In each of these cases, the models we are interested in form a
sequence of nested hypotheses.

In the first example above, the nested hypotheses in the sequence can be
written as:

H0 : yt = Xtβ + ut,

H1 : yt = ρ1yt−1 +Xtβ − ρ1Xt−1β + ut, and

H2 : yt = ρ1yt−1 + ρ2yt−2 +Xtβ − ρ1Xt−1β − ρ2Xt−2β + ut,

where in each case ut is assumed to be IID(0, σ2). Under the most restrictive
hypothesis, H0, ρ1 = ρ2 = 0, while under the least restrictive hypothesis,
H2, there are no restrictions on any of the parameters. The hypothesis H1

is more restrictive than H2 but less restrictive than H0. We may write the
relationship among these hypotheses as: H0 ⊂ H1 ⊂ H2.

There are many other examples of sequences of nested hypotheses. One
is testing the hypothesis of serially independent errors against the hypothesis
that the errors follow some AR process, and then testing the latter against a
model that relaxes the common factor restrictions; see Chapter 10. A second
is testing a restricted model estimated by instrumental variables or the gen-
eralized method of moments against an unrestricted model, and then testing
the overidentifying restrictions on the latter; see Chapter 7 or Chapter 17. A
third is testing a restricted simultaneous equations model estimated by FIML
against an unrestricted model, and then testing the overidentifying restric-
tions on the entire system; see Chapter 18. A fourth is testing for structural
change in a regression model and then testing whether the error variance is the
same for the two parts of the sample in the unrestricted model; see Chapter 11
and Phillips and McCabe (1983). A fifth example is testing a VAR(p) model
against a VAR(p+ 1) model, and then testing the latter against a VAR(p+ 2)
model; see Chapter 19.

There may, of course, be more than three nested hypotheses in a sequence.
In general, when there are l + 1 nested hypotheses, we can write

H0 ⊂ H1 ⊂ H2 ⊂ · · · ⊂ Hl.

Tests of the hypotheses in such a sequence have a very interesting property.
Asymptotically, under H0, the test of H0 against H1 is independent of the
test of H1 against H2, both of these are independent of the test of H2 against
H3, and so on. For simplicity, we shall henceforth assume that there are just
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three hypotheses. If the result is true for three hypotheses, then it must be
true for any number.

The independence property of tests in a nested sequence has two useful
implications. First of all, for test statistics that are asymptotically χ2, the test
of H0 against H2 either can be computed as the sum of the two component
tests or is asymptotically equivalent to a test that can be computed in this
way. This implies that, at least asymptotically, each of the component test
statistics is bounded above by the test statistic for H0 against H2. Secondly,
because the tests are independent, it is very easy to control their overall size.
If we want the overall size to be α, the size of the two independent tests, say
α∗, must be such that α = 1− (1− α∗)2. This implies that

α∗ = 1− (1− α)1/2.

Thus if, for example, α = .05, we find that α∗ = .02532. Mizon (1977) makes
extensive use of the independence property in the context of model selection.

The result that tests of nested hypotheses are asymptotically indepen-
dent is true for all of the efficient estimation methods discussed in this book:
ordinary least squares (Chapter 3), nonlinear least squares (Chapter 5), gen-
eralized least squares (Chapter 9), maximum likelihood (Chapters 8 and 13),
instrumental variables (Chapter 7), and efficient GMM estimation (Chap-
ter 17). However, we shall prove it only for two cases: ordinary least squares
and maximum likelihood.

The simplest case is that of the linear regression model

y = X0β0 +X1β1 +X2β2 + u, u ∼ IID(0, σ2I).

Let H2 denote the unrestricted model, H1 denote the restricted model with
β2 = 0, and H0 denote the doubly restricted model with β1 = 0 and β2 = 0.
Thus H0 ⊂ H1 ⊂ H2, as required. Let k0, k1, and k2 denote the number of
parameters in β0, β1, and β2, respectively.

Using the FWL Theorem, it is straightforward to show that the F statistic
for H0 against H1 can be written as

F01 =
y>M0X1

(
X1
>M0X1

)−1
X1
>M0y/k1

y>M01y/(n− k0 − k1)
, (S.12)

where M01 projects orthogonally on to S⊥([X0 X1]); see Section 3.5. Simi-
larly, the F statistic for H1 against H2 can be written as

F12 =
y>M01X2

(
X2
>M01X2

)−1
X2
>M01y/k2

y>M012y/(n− k0 − k1 − k2)
, (S.13)

where M012 projects orthogonally on to S⊥([X0 X1 X2]).
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Under H0, the numerators of F01 and F12 are idempotent quadratic forms
in u. Asymptotically, their denominators do not matter, since they just tend
to σ2. In fact, we know that k1 times F01 will be asymptotically distributed
as χ2(k1), and that k2 times F12 will be asymptotically distributed as χ2(k2).
The product of the two idempotent matrices is

M0X1

(
X1
>M0X1

)−1
X1
>M0M01X2

(
X2
>M01X2

)−1
X2
>M01 (S.14)

Since M0M01 = M01 and X1M01 = 0, expression (S.14) is equal to zero.
This implies that the numerators of (S.12) and (S.13) are independent, and
so the two test statistics, when expressed in χ2 form, must be asymptotically
independent.

In the linear regression case with NID errors, F statistics for nested hypo-
thesis tests are actually independent in finite samples. Phillips and McCabe
(1983) cite the following result from Hogg and Tanis (1963):

If the random variables x1, x2, and x3 are independently distributed as χ2(d1),
χ2(d2), and χ2(d3), then

F1 ≡
x2/d2
x1/d1

is independent of

F2 ≡
x3/d3

(x1 + x2)/(d1 + d2)
.

If we make the definitions

x1 ≡ y>M012y/σ
2,

x2 ≡ y>M01X2

(
X2
>M01X2

)−1
X2
>M01y/σ

2, and

x3 ≡ y>M0X1

(
X1
>M0X1

)−1
X1
>M0y/σ

2,

and let d1 = n− k0 − k1 − k2 and d2 = k2, then F12 plays the role of F1 and
F01 plays the role of F2. Thus F01 and F12 are seen to be exactly independent.

Tests of nested hypotheses are exactly independent only in very special
cases, notably the one just considered. However, such tests are asymptotically
independent in many cases. Consider the case of the three classical tests (LR,
LM, and Wald), which were introduced in Chapter 8 and discussed in depth
in Chapter 13. Let the test statistic for Hi against Hj be denoted by τij .
Then, for the LR statistic, we have τ02 = τ01 + τ12 by the way the statistic
is constructed. For the other statistics, the same equality must hold asymp-
totically. We know that τ01 is asymptotically distributed as χ2(k1), that τ12
is asymptotically distributed as χ2(k2), and that τ02 is asymptotically dis-
tributed as χ2(k1 + k2). By a standard result, if we knew that τ01 and τ12
were asymptotically independent, we could assert that τ02 must be asymptot-
ically distributed as χ2(k1 +k2). What we need to do is to turn this standard
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result around, in order to deduce the asymptotic independence of τ01 and τ12
from the fact that τ02 is asymptotically distributed as χ2(k1 + k2).

Any random variable that is distributed as χ2 can be represented as a
sum of squares of standard normal variates. Let τ∗ij represent the random
variable that τij tends to asymptotically. Then we have

τ∗01 =

k1∑
j=1

x2j , τ∗12 =

k1+k2∑
j=k1+1

x2j ,

where
x1 ≡ [x1 . . . xk1 ]>∼ N(0, Ik1), and

x2 ≡ [xk1+1 . . . xk1+k2 ]>∼ N(0, Ik2).

Further, the two vectors x1 and x2 are subvectors of a longer vector x, which
is also multivariate normal:

x ≡ [x1
.... x2] ∼ N

(
0,

[
Ik1 C

C> Ik2

])
.

The assumption of multivariate normality is potentially restrictive, but it will
be satisfied automatically by classical test statistics and in many other testing
situations. Recall from Section 13.3 that all the classical tests can be written,
asymptotically, as quadratic forms in the gradient vector.

The characteristic function of a χ2(k) random variable is (1 − 2it)−k/2.
More generally, if x ∼ N(0,V ), the characteristic function of x>x can be
written as

k∏
j=1

(
1 + 2ivjt

)−1/2
, (S.15)

where the vj ’s are the eigenvalues of the covariance matrix V , which are real
and positive. For our problem, k = k1 + k2, and

V =

[
Ik1 C

C> Ik2

]
. (S.16)

Clearly, x>x = τ∗01 + τ∗12, and so the characteristic function of τ∗01 + τ∗12
is given by (S.15) with the vj ’s being the eigenvalues of (S.16). Now suppose
that the sum τ∗01+τ∗12 is known to have the χ2(k1+k2) distribution. Therefore,
its characteristic function must be(

1 + 2it
)−k/2

. (S.17)

In order for (S.17) and (S.15) to be equal for all real t, it is necessary that
vj = 1 for all j = 1, . . . , k. But this means that V = Ik, and consequently that
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C = 0. Thus x1 and x2 are uncorrelated, and, being multivariate normal,
they are therefore stochastically independent. The independence of τ∗01 and
τ∗12 now follows immediately.

What we have just proved is that any two test statistics τ01 and τ12 are
asymptotically independent whenever they tend asymptotically to random
variables τ∗01 and τ∗12 distributed as χ2(k1) and χ2(k2), respectively, and which
sum to a random variable τ∗02 that is distributed as χ2(k1 + k2). This result
evidently applies to tests of nested hypotheses based on OLS, NLS, IV, and
GMM estimation as well as to those based on ML estimation. Thus the
independence result discussed in this section is a very general one.

The following section is new. Most of the material it discusses logically
belongs in Chapters 5 and 8.

S.4 Sandwich Covariance Matrices

The asymptotic covariance matrices that are encountered in this book all have
one of two general forms. Suppose that θ̂ is a root-n consistent, asymptotically
normal estimator of a k--vector of parameters. Then, much of the time, the
asymptotic covariance matrix of θ̂ has the simple form

V ∞
(
n1/2(θ̂ − θ0)

)
= aA−1, (S.18)

where a is a scalar, which may of course be equal to 1, and A is a k × k
positive definite matrix. In quite a few other cases, however, the asymptotic
covariance matrix of θ̂ is more complicated and can be written as

V ∞
(
n1/2(θ̂ − θ0)

)
= aA−1BA−1, (S.19)

where B is also a k × k positive definite matrix. This form of covariance
matrix is often called a sandwich covariance matrix, for the obvious reason
that B is sandwiched between the two instances of A−1.

Sandwich covariance matrices are discussed in Chapters 16 and 17, al-
though not under that name. Section 16.3 deals with heteroskedasticity-
consistent covariance matrices (HCCMEs) for linear and nonlinear regression
models, and Section 17.5 deals with heteroskedasticity and autocorrelation
consistent (HAC) covariance matrices for models estimated by GMM. Both
the HCCME and HAC covariance matrix estimators have the sandwich form
of (S.19), and they may therefore be referred to as sandwich estimators. Un-
fortunately, the book does not provide an adequate treatment of this type of
covariance matrix estimator. In particular, it fails to make it clear that co-
variance matrices like (S.18) arise only in special cases, while ones like (S.19)
arise much more generally. Also, although it derives the sandwich covariance
matrix for models estimated by maximum likelihood, it fails to discuss the



S.4 Sandwich Covariance Matrices 883

corresponding sandwich estimator. In this section of the Supplement, we at-
tempt to remedy these two deficiencies.

We first discuss the asymptotic covariance matrix of the NLS estimator β̂
for the univariate nonlinear regression model y = x(β) + u. The asymptotic
covariance matrix for this model was derived in Section 5.4 under the standard
assumption that E(uu>) = σ2

0I. For the moment, however, we do not wish
to make any assumption about E(uu>).

Recall that ssrn(y,β) denotes n−1
(
y − x(β)

)>(y − x(β)
)
, which is n−1

times the sum of squared residuals, written as a function of y and β. The key
equation in Section 5.4 is (5.32), which writes n1/2(β̂ − β0) as a function of
the first and second derivatives of ssrn(y,β) with respect to β. This equation
implies that

n1/2(β̂ − β0)
a
= −H−1(y,β0)n1/2g(y,β0), (S.20)

where g(y,β) denotes the k--vector of first derivatives of ssrn(y,β) with re-
spect to β, and H(y,β) denotes the k × k matrix of second derivatives. The
notation emphasizes the fact that g is the gradient and H is the Hessian of
ssrn. Equation (S.20) is obtained from (5.32) by evaluating H at the true
parameter vector β0 instead of at β∗, a vector that lies between β̂ and β0.
The consistency of β̂ implies that (S.20) holds asymptotically, but it does not
hold as an equality in finite samples.

The covariance matrix of the vector n1/2(β̂−β0) is the expectation of the
vector times itself transposed. Asymptotically, this is equal to the expectation
of the vector on the right-hand side of (S.20) times itself transposed. Thus

V ∞
(
n1/2(β̂ − β0)

)
= E

(
H−10 (ng0g0

>)H−10

)
, (S.21)

where g0 ≡ g(y,β0) and H0 ≡ H(y,β0). It is easy to see that, under the
DGP characterized by β0,

g(y,β0) = − 2−
n
X0
>(y − x(β0)

)
= − 2−

n
X0
>u. (S.22)

We saw in Section 5.4 that

plim
n→∞

0H(y,β0) = 2 plim
n→∞

0

(
1−
n
X0
>X0

)
, (S.23)

where plim0 means that we are taking the probability limit under the DGP
characterized by β0. The three factors inside the expectations operator in
(S.21) are all O(1), and, under reasonable assumptions, they all tend to non-
stochastic probability limits. Therefore, we can substitute (S.23) and the plim
of (S.22) into (S.21), dropping the expectations operator, so as to obtain

V ∞
(
n1/2(β̂ − β0)

)
=

plim
n→∞

0

(
1−
n
X0
>X0

)−1
plim
n→∞

0

(
1−
n
X0
>uu>X0

)
plim
n→∞

0

(
1−
n
X0
>X0

)−1
.

(S.24)
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Thus the asymptotic covariance matrix of β̂ is of the sandwich form.

Of course, as we saw in Section 5.4, when E(uu>) = σ2
0I, expression

(S.24) simplifies to the more familiar result (5.25), which does not have the
sandwich form. It is not a coincidence that this simplification is available
only in the case for which NLS is asymptotically efficient; see Section 5.5. In
general, covariance matrices like (S.18) are available only for estimators that
are asymptotically efficient within some class of estimators.

The theoretical result (S.24) can be made to yield operational covariance
matrix estimators if we can find ways to estimate the middle matrix consis-
tently. That is precisely what the HCCMEs discussed in Section 16.3 do in
the case of errors that are heteroskedastic but serially uncorrelated and what
the HAC estimators discussed in Section 17.5 do in the more general case
where there is both heteroskedasticity and serial correlation. The former is
probably the best-known example of a sandwich estimator in econometrics.

We now turn our attention to maximum likelihood estimation. The
asymptotic covariance matrix of the ML estimator θ̂ was derived in Sec-
tion 8.5. The key equation in this section is (8.38). It can be rewritten
in slightly simpler notation as

n1/2(θ̂ − θ0)
a
= −H−10 n−1/2g0, (S.25)

where H0 denotes the expectation of 1/n times the matrix of second deriva-
tives of the loglikelihood function with respect to the parameter values, eval-
uated at θ0, and g0 denotes the gradient of the loglikelihood function, also
evaluated at θ0. As we showed in Section 8.5, equation (S.25) implies that

V ∞
(
n1/2(θ̂ − θ0)

)
= H−10 I0H

−1
0 , (S.26)

where I0 is the limiting information matrix evaluated at θ0. Equation (S.26),
which is just equation (8.42) rewritten, shows that the asymptotic covariance

matrix of θ̂ is of the sandwich form.

After obtaining the theoretical result (S.26) in Section 8.5, we went on
in Section 8.6 to prove the information matrix equality. This famous result
tells us that, for a correctly specified model, I0 = −H0. Obviously, if this
equality holds, there is no reason to use a sandwich estimator. However,
as White (1982) and Gouriéroux, Monfort, and Trognon (1984) showed, the
information matrix equality generally will not hold when the DGP is not a
special case of the model being estimated, even in cases for which maximum
likelihood yields a quasi-ML, or QML, estimator that is consistent. In such
cases, the sandwich estimator

H−1(θ̂)G>(θ̂)G(θ̂)H−1(θ̂) (S.27)

should be used instead of the estimators (8.49), (8.50), or (8.51) that are
discussed in Section 8.6. At present, little seems to be known about the
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performance, in finite samples and for particular classes of models, of the
sandwich estimator (S.27) relative to the performance of more conventional
covariance matrix estimators. However, if (8.49), (8.50), and (S.27) all yield
substantially different estimates, it would seem prudent to rely on the last
of these. Of course, in this circumstance, it would also seem prudent to
investigate the possibility that the model may be misspecified.

The following section is new. The material it discusses applies to all
root-n consistent estimators. It might logically be included in Chapter 4.

S.5 Properties of Root-n Consistent Estimators

Although almost all of the estimators we study in this book are root-n con-
sistent under standard regularity conditions (which, however, are not always
applicable; see Chapter 20), the properties of root-n consistent estimators are
never discussed. In fact, the concept is not even mentioned in Chapter 4,
where other types of consistency are discussed in some detail. In this section,
we therefore discuss some of the properties of root-n consistent estimators.

Suppose that θ̂ denotes a k--vector of parameter estimates and θ0 denotes
the vector of true parameter values. Then θ̂ is root-n consistent if

θ̂ − θ0 = O(n−1/2). (S.28)

In words, an estimator is root-n consistent if the difference between the es-
timator and the true value is (stochastically) proportional to n−1/2; see Sec-
tion 4.3. This implies that the covariance matrix of θ̂ must be O(n−1), as
can be seen by taking the expectation of θ̂ − θ0 times itself transposed. From
(S.28), each element of the resulting matrix must be the expectation of the
product of two things that are O(n−1/2). Unless these expectations happen
to be zero, they must be O(n−1).

Although root-n consistency does not imply asymptotic normality, the
vast majority of root-n consistent estimators that we will encounter are asymp-
totically normally distributed. That is,

n1/2(θ̂ − θ0)
a∼ N

(
0,V ∞

(
n1/2(θ̂ − θ0)

))
, (S.29)

where V ∞
(
n1/2(θ̂ − θ0)

)
denotes the asymptotic covariance matrix of the

vector n1/2(θ̂ − θ0). Since this asymptotic covariance matrix is O(1), it is
obvious in this case that the covariance matrix of θ̂ itself must be O(n−1).

In Section 4.5, we showed that a consistent estimator might not be asymp-
totically unbiased. That is not the case for root-n consistent estimators that
are asymptotically normal. In fact, for such estimators, we can be sure that,
if they are not unbiased, then their bias is at most O(n−1). From (S.29), we
observe that the mean of n1/2(θ̂ − θ0) must be equal to 0, asymptotically.
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But that could not be the case if θ̂ were biased at O(n−1/2) or greater, since
then n1/2 times the bias would be O(1) or greater. Thus any bias in θ̂ must
be o(n−1/2).

The above argument does not quite establish what we set out to show.
To do this, we must suppose that θ̂ admits a stochastic expansion in powers
of n−1/2. Under standard regularity conditions, this will be the case. This
expansion can be written as

θ̂ = θ0 + n−1/2w1 + n−1w2 +O(n−3/2), (S.30)

where w1 and w2 are random k--vectors that are O(1) and independent of n.
Multiplying both sides of (S.30) by n1/2 and rearranging yields

n1/2(θ̂ − θ0) = w1 + n−1/2w2 +O(n−1). (S.31)

It is clear from (S.31) that w1 is the random vector to which n1/2(θ̂ − θ0)
tends asymptotically. By (S.29), this random vector must have mean vector
0. Therefore, the O(n−1/2) term in (S.30) cannot contribute to any bias in θ̂.
The first term that can do so is n−1w2. Thus the bias is at most O(n−1).

Many estimators that are commonly encountered in econometrics are
in fact biased at O(n−1). Consider, for example, the maximum likelihood
estimator of the error variance σ2 in a linear regression model. As we saw
in Section 3.2, dividing SSR by n − k yields an unbiased estimator of σ2.
However, the ML estimator divides SSR by n instead of by n − k, and it is
easy to see that this induces a bias that is O(n−1):

E
(
1−
n
SSR

)
− σ2

0 =
(n− k)σ2

0

n
− σ2

0 = − k−
n
σ2
0 .

There are many other examples of estimators that are biased atO(n−1). These
include least squares estimators of dynamic regression models (Section 19.4),
least squares estimators of time series models (Shaman and Stine, 1988), and
maximum likelihood estimators of probit and logit models (Amemiya, 1980b).

Suppose, as is often the case, that the bias of a root-n consistent, asymp-
totically normal estimator is O(n−1). As we have seen, its covariance matrix
is also O(n−1). Therefore, its mean squared error matrix must be dominated
by the latter. Recall that the mean squared error matrix of θ̂ is

E
(
(θ̂ − θ0)(θ̂ − θ0)>

)
= V (θ̂) +

(
E(θ̂ − θ0)

)(
E(θ̂ − θ0)

)>. (S.32)

The first matrix on the right-hand side of (S.32) is O(n−1). In contrast, the
second is O(n−2), since it is the product of two vectors, each of which is
O(n−1). Therefore, for large sample sizes, we can be confident that the mean
squared error which arises from the bias of θ̂ will be small relative to the mean
squared error which arises from its variance.



S.6 The Noncentral Chi-squared Distribution 887

Several readers have suggested that the material on the noncentral chi-
squared distribution, which is discussed in Sections 12.4 and B.4, should
be supplemented by a figure. That is done in this very short section.

S.6 The Noncentral Chi-squared Distribution

Figure S.1 shows the density of the noncentral χ2 distribution with 3 de-
grees of freedom for noncentrality parameters of 0, 2, 5, 10, and 20. As the
NCP increases, both the mean and the variance increase, and the distribu-
tion becomes more symmetrical. The .05 critical value for the central χ2(3)
distribution, which is 7.81, is shown in the figure. If a test statistic has the
noncentral χ2(3) distribution, the probability that the null hypothesis will be
rejected at the .05 level is the probability mass to the right of 7.81. It is evi-
dent from the figure that this probability will be quite small for small values
of the NCP. In contrast, for an NCP of 20, it is .975.
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Figure S.1 Densities of noncentral χ2 distributions
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