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Finite sample analysis of the statistical procedure

This supplementary material to Winkelmann et al. (2015) illuminates the accuracy of our
statistical approach in finite samples. We shall demonstrate that the methods perform
well in realistic scenarios with non-synchronous observations and with locally varying
observation frequencies. To this end, we simulate noisy observations of semimartingales
discretely recorded on [0, 1] at times t(q)

i , i = 0, . . . , T (q), q = 1, 2, with T (1) = 10000 and
T (2) = 5000. Given the fixed number of observations, we generate the random observation
times for both processes according to a law which mimics a typical evolution of intraday
trading activity as for our data application and which is at the same time in accordance
with our theoretical assertions.1 The distribution of observation times is visualized in
Figure 1.
In this Monte Carlo experiment, we simulate stochastic volatilities
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comprising leverage, a typical intra-day shape (second factor) as well as random fluctua-
tions. W (q),⊥, q = 1, 2, are two independent standard Brownian motions independent of
W (q), the Brownian motions driving X(q)
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t , q = 1, 2. We set

ρ = 1/2 as correlation of W (1) and W (2) such that the resulting integrated covolatility is
positive. Discrete recordings Y (q)
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(q)
i are diluted with i.i.d.Gaussian errors with

expectations zero and standard deviations η(1) = η(2) = 0.001 of realistic magnitude. The
1We utilize a pdf ∝ cos((3/16)πt) + (1/3) exp(−(t− 0.535)2 · 500), the associated cdf F and its numerical
inverse F−1 which satisfies t(q)

i

d= F−1(i/T (q)).



Figure 1: Distribution of simulated intraday observation times.

Note: Left plot depicts observation times t
(2)
i , i = 0, . . . , T (2), in one simulation (y-axis)

against intraday clock (x-axis). Right plot gives empirical distribution of observation times
for one simulation (100 bins).

spectral estimators have been thoroughly investigated in Monte Carlo studies by Bibinger
and Winkelmann (2015) and Bibinger et al. (2014), while our main focus here is on the
precision of the test. We employ the block-wise adapted time-varying thresholding pro-
cedure, i.e. ûk = 2 log(h−1)hσ(1,2)

k , with k = 0, ..., h−1 − 1, and σ
(1,2)
k the pilot estimator

of the block-wise covolatility. We fix J = 30 as spectral cut-off frequency which is large
enough such that higher frequencies are negligible.
First, the number of blocks is set h−1 = 33, which equals our choice of 20 minutes intervals
in the data analysis of Winkelmann et al. (2015). Below, we consider smaller blocks as
well and shall see that the results are reasonably robust against different block lengths
and that 33 is an adequate choice.
In the sequel, we visualize the empirical size and power of the test by comparing empir-
ical against theoretical asymptotic percentiles, i.e. the q/100-quantiles for q = 1, . . . , 99
of the theoretical Gaussian limit distribution under the hypothesis. First, we simulate
10000 Monte Carlo iterations under the hypothesis with no cojumps to reveal the test’s
finite sample size. Idiosyncratic jumps are implemented according to a compound Pois-
son process with one expected jump in each component and jump heights from a normal
distribution N(0.05, 0.0001) · U , where U determines the direction of a jump by taking
values {−1, 1}, each with probability 1/2. Figure 2 visualizes the size of the test in the
Monte Carlo experiment. The results confirm that the finite-sample behavior is very well-
predicted by the asymptotic results.
Next, consider the finite-sample power. The same graphics as in Figure 2 portray the

power in case that we simulate under the alternative. For this purpose we simulate 10000
iterations from the above scenario, but with one cojump occurring in each run at uniform
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Figure 2: Size of the cojump test in Monte Carlo.

Note: Left plot depicts percentage of realized test statistics (y-axis) smaller or equal the
theoretical percentiles of theoretical limit distribution (x-axis). Right plot gives empirical dis-
tribution of test statistics, dashed line theoretical limit and solid line kernel density estimate.

on [0, 1] distributed time. In each component we generate jumps N(0.05, 0.0001) ·U . This
results with equal probability either in a unidirectional cojump (level shift), or a cojump
with opposite directions (rotation).

Figure 3 shows a finite-sample power very close to 1 for this Monte Carlo experiment.
About one half of the iterations with unidirectional cojumps result in large positive val-
ues of the test statistic while cojumps in opposite directions lead to negative test statis-
tics with large absolute values. The configuration appears to be realistic with moder-
ate average jump sizes as in this setup for a cojump at t we have |∆J (1)

t | ≈ |∆J
(2)
t | ≈

60Mean(|∆iX
(q)|), q = 1, 2, such that the jumps are ca. 60 times the average increment

from the continuous motion (which are in practice often equal to smallest unit).
Finally, we apply the test to simulated data with cojumps of even smaller size, distributed
according to N(0.02, 0.0001)·U , to further explore the limits of feasibility of the truncation
methodology. We disclose the properties of our test in this framework in Figure 4. In this
setting |∆J (1)

t | ≈ |∆J
(2)
t | ≈ 20Mean(|∆iX

(q)|), q = 1, 2, the jump size is comparable to
the magnitude of the threshold and hence only in about 92% of the 10000 iterations the
cojumps are recovered based on the truncation principle. Furthermore, since the continu-
ous part of covariation is always positive, in this configuration opposite cojumps are even
harder to detect via thresholding which produces a slight asymmetry in Figure 4.

Naturally the power is not as high as before. Still, the performance of the test gives
reasonable results. Figure 5 shows the simulated noisy paths of one iteration in which
the jumps are still visible - which is not always the case under this configuration. For
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Figure 3: Power of the cojump test in Monte Carlo (1).

Note: Left plot depicts percentage of realized test statistics (y-axis) against theoretical per-
centiles of the limit distribution under the hypothesis (x-axis). Right plot gives empirical
distribution of test statistics.

convenience the cojump arrival time is marked by the dashed lines. This examples intends
to shed a light on what is possible in practice and grasp insight about the capabilities
to detect cojumps by truncation (in the depicted example the cojump is clearly detected
from the spectral statistics).

We repeat the Monte Carlo study using h−1 = 100 blocks instead of h−1 = 33. This
corresponds to time intervals of ca. 5 minutes instead of 20 minutes in the data analysis.
The number of observations (in mean) per block can easily be seen in Figure 1 as we use
there 100 bins to illustrate the law of observation times. Although the numbers per block
are below 100 for most blocks, we are still in a range where the statistical methods work
reasonably well.
The empirical size and power for alternatives with cojumps from a N(0.05, 0.0001) · U -
law and a N(0.02, 0.0001) · U -law, respectively, are presented in Figure 6. The results
show that the test performs quite well also for h−1 = 100, though the accuracy of the
fit by the asymptotic results is slightly lower than before for h−1 = 33. From extensive
simulations using different configurations, we can report that the test performs well in a
broad range for h. Only in case that we select h even smaller, such that much less than
100 observations fall within one block, the size and power deteriorate significantly. On the
other hand, taking h−1 much smaller than 33, the power (for moderate cojump sizes) also
deteriorates as under low time resolution the separation of covolatility and cojumps gets
less sharp.

To sum up, the Monte Carlo example demonstrates the high practical value of the hybrid
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Figure 4: Power of the cojump test in Monte Carlo (2).

Note: Left plot depicts percentage of realized test statistics (y-axis) against theoretical per-
centiles of the limit distribution under the hypothesis (x-axis). Right plot gives empirical
distribution of test statistics.

statistical approach combining truncation with spectral covariation estimation and a wild
bootstrap test. Our main objective is to infer on cojumps associated with relevant and
significant price changes which are very precisely recovered by the method. We have
confirmed that the approach is remarkably robust against different values of its block
length.

Figure 5: Example of simulated paths in Monte Carlo.

Note: Dashed segments highlight cojump arrival time.
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Figure 6: Size and power of cojump test in Monte Carlo, h−1 = 100. Empirical size
under hypothesis (top), empirical power under large cojumps (middle) and small cojumps
(bottom). Illustrations analogous as above for h−1 = 33.
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